Commit
ยท
6482e82
1
Parent(s):
cd8a09b
๐ Update config file.
Browse files- config.yml +85 -58
config.yml
CHANGED
|
@@ -1,59 +1,86 @@
|
|
| 1 |
-
|
| 2 |
-
|
| 3 |
-
|
| 4 |
-
|
| 5 |
-
|
| 6 |
-
|
| 7 |
-
|
| 8 |
-
|
| 9 |
-
|
| 10 |
-
|
| 11 |
-
|
| 12 |
-
|
| 13 |
-
|
| 14 |
-
|
| 15 |
-
|
| 16 |
-
|
| 17 |
-
|
| 18 |
-
warmup_proportion: 0.02
|
| 19 |
-
weight_decay: 0.001
|
| 20 |
-
outdir: ./egs/ljspeech/exp/tacotron2.v1
|
| 21 |
-
remove_short_samples: true
|
| 22 |
-
resume: ./egs/ljspeech/exp/tacotron2.v1/checkpoints/ckpt-45000
|
| 23 |
-
save_interval_steps: 5000
|
| 24 |
-
schedule_decay_steps: 50000
|
| 25 |
-
start_ratio_value: 0.5
|
| 26 |
-
start_schedule_teacher_forcing: 250000
|
| 27 |
tacotron2_params:
|
| 28 |
-
|
| 29 |
-
|
| 30 |
-
|
| 31 |
-
|
| 32 |
-
|
| 33 |
-
|
| 34 |
-
|
| 35 |
-
|
| 36 |
-
|
| 37 |
-
|
| 38 |
-
|
| 39 |
-
|
| 40 |
-
|
| 41 |
-
|
| 42 |
-
|
| 43 |
-
|
| 44 |
-
|
| 45 |
-
|
| 46 |
-
|
| 47 |
-
|
| 48 |
-
|
| 49 |
-
|
| 50 |
-
|
| 51 |
-
|
| 52 |
-
|
| 53 |
-
|
| 54 |
-
|
| 55 |
-
|
| 56 |
-
|
| 57 |
-
|
| 58 |
-
|
| 59 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# This is the hyperparameter configuration file for Tacotron2 v1.
|
| 2 |
+
# Please make sure this is adjusted for the LJSpeech dataset. If you want to
|
| 3 |
+
# apply to the other dataset, you might need to carefully change some parameters.
|
| 4 |
+
# This configuration performs 200k iters but 65k iters is enough to get a good models.
|
| 5 |
+
|
| 6 |
+
###########################################################
|
| 7 |
+
# FEATURE EXTRACTION SETTING #
|
| 8 |
+
###########################################################
|
| 9 |
+
hop_size: 256 # Hop size.
|
| 10 |
+
format: "npy"
|
| 11 |
+
|
| 12 |
+
|
| 13 |
+
###########################################################
|
| 14 |
+
# NETWORK ARCHITECTURE SETTING #
|
| 15 |
+
###########################################################
|
| 16 |
+
model_type: "tacotron2"
|
| 17 |
+
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 18 |
tacotron2_params:
|
| 19 |
+
dataset: ljspeech
|
| 20 |
+
embedding_hidden_size: 512
|
| 21 |
+
initializer_range: 0.02
|
| 22 |
+
embedding_dropout_prob: 0.1
|
| 23 |
+
n_speakers: 1
|
| 24 |
+
n_conv_encoder: 5
|
| 25 |
+
encoder_conv_filters: 512
|
| 26 |
+
encoder_conv_kernel_sizes: 5
|
| 27 |
+
encoder_conv_activation: 'relu'
|
| 28 |
+
encoder_conv_dropout_rate: 0.5
|
| 29 |
+
encoder_lstm_units: 256
|
| 30 |
+
n_prenet_layers: 2
|
| 31 |
+
prenet_units: 256
|
| 32 |
+
prenet_activation: 'relu'
|
| 33 |
+
prenet_dropout_rate: 0.5
|
| 34 |
+
n_lstm_decoder: 1
|
| 35 |
+
reduction_factor: 1
|
| 36 |
+
decoder_lstm_units: 1024
|
| 37 |
+
attention_dim: 128
|
| 38 |
+
attention_filters: 32
|
| 39 |
+
attention_kernel: 31
|
| 40 |
+
n_mels: 80
|
| 41 |
+
n_conv_postnet: 5
|
| 42 |
+
postnet_conv_filters: 512
|
| 43 |
+
postnet_conv_kernel_sizes: 5
|
| 44 |
+
postnet_dropout_rate: 0.1
|
| 45 |
+
attention_type: "lsa"
|
| 46 |
+
|
| 47 |
+
###########################################################
|
| 48 |
+
# DATA LOADER SETTING #
|
| 49 |
+
###########################################################
|
| 50 |
+
batch_size: 32 # Batch size for each GPU with assuming that gradient_accumulation_steps == 1.
|
| 51 |
+
remove_short_samples: true # Whether to remove samples the length of which are less than batch_max_steps.
|
| 52 |
+
allow_cache: true # Whether to allow cache in dataset. If true, it requires cpu memory.
|
| 53 |
+
mel_length_threshold: 32 # remove all targets has mel_length <= 32
|
| 54 |
+
is_shuffle: true # shuffle dataset after each epoch.
|
| 55 |
+
use_fixed_shapes: true # use_fixed_shapes for training (2x speed-up)
|
| 56 |
+
# refer (https://github.com/dathudeptrai/TensorflowTTS/issues/34#issuecomment-642309118)
|
| 57 |
+
|
| 58 |
+
###########################################################
|
| 59 |
+
# OPTIMIZER & SCHEDULER SETTING #
|
| 60 |
+
###########################################################
|
| 61 |
+
optimizer_params:
|
| 62 |
+
initial_learning_rate: 0.001
|
| 63 |
+
end_learning_rate: 0.00001
|
| 64 |
+
decay_steps: 150000 # < train_max_steps is recommend.
|
| 65 |
+
warmup_proportion: 0.02
|
| 66 |
+
weight_decay: 0.001
|
| 67 |
+
|
| 68 |
+
gradient_accumulation_steps: 1
|
| 69 |
+
var_train_expr: null # trainable variable expr (eg. 'embeddings|decoder_cell' )
|
| 70 |
+
# must separate by |. if var_train_expr is null then we
|
| 71 |
+
# training all variables.
|
| 72 |
+
###########################################################
|
| 73 |
+
# INTERVAL SETTING #
|
| 74 |
+
###########################################################
|
| 75 |
+
train_max_steps: 200000 # Number of training steps.
|
| 76 |
+
save_interval_steps: 2000 # Interval steps to save checkpoint.
|
| 77 |
+
eval_interval_steps: 500 # Interval steps to evaluate the network.
|
| 78 |
+
log_interval_steps: 200 # Interval steps to record the training log.
|
| 79 |
+
start_schedule_teacher_forcing: 200001 # don't need to apply schedule teacher forcing.
|
| 80 |
+
start_ratio_value: 0.5 # start ratio of scheduled teacher forcing.
|
| 81 |
+
schedule_decay_steps: 50000 # decay step scheduled teacher forcing.
|
| 82 |
+
end_ratio_value: 0.0 # end ratio of scheduled teacher forcing.
|
| 83 |
+
###########################################################
|
| 84 |
+
# OTHER SETTING #
|
| 85 |
+
###########################################################
|
| 86 |
+
num_save_intermediate_results: 1 # Number of results to be saved as intermediate results.
|