dfine_coco2017-1k

This model is a fine-tuned version of ustc-community/dfine-large-obj365 on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 3.0118
  • Map: 0.0299
  • Map 50: 0.0372
  • Map 75: 0.0329
  • Map Airplane: 0.0221
  • Map Apple: 0.0
  • Map Backpack: 0.0021
  • Map Banana: 0.0063
  • Map Baseball bat: 0.0
  • Map Baseball glove: 0.1984
  • Map Bear: 0.0
  • Map Bed: 0.0
  • Map Bench: 0.0009
  • Map Bicycle: 0.0
  • Map Bird: 0.0016
  • Map Boat: 0.0123
  • Map Book: 0.0002
  • Map Bottle: 0.046
  • Map Bowl: 0.0588
  • Map Broccoli: 0.0007
  • Map Bus: 0.3589
  • Map Cake: 0.0142
  • Map Car: 0.1625
  • Map Carrot: 0.0
  • Map Cat: 0.0047
  • Map Cell phone: 0.08
  • Map Chair: 0.0741
  • Map Clock: 0.001
  • Map Couch: 0.0125
  • Map Cow: 0.1326
  • Map Cup: 0.0592
  • Map Dining table: 0.0596
  • Map Dog: 0.0
  • Map Donut: -1.0
  • Map Elephant: 0.0034
  • Map Fire hydrant: -1.0
  • Map Fork: 0.0027
  • Map Frisbee: 0.0008
  • Map Giraffe: 0.0976
  • Map Handbag: 0.0022
  • Map Horse: 0.0022
  • Map Hot dog: 0.0
  • Map Keyboard: 0.0
  • Map Kite: 0.008
  • Map Knife: 0.001
  • Map Laptop: 0.0009
  • Map Large: 0.0435
  • Map Medium: 0.0369
  • Map Microwave: 0.0
  • Map Motorcycle: 0.0006
  • Map Mouse: 0.0
  • Map Orange: 0.0
  • Map Oven: 0.0
  • Map Parking meter: 0.0
  • Map Person: 0.1633
  • Map Pizza: 0.0451
  • Map Potted plant: 0.0026
  • Map Refrigerator: 0.0013
  • Map Remote: 0.0053
  • Map Sandwich: 0.0
  • Map Scissors: 0.0
  • Map Sheep: 0.0
  • Map Sink: 0.0001
  • Map Skateboard: 0.0
  • Map Skis: 0.0049
  • Map Small: 0.0085
  • Map Snowboard: 0.0
  • Map Spoon: 0.0
  • Map Sports ball: 0.0
  • Map Stop sign: 0.006
  • Map Suitcase: 0.0009
  • Map Surfboard: 0.0027
  • Map Teddy bear: 0.0
  • Map Tennis racket: 0.1978
  • Map Tie: 0.0
  • Map Toaster: -1.0
  • Map Toilet: 0.0101
  • Map Toothbrush: 0.0
  • Map Traffic light: 0.0388
  • Map Train: 0.0096
  • Map Truck: 0.108
  • Map Tv: 0.2457
  • Map Umbrella: 0.0001
  • Map Vase: 0.0002
  • Map Wine glass: 0.0
  • Map Zebra: 0.0015
  • Mar 1: 0.1037
  • Mar 10: 0.1704
  • Mar 100: 0.1887
  • Mar 100 Airplane: 0.6857
