Efficient Few-Shot Learning Without Prompts
Paper
•
2209.11055
•
Published
•
4
This is a SetFit model that can be used for Text Classification. This SetFit model uses sentence-transformers/paraphrase-mpnet-base-v2 as the Sentence Transformer embedding model. A LogisticRegression instance is used for classification.
The model has been trained using an efficient few-shot learning technique that involves:
| Label | Examples |
|---|---|
| general_faq |
|
| product discoverability |
|
| product faq |
|
| product policy |
|
| order tracking |
|
| Label | Accuracy |
|---|---|
| all | 0.9245 |
First install the SetFit library:
pip install setfit
Then you can load this model and run inference.
from setfit import SetFitModel
# Download from the 🤗 Hub
model = SetFitModel.from_pretrained("Shankhdhar/classifier_woog_hkv")
# Run inference
preds = model("cookie boxes with inserts")
| Training set | Min | Median | Max |
|---|---|---|---|
| Word count | 4 | 11.9441 | 24 |
| Label | Training Sample Count |
|---|---|
| general_faq | 4 |
| order tracking | 28 |
| product discoverability | 40 |
| product faq | 40 |
| product policy | 31 |
| Epoch | Step | Training Loss | Validation Loss |
|---|---|---|---|
| 0.0010 | 1 | 0.3031 | - |
| 0.0517 | 50 | 0.1396 | - |
| 0.1033 | 100 | 0.0959 | - |
| 0.1550 | 150 | 0.0036 | - |
| 0.2066 | 200 | 0.0009 | - |
| 0.2583 | 250 | 0.0008 | - |
| 0.3099 | 300 | 0.0011 | - |
| 0.3616 | 350 | 0.0005 | - |
| 0.4132 | 400 | 0.0004 | - |
| 0.4649 | 450 | 0.0003 | - |
| 0.5165 | 500 | 0.0003 | - |
| 0.5682 | 550 | 0.0003 | - |
| 0.6198 | 600 | 0.0003 | - |
| 0.6715 | 650 | 0.0001 | - |
| 0.7231 | 700 | 0.0002 | - |
| 0.7748 | 750 | 0.0001 | - |
| 0.8264 | 800 | 0.0002 | - |
| 0.8781 | 850 | 0.0002 | - |
| 0.9298 | 900 | 0.0001 | - |
| 0.0010 | 1 | 0.0002 | - |
| 0.0517 | 50 | 0.0002 | - |
| 0.1033 | 100 | 0.0007 | - |
| 0.1550 | 150 | 0.0001 | - |
| 0.2066 | 200 | 0.0002 | - |
| 0.2583 | 250 | 0.0002 | - |
| 0.3099 | 300 | 0.0001 | - |
| 0.3616 | 350 | 0.0502 | - |
| 0.4132 | 400 | 0.0001 | - |
| 0.4649 | 450 | 0.0001 | - |
| 0.5165 | 500 | 0.0001 | - |
| 0.5682 | 550 | 0.0001 | - |
| 0.6198 | 600 | 0.0 | - |
| 0.6715 | 650 | 0.0 | - |
| 0.7231 | 700 | 0.0001 | - |
| 0.7748 | 750 | 0.0 | - |
| 0.8264 | 800 | 0.0001 | - |
| 0.8781 | 850 | 0.0001 | - |
| 0.9298 | 900 | 0.0001 | - |
| 0.9814 | 950 | 0.0001 | - |
| 1.0331 | 1000 | 0.0001 | - |
| 1.0847 | 1050 | 0.0001 | - |
| 1.1364 | 1100 | 0.0 | - |
| 1.1880 | 1150 | 0.0 | - |
| 1.2397 | 1200 | 0.0 | - |
| 1.2913 | 1250 | 0.0 | - |
| 1.3430 | 1300 | 0.0001 | - |
| 1.3946 | 1350 | 0.0 | - |
| 1.4463 | 1400 | 0.0 | - |
| 1.4979 | 1450 | 0.0 | - |
| 1.5496 | 1500 | 0.0 | - |
| 1.6012 | 1550 | 0.0 | - |
| 1.6529 | 1600 | 0.0 | - |
| 1.7045 | 1650 | 0.0 | - |
| 1.7562 | 1700 | 0.0001 | - |
| 1.8079 | 1750 | 0.0 | - |
| 1.8595 | 1800 | 0.0 | - |
| 1.9112 | 1850 | 0.0 | - |
| 1.9628 | 1900 | 0.0 | - |
| 0.0010 | 1 | 0.0 | - |
| 0.0517 | 50 | 0.0 | - |
| 0.1033 | 100 | 0.0001 | - |
| 0.1550 | 150 | 0.0 | - |
| 0.2066 | 200 | 0.0001 | - |
| 0.2583 | 250 | 0.0001 | - |
| 0.3099 | 300 | 0.0 | - |
| 0.3616 | 350 | 0.0402 | - |
| 0.4132 | 400 | 0.0001 | - |
| 0.4649 | 450 | 0.0 | - |
| 0.5165 | 500 | 0.0 | - |
| 0.5682 | 550 | 0.0 | - |
| 0.6198 | 600 | 0.0 | - |
| 0.6715 | 650 | 0.0 | - |
| 0.7231 | 700 | 0.0 | - |
| 0.7748 | 750 | 0.0 | - |
| 0.8264 | 800 | 0.0 | - |
| 0.8781 | 850 | 0.0 | - |
| 0.9298 | 900 | 0.0 | - |
| 0.9814 | 950 | 0.0 | - |
| 1.0331 | 1000 | 0.0 | - |
| 1.0847 | 1050 | 0.0 | - |
| 1.1364 | 1100 | 0.0 | - |
| 1.1880 | 1150 | 0.0 | - |
| 1.2397 | 1200 | 0.0 | - |
| 1.2913 | 1250 | 0.0 | - |
| 1.3430 | 1300 | 0.0 | - |
| 1.3946 | 1350 | 0.0 | - |
| 1.4463 | 1400 | 0.0 | - |
| 1.4979 | 1450 | 0.0 | - |
| 1.5496 | 1500 | 0.0 | - |
| 1.6012 | 1550 | 0.0 | - |
| 1.6529 | 1600 | 0.0 | - |
| 1.7045 | 1650 | 0.0 | - |
| 1.7562 | 1700 | 0.0 | - |
| 1.8079 | 1750 | 0.0 | - |
| 1.8595 | 1800 | 0.0 | - |
| 1.9112 | 1850 | 0.0 | - |
| 1.9628 | 1900 | 0.0 | - |
@article{https://doi.org/10.48550/arxiv.2209.11055,
doi = {10.48550/ARXIV.2209.11055},
url = {https://arxiv.org/abs/2209.11055},
author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren},
keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences},
title = {Efficient Few-Shot Learning Without Prompts},
publisher = {arXiv},
year = {2022},
copyright = {Creative Commons Attribution 4.0 International}
}