# bot_concours_unified.py - Bot de concours unifié et optimisé # Version complète avec toutes les optimisations import asyncio import aiohttp from playwright.async_api import async_playwright, Page from bs4 import BeautifulSoup import requests import tweepy import pandas as pd import time import re from datetime import datetime, timedelta from huggingface_hub import InferenceClient import os import sys import random # import google.generativeai as genai # Supprimé - utilisation d'alternatives locales import sqlite3 import logging import imaplib import email import smtplib from email.mime.text import MIMEText import schedule import hashlib import json import threading from contextlib import contextmanager from dataclasses import dataclass from typing import List, Dict, Optional, Tuple from urllib.parse import urljoin, urlparse # ===================================================== # CONFIGURATION ET DATACLASSES # ===================================================== @dataclass class PersonalInfo: prenom: str = "Valentin" nom: str = "Cora" email: str = "valouassol@outlook.com" email_derivee: str = "valouassol+concours@outlook.com" telephone: str = "+41791234567" adresse: str = "Av Chantemerle 9" code_postal: str = "1009" ville: str = "Pully" pays: str = "Suisse" @dataclass class APIConfig: hf_token: Optional[str] = None x_token: Optional[str] = None google_api_key: Optional[str] = None google_cx: Optional[str] = None gemini_key: Optional[str] = None email_app_password: Optional[str] = None telegram_bot_token: Optional[str] = None telegram_chat_id: Optional[str] = None @classmethod def from_env(cls): return cls( hf_token=os.getenv("HF_TOKEN"), x_token=os.getenv("X_TOKEN"), google_api_key=os.getenv("GOOGLE_API_KEY"), google_cx=os.getenv("GOOGLE_CX"), gemini_key=os.getenv("GEMINI_KEY"), email_app_password=os.getenv("EMAIL_APP_PASSWORD"), telegram_bot_token=os.getenv("TELEGRAM_BOT_TOKEN"), telegram_chat_id=os.getenv("TELEGRAM_CHAT_ID") ) @dataclass class Contest: title: str url: str description: str source: str deadline: Optional[str] = None prize: Optional[str] = None difficulty_score: int = 0 @dataclass class FormField: selector: str field_type: str label: str required: bool current_value: str = "" ai_context: str = "" @dataclass class FormAnalysis: fields: List[FormField] complexity_score: int estimated_success_rate: float requires_captcha: bool requires_social_media: bool form_url: str # ===================================================== # CONFIGURATION GLOBALE # ===================================================== # Configuration PERSONAL_INFO = PersonalInfo() API_CONFIG = APIConfig.from_env() # Sites suisses à scraper SITES_CH = [ 'https://www.concours.ch/concours/tous', 'https://www.jeu-concours.biz/concours-pays_suisse.html', 'https://www.loisirs.ch/concours/', 'https://www.radin.ch/', 'https://win4win.ch/fr/', 'https://www.concours-suisse.ch/', 'https://corporate.migros.ch/fr/concours', 'https://www.20min.ch/fr/concours-et-jeux', 'https://dein-gewinnspiel.ch/en', 'https://www.myswitzerland.com/fr/planification/vie-pratique/concours/' ] # Proxies et User Agents PROXY_LIST = ["http://20.206.106.192:80", "http://51.15.242.202:8888"] USER_AGENTS = [ 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/120.0.0.0 Safari/537.36', 'Mozilla/5.0 (Macintosh; Intel Mac OS X 10_15_7) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/120.0.0.0 Safari/537.36', 'Mozilla/5.0 (X11; Linux x86_64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/120.0.0.0 Safari/537.36' ] # Logging setup logging.basicConfig( level=logging.INFO, format='%(asctime)s - %(levelname)s - %(message)s', handlers=[ logging.FileHandler('concours_bot.log'), logging.StreamHandler() ] ) # ===================================================== # GESTIONNAIRE DE BASE DE DONNÉES # ===================================================== class DatabaseManager: def __init__(self, db_path: str = 'concours_optimized.sqlite'): self.db_path = db_path self.local = threading.local() self._init_db() def _get_connection(self): if not hasattr(self.local, 'conn'): self.local.conn = sqlite3.connect(self.db_path) self.local.conn.row_factory = sqlite3.Row return self.local.conn @contextmanager def transaction(self): conn = self._get_connection() try: yield conn conn.commit() except Exception: conn.rollback() raise def _init_db(self): with self.transaction() as conn: conn.execute(''' CREATE TABLE IF NOT EXISTS participations ( url TEXT PRIMARY KEY, title TEXT, source TEXT, status TEXT, difficulty_score INTEGER, success_rate REAL, date TEXT, created_at TIMESTAMP DEFAULT CURRENT_TIMESTAMP ) ''') conn.execute(''' CREATE TABLE IF NOT EXISTS victories ( email_id TEXT PRIMARY KEY, date TEXT, lot TEXT, source TEXT, confirmed BOOLEAN DEFAULT FALSE, created_at TIMESTAMP DEFAULT CURRENT_TIMESTAMP ) ''') conn.execute(''' CREATE TABLE IF NOT EXISTS contest_cache ( url TEXT PRIMARY KEY, content TEXT, timestamp TIMESTAMP DEFAULT CURRENT_TIMESTAMP ) ''') # Index pour performances conn.execute('CREATE INDEX IF NOT EXISTS idx_participations_date ON participations(date)') conn.execute('CREATE INDEX IF NOT EXISTS idx_cache_timestamp ON contest_cache(timestamp)') def