medical_segmentation_v2

This model is a fine-tuned version of pyannote/segmentation-3.0 on the abar-uwc/medical-segmentation-dataset_v2 dataset. It achieves the following results on the evaluation set:

  • Loss: 0.0143
  • Model Preparation Time: 0.004
  • Der: 0.0033
  • False Alarm: 0.0014
  • Missed Detection: 0.0017
  • Confusion: 0.0002

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.001
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: cosine
  • num_epochs: 10.0

Training results

Training Loss Epoch Step Validation Loss Model Preparation Time Der False Alarm Missed Detection Confusion
0.0153 1.0 202 0.0290 0.004 0.0067 0.0028 0.0027 0.0012
0.0116 2.0 404 0.0192 0.004 0.0045 0.0020 0.0021 0.0004
0.0102 3.0 606 0.0162 0.004 0.0037 0.0016 0.0020 0.0002
0.0086 4.0 808 0.0165 0.004 0.0042 0.0021 0.0019 0.0002
0.0089 5.0 1010 0.0156 0.004 0.0040 0.0018 0.0020 0.0002
0.0059 6.0 1212 0.0145 0.004 0.0035 0.0016 0.0017 0.0002
0.0055 7.0 1414 0.0147 0.004 0.0035 0.0016 0.0017 0.0002
0.0069 8.0 1616 0.0142 0.004 0.0033 0.0015 0.0017 0.0001
0.0067 9.0 1818 0.0142 0.004 0.0032 0.0014 0.0017 0.0001
0.0063 10.0 2020 0.0143 0.004 0.0033 0.0014 0.0017 0.0002

Framework versions

  • Transformers 4.49.0
  • Pytorch 2.7.0+cu126
  • Datasets 3.5.0
  • Tokenizers 0.21.0
Downloads last month
7
Safetensors
Model size
1.47M params
Tensor type
F32
·
Inference Providers NEW
This model isn't deployed by any Inference Provider. 🙋 Ask for provider support

Model tree for abar-uwc/medical_segmentation_v2

Finetuned
(82)
this model

Dataset used to train abar-uwc/medical_segmentation_v2