id
int64 0
4.52k
| code
stringlengths 142
31.2k
| answer
stringclasses 7
values | prompt
stringlengths 1.64k
32.6k
| test_prompt
stringlengths 1.7k
32.7k
| token_length
int64 373
7.8k
| __index_level_0__
int64 0
4.5k
|
|---|---|---|---|---|---|---|
2,721
|
import java.io.BufferedReader;
import java.io.IOException;
import java.io.InputStream;
import java.io.InputStreamReader;
import java.io.OutputStream;
import java.io.PrintWriter;
import java.util.ArrayList;
public class Task235A {
public static void main(String... args) throws NumberFormatException,
IOException {
Solution.main(System.in, System.out);
}
static class Scanner {
private final BufferedReader br;
private String[] cache;
private int cacheIndex;
Scanner(InputStream is) {
br = new BufferedReader(new InputStreamReader(is));
cache = new String[0];
cacheIndex = 0;
}
int nextInt() throws IOException {
if (cacheIndex >= cache.length) {
cache = br.readLine().split(" ");
cacheIndex = 0;
}
return Integer.parseInt(cache[cacheIndex++]);
}
long nextLong() throws IOException {
if (cacheIndex >= cache.length) {
cache = br.readLine().split(" ");
cacheIndex = 0;
}
return Long.parseLong(cache[cacheIndex++]);
}
String next() throws IOException {
if (cacheIndex >= cache.length) {
cache = br.readLine().split(" ");
cacheIndex = 0;
}
return cache[cacheIndex++];
}
void close() throws IOException {
br.close();
}
}
static class Solution {
public static void main(InputStream is, OutputStream os)
throws NumberFormatException, IOException {
PrintWriter pw = new PrintWriter(os);
Scanner sc = new Scanner(is);
long n = sc.nextInt();
if (n < 3) {
pw.println(n);
} else {
if (n % 2 != 0) {
pw.println(n * (n - 1) * (n - 2));
} else {
if (n % 3 != 0) {
pw.println(n * (n - 1) * (n - 3));
} else {
long cand1 = n * (n - 1) * (n - 2) / 2;
long cand2 = (n - 1) * (n - 2) * (n - 3);
pw.println(Math.max(cand1, cand2));
}
}
}
pw.flush();
sc.close();
}
}
}
|
O(1)
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n.
</TASK>
<CODE>
import java.io.BufferedReader;
import java.io.IOException;
import java.io.InputStream;
import java.io.InputStreamReader;
import java.io.OutputStream;
import java.io.PrintWriter;
import java.util.ArrayList;
public class Task235A {
public static void main(String... args) throws NumberFormatException,
IOException {
Solution.main(System.in, System.out);
}
static class Scanner {
private final BufferedReader br;
private String[] cache;
private int cacheIndex;
Scanner(InputStream is) {
br = new BufferedReader(new InputStreamReader(is));
cache = new String[0];
cacheIndex = 0;
}
int nextInt() throws IOException {
if (cacheIndex >= cache.length) {
cache = br.readLine().split(" ");
cacheIndex = 0;
}
return Integer.parseInt(cache[cacheIndex++]);
}
long nextLong() throws IOException {
if (cacheIndex >= cache.length) {
cache = br.readLine().split(" ");
cacheIndex = 0;
}
return Long.parseLong(cache[cacheIndex++]);
}
String next() throws IOException {
if (cacheIndex >= cache.length) {
cache = br.readLine().split(" ");
cacheIndex = 0;
}
return cache[cacheIndex++];
}
void close() throws IOException {
br.close();
}
}
static class Solution {
public static void main(InputStream is, OutputStream os)
throws NumberFormatException, IOException {
PrintWriter pw = new PrintWriter(os);
Scanner sc = new Scanner(is);
long n = sc.nextInt();
if (n < 3) {
pw.println(n);
} else {
if (n % 2 != 0) {
pw.println(n * (n - 1) * (n - 2));
} else {
if (n % 3 != 0) {
pw.println(n * (n - 1) * (n - 3));
} else {
long cand1 = n * (n - 1) * (n - 2) / 2;
long cand2 = (n - 1) * (n - 2) * (n - 3);
pw.println(Math.max(cand1, cand2));
}
}
}
pw.flush();
sc.close();
}
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(n^2): The execution time ascends in proportion to the square of the input size n.
- O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially.
- O(log(n)): The execution time ascends in proportion to the logarithm of the input size n.
- O(n): The execution time ascends in a one-to-one ratio with the input size n.
- O(n^3): The execution time ascends in proportion to the cube of the input size n.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- O(1): The execution time is unaffected by the size of the input n.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Determine the worst-case time complexity category of a given Java code based on input size n.
</TASK>
<CODE>
import java.io.BufferedReader;
import java.io.IOException;
import java.io.InputStream;
import java.io.InputStreamReader;
import java.io.OutputStream;
import java.io.PrintWriter;
import java.util.ArrayList;
public class Task235A {
public static void main(String... args) throws NumberFormatException,
IOException {
Solution.main(System.in, System.out);
}
static class Scanner {
private final BufferedReader br;
private String[] cache;
private int cacheIndex;
Scanner(InputStream is) {
br = new BufferedReader(new InputStreamReader(is));
cache = new String[0];
cacheIndex = 0;
}
int nextInt() throws IOException {
if (cacheIndex >= cache.length) {
cache = br.readLine().split(" ");
cacheIndex = 0;
}
return Integer.parseInt(cache[cacheIndex++]);
}
long nextLong() throws IOException {
if (cacheIndex >= cache.length) {
cache = br.readLine().split(" ");
cacheIndex = 0;
}
return Long.parseLong(cache[cacheIndex++]);
}
String next() throws IOException {
if (cacheIndex >= cache.length) {
cache = br.readLine().split(" ");
cacheIndex = 0;
}
return cache[cacheIndex++];
}
void close() throws IOException {
br.close();
}
}
static class Solution {
public static void main(InputStream is, OutputStream os)
throws NumberFormatException, IOException {
PrintWriter pw = new PrintWriter(os);
Scanner sc = new Scanner(is);
long n = sc.nextInt();
if (n < 3) {
pw.println(n);
} else {
if (n % 2 != 0) {
pw.println(n * (n - 1) * (n - 2));
} else {
if (n % 3 != 0) {
pw.println(n * (n - 1) * (n - 3));
} else {
long cand1 = n * (n - 1) * (n - 2) / 2;
long cand2 = (n - 1) * (n - 2) * (n - 3);
pw.println(Math.max(cand1, cand2));
}
}
}
pw.flush();
sc.close();
}
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(n): The time complexity increases proportionally to the input size n in a linear manner.
- O(nlog(n)): The time complexity combines linear and logarithmic growth factors.
- O(n^3): The time complexity scales proportionally to the cube of the input size.
- non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially.
- O(log(n)): The time complexity increases logarithmically in relation to the input size.
- O(n^2): The time complexity grows proportionally to the square of the input size.
- O(1): The time complexity is constant to the input size n.
- others: The time complexity does not fit any of the above categories or cannot be clearly classified.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
| 858
| 2,715
|
2,945
|
import java.io.*;
import java.lang.reflect.Array;
import java.math.BigInteger;
import java.util.Arrays;
import java.util.Scanner;
import java.util.StringTokenizer;
import java.util.TreeMap;
public class A
{
public static void main(String [] args) throws IOException
{
Scanner in = new Scanner(System.in);
System.out.println(rec(in.nextLong(), in.nextLong()));
}
private static long rec(long a, long b)
{
return b == 0 ? 0 : a/b + rec(b, a%b);
}
}
|
O(1)
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n.
</TASK>
<CODE>
import java.io.*;
import java.lang.reflect.Array;
import java.math.BigInteger;
import java.util.Arrays;
import java.util.Scanner;
import java.util.StringTokenizer;
import java.util.TreeMap;
public class A
{
public static void main(String [] args) throws IOException
{
Scanner in = new Scanner(System.in);
System.out.println(rec(in.nextLong(), in.nextLong()));
}
private static long rec(long a, long b)
{
return b == 0 ? 0 : a/b + rec(b, a%b);
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(1): The execution time is unaffected by the size of the input n.
- O(n): The execution time ascends in a one-to-one ratio with the input size n.
- O(log(n)): The execution time ascends in proportion to the logarithm of the input size n.
- O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially.
- O(n^2): The execution time ascends in proportion to the square of the input size n.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- O(n^3): The execution time ascends in proportion to the cube of the input size n.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Determine the worst-case time complexity category of a given Java code based on input size n.
</TASK>
<CODE>
import java.io.*;
import java.lang.reflect.Array;
import java.math.BigInteger;
import java.util.Arrays;
import java.util.Scanner;
import java.util.StringTokenizer;
import java.util.TreeMap;
public class A
{
public static void main(String [] args) throws IOException
{
Scanner in = new Scanner(System.in);
System.out.println(rec(in.nextLong(), in.nextLong()));
}
private static long rec(long a, long b)
{
return b == 0 ? 0 : a/b + rec(b, a%b);
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(log(n)): The time complexity increases logarithmically in relation to the input size.
- others: The time complexity does not fit any of the above categories or cannot be clearly classified.
- O(n^2): The time complexity grows proportionally to the square of the input size.
- non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially.
- O(1): The time complexity is constant to the input size n.
- O(n^3): The time complexity scales proportionally to the cube of the input size.
- O(n): The time complexity increases proportionally to the input size n in a linear manner.
- O(nlog(n)): The time complexity combines linear and logarithmic growth factors.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
| 465
| 2,939
|
2,104
|
import java.io.*;
import java.util.*;
public class Replacement {
public static void main(String[] args) throws IOException {
// TODO Auto-generated method stub
BufferedReader r=new BufferedReader(new InputStreamReader(System.in));
String s=r.readLine();
int n=new Integer(s);
int[]arr=new int[n];
String[]sp=r.readLine().split("[ ]+");
for (int i = 0; i < sp.length; i++) {
arr[i]=new Integer(sp[i]);
}
Arrays.sort(arr);
if(arr[arr.length-1]==1){
arr[arr.length-1]=2;
Arrays.sort(arr);
for (int i = 0; i < n; i++) {
if(i==n-1){
System.out.println(arr[i]);
}else
System.out.print(arr[i]+" ");
}
return;
}
arr[arr.length-1]=1;
Arrays.sort(arr);
for (int i = 0; i < n; i++) {
if(i==n-1){
System.out.println(arr[i]);
}else
System.out.print(arr[i]+" ");
}
}
}
|
O(nlog(n))
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n.
</TASK>
<CODE>
import java.io.*;
import java.util.*;
public class Replacement {
public static void main(String[] args) throws IOException {
// TODO Auto-generated method stub
BufferedReader r=new BufferedReader(new InputStreamReader(System.in));
String s=r.readLine();
int n=new Integer(s);
int[]arr=new int[n];
String[]sp=r.readLine().split("[ ]+");
for (int i = 0; i < sp.length; i++) {
arr[i]=new Integer(sp[i]);
}
Arrays.sort(arr);
if(arr[arr.length-1]==1){
arr[arr.length-1]=2;
Arrays.sort(arr);
for (int i = 0; i < n; i++) {
if(i==n-1){
System.out.println(arr[i]);
}else
System.out.print(arr[i]+" ");
}
return;
}
arr[arr.length-1]=1;
Arrays.sort(arr);
for (int i = 0; i < n; i++) {
if(i==n-1){
System.out.println(arr[i]);
}else
System.out.print(arr[i]+" ");
}
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially.
- O(n): The execution time ascends in a one-to-one ratio with the input size n.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- O(n^2): The execution time ascends in proportion to the square of the input size n.
- O(1): The execution time is unaffected by the size of the input n.
- O(log(n)): The execution time ascends in proportion to the logarithm of the input size n.
- O(n^3): The execution time ascends in proportion to the cube of the input size n.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Determine the worst-case time complexity category of a given Java code based on input size n.
</TASK>
<CODE>
import java.io.*;
import java.util.*;
public class Replacement {
public static void main(String[] args) throws IOException {
// TODO Auto-generated method stub
BufferedReader r=new BufferedReader(new InputStreamReader(System.in));
String s=r.readLine();
int n=new Integer(s);
int[]arr=new int[n];
String[]sp=r.readLine().split("[ ]+");
for (int i = 0; i < sp.length; i++) {
arr[i]=new Integer(sp[i]);
}
Arrays.sort(arr);
if(arr[arr.length-1]==1){
arr[arr.length-1]=2;
Arrays.sort(arr);
for (int i = 0; i < n; i++) {
if(i==n-1){
System.out.println(arr[i]);
}else
System.out.print(arr[i]+" ");
}
return;
}
arr[arr.length-1]=1;
Arrays.sort(arr);
for (int i = 0; i < n; i++) {
if(i==n-1){
System.out.println(arr[i]);
}else
System.out.print(arr[i]+" ");
}
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(n^3): The time complexity scales proportionally to the cube of the input size.
- O(nlog(n)): The time complexity combines linear and logarithmic growth factors.
- O(1): The time complexity is constant to the input size n.
- non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially.
- others: The time complexity does not fit any of the above categories or cannot be clearly classified.
- O(n^2): The time complexity grows proportionally to the square of the input size.
- O(log(n)): The time complexity increases logarithmically in relation to the input size.
- O(n): The time complexity increases proportionally to the input size n in a linear manner.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
| 603
| 2,100
|
2,086
|
import java.io.*;
import java.util.*;
public class A implements Runnable {
private MyScanner in;
private PrintWriter out;
private void solve() {
int n = in.nextInt();
int[] a = new int[n];
int max = -1, maxp = -1;
for (int i = 0; i < n; ++i) {
a[i] = in.nextInt();
if (a[i] > max) {
max = a[i];
maxp = i;
}
}
if (max == 1) {
for (int i = 0; i < n - 1; ++i) {
out.print(1 + " ");
}
out.println(2);
return;
}
a[maxp] = 1;
Arrays.sort(a);
for (int i = 0; i < n; ++i) {
out.print(a[i] + " ");
}
out.println();
}
@Override
public void run() {
in = new MyScanner();
out = new PrintWriter(System.out);
solve();
in.close();
out.close();
}
public static void main(String[] args) {
new A().run();
}
static class MyScanner {
private BufferedReader br;
private StringTokenizer st;
public MyScanner() {
br = new BufferedReader(new InputStreamReader(System.in));
}
public void close() {
try {
br.close();
} catch (IOException e) {
e.printStackTrace();
}
}
private String nextToken() {
while (st == null || !st.hasMoreTokens()) {
try {
st = new StringTokenizer(br.readLine());
} catch (IOException e) {
e.printStackTrace();
return null;
}
}
return st.nextToken();
}
public String nextLine() {
try {
return br.readLine();
} catch (IOException e) {
e.printStackTrace();
return null;
}
}
public String next() {
return nextToken();
}
public int nextInt() {
return Integer.parseInt(nextToken());
}
public long nextLong() {
return Long.parseLong(nextToken());
}
public double nextDouble() {
return Double.parseDouble(nextToken());
}
}
}
|
O(nlog(n))
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n.
</TASK>
<CODE>
import java.io.*;
import java.util.*;
public class A implements Runnable {
private MyScanner in;
private PrintWriter out;
private void solve() {
int n = in.nextInt();
int[] a = new int[n];
int max = -1, maxp = -1;
for (int i = 0; i < n; ++i) {
a[i] = in.nextInt();
if (a[i] > max) {
max = a[i];
maxp = i;
}
}
if (max == 1) {
for (int i = 0; i < n - 1; ++i) {
out.print(1 + " ");
}
out.println(2);
return;
}
a[maxp] = 1;
Arrays.sort(a);
for (int i = 0; i < n; ++i) {
out.print(a[i] + " ");
}
out.println();
}
@Override
public void run() {
in = new MyScanner();
out = new PrintWriter(System.out);
solve();
in.close();
out.close();
}
public static void main(String[] args) {
new A().run();
}
static class MyScanner {
private BufferedReader br;
private StringTokenizer st;
public MyScanner() {
br = new BufferedReader(new InputStreamReader(System.in));
}
public void close() {
try {
br.close();
} catch (IOException e) {
e.printStackTrace();
}
}
private String nextToken() {
while (st == null || !st.hasMoreTokens()) {
try {
st = new StringTokenizer(br.readLine());
} catch (IOException e) {
e.printStackTrace();
return null;
}
}
return st.nextToken();
}
public String nextLine() {
try {
return br.readLine();
} catch (IOException e) {
e.printStackTrace();
return null;
}
}
public String next() {
return nextToken();
}
public int nextInt() {
return Integer.parseInt(nextToken());
}
public long nextLong() {
return Long.parseLong(nextToken());
}
public double nextDouble() {
return Double.parseDouble(nextToken());
}
}
}
</CODE>
<EVALUATION_RUBRIC>
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- O(log(n)): The execution time ascends in proportion to the logarithm of the input size n.
- O(n): The execution time ascends in a one-to-one ratio with the input size n.
- O(1): The execution time is unaffected by the size of the input n.
- O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially.
- O(n^2): The execution time ascends in proportion to the square of the input size n.
- O(n^3): The execution time ascends in proportion to the cube of the input size n.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Classify the following Java code's worst-case time complexity according to its relationship to the input size n.
</TASK>
<CODE>
import java.io.*;
import java.util.*;
public class A implements Runnable {
private MyScanner in;
private PrintWriter out;
private void solve() {
int n = in.nextInt();
int[] a = new int[n];
int max = -1, maxp = -1;
for (int i = 0; i < n; ++i) {
a[i] = in.nextInt();
if (a[i] > max) {
max = a[i];
maxp = i;
}
}
if (max == 1) {
for (int i = 0; i < n - 1; ++i) {
out.print(1 + " ");
}
out.println(2);
return;
}
a[maxp] = 1;
Arrays.sort(a);
for (int i = 0; i < n; ++i) {
out.print(a[i] + " ");
}
out.println();
}
@Override
public void run() {
in = new MyScanner();
out = new PrintWriter(System.out);
solve();
in.close();
out.close();
}
public static void main(String[] args) {
new A().run();
}
static class MyScanner {
private BufferedReader br;
private StringTokenizer st;
public MyScanner() {
br = new BufferedReader(new InputStreamReader(System.in));
}
public void close() {
try {
br.close();
} catch (IOException e) {
e.printStackTrace();
}
}
private String nextToken() {
while (st == null || !st.hasMoreTokens()) {
try {
st = new StringTokenizer(br.readLine());
} catch (IOException e) {
e.printStackTrace();
return null;
}
}
return st.nextToken();
}
public String nextLine() {
try {
return br.readLine();
} catch (IOException e) {
e.printStackTrace();
return null;
}
}
public String next() {
return nextToken();
}
public int nextInt() {
return Integer.parseInt(nextToken());
}
public long nextLong() {
return Long.parseLong(nextToken());
}
public double nextDouble() {
return Double.parseDouble(nextToken());
}
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(n^2): The running time increases with the square of the input size n.
- O(nlog(n)): The running time increases with the product of n and logarithm of n.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- others: The code does not clearly correspond to the listed classes or has an unclassified time complexity.
- O(n^3): The running time increases with the cube of the input size n.
- O(1): The running time does not change regardless of the input size n.
- O(n): The running time grows linearly with the input size n.
- O(log(n)): The running time increases with the logarithm of the input size n.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
| 836
| 2,082
|
2,359
|
import java.util.*;
import java.io.*;
public class P911d {
private static void solve() {
int n = nextInt();
int[] a = new int[n];
for (int i = 0; i < n; i++) {
a[i] = nextInt();
}
int cnt = 0;
for (int i = 0; i < n; i++) {
for (int j = i + 1; j < n; j++) {
if (a[i] > a[j]) {
cnt++;
}
}
}
cnt %= 2;
int m = nextInt();
for (int i = 0; i < m; i++) {
int l = nextInt();
int r = nextInt();
int size = r - l + 1;
long sum = ((long)size * (size - 1)) / 2;
sum %= 2;
cnt += sum;
cnt %= 2;
System.out.println(cnt == 0 ? "even" : "odd");
}
}
private static void run() {
br = new BufferedReader(new InputStreamReader(System.in));
out = new PrintWriter(System.out);
solve();
out.close();
}
private static StringTokenizer st;
private static BufferedReader br;
private static PrintWriter out;
private static String next() {
while (st == null || !st.hasMoreElements()) {
String s;
try {
s = br.readLine();
} catch (IOException e) {
return null;
}
st = new StringTokenizer(s);
}
return st.nextToken();
}
private static int nextInt() {
return Integer.parseInt(next());
}
private static long nextLong() {
return Long.parseLong(next());
}
public static void main(String[] args) {
run();
}
}
|
O(n^2)
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Classify the following Java code's worst-case time complexity according to its relationship to the input size n.
</TASK>
<CODE>
import java.util.*;
import java.io.*;
public class P911d {
private static void solve() {
int n = nextInt();
int[] a = new int[n];
for (int i = 0; i < n; i++) {
a[i] = nextInt();
}
int cnt = 0;
for (int i = 0; i < n; i++) {
for (int j = i + 1; j < n; j++) {
if (a[i] > a[j]) {
cnt++;
}
}
}
cnt %= 2;
int m = nextInt();
for (int i = 0; i < m; i++) {
int l = nextInt();
int r = nextInt();
int size = r - l + 1;
long sum = ((long)size * (size - 1)) / 2;
sum %= 2;
cnt += sum;
cnt %= 2;
System.out.println(cnt == 0 ? "even" : "odd");
}
}
private static void run() {
br = new BufferedReader(new InputStreamReader(System.in));
out = new PrintWriter(System.out);
solve();
out.close();
}
private static StringTokenizer st;
private static BufferedReader br;
private static PrintWriter out;
private static String next() {
while (st == null || !st.hasMoreElements()) {
String s;
try {
s = br.readLine();
} catch (IOException e) {
return null;
}
st = new StringTokenizer(s);
}
return st.nextToken();
}
private static int nextInt() {
return Integer.parseInt(next());
}
private static long nextLong() {
return Long.parseLong(next());
}
public static void main(String[] args) {
run();
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(n^2): The running time increases with the square of the input size n.
- O(n^3): The running time increases with the cube of the input size n.
- O(nlog(n)): The running time increases with the product of n and logarithm of n.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- O(1): The running time does not change regardless of the input size n.
- O(n): The running time grows linearly with the input size n.
- O(log(n)): The running time increases with the logarithm of the input size n.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Determine the worst-case time complexity category of a given Java code based on input size n.
</TASK>
<CODE>
import java.util.*;
import java.io.*;
public class P911d {
private static void solve() {
int n = nextInt();
int[] a = new int[n];
for (int i = 0; i < n; i++) {
a[i] = nextInt();
}
int cnt = 0;
for (int i = 0; i < n; i++) {
for (int j = i + 1; j < n; j++) {
if (a[i] > a[j]) {
cnt++;
}
}
}
cnt %= 2;
int m = nextInt();
for (int i = 0; i < m; i++) {
int l = nextInt();
int r = nextInt();
int size = r - l + 1;
long sum = ((long)size * (size - 1)) / 2;
sum %= 2;
cnt += sum;
cnt %= 2;
System.out.println(cnt == 0 ? "even" : "odd");
}
}
private static void run() {
br = new BufferedReader(new InputStreamReader(System.in));
out = new PrintWriter(System.out);
solve();
out.close();
}
private static StringTokenizer st;
private static BufferedReader br;
private static PrintWriter out;
private static String next() {
while (st == null || !st.hasMoreElements()) {
String s;
try {
s = br.readLine();
} catch (IOException e) {
return null;
}
st = new StringTokenizer(s);
}
return st.nextToken();
}
private static int nextInt() {
return Integer.parseInt(next());
}
private static long nextLong() {
return Long.parseLong(next());
}
public static void main(String[] args) {
run();
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(n): The time complexity increases proportionally to the input size n in a linear manner.
- others: The time complexity does not fit any of the above categories or cannot be clearly classified.
- non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially.
- O(n^2): The time complexity grows proportionally to the square of the input size.
- O(1): The time complexity is constant to the input size n.
- O(n^3): The time complexity scales proportionally to the cube of the input size.
- O(nlog(n)): The time complexity combines linear and logarithmic growth factors.
- O(log(n)): The time complexity increases logarithmically in relation to the input size.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
| 730
| 2,354
|
1,873
|
import java.math.BigInteger;
import java.util.Scanner;
public class d {
public static void main(String[] args) {
Scanner in = new Scanner(System.in);
int N = in.nextInt();
int[] arr = new int[N];
for(int n=0;n<N;n++){
arr[n] = in.nextInt();
}
Wavelet waveyMcWaveFace = new Wavelet(arr);
BigInteger bigSum = BigInteger.ZERO;
for(int n=0;n<N;n++){
// calculate the amount added for all j = n all at once
// it's a[j] - a[i]
// step one
// positive part
long amtPlus = arr[n] * (long)(waveyMcWaveFace.numValsBtwn(1, arr[n] - 2, 0, n)
+ waveyMcWaveFace.numValsBtwn(arr[n] + 2, 2147483647, 0, n));
// step two
// negative part
long amtMinus = waveyMcWaveFace.sumOfValsBtwn(1, arr[n] - 2, 0, n)
+ waveyMcWaveFace.sumOfValsBtwn(arr[n] + 2, 2147483647, 0, n);
// System.out.println(amtPlus+" "+amtMinus);
bigSum = bigSum.add(new BigInteger(""+(amtPlus - amtMinus)));
}
System.out.println(bigSum);
}
static class Wavelet{
int l = 2147483647, h = -2147483648;
int[] arr, ldex, hdex;
long[] sum;
Wavelet low = null, high = null;
Wavelet(int[] arr){
this.arr = arr;
for(int i : arr){
l = Math.min(l, i);
h = Math.max(h, i);
}
ldex = new int[arr.length + 1];
hdex = new int[arr.length + 1];
sum = new long[arr.length + 1];
int mid = l + (h - l) / 2;
for(int n = 0; n < arr.length; n++){
sum[n+1] = sum[n] + arr[n];
if(arr[n] > mid){
ldex[n+1] = ldex[n];
hdex[n+1] = hdex[n] + 1;
}
else{
ldex[n+1] = ldex[n] + 1;
hdex[n+1] = hdex[n];
}
}
if(l == h) return;
int[] larr = new int[ldex[arr.length]];
int[] harr = new int[hdex[arr.length]];
for(int n=0;n<arr.length;n++){
if(hdex[n] == hdex[n+1]){
larr[ldex[n]] = arr[n];
}
else{
harr[hdex[n]] = arr[n];
}
}
low = new Wavelet(larr);
high = new Wavelet(harr);
}
// range [ll, rr)
int kthLowest(int k, int ll, int rr){
if(l == h){
return arr[ll + k-1];
}
if(ldex[rr] - ldex[ll] >= k){
return low.kthLowest(k, ldex[ll], ldex[rr]);
}
return high.kthLowest(k - ldex[rr] + ldex[ll], hdex[ll], hdex[rr]);
}
// number of values in between [lo, hi] in range [ll, rr)
int numValsBtwn(int lo, int hi, int ll, int rr){
if(hi < lo) return 0;
if(lo <= l && h <= hi){
return rr - ll;
}
if(l == h) return 0;
if(hi < high.l){
return low.numValsBtwn(lo, hi, ldex[ll], ldex[rr]);
}
if(low.h < lo){
return high.numValsBtwn(lo, hi, hdex[ll], hdex[rr]);
}
return low.numValsBtwn(lo, hi, ldex[ll], ldex[rr])
+ high.numValsBtwn(lo, hi, hdex[ll], hdex[rr]);
}
// sum of values between [lo, hi] in range [ll, rr)
long sumOfValsBtwn(int lo, int hi, int ll, int rr){
if(lo <= l && h <= hi){
return sum[rr] - sum[ll];
}
if(l == h) return 0;
if(hi < high.l){
return low.sumOfValsBtwn(lo, hi, ldex[ll], ldex[rr]);
}
if(low.h < lo){
return high.sumOfValsBtwn(lo, hi, hdex[ll], hdex[rr]);
}
return low.sumOfValsBtwn(lo, hi, ldex[ll], ldex[rr])
+ high.sumOfValsBtwn(lo, hi, hdex[ll], hdex[rr]);
}
}
}
|
O(nlog(n))
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Classify the following Java code's worst-case time complexity according to its relationship to the input size n.
</TASK>
<CODE>
import java.math.BigInteger;
import java.util.Scanner;
public class d {
public static void main(String[] args) {
Scanner in = new Scanner(System.in);
int N = in.nextInt();
int[] arr = new int[N];
for(int n=0;n<N;n++){
arr[n] = in.nextInt();
}
Wavelet waveyMcWaveFace = new Wavelet(arr);
BigInteger bigSum = BigInteger.ZERO;
for(int n=0;n<N;n++){
// calculate the amount added for all j = n all at once
// it's a[j] - a[i]
// step one
// positive part
long amtPlus = arr[n] * (long)(waveyMcWaveFace.numValsBtwn(1, arr[n] - 2, 0, n)
+ waveyMcWaveFace.numValsBtwn(arr[n] + 2, 2147483647, 0, n));
// step two
// negative part
long amtMinus = waveyMcWaveFace.sumOfValsBtwn(1, arr[n] - 2, 0, n)
+ waveyMcWaveFace.sumOfValsBtwn(arr[n] + 2, 2147483647, 0, n);
// System.out.println(amtPlus+" "+amtMinus);
bigSum = bigSum.add(new BigInteger(""+(amtPlus - amtMinus)));
}
System.out.println(bigSum);
}
static class Wavelet{
int l = 2147483647, h = -2147483648;
int[] arr, ldex, hdex;
long[] sum;
Wavelet low = null, high = null;
Wavelet(int[] arr){
this.arr = arr;
for(int i : arr){
l = Math.min(l, i);
h = Math.max(h, i);
}
ldex = new int[arr.length + 1];
hdex = new int[arr.length + 1];
sum = new long[arr.length + 1];
int mid = l + (h - l) / 2;
for(int n = 0; n < arr.length; n++){
sum[n+1] = sum[n] + arr[n];
if(arr[n] > mid){
ldex[n+1] = ldex[n];
hdex[n+1] = hdex[n] + 1;
}
else{
ldex[n+1] = ldex[n] + 1;
hdex[n+1] = hdex[n];
}
}
if(l == h) return;
int[] larr = new int[ldex[arr.length]];
int[] harr = new int[hdex[arr.length]];
for(int n=0;n<arr.length;n++){
if(hdex[n] == hdex[n+1]){
larr[ldex[n]] = arr[n];
}
else{
harr[hdex[n]] = arr[n];
}
}
low = new Wavelet(larr);
high = new Wavelet(harr);
}
// range [ll, rr)
int kthLowest(int k, int ll, int rr){
if(l == h){
return arr[ll + k-1];
}
if(ldex[rr] - ldex[ll] >= k){
return low.kthLowest(k, ldex[ll], ldex[rr]);
}
return high.kthLowest(k - ldex[rr] + ldex[ll], hdex[ll], hdex[rr]);
}
// number of values in between [lo, hi] in range [ll, rr)
int numValsBtwn(int lo, int hi, int ll, int rr){
if(hi < lo) return 0;
if(lo <= l && h <= hi){
return rr - ll;
}
if(l == h) return 0;
if(hi < high.l){
return low.numValsBtwn(lo, hi, ldex[ll], ldex[rr]);
}
if(low.h < lo){
return high.numValsBtwn(lo, hi, hdex[ll], hdex[rr]);
}
return low.numValsBtwn(lo, hi, ldex[ll], ldex[rr])
+ high.numValsBtwn(lo, hi, hdex[ll], hdex[rr]);
}
// sum of values between [lo, hi] in range [ll, rr)
long sumOfValsBtwn(int lo, int hi, int ll, int rr){
if(lo <= l && h <= hi){
return sum[rr] - sum[ll];
}
if(l == h) return 0;
if(hi < high.l){
return low.sumOfValsBtwn(lo, hi, ldex[ll], ldex[rr]);
}
if(low.h < lo){
return high.sumOfValsBtwn(lo, hi, hdex[ll], hdex[rr]);
}
return low.sumOfValsBtwn(lo, hi, ldex[ll], ldex[rr])
+ high.sumOfValsBtwn(lo, hi, hdex[ll], hdex[rr]);
}
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(n^3): The running time increases with the cube of the input size n.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- O(nlog(n)): The running time increases with the product of n and logarithm of n.
