|
|
--- |
|
|
license: apache-2.0 |
|
|
base_model: |
|
|
- openai/whisper-large-v3-turbo |
|
|
pipeline_tag: automatic-speech-recognition |
|
|
tags: |
|
|
- openvino |
|
|
- whisper |
|
|
- intel |
|
|
--- |
|
|
|
|
|
Model creator: openai |
|
|
Original model: https://huggingface.co/openai/whisper-large-v3-turbo |
|
|
|
|
|
`optimum-cli export openvino --trust-remote-code --model openai/whisper-large-v3-turbo --weight-format int8 --disable-stateful whisper-large-v3-turbo` |
|
|
|
|
|
## Compatibility |
|
|
The provided OpenVINO™ IR model is compatible with: |
|
|
* OpenVINO version 2024.5.0 and higher |
|
|
* Optimum Intel 1.21.0 and higher |
|
|
|
|
|
## Running Model Inference with [Optimum Intel](https://huggingface.co/docs/optimum/intel/index) |
|
|
1. Install packages required for using [Optimum Intel](https://huggingface.co/docs/optimum/intel/index) integration with the OpenVINO backend: |
|
|
``` |
|
|
pip install optimum[openvino] |
|
|
``` |
|
|
2. Run model inference: |
|
|
``` |
|
|
from transformers import AutoProcessor |
|
|
from optimum.intel.openvino import OVModelForSpeechSeq2Seq |
|
|
model_id = "bweng/whisper-large-v3-turbo-int8-ov" |
|
|
tokenizer = AutoProcessor.from_pretrained(model_id) |
|
|
model = OVModelForSpeechSeq2Seq.from_pretrained(model_id) |
|
|
dataset = load_dataset("hf-internal-testing/librispeech_asr_dummy", "clean", split="validation", trust_remote_code=True) |
|
|
sample = dataset[0] |
|
|
input_features = processor( |
|
|
sample["audio"]["array"], |
|
|
sampling_rate=sample["audio"]["sampling_rate"], |
|
|
return_tensors="pt", |
|
|
).input_features |
|
|
outputs = model.generate(input_features) |
|
|
text = processor.batch_decode(outputs)[0] |
|
|
print(text) |
|
|
``` |
|
|
|
|
|
## Running Model Inference with [OpenVINO GenAI](https://github.com/openvinotoolkit/openvino.genai) |
|
|
1. Install packages required for using OpenVINO GenAI. |
|
|
``` |
|
|
pip install huggingface_hub |
|
|
pip install -U --pre --extra-index-url https://storage.openvinotoolkit.org/simple/wheels/nightly openvino openvino-tokenizers openvino-genai |
|
|
``` |
|
|
2. Download model from HuggingFace Hub |
|
|
|
|
|
``` |
|
|
import huggingface_hub as hf_hub |
|
|
model_id = "bweng/whisper-large-v3-turbo-int8" |
|
|
model_path = "whisper-large-v3-turbo-int8" |
|
|
hf_hub.snapshot_download(model_id, local_dir=model_path) |
|
|
``` |
|
|
3. Run model inference: |
|
|
``` |
|
|
import openvino_genai as ov_genai |
|
|
import datasets |
|
|
device = "NPU" |
|
|
pipe = ov_genai.WhisperPipeline(model_path, device) |
|
|
dataset = load_dataset("hf-internal-testing/librispeech_asr_dummy", "clean", split="validation", trust_remote_code=True) |
|
|
sample = dataset[0]["audio]["array"] |
|
|
print(pipe.generate(sample)) |
|
|
``` |
|
|
More GenAI usage examples can be found in OpenVINO GenAI library [docs](https://github.com/openvinotoolkit/openvino.genai/blob/master/src/README.md) and [samples](https://github.com/openvinotoolkit/openvino.genai?tab=readme-ov-file#openvino-genai-samples) |
|
|
## Limitations |
|
|
Check the original model card for [original model card](https://huggingface.co/openai/whisper-tiny) for limitations. |