  • Mar 100 Apple: 0.0
  • Mar 100 Backpack: 0.0333
  • Mar 100 Banana: 0.0545
  • Mar 100 Baseball bat: 0.0
  • Mar 100 Baseball glove: 0.3438
  • Mar 100 Bear: 0.0
  • Mar 100 Bed: 0.0
  • Mar 100 Bench: 0.275
  • Mar 100 Bicycle: 0.0
  • Mar 100 Bird: 0.5
  • Mar 100 Boat: 0.2408
  • Mar 100 Book: 0.0344
  • Mar 100 Bottle: 0.3444
  • Mar 100 Bowl: 0.224
  • Mar 100 Broccoli: 0.1143
  • Mar 100 Bus: 0.7917
  • Mar 100 Cake: 0.25
  • Mar 100 Car: 0.3451
  • Mar 100 Carrot: 0.0
  • Mar 100 Cat: 0.3692
  • Mar 100 Cell phone: 0.1474
  • Mar 100 Chair: 0.2458
  • Mar 100 Clock: 0.1412
  • Mar 100 Couch: 0.3455
  • Mar 100 Cow: 0.4625
  • Mar 100 Cup: 0.2686
  • Mar 100 Dining table: 0.45
  • Mar 100 Dog: 0.0
  • Mar 100 Donut: -1.0
  • Mar 100 Elephant: 0.5111
  • Mar 100 Fire hydrant: -1.0
  • Mar 100 Fork: 0.0643
  • Mar 100 Frisbee: 0.6333
  • Mar 100 Giraffe: 0.9556
  • Mar 100 Handbag: 0.136
  • Mar 100 Horse: 0.6
  • Mar 100 Hot dog: 0.0
  • Mar 100 Keyboard: 0.0
  • Mar 100 Kite: 0.1611
  • Mar 100 Knife: 0.0333
  • Mar 100 Laptop: 0.1222
  • Mar 100 Microwave: 0.0
  • Mar 100 Motorcycle: 0.1437
  • Mar 100 Mouse: 0.0
  • Mar 100 Orange: 0.0
  • Mar 100 Oven: 0.0
  • Mar 100 Parking meter: 0.0
  • Mar 100 Person: 0.4451
  • Mar 100 Pizza: 0.16
  • Mar 100 Potted plant: 0.205
  • Mar 100 Refrigerator: 0.1286
  • Mar 100 Remote: 0.0905
  • Mar 100 Sandwich: 0.0
  • Mar 100 Scissors: 0.0
  • Mar 100 Sheep: 0.0
  • Mar 100 Sink: 0.05
  • Mar 100 Skateboard: 0.0
  • Mar 100 Skis: 0.0875
  • Mar 100 Snowboard: 0.0
  • Mar 100 Spoon: 0.0
  • Mar 100 Sports ball: 0.0
  • Mar 100 Stop sign: 0.225
  • Mar 100 Suitcase: 0.225
  • Mar 100 Surfboard: 0.3818
  • Mar 100 Teddy bear: 0.0
  • Mar 100 Tennis racket: 0.5
  • Mar 100 Tie: 0.0
  • Mar 100 Toaster: -1.0
  • Mar 100 Toilet: 0.2529
  • Mar 100 Toothbrush: 0.0
  • Mar 100 Traffic light: 0.1083
  • Mar 100 Train: 0.1111
  • Mar 100 Truck: 0.569
  • Mar 100 Tv: 0.5615
  • Mar 100 Umbrella: 0.0353
  • Mar 100 Vase: 0.0833
  • Mar 100 Wine glass: 0.0
  • Mar 100 Zebra: 0.0909
  • Mar Large: 0.2753
  • Mar Medium: 0.1135
  • Mar Small: 0.0232

