|
|
--- |
|
|
language: |
|
|
- or |
|
|
--- |
|
|
|
|
|
# Model Card for Model ID |
|
|
|
|
|
[](https://creativecommons.org/licenses/by-nc-sa/4.0/) |
|
|
|
|
|
## Model description |
|
|
|
|
|
odiagenAI-model-v0 is based on Llama-7b and finetuned with 52k Odia translated data from the open-source Stanford-Alpaca, resulting in good Odia instruction understanding and response generation capabilities. |
|
|
|
|
|
The code of Odia data generation and other detailed information can be found in our Github project repository: https://github.com/shantipriyap/OdiaGenAI. |
|
|
This repo contains a low-rank adapter for LLaMA-7b fit on the Stanford Alpaca dataset. |
|
|
|
|
|
|
|
|
|
|
|
## Training hyper-parameters |
|
|
| Parameter | Value | |
|
|
| ------ | ------ | |
|
|
| Batch size | 128 | |
|
|
| Learning rate | 3e-4 | |
|
|
| Epochs | 2 | |
|
|
|Cutoff length | 256 | |
|
|
|Weight_decay | 0.001 | |
|
|
|Warmup_rate | 0.1 | |
|
|
|LR_scheduler | linear | |
|
|
|Lora r | 16 | |
|
|
|Lora target modules | (q_proj, k_proj, v_proj, o_proj) | |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Model can be easily loaded with AutoModelForCausalLM. |
|
|
``` python |
|
|
import torch |
|
|
from peft import PeftModel |
|
|
import transformers |
|
|
from transformers import AutoTokenizer, AutoModelForCausalLM, BitsAndBytesConfig |
|
|
from peft import PeftModel, PeftConfig |
|
|
from transformers import LlamaTokenizer, LlamaForCausalLM, GenerationConfig |
|
|
|
|
|
base_model_path = "meta-llama/Llama-2-7b-hf" |
|
|
adapter_path = "OdiaGenAI/odiagenAI-model-v0" |
|
|
|
|
|
tokenizer = AutoTokenizer.from_pretrained(base_model_path, trust_remote_code=True) |
|
|
tokenizer.pad_token = tokenizer.eos_token |
|
|
|
|
|
bnb_config = BitsAndBytesConfig( |
|
|
load_in_4bit=True, |
|
|
bnb_4bit_quant_type="nf4", |
|
|
bnb_4bit_use_double_quant=True, |
|
|
bnb_4bit_compute_dtype=torch.float16, |
|
|
) |
|
|
|
|
|
base_model = AutoModelForCausalLM.from_pretrained( |
|
|
base_model_path, |
|
|
quantization_config=bnb_config, |
|
|
device_map="auto", |
|
|
trust_remote_code=True |
|
|
) |
|
|
|
|
|
model = PeftModel.from_pretrained(base_model, adapter_path) |
|
|
|
|
|
instruction = "ଭାରତ ବିଷୟରେ କିଛି କୁହନ୍ତୁ" |
|
|
|
|
|
device = "cuda" if torch.cuda.is_available() else "cpu" |
|
|
|
|
|
inputs = tokenizer(instruction, return_tensors="pt").to(device) |
|
|
input_ids = inputs["input_ids"].to(device) |
|
|
generation_config = GenerationConfig( |
|
|
temperature=0.1, |
|
|
top_p=0.75, |
|
|
top_k=40, |
|
|
num_beams=4, |
|
|
) |
|
|
with torch.no_grad(): |
|
|
generation_output = model.generate( |
|
|
input_ids=input_ids, |
|
|
generation_config=generation_config, |
|
|
return_dict_in_generate=True, |
|
|
output_scores=True, |
|
|
max_new_tokens=128, |
|
|
) |
|
|
s = generation_output.sequences[0] |
|
|
output = tokenizer.decode(s) |
|
|
print(output) |
|
|
``` |
|
|
|
|
|
|
|
|
Instructions for running it can be found at https://github.com/shantipriyap/OdiaGenAI. |
|
|
|
|
|
|
|
|
|