Create README.md
Browse files
README.md
ADDED
|
@@ -0,0 +1,182 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
---
|
| 2 |
+
license: mit
|
| 3 |
+
tags:
|
| 4 |
+
- dependency-resolution
|
| 5 |
+
- python
|
| 6 |
+
- requirements-txt
|
| 7 |
+
- conflict-detection
|
| 8 |
+
- package-management
|
| 9 |
+
- machine-learning
|
| 10 |
+
- random-forest
|
| 11 |
+
- sentence-transformers
|
| 12 |
+
datasets:
|
| 13 |
+
- synthetic-requirements-dataset
|
| 14 |
+
model-index:
|
| 15 |
+
- name: dependency-conflict-models
|
| 16 |
+
results:
|
| 17 |
+
- task:
|
| 18 |
+
type: dependency-conflict-prediction
|
| 19 |
+
metrics:
|
| 20 |
+
- type: accuracy
|
| 21 |
+
value: 0.85-0.95
|
| 22 |
+
name: Test Accuracy
|
| 23 |
+
---
|
| 24 |
+
|
| 25 |
+
# Dependency Conflict Prediction Models
|
| 26 |
+
|
| 27 |
+
## Model Description
|
| 28 |
+
|
| 29 |
+
This repository contains machine learning models for Python dependency conflict detection and package name validation. The models are part of the **PyHarmony** project, an environment-aware dependency compatibility tool.
|
| 30 |
+
|
| 31 |
+
### Models Included
|
| 32 |
+
|
| 33 |
+
1. **Conflict Prediction Model** (`conflict_predictor.pkl`)
|
| 34 |
+
- Random Forest Classifier for predicting dependency conflicts
|
| 35 |
+
- Trained on synthetic dependency datasets
|
| 36 |
+
- Provides early warning of potential conflicts before detailed analysis
|
| 37 |
+
|
| 38 |
+
2. **Package Embeddings** (`package_embeddings.json`)
|
| 39 |
+
- Pre-computed semantic embeddings for 77+ common Python packages
|
| 40 |
+
- Uses sentence-transformers (all-MiniLM-L6-v2)
|
| 41 |
+
- Enables intelligent spell-checking and package name suggestions
|
| 42 |
+
|
| 43 |
+
3. **Embedding Metadata** (`embedding_info.json`)
|
| 44 |
+
- Model configuration and package information
|
| 45 |
+
|
| 46 |
+
## Intended Use
|
| 47 |
+
|
| 48 |
+
### Primary Use Cases
|
| 49 |
+
|
| 50 |
+
- **Dependency Conflict Prediction**: Predict whether a set of Python dependencies will have conflicts
|
| 51 |
+
- **Package Name Validation**: Correct spelling mistakes in package names using semantic similarity
|
| 52 |
+
- **Requirements.txt Analysis**: Analyze and validate Python requirements files
|
| 53 |
+
|
| 54 |
+
### Out-of-Scope Use Cases
|
| 55 |
+
|
| 56 |
+
- Security vulnerability detection
|
| 57 |
+
- Multi-language package management (Node.js, Java, etc.)
|
| 58 |
+
- Automatic dependency updates/fixes
|
| 59 |
+
|
| 60 |
+
## Training Details
|
| 61 |
+
|
| 62 |
+
### Training Data
|
| 63 |
+
|
| 64 |
+
- **Dataset**: Synthetic Requirements Dataset
|
| 65 |
+
- **Size**: 120 samples (60 valid, 60 invalid)
|
| 66 |
+
- **Generation Method**: Programmatically generated using rule-based conflict injection
|
| 67 |
+
- **Conflict Patterns**:
|
| 68 |
+
- PyTorch/PyTorch Lightning version mismatches
|
| 69 |
+
- FastAPI/Pydantic incompatibilities
|
| 70 |
+
- TensorFlow/Keras conflicts
|
| 71 |
+
- Duplicate package specifications
|
| 72 |
+
|
| 73 |
+
### Training Procedure
|
| 74 |
+
|
| 75 |
+
**Conflict Prediction Model:**
|
| 76 |
+
- **Algorithm**: Random Forest Classifier (scikit-learn)
|
| 77 |
+
- **Features**:
|
| 78 |
+
- Package presence (binary features for 30 common packages)
|
| 79 |
+
- Number of packages (normalized)
|
| 80 |
+
- Version specificity (pinned vs unpinned)
|
| 81 |
+
- Duplicate detection
|
| 82 |
+
- Known conflict pattern indicators
|
| 83 |
+
- **Hyperparameters**:
|
| 84 |
+
- n_estimators: 100
|
| 85 |
+
- max_depth: 10
|
| 86 |
+
- min_samples_split: 5
|
| 87 |
+
- **Test Accuracy**: 85-95% (depending on dataset split)
|
| 88 |
+
|
| 89 |
+
**Package Embeddings:**
|
| 90 |
+
- **Base Model**: sentence-transformers/all-MiniLM-L6-v2
|
| 91 |
+
- **Embedding Dimension**: 384
|
| 92 |
+
- **Number of Packages**: 77
|
| 93 |
+
- **Method**: Pre-computed embeddings for common Python packages
|
| 94 |
+
|
| 95 |
+
### Training Scripts
|
| 96 |
+
|
| 97 |
+
Models can be retrained using:
|
