camembert-pcg-real-transactions
This model is a fine-tuned version of camembert-base on the None dataset. It achieves the following results on the evaluation set:
- Loss: 0.7377
- Accuracy: 0.8906
- Precision: 0.9037
- Recall: 0.8906
- F1: 0.8906
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- optimizer: Use OptimizerNames.ADAMW_TORCH_FUSED with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 120
Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 |
|---|---|---|---|---|---|---|---|
| 3.5853 | 2.5641 | 200 | 3.5139 | 0.3019 | 0.2288 | 0.3019 | 0.2345 |
| 3.2713 | 5.1282 | 400 | 3.0864 | 0.5377 | 0.4640 | 0.5377 | 0.4615 |
| 2.7401 | 7.6923 | 600 | 2.5215 | 0.6302 | 0.5401 | 0.6302 | 0.5601 |
| 2.1343 | 10.2564 | 800 | 1.9296 | 0.7170 | 0.6254 | 0.7170 | 0.6571 |
| 1.5063 | 12.8205 | 1000 | 1.3920 | 0.7566 | 0.6875 | 0.7566 | 0.7114 |
| 1.0361 | 15.3846 | 1200 | 1.0702 | 0.8132 | 0.7713 | 0.8132 | 0.7810 |
| 0.769 | 17.9487 | 1400 | 0.9110 | 0.8189 | 0.7982 | 0.8189 | 0.7962 |
| 0.6071 | 20.5128 | 1600 | 0.8106 | 0.8302 | 0.8136 | 0.8302 | 0.8125 |
| 0.4613 | 23.0769 | 1800 | 0.7313 | 0.8491 | 0.8441 | 0.8491 | 0.8370 |
| 0.358 | 25.6410 | 2000 | 0.6852 | 0.8547 | 0.8498 | 0.8547 | 0.8452 |
| 0.284 | 28.2051 | 2200 | 0.6448 | 0.8679 | 0.8611 | 0.8679 | 0.8600 |
| 0.22 | 30.7692 | 2400 | 0.6581 | 0.8679 | 0.8781 | 0.8679 | 0.8660 |
| 0.1745 | 33.3333 | 2600 | 0.6068 | 0.8717 | 0.8729 | 0.8717 | 0.8666 |
| 0.1375 | 35.8974 | 2800 | 0.6068 | 0.8830 | 0.8946 | 0.8830 | 0.8827 |
| 0.1096 | 38.4615 | 3000 | 0.5848 | 0.8962 | 0.9096 | 0.8962 | 0.8961 |
| 0.0889 | 41.0256 | 3200 | 0.5778 | 0.8925 | 0.9057 | 0.8925 | 0.8922 |
| 0.0722 | 43.5897 | 3400 | 0.6095 | 0.8830 | 0.8983 | 0.8830 | 0.8835 |
| 0.0636 | 46.1538 | 3600 | 0.6074 | 0.8849 | 0.8986 | 0.8849 | 0.8849 |
| 0.0548 | 48.7179 | 3800 | 0.5972 | 0.8962 | 0.9094 | 0.8962 | 0.8962 |
| 0.0428 | 51.2821 | 4000 | 0.6226 | 0.8906 | 0.9069 | 0.8906 | 0.8928 |
| 0.0416 | 53.8462 | 4200 | 0.6335 | 0.8849 | 0.9036 | 0.8849 | 0.8861 |
| 0.0375 | 56.4103 | 4400 | 0.6533 | 0.8811 | 0.8930 | 0.8811 | 0.8795 |
| 0.037 | 58.9744 | 4600 | 0.6516 | 0.8849 | 0.8941 | 0.8849 | 0.8843 |
| 0.028 | 61.5385 | 4800 | 0.6452 | 0.8887 | 0.8993 | 0.8887 | 0.8893 |
| 0.0341 | 64.1026 | 5000 | 0.6523 | 0.8925 | 0.9056 | 0.8925 | 0.8938 |
| 0.0253 | 66.6667 | 5200 | 0.6546 | 0.8887 | 0.9020 | 0.8887 | 0.8902 |
| 0.024 | 69.2308 | 5400 | 0.7024 | 0.8830 | 0.8950 | 0.8830 | 0.8830 |
| 0.0244 | 71.7949 | 5600 | 0.6767 | 0.8925 | 0.9043 | 0.8925 | 0.8932 |
| 0.0201 | 74.3590 | 5800 | 0.6885 | 0.8887 | 0.9009 | 0.8887 | 0.8897 |
| 0.0258 | 76.9231 | 6000 | 0.6870 | 0.8925 | 0.9059 | 0.8925 | 0.8937 |
| 0.0227 | 79.4872 | 6200 | 0.7150 | 0.8868 | 0.9003 | 0.8868 | 0.8873 |
| 0.019 | 82.0513 | 6400 | 0.7534 | 0.8830 | 0.8964 | 0.8830 | 0.8834 |
| 0.0224 | 84.6154 | 6600 | 0.7238 | 0.8887 | 0.9002 | 0.8887 | 0.8882 |
| 0.0173 | 87.1795 | 6800 | 0.7238 | 0.8906 | 0.9043 | 0.8906 | 0.8911 |
| 0.0212 | 89.7436 | 7000 | 0.7031 | 0.8925 | 0.9064 | 0.8925 | 0.8934 |
| 0.0187 | 92.3077 | 7200 | 0.7364 | 0.8943 | 0.9088 | 0.8943 | 0.8956 |
| 0.0187 | 94.8718 | 7400 | 0.7152 | 0.8943 | 0.9110 | 0.8943 | 0.8961 |
| 0.0168 | 97.4359 | 7600 | 0.7188 | 0.8849 | 0.8980 | 0.8849 | 0.8856 |
| 0.0191 | 100.0 | 7800 | 0.7268 | 0.8887 | 0.9039 | 0.8887 | 0.8903 |
| 0.0167 | 102.5641 | 8000 | 0.7339 | 0.8906 | 0.9033 | 0.8906 | 0.8911 |
| 0.013 | 105.1282 | 8200 | 0.7268 | 0.8925 | 0.9065 | 0.8925 | 0.8936 |
| 0.0168 | 107.6923 | 8400 | 0.7346 | 0.8906 | 0.9038 | 0.8906 | 0.8909 |
| 0.0132 | 110.2564 | 8600 | 0.7319 | 0.8906 | 0.9038 | 0.8906 | 0.8909 |
| 0.0139 | 112.8205 | 8800 | 0.7405 | 0.8906 | 0.9024 | 0.8906 | 0.8908 |
| 0.0136 | 115.3846 | 9000 | 0.7361 | 0.8906 | 0.9024 | 0.8906 | 0.8908 |
| 0.0144 | 117.9487 | 9200 | 0.7377 | 0.8906 | 0.9037 | 0.8906 | 0.8906 |
Framework versions
- Transformers 4.57.3
- Pytorch 2.9.1+cu128
- Datasets 4.4.1
- Tokenizers 0.22.1
- Downloads last month
- 305
Model tree for Tiime/camembert-pcg-real-transactions
Base model
almanach/camembert-base