- O(n^2): The running time increases with the square of the input size n.
- O(log(n)): The running time increases with the logarithm of the input size n.
- O(1): The running time does not change regardless of the input size n.
- O(n): The running time grows linearly with the input size n.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Classify the following Java code's worst-case time complexity according to its relationship to the input size n.
</TASK>
<CODE>
import java.math.BigInteger;
import java.util.Scanner;
public class d {
public static void main(String[] args) {
Scanner in = new Scanner(System.in);
int N = in.nextInt();
int[] arr = new int[N];
for(int n=0;n<N;n++){
arr[n] = in.nextInt();
}
Wavelet waveyMcWaveFace = new Wavelet(arr);
BigInteger bigSum = BigInteger.ZERO;
for(int n=0;n<N;n++){
// calculate the amount added for all j = n all at once
// it's a[j] - a[i]
// step one
// positive part
long amtPlus = arr[n] * (long)(waveyMcWaveFace.numValsBtwn(1, arr[n] - 2, 0, n)
+ waveyMcWaveFace.numValsBtwn(arr[n] + 2, 2147483647, 0, n));
// step two
// negative part
long amtMinus = waveyMcWaveFace.sumOfValsBtwn(1, arr[n] - 2, 0, n)
+ waveyMcWaveFace.sumOfValsBtwn(arr[n] + 2, 2147483647, 0, n);
// System.out.println(amtPlus+" "+amtMinus);
bigSum = bigSum.add(new BigInteger(""+(amtPlus - amtMinus)));
}
System.out.println(bigSum);
}
static class Wavelet{
int l = 2147483647, h = -2147483648;
int[] arr, ldex, hdex;
long[] sum;
Wavelet low = null, high = null;
Wavelet(int[] arr){
this.arr = arr;
for(int i : arr){
l = Math.min(l, i);
h = Math.max(h, i);
}
ldex = new int[arr.length + 1];
hdex = new int[arr.length + 1];
sum = new long[arr.length + 1];
int mid = l + (h - l) / 2;
for(int n = 0; n < arr.length; n++){
sum[n+1] = sum[n] + arr[n];
if(arr[n] > mid){
ldex[n+1] = ldex[n];
hdex[n+1] = hdex[n] + 1;
}
else{
ldex[n+1] = ldex[n] + 1;
hdex[n+1] = hdex[n];
}
}
if(l == h) return;
int[] larr = new int[ldex[arr.length]];
int[] harr = new int[hdex[arr.length]];
for(int n=0;n<arr.length;n++){
if(hdex[n] == hdex[n+1]){
larr[ldex[n]] = arr[n];
}
else{
harr[hdex[n]] = arr[n];
}
}
low = new Wavelet(larr);
high = new Wavelet(harr);
}
// range [ll, rr)
int kthLowest(int k, int ll, int rr){
if(l == h){
return arr[ll + k-1];
}
if(ldex[rr] - ldex[ll] >= k){
return low.kthLowest(k, ldex[ll], ldex[rr]);
}
return high.kthLowest(k - ldex[rr] + ldex[ll], hdex[ll], hdex[rr]);
}
// number of values in between [lo, hi] in range [ll, rr)
int numValsBtwn(int lo, int hi, int ll, int rr){
if(hi < lo) return 0;
if(lo <= l && h <= hi){
return rr - ll;
}
if(l == h) return 0;
if(hi < high.l){
return low.numValsBtwn(lo, hi, ldex[ll], ldex[rr]);
}
if(low.h < lo){
return high.numValsBtwn(lo, hi, hdex[ll], hdex[rr]);
}
return low.numValsBtwn(lo, hi, ldex[ll], ldex[rr])
+ high.numValsBtwn(lo, hi, hdex[ll], hdex[rr]);
}
// sum of values between [lo, hi] in range [ll, rr)
long sumOfValsBtwn(int lo, int hi, int ll, int rr){
if(lo <= l && h <= hi){
return sum[rr] - sum[ll];
}
if(l == h) return 0;
if(hi < high.l){
return low.sumOfValsBtwn(lo, hi, ldex[ll], ldex[rr]);
}
if(low.h < lo){
return high.sumOfValsBtwn(lo, hi, hdex[ll], hdex[rr]);
}
return low.sumOfValsBtwn(lo, hi, ldex[ll], ldex[rr])
+ high.sumOfValsBtwn(lo, hi, hdex[ll], hdex[rr]);
}
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(1): The running time does not change regardless of the input size n.
- O(nlog(n)): The running time increases with the product of n and logarithm of n.
- others: The code does not clearly correspond to the listed classes or has an unclassified time complexity.
- O(n^3): The running time increases with the cube of the input size n.
- O(n^2): The running time increases with the square of the input size n.
- O(n): The running time grows linearly with the input size n.
- O(log(n)): The running time increases with the logarithm of the input size n.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
| 1,561
| 1,869
|
956
|
import java.io.*;
import java.util.*;
public class Main {
static class FastScanner {
private BufferedReader bufferedReader;
private StringTokenizer stringTokenizer;
public FastScanner(InputStream inputStream) {
bufferedReader = new BufferedReader(new InputStreamReader(inputStream));
}
public String next() {
while (stringTokenizer == null || !stringTokenizer.hasMoreTokens()) {
try {
stringTokenizer = new StringTokenizer(bufferedReader.readLine());
} catch (IOException ignored) {
}
}
return stringTokenizer.nextToken();
}
public int nextInt() {
return Integer.parseInt(next());
}
public long nextLong() {
return Long.parseLong(next());
}
public double nextDouble() {
return Double.parseDouble(next());
}
}
static class Node implements Comparable {
Node left;
Node right;
private int value;
Node(Node left, Node right, int value) {
this.left = left;
this.right = right;
this.value = value;
}
@Override
public int compareTo(Object o) {
return Integer.compare(this.value, ((Node) o).value);
}
}
private static int fib(int n, int m) {
if (n < 2) return n;
int a = 0;
int b = 1;
for (int i = 0; i < n - 2; i++) {
int c = (a + b) % m;
a = b;
b = c;
}
return (a + b) % m;
}
static long gcd(long a, long b) {
if (b == 0) return a;
return gcd(b, a % b);
}
static long lcm(long a, long b) {
return Math.abs(a * b) / gcd(a, b);
}
static class DSU {
private int[] p;
private int[] r;
DSU(int n) {
p = new int[n];
r = new int[n];
Arrays.fill(p, -1);
Arrays.fill(r, 0);
}
int find(int x) {
if (p[x] < 0) {
return x;
}
return p[x] = find(p[x]);
}
void union(int a, int b) {
a = find(a);
b = find(b);
if (a == b) return;
if (r[a] < r[b]) {
p[a] = b;
} else {
p[b] = a;
}
if (r[a] == r[b]) {
r[a]++;
}
}
}
private static boolean isPrime(long n) {
for (int i = 2; i < n; i++) {
if (n % i == 0) return false;
}
return true;
}
private static double med(Integer[] a) {
Arrays.sort(a);
if (a.length % 2 == 0) {
int r = a.length / 2;
int l = r - 1;
double s = a[l] + a[r];
return s / 2.0;
}
int m = a.length / 2;
return a[m];
}
static Map<Integer, ArrayList<Integer>> g;
static Map<Integer, Integer> color;
static void dfs(int v, int c) {
color.put(v, c);
for (int i = 0; i < g.get(v).size(); i++) {
int u = g.get(v).get(i);
if (!color.containsKey(u)) {
dfs(u, c);
}
}
}
static void reverse(Integer[] a) {
Collections.reverse(Arrays.asList(a));
}
static boolean next(Integer[] a) {
int i = a.length - 1;
while (a[i] == 0) i--;
int c = 0;
while (i >= 0 && a[i] == 1) {
c++;
i--;
}
if (i < 0) return false;
a[i] = 1;
for (int j = i + 1; j < a.length; j++) {
a[j] = 0;
}
c--;
for (int j = 0; j < c; j++) {
a[a.length - 1 - j] = 1;
}
return true;
}
private static int bin(Integer[] a, int l, int r, int x) {
if (l >= r) return l;
int m = (l + r) / 2;
if (a[m] > x) {
return bin(a, l, m, x);
} else if (a[m] < x || (m < a.length - 1 && a[m + 1] == x)) {
return bin(a, m + 1, r, x);
}
return m + 1;
}
private static class SegmentTree {
private long[] d;
private long[] a;
SegmentTree(int n) {
a = new long[n];
d = new long[5 * n];
}
void update(int v, int l, int r, int pos, long val) {
if (l == r) {
d[v] += val;
a[l] += val;
} else {
int mid = (l + r) / 2;
if (pos <= mid) {
update(v * 2, l, mid, pos, val);
} else {
update(v * 2 + 1, mid + 1, r, pos, val);
}
d[v] = d[v * 2] + d[v * 2 + 1];
}
}
int find(int v, int l, int r, long w) {
if (v >= d.length) return -1;
int mid = (l + r) / 2;
if (d[v] <= w) return r;
long o = w - d[v * 2];
if (mid + 1 < a.length && o >= a[mid + 1]) {
return find(v * 2 + 1, mid + 1, r, o);
}
if (w >= a[l])
return find(v * 2, l, mid, w);
return -1;
}
int iterFind(long w) {
if (a[0] > w) return -1;
int l = 0, r = a.length - 1;
int v = 1;
while (d[v] > w) {
int mid = (l + r) / 2;
long o = w - d[v * 2];
if (mid + 1 < a.length && o >= a[mid + 1]) {
l = mid + 1;
v = v * 2 + 1;
w = o;
} else {
v = v * 2;
r = mid;
}
}
return r;
}
int get(int v, int vl, int vr, long w) {
// cout << t[v] << " "<< v << " " << vl << " " << vr<<" " << w << endl;
if (d[v] < w) return -1;
if (vl > vr) return -1;
if (vl == vr) {
if (d[v] > w) return vl - 1;
else return -1;
}
if (d[v * 2] > w) return get(v * 2, vl, (vl + vr) / 2, w);
else return get(v * 2 + 1, (vl + vr + 2) / 2, vr, w - d[v * 2]);
}
}
private static class FenwickTree {
long[] t;
FenwickTree(int n) {
t = new long[n];
}
long sum(int r) {
long result = 0;
for (; r >= 0; r = (r & (r + 1)) - 1)
result += t[r];
return result;
}
void inc(int i, long delta) {
int n = t.length;
for (; i < n; i = (i | (i + 1)))
t[i] += delta;
}
}
void insert(List<Long> list, Long element) {
int index = Collections.binarySearch(list, element);
if (index < 0) {
index = -index - 1;
}
list.add(index, element);
}
public static void main(String[] args) {
FastScanner scanner = new FastScanner(System.in);
PrintWriter printer = new PrintWriter(System.out);
long n = scanner.nextLong();
long k = scanner.nextLong();
long l = 1;
long r = n;
while(true){
long m = (l + r) / 2;
long x = (m * (m + 1)) / 2;
x -= n - m;
if (x == k) {
printer.println(n - m);
break;
} else if (x < k) {
l = m + 1;
} else {
r = m - 1;
}
}
printer.flush();
printer.close();
}
}
/*
4 2
1 1 4
0 2 3
5 3
1 2 4
0 4 5
0 3 5
4 3
1 2 3
1 1 2
0 1 3
NO
*/
|
O(log(n))
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Determine the worst-case time complexity category of a given Java code based on input size n.
</TASK>
<CODE>
import java.io.*;
import java.util.*;
public class Main {
static class FastScanner {
private BufferedReader bufferedReader;
private StringTokenizer stringTokenizer;
public FastScanner(InputStream inputStream) {
bufferedReader = new BufferedReader(new InputStreamReader(inputStream));
}
public String next() {
while (stringTokenizer == null || !stringTokenizer.hasMoreTokens()) {
try {
stringTokenizer = new StringTokenizer(bufferedReader.readLine());
} catch (IOException ignored) {
}
}
return stringTokenizer.nextToken();
}
public int nextInt() {
return Integer.parseInt(next());
}
public long nextLong() {
return Long.parseLong(next());
}
public double nextDouble() {
return Double.parseDouble(next());
}
}
static class Node implements Comparable {
Node left;
Node right;
private int value;
Node(Node left, Node right, int value) {
this.left = left;
this.right = right;
this.value = value;
}
@Override
public int compareTo(Object o) {
return Integer.compare(this.value, ((Node) o).value);
}
}
private static int fib(int n, int m) {
if (n < 2) return n;
int a = 0;
int b = 1;
for (int i = 0; i < n - 2; i++) {
int c = (a + b) % m;
a = b;
b = c;
}
return (a + b) % m;
}
static long gcd(long a, long b) {
if (b == 0) return a;
return gcd(b, a % b);
}
static long lcm(long a, long b) {
return Math.abs(a * b) / gcd(a, b);
}
static class DSU {
private int[] p;
private int[] r;
DSU(int n) {
p = new int[n];
r = new int[n];
Arrays.fill(p, -1);
Arrays.fill(r, 0);
}
int find(int x) {
if (p[x] < 0) {
return x;
}
return p[x] = find(p[x]);
}
void union(int a, int b) {
a = find(a);
b = find(b);
if (a == b) return;
if (r[a] < r[b]) {
p[a] = b;
} else {
p[b] = a;
}
if (r[a] == r[b]) {
r[a]++;
}
}
}
private static boolean isPrime(long n) {
for (int i = 2; i < n; i++) {
if (n % i == 0) return false;
}
return true;
}
private static double med(Integer[] a) {
Arrays.sort(a);
if (a.length % 2 == 0) {
int r = a.length / 2;
int l = r - 1;
double s = a[l] + a[r];
return s / 2.0;
}
int m = a.length / 2;
return a[m];
}
static Map<Integer, ArrayList<Integer>> g;
static Map<Integer, Integer> color;
static void dfs(int v, int c) {
color.put(v, c);
for (int i = 0; i < g.get(v).size(); i++) {
int u = g.get(v).get(i);
if (!color.containsKey(u)) {
dfs(u, c);
}
}
}
static void reverse(Integer[] a) {
Collections.reverse(Arrays.asList(a));
}
static boolean next(Integer[] a) {
int i = a.length - 1;
while (a[i] == 0) i--;
int c = 0;
while (i >= 0 && a[i] == 1) {
c++;
i--;
}
if (i < 0) return false;
a[i] = 1;
for (int j = i + 1; j < a.length; j++) {
a[j] = 0;
}
c--;
for (int j = 0; j < c; j++) {
a[a.length - 1 - j] = 1;
}
return true;
}
private static int bin(Integer[] a, int l, int r, int x) {
if (l >= r) return l;
int m = (l + r) / 2;
if (a[m] > x) {
return bin(a, l, m, x);
} else if (a[m] < x || (m < a.length - 1 && a[m + 1] == x)) {
return bin(a, m + 1, r, x);
}
return m + 1;
}
private static class SegmentTree {
private long[] d;
private long[] a;
SegmentTree(int n) {
a = new long[n];
d = new long[5 * n];
}
void update(int v, int l, int r, int pos, long val) {
if (l == r) {
d[v] += val;
a[l] += val;
} else {
int mid = (l + r) / 2;
if (pos <= mid) {
update(v * 2, l, mid, pos, val);
} else {
update(v * 2 + 1, mid + 1, r, pos, val);
}
d[v] = d[v * 2] + d[v * 2 + 1];
}
}
int find(int v, int l, int r, long w) {
if (v >= d.length) return -1;
int mid = (l + r) / 2;
if (d[v] <= w) return r;
long o = w - d[v * 2];
if (mid + 1 < a.length && o >= a[mid + 1]) {
return find(v * 2 + 1, mid + 1, r, o);
}
if (w >= a[l])
return find(v * 2, l, mid, w);
return -1;
}
int iterFind(long w) {
if (a[0] > w) return -1;
int l = 0, r = a.length - 1;
int v = 1;
while (d[v] > w) {
int mid = (l + r) / 2;
long o = w - d[v * 2];
if (mid + 1 < a.length && o >= a[mid + 1]) {
l = mid + 1;
v = v * 2 + 1;
w = o;
} else {
v = v * 2;
r = mid;
}
}
return r;
}
int get(int v, int vl, int vr, long w) {
// cout << t[v] << " "<< v << " " << vl << " " << vr<<" " << w << endl;
if (d[v] < w) return -1;
if (vl > vr) return -1;
if (vl == vr) {
if (d[v] > w) return vl - 1;
else return -1;
}
if (d[v * 2] > w) return get(v * 2, vl, (vl + vr) / 2, w);
else return get(v * 2 + 1, (vl + vr + 2) / 2, vr, w - d[v * 2]);
}
}
private static class FenwickTree {
long[] t;
FenwickTree(int n) {
t = new long[n];
}
long sum(int r) {
long result = 0;
for (; r >= 0; r = (r & (r + 1)) - 1)
result += t[r];
return result;
}
void inc(int i, long delta) {
int n = t.length;
for (; i < n; i = (i | (i + 1)))
t[i] += delta;
}
}
void insert(List<Long> list, Long element) {
int index = Collections.binarySearch(list, element);
if (index < 0) {
index = -index - 1;
}
list.add(index, element);
}
public static void main(String[] args) {
FastScanner scanner = new FastScanner(System.in);
PrintWriter printer = new PrintWriter(System.out);
long n = scanner.nextLong();
long k = scanner.nextLong();
long l = 1;
long r = n;
while(true){
long m = (l + r) / 2;
long x = (m * (m + 1)) / 2;
x -= n - m;
if (x == k) {
printer.println(n - m);
break;
} else if (x < k) {
l = m + 1;
} else {
r = m - 1;
}
}
printer.flush();
printer.close();
}
}
/*
4 2
1 1 4
0 2 3
5 3
1 2 4
0 4 5
0 3 5
4 3
1 2 3
1 1 2
0 1 3
NO
*/
</CODE>
<EVALUATION_RUBRIC>
- O(nlog(n)): The time complexity combines linear and logarithmic growth factors.
- O(n^3): The time complexity scales proportionally to the cube of the input size.
- O(n^2): The time complexity grows proportionally to the square of the input size.
- non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially.
- O(1): The time complexity is constant to the input size n.
- O(n): The time complexity increases proportionally to the input size n in a linear manner.
- O(log(n)): The time complexity increases logarithmically in relation to the input size.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Determine the worst-case time complexity category of a given Java code based on input size n.
</TASK>
<CODE>
import java.io.*;
import java.util.*;
public class Main {
static class FastScanner {
private BufferedReader bufferedReader;
private StringTokenizer stringTokenizer;
public FastScanner(InputStream inputStream) {
bufferedReader = new BufferedReader(new InputStreamReader(inputStream));
}
public String next() {
while (stringTokenizer == null || !stringTokenizer.hasMoreTokens()) {
try {
stringTokenizer = new StringTokenizer(bufferedReader.readLine());
} catch (IOException ignored) {
}
}
return stringTokenizer.nextToken();
}
public int nextInt() {
return Integer.parseInt(next());
}
public long nextLong() {
return Long.parseLong(next());
}
public double nextDouble() {
return Double.parseDouble(next());
}
}
static class Node implements Comparable {
Node left;
Node right;
private int value;
Node(Node left, Node right, int value) {
this.left = left;
this.right = right;
this.value = value;
}
@Override
public int compareTo(Object o) {
return Integer.compare(this.value, ((Node) o).value);
}
}
private static int fib(int n, int m) {
if (n < 2) return n;
int a = 0;
int b = 1;
for (int i = 0; i < n - 2; i++) {
int c = (a + b) % m;
a = b;
b = c;
}
return (a + b) % m;
}
static long gcd(long a, long b) {
if (b == 0) return a;
return gcd(b, a % b);
}
static long lcm(long a, long b) {
return Math.abs(a * b) / gcd(a, b);
}
static class DSU {
private int[] p;
private int[] r;
DSU(int n) {
p = new int[n];
r = new int[n];
Arrays.fill(p, -1);
Arrays.fill(r, 0);
}
int find(int x) {
if (p[x] < 0) {
return x;
}
return p[x] = find(p[x]);
}
void union(int a, int b) {
a = find(a);
b = find(b);
if (a == b) return;
if (r[a] < r[b]) {
p[a] = b;
} else {
p[b] = a;
}
if (r[a] == r[b]) {
r[a]++;
}
}
}
private static boolean isPrime(long n) {
for (int i = 2; i < n; i++) {
if (n % i == 0) return false;
}
return true;
}
private static double med(Integer[] a) {
Arrays.sort(a);
if (a.length % 2 == 0) {
int r = a.length / 2;
int l = r - 1;
double s = a[l] + a[r];
return s / 2.0;
}
int m = a.length / 2;
return a[m];
}
static Map<Integer, ArrayList<Integer>> g;
static Map<Integer, Integer> color;
static void dfs(int v, int c) {
color.put(v, c);
for (int i = 0; i < g.get(v).size(); i++) {
int u = g.get(v).get(i);
if (!color.containsKey(u)) {
dfs(u, c);
}
}
}
static void reverse(Integer[] a) {
Collections.reverse(Arrays.asList(a));
}
static boolean next(Integer[] a) {
int i = a.length - 1;
while (a[i] == 0) i--;
int c = 0;
while (i >= 0 && a[i] == 1) {
c++;
i--;
}
if (i < 0) return false;
a[i] = 1;
for (int j = i + 1; j < a.length; j++) {
a[j] = 0;
}
c--;
for (int j = 0; j < c; j++) {
a[a.length - 1 - j] = 1;
}
return true;
}
private static int bin(Integer[] a, int l, int r, int x) {
if (l >= r) return l;
int m = (l + r) / 2;
if (a[m] > x) {
return bin(a, l, m, x);
} else if (a[m] < x || (m < a.length - 1 && a[m + 1] == x)) {
return bin(a, m + 1, r, x);
}
return m + 1;
}
private static class SegmentTree {
private long[] d;
private long[] a;
SegmentTree(int n) {
a = new long[n];
d = new long[5 * n];
}
void update(int v, int l, int r, int pos, long val) {
if (l == r) {
d[v] += val;
a[l] += val;
} else {
int mid = (l + r) / 2;
if (pos <= mid) {
update(v * 2, l, mid, pos, val);
} else {
update(v * 2 + 1, mid + 1, r, pos, val);
}
d[v] = d[v * 2] + d[v * 2 + 1];
}
}
int find(int v, int l, int r, long w) {
if (v >= d.length) return -1;
int mid = (l + r) / 2;
if (d[v] <= w) return r;
long o = w - d[v * 2];
if (mid + 1 < a.length && o >= a[mid + 1]) {
return find(v * 2 + 1, mid + 1, r, o);
}
if (w >= a[l])
return find(v * 2, l, mid, w);
return -1;
}
int iterFind(long w) {
if (a[0] > w) return -1;
int l = 0, r = a.length - 1;
int v = 1;
while (d[v] > w) {
int mid = (l + r) / 2;
long o = w - d[v * 2];
if (mid + 1 < a.length && o >= a[mid + 1]) {
l = mid + 1;
v = v * 2 + 1;
w = o;
} else {
v = v * 2;
r = mid;
}
}
return r;
}
int get(int v, int vl, int vr, long w) {
// cout << t[v] << " "<< v << " " << vl << " " << vr<<" " << w << endl;
if (d[v] < w) return -1;
if (vl > vr) return -1;
if (vl == vr) {
if (d[v] > w) return vl - 1;
else return -1;
}
if (d[v * 2] > w) return get(v * 2, vl, (vl + vr) / 2, w);
else return get(v * 2 + 1, (vl + vr + 2) / 2, vr, w - d[v * 2]);
}
}
private static class FenwickTree {
long[] t;
FenwickTree(int n) {
t = new long[n];
}
long sum(int r) {
long result = 0;
for (; r >= 0; r = (r & (r + 1)) - 1)
result += t[r];
return result;
}
void inc(int i, long delta) {
int n = t.length;
for (; i < n; i = (i | (i + 1)))
t[i] += delta;
}
}
void insert(List<Long> list, Long element) {
int index = Collections.binarySearch(list, element);
if (index < 0) {
index = -index - 1;
}
list.add(index, element);
}
public static void main(String[] args) {
FastScanner scanner = new FastScanner(System.in);
PrintWriter printer = new PrintWriter(System.out);
long n = scanner.nextLong();
long k = scanner.nextLong();
long l = 1;
long r = n;
while(true){
long m = (l + r) / 2;
long x = (m * (m + 1)) / 2;
x -= n - m;
if (x == k) {
printer.println(n - m);
break;
} else if (x < k) {
l = m + 1;
} else {
r = m - 1;
}
}
printer.flush();
printer.close();
}
}
/*
4 2
1 1 4
0 2 3
5 3
1 2 4
0 4 5
0 3 5
4 3
1 2 3
1 1 2
0 1 3
NO
*/
</CODE>
<EVALUATION_RUBRIC>
- O(n^3): The time complexity scales proportionally to the cube of the input size.
- O(1): The time complexity is constant to the input size n.
- O(nlog(n)): The time complexity combines linear and logarithmic growth factors.
- O(n): The time complexity increases proportionally to the input size n in a linear manner.
- others: The time complexity does not fit any of the above categories or cannot be clearly classified.
- O(log(n)): The time complexity increases logarithmically in relation to the input size.
- O(n^2): The time complexity grows proportionally to the square of the input size.
- non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
| 2,436
| 955
|
821
|
import java.io.IOException;
import java.io.InputStream;
import java.io.PrintWriter;
import java.math.BigInteger;
import java.util.InputMismatchException;
/**
* @author Egor Kulikov ([email protected])
* Created on 14.03.2010
*/
public class TaskA implements Runnable {
private InputReader in;
private PrintWriter out;
public static void main(String[] args) {
new Thread(new TaskA()).start();
// new Template().run();
}
public TaskA() {
// String id = getClass().getName().toLowerCase();
// try {
// System.setIn(new FileInputStream(id + ".in"));
// System.setOut(new PrintStream(new FileOutputStream(id + ".out")));
// System.setIn(new FileInputStream("input.txt"));
// System.setOut(new PrintStream(new FileOutputStream("output.txt")));
// } catch (FileNotFoundException e) {
// throw new RuntimeException();
// }
in = new InputReader(System.in);
out = new PrintWriter(System.out);
}
public void run() {
// int numTests = in.readInt();
// for (int testNumber = 0; testNumber < numTests; testNumber++) {
// }
int n = in.readInt();
int k = in.readInt();
int last = 2;
for (int i = 3; i + last < n; i++) {
boolean good = true;
for (int j = 2; j * j <= i; j++) {
if (i % j == 0) {
good = false;
break;
}
}
if (good) {
int p = i + last + 1;
for (int j = 2; j * j <= p; j++) {
if (p % j == 0) {
good = false;
break;
}
}
if (good)
k--;
last = i;
}
}
if (k <= 0)
out.println("YES");
else
out.println("NO");
out.close();
}
private static class InputReader {
private InputStream stream;
private byte[] buf = new byte[1000];
private int curChar, numChars;
public InputReader(InputStream stream) {
this.stream = stream;
}
private int read() {
if (numChars == -1)
throw new InputMismatchException();
if (curChar >= numChars) {
curChar = 0;
try {
numChars = stream.read(buf);
} catch (IOException e) {
throw new InputMismatchException();
}
if (numChars <= 0)
return -1;
}
return buf[curChar++];
}
public int readInt() {
int c = read();
while (isSpaceChar(c))
c = read();
int sgn = 1;
if (c == '-') {
sgn = -1;
c = read();
}
int res = 0;
do {
if (c < '0' || c > '9')
throw new InputMismatchException();
res *= 10;
res += c - '0';
c = read();
} while (!isSpaceChar(c));
return res * sgn;
}
public long readLong() {
int c = read();
while (isSpaceChar(c))
c = read();
int sgn = 1;
if (c == '-') {
sgn = -1;
c = read();
}
long res = 0;
do {
if (c < '0' || c > '9')
throw new InputMismatchException();
res *= 10;
res += c - '0';
c = read();
} while (!isSpaceChar(c));
return res * sgn;
}
public String readString() {
int c = read();
while (isSpaceChar(c))
c = read();
StringBuffer res = new StringBuffer();
do {
res.appendCodePoint(c);
c = read();
} while (!isSpaceChar(c));
return res.toString();
}
private boolean isSpaceChar(int c) {
return c == ' ' || c == '\n' || c == '\r' || c == '\t' || c == -1;
}
private String readLine0() {
StringBuffer buf = new StringBuffer();
int c = read();
while (c != '\n' && c != -1) {
buf.appendCodePoint(c);
c = read();
}
return buf.toString();
}
public String readLine() {
String s = readLine0();
while (s.trim().length() == 0)
s = readLine0();
return s;
}
public String readLine(boolean ignoreEmptyLines) {
if (ignoreEmptyLines)
return readLine();
else
return readLine0();
}
public BigInteger readBigInteger() {
try {
return new BigInteger(readString());
} catch (NumberFormatException e) {
throw new InputMismatchException();
}
}
public char readCharacter() {
int c = read();
while (isSpaceChar(c))
c = read();
return (char) c;
}
public double readDouble() {
int c = read();
while (isSpaceChar(c))
c = read();
int sgn = 1;
if (c == '-') {
sgn = -1;
c = read();
}
double res = 0;
while (!isSpaceChar(c) && c != '.') {
if (c < '0' || c > '9')
throw new InputMismatchException();
res *= 10;
res += c - '0';
c = read();
}
if (c == '.') {
c = read();
double m = 1;
while (!isSpaceChar(c)) {
if (c < '0' || c > '9')
throw new InputMismatchException();
m /= 10;
res += (c - '0') * m;
c = read();
}
}
return res * sgn;
}
}
}
|
O(n)
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n.
