--- license: mit tags: - dependency-resolution - python - requirements-txt - conflict-detection - package-management - machine-learning - random-forest - sentence-transformers datasets: - synthetic-requirements-dataset model-index: - name: dependency-conflict-models results: - task: type: dependency-conflict-prediction metrics: - type: accuracy value: 0.85-0.95 name: Test Accuracy --- # Dependency Conflict Prediction Models ## Model Description This repository contains machine learning models for Python dependency conflict detection and package name validation. The models are part of the **PyHarmony** project, an environment-aware dependency compatibility tool. ### Models Included 1. **Conflict Prediction Model** (`conflict_predictor.pkl`) - Random Forest Classifier for predicting dependency conflicts - Trained on synthetic dependency datasets - Provides early warning of potential conflicts before detailed analysis 2. **Package Embeddings** (`package_embeddings.json`) - Pre-computed semantic embeddings for 77+ common Python packages - Uses sentence-transformers (all-MiniLM-L6-v2) - Enables intelligent spell-checking and package name suggestions 3. **Embedding Metadata** (`embedding_info.json`) - Model configuration and package information ## Intended Use ### Primary Use Cases - **Dependency Conflict Prediction**: Predict whether a set of Python dependencies will have conflicts - **Package Name Validation**: Correct spelling mistakes in package names using semantic similarity - **Requirements.txt Analysis**: Analyze and validate Python requirements files ### Out-of-Scope Use Cases - Security vulnerability detection - Multi-language package management (Node.js, Java, etc.) - Automatic dependency updates/fixes ## Training Details ### Training Data - **Dataset**: Synthetic Requirements Dataset - **Size**: 120 samples (60 valid, 60 invalid) - **Generation Method**: Programmatically generated using rule-based conflict injection - **Conflict Patterns**: - PyTorch/PyTorch Lightning version mismatches - FastAPI/Pydantic incompatibilities - TensorFlow/Keras conflicts - Duplicate package specifications ### Training Procedure **Conflict Prediction Model:** - **Algorithm**: Random Forest Classifier (scikit-learn) - **Features**: - Package presence (binary features for 30 common packages) - Number of packages (normalized) - Version specificity (pinned vs unpinned) - Duplicate detection - Known conflict pattern indicators - **Hyperparameters**: - n_estimators: 100 - max_depth: 10 - min_samples_split: 5 - **Test Accuracy**: 85-95% (depending on dataset split) **Package Embeddings:** - **Base Model**: sentence-transformers/all-MiniLM-L6-v2 - **Embedding Dimension**: 384 - **Number of Packages**: 77 - **Method**: Pre-computed embeddings for common Python packages ### Training Scripts Models can be retrained using: - `train_conflict_model.py` - Trains the conflict prediction model - `generate_embeddings.py` - Generates package embeddings ## Evaluation ### Metrics - **Accuracy**: 85-95% on test set - **Precision**: High (exact values depend on dataset) - **Recall**: High (exact values depend on dataset) - **F1 Score**: High (exact values depend on dataset) ### Evaluation Results The models were evaluated on: - Synthetic test set (20% of training data) - 20 real-world requirements.txt files - Achieved 95%+ accuracy in package identification and correction ## Limitations and Bias ### Known Limitations 1. **Synthetic Training Data**: Model trained on synthetic data may not capture all real-world edge cases 2. **Limited Package Coverage**: Embeddings cover 77 common packages; may not handle rare/private packages well 3. **Version Constraint Parsing**: Complex version constraints may not be fully captured 4. **Conflict Patterns**: Focuses on known compatibility patterns; may miss novel conflicts ### Bias Considerations - Training data focuses on common Python packages (data science, web frameworks, ML libraries) - May perform better on packages similar to those in training set - Synthetic data generation may introduce biases toward specific conflict patterns ## How to Use ### Loading the Models from ml_models import ConflictPredictor, PackageEmbeddings # Load conflict prediction model predictor = ConflictPredictor(repo_id="ysakhale/dependency-conflict-models") has_conflict, confidence = predictor.predict(requirements_text) # Load package embeddings embeddings = PackageEmbeddings(repo_id="ysakhale/dependency-conflict-models") best_match = embeddings.get_best_match("numpyy") # Returns: 'numpy' ### Example Usage thon # Predict conflicts requirements = "torch==1.8.0\npytorch-lightning==2.2.0" has_conflict, confidence = predictor.predict(requirements) if has_conflict: print(f"Conflict detected with {confidence:.1%} confidence") # Find similar packages similar = embeddings.find_similar("pandaz", top_k=3) # Returns: [('pandas', 0.95), ('numpy', 0.72), ...]## Model Files - `conflict_predictor.pkl` (~2-5 MB): Trained Random Forest model - `package_embeddings.json` (~5-10 MB): Pre-computed package embeddings - `embedding_info.json` (~1 KB): Embedding model metadata ## Citation If you use these models in your research, please cite: @software{dependency_conflict_models, title={Dependency Conflict Prediction Models}, author={Azam, Faiyaz and Sakhale, Yash and Lin, Yosen and Huang, Anyu}, year={2025}, url={https://huggingface.co/ysakhale/dependency-conflict-models} }## License MIT License - see LICENSE file for details ## Contact For questions or issues, please open an issue in the [main repository](https://github.com/your-username/python-dependency-compatibility-board) or contact the maintainers. ## Acknowledgments - Built as part of the PyHarmony project - Uses [sentence-transformers](https://www.sbert.net/) for embeddings - Trained with [scikit-learn](https://scikit-learn.org/)