Improve model card: Add pipeline_tag, library_name, and update paper links

#1
by nielsr HF Staff - opened
Files changed (1) hide show
  1. README.md +11 -8
README.md CHANGED
@@ -1,16 +1,19 @@
1
  ---
2
- license: apache-2.0
3
- language:
4
- - en
5
  base_model:
6
  - Qwen/Qwen2.5-7B-Instruct
 
 
 
 
 
7
  ---
 
8
  <div align="center">
9
 
10
  # 🎯 HPSv3: Towards Wide-Spectrum Human Preference Score (ICCV 2025)
11
 
12
  [![Project Website](https://img.shields.io/badge/🌐-Project%20Website-deepgray)](https://mizzenai.github.io/HPSv3.project/)
13
- [![arXiv](https://img.shields.io/badge/arXiv-b31b1b.svg)]()
14
  [![ICCV 2025](https://img.shields.io/badge/ICCV-2025-blue.svg)]()
15
  [![Code](https://img.shields.io/badge/Code-black?logo=github)](https://github.com/MizzenAI/HPSv3)
16
  [![Model](https://img.shields.io/badge/πŸ€—-Model-yellow)](https://huggingface.co/MizzenAI/HPSv3)
@@ -37,7 +40,7 @@ base_model:
37
 
38
  ## πŸ“– Introduction
39
 
40
- This is the official implementation for the paper: [HPSv3: Towards Wide-Spectrum Human Preference Score]().
41
  First, we introduce a VLM-based preference model **HPSv3**, trained on a "wide spectrum" preference dataset **HPDv3** with 1.08M text-image pairs and 1.17M annotated pairwise comparisons, covering both state-of-the-art and earlier generative models, as well as high- and low-quality real-world images. Second, we propose a novel reasoning approach for iterative image refinement, **CoHP(Chain-of-Human-Preference)**, which efficiently improves image quality without requiring additional training data.
42
 
43
  <p align="center">
@@ -293,8 +296,8 @@ COHP uses multiple state-of-the-art diffusion models for initial generation: **F
293
  1. **Multi-Model Generation**: Generates images using all supported models
294
  2. **Reward Scoring**: Evaluates each image using the specified reward model
295
  3. **Best Model Selection**: Chooses the model that produced the highest-scoring image
296
- 4. **Iterative Refinement**: Performs 5 rounds of image-to-image generation to improve quality
297
- 5. **Adaptive Strength**: Uses strength=0.8 for rounds 1-2, then 0.5 for rounds 3-5
298
 
299
  ---
300
 
@@ -343,4 +346,4 @@ We would like to thank the [VideoAlign](https://github.com/KwaiVGI/VideoAlign) c
343
 
344
  For questions and support:
345
  - **Issues**: [GitHub Issues](https://github.com/MizzenAI/HPSv3/issues)
346
- - **Email**: xilanhua12138@sjtu.edu.cn & [email protected]
 
1
  ---
 
 
 
2
  base_model:
3
  - Qwen/Qwen2.5-7B-Instruct
4
+ language:
5
+ - en
6
+ license: apache-2.0
7
+ pipeline_tag: image-text-to-text
8
+ library_name: hpsv3
9
  ---
10
+
11
  <div align="center">
12
 
13
  # 🎯 HPSv3: Towards Wide-Spectrum Human Preference Score (ICCV 2025)
14
 
15
  [![Project Website](https://img.shields.io/badge/🌐-Project%20Website-deepgray)](https://mizzenai.github.io/HPSv3.project/)
16
+ [![arXiv](https://img.shields.io/badge/arXiv-2508.03789-b31b1b.svg)](https://arxiv.org/abs/2508.03789)
17
  [![ICCV 2025](https://img.shields.io/badge/ICCV-2025-blue.svg)]()
18
  [![Code](https://img.shields.io/badge/Code-black?logo=github)](https://github.com/MizzenAI/HPSv3)
19
  [![Model](https://img.shields.io/badge/πŸ€—-Model-yellow)](https://huggingface.co/MizzenAI/HPSv3)
 
40
 
41
  ## πŸ“– Introduction
42
 
43
+ This is the official implementation for the paper: [HPSv3: Towards Wide-Spectrum Human Preference Score](https://huggingface.co/papers/2508.03789).
44
  First, we introduce a VLM-based preference model **HPSv3**, trained on a "wide spectrum" preference dataset **HPDv3** with 1.08M text-image pairs and 1.17M annotated pairwise comparisons, covering both state-of-the-art and earlier generative models, as well as high- and low-quality real-world images. Second, we propose a novel reasoning approach for iterative image refinement, **CoHP(Chain-of-Human-Preference)**, which efficiently improves image quality without requiring additional training data.
45
 
46
  <p align="center">
 
296
  1. **Multi-Model Generation**: Generates images using all supported models
297
  2. **Reward Scoring**: Evaluates each image using the specified reward model
298
  3. **Best Model Selection**: Chooses the model that produced the highest-scoring image
299
+ 4. **Iterative Refinement**: Performs 4 rounds of image-to-image generation to improve quality
300
+ 5. **Adaptive Strength**: Uses strength=0.8 for rounds 1-2, then 0.5 for rounds 3-4
301
 
302
  ---
303
 
 
346
 
347
  For questions and support:
348
  - **Issues**: [GitHub Issues](https://github.com/MizzenAI/HPSv3/issues)
349
+ - **Email**: yhshui@mizzen.ai & [email protected]