</TASK>
<CODE>
import java.io.IOException;
import java.io.InputStream;
import java.io.PrintWriter;
import java.math.BigInteger;
import java.util.InputMismatchException;
/**
* @author Egor Kulikov ([email protected])
* Created on 14.03.2010
*/
public class TaskA implements Runnable {
private InputReader in;
private PrintWriter out;
public static void main(String[] args) {
new Thread(new TaskA()).start();
// new Template().run();
}
public TaskA() {
// String id = getClass().getName().toLowerCase();
// try {
// System.setIn(new FileInputStream(id + ".in"));
// System.setOut(new PrintStream(new FileOutputStream(id + ".out")));
// System.setIn(new FileInputStream("input.txt"));
// System.setOut(new PrintStream(new FileOutputStream("output.txt")));
// } catch (FileNotFoundException e) {
// throw new RuntimeException();
// }
in = new InputReader(System.in);
out = new PrintWriter(System.out);
}
public void run() {
// int numTests = in.readInt();
// for (int testNumber = 0; testNumber < numTests; testNumber++) {
// }
int n = in.readInt();
int k = in.readInt();
int last = 2;
for (int i = 3; i + last < n; i++) {
boolean good = true;
for (int j = 2; j * j <= i; j++) {
if (i % j == 0) {
good = false;
break;
}
}
if (good) {
int p = i + last + 1;
for (int j = 2; j * j <= p; j++) {
if (p % j == 0) {
good = false;
break;
}
}
if (good)
k--;
last = i;
}
}
if (k <= 0)
out.println("YES");
else
out.println("NO");
out.close();
}
private static class InputReader {
private InputStream stream;
private byte[] buf = new byte[1000];
private int curChar, numChars;
public InputReader(InputStream stream) {
this.stream = stream;
}
private int read() {
if (numChars == -1)
throw new InputMismatchException();
if (curChar >= numChars) {
curChar = 0;
try {
numChars = stream.read(buf);
} catch (IOException e) {
throw new InputMismatchException();
}
if (numChars <= 0)
return -1;
}
return buf[curChar++];
}
public int readInt() {
int c = read();
while (isSpaceChar(c))
c = read();
int sgn = 1;
if (c == '-') {
sgn = -1;
c = read();
}
int res = 0;
do {
if (c < '0' || c > '9')
throw new InputMismatchException();
res *= 10;
res += c - '0';
c = read();
} while (!isSpaceChar(c));
return res * sgn;
}
public long readLong() {
int c = read();
while (isSpaceChar(c))
c = read();
int sgn = 1;
if (c == '-') {
sgn = -1;
c = read();
}
long res = 0;
do {
if (c < '0' || c > '9')
throw new InputMismatchException();
res *= 10;
res += c - '0';
c = read();
} while (!isSpaceChar(c));
return res * sgn;
}
public String readString() {
int c = read();
while (isSpaceChar(c))
c = read();
StringBuffer res = new StringBuffer();
do {
res.appendCodePoint(c);
c = read();
} while (!isSpaceChar(c));
return res.toString();
}
private boolean isSpaceChar(int c) {
return c == ' ' || c == '\n' || c == '\r' || c == '\t' || c == -1;
}
private String readLine0() {
StringBuffer buf = new StringBuffer();
int c = read();
while (c != '\n' && c != -1) {
buf.appendCodePoint(c);
c = read();
}
return buf.toString();
}
public String readLine() {
String s = readLine0();
while (s.trim().length() == 0)
s = readLine0();
return s;
}
public String readLine(boolean ignoreEmptyLines) {
if (ignoreEmptyLines)
return readLine();
else
return readLine0();
}
public BigInteger readBigInteger() {
try {
return new BigInteger(readString());
} catch (NumberFormatException e) {
throw new InputMismatchException();
}
}
public char readCharacter() {
int c = read();
while (isSpaceChar(c))
c = read();
return (char) c;
}
public double readDouble() {
int c = read();
while (isSpaceChar(c))
c = read();
int sgn = 1;
if (c == '-') {
sgn = -1;
c = read();
}
double res = 0;
while (!isSpaceChar(c) && c != '.') {
if (c < '0' || c > '9')
throw new InputMismatchException();
res *= 10;
res += c - '0';
c = read();
}
if (c == '.') {
c = read();
double m = 1;
while (!isSpaceChar(c)) {
if (c < '0' || c > '9')
throw new InputMismatchException();
m /= 10;
res += (c - '0') * m;
c = read();
}
}
return res * sgn;
}
}
}
</CODE>
<EVALUATION_RUBRIC>
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- O(n^2): The execution time ascends in proportion to the square of the input size n.
- O(n^3): The execution time ascends in proportion to the cube of the input size n.
- O(log(n)): The execution time ascends in proportion to the logarithm of the input size n.
- O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially.
- O(1): The execution time is unaffected by the size of the input n.
- O(n): The execution time ascends in a one-to-one ratio with the input size n.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Classify the following Java code's worst-case time complexity according to its relationship to the input size n.
</TASK>
<CODE>
import java.io.IOException;
import java.io.InputStream;
import java.io.PrintWriter;
import java.math.BigInteger;
import java.util.InputMismatchException;
/**
* @author Egor Kulikov ([email protected])
* Created on 14.03.2010
*/
public class TaskA implements Runnable {
private InputReader in;
private PrintWriter out;
public static void main(String[] args) {
new Thread(new TaskA()).start();
// new Template().run();
}
public TaskA() {
// String id = getClass().getName().toLowerCase();
// try {
// System.setIn(new FileInputStream(id + ".in"));
// System.setOut(new PrintStream(new FileOutputStream(id + ".out")));
// System.setIn(new FileInputStream("input.txt"));
// System.setOut(new PrintStream(new FileOutputStream("output.txt")));
// } catch (FileNotFoundException e) {
// throw new RuntimeException();
// }
in = new InputReader(System.in);
out = new PrintWriter(System.out);
}
public void run() {
// int numTests = in.readInt();
// for (int testNumber = 0; testNumber < numTests; testNumber++) {
// }
int n = in.readInt();
int k = in.readInt();
int last = 2;
for (int i = 3; i + last < n; i++) {
boolean good = true;
for (int j = 2; j * j <= i; j++) {
if (i % j == 0) {
good = false;
break;
}
}
if (good) {
int p = i + last + 1;
for (int j = 2; j * j <= p; j++) {
if (p % j == 0) {
good = false;
break;
}
}
if (good)
k--;
last = i;
}
}
if (k <= 0)
out.println("YES");
else
out.println("NO");
out.close();
}
private static class InputReader {
private InputStream stream;
private byte[] buf = new byte[1000];
private int curChar, numChars;
public InputReader(InputStream stream) {
this.stream = stream;
}
private int read() {
if (numChars == -1)
throw new InputMismatchException();
if (curChar >= numChars) {
curChar = 0;
try {
numChars = stream.read(buf);
} catch (IOException e) {
throw new InputMismatchException();
}
if (numChars <= 0)
return -1;
}
return buf[curChar++];
}
public int readInt() {
int c = read();
while (isSpaceChar(c))
c = read();
int sgn = 1;
if (c == '-') {
sgn = -1;
c = read();
}
int res = 0;
do {
if (c < '0' || c > '9')
throw new InputMismatchException();
res *= 10;
res += c - '0';
c = read();
} while (!isSpaceChar(c));
return res * sgn;
}
public long readLong() {
int c = read();
while (isSpaceChar(c))
c = read();
int sgn = 1;
if (c == '-') {
sgn = -1;
c = read();
}
long res = 0;
do {
if (c < '0' || c > '9')
throw new InputMismatchException();
res *= 10;
res += c - '0';
c = read();
} while (!isSpaceChar(c));
return res * sgn;
}
public String readString() {
int c = read();
while (isSpaceChar(c))
c = read();
StringBuffer res = new StringBuffer();
do {
res.appendCodePoint(c);
c = read();
} while (!isSpaceChar(c));
return res.toString();
}
private boolean isSpaceChar(int c) {
return c == ' ' || c == '\n' || c == '\r' || c == '\t' || c == -1;
}
private String readLine0() {
StringBuffer buf = new StringBuffer();
int c = read();
while (c != '\n' && c != -1) {
buf.appendCodePoint(c);
c = read();
}
return buf.toString();
}
public String readLine() {
String s = readLine0();
while (s.trim().length() == 0)
s = readLine0();
return s;
}
public String readLine(boolean ignoreEmptyLines) {
if (ignoreEmptyLines)
return readLine();
else
return readLine0();
}
public BigInteger readBigInteger() {
try {
return new BigInteger(readString());
} catch (NumberFormatException e) {
throw new InputMismatchException();
}
}
public char readCharacter() {
int c = read();
while (isSpaceChar(c))
c = read();
return (char) c;
}
public double readDouble() {
int c = read();
while (isSpaceChar(c))
c = read();
int sgn = 1;
if (c == '-') {
sgn = -1;
c = read();
}
double res = 0;
while (!isSpaceChar(c) && c != '.') {
if (c < '0' || c > '9')
throw new InputMismatchException();
res *= 10;
res += c - '0';
c = read();
}
if (c == '.') {
c = read();
double m = 1;
while (!isSpaceChar(c)) {
if (c < '0' || c > '9')
throw new InputMismatchException();
m /= 10;
res += (c - '0') * m;
c = read();
}
}
return res * sgn;
}
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(n^2): The running time increases with the square of the input size n.
- others: The code does not clearly correspond to the listed classes or has an unclassified time complexity.
- O(log(n)): The running time increases with the logarithm of the input size n.
- O(1): The running time does not change regardless of the input size n.
- O(nlog(n)): The running time increases with the product of n and logarithm of n.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- O(n): The running time grows linearly with the input size n.
- O(n^3): The running time increases with the cube of the input size n.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
| 1,733
| 820
|
1,520
|
import java.io.BufferedReader;
import java.io.IOException;
import java.io.InputStreamReader;
import java.util.Arrays;
import java.util.StringTokenizer;
public class CoveredPointsCount {
//UPSOLVE
public static void main(String[] args) throws IOException {
BufferedReader br = new BufferedReader(new InputStreamReader(System.in));
StringTokenizer st = new StringTokenizer(br.readLine());
int n = Integer.parseInt(st.nextToken());
long[] myArray = new long[2 * n];
for (int i = 0; i < n; i++) {
StringTokenizer st1 = new StringTokenizer(br.readLine());
myArray[2 * i] = Long.parseLong(st1.nextToken()) * 2;
myArray[2 * i + 1] = Long.parseLong(st1.nextToken()) * 2 + 1;
}
Arrays.sort(myArray);
long[] ans = new long[n + 1];
int cnt = 0;
for (int i = 0; i < 2 * n - 1; i++) {
if (myArray[i] % 2 == 0) cnt++; else cnt--;
ans[cnt] += (myArray[i + 1] + 1) / 2 - (myArray[i] + 1) / 2;
}
StringBuilder answer = new StringBuilder();
for (int i = 1; i < n + 1; i++) {
answer.append(ans[i]);
answer.append(" ");
}
System.out.println(answer);
}
}
|
O(nlog(n))
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n.
</TASK>
<CODE>
import java.io.BufferedReader;
import java.io.IOException;
import java.io.InputStreamReader;
import java.util.Arrays;
import java.util.StringTokenizer;
public class CoveredPointsCount {
//UPSOLVE
public static void main(String[] args) throws IOException {
BufferedReader br = new BufferedReader(new InputStreamReader(System.in));
StringTokenizer st = new StringTokenizer(br.readLine());
int n = Integer.parseInt(st.nextToken());
long[] myArray = new long[2 * n];
for (int i = 0; i < n; i++) {
StringTokenizer st1 = new StringTokenizer(br.readLine());
myArray[2 * i] = Long.parseLong(st1.nextToken()) * 2;
myArray[2 * i + 1] = Long.parseLong(st1.nextToken()) * 2 + 1;
}
Arrays.sort(myArray);
long[] ans = new long[n + 1];
int cnt = 0;
for (int i = 0; i < 2 * n - 1; i++) {
if (myArray[i] % 2 == 0) cnt++; else cnt--;
ans[cnt] += (myArray[i + 1] + 1) / 2 - (myArray[i] + 1) / 2;
}
StringBuilder answer = new StringBuilder();
for (int i = 1; i < n + 1; i++) {
answer.append(ans[i]);
answer.append(" ");
}
System.out.println(answer);
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(log(n)): The execution time ascends in proportion to the logarithm of the input size n.
- O(n): The execution time ascends in a one-to-one ratio with the input size n.
- O(1): The execution time is unaffected by the size of the input n.
- O(n^3): The execution time ascends in proportion to the cube of the input size n.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially.
- O(n^2): The execution time ascends in proportion to the square of the input size n.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n.
</TASK>
<CODE>
import java.io.BufferedReader;
import java.io.IOException;
import java.io.InputStreamReader;
import java.util.Arrays;
import java.util.StringTokenizer;
public class CoveredPointsCount {
//UPSOLVE
public static void main(String[] args) throws IOException {
BufferedReader br = new BufferedReader(new InputStreamReader(System.in));
StringTokenizer st = new StringTokenizer(br.readLine());
int n = Integer.parseInt(st.nextToken());
long[] myArray = new long[2 * n];
for (int i = 0; i < n; i++) {
StringTokenizer st1 = new StringTokenizer(br.readLine());
myArray[2 * i] = Long.parseLong(st1.nextToken()) * 2;
myArray[2 * i + 1] = Long.parseLong(st1.nextToken()) * 2 + 1;
}
Arrays.sort(myArray);
long[] ans = new long[n + 1];
int cnt = 0;
for (int i = 0; i < 2 * n - 1; i++) {
if (myArray[i] % 2 == 0) cnt++; else cnt--;
ans[cnt] += (myArray[i + 1] + 1) / 2 - (myArray[i] + 1) / 2;
}
StringBuilder answer = new StringBuilder();
for (int i = 1; i < n + 1; i++) {
answer.append(ans[i]);
answer.append(" ");
}
System.out.println(answer);
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(n^2): The execution time ascends in proportion to the square of the input size n.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially.
- O(log(n)): The execution time ascends in proportion to the logarithm of the input size n.
- O(n): The execution time ascends in a one-to-one ratio with the input size n.
- O(n^3): The execution time ascends in proportion to the cube of the input size n.
- others: The time complexity does not fit to any of the given categories or is ambiguous.
- O(1): The execution time is unaffected by the size of the input n.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
| 682
| 1,518
|
320
|
import java.io.IOException;
import java.io.InputStream;
import java.util.InputMismatchException;
import java.util.Stack;
public class D527A2 {
public static void main(String[] args) {
FastScanner in = new FastScanner(System.in);
int N = in.nextInt();
Stack<Integer> stack = new Stack<>();
for(int i = 0; i < N; i++) {
int num = in.nextInt() % 2;
if(stack.size() >= 1 && stack.lastElement() == num)
stack.pop();
else
stack.add(num);
}
System.out.println(stack.size() <= 1 ? "YES" : "NO");
}
/**
* Source: Matt Fontaine
*/
static class FastScanner {
private InputStream stream;
private byte[] buf = new byte[1024];
private int curChar;
private int chars;
public FastScanner(InputStream stream) {
this.stream = stream;
}
int read() {
if (chars == -1)
throw new InputMismatchException();
if (curChar >= chars) {
curChar = 0;
try {
chars = stream.read(buf);
} catch (IOException e) {
throw new InputMismatchException();
}
if (chars <= 0)
return -1;
}
return buf[curChar++];
}
boolean isSpaceChar(int c) {
return c == ' ' || c == '\n' || c == '\r' || c == '\t' || c == -1;
}
boolean isEndline(int c) {
return c == '\n' || c == '\r' || c == -1;
}
public int nextInt() {
return Integer.parseInt(next());
}
public long nextLong() {
return Long.parseLong(next());
}
public double nextDouble() {
return Double.parseDouble(next());
}
public String next() {
int c = read();
while (isSpaceChar(c))
c = read();
StringBuilder res = new StringBuilder();
do {
res.appendCodePoint(c);
c = read();
} while (!isSpaceChar(c));
return res.toString();
}
public String nextLine() {
int c = read();
while (isEndline(c))
c = read();
StringBuilder res = new StringBuilder();
do {
res.appendCodePoint(c);
c = read();
} while (!isEndline(c));
return res.toString();
}
}
}
/*
5
2 1 1 2 5
outputCopy
YES
inputCopy
3
4 5 3
outputCopy
YES
inputCopy
2
10 10
outputCopy
YES
inputCopy
3
1 2 3
outputCopy
NO
5
2 3 2 2 3
YES
*/
|
O(n)
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n.
</TASK>
<CODE>
import java.io.IOException;
import java.io.InputStream;
import java.util.InputMismatchException;
import java.util.Stack;
public class D527A2 {
public static void main(String[] args) {
FastScanner in = new FastScanner(System.in);
int N = in.nextInt();
Stack<Integer> stack = new Stack<>();
for(int i = 0; i < N; i++) {
int num = in.nextInt() % 2;
if(stack.size() >= 1 && stack.lastElement() == num)
stack.pop();
else
stack.add(num);
}
System.out.println(stack.size() <= 1 ? "YES" : "NO");
}
/**
* Source: Matt Fontaine
*/
static class FastScanner {
private InputStream stream;
private byte[] buf = new byte[1024];
private int curChar;
private int chars;
public FastScanner(InputStream stream) {
this.stream = stream;
}
int read() {
if (chars == -1)
throw new InputMismatchException();
if (curChar >= chars) {
curChar = 0;
try {
chars = stream.read(buf);
} catch (IOException e) {
throw new InputMismatchException();
}
if (chars <= 0)
return -1;
}
return buf[curChar++];
}
boolean isSpaceChar(int c) {
return c == ' ' || c == '\n' || c == '\r' || c == '\t' || c == -1;
}
boolean isEndline(int c) {
return c == '\n' || c == '\r' || c == -1;
}
public int nextInt() {
return Integer.parseInt(next());
}
public long nextLong() {
return Long.parseLong(next());
}
public double nextDouble() {
return Double.parseDouble(next());
}
public String next() {
int c = read();
while (isSpaceChar(c))
c = read();
StringBuilder res = new StringBuilder();
do {
res.appendCodePoint(c);
c = read();
} while (!isSpaceChar(c));
return res.toString();
}
public String nextLine() {
int c = read();
while (isEndline(c))
c = read();
StringBuilder res = new StringBuilder();
do {
res.appendCodePoint(c);
c = read();
} while (!isEndline(c));
return res.toString();
}
}
}
/*
5
2 1 1 2 5
outputCopy
YES
inputCopy
3
4 5 3
outputCopy
YES
inputCopy
2
10 10
outputCopy
YES
inputCopy
3
1 2 3
outputCopy
NO
5
2 3 2 2 3
YES
*/
</CODE>
<EVALUATION_RUBRIC>
- O(n): The execution time ascends in a one-to-one ratio with the input size n.
- O(n^2): The execution time ascends in proportion to the square of the input size n.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- O(log(n)): The execution time ascends in proportion to the logarithm of the input size n.
- O(1): The execution time is unaffected by the size of the input n.
- O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially.
- O(n^3): The execution time ascends in proportion to the cube of the input size n.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n.
</TASK>
<CODE>
import java.io.IOException;
import java.io.InputStream;
import java.util.InputMismatchException;
import java.util.Stack;
public class D527A2 {
public static void main(String[] args) {
FastScanner in = new FastScanner(System.in);
int N = in.nextInt();
Stack<Integer> stack = new Stack<>();
for(int i = 0; i < N; i++) {
int num = in.nextInt() % 2;
if(stack.size() >= 1 && stack.lastElement() == num)
stack.pop();
else
stack.add(num);
}
System.out.println(stack.size() <= 1 ? "YES" : "NO");
}
/**
* Source: Matt Fontaine
*/
static class FastScanner {
private InputStream stream;
private byte[] buf = new byte[1024];
private int curChar;
private int chars;
public FastScanner(InputStream stream) {
this.stream = stream;
}
int read() {
if (chars == -1)
throw new InputMismatchException();
if (curChar >= chars) {
curChar = 0;
try {
chars = stream.read(buf);
} catch (IOException e) {
throw new InputMismatchException();
}
if (chars <= 0)
return -1;
}
return buf[curChar++];
}
boolean isSpaceChar(int c) {
return c == ' ' || c == '\n' || c == '\r' || c == '\t' || c == -1;
}
boolean isEndline(int c) {
return c == '\n' || c == '\r' || c == -1;
}
public int nextInt() {
return Integer.parseInt(next());
}
public long nextLong() {
return Long.parseLong(next());
}
public double nextDouble() {
return Double.parseDouble(next());
}
public String next() {
int c = read();
while (isSpaceChar(c))
c = read();
StringBuilder res = new StringBuilder();
do {
res.appendCodePoint(c);
c = read();
} while (!isSpaceChar(c));
return res.toString();
}
public String nextLine() {
int c = read();
while (isEndline(c))
c = read();
StringBuilder res = new StringBuilder();
do {
res.appendCodePoint(c);
c = read();
} while (!isEndline(c));
return res.toString();
}
}
}
/*
5
2 1 1 2 5
outputCopy
YES
inputCopy
3
4 5 3
outputCopy
YES
inputCopy
2
10 10
outputCopy
YES
inputCopy
3
1 2 3
outputCopy
NO
5
2 3 2 2 3
YES
*/
</CODE>
<EVALUATION_RUBRIC>
- O(n): The execution time ascends in a one-to-one ratio with the input size n.
- others: The time complexity does not fit to any of the given categories or is ambiguous.
- O(1): The execution time is unaffected by the size of the input n.
- O(n^2): The execution time ascends in proportion to the square of the input size n.
- O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially.
- O(n^3): The execution time ascends in proportion to the cube of the input size n.
- O(log(n)): The execution time ascends in proportion to the logarithm of the input size n.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
| 990
| 320
|
3,063
|
import java.util.*;
import java.io.*;
public class Soldiers {
public static void main(String[] args) throws IOException {
new Soldiers().run();
}
void run() throws IOException {
br = new BufferedReader(new InputStreamReader(System.in));
pw = new PrintWriter(System.out);
int n = nextInt();
pw.println(3 * (n / 2));
pw.close();
}
BufferedReader br;
StringTokenizer st;
PrintWriter pw;
String next() throws IOException {
while (st == null || !st.hasMoreTokens()) {
st = new StringTokenizer(br.readLine());
}
return st.nextToken();
}
int nextInt() throws IOException {
return Integer.parseInt(next());
}
double nextDouble() throws IOException {
return Double.parseDouble(next());
}
}
|
O(1)
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Determine the worst-case time complexity category of a given Java code based on input size n.
</TASK>
<CODE>
import java.util.*;
import java.io.*;
public class Soldiers {
public static void main(String[] args) throws IOException {
new Soldiers().run();
}
void run() throws IOException {
br = new BufferedReader(new InputStreamReader(System.in));
pw = new PrintWriter(System.out);
int n = nextInt();
pw.println(3 * (n / 2));
pw.close();
}
BufferedReader br;
StringTokenizer st;
PrintWriter pw;
String next() throws IOException {
while (st == null || !st.hasMoreTokens()) {
st = new StringTokenizer(br.readLine());
}
return st.nextToken();
}
int nextInt() throws IOException {
return Integer.parseInt(next());
}
double nextDouble() throws IOException {
return Double.parseDouble(next());
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(1): The time complexity is constant to the input size n.
- O(n^2): The time complexity grows proportionally to the square of the input size.
- O(n): The time complexity increases proportionally to the input size n in a linear manner.
- O(n^3): The time complexity scales proportionally to the cube of the input size.
- O(nlog(n)): The time complexity combines linear and logarithmic growth factors.
- non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially.
- O(log(n)): The time complexity increases logarithmically in relation to the input size.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Classify the following Java code's worst-case time complexity according to its relationship to the input size n.
</TASK>
<CODE>
import java.util.*;
import java.io.*;
public class Soldiers {
public static void main(String[] args) throws IOException {
new Soldiers().run();
}
void run() throws IOException {
br = new BufferedReader(new InputStreamReader(System.in));
pw = new PrintWriter(System.out);
int n = nextInt();
pw.println(3 * (n / 2));
pw.close();
}
BufferedReader br;
StringTokenizer st;
PrintWriter pw;
String next() throws IOException {
while (st == null || !st.hasMoreTokens()) {
st = new StringTokenizer(br.readLine());
}
return st.nextToken();
}
int nextInt() throws IOException {
return Integer.parseInt(next());
}
double nextDouble() throws IOException {
return Double.parseDouble(next());
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(nlog(n)): The running time increases with the product of n and logarithm of n.
- O(n^2): The running time increases with the square of the input size n.
- others: The code does not clearly correspond to the listed classes or has an unclassified time complexity.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- O(n^3): The running time increases with the cube of the input size n.
- O(log(n)): The running time increases with the logarithm of the input size n.
- O(1): The running time does not change regardless of the input size n.
- O(n): The running time grows linearly with the input size n.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
| 488
| 3,057
|
2,736
|
import java.util.Scanner;
public class Main {
public static void main(String[] args) {
Scanner input = new Scanner(System.in);
long x = input.nextLong();
if(x==1||x==2){System.out.println(x);
}
else if(x%2==0&&x>2&&x%3!=0){
System.out.println((x)*(x-1)*(x-3));
}else if(x%2==0&&x%3==0){
System.out.println((x-1)*(x-2)*(x-3));
}
else {System.out.println(x*(x-1)*(x-2));}
}
}
|
O(1)
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n.
</TASK>
<CODE>
import java.util.Scanner;
public class Main {
public static void main(String[] args) {
Scanner input = new Scanner(System.in);
long x = input.nextLong();
if(x==1||x==2){System.out.println(x);
}
else if(x%2==0&&x>2&&x%3!=0){
System.out.println((x)*(x-1)*(x-3));
}else if(x%2==0&&x%3==0){
System.out.println((x-1)*(x-2)*(x-3));
}
else {System.out.println(x*(x-1)*(x-2));}
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(log(n)): The execution time ascends in proportion to the logarithm of the input size n.
- O(1): The execution time is unaffected by the size of the input n.
- O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially.
- O(n^3): The execution time ascends in proportion to the cube of the input size n.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- O(n): The execution time ascends in a one-to-one ratio with the input size n.
- O(n^2): The execution time ascends in proportion to the square of the input size n.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Classify the following Java code's worst-case time complexity according to its relationship to the input size n.
</TASK>
<CODE>
import java.util.Scanner;
public class Main {
public static void main(String[] args) {
Scanner input = new Scanner(System.in);
long x = input.nextLong();
if(x==1||x==2){System.out.println(x);
}
else if(x%2==0&&x>2&&x%3!=0){
System.out.println((x)*(x-1)*(x-3));
}else if(x%2==0&&x%3==0){
System.out.println((x-1)*(x-2)*(x-3));
}
else {System.out.println(x*(x-1)*(x-2));}
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(nlog(n)): The running time increases with the product of n and logarithm of n.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- others: The code does not clearly correspond to the listed classes or has an unclassified time complexity.
- O(1): The running time does not change regardless of the input size n.
- O(log(n)): The running time increases with the logarithm of the input size n.
- O(n^3): The running time increases with the cube of the input size n.
- O(n): The running time grows linearly with the input size n.
- O(n^2): The running time increases with the square of the input size n.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
| 486
| 2,730
|
3,189
|
import java.io.BufferedInputStream;
import java.io.PrintStream;
import java.util.Scanner;
public class Main {
public static void main(String[] args) {
Scanner in=new Scanner(new BufferedInputStream(System.in));
PrintStream out=System.out;
int n=in.nextInt();
if (n>=0) out.println(n);
else out.println(Math.max(-((-n)/10), -((-n)/100*10+(-n)%10)));
out.close();
in.close();
}
}
|
O(1)
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Determine the worst-case time complexity category of a given Java code based on input size n.
</TASK>
<CODE>
import java.io.BufferedInputStream;
import java.io.PrintStream;
import java.util.Scanner;
public class Main {
public static void main(String[] args) {
Scanner in=new Scanner(new BufferedInputStream(System.in));
PrintStream out=System.out;
int n=in.nextInt();
if (n>=0) out.println(n);
else out.println(Math.max(-((-n)/10), -((-n)/100*10+(-n)%10)));
out.close();
in.close();
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(log(n)): The time complexity increases logarithmically in relation to the input size.
- O(n^2): The time complexity grows proportionally to the square of the input size.
- O(n^3): The time complexity scales proportionally to the cube of the input size.
- O(1): The time complexity is constant to the input size n.
- non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially.
- O(nlog(n)): The time complexity combines linear and logarithmic growth factors.
- O(n): The time complexity increases proportionally to the input size n in a linear manner.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Classify the following Java code's worst-case time complexity according to its relationship to the input size n.
</TASK>
<CODE>
import java.io.BufferedInputStream;
import java.io.PrintStream;
import java.util.Scanner;
public class Main {
public static void main(String[] args) {
Scanner in=new Scanner(new BufferedInputStream(System.in));
PrintStream out=System.out;
int n=in.nextInt();
if (n>=0) out.println(n);
else out.println(Math.max(-((-n)/10), -((-n)/100*10+(-n)%10)));
out.close();
in.close();
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(n): The running time grows linearly with the input size n.
- O(log(n)): The running time increases with the logarithm of the input size n.
- O(nlog(n)): The running time increases with the product of n and logarithm of n.
- others: The code does not clearly correspond to the listed classes or has an unclassified time complexity.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- O(1): The running time does not change regardless of the input size n.
- O(n^3): The running time increases with the cube of the input size n.
- O(n^2): The running time increases with the square of the input size n.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
| 436
| 3,183
|
2,237
|
import java.io.BufferedReader;
import java.io.IOException;
import java.io.InputStreamReader;
import java.io.PrintWriter;
import java.util.StringTokenizer;
public class C {
public static void main(String[] args){
FastScanner scan = new FastScanner();
PrintWriter out = new PrintWriter(System.out);
n = scan.nextInt(); mod = (int)1e9+7;
in = new char[n];
for(int i = 0; i < n; i++) in[i] = scan.next().charAt(0);
dp = new Long[n][n];
out.println(go(0, 0));
out.close();
}
static long go(int at, int i) {
if(at == n-1) return 1;
if(dp[at][i] != null) return dp[at][i];
long res = 0;
if(in[at] == 's') {
res += go(at+1, i);
res %= mod;
if(i > 0) {
res += go(at, i-1);
res %= mod;
}
} else {
res += go(at+1, i+1);
res %= mod;
}
return dp[at][i] = res;
}
static Long[][] dp;
static int n, mod;
static char[] in;
static class FastScanner {
BufferedReader br;
StringTokenizer st;
public FastScanner() {
try {
br = new BufferedReader(new InputStreamReader(System.in));
st = new StringTokenizer(br.readLine());
} catch (Exception e){e.printStackTrace();}
}
public String next() {
if (st.hasMoreTokens()) return st.nextToken();
try {st = new StringTokenizer(br.readLine());}
catch (Exception e) {e.printStackTrace();}
return st.nextToken();
}
public int nextInt() {return Integer.parseInt(next());}
public long nextLong() {return Long.parseLong(next());}
public double nextDouble() {return Double.parseDouble(next());}
public String nextLine() {
String line = "";
if(st.hasMoreTokens()) line = st.nextToken();
else try {return br.readLine();}catch(IOException e){e.printStackTrace();}
while(st.hasMoreTokens()) line += " "+st.nextToken();
return line;
}
public int[] nextIntArray(int n) {
int[] a = new int[n];
for(int i = 0; i < n; i++) a[i] = nextInt();
return a;
}
public long[] nextLongArray(int n){
long[] a = new long[n];
for(int i = 0; i < n; i++) a[i] = nextLong();
return a;
}
public double[] nextDoubleArray(int n){
double[] a = new double[n];
for(int i = 0; i < n; i++) a[i] = nextDouble();
return a;
}
public char[][] nextGrid(int n, int m){
char[][] grid = new char[n][m];
for(int i = 0; i < n; i++) grid[i] = next().toCharArray();
return grid;
}
}
}
|
O(n^2)
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n.
</TASK>
<CODE>
import java.io.BufferedReader;
import java.io.IOException;
import java.io.InputStreamReader;
import java.io.PrintWriter;
import java.util.StringTokenizer;
public class C {
public static void main(String[] args){
FastScanner scan = new FastScanner();
PrintWriter out = new PrintWriter(System.out);
n = scan.nextInt(); mod = (int)1e9+7;
in = new char[n];
for(int i = 0; i < n; i++) in[i] = scan.next().charAt(0);
dp = new Long[n][n];
out.println(go(0, 0));
out.close();
}
static long go(int at, int i) {
if(at == n-1) return 1;
if(dp[at][i] != null) return dp[at][i];
long res = 0;
if(in[at] == 's') {
res += go(at+1, i);
res %= mod;
if(i > 0) {
res += go(at, i-1);
res %= mod;
}
} else {
res += go(at+1, i+1);
res %= mod;
}
return dp[at][i] = res;
}
static Long[][] dp;
static int n, mod;
static char[] in;
static class FastScanner {
BufferedReader br;
StringTokenizer st;
public FastScanner() {
try {
br = new BufferedReader(new InputStreamReader(System.in));
st = new StringTokenizer(br.readLine());
} catch (Exception e){e.printStackTrace();}
}
public String next() {
if (st.hasMoreTokens()) return st.nextToken();
try {st = new StringTokenizer(br.readLine());}
catch (Exception e) {e.printStackTrace();}
return st.nextToken();
}
public int nextInt() {return Integer.parseInt(next());}
public long nextLong() {return Long.parseLong(next());}
public double nextDouble() {return Double.parseDouble(next());}
public String nextLine() {
String line = "";
if(st.hasMoreTokens()) line = st.nextToken();
else try {return br.readLine();}catch(IOException e){e.printStackTrace();}
while(st.hasMoreTokens()) line += " "+st.nextToken();
return line;
}
public int[] nextIntArray(int n) {
int[] a = new int[n];
for(int i = 0; i < n; i++) a[i] = nextInt();
return a;
}
public long[] nextLongArray(int n){
long[] a = new long[n];
for(int i = 0; i < n; i++) a[i] = nextLong();
return a;
}
public double[] nextDoubleArray(int n){
double[] a = new double[n];
for(int i = 0; i < n; i++) a[i] = nextDouble();
return a;
}
public char[][] nextGrid(int n, int m){
char[][] grid = new char[n][m];
for(int i = 0; i < n; i++) grid[i] = next().toCharArray();
return grid;
}
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(1): The execution time is unaffected by the size of the input n.