add_participation(self, contest: Contest, status: str = 'pending', success_rate: float = 0.0): with self.transaction() as conn: conn.execute(''' INSERT OR REPLACE INTO participations (url, title, source, status, difficulty_score, success_rate, date) VALUES (?, ?, ?, ?, ?, ?, date('now')) ''', (contest.url, contest.title, contest.source, status, contest.difficulty_score, success_rate)) def participation_exists(self, url: str) -> bool: conn = self._get_connection() result = conn.execute("SELECT 1 FROM participations WHERE url = ?", (url,)).fetchone() return result is not None def add_victory(self, email_id: str, lot: str, source: str): with self.transaction() as conn: conn.execute(''' INSERT OR IGNORE INTO victories (email_id, date, lot, source) VALUES (?, date('now'), ?, ?) ''', (email_id, lot, source)) def get_stats(self) -> Dict: conn = self._get_connection() stats = {} # Statistiques de participations stats['total_participations'] = conn.execute("SELECT COUNT(*) FROM participations").fetchone()[0] stats['successful_participations'] = conn.execute("SELECT COUNT(*) FROM participations WHERE status='success'").fetchone()[0] stats['total_victories'] = conn.execute("SELECT COUNT(*) FROM victories").fetchone()[0] # Participations par source source_stats = conn.execute(''' SELECT source, COUNT(*) as count FROM participations GROUP BY source ORDER BY count DESC ''').fetchall() stats['by_source'] = {row[0]: row[1] for row in source_stats} return stats # ===================================================== # MOTEUR IA AMÉLIORÉ # ===================================================== class AIEngine: def __init__(self, api_config: APIConfig): self.api_config = api_config self.cache = {} def generate_response(self, question: str, context: str = "", response_type: str = "qa") -> str: """Génère une réponse IA avec fallback entre Gemini et HuggingFace""" cache_key = hashlib.md5(f"{question}{context}{response_type}".encode()).hexdigest() if cache_key in self.cache: return self.cache[cache_key] response = self._try_gemini(question, context, response_type) if not response: response = self._try_huggingface(question, context, response_type) if not response: response = self._generate_fallback_response(question, response_type) # Cache la réponse self.cache[cache_key] = response return response def _try_gemini(self, question: str, context: str, response_type: str) -> Optional[str]: # Gemini supprimé - utilisation d'alternatives locales uniquement return None def _try_huggingface(self, question: str, context: str, response_type: str) -> Optional[str]: if not self.api_config.hf_token: return None try: client = InferenceClient(token=self.api_config.hf_token) if response_type == "qa" and context: result = client.question_answering( question=question, context=context, model="distilbert-base-cased-distilled-squad" ) return result.answer else: prompt = f"Question: {question}\nContexte: {context}\nRéponse:" result = client.text_generation( prompt, model="gpt2", max_new_tokens=100, temperature=0.7 ) return result[0]['generated_text'].split('Réponse:')[-1].strip() except Exception as e: logging.warning(f"HuggingFace API error: {e}") return None def _generate_fallback_response(self, question: str, response_type: str) -> str: """Système de réponses intelligentes sans API""" question_lower = question.lower() if response_type == "motivation": # Réponses de motivation personnalisées selon le contexte if any(word in question_lower for word in ["voyage", "vacances", "séjour"]): return random.choice([ "J'adore voyager et découvrir de nouveaux horizons. Ce prix serait une opportunité fantastique pour moi de vivre une expérience inoubliable.", "Voyager est ma passion et ce concours représente le voyage de mes rêves. J'espère avoir la chance de le remporter.", "En tant que passionné de voyages, ce prix m'offrirait l'occasion parfaite de découvrir de nouveaux paysages et cultures." ]) elif any(word in question_lower for word in ["produit", "cosmétique", "beauté"]): return random.choice([ "Je suis toujours à la recherche de nouveaux produits de qualité et j'aimerais beaucoup tester cette gamme.", "Ces produits m'intéressent énormément et je serais ravi de pouvoir les découvrir.", "J'ai entendu beaucoup de bien de cette marque et j'aimerais avoir l'opportunité de l'essayer." ]) elif any(word in question_lower for word in ["technologie", "smartphone", "ordinateur"]): return random.choice([ "En tant que passionné de technologie, ce prix m'intéresse beaucoup et m'aiderait dans mes projets.", "J'ai besoin de ce type d'équipement pour mes études et ce serait formidable de le gagner.", "La technologie fait partie de ma vie quotidienne et ce prix serait très utile." ]) else: return random.choice([ "Je participe avec enthousiasme à ce concours car le prix m'intéresse vraiment et correspond à mes besoins.", "Ce concours m'attire particulièrement et je serais très heureux de remporter ce magnifique prix.", "J'espère avoir la chance de gagner car ce prix me ferait énormément plaisir.", "Je suis motivé à participer car cette opportunité pourrait vraiment changer ma journée." ]) elif response_type == "quiz": # Système de réponses intelligentes pour les quiz if "suisse" in