Efficient Few-Shot Learning Without Prompts
Paper
•
2209.11055
•
Published
•
4
This is a SetFit model that can be used for Text Classification. This SetFit model uses Qwen/Qwen3-Embedding-0.6B as the Sentence Transformer embedding model. A LogisticRegression instance is used for classification.
The model has been trained using an efficient few-shot learning technique that involves:
| Label | Examples |
|---|---|
| L |
|
| H |
|
| Label | Accuracy |
|---|---|
| all | 0.7959 |
First install the SetFit library:
pip install setfit
Then you can load this model and run inference.
from setfit import SetFitModel
# Download from the 🤗 Hub
model = SetFitModel.from_pretrained("Zlovoblachko/dim2_Qwen_setfit_model")
# Run inference
preds = model(" Watching sports helps people to develop their social life.")
| Training set | Min | Median | Max |
|---|---|---|---|
| Word count | 4 | 18.0633 | 48 |
| Label | Training Sample Count |
|---|---|
| L | 150 |
| H | 150 |
| Epoch | Step | Training Loss | Validation Loss |
|---|---|---|---|
| 0.0004 | 1 | 0.2694 | - |
| 0.0177 | 50 | 0.2589 | - |
| 0.0353 | 100 | 0.2489 | - |
| 0.0530 | 150 | 0.1486 | - |
| 0.0706 | 200 | 0.0375 | - |
| 0.0883 | 250 | 0.0014 | - |
| 0.1059 | 300 | 0.0 | - |
| 0.1236 | 350 | 0.0 | - |
| 0.1412 | 400 | 0.0 | - |
| 0.1589 | 450 | 0.0 | - |
| 0.1766 | 500 | 0.0 | - |
| 0.1942 | 550 | 0.0 | - |
| 0.2119 | 600 | 0.0 | - |
| 0.2295 | 650 | 0.0 | - |
| 0.2472 | 700 | 0.0 | - |
| 0.2648 | 750 | 0.0 | - |
| 0.2825 | 800 | 0.0 | - |
| 0.3001 | 850 | 0.0 | - |
| 0.3178 | 900 | 0.0 | - |
| 0.3355 | 950 | 0.0 | - |
| 0.3531 | 1000 | 0.0 | - |
| 0.3708 | 1050 | 0.0 | - |
| 0.3884 | 1100 | 0.0 | - |
| 0.4061 | 1150 | 0.0 | - |
| 0.4237 | 1200 | 0.0 | - |
| 0.4414 | 1250 | 0.0 | - |
| 0.4590 | 1300 | 0.0 | - |
| 0.4767 | 1350 | 0.0 | - |
| 0.4944 | 1400 | 0.0 | - |
| 0.5120 | 1450 | 0.0 | - |
| 0.5297 | 1500 | 0.0 | - |
| 0.5473 | 1550 | 0.0 | - |
| 0.5650 | 1600 | 0.0 | - |
| 0.5826 | 1650 | 0.0 | - |
| 0.6003 | 1700 | 0.0 | - |
| 0.6179 | 1750 | 0.0 | - |
| 0.6356 | 1800 | 0.0 | - |
| 0.6532 | 1850 | 0.0 | - |
| 0.6709 | 1900 | 0.0 | - |
| 0.6886 | 1950 | 0.0 | - |
| 0.7062 | 2000 | 0.0 | - |
| 0.7239 | 2050 | 0.0 | - |
| 0.7415 | 2100 | 0.0 | - |
| 0.7592 | 2150 | 0.0 | - |
| 0.7768 | 2200 | 0.0 | - |
| 0.7945 | 2250 | 0.0 | - |
| 0.8121 | 2300 | 0.0 | - |
| 0.8298 | 2350 | 0.0 | - |
| 0.8475 | 2400 | 0.0 | - |
| 0.8651 | 2450 | 0.0 | - |
| 0.8828 | 2500 | 0.0 | - |
| 0.9004 | 2550 | 0.0 | - |
| 0.9181 | 2600 | 0.0 | - |
| 0.9357 | 2650 | 0.0 | - |
| 0.9534 | 2700 | 0.0 | - |
| 0.9710 | 2750 | 0.0 | - |
| 0.9887 | 2800 | 0.0 | - |
@article{https://doi.org/10.48550/arxiv.2209.11055,
doi = {10.48550/ARXIV.2209.11055},
url = {https://arxiv.org/abs/2209.11055},
author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren},
keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences},
title = {Efficient Few-Shot Learning Without Prompts},
publisher = {arXiv},
year = {2022},
copyright = {Creative Commons Attribution 4.0 International}
}