- O(n^3): The execution time ascends in proportion to the cube of the input size n.
- O(n^2): The execution time ascends in proportion to the square of the input size n.
- O(n): The execution time ascends in a one-to-one ratio with the input size n.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially.
- O(log(n)): The execution time ascends in proportion to the logarithm of the input size n.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Determine the worst-case time complexity category of a given Java code based on input size n.
</TASK>
<CODE>
import java.io.BufferedReader;
import java.io.IOException;
import java.io.InputStreamReader;
import java.io.PrintWriter;
import java.util.StringTokenizer;
public class C {
public static void main(String[] args){
FastScanner scan = new FastScanner();
PrintWriter out = new PrintWriter(System.out);
n = scan.nextInt(); mod = (int)1e9+7;
in = new char[n];
for(int i = 0; i < n; i++) in[i] = scan.next().charAt(0);
dp = new Long[n][n];
out.println(go(0, 0));
out.close();
}
static long go(int at, int i) {
if(at == n-1) return 1;
if(dp[at][i] != null) return dp[at][i];
long res = 0;
if(in[at] == 's') {
res += go(at+1, i);
res %= mod;
if(i > 0) {
res += go(at, i-1);
res %= mod;
}
} else {
res += go(at+1, i+1);
res %= mod;
}
return dp[at][i] = res;
}
static Long[][] dp;
static int n, mod;
static char[] in;
static class FastScanner {
BufferedReader br;
StringTokenizer st;
public FastScanner() {
try {
br = new BufferedReader(new InputStreamReader(System.in));
st = new StringTokenizer(br.readLine());
} catch (Exception e){e.printStackTrace();}
}
public String next() {
if (st.hasMoreTokens()) return st.nextToken();
try {st = new StringTokenizer(br.readLine());}
catch (Exception e) {e.printStackTrace();}
return st.nextToken();
}
public int nextInt() {return Integer.parseInt(next());}
public long nextLong() {return Long.parseLong(next());}
public double nextDouble() {return Double.parseDouble(next());}
public String nextLine() {
String line = "";
if(st.hasMoreTokens()) line = st.nextToken();
else try {return br.readLine();}catch(IOException e){e.printStackTrace();}
while(st.hasMoreTokens()) line += " "+st.nextToken();
return line;
}
public int[] nextIntArray(int n) {
int[] a = new int[n];
for(int i = 0; i < n; i++) a[i] = nextInt();
return a;
}
public long[] nextLongArray(int n){
long[] a = new long[n];
for(int i = 0; i < n; i++) a[i] = nextLong();
return a;
}
public double[] nextDoubleArray(int n){
double[] a = new double[n];
for(int i = 0; i < n; i++) a[i] = nextDouble();
return a;
}
public char[][] nextGrid(int n, int m){
char[][] grid = new char[n][m];
for(int i = 0; i < n; i++) grid[i] = next().toCharArray();
return grid;
}
}
}
</CODE>
<EVALUATION_RUBRIC>
- others: The time complexity does not fit any of the above categories or cannot be clearly classified.
- O(1): The time complexity is constant to the input size n.
- non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially.
- O(n^2): The time complexity grows proportionally to the square of the input size.
- O(n): The time complexity increases proportionally to the input size n in a linear manner.
- O(nlog(n)): The time complexity combines linear and logarithmic growth factors.
- O(n^3): The time complexity scales proportionally to the cube of the input size.
- O(log(n)): The time complexity increases logarithmically in relation to the input size.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
| 1,032
| 2,233
|
4,193
|
import java.io.*;
import java.util.*;
import static java.lang.Math.*;
import static java.util.Arrays.fill;
import static java.util.Arrays.binarySearch;
import static java.util.Arrays.sort;
public class Main {
public static void main(String[] args) throws IOException {
try {
if (new File("input.txt").exists()) {
System.setIn(new FileInputStream("input.txt"));
}
} catch (SecurityException e) {
}
new Main().run();
}
BufferedReader in;
PrintWriter out;
StringTokenizer st = new StringTokenizer("");
void run() throws IOException {
in = new BufferedReader(new InputStreamReader(System.in));
out = new PrintWriter(System.out);
int N = nextInt();
double[][] a = new double [N][N];
for (int i = 0; i < N; i++)
for (int j = 0; j < N; j++)
a[i][j] = nextDouble();
int NN = 1 << N;
double[] dp = new double [NN];
dp[NN - 1] = 1.0;
for (int mask = NN - 1; mask > 0; mask--) {
int b = Integer.bitCount(mask);
if (b <= 1)
continue;
double k = 2.0 / (b * (b - 1));
for (int i = 0; i < N; i++) {
if ((mask & (1 << i)) == 0)
continue;
for (int j = i + 1; j < N; j++) {
if ((mask & (1 << j)) == 0)
continue;
double p = a[i][j];
dp[mask & (~(1 << j))] += k * p * dp[mask];
dp[mask & (~(1 << i))] += k * (1.0 - p) * dp[mask];
}
}
}
out.printf(Locale.US, "%.8f", dp[1]);
for (int i = 1, ind = 2; i < N; ind <<= 1, i++)
out.printf(Locale.US, " %.8f", dp[ind]);
out.println();
out.close();
}
String nextToken() throws IOException {
while (!st.hasMoreTokens()) {
st = new StringTokenizer(in.readLine());
}
return st.nextToken();
}
int nextInt() throws IOException {
return Integer.parseInt(nextToken());
}
long nextLong() throws IOException {
return Long.parseLong(nextToken());
}
double nextDouble() throws IOException {
return Double.parseDouble(nextToken());
}
String nextLine() throws IOException {
st = new StringTokenizer("");
return in.readLine();
}
boolean EOF() throws IOException {
while (!st.hasMoreTokens()) {
String s = in.readLine();
if (s == null)
return true;
st = new StringTokenizer(s);
}
return false;
}
}
|
non-polynomial
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Classify the following Java code's worst-case time complexity according to its relationship to the input size n.
</TASK>
<CODE>
import java.io.*;
import java.util.*;
import static java.lang.Math.*;
import static java.util.Arrays.fill;
import static java.util.Arrays.binarySearch;
import static java.util.Arrays.sort;
public class Main {
public static void main(String[] args) throws IOException {
try {
if (new File("input.txt").exists()) {
System.setIn(new FileInputStream("input.txt"));
}
} catch (SecurityException e) {
}
new Main().run();
}
BufferedReader in;
PrintWriter out;
StringTokenizer st = new StringTokenizer("");
void run() throws IOException {
in = new BufferedReader(new InputStreamReader(System.in));
out = new PrintWriter(System.out);
int N = nextInt();
double[][] a = new double [N][N];
for (int i = 0; i < N; i++)
for (int j = 0; j < N; j++)
a[i][j] = nextDouble();
int NN = 1 << N;
double[] dp = new double [NN];
dp[NN - 1] = 1.0;
for (int mask = NN - 1; mask > 0; mask--) {
int b = Integer.bitCount(mask);
if (b <= 1)
continue;
double k = 2.0 / (b * (b - 1));
for (int i = 0; i < N; i++) {
if ((mask & (1 << i)) == 0)
continue;
for (int j = i + 1; j < N; j++) {
if ((mask & (1 << j)) == 0)
continue;
double p = a[i][j];
dp[mask & (~(1 << j))] += k * p * dp[mask];
dp[mask & (~(1 << i))] += k * (1.0 - p) * dp[mask];
}
}
}
out.printf(Locale.US, "%.8f", dp[1]);
for (int i = 1, ind = 2; i < N; ind <<= 1, i++)
out.printf(Locale.US, " %.8f", dp[ind]);
out.println();
out.close();
}
String nextToken() throws IOException {
while (!st.hasMoreTokens()) {
st = new StringTokenizer(in.readLine());
}
return st.nextToken();
}
int nextInt() throws IOException {
return Integer.parseInt(nextToken());
}
long nextLong() throws IOException {
return Long.parseLong(nextToken());
}
double nextDouble() throws IOException {
return Double.parseDouble(nextToken());
}
String nextLine() throws IOException {
st = new StringTokenizer("");
return in.readLine();
}
boolean EOF() throws IOException {
while (!st.hasMoreTokens()) {
String s = in.readLine();
if (s == null)
return true;
st = new StringTokenizer(s);
}
return false;
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(n^3): The running time increases with the cube of the input size n.
- O(n^2): The running time increases with the square of the input size n.
- O(n): The running time grows linearly with the input size n.
- O(1): The running time does not change regardless of the input size n.
- O(nlog(n)): The running time increases with the product of n and logarithm of n.
- O(log(n)): The running time increases with the logarithm of the input size n.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Determine the worst-case time complexity category of a given Java code based on input size n.
</TASK>
<CODE>
import java.io.*;
import java.util.*;
import static java.lang.Math.*;
import static java.util.Arrays.fill;
import static java.util.Arrays.binarySearch;
import static java.util.Arrays.sort;
public class Main {
public static void main(String[] args) throws IOException {
try {
if (new File("input.txt").exists()) {
System.setIn(new FileInputStream("input.txt"));
}
} catch (SecurityException e) {
}
new Main().run();
}
BufferedReader in;
PrintWriter out;
StringTokenizer st = new StringTokenizer("");
void run() throws IOException {
in = new BufferedReader(new InputStreamReader(System.in));
out = new PrintWriter(System.out);
int N = nextInt();
double[][] a = new double [N][N];
for (int i = 0; i < N; i++)
for (int j = 0; j < N; j++)
a[i][j] = nextDouble();
int NN = 1 << N;
double[] dp = new double [NN];
dp[NN - 1] = 1.0;
for (int mask = NN - 1; mask > 0; mask--) {
int b = Integer.bitCount(mask);
if (b <= 1)
continue;
double k = 2.0 / (b * (b - 1));
for (int i = 0; i < N; i++) {
if ((mask & (1 << i)) == 0)
continue;
for (int j = i + 1; j < N; j++) {
if ((mask & (1 << j)) == 0)
continue;
double p = a[i][j];
dp[mask & (~(1 << j))] += k * p * dp[mask];
dp[mask & (~(1 << i))] += k * (1.0 - p) * dp[mask];
}
}
}
out.printf(Locale.US, "%.8f", dp[1]);
for (int i = 1, ind = 2; i < N; ind <<= 1, i++)
out.printf(Locale.US, " %.8f", dp[ind]);
out.println();
out.close();
}
String nextToken() throws IOException {
while (!st.hasMoreTokens()) {
st = new StringTokenizer(in.readLine());
}
return st.nextToken();
}
int nextInt() throws IOException {
return Integer.parseInt(nextToken());
}
long nextLong() throws IOException {
return Long.parseLong(nextToken());
}
double nextDouble() throws IOException {
return Double.parseDouble(nextToken());
}
String nextLine() throws IOException {
st = new StringTokenizer("");
return in.readLine();
}
boolean EOF() throws IOException {
while (!st.hasMoreTokens()) {
String s = in.readLine();
if (s == null)
return true;
st = new StringTokenizer(s);
}
return false;
}
}
</CODE>
<EVALUATION_RUBRIC>
- non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially.
- O(log(n)): The time complexity increases logarithmically in relation to the input size.
- O(1): The time complexity is constant to the input size n.
- others: The time complexity does not fit any of the above categories or cannot be clearly classified.
- O(n^3): The time complexity scales proportionally to the cube of the input size.
- O(nlog(n)): The time complexity combines linear and logarithmic growth factors.
- O(n^2): The time complexity grows proportionally to the square of the input size.
- O(n): The time complexity increases proportionally to the input size n in a linear manner.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
| 977
| 4,182
|
4,302
|
import java.io.BufferedReader;
import java.io.IOException;
import java.io.InputStreamReader;
import java.util.HashMap;
import java.util.Map;
public class ProblemB {
public static int _gnum;
public static int _cnum;
public static int _needs;
public static int _level;
public static double _maxans = 0;
public static double votedfs(int[][] grl, int g, int votes) {
if (votes >= _needs) {
return 1.0d;
}
if (g >= _gnum) {
return 0.0d;
}
double agrees = (double)grl[g][1] / 100;
return agrees * votedfs(grl, g+1, votes+1) + (1.0d - agrees) * votedfs(grl, g+1, votes);
}
public static double battledfs(int[][] grl, int g, int votes, int levels) {
if (votes >= _needs) {
return 0.0d;
}
if (g >= _gnum) {
return (double)_level / (_level + levels);
}
double agrees = (double)grl[g][1] / 100;
return agrees * battledfs(grl, g+1, votes+1, levels) + (1.0d - agrees) * battledfs(grl, g+1, votes, levels + grl[g][0]);
}
public static void candydfs(int[][] grl, int g, int n) {
if (g >= _gnum) {
double na = votedfs(grl, 0, 0) + battledfs(grl, 0, 0, 0);
_maxans = Math.max(_maxans, na);
return;
}
int rem = grl[g][1];
candydfs(grl, g+1, n);
for (int i = 1 ; i <= n ; i++) {
if (grl[g][1] < 100) {
grl[g][1] += 10;
candydfs(grl, g+1, n-i);
}
}
grl[g][1] = rem;
}
public static void main(String[] args) throws IOException {
BufferedReader br = new BufferedReader(new InputStreamReader(System.in));
String line = br.readLine();
String[] d = line.split(" ");
int gnum = Integer.valueOf(d[0]);
int cnum = Integer.valueOf(d[1]);
int level = Integer.valueOf(d[2]);
_gnum = gnum;
_cnum = cnum;
_needs = (gnum + 1) / 2;
if (gnum % 2 == 0) {
_needs += 1;
}
_level = level;
int[][] grl = new int[gnum][2];
for (int g = 0 ; g < gnum ; g++) {
line = br.readLine();
String[] gg = line.split(" ");
grl[g][0] = Integer.valueOf(gg[0]);
grl[g][1] = Integer.valueOf(gg[1]);
}
for (int a = 0 ; a < gnum ; a++) {
for (int b = 0 ; b < gnum - 1 ; b++) {
if (grl[b][1] < grl[b+1][1]) {
int tmp = grl[b][0];
grl[b][0] = grl[b+1][0];
grl[b+1][0] = tmp;
tmp = grl[b][1];
grl[b][1] = grl[b+1][1];
grl[b+1][1] = tmp;
}
}
}
int ag = 0;
int xnum = cnum;
for (int g = 0 ; g < gnum ; g++) {
int needs = (100 - grl[g][1]) / 10;
int roy = 0;
if (needs <= xnum) {
xnum -= needs;
roy = 100;
} else {
roy = grl[g][1] + xnum * 10;
xnum = 0;
}
if (roy >= 100) {
ag++;
}
}
if (ag >= _needs) {
System.out.println(1.0);
return;
}
candydfs(grl, 0, _cnum);
System.out.println(_maxans);
br.close();
}
}
|
non-polynomial
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Classify the following Java code's worst-case time complexity according to its relationship to the input size n.
</TASK>
<CODE>
import java.io.BufferedReader;
import java.io.IOException;
import java.io.InputStreamReader;
import java.util.HashMap;
import java.util.Map;
public class ProblemB {
public static int _gnum;
public static int _cnum;
public static int _needs;
public static int _level;
public static double _maxans = 0;
public static double votedfs(int[][] grl, int g, int votes) {
if (votes >= _needs) {
return 1.0d;
}
if (g >= _gnum) {
return 0.0d;
}
double agrees = (double)grl[g][1] / 100;
return agrees * votedfs(grl, g+1, votes+1) + (1.0d - agrees) * votedfs(grl, g+1, votes);
}
public static double battledfs(int[][] grl, int g, int votes, int levels) {
if (votes >= _needs) {
return 0.0d;
}
if (g >= _gnum) {
return (double)_level / (_level + levels);
}
double agrees = (double)grl[g][1] / 100;
return agrees * battledfs(grl, g+1, votes+1, levels) + (1.0d - agrees) * battledfs(grl, g+1, votes, levels + grl[g][0]);
}
public static void candydfs(int[][] grl, int g, int n) {
if (g >= _gnum) {
double na = votedfs(grl, 0, 0) + battledfs(grl, 0, 0, 0);
_maxans = Math.max(_maxans, na);
return;
}
int rem = grl[g][1];
candydfs(grl, g+1, n);
for (int i = 1 ; i <= n ; i++) {
if (grl[g][1] < 100) {
grl[g][1] += 10;
candydfs(grl, g+1, n-i);
}
}
grl[g][1] = rem;
}
public static void main(String[] args) throws IOException {
BufferedReader br = new BufferedReader(new InputStreamReader(System.in));
String line = br.readLine();
String[] d = line.split(" ");
int gnum = Integer.valueOf(d[0]);
int cnum = Integer.valueOf(d[1]);
int level = Integer.valueOf(d[2]);
_gnum = gnum;
_cnum = cnum;
_needs = (gnum + 1) / 2;
if (gnum % 2 == 0) {
_needs += 1;
}
_level = level;
int[][] grl = new int[gnum][2];
for (int g = 0 ; g < gnum ; g++) {
line = br.readLine();
String[] gg = line.split(" ");
grl[g][0] = Integer.valueOf(gg[0]);
grl[g][1] = Integer.valueOf(gg[1]);
}
for (int a = 0 ; a < gnum ; a++) {
for (int b = 0 ; b < gnum - 1 ; b++) {
if (grl[b][1] < grl[b+1][1]) {
int tmp = grl[b][0];
grl[b][0] = grl[b+1][0];
grl[b+1][0] = tmp;
tmp = grl[b][1];
grl[b][1] = grl[b+1][1];
grl[b+1][1] = tmp;
}
}
}
int ag = 0;
int xnum = cnum;
for (int g = 0 ; g < gnum ; g++) {
int needs = (100 - grl[g][1]) / 10;
int roy = 0;
if (needs <= xnum) {
xnum -= needs;
roy = 100;
} else {
roy = grl[g][1] + xnum * 10;
xnum = 0;
}
if (roy >= 100) {
ag++;
}
}
if (ag >= _needs) {
System.out.println(1.0);
return;
}
candydfs(grl, 0, _cnum);
System.out.println(_maxans);
br.close();
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(log(n)): The running time increases with the logarithm of the input size n.
- O(n^3): The running time increases with the cube of the input size n.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- O(1): The running time does not change regardless of the input size n.
- O(nlog(n)): The running time increases with the product of n and logarithm of n.
- O(n): The running time grows linearly with the input size n.
- O(n^2): The running time increases with the square of the input size n.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Determine the worst-case time complexity category of a given Java code based on input size n.
</TASK>
<CODE>
import java.io.BufferedReader;
import java.io.IOException;
import java.io.InputStreamReader;
import java.util.HashMap;
import java.util.Map;
public class ProblemB {
public static int _gnum;
public static int _cnum;
public static int _needs;
public static int _level;
public static double _maxans = 0;
public static double votedfs(int[][] grl, int g, int votes) {
if (votes >= _needs) {
return 1.0d;
}
if (g >= _gnum) {
return 0.0d;
}
double agrees = (double)grl[g][1] / 100;
return agrees * votedfs(grl, g+1, votes+1) + (1.0d - agrees) * votedfs(grl, g+1, votes);
}
public static double battledfs(int[][] grl, int g, int votes, int levels) {
if (votes >= _needs) {
return 0.0d;
}
if (g >= _gnum) {
return (double)_level / (_level + levels);
}
double agrees = (double)grl[g][1] / 100;
return agrees * battledfs(grl, g+1, votes+1, levels) + (1.0d - agrees) * battledfs(grl, g+1, votes, levels + grl[g][0]);
}
public static void candydfs(int[][] grl, int g, int n) {
if (g >= _gnum) {
double na = votedfs(grl, 0, 0) + battledfs(grl, 0, 0, 0);
_maxans = Math.max(_maxans, na);
return;
}
int rem = grl[g][1];
candydfs(grl, g+1, n);
for (int i = 1 ; i <= n ; i++) {
if (grl[g][1] < 100) {
grl[g][1] += 10;
candydfs(grl, g+1, n-i);
}
}
grl[g][1] = rem;
}
public static void main(String[] args) throws IOException {
BufferedReader br = new BufferedReader(new InputStreamReader(System.in));
String line = br.readLine();
String[] d = line.split(" ");
int gnum = Integer.valueOf(d[0]);
int cnum = Integer.valueOf(d[1]);
int level = Integer.valueOf(d[2]);
_gnum = gnum;
_cnum = cnum;
_needs = (gnum + 1) / 2;
if (gnum % 2 == 0) {
_needs += 1;
}
_level = level;
int[][] grl = new int[gnum][2];
for (int g = 0 ; g < gnum ; g++) {
line = br.readLine();
String[] gg = line.split(" ");
grl[g][0] = Integer.valueOf(gg[0]);
grl[g][1] = Integer.valueOf(gg[1]);
}
for (int a = 0 ; a < gnum ; a++) {
for (int b = 0 ; b < gnum - 1 ; b++) {
if (grl[b][1] < grl[b+1][1]) {
int tmp = grl[b][0];
grl[b][0] = grl[b+1][0];
grl[b+1][0] = tmp;
tmp = grl[b][1];
grl[b][1] = grl[b+1][1];
grl[b+1][1] = tmp;
}
}
}
int ag = 0;
int xnum = cnum;
for (int g = 0 ; g < gnum ; g++) {
int needs = (100 - grl[g][1]) / 10;
int roy = 0;
if (needs <= xnum) {
xnum -= needs;
roy = 100;
} else {
roy = grl[g][1] + xnum * 10;
xnum = 0;
}
if (roy >= 100) {
ag++;
}
}
if (ag >= _needs) {
System.out.println(1.0);
return;
}
candydfs(grl, 0, _cnum);
System.out.println(_maxans);
br.close();
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(1): The time complexity is constant to the input size n.
- O(log(n)): The time complexity increases logarithmically in relation to the input size.
- others: The time complexity does not fit any of the above categories or cannot be clearly classified.
- O(n^2): The time complexity grows proportionally to the square of the input size.
- non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially.
- O(nlog(n)): The time complexity combines linear and logarithmic growth factors.
- O(n^3): The time complexity scales proportionally to the cube of the input size.
- O(n): The time complexity increases proportionally to the input size n in a linear manner.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
| 1,368
| 4,291
|
1,524
|
import java.io.BufferedReader;
import java.io.FileNotFoundException;
import java.io.FileReader;
import java.io.IOException;
import java.io.InputStreamReader;
import java.util.Arrays;
import java.util.HashSet;
import java.util.Set;
import java.util.StringTokenizer;
import java.util.TreeSet;
//basically tried to understand ping's greedy alg
public class kMultRedo {
static int n;
static int k;
public static void main(String[] args){
//lol what?? If use HashSet timeout, but if use tree set, not?
//even with super high initialize capacty = 100,000,where max 100000
Set<Integer> set = new HashSet<Integer>(1000000);
FastScanner s = new FastScanner();
n = s.nextInt();
k = s.nextInt();
int[] a = new int[n];
for(int i=0; i<n; i++){
a[i] = s.nextInt();
}
Arrays.sort(a);
for(int i=0; i<n; i++){
if(a[i]%k !=0){
set.add(a[i]);
}else{
if(!set.contains(a[i]/k)){
set.add(a[i]);
}
}
}
System.out.println(set.size());
}
public static class FastScanner {
BufferedReader br;
StringTokenizer st;
public FastScanner(String s) {
try {
br = new BufferedReader(new FileReader(s));
} catch (FileNotFoundException e) {
// TODO Auto-generated catch block
e.printStackTrace();
}
}
public FastScanner() {
br = new BufferedReader(new InputStreamReader(System.in));
}
String nextToken() {
while (st == null || !st.hasMoreElements()) {
try {
st = new StringTokenizer(br.readLine());
} catch (IOException e) {
// TODO Auto-generated catch block
e.printStackTrace();
}
}
return st.nextToken();
}
int nextInt() {
return Integer.parseInt(nextToken());
}
long nextLong() {
return Long.parseLong(nextToken());
}
double nextDouble() {
return Double.parseDouble(nextToken());
}
}
}
|
O(nlog(n))
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Determine the worst-case time complexity category of a given Java code based on input size n.
</TASK>
<CODE>
import java.io.BufferedReader;
import java.io.FileNotFoundException;
import java.io.FileReader;
import java.io.IOException;
import java.io.InputStreamReader;
import java.util.Arrays;
import java.util.HashSet;
import java.util.Set;
import java.util.StringTokenizer;
import java.util.TreeSet;
//basically tried to understand ping's greedy alg
public class kMultRedo {
static int n;
static int k;
public static void main(String[] args){
//lol what?? If use HashSet timeout, but if use tree set, not?
//even with super high initialize capacty = 100,000,where max 100000
Set<Integer> set = new HashSet<Integer>(1000000);
FastScanner s = new FastScanner();
n = s.nextInt();
k = s.nextInt();
int[] a = new int[n];
for(int i=0; i<n; i++){
a[i] = s.nextInt();
}
Arrays.sort(a);
for(int i=0; i<n; i++){
if(a[i]%k !=0){
set.add(a[i]);
}else{
if(!set.contains(a[i]/k)){
set.add(a[i]);
}
}
}
System.out.println(set.size());
}
public static class FastScanner {
BufferedReader br;
StringTokenizer st;
public FastScanner(String s) {
try {
br = new BufferedReader(new FileReader(s));
} catch (FileNotFoundException e) {
// TODO Auto-generated catch block
e.printStackTrace();
}
}
public FastScanner() {
br = new BufferedReader(new InputStreamReader(System.in));
}
String nextToken() {
while (st == null || !st.hasMoreElements()) {
try {
st = new StringTokenizer(br.readLine());
} catch (IOException e) {
// TODO Auto-generated catch block
e.printStackTrace();
}
}
return st.nextToken();
}
int nextInt() {
return Integer.parseInt(nextToken());
}
long nextLong() {
return Long.parseLong(nextToken());
}
double nextDouble() {
return Double.parseDouble(nextToken());
}
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(1): The time complexity is constant to the input size n.
- O(n^2): The time complexity grows proportionally to the square of the input size.
- O(n^3): The time complexity scales proportionally to the cube of the input size.
- non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially.
- O(nlog(n)): The time complexity combines linear and logarithmic growth factors.
- O(n): The time complexity increases proportionally to the input size n in a linear manner.
- O(log(n)): The time complexity increases logarithmically in relation to the input size.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Determine the worst-case time complexity category of a given Java code based on input size n.
</TASK>
<CODE>
import java.io.BufferedReader;
import java.io.FileNotFoundException;
import java.io.FileReader;
import java.io.IOException;
import java.io.InputStreamReader;
import java.util.Arrays;
import java.util.HashSet;
import java.util.Set;
import java.util.StringTokenizer;
import java.util.TreeSet;
//basically tried to understand ping's greedy alg
public class kMultRedo {
static int n;
static int k;
public static void main(String[] args){
//lol what?? If use HashSet timeout, but if use tree set, not?
//even with super high initialize capacty = 100,000,where max 100000
Set<Integer> set = new HashSet<Integer>(1000000);
FastScanner s = new FastScanner();
n = s.nextInt();
k = s.nextInt();
int[] a = new int[n];
for(int i=0; i<n; i++){
a[i] = s.nextInt();
}
Arrays.sort(a);
for(int i=0; i<n; i++){
if(a[i]%k !=0){
set.add(a[i]);
}else{
if(!set.contains(a[i]/k)){
set.add(a[i]);
}
}
}
System.out.println(set.size());
}
public static class FastScanner {
BufferedReader br;
StringTokenizer st;
public FastScanner(String s) {
try {
br = new BufferedReader(new FileReader(s));
} catch (FileNotFoundException e) {
// TODO Auto-generated catch block
e.printStackTrace();
}
}
public FastScanner() {
br = new BufferedReader(new InputStreamReader(System.in));
}
String nextToken() {
while (st == null || !st.hasMoreElements()) {
try {
st = new StringTokenizer(br.readLine());
} catch (IOException e) {
// TODO Auto-generated catch block
e.printStackTrace();
}
}
return st.nextToken();
}
int nextInt() {
return Integer.parseInt(nextToken());
}
long nextLong() {
return Long.parseLong(nextToken());
}
double nextDouble() {
return Double.parseDouble(nextToken());
}
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(n^2): The time complexity grows proportionally to the square of the input size.
- O(log(n)): The time complexity increases logarithmically in relation to the input size.
- O(n^3): The time complexity scales proportionally to the cube of the input size.
- O(1): The time complexity is constant to the input size n.
- others: The time complexity does not fit any of the above categories or cannot be clearly classified.
- O(nlog(n)): The time complexity combines linear and logarithmic growth factors.
- O(n): The time complexity increases proportionally to the input size n in a linear manner.
- non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
| 812
| 1,522
|
2,741
|
import java.util.*;
import java.io.*;
import java.math.*;
public class Main {
public static Scanner scan = new Scanner(System.in);
public static boolean bg = true;
public static void main(String[] args) throws Exception {
long n1 = Integer.parseInt(scan.next());
if (n1==1){
System.out.println(1);
System.exit(0);
}
if (n1==2){
System.out.println(2);
System.exit(0);
}
if (n1==3){
System.out.println(6);
System.exit(0);
}
if (n1%2==0){
if (n1%3==0){
n1-=1;
n1 = n1*(n1-1)*(n1-2);
System.out.println(n1);
}
else {
n1 = n1*(n1-1)*(n1-3);
System.out.println(n1);
}
}
else {
n1 = n1*(n1-1)*(n1-2);
System.out.println(n1);
}
}
}
|
O(1)
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Classify the following Java code's worst-case time complexity according to its relationship to the input size n.
</TASK>
<CODE>
import java.util.*;
import java.io.*;
import java.math.*;
public class Main {
public static Scanner scan = new Scanner(System.in);
public static boolean bg = true;
public static void main(String[] args) throws Exception {
long n1 = Integer.parseInt(scan.next());
if (n1==1){
System.out.println(1);
System.exit(0);
}
if (n1==2){
System.out.println(2);
System.exit(0);
}
if (n1==3){
System.out.println(6);
System.exit(0);
}
if (n1%2==0){
if (n1%3==0){
n1-=1;
n1 = n1*(n1-1)*(n1-2);
System.out.println(n1);
}
else {
n1 = n1*(n1-1)*(n1-3);
System.out.println(n1);
}
}
else {
n1 = n1*(n1-1)*(n1-2);
System.out.println(n1);
}
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(n^2): The running time increases with the square of the input size n.
- O(log(n)): The running time increases with the logarithm of the input size n.
- O(1): The running time does not change regardless of the input size n.
- O(n^3): The running time increases with the cube of the input size n.
- O(n): The running time grows linearly with the input size n.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- O(nlog(n)): The running time increases with the product of n and logarithm of n.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Classify the following Java code's worst-case time complexity according to its relationship to the input size n.