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 8
  • eval_batch_size: 1
  • seed: 42
  • optimizer: Use OptimizerNames.ADAMW_TORCH_FUSED with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 300
  • num_epochs: 1
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Map Map 50 Map 75 Map Airplane Map Apple Map Backpack Map Banana Map Baseball bat Map Baseball glove Map Bear Map Bed Map Bench Map Bicycle Map Bird Map Boat Map Book Map Bottle Map Bowl Map Broccoli Map Bus Map Cake Map Car Map Carrot Map Cat Map Cell phone Map Chair Map Clock Map Couch Map Cow Map Cup Map Dining table Map Dog Map Donut Map Elephant Map Fire hydrant Map Fork Map Frisbee Map Giraffe Map Handbag Map Horse Map Hot dog Map Keyboard Map Kite Map Knife Map Laptop Map Large Map Medium Map Microwave Map Motorcycle Map Mouse Map Orange Map Oven Map Parking meter Map Person Map Pizza Map Potted plant Map Refrigerator Map Remote Map Sandwich Map Scissors Map Sheep Map Sink Map Skateboard Map Skis Map Small Map Snowboard Map Spoon Map Sports ball Map Stop sign Map Suitcase Map Surfboard Map Teddy bear Map Tennis racket Map Tie Map Toaster Map Toilet Map Toothbrush Map Traffic light Map Train Map Truck Map Tv Map Umbrella Map Vase Map Wine glass Map Zebra Mar 1 Mar 10 Mar 100 Mar 100 Airplane Mar 100 Apple Mar 100 Backpack Mar 100 Banana Mar 100 Baseball bat Mar 100 Baseball glove Mar 100 Bear Mar 100 Bed Mar 100 Bench Mar 100 Bicycle Mar 100 Bird Mar 100 Boat Mar 100 Book Mar 100 Bottle Mar 100 Bowl Mar 100 Broccoli Mar 100 Bus Mar 100 Cake Mar 100 Car Mar 100 Carrot Mar 100 Cat Mar 100 Cell phone Mar 100 Chair Mar 100 Clock Mar 100 Couch Mar 100 Cow Mar 100 Cup Mar 100 Dining table Mar 100 Dog Mar 100 Donut Mar 100 Elephant Mar 100 Fire hydrant Mar 100 Fork Mar 100 Frisbee Mar 100 Giraffe Mar 100 Handbag Mar 100 Horse Mar 100 Hot dog Mar 100 Keyboard Mar 100 Kite Mar 100 Knife Mar 100 Laptop Mar 100 Microwave Mar 100 Motorcycle Mar 100 Mouse Mar 100 Orange Mar 100 Oven Mar 100 Parking meter Mar 100 Person Mar 100 Pizza Mar 100 Potted plant Mar 100 Refrigerator Mar 100 Remote Mar 100 Sandwich Mar 100 Scissors Mar 100 Sheep Mar 100 Sink Mar 100 Skateboard Mar 100 Skis Mar 100 Snowboard Mar 100 Spoon Mar 100 Sports ball Mar 100 Stop sign Mar 100 Suitcase Mar 100 Surfboard Mar 100 Teddy bear Mar 100 Tennis racket Mar 100 Tie Mar 100 Toaster Mar 100 Toilet Mar 100 Toothbrush Mar 100 Traffic light Mar 100 Train Mar 100 Truck Mar 100 Tv Mar 100 Umbrella Mar 100 Vase Mar 100 Wine glass Mar 100 Zebra Mar Large Mar Medium Mar Small
76.1385 1.0 740 3.0118 0.0299 0.0372 0.0329 0.0221 0.0 0.0021 0.0063 0.0 0.1984 0.0 0.0 0.0009 0.0 0.0016 0.0123 0.0002 0.046 0.0588 0.0007 0.3589 0.0142 0.1625 0.0 0.0047 0.08 0.0741 0.001 0.0125 0.1326 0.0592 0.0596 0.0 -1.0 0.0034 -1.0 0.0027 0.0008 0.0976 0.0022 0.0022 0.0 0.0 0.008 0.001 0.0009 0.0435 0.0369 0.0 0.0006 0.0 0.0 0.0 0.0 0.1633 0.0451 0.0026 0.0013 0.0053 0.0 0.0 0.0 0.0001 0.0 0.0049 0.0085 0.0 0.0 0.0 0.006 0.0009 0.0027 0.0 0.1978 0.0 -1.0 0.0101 0.0 0.0388 0.0096 0.108 0.2457 0.0001 0.0002 0.0 0.0015 0.1037 0.1704 0.1887 0.6857 0.0 0.0333 0.0545 0.0 0.3438 0.0 0.0 0.275 0.0 0.5 0.2408 0.0344 0.3444 0.224 0.1143 0.7917 0.25 0.3451 0.0 0.3692 0.1474 0.2458 0.1412 0.3455 0.4625 0.2686 0.45 0.0 -1.0 0.5111 -1.0 0.0643 0.6333 0.9556 0.136 0.6 0.0 0.0 0.1611 0.0333 0.1222 0.0 0.1437 0.0 0.0 0.0 0.0 0.4451 0.16 0.205 0.1286 0.0905 0.0 0.0 0.0 0.05 0.0 0.0875 0.0 0.0 0.0 0.225 0.225 0.3818 0.0 0.5 0.0 -1.0 0.2529 0.0 0.1083 0.1111 0.569 0.5615 0.0353 0.0833 0.0 0.0909 0.2753 0.1135 0.0232

Framework versions

  • Transformers 4.57.3
  • Pytorch 2.9.0+cu126
  • Datasets 4.4.2
  • Tokenizers 0.22.2
Downloads last month
46
Safetensors
Model size
31.4M params
Tensor type
F32
·
Inference Providers NEW
This model isn't deployed by any Inference Provider. 🙋 Ask for provider support

Model tree for benjamintli/dfine_coco2017-1k

Finetuned
(1)
this model