question_lower: if "capitale" in question_lower: return "Berne" elif "langue" in question_lower: return "Français, Allemand, Italien, Romanche" elif "monnaie" in question_lower: return "Franc suisse" elif "population" in question_lower: return "8.7 millions" if "couleur" in question_lower: return random.choice(["Rouge", "Bleu", "Vert", "Jaune"]) if any(word in question_lower for word in ["combien", "nombre", "quantité"]): return random.choice(["3", "5", "10", "12", "20"]) if any(word in question_lower for word in ["année", "date", "quand"]): return random.choice(["2024", "2023", "2025"]) # Réponses par défaut pour quiz return random.choice(["A", "B", "C", "Oui", "Non", "Vrai", "Faux"]) # Autres types de réponses response_mapping = { "age": random.choice(["25", "28", "30", "32"]), "profession": random.choice(["Étudiant", "Employé", "Consultant"]), "ville": "Pully", "pays": "Suisse", "default": "Merci" } return response_mapping.get(response_type, response_mapping["default"]) # ===================================================== # SCRAPER INTELLIGENT # ===================================================== class IntelligentScraper: def __init__(self, db_manager: DatabaseManager, cache_duration_hours: int = 6): self.db = db_manager self.cache_duration = timedelta(hours=cache_duration_hours) self.session = None self.field_patterns = { 'prenom': r'prenom|prénom|first.*name|nom.*prenom', 'nom': r'nom(?!.*prenom)|last.*name|family.*name|surname', 'email': r'email|e-mail|courriel', 'telephone': r'tel|phone|telephone|téléphone', 'adresse': r'adresse|address|rue|street', 'code_postal': r'code.postal|zip|postal', 'ville': r'ville|city|localité', 'pays': r'pays|country|nation', 'motivation': r'motivation|pourquoi|why|reason|raison', 'quiz': r'question|quiz|réponse|answer' } async def __aenter__(self): connector = aiohttp.TCPConnector(limit=10, limit_per_host=3) timeout = aiohttp.ClientTimeout(total=30, connect=10) self.session = aiohttp.ClientSession( connector=connector, timeout=timeout, headers={'User-Agent': random.choice(USER_AGENTS)} ) return self async def __aexit__(self, exc_type, exc_val, exc_tb): if self.session: await self.session.close() async def scrape_all_sources(self) -> List[Contest]: """Scrape tous les sites et sources""" all_contests = [] # Scraper les sites web web_contests = await self._scrape_websites() all_contests.extend(web_contests) # Scraper Google Search google_contests = await self._scrape_google_search() all_contests.extend(google_contests) # Scraper Twitter/X twitter_contests = await self._scrape_twitter() all_contests.extend(twitter_contests) # Filtrer les doublons et concours déjà traités unique_contests = self._filter_unique_contests(all_contests) logging.info(f"Total contests found: {len(all_contests)}, unique new: {len(unique_contests)}") return unique_contests async def _scrape_websites(self) -> List[Contest]: """Scrape les sites web en parallèle""" batch_size = 3 all_contests = [] for i in range(0, len(SITES_CH), batch_size): batch = SITES_CH[i:i + batch_size] tasks = [self._scrape_single_site(site) for site in batch] batch_results = await asyncio.gather(*tasks, return_exceptions=True) for result in batch_results: if isinstance(result, list): all_contests.extend(result) elif isinstance(result, Exception): logging.error(f"Batch scraping error: {result}") await asyncio.sleep(2) # Pause entre batches return all_contests async def _scrape_single_site(self, url: str) -> List[Contest]: """Scrape un site web spécifique""" try: content = await self._fetch_with_retry(url) if not content: return [] soup = BeautifulSoup(content, 'html.parser') contests = self._extract_contests_from_soup(soup, url) logging.info(f"Found {len(contests)} contests on {url}") return contests except Exception as e: logging.error(f"Error scraping {url}: {e}") return [] async def _fetch_with_retry(self, url: str, max_retries: int = 3) -> Optional[str]: """Fetch avec retry et gestion d'erreurs""" for attempt in range(max_retries): try: proxy = random.choice(PROXY_LIST) if PROXY_LIST else None async with self.session.get(url, proxy=proxy) as response: if response.status == 200: return await response.text() elif response.status == 429: wait_time = 2 ** attempt * 5 logging.warning(f"Rate limited on {url}, waiting {wait_time}s") await asyncio.sleep(wait_time) else: logging.warning(f"HTTP {response.status} for {url}") except Exception as e: logging.error(f"Attempt {attempt+1} failed for {url}: {e}") if attempt < max_retries - 1: await asyncio.sleep(2 ** attempt) return None def _extract_contests_from_soup(self, soup: BeautifulSoup, base_url: str) -> List[Contest]: """Extrait les concours d'une page HTML""" contests = [] # Sélecteurs pour différents types de conteneurs selectors = [ '.contest', '.concours', '.jeu', '.competition', '.giveaway', '[data-contest]', '[data-concours]', '.prize', '.lot', 'article[class*="concours"]', '.entry', '.participate' ] containers = [] for selector in selectors: containers.extend(soup.select(selector)) # Fallback: chercher des liens avec mots-clés if not containers: containers = soup.find_all('a', href=re.compile(r'concours|jeu|contest|participate', re.I)) for container in containers[:20]: # Limiter pour éviter le spam try: contest = self._parse_contest_container(container, base_url) if contest and self._is_valid_contest(contest): contests.append(contest) except Exception as e: logging.debug(f"Error parsing container: {e}") return contests def _parse_contest_container(self, container, base_url: str) -> Optional[Contest]: """Parse un conteneur de concours""" # Extraire le titre title_selectors = ['h1', 'h2', 'h3', '.title', '.titre', '.contest-title'] title = "" for selector in title_selectors: title_elem = container.select_one(selector) if title_elem: title = title_elem.get_text(strip=True) break if not title: title = container.get_text(strip=True)[:100] # Extraire le lien url = "" link_elem = container if container.name == 'a' else container.find('a') if link_elem and link_elem.get('href'): url = urljoin(base_url, link_elem['href']) # Extraire la description description = container.get_text(strip=True)[:500] # Extraire deadline et prix deadline = self._extract_deadline(description) prize = self._extract_prize(description) if not title or not url: return None return Contest( title=title[:200], url=url, description=description, source=base_url, deadline=deadline, prize=prize, difficulty_score=self._estimate_difficulty(description) ) def _extract_deadline(self, text: str) -> Optional[str]: """Extrait la date limite du texte""" patterns = [ r"jusqu[\'']?au (\d{1,2}[\/\-]\d{1,2}[\/\-]\d{2,4})", r"avant le (\d{1,2}[\/\-]\d{1,2}[\/\-]\d{2,4})", r"fin le (\d{1,2}[\/\-]\d{1,2}[\/\-]\d{2,4})" ] for pattern in patterns: match = re.search(pattern, text, re.I) if match: return match.group(1) return None def _extract_prize(self, text: str) -> Optional[str]: """Extrait le prix du texte""" patterns = [ r"gagne[rz]?\s+([^.!?]{1,50})", r"prix[:\s]+([^.!?]{1,50})", r"lot[:\s]+([^.!?]{1,50})", r"(\d+\s*CHF|\d+\s*euros?|\d+\s*francs?)" ] for pattern in patterns: match = re.search(pattern, text, re.I) if match: return match.group(1).strip() return None def _estimate_difficulty(self, description: str) -> int: """Estime la difficulté de participation (0-10)""" difficulty = 0 if re.search(r'justifi|motivation|pourquoi|essay', description, re.I): difficulty += 3 if re.search(r'photo|image|créat', description, re.I): difficulty += 2 if re.search(r'quiz|question|répond', description, re.I): difficulty += 1 if re.search(r'partag|social|facebook|twitter', description, re.I): difficulty += 1 if re.search(r'inscription|compte|profil', description, re.I): difficulty += 1 return min(difficulty, 10) def _is_valid_contest(self, contest: Contest) -> bool: """Valide qu'un concours est légitime""" swiss_indicators = [ 'suisse', 'switzerland', 'ch', 'romandie', 'genève', 'lausanne', 'zurich', 'bern', 'ouvert en suisse', 'résidents suisses' ] full_text = (contest.title + " " + contest.description).lower() has_swiss_access = any(indicator in full_text for indicator in swiss_indicators) excluded_terms = [ 'payant', 'payment', 'carte bancaire', 'spam', 'phishing', 'adult', 'casino', 'bitcoin', 'crypto', 'investment' ] has_excluded = any(term in full_text for term in excluded_terms) valid_url = contest.url.startswith(('http://', 'https://')) return has_swiss_access and not has_excluded and valid_url async def _scrape_google_search(self) -> List[Contest]: """Scrape via Google Custom Search API""" if not API_CONFIG.google_api_key or not API_CONFIG.google_cx: return [] try: query = "concours gratuit Suisse 2025 site:.ch" response = requests.get( "https://www.googleapis.com/customsearch/v1", params={ "key": API_CONFIG.google_api_key, "cx": API_CONFIG.google_cx, "q": query, "num": 10 }, timeout=10 ) results = response.json().get('items', []) contests = [] for res in results: title = res.get('title', '') url = res.get('link', '') description = res.get('snippet', '') contest = Contest( title=title, url=url, description=description, source='Google Search', difficulty_score=self._estimate_difficulty(description) ) if self._is_valid_contest(contest): contests.append(contest) logging.info(f"Found {len(contests)} contests via Google Search") return contests except Exception as e: logging.error(f"Google Search API error: {e}") return [] async def _scrape_twitter(self) -> List[Contest]: """Scrape Twitter/X pour les concours""" if not API_CONFIG.x_token: return [] try: client = tweepy.Client(bearer_token=API_CONFIG.x_token) tweets = client.search_recent_tweets( query="concours gratuit Suisse lang:fr", max_results=10 ) contests = [] if tweets.data: for tweet in tweets.data: if self._is_swiss_accessible(tweet.text): contest = Contest( title=tweet.text[:50] + "...", url=f"https://x.com/i/status/{tweet.id}", description=tweet.text, source='Twitter/X', difficulty_score=5 # Score moyen pour les tweets ) contests.append(contest) logging.info(f"Found {len(contests)} contests on Twitter/X") return contests except Exception as e: logging.error(f"Twitter/X API error: {e}") return [] def _is_swiss_accessible(self, text: str) -> bool: """Vérifie si accessible depuis la Suisse""" swiss_pattern = r"(suisse|ch|romandie|ouvert\s+a\s+la\s+suisse|geneve|lausanne)" return bool(re.search(swiss_pattern, text.lower(), re.IGNORECASE)) def _filter_unique_contests(self, contests: List[Contest]) -> List[Contest]: """Filtre les concours uniques et non déjà traités""" unique_contests = [] seen_urls = set() for contest in contests: if contest.url not in seen_urls and not self.db.participation_exists(contest.url): unique_contests.append(contest) seen_urls.add(contest.url) return unique_contests # ===================================================== # SYSTÈME DE PARTICIPATION INTELLIGENT # ===================================================== class SmartParticipator: def __init__(self, db_manager: DatabaseManager, ai_engine: AIEngine): self.db = db_manager self.ai = ai_engine self.personal_info = PERSONAL_INFO self.field_patterns = { 'prenom': [r'prenom|prénom|first.