</TASK>
<CODE>
import java.util.*;
import java.io.*;
import java.math.*;
public class Main {
public static Scanner scan = new Scanner(System.in);
public static boolean bg = true;
public static void main(String[] args) throws Exception {
long n1 = Integer.parseInt(scan.next());
if (n1==1){
System.out.println(1);
System.exit(0);
}
if (n1==2){
System.out.println(2);
System.exit(0);
}
if (n1==3){
System.out.println(6);
System.exit(0);
}
if (n1%2==0){
if (n1%3==0){
n1-=1;
n1 = n1*(n1-1)*(n1-2);
System.out.println(n1);
}
else {
n1 = n1*(n1-1)*(n1-3);
System.out.println(n1);
}
}
else {
n1 = n1*(n1-1)*(n1-2);
System.out.println(n1);
}
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(n): The running time grows linearly with the input size n.
- O(n^3): The running time increases with the cube of the input size n.
- O(1): The running time does not change regardless of the input size n.
- O(n^2): The running time increases with the square of the input size n.
- others: The code does not clearly correspond to the listed classes or has an unclassified time complexity.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- O(nlog(n)): The running time increases with the product of n and logarithm of n.
- O(log(n)): The running time increases with the logarithm of the input size n.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
| 573
| 2,735
|
2,756
|
import java.util.*;
import java.io.*;
public class LCMChallenge
{
public static void main(String[] args)
{
Scanner in = new Scanner(System.in);
int n = in.nextInt();
if(n < 3)
{
System.out.println(n);
}
else if(n % 2 == 1)
{
System.out.println((long)n * (n - 1) * (n - 2));
}
else
{
if(n % 3 != 0)
{
System.out.println((long)n * (n - 1) * (n - 3));
}
else
{
System.out.println((long)(n - 1) * (n - 2) * (n - 3));
}
}
}
}
|
O(1)
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Determine the worst-case time complexity category of a given Java code based on input size n.
</TASK>
<CODE>
import java.util.*;
import java.io.*;
public class LCMChallenge
{
public static void main(String[] args)
{
Scanner in = new Scanner(System.in);
int n = in.nextInt();
if(n < 3)
{
System.out.println(n);
}
else if(n % 2 == 1)
{
System.out.println((long)n * (n - 1) * (n - 2));
}
else
{
if(n % 3 != 0)
{
System.out.println((long)n * (n - 1) * (n - 3));
}
else
{
System.out.println((long)(n - 1) * (n - 2) * (n - 3));
}
}
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(log(n)): The time complexity increases logarithmically in relation to the input size.
- O(n^3): The time complexity scales proportionally to the cube of the input size.
- non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially.
- O(nlog(n)): The time complexity combines linear and logarithmic growth factors.
- O(1): The time complexity is constant to the input size n.
- O(n): The time complexity increases proportionally to the input size n in a linear manner.
- O(n^2): The time complexity grows proportionally to the square of the input size.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n.
</TASK>
<CODE>
import java.util.*;
import java.io.*;
public class LCMChallenge
{
public static void main(String[] args)
{
Scanner in = new Scanner(System.in);
int n = in.nextInt();
if(n < 3)
{
System.out.println(n);
}
else if(n % 2 == 1)
{
System.out.println((long)n * (n - 1) * (n - 2));
}
else
{
if(n % 3 != 0)
{
System.out.println((long)n * (n - 1) * (n - 3));
}
else
{
System.out.println((long)(n - 1) * (n - 2) * (n - 3));
}
}
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially.
- O(n): The execution time ascends in a one-to-one ratio with the input size n.
- others: The time complexity does not fit to any of the given categories or is ambiguous.
- O(n^2): The execution time ascends in proportion to the square of the input size n.
- O(log(n)): The execution time ascends in proportion to the logarithm of the input size n.
- O(n^3): The execution time ascends in proportion to the cube of the input size n.
- O(1): The execution time is unaffected by the size of the input n.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
| 513
| 2,750
|
1,614
|
import java.io.InputStreamReader;
import java.io.IOException;
import java.io.BufferedReader;
import java.io.OutputStream;
import java.io.PrintWriter;
import java.util.StringTokenizer;
import java.io.InputStream;
/**
* Built using CHelper plug-in
* Actual solution is at the top
* @author Sunits789
*/
public class Main {
public static void main(String[] args) {
InputStream inputStream = System.in;
OutputStream outputStream = System.out;
InputReader in = new InputReader(inputStream);
PrintWriter out = new PrintWriter(outputStream);
TaskA solver = new TaskA();
solver.solve(1, in, out);
out.close();
}
}
class TaskA {
public void solve(int testNumber, InputReader in, PrintWriter out) {
int n=in.nextInt();
int arr[]=new int[n];
in.getArray(arr);
int arrc[]=new int[n];
for(int i=0;i<n;i++){
arrc[i]=arr[i];
}
Library.sort(arrc);
int c=0;
for(int i=0;i<n;i++){
if(arrc[i]!=arr[i]){
c++;
}
}
if(c>2){
out.println("NO");
}
else{
out.println("YES");
}
}
}
class InputReader{
private BufferedReader reader;
private StringTokenizer tokenizer;
public InputReader(InputStream stream){
reader = new BufferedReader(new InputStreamReader(stream));
tokenizer = null;
}
public String next(){
while (tokenizer == null||!tokenizer.hasMoreTokens()){
try{
tokenizer = new StringTokenizer(reader.readLine());
}
catch (IOException e){
throw new RuntimeException(e);
}
}
return tokenizer.nextToken();
}
public int nextInt(){
return Integer.parseInt(next());
}
public void getArray(int arr[]){
for(int i=0;i<arr.length;i++){
arr[i]=nextInt();
}
}
}
class Library{
public static void sort(int n[]){
int len=n.length;
int l1=len/2;
int l2=len-l1;
int n1[]=new int[l1];
int n2[]=new int[l2];
for(int i=0;i<l1;i++){
n1[i]=n[i];
}
for(int i=0;i<l2;i++){
n2[i]=n[i+l1];
}
if(l1!=0){
sort(n1);
sort(n2);
}
int ind1=0;
int ind2=0;
int ind=0;
for(int i=0;i<len&&ind1<l1&&ind2<l2;i++){
if(n1[ind1]<n2[ind2]){
n[i]=n1[ind1];
ind1++;
}
else{
n[i]=n2[ind2];
ind2++;
}
ind++;
}
if(ind1<l1){
for(int i=ind1;i<l1;i++){
n[ind]=n1[i];
ind++;
}
}
if(ind2<l2){
for(int i=ind2;i<l2;i++){
n[ind]=n2[i];
ind++;
}
}
}
}
|
O(nlog(n))
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Classify the following Java code's worst-case time complexity according to its relationship to the input size n.
</TASK>
<CODE>
import java.io.InputStreamReader;
import java.io.IOException;
import java.io.BufferedReader;
import java.io.OutputStream;
import java.io.PrintWriter;
import java.util.StringTokenizer;
import java.io.InputStream;
/**
* Built using CHelper plug-in
* Actual solution is at the top
* @author Sunits789
*/
public class Main {
public static void main(String[] args) {
InputStream inputStream = System.in;
OutputStream outputStream = System.out;
InputReader in = new InputReader(inputStream);
PrintWriter out = new PrintWriter(outputStream);
TaskA solver = new TaskA();
solver.solve(1, in, out);
out.close();
}
}
class TaskA {
public void solve(int testNumber, InputReader in, PrintWriter out) {
int n=in.nextInt();
int arr[]=new int[n];
in.getArray(arr);
int arrc[]=new int[n];
for(int i=0;i<n;i++){
arrc[i]=arr[i];
}
Library.sort(arrc);
int c=0;
for(int i=0;i<n;i++){
if(arrc[i]!=arr[i]){
c++;
}
}
if(c>2){
out.println("NO");
}
else{
out.println("YES");
}
}
}
class InputReader{
private BufferedReader reader;
private StringTokenizer tokenizer;
public InputReader(InputStream stream){
reader = new BufferedReader(new InputStreamReader(stream));
tokenizer = null;
}
public String next(){
while (tokenizer == null||!tokenizer.hasMoreTokens()){
try{
tokenizer = new StringTokenizer(reader.readLine());
}
catch (IOException e){
throw new RuntimeException(e);
}
}
return tokenizer.nextToken();
}
public int nextInt(){
return Integer.parseInt(next());
}
public void getArray(int arr[]){
for(int i=0;i<arr.length;i++){
arr[i]=nextInt();
}
}
}
class Library{
public static void sort(int n[]){
int len=n.length;
int l1=len/2;
int l2=len-l1;
int n1[]=new int[l1];
int n2[]=new int[l2];
for(int i=0;i<l1;i++){
n1[i]=n[i];
}
for(int i=0;i<l2;i++){
n2[i]=n[i+l1];
}
if(l1!=0){
sort(n1);
sort(n2);
}
int ind1=0;
int ind2=0;
int ind=0;
for(int i=0;i<len&&ind1<l1&&ind2<l2;i++){
if(n1[ind1]<n2[ind2]){
n[i]=n1[ind1];
ind1++;
}
else{
n[i]=n2[ind2];
ind2++;
}
ind++;
}
if(ind1<l1){
for(int i=ind1;i<l1;i++){
n[ind]=n1[i];
ind++;
}
}
if(ind2<l2){
for(int i=ind2;i<l2;i++){
n[ind]=n2[i];
ind++;
}
}
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(1): The running time does not change regardless of the input size n.
- O(nlog(n)): The running time increases with the product of n and logarithm of n.
- O(log(n)): The running time increases with the logarithm of the input size n.
- O(n^3): The running time increases with the cube of the input size n.
- O(n): The running time grows linearly with the input size n.
- O(n^2): The running time increases with the square of the input size n.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Determine the worst-case time complexity category of a given Java code based on input size n.
</TASK>
<CODE>
import java.io.InputStreamReader;
import java.io.IOException;
import java.io.BufferedReader;
import java.io.OutputStream;
import java.io.PrintWriter;
import java.util.StringTokenizer;
import java.io.InputStream;
/**
* Built using CHelper plug-in
* Actual solution is at the top
* @author Sunits789
*/
public class Main {
public static void main(String[] args) {
InputStream inputStream = System.in;
OutputStream outputStream = System.out;
InputReader in = new InputReader(inputStream);
PrintWriter out = new PrintWriter(outputStream);
TaskA solver = new TaskA();
solver.solve(1, in, out);
out.close();
}
}
class TaskA {
public void solve(int testNumber, InputReader in, PrintWriter out) {
int n=in.nextInt();
int arr[]=new int[n];
in.getArray(arr);
int arrc[]=new int[n];
for(int i=0;i<n;i++){
arrc[i]=arr[i];
}
Library.sort(arrc);
int c=0;
for(int i=0;i<n;i++){
if(arrc[i]!=arr[i]){
c++;
}
}
if(c>2){
out.println("NO");
}
else{
out.println("YES");
}
}
}
class InputReader{
private BufferedReader reader;
private StringTokenizer tokenizer;
public InputReader(InputStream stream){
reader = new BufferedReader(new InputStreamReader(stream));
tokenizer = null;
}
public String next(){
while (tokenizer == null||!tokenizer.hasMoreTokens()){
try{
tokenizer = new StringTokenizer(reader.readLine());
}
catch (IOException e){
throw new RuntimeException(e);
}
}
return tokenizer.nextToken();
}
public int nextInt(){
return Integer.parseInt(next());
}
public void getArray(int arr[]){
for(int i=0;i<arr.length;i++){
arr[i]=nextInt();
}
}
}
class Library{
public static void sort(int n[]){
int len=n.length;
int l1=len/2;
int l2=len-l1;
int n1[]=new int[l1];
int n2[]=new int[l2];
for(int i=0;i<l1;i++){
n1[i]=n[i];
}
for(int i=0;i<l2;i++){
n2[i]=n[i+l1];
}
if(l1!=0){
sort(n1);
sort(n2);
}
int ind1=0;
int ind2=0;
int ind=0;
for(int i=0;i<len&&ind1<l1&&ind2<l2;i++){
if(n1[ind1]<n2[ind2]){
n[i]=n1[ind1];
ind1++;
}
else{
n[i]=n2[ind2];
ind2++;
}
ind++;
}
if(ind1<l1){
for(int i=ind1;i<l1;i++){
n[ind]=n1[i];
ind++;
}
}
if(ind2<l2){
for(int i=ind2;i<l2;i++){
n[ind]=n2[i];
ind++;
}
}
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(n^3): The time complexity scales proportionally to the cube of the input size.
- O(n): The time complexity increases proportionally to the input size n in a linear manner.
- non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially.
- O(nlog(n)): The time complexity combines linear and logarithmic growth factors.
- O(n^2): The time complexity grows proportionally to the square of the input size.
- others: The time complexity does not fit any of the above categories or cannot be clearly classified.
- O(log(n)): The time complexity increases logarithmically in relation to the input size.
- O(1): The time complexity is constant to the input size n.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
| 1,019
| 1,611
|
2,254
|
import java.io.*;
import java.util.*;
public final class PythonIndentation
{
public static void main(String[] args)
{
new PythonIndentation(System.in, System.out);
}
static class Solver implements Runnable
{
static final int MOD = (int) 1e9 + 7;
int n;
char[] arr;
long[][] dp;
BufferedReader in;
PrintWriter out;
void solve() throws IOException
{
n = Integer.parseInt(in.readLine());
arr = new char[n];
dp = new long[n + 1][n + 1];
for (int i = 0; i < n; i++)
arr[i] = in.readLine().charAt(0);
for (int i = 0; i <= n; i++)
Arrays.fill(dp[i], -1);
dp[0][0] = 1;
if (arr[0] == 's')
out.println(find(1, 0));
else
out.println(find(1, 1));
}
long find(int curr, int backIndents)
{
if (backIndents < 0)
return 0;
if (curr == n)
return 1;
if (dp[curr][backIndents] != -1)
return dp[curr][backIndents];
long ans;
if (arr[curr] == 's')
{
if (arr[curr - 1] == 'f')
ans = find(curr + 1, backIndents);
else
ans = CMath.mod(find(curr + 1, backIndents) + find(curr, backIndents - 1), MOD);
}
else
{
ans = find(curr + 1, backIndents + 1);
if (arr[curr - 1] != 'f')
ans = CMath.mod(ans + find(curr, backIndents - 1), MOD);
}
return dp[curr][backIndents] = ans;
}
public Solver(BufferedReader in, PrintWriter out)
{
this.in = in;
this.out = out;
}
@Override public void run()
{
try
{
solve();
}
catch (IOException e)
{
e.printStackTrace();
}
}
}
static class CMath
{
static long mod(long number, long mod)
{
return number - (number / mod) * mod;
}
}
private PythonIndentation(InputStream inputStream, OutputStream outputStream)
{
BufferedReader in = new BufferedReader(new InputStreamReader(inputStream));
PrintWriter out = new PrintWriter(outputStream);
Thread thread = new Thread(null, new Solver(in, out), "PythonIndentation", 1 << 29);
try
{
thread.start();
thread.join();
}
catch (InterruptedException e)
{
e.printStackTrace();
}
finally
{
try
{
in.close();
}
catch (IOException e)
{
e.printStackTrace();
}
out.flush();
out.close();
}
}
}
|
O(n^2)
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n.
</TASK>
<CODE>
import java.io.*;
import java.util.*;
public final class PythonIndentation
{
public static void main(String[] args)
{
new PythonIndentation(System.in, System.out);
}
static class Solver implements Runnable
{
static final int MOD = (int) 1e9 + 7;
int n;
char[] arr;
long[][] dp;
BufferedReader in;
PrintWriter out;
void solve() throws IOException
{
n = Integer.parseInt(in.readLine());
arr = new char[n];
dp = new long[n + 1][n + 1];
for (int i = 0; i < n; i++)
arr[i] = in.readLine().charAt(0);
for (int i = 0; i <= n; i++)
Arrays.fill(dp[i], -1);
dp[0][0] = 1;
if (arr[0] == 's')
out.println(find(1, 0));
else
out.println(find(1, 1));
}
long find(int curr, int backIndents)
{
if (backIndents < 0)
return 0;
if (curr == n)
return 1;
if (dp[curr][backIndents] != -1)
return dp[curr][backIndents];
long ans;
if (arr[curr] == 's')
{
if (arr[curr - 1] == 'f')
ans = find(curr + 1, backIndents);
else
ans = CMath.mod(find(curr + 1, backIndents) + find(curr, backIndents - 1), MOD);
}
else
{
ans = find(curr + 1, backIndents + 1);
if (arr[curr - 1] != 'f')
ans = CMath.mod(ans + find(curr, backIndents - 1), MOD);
}
return dp[curr][backIndents] = ans;
}
public Solver(BufferedReader in, PrintWriter out)
{
this.in = in;
this.out = out;
}
@Override public void run()
{
try
{
solve();
}
catch (IOException e)
{
e.printStackTrace();
}
}
}
static class CMath
{
static long mod(long number, long mod)
{
return number - (number / mod) * mod;
}
}
private PythonIndentation(InputStream inputStream, OutputStream outputStream)
{
BufferedReader in = new BufferedReader(new InputStreamReader(inputStream));
PrintWriter out = new PrintWriter(outputStream);
Thread thread = new Thread(null, new Solver(in, out), "PythonIndentation", 1 << 29);
try
{
thread.start();
thread.join();
}
catch (InterruptedException e)
{
e.printStackTrace();
}
finally
{
try
{
in.close();
}
catch (IOException e)
{
e.printStackTrace();
}
out.flush();
out.close();
}
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(1): The execution time is unaffected by the size of the input n.
- O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially.
- O(n): The execution time ascends in a one-to-one ratio with the input size n.
- O(n^3): The execution time ascends in proportion to the cube of the input size n.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- O(n^2): The execution time ascends in proportion to the square of the input size n.
- O(log(n)): The execution time ascends in proportion to the logarithm of the input size n.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Determine the worst-case time complexity category of a given Java code based on input size n.
</TASK>
<CODE>
import java.io.*;
import java.util.*;
public final class PythonIndentation
{
public static void main(String[] args)
{
new PythonIndentation(System.in, System.out);
}
static class Solver implements Runnable
{
static final int MOD = (int) 1e9 + 7;
int n;
char[] arr;
long[][] dp;
BufferedReader in;
PrintWriter out;
void solve() throws IOException
{
n = Integer.parseInt(in.readLine());
arr = new char[n];
dp = new long[n + 1][n + 1];
for (int i = 0; i < n; i++)
arr[i] = in.readLine().charAt(0);
for (int i = 0; i <= n; i++)
Arrays.fill(dp[i], -1);
dp[0][0] = 1;
if (arr[0] == 's')
out.println(find(1, 0));
else
out.println(find(1, 1));
}
long find(int curr, int backIndents)
{
if (backIndents < 0)
return 0;
if (curr == n)
return 1;
if (dp[curr][backIndents] != -1)
return dp[curr][backIndents];
long ans;
if (arr[curr] == 's')
{
if (arr[curr - 1] == 'f')
ans = find(curr + 1, backIndents);
else
ans = CMath.mod(find(curr + 1, backIndents) + find(curr, backIndents - 1), MOD);
}
else
{
ans = find(curr + 1, backIndents + 1);
if (arr[curr - 1] != 'f')
ans = CMath.mod(ans + find(curr, backIndents - 1), MOD);
}
return dp[curr][backIndents] = ans;
}
public Solver(BufferedReader in, PrintWriter out)
{
this.in = in;
this.out = out;
}
@Override public void run()
{
try
{
solve();
}
catch (IOException e)
{
e.printStackTrace();
}
}
}
static class CMath
{
static long mod(long number, long mod)
{
return number - (number / mod) * mod;
}
}
private PythonIndentation(InputStream inputStream, OutputStream outputStream)
{
BufferedReader in = new BufferedReader(new InputStreamReader(inputStream));
PrintWriter out = new PrintWriter(outputStream);
Thread thread = new Thread(null, new Solver(in, out), "PythonIndentation", 1 << 29);
try
{
thread.start();
thread.join();
}
catch (InterruptedException e)
{
e.printStackTrace();
}
finally
{
try
{
in.close();
}
catch (IOException e)
{
e.printStackTrace();
}
out.flush();
out.close();
}
}
}
</CODE>
<EVALUATION_RUBRIC>
- others: The time complexity does not fit any of the above categories or cannot be clearly classified.
- non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially.
- O(nlog(n)): The time complexity combines linear and logarithmic growth factors.
- O(n): The time complexity increases proportionally to the input size n in a linear manner.
- O(n^2): The time complexity grows proportionally to the square of the input size.
- O(log(n)): The time complexity increases logarithmically in relation to the input size.
- O(1): The time complexity is constant to the input size n.
- O(n^3): The time complexity scales proportionally to the cube of the input size.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
| 1,042
| 2,249
|
2,001
|
import java.io.*;
import java.util.*;
public class A4 {
public BufferedReader input;
public PrintWriter output;
public StringTokenizer stoken = new StringTokenizer("");
public static void main(String[] args) throws IOException {
new A4();
}
A4() throws IOException {
input = new BufferedReader(new InputStreamReader(System.in));
output = new PrintWriter(System.out);
run();
input.close();
output.close();
}
private void run() throws IOException {
int n = Math.toIntExact(nextLong());
int m = Math.toIntExact(nextLong());
int[] coor = new int[n + 1];
int[] ss = new int[n + 1];
for (int i = 0; i < n; i++) {
coor[i] = Math.toIntExact(nextLong());
}
coor[n] = 1000000000;
Arrays.sort(coor);
for (int i = 0; i < m; i++) {
long x1 = nextLong();
long x2 = nextLong();
nextLong();
if (x1 == 1 && x2 >= coor[0]) {
int l = 0;
int r = n + 1;
while (r - l > 1) {
int mi = (r + l) / 2;
if (coor[mi] > x2) {
r = mi;
} else {
l = mi;
}
}
ss[l]++;
}
}
long[] ans = new long[n + 1];
ans[n] = ss[n] + n;
long min = ans[n];
for (int i = n - 1; i > -1; i--) {
ans[i] = ans[i + 1] - 1 + ss[i];
if (ans[i] < min) {
min = ans[i];
}
}
System.out.println(min);
}
private Long nextLong() throws NumberFormatException, IOException {
return Long.parseLong(nextString());
}
private String nextString() throws IOException {
while (!stoken.hasMoreTokens()) {
String st = input.readLine();
stoken = new StringTokenizer(st);
}
return stoken.nextToken();
}
}
|
O(nlog(n))
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n.
</TASK>
<CODE>
import java.io.*;
import java.util.*;
public class A4 {
public BufferedReader input;
public PrintWriter output;
public StringTokenizer stoken = new StringTokenizer("");
public static void main(String[] args) throws IOException {
new A4();
}
A4() throws IOException {
input = new BufferedReader(new InputStreamReader(System.in));
output = new PrintWriter(System.out);
run();
input.close();
output.close();
}
private void run() throws IOException {
int n = Math.toIntExact(nextLong());
int m = Math.toIntExact(nextLong());
int[] coor = new int[n + 1];
int[] ss = new int[n + 1];
for (int i = 0; i < n; i++) {
coor[i] = Math.toIntExact(nextLong());
}
coor[n] = 1000000000;
Arrays.sort(coor);
for (int i = 0; i < m; i++) {
long x1 = nextLong();
long x2 = nextLong();
nextLong();
if (x1 == 1 && x2 >= coor[0]) {
int l = 0;
int r = n + 1;
while (r - l > 1) {
int mi = (r + l) / 2;
if (coor[mi] > x2) {
r = mi;
} else {
l = mi;
}
}
ss[l]++;
}
}
long[] ans = new long[n + 1];
ans[n] = ss[n] + n;
long min = ans[n];
for (int i = n - 1; i > -1; i--) {
ans[i] = ans[i + 1] - 1 + ss[i];
if (ans[i] < min) {
min = ans[i];
}
}
System.out.println(min);
}
private Long nextLong() throws NumberFormatException, IOException {
return Long.parseLong(nextString());
}
private String nextString() throws IOException {
while (!stoken.hasMoreTokens()) {
String st = input.readLine();
stoken = new StringTokenizer(st);
}
return stoken.nextToken();
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(n^3): The execution time ascends in proportion to the cube of the input size n.
- O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially.
- O(1): The execution time is unaffected by the size of the input n.
- O(n^2): The execution time ascends in proportion to the square of the input size n.
- O(log(n)): The execution time ascends in proportion to the logarithm of the input size n.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- O(n): The execution time ascends in a one-to-one ratio with the input size n.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n.
</TASK>
<CODE>
import java.io.*;
import java.util.*;
public class A4 {
public BufferedReader input;
public PrintWriter output;
public StringTokenizer stoken = new StringTokenizer("");
public static void main(String[] args) throws IOException {
new A4();
}
A4() throws IOException {
input = new BufferedReader(new InputStreamReader(System.in));
output = new PrintWriter(System.out);
run();
input.close();
output.close();
}
private void run() throws IOException {
int n = Math.toIntExact(nextLong());
int m = Math.toIntExact(nextLong());
int[] coor = new int[n + 1];
int[] ss = new int[n + 1];
for (int i = 0; i < n; i++) {
coor[i] = Math.toIntExact(nextLong());
}
coor[n] = 1000000000;
Arrays.sort(coor);
for (int i = 0; i < m; i++) {
long x1 = nextLong();
long x2 = nextLong();
nextLong();
if (x1 == 1 && x2 >= coor[0]) {
int l = 0;
int r = n + 1;
while (r - l > 1) {
int mi = (r + l) / 2;
if (coor[mi] > x2) {
r = mi;
} else {
l = mi;
}
}
ss[l]++;
}
}
long[] ans = new long[n + 1];
ans[n] = ss[n] + n;
long min = ans[n];
for (int i = n - 1; i > -1; i--) {
ans[i] = ans[i + 1] - 1 + ss[i];
if (ans[i] < min) {
min = ans[i];
}
}
System.out.println(min);
}
private Long nextLong() throws NumberFormatException, IOException {
return Long.parseLong(nextString());
}
private String nextString() throws IOException {
while (!stoken.hasMoreTokens()) {
String st = input.readLine();
stoken = new StringTokenizer(st);
}
return stoken.nextToken();
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(n^3): The execution time ascends in proportion to the cube of the input size n.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- O(n): The execution time ascends in a one-to-one ratio with the input size n.
- O(1): The execution time is unaffected by the size of the input n.
- O(log(n)): The execution time ascends in proportion to the logarithm of the input size n.
- O(n^2): The execution time ascends in proportion to the square of the input size n.
- O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially.
- others: The time complexity does not fit to any of the given categories or is ambiguous.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
| 840
| 1,997
|
61
|
import java.io.*;
import java.util.*;
public class A {
public static void main(String args[]) {
FastScanner scn = new FastScanner();
int n = scn.nextInt();
int s = scn.nextInt();
if (s <= n) {
System.out.println(1);
} else if (s > n) {
if(s%n == 0){
System.out.println(s/n);
} else {
System.out.println(s/n + 1);
}
}
}
public static class FastScanner {
BufferedReader br;
StringTokenizer st;
public FastScanner(String s) {
try {
br = new BufferedReader(new FileReader(s));
} catch (FileNotFoundException e) {
// TODO Auto-generated catch block
e.printStackTrace();
}
}
public FastScanner() {
br = new BufferedReader(new InputStreamReader(System.in));
}
String nextToken() {
while (st == null || !st.hasMoreElements()) {
try {
st = new StringTokenizer(br.readLine());
} catch (IOException e) {
// TODO Auto-generated catch block
e.printStackTrace();
}
}
return st.nextToken();
}
int nextInt() {
return Integer.parseInt(nextToken());
}
long nextLong() {
return Long.parseLong(nextToken());
}
double nextDouble() {
return Double.parseDouble(nextToken());
}
}
}
|
O(1)
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n.
</TASK>
<CODE>
import java.io.*;
import java.util.*;
public class A {
public static void main(String args[]) {
FastScanner scn = new FastScanner();
int n = scn.nextInt();
int s = scn.nextInt();
if (s <= n) {
System.out.println(1);
} else if (s > n) {
if(s%n == 0){
System.out.println(s/n);
} else {
System.out.println(s/n + 1);
}
}
}
public static class FastScanner {
BufferedReader br;
StringTokenizer st;
public FastScanner(String s) {
try {
br = new BufferedReader(new FileReader(s));
} catch (FileNotFoundException e) {
// TODO Auto-generated catch block
e.printStackTrace();
}
}
public FastScanner() {
br = new BufferedReader(new InputStreamReader(System.in));
}
String nextToken() {
while (st == null || !st.hasMoreElements()) {
try {
st = new StringTokenizer(br.readLine());
} catch (IOException e) {
// TODO Auto-generated catch block
e.printStackTrace();
}
}
return st.nextToken();
}
int nextInt() {
return Integer.parseInt(nextToken());
}
long nextLong() {
return Long.parseLong(nextToken());
}
double nextDouble() {
return Double.parseDouble(nextToken());
}
}
}
</CODE>
<EVALUATION_RUBRIC>
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- O(n^3): The execution time ascends in proportion to the cube of the input size n.
- O(n): The execution time ascends in a one-to-one ratio with the input size n.
- O(n^2): The execution time ascends in proportion to the square of the input size n.
- O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially.
- O(1): The execution time is unaffected by the size of the input n.
- O(log(n)): The execution time ascends in proportion to the logarithm of the input size n.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Classify the following Java code's worst-case time complexity according to its relationship to the input size n.
</TASK>
<CODE>
import java.io.*;
import java.util.*;
public class A {
public static void main(String args[]) {
FastScanner scn = new FastScanner();
int n = scn.nextInt();
int s = scn.nextInt();
if (s <= n) {
System.out.println(1);
} else if (s > n) {
if(s%n == 0){
System.out.println(s/n);
} else {
System.out.println(s/n + 1);
}
}
}
public static class FastScanner {
BufferedReader br;
StringTokenizer st;
public FastScanner(String s) {
try {
br = new BufferedReader(new FileReader(s));
} catch (FileNotFoundException e) {
// TODO Auto-generated catch block
e.printStackTrace();
}
}
public FastScanner() {
br = new BufferedReader(new InputStreamReader(System.in));
}
String nextToken() {
while (st == null || !st.hasMoreElements()) {
try {
st = new StringTokenizer(br.readLine());
} catch (IOException e) {
// TODO Auto-generated catch block
e.printStackTrace();
}
}
return st.nextToken();
}
int nextInt() {
return Integer.parseInt(nextToken());
}
long nextLong() {
return Long.parseLong(nextToken());
}
double nextDouble() {
return Double.parseDouble(nextToken());
}
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(n^3): The running time increases with the cube of the input size n.
- O(n): The running time grows linearly with the input size n.
- O(n^2): The running time increases with the square of the input size n.
- O(nlog(n)): The running time increases with the product of n and logarithm of n.
- O(1): The running time does not change regardless of the input size n.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- others: The code does not clearly correspond to the listed classes or has an unclassified time complexity.
