Improve dataset card: Add metadata, links, and detailed sample usage
#2
by
nielsr
HF Staff
- opened
README.md
CHANGED
|
@@ -1,17 +1,34 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
# Unified All-Atom Molecule Generation with Neural Fields — MCPP Dataset
|
| 2 |
|
|
|
|
|
|
|
|
|
|
| 3 |
We curated a dataset of **186,685 MCP–protein complexes** (`mcpp_dataset.tar.gz`) starting from **641 protein–MCP complexes** from the **[RCSB PDB](https://www.rcsb.org/)** using a **“mutate-then-relax”** strategy:
|
| 4 |
|
| 5 |
## Dataset Generation Pipeline
|
| 6 |
|
| 7 |
-
1.
|
| 8 |
-
|
| 9 |
|
| 10 |
-
2.
|
| 11 |
-
|
| 12 |
|
| 13 |
-
3.
|
| 14 |
-
|
| 15 |
|
| 16 |
---
|
| 17 |
|
|
@@ -24,20 +41,45 @@ We curated a dataset of **186,685 MCP–protein complexes** (`mcpp_dataset.tar.g
|
|
| 24 |
## Dataset Splits
|
| 25 |
The dataset is split using a clustering-based approach. The **test set** covers **100 protein pockets**:
|
| 26 |
|
| 27 |
-
| Split
|
| 28 |
-
|
| 29 |
-
| Training set
|
| 30 |
-
| Validation set| `val_data.pt` |
|
| 31 |
-
| Test set
|
| 32 |
|
| 33 |
---
|
| 34 |
|
| 35 |
-
##
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 36 |
|
| 37 |
-
|
| 38 |
-
```bash
|
| 39 |
-
|
| 40 |
-
```
|
| 41 |
-
2. **To generate MCP samples with Funcbind, :**
|
| 42 |
-
```bash
|
| 43 |
-
cp train_data.pt val_data.pt test_data.pt mcpp_dataset/
|
|
|
|
| 1 |
+
---
|
| 2 |
+
language:
|
| 3 |
+
- en
|
| 4 |
+
task_categories:
|
| 5 |
+
- other
|
| 6 |
+
tags:
|
| 7 |
+
- chemistry
|
| 8 |
+
- drug-discovery
|
| 9 |
+
- molecule-generation
|
| 10 |
+
- macrocyclic-peptide
|
| 11 |
+
- 3d-generation
|
| 12 |
+
- molecular-modeling
|
| 13 |
+
---
|
| 14 |
+
|
| 15 |
# Unified All-Atom Molecule Generation with Neural Fields — MCPP Dataset
|
| 16 |
|
| 17 |
+
This repository contains the Macrocyclic Peptide Pair (MCPP) dataset, curated for the paper [Unified all-atom molecule generation with neural fields](https://huggingface.co/papers/2511.15906).
|
| 18 |
+
The code for the paper and model is available at: [https://github.com/prescient-design/funcbind/](https://github.com/prescient-design/funcbind/)
|
| 19 |
+
|
| 20 |
We curated a dataset of **186,685 MCP–protein complexes** (`mcpp_dataset.tar.gz`) starting from **641 protein–MCP complexes** from the **[RCSB PDB](https://www.rcsb.org/)** using a **“mutate-then-relax”** strategy:
|
| 21 |
|
| 22 |
## Dataset Generation Pipeline
|
| 23 |
|
| 24 |
+
1. **Mutation:**
|
| 25 |
+
MCPs were randomly mutated at **1 to 8 sites** using **213 distinct amino acids**.
|
| 26 |
|
| 27 |
+
2. **Relaxation:**
|
| 28 |
+
Mutated complexes were relaxed using **FastRelax in Rosetta**, which iteratively performs side-chain packing and all-atom minimization.
|
| 29 |
|
| 30 |
+
3. **Selection:**
|
| 31 |
+
The best complexes were chosen based on **lowest interface scores**.
|
| 32 |
|
| 33 |
---
|
| 34 |
|
|
|
|
| 41 |
## Dataset Splits
|
| 42 |
The dataset is split using a clustering-based approach. The **test set** covers **100 protein pockets**:
|
| 43 |
|
| 44 |
+
| Split | File |
|
| 45 |
+
|----------------|-----------------|
|
| 46 |
+
| Training set | `train_data.pt` |
|
| 47 |
+
| Validation set | `val_data.pt` |
|
| 48 |
+
| Test set | `test_data.pt` |\
|
| 49 |
|
| 50 |
---
|
| 51 |
|
| 52 |
+
## Sample Usage
|
| 53 |
+
|
| 54 |
+
This dataset provides preprocessed `.pt` files (`train_data.pt`, `val_data.pt`, `test_data.pt`) and the original `.tar.gz` file containing `.pdb` files.
|
| 55 |
+
|
| 56 |
+
To use this dataset with the [FuncBind codebase](https://github.com/prescient-design/funcbind/):
|
| 57 |
+
|
| 58 |
+
1. **Download and extract the original PDB files:**
|
| 59 |
+
```bash
|
| 60 |
+
tar -xvzf mcpp_dataset.tar.gz
|
| 61 |
+
```
|
| 62 |
+
This will create a `mcpp_dataset/` directory containing the PDB files.
|
| 63 |
+
|
| 64 |
+
2. **Place the preprocessed data:**
|
| 65 |
+
Copy the `.pt` files into the extracted `mcpp_dataset/` directory. If you have cloned the FuncBind repository, the target path would be `funcbind/dataset/data/mcpp_dataset/`.
|
| 66 |
+
```bash
|
| 67 |
+
cp train_data.pt val_data.pt test_data.pt mcpp_dataset/
|
| 68 |
+
# Or if in FuncBind repo:
|
| 69 |
+
# cp train_data.pt val_data.pt test_data.pt funcbind/dataset/data/mcpp_dataset/
|
| 70 |
+
```
|
| 71 |
+
|
| 72 |
+
3. **Alternatively, reprocess the data from scratch (within FuncBind repository):**
|
| 73 |
+
After downloading and untarring `mcpp_dataset.tar.gz` into `funcbind/dataset/data/mcpp_dataset/`, ensure you have set up the FuncBind environment (see [GitHub repository](https://github.com/prescient-design/funcbind/quick-start)), then run:
|
| 74 |
+
```bash
|
| 75 |
+
cd funcbind/dataset
|
| 76 |
+
python preprocess_mcp_pair.py
|
| 77 |
+
```
|
| 78 |
+
|
| 79 |
+
4. **Sample Macrocyclic Peptides with FuncBind:**
|
| 80 |
+
Once the data is prepared and FuncBind is installed (see [GitHub repository](https://github.com/prescient-design/funcbind/)), you can sample macrocyclic peptides. First, ensure you have downloaded the pre-trained checkpoints (e.g., `nf_unified` and `fb_unified`) from [Hugging Face](https://huggingface.co/mkirchmeyer/funcbind) and placed them in the appropriate `exps/` directories within the FuncBind repository.
|
| 81 |
|
| 82 |
+
Then, from the FuncBind root directory, run:
|
| 83 |
+
```bash
|
| 84 |
+
python sample_fb.py --config-name sample_fb_mcpp
|
| 85 |
+
```
|
|
|
|
|
|
|
|
|