Elle-72B-Ultimate
Elle is a fine-tuned geopolitical intelligence model built on Qwen2.5-72B-Instruct-AWQ, specialized for:
- Real-time geopolitical risk assessment
- Multi-source intelligence synthesis
- Causal chain analysis for global events
- Regime stability detection
- Cascade risk prediction
Model Details
| Attribute | Value |
|---|---|
| Base Model | Qwen/Qwen2.5-72B-Instruct |
| Fine-tuning Method | LoRA (r=64, alpha=128) |
| Training Framework | Unsloth + PEFT |
| Precision | FP16 (full precision merged) |
| Context Length | 32,768 tokens |
| Final Training Loss | 0.2544 |
Training Data
Elle was trained on curated geopolitical intelligence data including:
- GDELT Event Data: Global event monitoring and conflict detection
- World Bank Indicators: Economic stability metrics
- USGS Seismic Data: Natural disaster risk factors
- Curated Intel Briefings: Expert-verified geopolitical analysis
- Cascade Analysis: Historical event chain patterns
Training used interleaved conversation format with system prompts, user queries, and assistant responses.
Intended Use
Elle is designed for:
- Enterprise geopolitical risk dashboards
- Intelligence briefing generation
- Supply chain risk assessment
- Investment risk analysis
- Policy impact modeling
Limitations
- Knowledge cutoff aligned with training data (Dec 2024)
- Requires external data feeds for real-time analysis
- Should be used as analytical support, not sole decision-maker
- May reflect biases present in training data sources
Hardware Requirements
- Inference: 4x H100/H200 80GB (vLLM recommended)
- Memory: ~280GB VRAM for FP16 model (4x H200 = 320GB)
- Consider quantizing to AWQ/GPTQ for smaller deployments
Usage with vLLM
from vllm import LLM, SamplingParams
llm = LLM(
model="aphoticshaman/Elle-72B-Ultimate",
tensor_parallel_size=4,
trust_remote_code=True,
max_model_len=32768,
)
sampling_params = SamplingParams(
temperature=0.7,
top_p=0.9,
max_tokens=4096,
)
prompt = """<|im_start|>system
You are Elle, an expert geopolitical intelligence analyst.
<|im_end|>
<|im_start|>user
Analyze the current risk factors affecting semiconductor supply chains.
<|im_end|>
<|im_start|>assistant
"""
outputs = llm.generate([prompt], sampling_params)
print(outputs[0].outputs[0].text)
Usage with Transformers
from transformers import AutoModelForCausalLM, AutoTokenizer
model = AutoModelForCausalLM.from_pretrained(
"aphoticshaman/Elle-72B-Ultimate",
device_map="auto",
trust_remote_code=True,
)
tokenizer = AutoTokenizer.from_pretrained("aphoticshaman/Elle-72B-Ultimate")
messages = [
{"role": "system", "content": "You are Elle, an expert geopolitical intelligence analyst."},
{"role": "user", "content": "What are the key risk indicators for the South China Sea region?"}
]
text = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
inputs = tokenizer(text, return_tensors="pt").to(model.device)
outputs = model.generate(**inputs, max_new_tokens=2048)
print(tokenizer.decode(outputs[0], skip_special_tokens=True))
Training Configuration
# LoRA Configuration
lora_r: 64
lora_alpha: 128
lora_dropout: 0.05
target_modules:
- q_proj
- k_proj
- v_proj
- o_proj
- gate_proj
- up_proj
- down_proj
# Training Hyperparameters
learning_rate: 2e-5
batch_size: 2
gradient_accumulation_steps: 8
epochs: 3
warmup_ratio: 0.03
lr_scheduler: cosine
optimizer: adamw_8bit
max_seq_length: 8192
Citation
@misc{elle-72b-ultimate,
author = {LatticeForge},
title = {Elle-72B-Ultimate: Fine-tuned Geopolitical Intelligence Model},
year = {2024},
publisher = {HuggingFace},
url = {https://huggingface.co/aphoticshaman/Elle-72B-Ultimate}
}
License
Apache 2.0 - See LICENSE file for details.
Contact
- Website: latticeforge.ai
- Issues: Report issues via HuggingFace discussions
- Downloads last month
- 50