- O(log(n)): The running time increases with the logarithm of the input size n.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
| 641
| 61
|
2,225
|
import static java.lang.Integer.parseInt;
import static java.lang.Long.parseLong;
import static java.lang.System.exit;
import java.io.BufferedReader;
import java.io.IOException;
import java.io.InputStreamReader;
import java.io.PrintWriter;
import java.util.StringTokenizer;
public class G {
static final int MOD = 1000000007;
static int add(int a, int b) {
int res = a + b;
return res >= MOD ? res - MOD : res;
}
static int sub(int a, int b) {
int res = a - b;
return res < 0 ? res + MOD : res;
}
static int mul(int a, int b) {
int res = (int) ((long) a * b % MOD);
return res < 0 ? res + MOD : res;
}
static int pow(int a, int e) {
if (e == 0) {
return 1;
}
int r = a;
for (int i = 30 - Integer.numberOfLeadingZeros(e); i >= 0; i--) {
r = mul(r, r);
if ((e & (1 << i)) != 0) {
r = mul(r, a);
}
}
return r;
}
static int inv(int a) {
return pow(a, MOD - 2);
}
static void solve() throws Exception {
String x = scanString();
// char xx[] = new char[700];
// fill(xx, '9');
// String x = new String(xx);
int n = x.length();
int pows[][] = new int[10][n];
for (int i = 0; i < 10; i++) {
pows[i][0] = 1;
for (int j = 1; j < n; j++) {
pows[i][j] = mul(pows[i][j - 1], i);
}
}
int ru[] = new int[n + 1];
for (int i = 1; i <= n; i++) {
ru[i] = add(1, mul(10, ru[i - 1]));
}
int facts[] = new int[n];
facts[0] = 1;
for (int i = 1; i < n; i++) {
facts[i] = mul(facts[i - 1], i);
}
int factsInv[] = new int[n];
factsInv[n - 1] = inv(facts[n - 1]);
for (int i = n - 1; i > 0; i--) {
factsInv[i - 1] = mul(factsInv[i], i);
}
int ans = 0;
int off[] = new int[10];
for (int i = 0; i < n; i++) {
int cd = x.charAt(i) - '0';
int l = n - i - 1;
for (int d = 1; d < 10; d++) {
for (int p = 0; p <= l; p++) {
int mul = d < cd ? add(mul(d, ru[p + off[d]]), mul(cd - d, ru[p + off[d] + 1])) : mul(cd, ru[p + off[d]]);
ans = add(ans, mul(mul, mul(mul(pows[d][l - p], pows[10 - d][p]), mul(facts[l], mul(factsInv[p], factsInv[l - p])))));
}
}
for (int d = 0; d <= cd; d++) {
++off[d];
}
}
for (int d = 1; d < 10; d++) {
ans = add(ans, ru[off[d]]);
}
out.print(ans);
}
static int scanInt() throws IOException {
return parseInt(scanString());
}
static long scanLong() throws IOException {
return parseLong(scanString());
}
static String scanString() throws IOException {
while (tok == null || !tok.hasMoreTokens()) {
tok = new StringTokenizer(in.readLine());
}
return tok.nextToken();
}
static BufferedReader in;
static PrintWriter out;
static StringTokenizer tok;
public static void main(String[] args) {
try {
in = new BufferedReader(new InputStreamReader(System.in));
out = new PrintWriter(System.out);
solve();
in.close();
out.close();
} catch (Throwable e) {
e.printStackTrace();
exit(1);
}
}
}
|
O(n^2)
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n.
</TASK>
<CODE>
import static java.lang.Integer.parseInt;
import static java.lang.Long.parseLong;
import static java.lang.System.exit;
import java.io.BufferedReader;
import java.io.IOException;
import java.io.InputStreamReader;
import java.io.PrintWriter;
import java.util.StringTokenizer;
public class G {
static final int MOD = 1000000007;
static int add(int a, int b) {
int res = a + b;
return res >= MOD ? res - MOD : res;
}
static int sub(int a, int b) {
int res = a - b;
return res < 0 ? res + MOD : res;
}
static int mul(int a, int b) {
int res = (int) ((long) a * b % MOD);
return res < 0 ? res + MOD : res;
}
static int pow(int a, int e) {
if (e == 0) {
return 1;
}
int r = a;
for (int i = 30 - Integer.numberOfLeadingZeros(e); i >= 0; i--) {
r = mul(r, r);
if ((e & (1 << i)) != 0) {
r = mul(r, a);
}
}
return r;
}
static int inv(int a) {
return pow(a, MOD - 2);
}
static void solve() throws Exception {
String x = scanString();
// char xx[] = new char[700];
// fill(xx, '9');
// String x = new String(xx);
int n = x.length();
int pows[][] = new int[10][n];
for (int i = 0; i < 10; i++) {
pows[i][0] = 1;
for (int j = 1; j < n; j++) {
pows[i][j] = mul(pows[i][j - 1], i);
}
}
int ru[] = new int[n + 1];
for (int i = 1; i <= n; i++) {
ru[i] = add(1, mul(10, ru[i - 1]));
}
int facts[] = new int[n];
facts[0] = 1;
for (int i = 1; i < n; i++) {
facts[i] = mul(facts[i - 1], i);
}
int factsInv[] = new int[n];
factsInv[n - 1] = inv(facts[n - 1]);
for (int i = n - 1; i > 0; i--) {
factsInv[i - 1] = mul(factsInv[i], i);
}
int ans = 0;
int off[] = new int[10];
for (int i = 0; i < n; i++) {
int cd = x.charAt(i) - '0';
int l = n - i - 1;
for (int d = 1; d < 10; d++) {
for (int p = 0; p <= l; p++) {
int mul = d < cd ? add(mul(d, ru[p + off[d]]), mul(cd - d, ru[p + off[d] + 1])) : mul(cd, ru[p + off[d]]);
ans = add(ans, mul(mul, mul(mul(pows[d][l - p], pows[10 - d][p]), mul(facts[l], mul(factsInv[p], factsInv[l - p])))));
}
}
for (int d = 0; d <= cd; d++) {
++off[d];
}
}
for (int d = 1; d < 10; d++) {
ans = add(ans, ru[off[d]]);
}
out.print(ans);
}
static int scanInt() throws IOException {
return parseInt(scanString());
}
static long scanLong() throws IOException {
return parseLong(scanString());
}
static String scanString() throws IOException {
while (tok == null || !tok.hasMoreTokens()) {
tok = new StringTokenizer(in.readLine());
}
return tok.nextToken();
}
static BufferedReader in;
static PrintWriter out;
static StringTokenizer tok;
public static void main(String[] args) {
try {
in = new BufferedReader(new InputStreamReader(System.in));
out = new PrintWriter(System.out);
solve();
in.close();
out.close();
} catch (Throwable e) {
e.printStackTrace();
exit(1);
}
}
}
</CODE>
<EVALUATION_RUBRIC>
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- O(n^3): The execution time ascends in proportion to the cube of the input size n.
- O(n): The execution time ascends in a one-to-one ratio with the input size n.
- O(log(n)): The execution time ascends in proportion to the logarithm of the input size n.
- O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially.
- O(n^2): The execution time ascends in proportion to the square of the input size n.
- O(1): The execution time is unaffected by the size of the input n.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Classify the following Java code's worst-case time complexity according to its relationship to the input size n.
</TASK>
<CODE>
import static java.lang.Integer.parseInt;
import static java.lang.Long.parseLong;
import static java.lang.System.exit;
import java.io.BufferedReader;
import java.io.IOException;
import java.io.InputStreamReader;
import java.io.PrintWriter;
import java.util.StringTokenizer;
public class G {
static final int MOD = 1000000007;
static int add(int a, int b) {
int res = a + b;
return res >= MOD ? res - MOD : res;
}
static int sub(int a, int b) {
int res = a - b;
return res < 0 ? res + MOD : res;
}
static int mul(int a, int b) {
int res = (int) ((long) a * b % MOD);
return res < 0 ? res + MOD : res;
}
static int pow(int a, int e) {
if (e == 0) {
return 1;
}
int r = a;
for (int i = 30 - Integer.numberOfLeadingZeros(e); i >= 0; i--) {
r = mul(r, r);
if ((e & (1 << i)) != 0) {
r = mul(r, a);
}
}
return r;
}
static int inv(int a) {
return pow(a, MOD - 2);
}
static void solve() throws Exception {
String x = scanString();
// char xx[] = new char[700];
// fill(xx, '9');
// String x = new String(xx);
int n = x.length();
int pows[][] = new int[10][n];
for (int i = 0; i < 10; i++) {
pows[i][0] = 1;
for (int j = 1; j < n; j++) {
pows[i][j] = mul(pows[i][j - 1], i);
}
}
int ru[] = new int[n + 1];
for (int i = 1; i <= n; i++) {
ru[i] = add(1, mul(10, ru[i - 1]));
}
int facts[] = new int[n];
facts[0] = 1;
for (int i = 1; i < n; i++) {
facts[i] = mul(facts[i - 1], i);
}
int factsInv[] = new int[n];
factsInv[n - 1] = inv(facts[n - 1]);
for (int i = n - 1; i > 0; i--) {
factsInv[i - 1] = mul(factsInv[i], i);
}
int ans = 0;
int off[] = new int[10];
for (int i = 0; i < n; i++) {
int cd = x.charAt(i) - '0';
int l = n - i - 1;
for (int d = 1; d < 10; d++) {
for (int p = 0; p <= l; p++) {
int mul = d < cd ? add(mul(d, ru[p + off[d]]), mul(cd - d, ru[p + off[d] + 1])) : mul(cd, ru[p + off[d]]);
ans = add(ans, mul(mul, mul(mul(pows[d][l - p], pows[10 - d][p]), mul(facts[l], mul(factsInv[p], factsInv[l - p])))));
}
}
for (int d = 0; d <= cd; d++) {
++off[d];
}
}
for (int d = 1; d < 10; d++) {
ans = add(ans, ru[off[d]]);
}
out.print(ans);
}
static int scanInt() throws IOException {
return parseInt(scanString());
}
static long scanLong() throws IOException {
return parseLong(scanString());
}
static String scanString() throws IOException {
while (tok == null || !tok.hasMoreTokens()) {
tok = new StringTokenizer(in.readLine());
}
return tok.nextToken();
}
static BufferedReader in;
static PrintWriter out;
static StringTokenizer tok;
public static void main(String[] args) {
try {
in = new BufferedReader(new InputStreamReader(System.in));
out = new PrintWriter(System.out);
solve();
in.close();
out.close();
} catch (Throwable e) {
e.printStackTrace();
exit(1);
}
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(nlog(n)): The running time increases with the product of n and logarithm of n.
- O(1): The running time does not change regardless of the input size n.
- O(n^2): The running time increases with the square of the input size n.
- O(log(n)): The running time increases with the logarithm of the input size n.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- others: The code does not clearly correspond to the listed classes or has an unclassified time complexity.
- O(n): The running time grows linearly with the input size n.
- O(n^3): The running time increases with the cube of the input size n.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
| 1,364
| 2,221
|
1,574
|
import java.io.*;
import java.util.*;
public class Solution {
private StringTokenizer st;
private BufferedReader in;
private PrintWriter out;
public void solve() throws IOException {
int n = nextInt();
int[] a = new int[n];
for (int i = 0; i < n; ++i) {
a[i] = nextInt();
}
int[] b = a.clone();
Arrays.sort(b);
int diff = 0;
for (int i = 0; i < n; ++i) {
if (a[i] != b[i]) {
diff++;
}
}
out.println(diff <= 2 ? "YES" : "NO");
}
public void run() throws IOException {
in = new BufferedReader(new InputStreamReader(System.in));
out = new PrintWriter(System.out);
eat("");
solve();
out.close();
}
void eat(String s) {
st = new StringTokenizer(s);
}
String next() throws IOException {
while (!st.hasMoreTokens()) {
String line = in.readLine();
if (line == null) {
return null;
}
eat(line);
}
return st.nextToken();
}
int nextInt() throws IOException {
return Integer.parseInt(next());
}
long nextLong() throws IOException {
return Long.parseLong(next());
}
double nextDouble() throws IOException {
return Double.parseDouble(next());
}
public static void main(String[] args) throws IOException {
Locale.setDefault(Locale.US);
new Solution().run();
}
}
|
O(nlog(n))
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n.
</TASK>
<CODE>
import java.io.*;
import java.util.*;
public class Solution {
private StringTokenizer st;
private BufferedReader in;
private PrintWriter out;
public void solve() throws IOException {
int n = nextInt();
int[] a = new int[n];
for (int i = 0; i < n; ++i) {
a[i] = nextInt();
}
int[] b = a.clone();
Arrays.sort(b);
int diff = 0;
for (int i = 0; i < n; ++i) {
if (a[i] != b[i]) {
diff++;
}
}
out.println(diff <= 2 ? "YES" : "NO");
}
public void run() throws IOException {
in = new BufferedReader(new InputStreamReader(System.in));
out = new PrintWriter(System.out);
eat("");
solve();
out.close();
}
void eat(String s) {
st = new StringTokenizer(s);
}
String next() throws IOException {
while (!st.hasMoreTokens()) {
String line = in.readLine();
if (line == null) {
return null;
}
eat(line);
}
return st.nextToken();
}
int nextInt() throws IOException {
return Integer.parseInt(next());
}
long nextLong() throws IOException {
return Long.parseLong(next());
}
double nextDouble() throws IOException {
return Double.parseDouble(next());
}
public static void main(String[] args) throws IOException {
Locale.setDefault(Locale.US);
new Solution().run();
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(log(n)): The execution time ascends in proportion to the logarithm of the input size n.
- O(1): The execution time is unaffected by the size of the input n.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- O(n^2): The execution time ascends in proportion to the square of the input size n.
- O(n^3): The execution time ascends in proportion to the cube of the input size n.
- O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially.
- O(n): The execution time ascends in a one-to-one ratio with the input size n.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Classify the following Java code's worst-case time complexity according to its relationship to the input size n.
</TASK>
<CODE>
import java.io.*;
import java.util.*;
public class Solution {
private StringTokenizer st;
private BufferedReader in;
private PrintWriter out;
public void solve() throws IOException {
int n = nextInt();
int[] a = new int[n];
for (int i = 0; i < n; ++i) {
a[i] = nextInt();
}
int[] b = a.clone();
Arrays.sort(b);
int diff = 0;
for (int i = 0; i < n; ++i) {
if (a[i] != b[i]) {
diff++;
}
}
out.println(diff <= 2 ? "YES" : "NO");
}
public void run() throws IOException {
in = new BufferedReader(new InputStreamReader(System.in));
out = new PrintWriter(System.out);
eat("");
solve();
out.close();
}
void eat(String s) {
st = new StringTokenizer(s);
}
String next() throws IOException {
while (!st.hasMoreTokens()) {
String line = in.readLine();
if (line == null) {
return null;
}
eat(line);
}
return st.nextToken();
}
int nextInt() throws IOException {
return Integer.parseInt(next());
}
long nextLong() throws IOException {
return Long.parseLong(next());
}
double nextDouble() throws IOException {
return Double.parseDouble(next());
}
public static void main(String[] args) throws IOException {
Locale.setDefault(Locale.US);
new Solution().run();
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(n^2): The running time increases with the square of the input size n.
- O(1): The running time does not change regardless of the input size n.
- O(n): The running time grows linearly with the input size n.
- O(log(n)): The running time increases with the logarithm of the input size n.
- O(n^3): The running time increases with the cube of the input size n.
- O(nlog(n)): The running time increases with the product of n and logarithm of n.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- others: The code does not clearly correspond to the listed classes or has an unclassified time complexity.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
| 687
| 1,571
|
568
|
import java.util.Scanner;
public class B_14 {
@SuppressWarnings("resource")
public static void main(String[] args) {
Scanner input = new Scanner(System.in);
int t = input.nextInt();
for(int test = 0; test < t; test++){
int n = input.nextInt();
if(n % 2 == 0){
if(Math.sqrt(n / 2) == (int)(Math.sqrt(n / 2))){
System.out.println("YES");
}else if(n % 4 == 0 && Math.sqrt(n / 4) == (int)(Math.sqrt(n / 4))){
System.out.println("YES");
}else{
System.out.println("NO");
}
}else{
System.out.println("NO");
}
}
}
}
|
O(n)
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Determine the worst-case time complexity category of a given Java code based on input size n.
</TASK>
<CODE>
import java.util.Scanner;
public class B_14 {
@SuppressWarnings("resource")
public static void main(String[] args) {
Scanner input = new Scanner(System.in);
int t = input.nextInt();
for(int test = 0; test < t; test++){
int n = input.nextInt();
if(n % 2 == 0){
if(Math.sqrt(n / 2) == (int)(Math.sqrt(n / 2))){
System.out.println("YES");
}else if(n % 4 == 0 && Math.sqrt(n / 4) == (int)(Math.sqrt(n / 4))){
System.out.println("YES");
}else{
System.out.println("NO");
}
}else{
System.out.println("NO");
}
}
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(n^2): The time complexity grows proportionally to the square of the input size.
- O(n): The time complexity increases proportionally to the input size n in a linear manner.
- O(n^3): The time complexity scales proportionally to the cube of the input size.
- O(log(n)): The time complexity increases logarithmically in relation to the input size.
- O(1): The time complexity is constant to the input size n.
- O(nlog(n)): The time complexity combines linear and logarithmic growth factors.
- non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Determine the worst-case time complexity category of a given Java code based on input size n.
</TASK>
<CODE>
import java.util.Scanner;
public class B_14 {
@SuppressWarnings("resource")
public static void main(String[] args) {
Scanner input = new Scanner(System.in);
int t = input.nextInt();
for(int test = 0; test < t; test++){
int n = input.nextInt();
if(n % 2 == 0){
if(Math.sqrt(n / 2) == (int)(Math.sqrt(n / 2))){
System.out.println("YES");
}else if(n % 4 == 0 && Math.sqrt(n / 4) == (int)(Math.sqrt(n / 4))){
System.out.println("YES");
}else{
System.out.println("NO");
}
}else{
System.out.println("NO");
}
}
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(nlog(n)): The time complexity combines linear and logarithmic growth factors.
- O(n): The time complexity increases proportionally to the input size n in a linear manner.
- O(n^3): The time complexity scales proportionally to the cube of the input size.
- O(n^2): The time complexity grows proportionally to the square of the input size.
- O(log(n)): The time complexity increases logarithmically in relation to the input size.
- non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially.
- O(1): The time complexity is constant to the input size n.
- others: The time complexity does not fit any of the above categories or cannot be clearly classified.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
| 502
| 567
|
3,446
|
//package round23;
import java.io.PrintWriter;
import java.io.StringReader;
import java.util.Arrays;
import java.util.HashSet;
import java.util.Scanner;
public class A {
private Scanner in;
private PrintWriter out;
// private String INPUT = add("a", 100);
private String INPUT = "";
public void solve()
{
String str = in.next();
int n = str.length();
for(int k = n - 1;k >= 1;k--){
HashSet<String> set = new HashSet<String>();
for(int i = 0;i < str.length() - k + 1;i++){
if(!set.add(str.substring(i, i + k))){
out.println(k);
return;
}
}
}
out.println(0);
}
public void run() throws Exception
{
in = INPUT.isEmpty() ? new Scanner(System.in) : new Scanner(new StringReader(INPUT));
out = new PrintWriter(System.out);
solve();
out.flush();
}
public static String add(String str, int k)
{
StringBuilder mul = new StringBuilder(str);
StringBuilder ret = new StringBuilder();
for(int i = k;i > 0;i >>= 1){
if((i & 1) == 1)ret.append(mul);
mul.append(mul);
}
return ret.toString();
}
public static void main(String[] args) throws Exception
{
new A().run();
}
private int ni() { return Integer.parseInt(in.next()); }
private static void tr(Object... o) { System.out.println(o.length == 1 ? o[0] : Arrays.toString(o)); }
}
|
O(n^3)
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Determine the worst-case time complexity category of a given Java code based on input size n.
</TASK>
<CODE>
//package round23;
import java.io.PrintWriter;
import java.io.StringReader;
import java.util.Arrays;
import java.util.HashSet;
import java.util.Scanner;
public class A {
private Scanner in;
private PrintWriter out;
// private String INPUT = add("a", 100);
private String INPUT = "";
public void solve()
{
String str = in.next();
int n = str.length();
for(int k = n - 1;k >= 1;k--){
HashSet<String> set = new HashSet<String>();
for(int i = 0;i < str.length() - k + 1;i++){
if(!set.add(str.substring(i, i + k))){
out.println(k);
return;
}
}
}
out.println(0);
}
public void run() throws Exception
{
in = INPUT.isEmpty() ? new Scanner(System.in) : new Scanner(new StringReader(INPUT));
out = new PrintWriter(System.out);
solve();
out.flush();
}
public static String add(String str, int k)
{
StringBuilder mul = new StringBuilder(str);
StringBuilder ret = new StringBuilder();
for(int i = k;i > 0;i >>= 1){
if((i & 1) == 1)ret.append(mul);
mul.append(mul);
}
return ret.toString();
}
public static void main(String[] args) throws Exception
{
new A().run();
}
private int ni() { return Integer.parseInt(in.next()); }
private static void tr(Object... o) { System.out.println(o.length == 1 ? o[0] : Arrays.toString(o)); }
}
</CODE>
<EVALUATION_RUBRIC>
- O(n^2): The time complexity grows proportionally to the square of the input size.
- O(1): The time complexity is constant to the input size n.
- O(n^3): The time complexity scales proportionally to the cube of the input size.
- non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially.
- O(nlog(n)): The time complexity combines linear and logarithmic growth factors.
- O(n): The time complexity increases proportionally to the input size n in a linear manner.
- O(log(n)): The time complexity increases logarithmically in relation to the input size.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n.
</TASK>
<CODE>
//package round23;
import java.io.PrintWriter;
import java.io.StringReader;
import java.util.Arrays;
import java.util.HashSet;
import java.util.Scanner;
public class A {
private Scanner in;
private PrintWriter out;
// private String INPUT = add("a", 100);
private String INPUT = "";
public void solve()
{
String str = in.next();
int n = str.length();
for(int k = n - 1;k >= 1;k--){
HashSet<String> set = new HashSet<String>();
for(int i = 0;i < str.length() - k + 1;i++){
if(!set.add(str.substring(i, i + k))){
out.println(k);
return;
}
}
}
out.println(0);
}
public void run() throws Exception
{
in = INPUT.isEmpty() ? new Scanner(System.in) : new Scanner(new StringReader(INPUT));
out = new PrintWriter(System.out);
solve();
out.flush();
}
public static String add(String str, int k)
{
StringBuilder mul = new StringBuilder(str);
StringBuilder ret = new StringBuilder();
for(int i = k;i > 0;i >>= 1){
if((i & 1) == 1)ret.append(mul);
mul.append(mul);
}
return ret.toString();
}
public static void main(String[] args) throws Exception
{
new A().run();
}
private int ni() { return Integer.parseInt(in.next()); }
private static void tr(Object... o) { System.out.println(o.length == 1 ? o[0] : Arrays.toString(o)); }
}
</CODE>
<EVALUATION_RUBRIC>
- O(1): The execution time is unaffected by the size of the input n.
- O(n^3): The execution time ascends in proportion to the cube of the input size n.
- O(log(n)): The execution time ascends in proportion to the logarithm of the input size n.
- O(n): The execution time ascends in a one-to-one ratio with the input size n.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- others: The time complexity does not fit to any of the given categories or is ambiguous.
- O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially.
- O(n^2): The execution time ascends in proportion to the square of the input size n.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
| 686
| 3,440
|
1,818
|
import java.util.Arrays;
import java.util.Scanner;
/**
*
* @author Natasha
*/
public class Main{
public static void main(String[] args) {
Scanner in = new Scanner(System.in);
int produzeni = in.nextInt();
int devices = in.nextInt();
int stekovi = in.nextInt();
int [] filter = new int[produzeni];
for(int i = 0; i<produzeni; i++){
filter[i] = in.nextInt();
}
Arrays.sort(filter);
int filt_no = filter.length-1;
if(devices<=stekovi) {
System.out.println("0");
return;
}
int used = 0;
while(devices>stekovi){
try{
stekovi+=filter[filt_no--]-1;
}
catch(Exception e){
System.out.println("-1");
return;
}
}
System.out.println(filter.length - filt_no-1);
}
}
|
O(nlog(n))
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Determine the worst-case time complexity category of a given Java code based on input size n.
</TASK>
<CODE>
import java.util.Arrays;
import java.util.Scanner;
/**
*
* @author Natasha
*/
public class Main{
public static void main(String[] args) {
Scanner in = new Scanner(System.in);
int produzeni = in.nextInt();
int devices = in.nextInt();
int stekovi = in.nextInt();
int [] filter = new int[produzeni];
for(int i = 0; i<produzeni; i++){
filter[i] = in.nextInt();
}
Arrays.sort(filter);
int filt_no = filter.length-1;
if(devices<=stekovi) {
System.out.println("0");
return;
}
int used = 0;
while(devices>stekovi){
try{
stekovi+=filter[filt_no--]-1;
}
catch(Exception e){
System.out.println("-1");
return;
}
}
System.out.println(filter.length - filt_no-1);
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(nlog(n)): The time complexity combines linear and logarithmic growth factors.
- O(1): The time complexity is constant to the input size n.
- non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially.
- O(log(n)): The time complexity increases logarithmically in relation to the input size.
- O(n): The time complexity increases proportionally to the input size n in a linear manner.
- O(n^2): The time complexity grows proportionally to the square of the input size.
- O(n^3): The time complexity scales proportionally to the cube of the input size.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Classify the following Java code's worst-case time complexity according to its relationship to the input size n.
</TASK>
<CODE>
import java.util.Arrays;
import java.util.Scanner;
/**
*
* @author Natasha
*/
public class Main{
public static void main(String[] args) {
Scanner in = new Scanner(System.in);
int produzeni = in.nextInt();
int devices = in.nextInt();
int stekovi = in.nextInt();
int [] filter = new int[produzeni];
for(int i = 0; i<produzeni; i++){
filter[i] = in.nextInt();
}
Arrays.sort(filter);
int filt_no = filter.length-1;
if(devices<=stekovi) {
System.out.println("0");
return;
}
int used = 0;
while(devices>stekovi){
try{
stekovi+=filter[filt_no--]-1;
}
catch(Exception e){
System.out.println("-1");
return;
}
}
System.out.println(filter.length - filt_no-1);
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(n^2): The running time increases with the square of the input size n.
- O(n): The running time grows linearly with the input size n.
- others: The code does not clearly correspond to the listed classes or has an unclassified time complexity.
- O(log(n)): The running time increases with the logarithm of the input size n.
- O(1): The running time does not change regardless of the input size n.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- O(nlog(n)): The running time increases with the product of n and logarithm of n.
- O(n^3): The running time increases with the cube of the input size n.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
| 540
| 1,814
|
3,910
|
import java.util.*;
import java.io.*;
public class uo{
public static void main(String[] args) throws IOException{
BufferedReader br = new BufferedReader(new InputStreamReader(System.in));
StringTokenizer st = new StringTokenizer(br.readLine());
int testcases = Integer.parseInt(st.nextToken());
for(int lmn=0;lmn<testcases;lmn++){
st = new StringTokenizer(br.readLine());
int n = Integer.parseInt(st.nextToken());
// int k = Integer.parseInt(st.nextToken());
// st = new StringTokenizer(br.readLine());
ArrayList<Integer> a = new ArrayList<>();
for(int lmn1 = 0;lmn1<n;lmn1++){
st = new StringTokenizer(br.readLine());
int a1 = Integer.parseInt(st.nextToken());
if(a.size()>0 && (a1==1)){
// a.add(a1);
}
else if(a.size()>0){
if(a.size()==1){
a.remove(0);
}
else{
int i = a.size()-1;
while(a.size()>0 && i>=0 && a.get(i)+1 != a1){
a.remove(i);
i--;
}
a.remove(a.size()-1);
// System.out.println(a+" "+i);
}
}
// while(a.size()>0 && a.get(a.size()-1)+1<a1){
// a.remove(a.size()-1);
// }
if(a.size()==0){
a.add(a1);
}
else{
a.add(a1);
}
if(a.size()==1){
System.out.println(a.get(0));
}
else{
for(int i=0;i<a.size()-1;i++){
System.out.print(a.get(i)+".");
}
System.out.println(a.get(a.size()-1));
}
}
}
}
}
|
O(n^3)
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Determine the worst-case time complexity category of a given Java code based on input size n.
</TASK>
<CODE>
import java.util.*;
import java.io.*;
public class uo{
public static void main(String[] args) throws IOException{
BufferedReader br = new BufferedReader(new InputStreamReader(System.in));
StringTokenizer st = new StringTokenizer(br.readLine());
int testcases = Integer.parseInt(st.nextToken());
for(int lmn=0;lmn<testcases;lmn++){
st = new StringTokenizer(br.readLine());
int n = Integer.parseInt(st.nextToken());
// int k = Integer.parseInt(st.nextToken());
// st = new StringTokenizer(br.readLine());
ArrayList<Integer> a = new ArrayList<>();
for(int lmn1 = 0;lmn1<n;lmn1++){
st = new StringTokenizer(br.readLine());
int a1 = Integer.parseInt(st.nextToken());
if(a.size()>0 && (a1==1)){
// a.add(a1);
}
else if(a.size()>0){
if(a.size()==1){
a.remove(0);
}
else{
int i = a.size()-1;
while(a.size()>0 && i>=0 && a.get(i)+1 != a1){
a.remove(i);
i--;
}
a.remove(a.size()-1);
// System.out.println(a+" "+i);
}
}
// while(a.size()>0 && a.get(a.size()-1)+1<a1){
// a.remove(a.size()-1);
// }
if(a.size()==0){
a.add(a1);
}
else{
a.add(a1);
}
if(a.size()==1){
System.out.println(a.get(0));
}
else{
for(int i=0;i<a.size()-1;i++){
System.out.print(a.get(i)+".");
}
System.out.println(a.get(a.size()-1));
}
}
}
}
}
</CODE>
<EVALUATION_RUBRIC>
- non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially.
- O(n^3): The time complexity scales proportionally to the cube of the input size.
- O(n^2): The time complexity grows proportionally to the square of the input size.
- O(nlog(n)): The time complexity combines linear and logarithmic growth factors.
- O(n): The time complexity increases proportionally to the input size n in a linear manner.
- O(log(n)): The time complexity increases logarithmically in relation to the input size.
- O(1): The time complexity is constant to the input size n.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n.
</TASK>
<CODE>
import java.util.*;
import java.io.*;
public class uo{
public static void main(String[] args) throws IOException{
BufferedReader br = new BufferedReader(new InputStreamReader(System.in));
StringTokenizer st = new StringTokenizer(br.readLine());
int testcases = Integer.parseInt(st.nextToken());
for(int lmn=0;lmn<testcases;lmn++){
st = new StringTokenizer(br.readLine());
int n = Integer.parseInt(st.nextToken());
// int k = Integer.parseInt(st.nextToken());
// st = new StringTokenizer(br.readLine());
ArrayList<Integer> a = new ArrayList<>();
for(int lmn1 = 0;lmn1<n;lmn1++){
st = new StringTokenizer(br.readLine());
int a1 = Integer.parseInt(st.nextToken());
if(a.size()>0 && (a1==1)){
// a.add(a1);
}
else if(a.size()>0){
if(a.size()==1){
a.remove(0);
}
else{
int i = a.size()-1;
while(a.size()>0 && i>=0 && a.get(i)+1 != a1){
a.remove(i);
i--;
}
a.remove(a.size()-1);
// System.out.println(a+" "+i);
}
}
// while(a.size()>0 && a.get(a.size()-1)+1<a1){
// a.remove(a.size()-1);
// }
if(a.size()==0){
a.add(a1);
}
else{
a.add(a1);
}
if(a.size()==1){
System.out.println(a.get(0));
}
else{
for(int i=0;i<a.size()-1;i++){
System.out.print(a.get(i)+".");
}
System.out.println(a.get(a.size()-1));
}
}
}
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(1): The execution time is unaffected by the size of the input n.
- O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially.
- O(n^3): The execution time ascends in proportion to the cube of the input size n.
- O(n): The execution time ascends in a one-to-one ratio with the input size n.
- O(n^2): The execution time ascends in proportion to the square of the input size n.
- O(log(n)): The execution time ascends in proportion to the logarithm of the input size n.
- others: The time complexity does not fit to any of the given categories or is ambiguous.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
| 740
| 3,900
|
3,195
|
import java.io.*;
import java.util.*;
public class Problem1 {
/**
* @param args
*/
public static void main(String[] args) {
// TODO Auto-generated method stub
Scanner sc = new Scanner(System.in);
int n = sc.nextInt();
if (n < 0) {
int first = n / 10;
int second = (n / 100)*10 + (n % 10);
if (first > second)
System.out.println(first);
else
System.out.println(second);
} else {
System.out.println(n);
}
}
}
|
O(1)
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Classify the following Java code's worst-case time complexity according to its relationship to the input size n.
