Efficient Few-Shot Learning Without Prompts
Paper
•
2209.11055
•
Published
•
4
This is a SetFit model that can be used for Text Classification. This SetFit model uses sentence-transformers/all-MiniLM-L6-v2 as the Sentence Transformer embedding model. A LogisticRegression instance is used for classification.
The model has been trained using an efficient few-shot learning technique that involves:
| Label | F1 |
|---|---|
| all | 0.8182 |
First install the SetFit library:
pip install setfit
Then you can load this model and run inference.
from setfit import SetFitModel
# Download from the 🤗 Hub
model = SetFitModel.from_pretrained("Zlovoblachko/dim1_setfit")
# Run inference
preds = model("I loved the spiderman movie!")
| Epoch | Step | Training Loss | Validation Loss |
|---|---|---|---|
| 0.0011 | 1 | 0.2497 | - |
| 0.0541 | 50 | 0.2784 | - |
| 0.1081 | 100 | 0.2797 | - |
| 0.1622 | 150 | 0.2886 | - |
| 0.2162 | 200 | 0.2863 | - |
| 0.2703 | 250 | 0.2751 | - |
| 0.3243 | 300 | 0.2934 | - |
| 0.3784 | 350 | 0.2857 | - |
| 0.4324 | 400 | 0.293 | - |
| 0.4865 | 450 | 0.2791 | - |
| 0.5405 | 500 | 0.2985 | - |
| 0.5946 | 550 | 0.2998 | - |
| 0.6486 | 600 | 0.2822 | - |
| 0.7027 | 650 | 0.2849 | - |
| 0.7568 | 700 | 0.2877 | - |
| 0.8108 | 750 | 0.2818 | - |
| 0.8649 | 800 | 0.2854 | - |
| 0.9189 | 850 | 0.2986 | - |
| 0.9730 | 900 | 0.2956 | - |
| 1.0270 | 950 | 0.292 | - |
| 1.0811 | 1000 | 0.2881 | - |
| 1.1351 | 1050 | 0.2894 | - |
| 1.1892 | 1100 | 0.29 | - |
| 1.2432 | 1150 | 0.2783 | - |
| 1.2973 | 1200 | 0.2601 | - |
| 1.3514 | 1250 | 0.3014 | - |
| 1.4054 | 1300 | 0.2877 | - |
| 1.4595 | 1350 | 0.2998 | - |
| 1.5135 | 1400 | 0.2822 | - |
| 1.5676 | 1450 | 0.3072 | - |
| 1.6216 | 1500 | 0.2739 | - |
| 1.6757 | 1550 | 0.2797 | - |
| 1.7297 | 1600 | 0.2751 | - |
| 1.7838 | 1650 | 0.2912 | - |
| 1.8378 | 1700 | 0.292 | - |
| 1.8919 | 1750 | 0.3024 | - |
| 1.9459 | 1800 | 0.299 | - |
| 2.0 | 1850 | 0.2898 | - |
@article{https://doi.org/10.48550/arxiv.2209.11055,
doi = {10.48550/ARXIV.2209.11055},
url = {https://arxiv.org/abs/2209.11055},
author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren},
keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences},
title = {Efficient Few-Shot Learning Without Prompts},
publisher = {arXiv},
year = {2022},
copyright = {Creative Commons Attribution 4.0 International}
}
Base model
sentence-transformers/all-MiniLM-L6-v2