--- license: apache-2.0 language: - en metrics: - accuracy - precision - recall base_model: - microsoft/deberta-v3-base pipeline_tag: text-classification --- # Stock Sentiment Analysis This model is a fine-tuned version of `microsoft/deberta-v3-base` for **stock sentiment analysis**. ## Model Details - **Language**: English - **Task**: Text Classification (Sentiment Analysis) - **Classes**: Positive, Neutral, Negative ## Training - Evaluation Metric: F1 Score - Training Args: See `training_args.bin` for details. ## Usage ```python from transformers import AutoTokenizer, AutoModelForSequenceClassification tokenizer = AutoTokenizer.from_pretrained("vinD27/stock_sentiment_analysis") model = AutoModelForSequenceClassification.from_pretrained("vinD27/stock_sentiment_analysis") text = "The stock market is performing well today." inputs = tokenizer(text, return_tensors="pt") outputs = model(**inputs) print(outputs.logits)