Tagged_One_250v0_NER_Model_3Epochs_AUGMENTED

This model is a fine-tuned version of bert-base-cased on the tagged_one250v0_wikigold_split dataset. It achieves the following results on the evaluation set:

  • Loss: 0.4287
  • Precision: 0.5125
  • Recall: 0.3694
  • F1: 0.4294
  • Accuracy: 0.8787

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 3

Training results

Training Loss Epoch Step Validation Loss Precision Recall F1 Accuracy
No log 1.0 96 0.4352 0.3056 0.1692 0.2178 0.8448
No log 2.0 192 0.3881 0.4394 0.3295 0.3766 0.8773
No log 3.0 288 0.4287 0.5125 0.3694 0.4294 0.8787

Framework versions

  • Transformers 4.17.0
  • Pytorch 1.11.0+cu113
  • Datasets 2.4.0
  • Tokenizers 0.11.6
Downloads last month
4
Inference Providers NEW
This model isn't deployed by any Inference Provider. ๐Ÿ™‹ Ask for provider support

Evaluation results