Improve dataset card: Add metadata, links, and detailed sample usage

#2
by nielsr HF Staff - opened
Files changed (1) hide show
  1. README.md +61 -19
README.md CHANGED
@@ -1,17 +1,34 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  # Unified All-Atom Molecule Generation with Neural Fields — MCPP Dataset
2
 
 
 
 
3
  We curated a dataset of **186,685 MCP–protein complexes** (`mcpp_dataset.tar.gz`) starting from **641 protein–MCP complexes** from the **[RCSB PDB](https://www.rcsb.org/)** using a **“mutate-then-relax”** strategy:
4
 
5
  ## Dataset Generation Pipeline
6
 
7
- 1. **Mutation:**
8
- MCPs were randomly mutated at **1 to 8 sites** using **213 distinct amino acids**.
9
 
10
- 2. **Relaxation:**
11
- Mutated complexes were relaxed using **FastRelax in Rosetta**, which iteratively performs side-chain packing and all-atom minimization.
12
 
13
- 3. **Selection:**
14
- The best complexes were chosen based on **lowest interface scores**.
15
 
16
  ---
17
 
@@ -24,20 +41,45 @@ We curated a dataset of **186,685 MCP–protein complexes** (`mcpp_dataset.tar.g
24
  ## Dataset Splits
25
  The dataset is split using a clustering-based approach. The **test set** covers **100 protein pockets**:
26
 
27
- | Split | File |
28
- |---------------|----------------|
29
- | Training set | `train_data.pt` |
30
- | Validation set| `val_data.pt` |
31
- | Test set | `test_data.pt` |
32
 
33
  ---
34
 
35
- ## How to Use
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
36
 
37
- 1. **Download and extract:**
38
- ```bash
39
- tar -xvzf mcpp_dataset.tar.gz
40
- ```
41
- 2. **To generate MCP samples with Funcbind, :**
42
- ```bash
43
- cp train_data.pt val_data.pt test_data.pt mcpp_dataset/
 
1
+ ---
2
+ language:
3
+ - en
4
+ task_categories:
5
+ - other
6
+ tags:
7
+ - chemistry
8
+ - drug-discovery
9
+ - molecule-generation
10
+ - macrocyclic-peptide
11
+ - 3d-generation
12
+ - molecular-modeling
13
+ ---
14
+
15
  # Unified All-Atom Molecule Generation with Neural Fields — MCPP Dataset
16
 
17
+ This repository contains the Macrocyclic Peptide Pair (MCPP) dataset, curated for the paper [Unified all-atom molecule generation with neural fields](https://huggingface.co/papers/2511.15906).
18
+ The code for the paper and model is available at: [https://github.com/prescient-design/funcbind/](https://github.com/prescient-design/funcbind/)
19
+
20
  We curated a dataset of **186,685 MCP–protein complexes** (`mcpp_dataset.tar.gz`) starting from **641 protein–MCP complexes** from the **[RCSB PDB](https://www.rcsb.org/)** using a **“mutate-then-relax”** strategy:
21
 
22
  ## Dataset Generation Pipeline
23
 
24
+ 1. **Mutation:**
25
+ MCPs were randomly mutated at **1 to 8 sites** using **213 distinct amino acids**.
26
 
27
+ 2. **Relaxation:**
28
+ Mutated complexes were relaxed using **FastRelax in Rosetta**, which iteratively performs side-chain packing and all-atom minimization.
29
 
30
+ 3. **Selection:**
31
+ The best complexes were chosen based on **lowest interface scores**.
32
 
33
  ---
34
 
 
41
  ## Dataset Splits
42
  The dataset is split using a clustering-based approach. The **test set** covers **100 protein pockets**:
43
 
44
+ | Split | File |
45
+ |----------------|-----------------|
46
+ | Training set | `train_data.pt` |
47
+ | Validation set | `val_data.pt` |
48
+ | Test set | `test_data.pt` |\
49
 
50
  ---
51
 
52
+ ## Sample Usage
53
+
54
+ This dataset provides preprocessed `.pt` files (`train_data.pt`, `val_data.pt`, `test_data.pt`) and the original `.tar.gz` file containing `.pdb` files.
55
+
56
+ To use this dataset with the [FuncBind codebase](https://github.com/prescient-design/funcbind/):
57
+
58
+ 1. **Download and extract the original PDB files:**
59
+ ```bash
60
+ tar -xvzf mcpp_dataset.tar.gz
61
+ ```
62
+ This will create a `mcpp_dataset/` directory containing the PDB files.
63
+
64
+ 2. **Place the preprocessed data:**
65
+ Copy the `.pt` files into the extracted `mcpp_dataset/` directory. If you have cloned the FuncBind repository, the target path would be `funcbind/dataset/data/mcpp_dataset/`.
66
+ ```bash
67
+ cp train_data.pt val_data.pt test_data.pt mcpp_dataset/
68
+ # Or if in FuncBind repo:
69
+ # cp train_data.pt val_data.pt test_data.pt funcbind/dataset/data/mcpp_dataset/
70
+ ```
71
+
72
+ 3. **Alternatively, reprocess the data from scratch (within FuncBind repository):**
73
+ After downloading and untarring `mcpp_dataset.tar.gz` into `funcbind/dataset/data/mcpp_dataset/`, ensure you have set up the FuncBind environment (see [GitHub repository](https://github.com/prescient-design/funcbind/quick-start)), then run:
74
+ ```bash
75
+ cd funcbind/dataset
76
+ python preprocess_mcp_pair.py
77
+ ```
78
+
79
+ 4. **Sample Macrocyclic Peptides with FuncBind:**
80
+ Once the data is prepared and FuncBind is installed (see [GitHub repository](https://github.com/prescient-design/funcbind/)), you can sample macrocyclic peptides. First, ensure you have downloaded the pre-trained checkpoints (e.g., `nf_unified` and `fb_unified`) from [Hugging Face](https://huggingface.co/mkirchmeyer/funcbind) and placed them in the appropriate `exps/` directories within the FuncBind repository.
81
 
82
+ Then, from the FuncBind root directory, run:
83
+ ```bash
84
+ python sample_fb.py --config-name sample_fb_mcpp
85
+ ```