SetFit
This is a SetFit model that can be used for Text Classification. A OneVsRestClassifier instance is used for classification.
The model has been trained using an efficient few-shot learning technique that involves:
- Fine-tuning a Sentence Transformer with contrastive learning.
- Training a classification head with features from the fine-tuned Sentence Transformer.
Model Details
Model Description
- Model Type: SetFit
- Classification head: a OneVsRestClassifier instance
- Maximum Sequence Length: 512 tokens
Model Sources
- Repository: SetFit on GitHub
- Paper: Efficient Few-Shot Learning Without Prompts
- Blogpost: SetFit: Efficient Few-Shot Learning Without Prompts
Uses
Direct Use for Inference
First install the SetFit library:
pip install setfit
Then you can load this model and run inference.
from setfit import SetFitModel
# Download from the ๐ค Hub
model = SetFitModel.from_pretrained("setfit_model_id")
# Run inference
preds = model("Moderate pleural effusion and patchy consolidation in bilateral lung bases.")
Training Details
Training Set Metrics
| Training set | Min | Median | Max |
|---|---|---|---|
| Word count | 7 | 17.5143 | 53 |
Training Hyperparameters
- batch_size: (8, 8)
- num_epochs: (10, 10)
- max_steps: -1
- sampling_strategy: oversampling
- body_learning_rate: (2e-05, 1e-05)
- head_learning_rate: 0.01
- loss: CosineSimilarityLoss
- distance_metric: cosine_distance
- margin: 0.25
- end_to_end: False
- use_amp: False
- warmup_proportion: 0.1
- l2_weight: 0.01
- seed: 42
- eval_max_steps: -1
- load_best_model_at_end: False
Training Results
| Epoch | Step | Training Loss | Validation Loss |
|---|---|---|---|
| 0.0096 | 1 | 0.1417 | - |
| 0.4808 | 50 | 0.1824 | - |
| 0.9615 | 100 | 0.1083 | - |
| 1.4423 | 150 | 0.0817 | - |
| 1.9231 | 200 | 0.0777 | - |
| 2.4038 | 250 | 0.0636 | - |
| 2.8846 | 300 | 0.0649 | - |
| 3.3654 | 350 | 0.0603 | - |
| 3.8462 | 400 | 0.0713 | - |
| 4.3269 | 450 | 0.0507 | - |
| 4.8077 | 500 | 0.0569 | - |
| 5.2885 | 550 | 0.0553 | - |
| 5.7692 | 600 | 0.0614 | - |
| 6.25 | 650 | 0.0512 | - |
| 6.7308 | 700 | 0.0559 | - |
| 7.2115 | 750 | 0.0512 | - |
| 7.6923 | 800 | 0.0464 | - |
| 8.1731 | 850 | 0.0547 | - |
| 8.6538 | 900 | 0.0455 | - |
| 9.1346 | 950 | 0.0524 | - |
| 9.6154 | 1000 | 0.0526 | - |
Framework Versions
- Python: 3.11.11
- SetFit: 1.1.2
- Sentence Transformers: 4.0.2
- Transformers: 4.51.2
- PyTorch: 2.6.0
- Datasets: 3.5.0
- Tokenizers: 0.21.1
Citation
BibTeX
@article{https://doi.org/10.48550/arxiv.2209.11055,
doi = {10.48550/ARXIV.2209.11055},
url = {https://arxiv.org/abs/2209.11055},
author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren},
keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences},
title = {Efficient Few-Shot Learning Without Prompts},
publisher = {arXiv},
year = {2022},
copyright = {Creative Commons Attribution 4.0 International}
}
- Downloads last month
- 11