File size: 4,831 Bytes
fe706ce
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
---
library_name: transformers
base_model:
- tiiuae/Falcon-H1-34B-Instruct
---

This tiny model is intended for debugging. It is randomly initialized using the configuration adapted from [tiiuae/Falcon-H1-34B-Instruct](https://huggingface.co/tiiuae/Falcon-H1-34B-Instruct).

### Example usage:

```python
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer, pipeline

model_id = "yujiepan/falcon-h1-tiny-random"
tokenizer = AutoTokenizer.from_pretrained(model_id, trust_remote_code=True)
model = AutoModelForCausalLM.from_pretrained(
    model_id,
    torch_dtype=torch.bfloat16,
    trust_remote_code=True,
)
pipe = pipeline('text-generation', model=model,
                tokenizer=tokenizer, trust_remote_code=True)
print(pipe('Write an article about Artificial Intelligence.', max_new_tokens=32))
```

### Codes to create this repo:

```python
import json
from pathlib import Path

import accelerate
import torch
from huggingface_hub import file_exists, hf_hub_download
from transformers import (
    AutoConfig,
    AutoModelForCausalLM,
    AutoTokenizer,
    GenerationConfig,
    set_seed,
)

source_model_id = "tiiuae/Falcon-H1-34B-Instruct"
save_folder = "/tmp/yujiepan/falcon-h1-tiny-random"

processor = AutoTokenizer.from_pretrained(source_model_id)
processor.save_pretrained(save_folder)

with open(hf_hub_download(source_model_id, filename='config.json', repo_type='model'), 'r', encoding='utf-8') as f:
    config_json = json.load(f)

for k, v in config_json.get('auto_map', {}).items():
    config_json['auto_map'][k] = f'{source_model_id}--{v}'
config_json['head_dim'] = 32
config_json['hidden_size'] = 8
config_json['intermediate_size'] = 64
config_json['num_attention_heads'] = 8
config_json['num_key_value_heads'] = 4
config_json['num_hidden_layers'] = 2
config_json['mamba_d_head'] = 32
config_json['mamba_n_heads'] = 8
config_json['mamba_d_state'] = 32
config_json['mamba_d_ssm'] = config_json['mamba_d_head'] * \
    config_json['mamba_n_heads']
config_json['mamba_expand'] = config_json['mamba_d_ssm'] // config_json['hidden_size']
config_json['tie_word_embeddings'] = True

with open(f"{save_folder}/config.json", "w", encoding='utf-8') as f:
    json.dump(config_json, f, indent=2)

config = AutoConfig.from_pretrained(
    save_folder,
    trust_remote_code=True,
)
print(config)
automap = config_json.get('auto_map', None)
torch.set_default_dtype(torch.bfloat16)
model = AutoModelForCausalLM.from_config(config, trust_remote_code=True)
torch.set_default_dtype(torch.float32)
if file_exists(filename="generation_config.json", repo_id=source_model_id, repo_type='model'):
    model.generation_config = GenerationConfig.from_pretrained(
        source_model_id, trust_remote_code=True,
    )
set_seed(42)
model = model.cpu()
with torch.no_grad():
    for name, p in sorted(model.named_parameters()):
        torch.nn.init.normal_(p, 0, 0.1)
        print(name, p.shape)
model.save_pretrained(save_folder)
print(model)
if automap:
    with open(f"{save_folder}/config.json", "r", encoding='utf-8') as f:
        config_json = json.load(f)
        config_json['auto_map'] = automap
with open(f"{save_folder}/config.json", "w", encoding='utf-8') as f:
    json.dump(config_json, f, indent=2)
for python_file in Path(save_folder).glob('*.py'):
    python_file.unlink()
```

### Printing the model:

```text
FalconH1ForCausalLM(
  (model): FalconH1Model(
    (embed_tokens): Embedding(261120, 8, padding_idx=0)
    (layers): ModuleList(
      (0-1): 2 x FalconH1DecoderLayer(
        (feed_forward): FalconH1MLP(
          (gate_proj): Linear(in_features=8, out_features=64, bias=False)
          (up_proj): Linear(in_features=8, out_features=64, bias=False)
          (down_proj): Linear(in_features=64, out_features=8, bias=False)
          (act_fn): SiLUActivation()
        )
        (mamba): FalconH1Mixer(
          (act): SiLUActivation()
          (conv1d): Conv1d(384, 384, kernel_size=(4,), stride=(1,), padding=(3,), groups=384)
          (in_proj): Linear(in_features=8, out_features=648, bias=False)
          (norm): FalconH1RMSNormGated()
          (out_proj): Linear(in_features=256, out_features=8, bias=False)
        )
        (self_attn): FalconH1Attention(
          (q_proj): Linear(in_features=8, out_features=256, bias=False)
          (k_proj): Linear(in_features=8, out_features=128, bias=False)
          (v_proj): Linear(in_features=8, out_features=128, bias=False)
          (o_proj): Linear(in_features=256, out_features=8, bias=False)
        )
        (input_layernorm): FalconH1RMSNorm((8,), eps=1e-05)
        (pre_ff_layernorm): FalconH1RMSNorm((8,), eps=1e-05)
      )
    )
    (final_layernorm): FalconH1RMSNorm((8,), eps=1e-05)
    (rotary_emb): FalconH1RotaryEmbedding()
  )
  (lm_head): Linear(in_features=8, out_features=261120, bias=False)
)
```