</TASK>
<CODE>
import java.io.*;
import java.util.*;
public class Problem1 {
/**
* @param args
*/
public static void main(String[] args) {
// TODO Auto-generated method stub
Scanner sc = new Scanner(System.in);
int n = sc.nextInt();
if (n < 0) {
int first = n / 10;
int second = (n / 100)*10 + (n % 10);
if (first > second)
System.out.println(first);
else
System.out.println(second);
} else {
System.out.println(n);
}
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(nlog(n)): The running time increases with the product of n and logarithm of n.
- O(1): The running time does not change regardless of the input size n.
- O(n^3): The running time increases with the cube of the input size n.
- O(n): The running time grows linearly with the input size n.
- O(n^2): The running time increases with the square of the input size n.
- O(log(n)): The running time increases with the logarithm of the input size n.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Classify the following Java code's worst-case time complexity according to its relationship to the input size n.
</TASK>
<CODE>
import java.io.*;
import java.util.*;
public class Problem1 {
/**
* @param args
*/
public static void main(String[] args) {
// TODO Auto-generated method stub
Scanner sc = new Scanner(System.in);
int n = sc.nextInt();
if (n < 0) {
int first = n / 10;
int second = (n / 100)*10 + (n % 10);
if (first > second)
System.out.println(first);
else
System.out.println(second);
} else {
System.out.println(n);
}
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(log(n)): The running time increases with the logarithm of the input size n.
- O(n^3): The running time increases with the cube of the input size n.
- O(nlog(n)): The running time increases with the product of n and logarithm of n.
- O(n^2): The running time increases with the square of the input size n.
- O(1): The running time does not change regardless of the input size n.
- O(n): The running time grows linearly with the input size n.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- others: The code does not clearly correspond to the listed classes or has an unclassified time complexity.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
| 470
| 3,189
|
2,763
|
import java.lang.*;
import java.util.*;
import java.io.*;
public class Challenge {
public static void main(String[] args) throws java.lang.Exception {
InputStream inputStream = System.in;
OutputStream outputStream = System.out;
InputReader in = new InputReader(inputStream);
PrintWriter out = new PrintWriter(outputStream);
TaskA solver = new TaskA();
solver.solve(in, out);
out.close();
}
}
class TaskA {
public void solve(InputReader in, PrintWriter out) {
int n = in.nextInt();
if (n == 1) {
out.println("1");
} else if (n == 2) {
out.println("2");
} else if (n == 3) {
out.println("6");
} else if (n%2 > 0) {
out.println(1L * n * (n-1) * (n-2));
} else if (n%3 == 0) {
out.println(1L * (n-1) * (n-2) * (n-3));
} else {
out.println(1L * n * (n-1) * (n-3));
}
}
}
class InputReader {
public BufferedReader reader;
public StringTokenizer tokenizer;
public InputReader(InputStream stream) {
reader = new BufferedReader(new InputStreamReader(stream), 32768);
tokenizer = null;
}
public String next() {
while (tokenizer==null || !tokenizer.hasMoreTokens()) {
try {
tokenizer = new StringTokenizer(reader.readLine());
} catch (IOException e) {
throw new RuntimeException(e);
}
}
return tokenizer.nextToken();
}
public int nextInt() {
return Integer.parseInt(next());
}
public long nextLong() {
return Long.parseLong(next());
}
}
|
O(1)
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n.
</TASK>
<CODE>
import java.lang.*;
import java.util.*;
import java.io.*;
public class Challenge {
public static void main(String[] args) throws java.lang.Exception {
InputStream inputStream = System.in;
OutputStream outputStream = System.out;
InputReader in = new InputReader(inputStream);
PrintWriter out = new PrintWriter(outputStream);
TaskA solver = new TaskA();
solver.solve(in, out);
out.close();
}
}
class TaskA {
public void solve(InputReader in, PrintWriter out) {
int n = in.nextInt();
if (n == 1) {
out.println("1");
} else if (n == 2) {
out.println("2");
} else if (n == 3) {
out.println("6");
} else if (n%2 > 0) {
out.println(1L * n * (n-1) * (n-2));
} else if (n%3 == 0) {
out.println(1L * (n-1) * (n-2) * (n-3));
} else {
out.println(1L * n * (n-1) * (n-3));
}
}
}
class InputReader {
public BufferedReader reader;
public StringTokenizer tokenizer;
public InputReader(InputStream stream) {
reader = new BufferedReader(new InputStreamReader(stream), 32768);
tokenizer = null;
}
public String next() {
while (tokenizer==null || !tokenizer.hasMoreTokens()) {
try {
tokenizer = new StringTokenizer(reader.readLine());
} catch (IOException e) {
throw new RuntimeException(e);
}
}
return tokenizer.nextToken();
}
public int nextInt() {
return Integer.parseInt(next());
}
public long nextLong() {
return Long.parseLong(next());
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(n^3): The execution time ascends in proportion to the cube of the input size n.
- O(n): The execution time ascends in a one-to-one ratio with the input size n.
- O(n^2): The execution time ascends in proportion to the square of the input size n.
- O(log(n)): The execution time ascends in proportion to the logarithm of the input size n.
- O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially.
- O(1): The execution time is unaffected by the size of the input n.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Determine the worst-case time complexity category of a given Java code based on input size n.
</TASK>
<CODE>
import java.lang.*;
import java.util.*;
import java.io.*;
public class Challenge {
public static void main(String[] args) throws java.lang.Exception {
InputStream inputStream = System.in;
OutputStream outputStream = System.out;
InputReader in = new InputReader(inputStream);
PrintWriter out = new PrintWriter(outputStream);
TaskA solver = new TaskA();
solver.solve(in, out);
out.close();
}
}
class TaskA {
public void solve(InputReader in, PrintWriter out) {
int n = in.nextInt();
if (n == 1) {
out.println("1");
} else if (n == 2) {
out.println("2");
} else if (n == 3) {
out.println("6");
} else if (n%2 > 0) {
out.println(1L * n * (n-1) * (n-2));
} else if (n%3 == 0) {
out.println(1L * (n-1) * (n-2) * (n-3));
} else {
out.println(1L * n * (n-1) * (n-3));
}
}
}
class InputReader {
public BufferedReader reader;
public StringTokenizer tokenizer;
public InputReader(InputStream stream) {
reader = new BufferedReader(new InputStreamReader(stream), 32768);
tokenizer = null;
}
public String next() {
while (tokenizer==null || !tokenizer.hasMoreTokens()) {
try {
tokenizer = new StringTokenizer(reader.readLine());
} catch (IOException e) {
throw new RuntimeException(e);
}
}
return tokenizer.nextToken();
}
public int nextInt() {
return Integer.parseInt(next());
}
public long nextLong() {
return Long.parseLong(next());
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(n^2): The time complexity grows proportionally to the square of the input size.
- O(n): The time complexity increases proportionally to the input size n in a linear manner.
- O(n^3): The time complexity scales proportionally to the cube of the input size.
- O(nlog(n)): The time complexity combines linear and logarithmic growth factors.
- O(1): The time complexity is constant to the input size n.
- non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially.
- others: The time complexity does not fit any of the above categories or cannot be clearly classified.
- O(log(n)): The time complexity increases logarithmically in relation to the input size.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
| 753
| 2,757
|
286
|
import java.io.OutputStream;
import java.io.IOException;
import java.io.InputStream;
import java.io.PrintWriter;
import java.util.InputMismatchException;
import java.io.IOException;
import java.io.InputStream;
/**
* Built using CHelper plug-in
* Actual solution is at the top
*
* @author Pradyumn
*/
public class Main {
public static void main(String[] args) {
InputStream inputStream = System.in;
OutputStream outputStream = System.out;
FastReader in = new FastReader(inputStream);
PrintWriter out = new PrintWriter(outputStream);
TaskB solver = new TaskB();
solver.solve(1, in, out);
out.close();
}
static class TaskB {
FastReader in;
PrintWriter out;
int n;
public void solve(int testNumber, FastReader in, PrintWriter out) {
this.in = in;
this.out = out;
n = in.nextInt();
if (n % 4 != 0) {
out.println("! -1");
return;
}
int low = 0;
int high = n >> 1;
int fSign = Integer.signum(BValue(low));
if (fSign == 0) {
out.println("! " + (low + 1));
return;
}
while (high - low > 1) {
int mid = (high + low) >> 1;
int mSign = Integer.signum(BValue(mid));
if (mSign == 0) {
out.println("! " + (mid + 1));
return;
}
if (mSign == -fSign) {
high = mid;
} else {
low = mid;
}
}
out.println("! -1");
}
public int BValue(int index) {
out.println("? " + (index + 1));
out.flush();
int f = in.nextInt();
out.println("? " + (index + 1 + (n >> 1)));
out.flush();
int s = in.nextInt();
return f - s;
}
}
static class FastReader {
private InputStream stream;
private byte[] buf = new byte[8192];
private int curChar;
private int pnumChars;
public FastReader(InputStream stream) {
this.stream = stream;
}
private int pread() {
if (pnumChars == -1) {
throw new InputMismatchException();
}
if (curChar >= pnumChars) {
curChar = 0;
try {
pnumChars = stream.read(buf);
} catch (IOException e) {
throw new InputMismatchException();
}
if (pnumChars <= 0) {
return -1;
}
}
return buf[curChar++];
}
public int nextInt() {
int c = pread();
while (isSpaceChar(c))
c = pread();
int sgn = 1;
if (c == '-') {
sgn = -1;
c = pread();
}
int res = 0;
do {
if (c == ',') {
c = pread();
}
if (c < '0' || c > '9') {
throw new InputMismatchException();
}
res *= 10;
res += c - '0';
c = pread();
} while (!isSpaceChar(c));
return res * sgn;
}
private boolean isSpaceChar(int c) {
return c == ' ' || c == '\n' || c == '\r' || c == '\t' || c == -1;
}
}
}
|
O(log(n))
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Classify the following Java code's worst-case time complexity according to its relationship to the input size n.
</TASK>
<CODE>
import java.io.OutputStream;
import java.io.IOException;
import java.io.InputStream;
import java.io.PrintWriter;
import java.util.InputMismatchException;
import java.io.IOException;
import java.io.InputStream;
/**
* Built using CHelper plug-in
* Actual solution is at the top
*
* @author Pradyumn
*/
public class Main {
public static void main(String[] args) {
InputStream inputStream = System.in;
OutputStream outputStream = System.out;
FastReader in = new FastReader(inputStream);
PrintWriter out = new PrintWriter(outputStream);
TaskB solver = new TaskB();
solver.solve(1, in, out);
out.close();
}
static class TaskB {
FastReader in;
PrintWriter out;
int n;
public void solve(int testNumber, FastReader in, PrintWriter out) {
this.in = in;
this.out = out;
n = in.nextInt();
if (n % 4 != 0) {
out.println("! -1");
return;
}
int low = 0;
int high = n >> 1;
int fSign = Integer.signum(BValue(low));
if (fSign == 0) {
out.println("! " + (low + 1));
return;
}
while (high - low > 1) {
int mid = (high + low) >> 1;
int mSign = Integer.signum(BValue(mid));
if (mSign == 0) {
out.println("! " + (mid + 1));
return;
}
if (mSign == -fSign) {
high = mid;
} else {
low = mid;
}
}
out.println("! -1");
}
public int BValue(int index) {
out.println("? " + (index + 1));
out.flush();
int f = in.nextInt();
out.println("? " + (index + 1 + (n >> 1)));
out.flush();
int s = in.nextInt();
return f - s;
}
}
static class FastReader {
private InputStream stream;
private byte[] buf = new byte[8192];
private int curChar;
private int pnumChars;
public FastReader(InputStream stream) {
this.stream = stream;
}
private int pread() {
if (pnumChars == -1) {
throw new InputMismatchException();
}
if (curChar >= pnumChars) {
curChar = 0;
try {
pnumChars = stream.read(buf);
} catch (IOException e) {
throw new InputMismatchException();
}
if (pnumChars <= 0) {
return -1;
}
}
return buf[curChar++];
}
public int nextInt() {
int c = pread();
while (isSpaceChar(c))
c = pread();
int sgn = 1;
if (c == '-') {
sgn = -1;
c = pread();
}
int res = 0;
do {
if (c == ',') {
c = pread();
}
if (c < '0' || c > '9') {
throw new InputMismatchException();
}
res *= 10;
res += c - '0';
c = pread();
} while (!isSpaceChar(c));
return res * sgn;
}
private boolean isSpaceChar(int c) {
return c == ' ' || c == '\n' || c == '\r' || c == '\t' || c == -1;
}
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(1): The running time does not change regardless of the input size n.
- O(n): The running time grows linearly with the input size n.
- O(nlog(n)): The running time increases with the product of n and logarithm of n.
- O(n^3): The running time increases with the cube of the input size n.
- O(n^2): The running time increases with the square of the input size n.
- O(log(n)): The running time increases with the logarithm of the input size n.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Classify the following Java code's worst-case time complexity according to its relationship to the input size n.
</TASK>
<CODE>
import java.io.OutputStream;
import java.io.IOException;
import java.io.InputStream;
import java.io.PrintWriter;
import java.util.InputMismatchException;
import java.io.IOException;
import java.io.InputStream;
/**
* Built using CHelper plug-in
* Actual solution is at the top
*
* @author Pradyumn
*/
public class Main {
public static void main(String[] args) {
InputStream inputStream = System.in;
OutputStream outputStream = System.out;
FastReader in = new FastReader(inputStream);
PrintWriter out = new PrintWriter(outputStream);
TaskB solver = new TaskB();
solver.solve(1, in, out);
out.close();
}
static class TaskB {
FastReader in;
PrintWriter out;
int n;
public void solve(int testNumber, FastReader in, PrintWriter out) {
this.in = in;
this.out = out;
n = in.nextInt();
if (n % 4 != 0) {
out.println("! -1");
return;
}
int low = 0;
int high = n >> 1;
int fSign = Integer.signum(BValue(low));
if (fSign == 0) {
out.println("! " + (low + 1));
return;
}
while (high - low > 1) {
int mid = (high + low) >> 1;
int mSign = Integer.signum(BValue(mid));
if (mSign == 0) {
out.println("! " + (mid + 1));
return;
}
if (mSign == -fSign) {
high = mid;
} else {
low = mid;
}
}
out.println("! -1");
}
public int BValue(int index) {
out.println("? " + (index + 1));
out.flush();
int f = in.nextInt();
out.println("? " + (index + 1 + (n >> 1)));
out.flush();
int s = in.nextInt();
return f - s;
}
}
static class FastReader {
private InputStream stream;
private byte[] buf = new byte[8192];
private int curChar;
private int pnumChars;
public FastReader(InputStream stream) {
this.stream = stream;
}
private int pread() {
if (pnumChars == -1) {
throw new InputMismatchException();
}
if (curChar >= pnumChars) {
curChar = 0;
try {
pnumChars = stream.read(buf);
} catch (IOException e) {
throw new InputMismatchException();
}
if (pnumChars <= 0) {
return -1;
}
}
return buf[curChar++];
}
public int nextInt() {
int c = pread();
while (isSpaceChar(c))
c = pread();
int sgn = 1;
if (c == '-') {
sgn = -1;
c = pread();
}
int res = 0;
do {
if (c == ',') {
c = pread();
}
if (c < '0' || c > '9') {
throw new InputMismatchException();
}
res *= 10;
res += c - '0';
c = pread();
} while (!isSpaceChar(c));
return res * sgn;
}
private boolean isSpaceChar(int c) {
return c == ' ' || c == '\n' || c == '\r' || c == '\t' || c == -1;
}
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(n): The running time grows linearly with the input size n.
- O(n^2): The running time increases with the square of the input size n.
- others: The code does not clearly correspond to the listed classes or has an unclassified time complexity.
- O(log(n)): The running time increases with the logarithm of the input size n.
- O(n^3): The running time increases with the cube of the input size n.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- O(1): The running time does not change regardless of the input size n.
- O(nlog(n)): The running time increases with the product of n and logarithm of n.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
| 1,119
| 286
|
4,322
|
import java.util.Scanner;
public class Main {
public static void main(String[] args) {
Scanner in = new Scanner(System.in);
int n = in.nextInt();
int m = in.nextInt();
boolean[][] graph = new boolean[n][n];
for(int i = 0; i < m; i++) {
int from = in.nextInt() - 1;
int to = in.nextInt() - 1;
graph[from][to] = true;
graph[to][from] = true;
}
int max = 1 << n;
long[][] dp = new long[max][n];
for(int mask = 1; mask < max; mask++) {
for(int i = 0; i < n; i++) {
int countMask = Integer.bitCount(mask);
boolean existSubSeti = (mask & (1 << i)) > 0;
if(countMask == 1 && existSubSeti) {
dp[mask][i] = 1;
}
else if(countMask > 1 && existSubSeti) {
int mask1 = mask ^ (1 << i);
for(int j = 0; j < n; j++) {
if(graph[j][i] && i != firstMask(mask, n)) {
dp[mask][i] += dp[mask1][j];
}
}
}
}
}
long counter = 0;
for(int mask = 1; mask < max; mask++) {
for(int i = 0; i < n; i++) {
if(Integer.bitCount(mask) >= 3 && graph[firstMask(mask, n)][i]) {
counter += dp[mask][i];
}
}
}
System.out.println(counter / 2);
in.close();
}
public static int firstMask(int mask, int n) {
for(int i = 0; i < n; i++) {
if((mask & (1 << i)) > 0) return i;
}
return -1;
}
}
|
non-polynomial
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Determine the worst-case time complexity category of a given Java code based on input size n.
</TASK>
<CODE>
import java.util.Scanner;
public class Main {
public static void main(String[] args) {
Scanner in = new Scanner(System.in);
int n = in.nextInt();
int m = in.nextInt();
boolean[][] graph = new boolean[n][n];
for(int i = 0; i < m; i++) {
int from = in.nextInt() - 1;
int to = in.nextInt() - 1;
graph[from][to] = true;
graph[to][from] = true;
}
int max = 1 << n;
long[][] dp = new long[max][n];
for(int mask = 1; mask < max; mask++) {
for(int i = 0; i < n; i++) {
int countMask = Integer.bitCount(mask);
boolean existSubSeti = (mask & (1 << i)) > 0;
if(countMask == 1 && existSubSeti) {
dp[mask][i] = 1;
}
else if(countMask > 1 && existSubSeti) {
int mask1 = mask ^ (1 << i);
for(int j = 0; j < n; j++) {
if(graph[j][i] && i != firstMask(mask, n)) {
dp[mask][i] += dp[mask1][j];
}
}
}
}
}
long counter = 0;
for(int mask = 1; mask < max; mask++) {
for(int i = 0; i < n; i++) {
if(Integer.bitCount(mask) >= 3 && graph[firstMask(mask, n)][i]) {
counter += dp[mask][i];
}
}
}
System.out.println(counter / 2);
in.close();
}
public static int firstMask(int mask, int n) {
for(int i = 0; i < n; i++) {
if((mask & (1 << i)) > 0) return i;
}
return -1;
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(nlog(n)): The time complexity combines linear and logarithmic growth factors.
- non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially.
- O(n^3): The time complexity scales proportionally to the cube of the input size.
- O(1): The time complexity is constant to the input size n.
- O(log(n)): The time complexity increases logarithmically in relation to the input size.
- O(n^2): The time complexity grows proportionally to the square of the input size.
- O(n): The time complexity increases proportionally to the input size n in a linear manner.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Determine the worst-case time complexity category of a given Java code based on input size n.
</TASK>
<CODE>
import java.util.Scanner;
public class Main {
public static void main(String[] args) {
Scanner in = new Scanner(System.in);
int n = in.nextInt();
int m = in.nextInt();
boolean[][] graph = new boolean[n][n];
for(int i = 0; i < m; i++) {
int from = in.nextInt() - 1;
int to = in.nextInt() - 1;
graph[from][to] = true;
graph[to][from] = true;
}
int max = 1 << n;
long[][] dp = new long[max][n];
for(int mask = 1; mask < max; mask++) {
for(int i = 0; i < n; i++) {
int countMask = Integer.bitCount(mask);
boolean existSubSeti = (mask & (1 << i)) > 0;
if(countMask == 1 && existSubSeti) {
dp[mask][i] = 1;
}
else if(countMask > 1 && existSubSeti) {
int mask1 = mask ^ (1 << i);
for(int j = 0; j < n; j++) {
if(graph[j][i] && i != firstMask(mask, n)) {
dp[mask][i] += dp[mask1][j];
}
}
}
}
}
long counter = 0;
for(int mask = 1; mask < max; mask++) {
for(int i = 0; i < n; i++) {
if(Integer.bitCount(mask) >= 3 && graph[firstMask(mask, n)][i]) {
counter += dp[mask][i];
}
}
}
System.out.println(counter / 2);
in.close();
}
public static int firstMask(int mask, int n) {
for(int i = 0; i < n; i++) {
if((mask & (1 << i)) > 0) return i;
}
return -1;
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(1): The time complexity is constant to the input size n.
- non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially.
- O(n^3): The time complexity scales proportionally to the cube of the input size.
- O(nlog(n)): The time complexity combines linear and logarithmic growth factors.
- O(n^2): The time complexity grows proportionally to the square of the input size.
- O(log(n)): The time complexity increases logarithmically in relation to the input size.
- others: The time complexity does not fit any of the above categories or cannot be clearly classified.
- O(n): The time complexity increases proportionally to the input size n in a linear manner.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
| 780
| 4,311
|
1,139
|
import java.io.IOException;
import java.io.PrintWriter;
import java.util.*;
import java.io.*;
public class Main {
boolean[] b;
int[] r;
ArrayList<ArrayList<Integer>> q;
public void dfs(int u, int p) {
for (int i = 0; i < q.get(u).size(); i++) {
int v = q.get(u).get(i);
if (v != p) {
r[v] = r[u] + 1;
if (b[u]) {
b[v] = b[u];
}
dfs(v, u);
}
}
}
public void solve() throws IOException {
long n = nextLong();
long s = nextLong();
long t = 0;
if(s + 200 < n){
t = n - s - 200;
}
for(long i = s; i <= Math.min(s + 200,n); i++){
long p = 0;
long u = i;
while (u > 0){
p += u % 10;
u /= 10;
}
if(i - p >= s){
t++;
}
}
out.print(t);
}
BufferedReader br;
StringTokenizer sc;
PrintWriter out;
public String nextToken() throws IOException {
while (sc == null || !sc.hasMoreTokens()) {
try {
sc = new StringTokenizer(br.readLine());
} catch (Exception e) {
return null;
}
}
return sc.nextToken();
}
public Integer nextInt() throws IOException {
return Integer.parseInt(nextToken());
}
public Long nextLong() throws IOException {
return Long.parseLong(nextToken());
}
public static void main(String[] args) throws IOException {
try {
Locale.setDefault(Locale.US);
} catch (Exception e) {
}
new Main().run();
}
public void run() {
try {
br = new BufferedReader(new InputStreamReader(System.in));
out = new PrintWriter(System.out);
// br = new BufferedReader(new FileReader("lesson.in"));
// out = new PrintWriter(new File("lesson.out"));
solve();
out.close();
} catch (Exception e) {
e.printStackTrace();
System.exit(1);
}
}
}
|
O(log(n))
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Classify the following Java code's worst-case time complexity according to its relationship to the input size n.
</TASK>
<CODE>
import java.io.IOException;
import java.io.PrintWriter;
import java.util.*;
import java.io.*;
public class Main {
boolean[] b;
int[] r;
ArrayList<ArrayList<Integer>> q;
public void dfs(int u, int p) {
for (int i = 0; i < q.get(u).size(); i++) {
int v = q.get(u).get(i);
if (v != p) {
r[v] = r[u] + 1;
if (b[u]) {
b[v] = b[u];
}
dfs(v, u);
}
}
}
public void solve() throws IOException {
long n = nextLong();
long s = nextLong();
long t = 0;
if(s + 200 < n){
t = n - s - 200;
}
for(long i = s; i <= Math.min(s + 200,n); i++){
long p = 0;
long u = i;
while (u > 0){
p += u % 10;
u /= 10;
}
if(i - p >= s){
t++;
}
}
out.print(t);
}
BufferedReader br;
StringTokenizer sc;
PrintWriter out;
public String nextToken() throws IOException {
while (sc == null || !sc.hasMoreTokens()) {
try {
sc = new StringTokenizer(br.readLine());
} catch (Exception e) {
return null;
}
}
return sc.nextToken();
}
public Integer nextInt() throws IOException {
return Integer.parseInt(nextToken());
}
public Long nextLong() throws IOException {
return Long.parseLong(nextToken());
}
public static void main(String[] args) throws IOException {
try {
Locale.setDefault(Locale.US);
} catch (Exception e) {
}
new Main().run();
}
public void run() {
try {
br = new BufferedReader(new InputStreamReader(System.in));
out = new PrintWriter(System.out);
// br = new BufferedReader(new FileReader("lesson.in"));
// out = new PrintWriter(new File("lesson.out"));
solve();
out.close();
} catch (Exception e) {
e.printStackTrace();
System.exit(1);
}
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(nlog(n)): The running time increases with the product of n and logarithm of n.
- O(1): The running time does not change regardless of the input size n.
- O(n^2): The running time increases with the square of the input size n.
- O(n^3): The running time increases with the cube of the input size n.
- O(n): The running time grows linearly with the input size n.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- O(log(n)): The running time increases with the logarithm of the input size n.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Determine the worst-case time complexity category of a given Java code based on input size n.
</TASK>
<CODE>
import java.io.IOException;
import java.io.PrintWriter;
import java.util.*;
import java.io.*;
public class Main {
boolean[] b;
int[] r;
ArrayList<ArrayList<Integer>> q;
public void dfs(int u, int p) {
for (int i = 0; i < q.get(u).size(); i++) {
int v = q.get(u).get(i);
if (v != p) {
r[v] = r[u] + 1;
if (b[u]) {
b[v] = b[u];
}
dfs(v, u);
}
}
}
public void solve() throws IOException {
long n = nextLong();
long s = nextLong();
long t = 0;
if(s + 200 < n){
t = n - s - 200;
}
for(long i = s; i <= Math.min(s + 200,n); i++){
long p = 0;
long u = i;
while (u > 0){
p += u % 10;
u /= 10;
}
if(i - p >= s){
t++;
}
}
out.print(t);
}
BufferedReader br;
StringTokenizer sc;
PrintWriter out;
public String nextToken() throws IOException {
while (sc == null || !sc.hasMoreTokens()) {
try {
sc = new StringTokenizer(br.readLine());
} catch (Exception e) {
return null;
}
}
return sc.nextToken();
}
public Integer nextInt() throws IOException {
return Integer.parseInt(nextToken());
}
public Long nextLong() throws IOException {
return Long.parseLong(nextToken());
}
public static void main(String[] args) throws IOException {
try {
Locale.setDefault(Locale.US);
} catch (Exception e) {
}
new Main().run();
}
public void run() {
try {
br = new BufferedReader(new InputStreamReader(System.in));
out = new PrintWriter(System.out);
// br = new BufferedReader(new FileReader("lesson.in"));
// out = new PrintWriter(new File("lesson.out"));
solve();
out.close();
} catch (Exception e) {
e.printStackTrace();
System.exit(1);
}
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(log(n)): The time complexity increases logarithmically in relation to the input size.
- O(n^2): The time complexity grows proportionally to the square of the input size.
- non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially.
- O(nlog(n)): The time complexity combines linear and logarithmic growth factors.
- O(n^3): The time complexity scales proportionally to the cube of the input size.
- O(n): The time complexity increases proportionally to the input size n in a linear manner.
- others: The time complexity does not fit any of the above categories or cannot be clearly classified.
- O(1): The time complexity is constant to the input size n.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
| 822
| 1,138
|
87
|
import java.io.*;
import java.util.*;
public class Main {
static class FastScanner {
BufferedReader br;
StringTokenizer st;
public FastScanner() {
try {
br = new BufferedReader(new InputStreamReader(System.in));
st = new StringTokenizer(br.readLine());
} catch (Exception e){e.printStackTrace();}
}
public String next() {
if (st.hasMoreTokens()) return st.nextToken();
try {st = new StringTokenizer(br.readLine());}
catch (Exception e) {e.printStackTrace();}
return st.nextToken();
}
public int nextInt() {return Integer.parseInt(next());}
public long nextLong() {return Long.parseLong(next());}
public double nextDouble() {return Double.parseDouble(next());}
public String nextLine() {
String line = "";
if(st.hasMoreTokens()) line = st.nextToken();
else try {return br.readLine();}catch(IOException e){e.printStackTrace();}
while(st.hasMoreTokens()) line += " "+st.nextToken();
return line;
}
}
public static void main(String[] args) {
FastScanner sc = new FastScanner();
PrintWriter pw = new PrintWriter(System.out);
int n = sc.nextInt();
int best = 1;
int bestTime = Integer.MAX_VALUE;
for(int i=0;i<n;i++) {
int time;
int a = sc.nextInt();
time = (a%n==0 || a%n<=i) ? a/n : (a+n)/n;
if(time < bestTime) {
best = i + 1;
bestTime = time;
}
}
pw.println(best);
pw.close();
}
}
|
O(n)
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n.
</TASK>
<CODE>
import java.io.*;
import java.util.*;
public class Main {
static class FastScanner {
BufferedReader br;
StringTokenizer st;
public FastScanner() {
try {
br = new BufferedReader(new InputStreamReader(System.in));
st = new StringTokenizer(br.readLine());
} catch (Exception e){e.printStackTrace();}
}
public String next() {
if (st.hasMoreTokens()) return st.nextToken();
try {st = new StringTokenizer(br.readLine());}
catch (Exception e) {e.printStackTrace();}
return st.nextToken();
}
public int nextInt() {return Integer.parseInt(next());}
public long nextLong() {return Long.parseLong(next());}
public double nextDouble() {return Double.parseDouble(next());}
public String nextLine() {
String line = "";
if(st.hasMoreTokens()) line = st.nextToken();
else try {return br.readLine();}catch(IOException e){e.printStackTrace();}
while(st.hasMoreTokens()) line += " "+st.nextToken();
return line;
}
}
public static void main(String[] args) {
FastScanner sc = new FastScanner();
PrintWriter pw = new PrintWriter(System.out);
int n = sc.nextInt();
int best = 1;
int bestTime = Integer.MAX_VALUE;
for(int i=0;i<n;i++) {
int time;
int a = sc.nextInt();
time = (a%n==0 || a%n<=i) ? a/n : (a+n)/n;
if(time < bestTime) {
best = i + 1;
bestTime = time;
}
}
pw.println(best);
pw.close();
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(n^2): The execution time ascends in proportion to the square of the input size n.
- O(1): The execution time is unaffected by the size of the input n.
- O(n): The execution time ascends in a one-to-one ratio with the input size n.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- O(log(n)): The execution time ascends in proportion to the logarithm of the input size n.
- O(n^3): The execution time ascends in proportion to the cube of the input size n.
- O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Classify the following Java code's worst-case time complexity according to its relationship to the input size n.
</TASK>
<CODE>
import java.io.*;
import java.util.*;
public class Main {
static class FastScanner {
BufferedReader br;
StringTokenizer st;
public FastScanner() {
try {
br = new BufferedReader(new InputStreamReader(System.in));
st = new StringTokenizer(br.readLine());
} catch (Exception e){e.printStackTrace();}
}
public String next() {
if (st.hasMoreTokens()) return st.nextToken();
try {st = new StringTokenizer(br.readLine());}
catch (Exception e) {e.printStackTrace();}
return st.nextToken();
}
public int nextInt() {return Integer.parseInt(next());}
public long nextLong() {return Long.parseLong(next());}
public double nextDouble() {return Double.parseDouble(next());}
public String nextLine() {
String line = "";
if(st.hasMoreTokens()) line = st.nextToken();
else try {return br.readLine();}catch(IOException e){e.printStackTrace();}
while(st.hasMoreTokens()) line += " "+st.nextToken();
return line;
}
}
public static void main(String[] args) {
FastScanner sc = new FastScanner();
PrintWriter pw = new PrintWriter(System.out);
int n = sc.nextInt();
int best = 1;
int bestTime = Integer.MAX_VALUE;
for(int i=0;i<n;i++) {
int time;
int a = sc.nextInt();
time = (a%n==0 || a%n<=i) ? a/n : (a+n)/n;
if(time < bestTime) {
best = i + 1;
bestTime = time;
}
}
pw.println(best);
pw.close();
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(1): The running time does not change regardless of the input size n.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- O(n^3): The running time increases with the cube of the input size n.