*name'], 'nom': [r'nom(?!.*prenom)|last.*name|family.*name'], 'email': [r'email|e-mail|courriel'], 'telephone': [r'tel|phone|telephone|téléphone'], 'adresse': [r'adresse|address|rue|street'], 'code_postal': [r'code.postal|zip|postal'], 'ville': [r'ville|city|localité'], 'pays': [r'pays|country|nation'], 'motivation': [r'motivation|pourquoi|why|reason'], 'quiz': [r'question|quiz|réponse|answer'] } async def participate_in_contest(self, contest: Contest) -> bool: """Participe à un concours de manière intelligente""" async with async_playwright() as p: browser = await p.chromium.launch( headless=True, args=['--no-sandbox', '--disable-blink-features=AutomationControlled'] ) context = await browser.new_context( user_agent=random.choice(USER_AGENTS), viewport={'width': 1920, 'height': 1080} ) page = await context.new_page() try: # Analyser le formulaire analysis = await self._analyze_form(page, contest.url) if analysis.estimated_success_rate < 0.3: logging.warning(f"Low success rate for {contest.url}: {analysis.estimated_success_rate}") self.db.add_participation(contest, 'skipped_low_success', analysis.estimated_success_rate) return False if analysis.requires_captcha: logging.warning(f"CAPTCHA detected for {contest.url}, skipping") self.db.add_participation(contest, 'skipped_captcha', analysis.estimated_success_rate) return False # Remplir et soumettre le formulaire success = await self._fill_and_submit_form(page, analysis, contest) status = 'success' if success else 'failed' self.db.add_participation(contest, status, analysis.estimated_success_rate) logging.info(f"Participation {'successful' if success else 'failed'} for {contest.title}") return success except Exception as e: logging.error(f"Participation error for {contest.url}: {e}") self.db.add_participation(contest, 'error', 0.0) return False finally: await browser.close() async def _analyze_form(self, page: Page, url: str) -> FormAnalysis: """Analyse un formulaire de concours""" try: await page.goto(url, wait_until='networkidle', timeout=15000) # Détecter les champs fields = await self._detect_form_fields(page) # Calculer la complexité complexity = sum(self._calculate_field_complexity(field) for field in fields) # Détecter les éléments bloquants has_captcha = await self._detect_captcha(page) has_social_requirements = await self._detect_social_requirements(page) # Estimer le taux de succès success_rate = self._estimate_success_rate(fields, complexity, has_captcha) return FormAnalysis( fields=fields, complexity_score=complexity, estimated_success_rate=success_rate, requires_captcha=has_captcha, requires_social_media=has_social_requirements, form_url=url ) except Exception as e: logging.error(f"Form analysis error: {e}") return FormAnalysis([], 10, 0.0, True, True, url) async def _detect_form_fields(self, page: Page) -> List[FormField]: """Détecte tous les champs de formulaire""" fields = [] selectors = [ 'input[type="text"]', 'input[type="email"]', 'input[type="tel"]', 'input[type="number"]', 'input:not([type])', 'textarea', 'select' ] for selector in selectors: elements = await page.query_selector_all(selector) for element in elements: try: field = await self._analyze_single_field(element, page) if field: fields.append(field) except Exception: continue return fields async def _analyze_single_field(self, element, page: Page) -> Optional[FormField]: """Analyse un champ individuel""" try: tag_name = await element.evaluate('el => el.tagName.toLowerCase()') field_type = await element.evaluate('el => el.type || el.tagName.toLowerCase()') name = await element.evaluate('el => el.name || el.id || ""') placeholder = await element.evaluate('el => el.placeholder || ""') required = await element.evaluate('el => el.required') # Trouver le label label_text = await self._find_field_label(element, page) # Créer un sélecteur unique selector = await self._create_unique_selector(element) return FormField( selector=selector, field_type=field_type, label=label_text, required=required, ai_context=f"Name: {name}, Placeholder: {placeholder}, Label: {label_text}" ) except Exception: return None async def _find_field_label(self, element, page: Page) -> str: """Trouve le label associé à un champ""" try: # Méthode 1: label[for] element_id = await element.evaluate('el => el.id') if element_id: label = await page.query_selector(f'label[for="{element_id}"]') if label: return await label.inner_text() # Méthode 2: parent label parent_label = await element.evaluate(''' el => { let parent = el.parentElement; while (parent && parent.tagName !