LSP-DETR: Efficient and Scalable Nuclei Segmentation in Whole Slide Images
Paper
•
2601.03163
•
Published
Matěj Pekár, Vít Musil, Rudolf Nenutil, Petr Holub, Tomáš Brázdil
[GitHub]
LSP-DETR (Local Star Polygon DEtection TRansformer) is a lightweight, efficient, and end-to-end deep learning model for nuclei instance segmentation in histopathological images. It combines a DETR-based transformer decoder with star-convex polygon shape descriptors to enable accurate and fast segmentation without complex post-processing.
from transformers import AutoModelForObjectDetection, AutoImageProcessor
processor = AutoImageProcessor.from_pretrained(
"RationAI/LSP-DETR", trust_remote_code=True
)
model = AutoModelForObjectDetection.from_pretrained(
"RationAI/LSP-DETR", trust_remote_code=True
)
inputs = processor(img, device=device, return_tensors="pt")
outputs = model(**inputs)
results = processor.post_process(outputs)
results = processor.post_process_instance(
results, height=img.size[1], width=img.size[0]
)
@misc{pekar2026lspdetr,
title={LSP-DETR: Efficient and Scalable Nuclei Segmentation in Whole Slide Images},
author={Matěj Pekár and Vít Musil and Rudolf Nenutil and Petr Holub and Tomáš Brázdil},
year={2026},
eprint={2601.03163},
archivePrefix={arXiv},
primaryClass={cs.CV},
url={https://arxiv.org/abs/2601.03163}
}