DOOGLAK's picture
update model card README.md
6c240b6
metadata
license: apache-2.0
tags:
  - generated_from_trainer
datasets:
  - article100v5_wikigold_split
metrics:
  - precision
  - recall
  - f1
  - accuracy
model-index:
  - name: Article_100v5_NER_Model_3Epochs_AUGMENTED
    results:
      - task:
          name: Token Classification
          type: token-classification
        dataset:
          name: article100v5_wikigold_split
          type: article100v5_wikigold_split
          args: default
        metrics:
          - name: Precision
            type: precision
            value: 0.5067349137931034
          - name: Recall
            type: recall
            value: 0.48009188361408883
          - name: F1
            type: f1
            value: 0.4930537352555701
          - name: Accuracy
            type: accuracy
            value: 0.8878815352070112

Article_100v5_NER_Model_3Epochs_AUGMENTED

This model is a fine-tuned version of bert-base-cased on the article100v5_wikigold_split dataset. It achieves the following results on the evaluation set:

  • Loss: 0.3560
  • Precision: 0.5067
  • Recall: 0.4801
  • F1: 0.4931
  • Accuracy: 0.8879

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 3

Training results

Training Loss Epoch Step Validation Loss Precision Recall F1 Accuracy
No log 1.0 44 0.3838 0.2951 0.2705 0.2823 0.8581
No log 2.0 88 0.3556 0.4836 0.4548 0.4688 0.8851
No log 3.0 132 0.3560 0.5067 0.4801 0.4931 0.8879

Framework versions

  • Transformers 4.17.0
  • Pytorch 1.11.0+cu113
  • Datasets 2.4.0
  • Tokenizers 0.11.6