== 'BODY') { if (parent.tagName === 'LABEL') { return parent.innerText; } parent = parent.parentElement; } return ''; } ''') if parent_label: return parent_label.strip() # Méthode 3: texte précédent prev_text = await element.evaluate(''' el => { const prev = el.previousElementSibling; return prev ? prev.innerText : ''; } ''') return prev_text.strip() except Exception: return "" async def _create_unique_selector(self, element) -> str: """Crée un sélecteur CSS unique""" # Priorité: ID > Name > Class > Position element_id = await element.evaluate('el => el.id') if element_id: return f'#{element_id}' name = await element.evaluate('el => el.name') if name: return f'[name="{name}"]' class_name = await element.evaluate('el => el.className') tag_name = await element.evaluate('el => el.tagName.toLowerCase()') if class_name: return f'{tag_name}.{class_name.split()[0]}' # Fallback return f'{tag_name}:nth-of-type(1)' def _calculate_field_complexity(self, field: FormField) -> int: """Calcule la complexité d'un champ""" complexity = 1 if field.field_type == 'textarea': complexity += 3 elif field.field_type == 'select': complexity += 2 elif field.required: complexity += 1 if re.search(r'motivation|justifi|pourquoi', field.label, re.I): complexity += 3 elif re.search(r'quiz|question', field.label, re.I): complexity += 2 return complexity async def _detect_captcha(self, page: Page) -> bool: """Détecte la présence de CAPTCHA""" captcha_selectors = [ '.g-recaptcha', '.h-captcha', '#captcha', '.captcha', 'iframe[src*="recaptcha"]', 'iframe[src*="hcaptcha"]' ] for selector in captcha_selectors: element = await page.query_selector(selector) if element: return True return False async def _detect_social_requirements(self, page: Page) -> bool: """Détecte les exigences de réseaux sociaux""" content = await page.content() social_patterns = [ r'follow.*us', r'partag.*facebook', r'retweet', r'like.*page', r'subscribe.*channel' ] for pattern in social_patterns: if re.search(pattern, content, re.I): return True return False def _estimate_success_rate(self, fields: List[FormField], complexity: int, has_captcha: bool) -> float: """Estime le taux de succès""" base_rate = 0.8 if has_captcha: base_rate *= 0.1 if complexity > 15: base_rate *= 0.4 elif complexity > 10: base_rate *= 0.6 elif complexity > 5: base_rate *= 0.8 required_fields = [f for f in fields if f.required] if len(required_fields) <= 3: base_rate *= 1.1 return min(base_rate, 1.0) async def _fill_and_submit_form(self, page: Page, analysis: FormAnalysis, contest: Contest) -> bool: """Remplit et soumet le formulaire""" try: filled_fields = 0 for field in analysis.fields: try: # Attendre l'élément await page.wait_for_selector(field.selector, timeout=3000) element = await page.query_selector(field.selector) if not element: continue # Générer la valeur value = await self._generate_field_value(field, contest, page) if not value: continue # Remplir selon le type if field.field_type == 'select': await self._fill_select_field(element, value, page) else: await element.fill(value) filled_fields += 1 await asyncio.sleep(random.uniform(0.3, 0.8)) except Exception as e: logging.debug(f"Error filling field {field.selector}: {e}") continue # Soumettre le formulaire submit_success = await self._submit_form(page) logging.info(f"Filled {filled_fields}/{len(analysis.fields)} fields, submitted: {submit_success}") return filled_fields > 0 and submit_success except Exception as e: logging.error(f"Form filling error: {e}") return False async def _generate_field_value(self, field: FormField, contest: Contest, page: Page) -> Optional[str]: """Génère une valeur pour un champ""" # Identifier le type de champ field_type = self._identify_field_type(field) # Mapping des valeurs personnelles personal_mapping = { 'prenom': self.personal_info.prenom, 'nom': self.personal_info.nom, 'email': self.personal_info.email_derivee, 'telephone': self.personal_info.telephone, 'adresse': self.personal_info.adresse, 'code_postal': self.personal_info.code_postal, 'ville': self.personal_info.ville, 'pays': self.personal_info.pays } if field_type in personal_mapping: return personal_mapping[field_type] # Cas spéciaux nécessitant l'IA if field_type == 'motivation': return self.ai.generate_response( field.label, contest.description, "motivation" ) elif field_type == 'quiz': return self.ai.generate_response( field.label, contest.description, "quiz" ) # Valeurs par défaut default_values = { 'age': '25', 'genre': 'Monsieur', 'profession': 'Étudiant' } for key, value in default_values.items(): if key in field.label.lower(): return value return None def _identify_field_type(self, field: FormField) -> str: """Identifie le type de champ""" combined_text = f"{field.ai_context} {field.label}".lower() for field_type, patterns in self.field_patterns.items(): for pattern in patterns: if re.search(pattern, combined_text, re.I): return field_type return 'unknown' async def _fill_select_field(self, element, value: str, page: Page): """Remplit un champ select""" try: options = await element.query_selector_all('option') for option in options: option_text = await option.inner_text() option_value = await option.get_attribute('value') if (value.lower() in option_text.lower() or value.lower() in (option_value or "").lower()): await element.select_option(value=option_value) return # Fallback: sélectionner la première option valide if options and len(options) > 1: first_option = await options[1].get_attribute('value') await element.select_option(value=first_option) except Exception as e: logging.debug(f"Select field error: {e}") async def _submit_form(self, page: Page) -> bool: """Soumet le formulaire""" submit_selectors = [ 'input[type="submit"]', 'button[type="submit"]', 'button:has-text("Participer")', 'button:has-text("Envoyer")', 'button:has-text("Valider")', '.submit-btn', '.participate-btn' ] for selector in submit_selectors: try: element = await page.query_selector(selector) if element: is_visible = await element.is_visible() is_enabled = await element.is_enabled() if is_visible and is_enabled: await element.click() await page.wait_for_timeout(3000) return True except Exception: continue return False # ===================================================== # GESTIONNAIRE D'EMAILS ET ALERTES # ===================================================== class EmailManager: def __init__(self, api_config: APIConfig, ai_engine: AIEngine, db_manager: DatabaseManager): self.api_config = api_config self.ai = ai_engine self.db = db_manager self.personal_info = PERSONAL_INFO def check_and_analyze_emails(self): """Vérifie et analyse les emails pour détecter les victoires""" if not self.api_config.email_app_password: logging.warning("Email app password not configured") return try: mail = imaplib.IMAP4_SSL('outlook.office365.com') mail.login(self.personal_info.email, self.api_config.email_app_password) mail.select('inbox') # Chercher les emails récents since_date = (datetime.now() - timedelta(days=7)).strftime('%d-%b-%Y') status, messages = mail.search(None, f'(SINCE "{since_date}")') victories = [] email_count = 0 for num in messages[0].split()[-20:]: # Limiter aux 20 derniers try: email_count += 1 _, msg = mail.fetch(num, '(RFC822)') email_msg = email.message_from_bytes(msg[0][1]) subject = email_msg['Subject'] or "" from_addr = email_msg['From'] or "" # Extraire le corps de l'email body = self._extract_email_body(email_msg) # Analyser avec l'IA analysis = self.ai.generate_response( f"Cet email indique-t-il une victoire dans un concours ? Sujet: {subject}", body[:1000], "quiz" ) if 'oui' in analysis.lower() or 'gagne' in analysis.lower(): prize = self._extract_prize_from_email(body, subject) victories.append({ 'email_id': num.decode(), 'date': datetime.now().strftime('%Y-%m-%d'), 'prize': prize, 'source': from_addr, 'subject': subject }) # Enregistrer en base self.db.add_victory(num.decode(), prize, from_addr) # Envoyer alerte self._send_victory_alert(prize, from_addr, subject) logging.info(f"Victory detected: {prize} from {from_addr}") except Exception as e: logging.error(f"Error processing email {num}: {e}") continue mail.logout() logging.info(f"Processed {email_count} emails, found {len(victories)} victories") except Exception as e: logging.error(f"Email checking error: {e}") def _extract_email_body(self, email_msg) -> str: """Extrait le corps de l'email""" body = "" if email_msg.is_multipart(): for part in email_msg.walk(): if part.get_content_type() == 'text/plain': try: body = part.get_payload(decode=True).decode('utf-8', errors='ignore') break except: continue else: try: body = email_msg.get_payload(decode=True).decode('utf-8', errors='ignore') except: body = str(email_msg.get_payload()) return body def _extract_prize_from_email(self, body: str, subject: str) -> str: """Extrait le prix gagné de l'email""" text = f"{subject} {body}" prize_patterns = [ r"vous avez gagné\s+([^.!?\n]{1,100})", r"prix[:\s]+([^.!?\n]{1,100})", r"lot[:\s]+([^.!?\n]{1,100})", r"remporté\s+([^.!?\n]{1,100})", r"(\d+\s*CHF|\d+\s*euros?|\d+\s*francs?)" ] for pattern in prize_patterns: match = re.search(pattern, text, re.I) if match: return match.group(1).strip() return "Prix non spécifié" def _send_victory_alert(self, prize: str, source: str, subject: str): """Envoie une alerte de victoire""" if not self.api_config.telegram_bot_token or not self.api_config.telegram_chat_id: return message = f""" 🎉 **VICTOIRE DÉTECTÉE !** 🏆 **Prix**: {prize} 📧 **Source**: {source} 📋 **Sujet**: {subject} 📅 **Date**: {datetime.now().strftime('%d/%m/%Y %H:%M')} Félicitations ! 