Efficient Few-Shot Learning Without Prompts
Paper
•
2209.11055
•
Published
•
4
This is a SetFit model that can be used for Text Classification. This SetFit model uses sentence-transformers/paraphrase-mpnet-base-v2 as the Sentence Transformer embedding model. A LogisticRegression instance is used for classification.
The model has been trained using an efficient few-shot learning technique that involves:
| Label | Examples |
|---|---|
| product discoverability |
|
| order tracking |
|
| product faq |
|
| general faq |
|
| product policy |
|
| Label | Accuracy |
|---|---|
| all | 0.9583 |
First install the SetFit library:
pip install setfit
Then you can load this model and run inference.
from setfit import SetFitModel
# Download from the 🤗 Hub
model = SetFitModel.from_pretrained("setfit_model_id")
# Run inference
preds = model("What makeup products do you have for eyes?")
| Training set | Min | Median | Max |
|---|---|---|---|
| Word count | 4 | 11.0 | 24 |
| Label | Training Sample Count |
|---|---|
| general faq | 20 |
| order tracking | 24 |
| product discoverability | 16 |
| product faq | 24 |
| product policy | 12 |
| Epoch | Step | Training Loss | Validation Loss |
|---|---|---|---|
| 0.0022 | 1 | 0.0832 | - |
| 0.1101 | 50 | 0.0046 | - |
| 0.2203 | 100 | 0.0002 | - |
| 0.3304 | 150 | 0.0029 | - |
| 0.4405 | 200 | 0.0001 | - |
| 0.5507 | 250 | 0.0005 | - |
| 0.6608 | 300 | 0.0001 | - |
| 0.7709 | 350 | 0.0001 | - |
| 0.8811 | 400 | 0.0001 | - |
| 0.9912 | 450 | 0.0001 | - |
| 1.1013 | 500 | 0.0001 | - |
| 1.2115 | 550 | 0.0001 | - |
| 1.3216 | 600 | 0.0001 | - |
| 1.4317 | 650 | 0.0001 | - |
| 1.5419 | 700 | 0.0002 | - |
| 1.6520 | 750 | 0.0001 | - |
| 1.7621 | 800 | 0.0001 | - |
| 1.8722 | 850 | 0.0001 | - |
| 1.9824 | 900 | 0.0001 | - |
@article{https://doi.org/10.48550/arxiv.2209.11055,
doi = {10.48550/ARXIV.2209.11055},
url = {https://arxiv.org/abs/2209.11055},
author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren},
keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences},
title = {Efficient Few-Shot Learning Without Prompts},
publisher = {arXiv},
year = {2022},
copyright = {Creative Commons Attribution 4.0 International}
}