| 98 |
+
- `train_conflict_model.py` - Trains the conflict prediction model
|
| 99 |
+
- `generate_embeddings.py` - Generates package embeddings
|
| 100 |
+
|
| 101 |
+
## Evaluation
|
| 102 |
+
|
| 103 |
+
### Metrics
|
| 104 |
+
|
| 105 |
+
- **Accuracy**: 85-95% on test set
|
| 106 |
+
- **Precision**: High (exact values depend on dataset)
|
| 107 |
+
- **Recall**: High (exact values depend on dataset)
|
| 108 |
+
- **F1 Score**: High (exact values depend on dataset)
|
| 109 |
+
|
| 110 |
+
### Evaluation Results
|
| 111 |
+
|
| 112 |
+
The models were evaluated on:
|
| 113 |
+
- Synthetic test set (20% of training data)
|
| 114 |
+
- 20 real-world requirements.txt files
|
| 115 |
+
- Achieved 95%+ accuracy in package identification and correction
|
| 116 |
+
|
| 117 |
+
## Limitations and Bias
|
| 118 |
+
|
| 119 |
+
### Known Limitations
|
| 120 |
+
|
| 121 |
+
1. **Synthetic Training Data**: Model trained on synthetic data may not capture all real-world edge cases
|
| 122 |
+
2. **Limited Package Coverage**: Embeddings cover 77 common packages; may not handle rare/private packages well
|
| 123 |
+
3. **Version Constraint Parsing**: Complex version constraints may not be fully captured
|
| 124 |
+
4. **Conflict Patterns**: Focuses on known compatibility patterns; may miss novel conflicts
|
| 125 |
+
|
| 126 |
+
### Bias Considerations
|
| 127 |
+
|
| 128 |
+
- Training data focuses on common Python packages (data science, web frameworks, ML libraries)
|
| 129 |
+
- May perform better on packages similar to those in training set
|
| 130 |
+
- Synthetic data generation may introduce biases toward specific conflict patterns
|
| 131 |
+
|
| 132 |
+
## How to Use
|
| 133 |
+
|
| 134 |
+
### Loading the Models
|
| 135 |
+
|
| 136 |
+
from ml_models import ConflictPredictor, PackageEmbeddings
|
| 137 |
+
|
| 138 |
+
# Load conflict prediction model
|
| 139 |
+
predictor = ConflictPredictor(repo_id="ysakhale/dependency-conflict-models")
|
| 140 |
+
has_conflict, confidence = predictor.predict(requirements_text)
|
| 141 |
+
|
| 142 |
+
# Load package embeddings
|
| 143 |
+
embeddings = PackageEmbeddings(repo_id="ysakhale/dependency-conflict-models")
|
| 144 |
+
best_match = embeddings.get_best_match("numpyy") # Returns: 'numpy'
|
| 145 |
+
### Example Usage
|
| 146 |
+
thon
|
| 147 |
+
# Predict conflicts
|
| 148 |
+
requirements = "torch==1.8.0\npytorch-lightning==2.2.0"
|
| 149 |
+
has_conflict, confidence = predictor.predict(requirements)
|
| 150 |
+
if has_conflict:
|
| 151 |
+
print(f"Conflict detected with {confidence:.1%} confidence")
|
| 152 |
+
|
| 153 |
+
# Find similar packages
|
| 154 |
+
similar = embeddings.find_similar("pandaz", top_k=3)
|
| 155 |
+
# Returns: [('pandas', 0.95), ('numpy', 0.72), ...]## Model Files
|
| 156 |
+
|
| 157 |
+
- `conflict_predictor.pkl` (~2-5 MB): Trained Random Forest model
|
| 158 |
+
- `package_embeddings.json` (~5-10 MB): Pre-computed package embeddings
|
| 159 |
+
- `embedding_info.json` (~1 KB): Embedding model metadata
|
| 160 |
+
|
| 161 |
+
## Citation
|
| 162 |
+
|
| 163 |
+
If you use these models in your research, please cite:
|
| 164 |
+
|
| 165 |
+
@software{dependency_conflict_models,
|
| 166 |
+
title={Dependency Conflict Prediction Models},
|
| 167 |
+
author={Azam, Faiyaz and Sakhale, Yash and Lin, Yosen and Huang, Anyu},
|
| 168 |
+
year={2025},
|
| 169 |
+
url={https://huggingface.co/ysakhale/dependency-conflict-models}
|
| 170 |
+
}## License
|
| 171 |
+
|
| 172 |
+
MIT License - see LICENSE file for details
|
| 173 |
+
|
| 174 |
+
## Contact
|
| 175 |
+
|
| 176 |
+
For questions or issues, please open an issue in the [main repository](https://github.com/your-username/python-dependency-compatibility-board) or contact the maintainers.
|
| 177 |
+
|
| 178 |
+
## Acknowledgments
|
| 179 |
+
|
| 180 |
+
- Built as part of the PyHarmony project
|
| 181 |
+
- Uses [sentence-transformers](https://www.sbert.net/) for embeddings
|
| 182 |
+
- Trained with [scikit-learn](https://scikit-learn.org/)
|