🎊 """ try: url = f"https://api.telegram.org/bot{self.api_config.telegram_bot_token}/sendMessage" payload = { 'chat_id': self.api_config.telegram_chat_id, 'text': message, 'parse_mode': 'Markdown' } response = requests.post(url, json=payload, timeout=10) if response.status_code == 200: logging.info("Victory alert sent successfully") else: logging.error(f"Telegram alert failed: {response.text}") except Exception as e: logging.error(f"Telegram alert error: {e}") # ===================================================== # SYSTÈME DE MONITORING ET STATISTIQUES # ===================================================== class MonitoringSystem: def __init__(self, db_manager: DatabaseManager): self.db = db_manager def generate_daily_report(self) -> str: """Génère un rapport quotidien""" stats = self.db.get_stats() # Statistiques du jour today = datetime.now().strftime('%Y-%m-%d') conn = self.db._get_connection() today_participations = conn.execute( "SELECT COUNT(*) FROM participations WHERE date = ?", (today,) ).fetchone()[0] today_successes = conn.execute( "SELECT COUNT(*) FROM participations WHERE date = ? AND status = 'success'", (today,) ).fetchone()[0] success_rate = (today_successes / max(today_participations, 1)) * 100 report = f""" 📊 **RAPPORT QUOTIDIEN - {today}** 🎯 **Aujourd'hui**: • Participations: {today_participations} • Succès: {today_successes} • Taux de succès: {success_rate:.1f}% 📈 **Total**: • Participations totales: {stats['total_participations']} • Participations réussies: {stats['successful_participations']} • Victoires détectées: {stats['total_victories']} 🌐 **Par source**: """ for source, count in stats['by_source'].items(): report += f" • {source}: {count}\n" return report def send_daily_report(self): """Envoie le rapport quotidien""" if not API_CONFIG.telegram_bot_token or not API_CONFIG.telegram_chat_id: return report = self.generate_daily_report() try: url = f"https://api.telegram.org/bot{API_CONFIG.telegram_bot_token}/sendMessage" payload = { 'chat_id': API_CONFIG.telegram_chat_id, 'text': report, 'parse_mode': 'Markdown' } response = requests.post(url, json=payload, timeout=10) if response.status_code == 200: logging.info("Daily report sent successfully") else: logging.error(f"Daily report failed: {response.text}") except Exception as e: logging.error(f"Daily report error: {e}") # ===================================================== # ORCHESTRATEUR PRINCIPAL # ===================================================== class ContestBotOrchestrator: def __init__(self): self.db = DatabaseManager() self.ai = AIEngine(API_CONFIG) self.scraper = None # Initialisé dans le contexte async self.participator = SmartParticipator(self.db, self.ai) self.email_manager = EmailManager(API_CONFIG, self.ai, self.db) self.monitor = MonitoringSystem(self.db) async def run_full_cycle(self): """Execute un cycle complet de scraping et participation""" logging.info("Starting full contest bot cycle") try: # 1. Scraping des concours async with IntelligentScraper(self.db) as scraper: self.scraper = scraper contests = await scraper.scrape_all_sources() if not contests: logging.info("No new contests found") return # 2. Trier par score de difficulté (plus faciles en premier) contests.sort(key=lambda x: x.difficulty_score) # 3. Participer aux concours (limiter à 20 par jour) participation_count = 0 max_daily_participations = 20 for contest in contests[:max_daily_participations]: try: # Pause entre participations pour éviter la détection if participation_count > 0: wait_time = random.uniform(30, 120) # 30s à 2min logging.info(f"Waiting {wait_time:.0f}s before next participation") await asyncio.sleep(wait_time) success = await self.participator.participate_in_contest(contest) participation_count += 1 if success: logging.info(f"✅ Successfully participated in: {contest.title}") else: logging.warning(f"❌ Failed to participate in: {contest.title}") # Pause plus longue après succès if success: await asyncio.sleep(random.uniform(60, 180)) except Exception as e: logging.error(f"Error participating in {contest.title}: {e}") continue logging.info(f"Participation cycle completed: {participation_count} attempts") except Exception as e: logging.error(f"Full cycle error: {e}") def run_email_check(self): """Vérifie les emails pour les victoires""" try: logging.info("Checking emails for victories") self.email_manager.check_and_analyze_emails() except Exception as e: logging.error(f"Email check error: {e}") def run_daily_report(self): """Génère et envoie le rapport quotidien""" try: logging.info("Generating daily report") self.monitor.send_daily_report() except Exception as e: logging.error(f"Daily report error: {e}") # ===================================================== # SCHEDULER ET POINT D'ENTRÉE # ===================================================== def run_bot_cycle(): """Point d'entrée pour le scheduler""" bot = ContestBotOrchestrator() # Cycle principal asyncio.run(bot.run_full_cycle()) # Vérification des emails bot.run_email_check() def run_daily_report(): """Point d'entrée pour le rapport quotidien""" bot = ContestBotOrchestrator() bot.run_daily_report() def main(): """Fonction principale avec scheduler""" logging.info("Starting Contest Bot with scheduler") # Programmer les tâches schedule.every().day.at("08:00").do(run_bot_cycle) schedule.every().day.at("14:00").do(run_bot_cycle) # Deux fois par jour schedule.every().day.at("20:00").do(run_daily_report) # Exécution immédiate pour test if len(sys.argv) > 1 and sys.argv[1] == "--run-now": logging.info("Running immediate cycle") run_bot_cycle() return # Boucle principale du scheduler logging.info("Scheduler started. Waiting for scheduled tasks...") while True: try: schedule.run_pending() time.sleep(60) # Vérifier chaque minute except KeyboardInterrupt: logging.info("Bot stopped by user") break except Exception as e: logging.error(f"Scheduler error: {e}") time.sleep(300) # Attendre 5 minutes en cas d'erreur if __name__ == "__main__": main()