- O(n^2): The running time increases with the square of the input size n.
- O(log(n)): The running time increases with the logarithm of the input size n.
- O(nlog(n)): The running time increases with the product of n and logarithm of n.
- O(n): The running time grows linearly with the input size n.
- others: The code does not clearly correspond to the listed classes or has an unclassified time complexity.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
| 694
| 87
|
1,817
|
import java.util.Scanner;
import java.io.OutputStream;
import java.io.IOException;
import java.util.Arrays;
import java.io.PrintWriter;
import java.io.InputStream;
/**
* Built using CHelper plug-in
* Actual solution is at the top
*/
public class Main {
public static void main(String[] args) {
InputStream inputStream = System.in;
OutputStream outputStream = System.out;
Scanner in = new Scanner(inputStream);
PrintWriter out = new PrintWriter(outputStream);
TaskA solver = new TaskA();
solver.solve(1, in, out);
out.close();
}
}
class TaskA {
public void solve(int testNumber, Scanner in, PrintWriter out) {
int n = in.nextInt();
int m = in.nextInt();
int k = in.nextInt();
int[] fs = IOUtils.readIntArray(in, n);
Arrays.sort(fs);
int ptr = fs.length - 1;
int res = 0;
while (ptr >= 0 && k < m) {
k += fs[ptr--] - 1;
res++;
}
if (k < m) out.println(-1);
else out.println(res);
}
}
class IOUtils {
public static int[] readIntArray(Scanner in, int size) {
int[] array = new int[size];
for (int i = 0; i < size; i++)
array[i] = in.nextInt();
return array;
}
}
|
O(nlog(n))
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Determine the worst-case time complexity category of a given Java code based on input size n.
</TASK>
<CODE>
import java.util.Scanner;
import java.io.OutputStream;
import java.io.IOException;
import java.util.Arrays;
import java.io.PrintWriter;
import java.io.InputStream;
/**
* Built using CHelper plug-in
* Actual solution is at the top
*/
public class Main {
public static void main(String[] args) {
InputStream inputStream = System.in;
OutputStream outputStream = System.out;
Scanner in = new Scanner(inputStream);
PrintWriter out = new PrintWriter(outputStream);
TaskA solver = new TaskA();
solver.solve(1, in, out);
out.close();
}
}
class TaskA {
public void solve(int testNumber, Scanner in, PrintWriter out) {
int n = in.nextInt();
int m = in.nextInt();
int k = in.nextInt();
int[] fs = IOUtils.readIntArray(in, n);
Arrays.sort(fs);
int ptr = fs.length - 1;
int res = 0;
while (ptr >= 0 && k < m) {
k += fs[ptr--] - 1;
res++;
}
if (k < m) out.println(-1);
else out.println(res);
}
}
class IOUtils {
public static int[] readIntArray(Scanner in, int size) {
int[] array = new int[size];
for (int i = 0; i < size; i++)
array[i] = in.nextInt();
return array;
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(n): The time complexity increases proportionally to the input size n in a linear manner.
- O(1): The time complexity is constant to the input size n.
- O(log(n)): The time complexity increases logarithmically in relation to the input size.
- O(nlog(n)): The time complexity combines linear and logarithmic growth factors.
- O(n^2): The time complexity grows proportionally to the square of the input size.
- O(n^3): The time complexity scales proportionally to the cube of the input size.
- non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Determine the worst-case time complexity category of a given Java code based on input size n.
</TASK>
<CODE>
import java.util.Scanner;
import java.io.OutputStream;
import java.io.IOException;
import java.util.Arrays;
import java.io.PrintWriter;
import java.io.InputStream;
/**
* Built using CHelper plug-in
* Actual solution is at the top
*/
public class Main {
public static void main(String[] args) {
InputStream inputStream = System.in;
OutputStream outputStream = System.out;
Scanner in = new Scanner(inputStream);
PrintWriter out = new PrintWriter(outputStream);
TaskA solver = new TaskA();
solver.solve(1, in, out);
out.close();
}
}
class TaskA {
public void solve(int testNumber, Scanner in, PrintWriter out) {
int n = in.nextInt();
int m = in.nextInt();
int k = in.nextInt();
int[] fs = IOUtils.readIntArray(in, n);
Arrays.sort(fs);
int ptr = fs.length - 1;
int res = 0;
while (ptr >= 0 && k < m) {
k += fs[ptr--] - 1;
res++;
}
if (k < m) out.println(-1);
else out.println(res);
}
}
class IOUtils {
public static int[] readIntArray(Scanner in, int size) {
int[] array = new int[size];
for (int i = 0; i < size; i++)
array[i] = in.nextInt();
return array;
}
}
</CODE>
<EVALUATION_RUBRIC>
- others: The time complexity does not fit any of the above categories or cannot be clearly classified.
- O(nlog(n)): The time complexity combines linear and logarithmic growth factors.
- O(n^2): The time complexity grows proportionally to the square of the input size.
- O(n^3): The time complexity scales proportionally to the cube of the input size.
- O(n): The time complexity increases proportionally to the input size n in a linear manner.
- O(1): The time complexity is constant to the input size n.
- O(log(n)): The time complexity increases logarithmically in relation to the input size.
- non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
| 636
| 1,813
|
901
|
import java.util.Scanner;
public class BB {
public static void main(String[] args) {
Scanner sc=new Scanner(System.in);
int n=sc.nextInt();
int k=sc.nextInt();
int a[]=new int[n+1];
boolean used[]=new boolean[100009];
for (int i = 1; i <=n; i++) {
a[i]=sc.nextInt();
}
int cnt=0;
int id=0;
for (int i = 1; i <=n; i++) {
if(!used[a[i]]){
cnt++;
used[a[i]]=true;
}
if(cnt==k){
id=i;
break;
}
}
boolean x[]=new boolean[100005];
int y=0;
int id1=0;
if(id==0){
System.out.println(-1+" "+-1);
return;
}
for (int i =id; i >=1; i--) {
if(!x[a[i]]){
y++;
x[a[i]]=true;
}
if(y==k){
id1=i;
break;
}
}
System.out.println(id1+" "+id);
}
}
|
O(n)
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Classify the following Java code's worst-case time complexity according to its relationship to the input size n.
</TASK>
<CODE>
import java.util.Scanner;
public class BB {
public static void main(String[] args) {
Scanner sc=new Scanner(System.in);
int n=sc.nextInt();
int k=sc.nextInt();
int a[]=new int[n+1];
boolean used[]=new boolean[100009];
for (int i = 1; i <=n; i++) {
a[i]=sc.nextInt();
}
int cnt=0;
int id=0;
for (int i = 1; i <=n; i++) {
if(!used[a[i]]){
cnt++;
used[a[i]]=true;
}
if(cnt==k){
id=i;
break;
}
}
boolean x[]=new boolean[100005];
int y=0;
int id1=0;
if(id==0){
System.out.println(-1+" "+-1);
return;
}
for (int i =id; i >=1; i--) {
if(!x[a[i]]){
y++;
x[a[i]]=true;
}
if(y==k){
id1=i;
break;
}
}
System.out.println(id1+" "+id);
}
}
</CODE>
<EVALUATION_RUBRIC>
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- O(log(n)): The running time increases with the logarithm of the input size n.
- O(1): The running time does not change regardless of the input size n.
- O(n^3): The running time increases with the cube of the input size n.
- O(n^2): The running time increases with the square of the input size n.
- O(nlog(n)): The running time increases with the product of n and logarithm of n.
- O(n): The running time grows linearly with the input size n.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Classify the following Java code's worst-case time complexity according to its relationship to the input size n.
</TASK>
<CODE>
import java.util.Scanner;
public class BB {
public static void main(String[] args) {
Scanner sc=new Scanner(System.in);
int n=sc.nextInt();
int k=sc.nextInt();
int a[]=new int[n+1];
boolean used[]=new boolean[100009];
for (int i = 1; i <=n; i++) {
a[i]=sc.nextInt();
}
int cnt=0;
int id=0;
for (int i = 1; i <=n; i++) {
if(!used[a[i]]){
cnt++;
used[a[i]]=true;
}
if(cnt==k){
id=i;
break;
}
}
boolean x[]=new boolean[100005];
int y=0;
int id1=0;
if(id==0){
System.out.println(-1+" "+-1);
return;
}
for (int i =id; i >=1; i--) {
if(!x[a[i]]){
y++;
x[a[i]]=true;
}
if(y==k){
id1=i;
break;
}
}
System.out.println(id1+" "+id);
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(nlog(n)): The running time increases with the product of n and logarithm of n.
- O(n^2): The running time increases with the square of the input size n.
- O(1): The running time does not change regardless of the input size n.
- O(log(n)): The running time increases with the logarithm of the input size n.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- others: The code does not clearly correspond to the listed classes or has an unclassified time complexity.
- O(n^3): The running time increases with the cube of the input size n.
- O(n): The running time grows linearly with the input size n.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
| 598
| 900
|
2,208
|
import com.sun.org.apache.regexp.internal.RE;
import java.io.*;
import java.nio.file.ClosedWatchServiceException;
import java.nio.file.OpenOption;
import java.security.SecureRandom;
import java.util.*;
public class Main {
public static void main(String[] args) throws FileNotFoundException {
ConsoleIO io = new ConsoleIO(new InputStreamReader(System.in), new PrintWriter(System.out));
//String test = "C-large";
//ConsoleIO io = new ConsoleIO(new FileReader("D:\\Dropbox\\code\\practice\\jb\\src\\" + test + ".in"), new PrintWriter(new File("D:\\Dropbox\\code\\practice\\jb\\src\\" + test + "-out.txt")));
new Main(io).solve();
io.close();
}
ConsoleIO io;
Main(ConsoleIO io) {
this.io = io;
}
List<List<Integer>> gr = new ArrayList<>();
long MOD = 1_000_000_007;
public void solve() {
int n = io.ri(), r = io.ri();
double[] res = new double[n];
int[] xs = new int[n];
for(int i = 0;i<n;i++){
int x = io.ri();
xs[i] = x;
double max = r;
for(int j = 0;j<i;j++){
int dx = Math.abs(xs[j] - x);
int dx2 = dx*dx;
if(dx <= 2*r){
max = Math.max(max, Math.sqrt(4*r*r - dx2) + res[j]);
}
}
res[i] = max;
}
StringBuilder sb = new StringBuilder();
for(int i = 0;i<res.length;i++){
if(i>0)sb.append(' ');
sb.append(res[i]);
}
io.writeLine(sb.toString());
}
}
class ConsoleIO {
BufferedReader br;
PrintWriter out;
public ConsoleIO(Reader reader, PrintWriter writer){br = new BufferedReader(reader);out = writer;}
public void flush(){this.out.flush();}
public void close(){this.out.close();}
public void writeLine(String s) {this.out.println(s);}
public void writeInt(int a) {this.out.print(a);this.out.print(' ');}
public void writeWord(String s){
this.out.print(s);
}
public void writeIntArray(int[] a, int k, String separator) {
StringBuilder sb = new StringBuilder();
for (int i = 0; i < k; i++) {
if (i > 0) sb.append(separator);
sb.append(a[i]);
}
this.writeLine(sb.toString());
}
public int read(char[] buf, int len){try {return br.read(buf,0,len);}catch (Exception ex){ return -1; }}
public String readLine() {try {return br.readLine();}catch (Exception ex){ return "";}}
public long[] readLongArray() {
String[]n=this.readLine().trim().split("\\s+");long[]r=new long[n.length];
for(int i=0;i<n.length;i++)r[i]=Long.parseLong(n[i]);
return r;
}
public int[] readIntArray() {
String[]n=this.readLine().trim().split("\\s+");int[]r=new int[n.length];
for(int i=0;i<n.length;i++)r[i]=Integer.parseInt(n[i]);
return r;
}
public int[] readIntArray(int n) {
int[] res = new int[n];
char[] all = this.readLine().toCharArray();
int cur = 0;boolean have = false;
int k = 0;
boolean neg = false;
for(int i = 0;i<all.length;i++){
if(all[i]>='0' && all[i]<='9'){
cur = cur*10+all[i]-'0';
have = true;
}else if(all[i]=='-') {
neg = true;
}
else if(have){
res[k++] = neg?-cur:cur;
cur = 0;
have = false;
neg = false;
}
}
if(have)res[k++] = neg?-cur:cur;
return res;
}
public int ri() {
try {
int r = 0;
boolean start = false;
boolean neg = false;
while (true) {
int c = br.read();
if (c >= '0' && c <= '9') {
r = r * 10 + c - '0';
start = true;
} else if (!start && c == '-') {
start = true;
neg = true;
} else if (start || c == -1) return neg ? -r : r;
}
} catch (Exception ex) {
return -1;
}
}
public long readLong() {
try {
long r = 0;
boolean start = false;
boolean neg = false;
while (true) {
int c = br.read();
if (c >= '0' && c <= '9') {
r = r * 10 + c - '0';
start = true;
} else if (!start && c == '-') {
start = true;
neg = true;
} else if (start || c == -1) return neg ? -r : r;
}
} catch (Exception ex) {
return -1;
}
}
public String readWord() {
try {
boolean start = false;
StringBuilder sb = new StringBuilder();
while (true) {
int c = br.read();
if (c!= ' ' && c!= '\r' && c!='\n' && c!='\t') {
sb.append((char)c);
start = true;
} else if (start || c == -1) return sb.toString();
}
} catch (Exception ex) {
return "";
}
}
public char readSymbol() {
try {
while (true) {
int c = br.read();
if (c != ' ' && c != '\r' && c != '\n' && c != '\t') {
return (char) c;
}
}
} catch (Exception ex) {
return 0;
}
}
//public char readChar(){try {return (char)br.read();}catch (Exception ex){ return 0; }}
}
class Pair {
public Pair(int a, int b) {this.a = a;this.b = b;}
public int a;
public int b;
}
class PairLL {
public PairLL(long a, long b) {this.a = a;this.b = b;}
public long a;
public long b;
}
class Triple {
public Triple(int a, int b, int c) {this.a = a;this.b = b;this.c = c;}
public int a;
public int b;
public int c;
}
|
O(n^2)
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Determine the worst-case time complexity category of a given Java code based on input size n.
</TASK>
<CODE>
import com.sun.org.apache.regexp.internal.RE;
import java.io.*;
import java.nio.file.ClosedWatchServiceException;
import java.nio.file.OpenOption;
import java.security.SecureRandom;
import java.util.*;
public class Main {
public static void main(String[] args) throws FileNotFoundException {
ConsoleIO io = new ConsoleIO(new InputStreamReader(System.in), new PrintWriter(System.out));
//String test = "C-large";
//ConsoleIO io = new ConsoleIO(new FileReader("D:\\Dropbox\\code\\practice\\jb\\src\\" + test + ".in"), new PrintWriter(new File("D:\\Dropbox\\code\\practice\\jb\\src\\" + test + "-out.txt")));
new Main(io).solve();
io.close();
}
ConsoleIO io;
Main(ConsoleIO io) {
this.io = io;
}
List<List<Integer>> gr = new ArrayList<>();
long MOD = 1_000_000_007;
public void solve() {
int n = io.ri(), r = io.ri();
double[] res = new double[n];
int[] xs = new int[n];
for(int i = 0;i<n;i++){
int x = io.ri();
xs[i] = x;
double max = r;
for(int j = 0;j<i;j++){
int dx = Math.abs(xs[j] - x);
int dx2 = dx*dx;
if(dx <= 2*r){
max = Math.max(max, Math.sqrt(4*r*r - dx2) + res[j]);
}
}
res[i] = max;
}
StringBuilder sb = new StringBuilder();
for(int i = 0;i<res.length;i++){
if(i>0)sb.append(' ');
sb.append(res[i]);
}
io.writeLine(sb.toString());
}
}
class ConsoleIO {
BufferedReader br;
PrintWriter out;
public ConsoleIO(Reader reader, PrintWriter writer){br = new BufferedReader(reader);out = writer;}
public void flush(){this.out.flush();}
public void close(){this.out.close();}
public void writeLine(String s) {this.out.println(s);}
public void writeInt(int a) {this.out.print(a);this.out.print(' ');}
public void writeWord(String s){
this.out.print(s);
}
public void writeIntArray(int[] a, int k, String separator) {
StringBuilder sb = new StringBuilder();
for (int i = 0; i < k; i++) {
if (i > 0) sb.append(separator);
sb.append(a[i]);
}
this.writeLine(sb.toString());
}
public int read(char[] buf, int len){try {return br.read(buf,0,len);}catch (Exception ex){ return -1; }}
public String readLine() {try {return br.readLine();}catch (Exception ex){ return "";}}
public long[] readLongArray() {
String[]n=this.readLine().trim().split("\\s+");long[]r=new long[n.length];
for(int i=0;i<n.length;i++)r[i]=Long.parseLong(n[i]);
return r;
}
public int[] readIntArray() {
String[]n=this.readLine().trim().split("\\s+");int[]r=new int[n.length];
for(int i=0;i<n.length;i++)r[i]=Integer.parseInt(n[i]);
return r;
}
public int[] readIntArray(int n) {
int[] res = new int[n];
char[] all = this.readLine().toCharArray();
int cur = 0;boolean have = false;
int k = 0;
boolean neg = false;
for(int i = 0;i<all.length;i++){
if(all[i]>='0' && all[i]<='9'){
cur = cur*10+all[i]-'0';
have = true;
}else if(all[i]=='-') {
neg = true;
}
else if(have){
res[k++] = neg?-cur:cur;
cur = 0;
have = false;
neg = false;
}
}
if(have)res[k++] = neg?-cur:cur;
return res;
}
public int ri() {
try {
int r = 0;
boolean start = false;
boolean neg = false;
while (true) {
int c = br.read();
if (c >= '0' && c <= '9') {
r = r * 10 + c - '0';
start = true;
} else if (!start && c == '-') {
start = true;
neg = true;
} else if (start || c == -1) return neg ? -r : r;
}
} catch (Exception ex) {
return -1;
}
}
public long readLong() {
try {
long r = 0;
boolean start = false;
boolean neg = false;
while (true) {
int c = br.read();
if (c >= '0' && c <= '9') {
r = r * 10 + c - '0';
start = true;
} else if (!start && c == '-') {
start = true;
neg = true;
} else if (start || c == -1) return neg ? -r : r;
}
} catch (Exception ex) {
return -1;
}
}
public String readWord() {
try {
boolean start = false;
StringBuilder sb = new StringBuilder();
while (true) {
int c = br.read();
if (c!= ' ' && c!= '\r' && c!='\n' && c!='\t') {
sb.append((char)c);
start = true;
} else if (start || c == -1) return sb.toString();
}
} catch (Exception ex) {
return "";
}
}
public char readSymbol() {
try {
while (true) {
int c = br.read();
if (c != ' ' && c != '\r' && c != '\n' && c != '\t') {
return (char) c;
}
}
} catch (Exception ex) {
return 0;
}
}
//public char readChar(){try {return (char)br.read();}catch (Exception ex){ return 0; }}
}
class Pair {
public Pair(int a, int b) {this.a = a;this.b = b;}
public int a;
public int b;
}
class PairLL {
public PairLL(long a, long b) {this.a = a;this.b = b;}
public long a;
public long b;
}
class Triple {
public Triple(int a, int b, int c) {this.a = a;this.b = b;this.c = c;}
public int a;
public int b;
public int c;
}
</CODE>
<EVALUATION_RUBRIC>
- non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially.
- O(n^2): The time complexity grows proportionally to the square of the input size.
- O(nlog(n)): The time complexity combines linear and logarithmic growth factors.
- O(log(n)): The time complexity increases logarithmically in relation to the input size.
- O(1): The time complexity is constant to the input size n.
- O(n^3): The time complexity scales proportionally to the cube of the input size.
- O(n): The time complexity increases proportionally to the input size n in a linear manner.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Determine the worst-case time complexity category of a given Java code based on input size n.
</TASK>
<CODE>
import com.sun.org.apache.regexp.internal.RE;
import java.io.*;
import java.nio.file.ClosedWatchServiceException;
import java.nio.file.OpenOption;
import java.security.SecureRandom;
import java.util.*;
public class Main {
public static void main(String[] args) throws FileNotFoundException {
ConsoleIO io = new ConsoleIO(new InputStreamReader(System.in), new PrintWriter(System.out));
//String test = "C-large";
//ConsoleIO io = new ConsoleIO(new FileReader("D:\\Dropbox\\code\\practice\\jb\\src\\" + test + ".in"), new PrintWriter(new File("D:\\Dropbox\\code\\practice\\jb\\src\\" + test + "-out.txt")));
new Main(io).solve();
io.close();
}
ConsoleIO io;
Main(ConsoleIO io) {
this.io = io;
}
List<List<Integer>> gr = new ArrayList<>();
long MOD = 1_000_000_007;
public void solve() {
int n = io.ri(), r = io.ri();
double[] res = new double[n];
int[] xs = new int[n];
for(int i = 0;i<n;i++){
int x = io.ri();
xs[i] = x;
double max = r;
for(int j = 0;j<i;j++){
int dx = Math.abs(xs[j] - x);
int dx2 = dx*dx;
if(dx <= 2*r){
max = Math.max(max, Math.sqrt(4*r*r - dx2) + res[j]);
}
}
res[i] = max;
}
StringBuilder sb = new StringBuilder();
for(int i = 0;i<res.length;i++){
if(i>0)sb.append(' ');
sb.append(res[i]);
}
io.writeLine(sb.toString());
}
}
class ConsoleIO {
BufferedReader br;
PrintWriter out;
public ConsoleIO(Reader reader, PrintWriter writer){br = new BufferedReader(reader);out = writer;}
public void flush(){this.out.flush();}
public void close(){this.out.close();}
public void writeLine(String s) {this.out.println(s);}
public void writeInt(int a) {this.out.print(a);this.out.print(' ');}
public void writeWord(String s){
this.out.print(s);
}
public void writeIntArray(int[] a, int k, String separator) {
StringBuilder sb = new StringBuilder();
for (int i = 0; i < k; i++) {
if (i > 0) sb.append(separator);
sb.append(a[i]);
}
this.writeLine(sb.toString());
}
public int read(char[] buf, int len){try {return br.read(buf,0,len);}catch (Exception ex){ return -1; }}
public String readLine() {try {return br.readLine();}catch (Exception ex){ return "";}}
public long[] readLongArray() {
String[]n=this.readLine().trim().split("\\s+");long[]r=new long[n.length];
for(int i=0;i<n.length;i++)r[i]=Long.parseLong(n[i]);
return r;
}
public int[] readIntArray() {
String[]n=this.readLine().trim().split("\\s+");int[]r=new int[n.length];
for(int i=0;i<n.length;i++)r[i]=Integer.parseInt(n[i]);
return r;
}
public int[] readIntArray(int n) {
int[] res = new int[n];
char[] all = this.readLine().toCharArray();
int cur = 0;boolean have = false;
int k = 0;
boolean neg = false;
for(int i = 0;i<all.length;i++){
if(all[i]>='0' && all[i]<='9'){
cur = cur*10+all[i]-'0';
have = true;
}else if(all[i]=='-') {
neg = true;
}
else if(have){
res[k++] = neg?-cur:cur;
cur = 0;
have = false;
neg = false;
}
}
if(have)res[k++] = neg?-cur:cur;
return res;
}
public int ri() {
try {
int r = 0;
boolean start = false;
boolean neg = false;
while (true) {
int c = br.read();
if (c >= '0' && c <= '9') {
r = r * 10 + c - '0';
start = true;
} else if (!start && c == '-') {
start = true;
neg = true;
} else if (start || c == -1) return neg ? -r : r;
}
} catch (Exception ex) {
return -1;
}
}
public long readLong() {
try {
long r = 0;
boolean start = false;
boolean neg = false;
while (true) {
int c = br.read();
if (c >= '0' && c <= '9') {
r = r * 10 + c - '0';
start = true;
} else if (!start && c == '-') {
start = true;
neg = true;
} else if (start || c == -1) return neg ? -r : r;
}
} catch (Exception ex) {
return -1;
}
}
public String readWord() {
try {
boolean start = false;
StringBuilder sb = new StringBuilder();
while (true) {
int c = br.read();
if (c!= ' ' && c!= '\r' && c!='\n' && c!='\t') {
sb.append((char)c);
start = true;
} else if (start || c == -1) return sb.toString();
}
} catch (Exception ex) {
return "";
}
}
public char readSymbol() {
try {
while (true) {
int c = br.read();
if (c != ' ' && c != '\r' && c != '\n' && c != '\t') {
return (char) c;
}
}
} catch (Exception ex) {
return 0;
}
}
//public char readChar(){try {return (char)br.read();}catch (Exception ex){ return 0; }}
}
class Pair {
public Pair(int a, int b) {this.a = a;this.b = b;}
public int a;
public int b;
}
class PairLL {
public PairLL(long a, long b) {this.a = a;this.b = b;}
public long a;
public long b;
}
class Triple {
public Triple(int a, int b, int c) {this.a = a;this.b = b;this.c = c;}
public int a;
public int b;
public int c;
}
</CODE>
<EVALUATION_RUBRIC>
- O(log(n)): The time complexity increases logarithmically in relation to the input size.
- O(n): The time complexity increases proportionally to the input size n in a linear manner.
- O(nlog(n)): The time complexity combines linear and logarithmic growth factors.
- O(1): The time complexity is constant to the input size n.
- non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially.
- O(n^2): The time complexity grows proportionally to the square of the input size.
- O(n^3): The time complexity scales proportionally to the cube of the input size.
- others: The time complexity does not fit any of the above categories or cannot be clearly classified.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
| 1,831
| 2,204
|
806
|
//package round17;
import java.io.BufferedReader;
import java.io.IOException;
import java.io.InputStreamReader;
import java.io.PrintWriter;
import java.io.StreamTokenizer;
public class A {
static StreamTokenizer in =
new StreamTokenizer(new BufferedReader(new InputStreamReader(System.in)));
static int nextInt() throws IOException{
in.nextToken();
return (int)in.nval;
}
static PrintWriter out = new PrintWriter(System.out);
static boolean prime(int n){
int j = 2;
while (j*j <= n)
if (n%j == 0) return false;
else j++;
return true;
}
public static void main(String[] args) throws IOException{
int n = nextInt(),
k = nextInt(),
a[] = new int[n];
int s = 0;
for (int i=2; i<=n; i++)
if (prime(i))
a[s++] = i;
int m = 0;
for (int i=2; i<s; i++)
for (int j=i-1; j>0; j--)
if (a[i] == a[j]+a[j-1]+1){
m++;
break;
}
if (m >= k) out.println("YES");
else out.println("NO");
out.flush();
}
}
|
O(n)
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Classify the following Java code's worst-case time complexity according to its relationship to the input size n.
</TASK>
<CODE>
//package round17;
import java.io.BufferedReader;
import java.io.IOException;
import java.io.InputStreamReader;
import java.io.PrintWriter;
import java.io.StreamTokenizer;
public class A {
static StreamTokenizer in =
new StreamTokenizer(new BufferedReader(new InputStreamReader(System.in)));
static int nextInt() throws IOException{
in.nextToken();
return (int)in.nval;
}
static PrintWriter out = new PrintWriter(System.out);
static boolean prime(int n){
int j = 2;
while (j*j <= n)
if (n%j == 0) return false;
else j++;
return true;
}
public static void main(String[] args) throws IOException{
int n = nextInt(),
k = nextInt(),
a[] = new int[n];
int s = 0;
for (int i=2; i<=n; i++)
if (prime(i))
a[s++] = i;
int m = 0;
for (int i=2; i<s; i++)
for (int j=i-1; j>0; j--)
if (a[i] == a[j]+a[j-1]+1){
m++;
break;
}
if (m >= k) out.println("YES");
else out.println("NO");
out.flush();
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(n^3): The running time increases with the cube of the input size n.
- O(n): The running time grows linearly with the input size n.
- O(log(n)): The running time increases with the logarithm of the input size n.
- O(nlog(n)): The running time increases with the product of n and logarithm of n.
- O(n^2): The running time increases with the square of the input size n.
- O(1): The running time does not change regardless of the input size n.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Determine the worst-case time complexity category of a given Java code based on input size n.
</TASK>
<CODE>
//package round17;
import java.io.BufferedReader;
import java.io.IOException;
import java.io.InputStreamReader;
import java.io.PrintWriter;
import java.io.StreamTokenizer;
public class A {
static StreamTokenizer in =
new StreamTokenizer(new BufferedReader(new InputStreamReader(System.in)));
static int nextInt() throws IOException{
in.nextToken();
return (int)in.nval;
}
static PrintWriter out = new PrintWriter(System.out);
static boolean prime(int n){
int j = 2;
while (j*j <= n)
if (n%j == 0) return false;
else j++;
return true;
}
public static void main(String[] args) throws IOException{
int n = nextInt(),
k = nextInt(),
a[] = new int[n];
int s = 0;
for (int i=2; i<=n; i++)
if (prime(i))
a[s++] = i;
int m = 0;
for (int i=2; i<s; i++)
for (int j=i-1; j>0; j--)
if (a[i] == a[j]+a[j-1]+1){
m++;
break;
}
if (m >= k) out.println("YES");
else out.println("NO");
out.flush();
}
}
</CODE>
<EVALUATION_RUBRIC>
- non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially.
- O(n): The time complexity increases proportionally to the input size n in a linear manner.
- O(n^2): The time complexity grows proportionally to the square of the input size.
- O(log(n)): The time complexity increases logarithmically in relation to the input size.
- O(n^3): The time complexity scales proportionally to the cube of the input size.
- others: The time complexity does not fit any of the above categories or cannot be clearly classified.
- O(nlog(n)): The time complexity combines linear and logarithmic growth factors.
- O(1): The time complexity is constant to the input size n.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
| 620
| 805
|
3,594
|
import java.io.*;
import java.io.IOException;
import java.util.Iterator;
import java.util.LinkedList;
import java.util.Queue;
import java.util.Scanner;
import java.util.Stack;
import java.util.TreeSet;
public class ViewAngle{
private static int V,level[][],count=-1,lev_dfs[],degree=0,no_vert_conn_comp=0;
private static Stack <Integer>st=new Stack();
private static LinkedList<Integer > adj[];
private static boolean[][] Visite;
private static boolean [] Visited;
private static TreeSet<Integer> ts=new TreeSet();
// private static HashMap
private static Queue<Pair> queue = new LinkedList<Pair>();
ViewAngle(int V){
V++;
this.V=(V);
adj=new LinkedList[V];
Visite=new boolean[100][100];
Visited=new boolean[V];
lev_dfs=new int[V];
for(int i=0;i<V;i++)
adj[i]=new LinkedList<Integer>();
}
static File inFile,outFile;
static FileWriter fWriter;
static PrintWriter pWriter;
public static void main(String[] args) throws IOException {
inFile=new File("input.txt");
outFile = new File ("output.txt");
fWriter = new FileWriter (outFile);
pWriter = new PrintWriter (fWriter);
Scanner sc = new Scanner (inFile);
int n=sc.nextInt();
int m=sc.nextInt();
char c[][]=new char[n][m];
for(int i=0;i<n;i++){
for(int j=0;j<m;j++){
c[i][j]='.';
}
}
setup(n, m);
int k=sc.nextInt();
for(int i=0;i<k;i++){
int x=sc.nextInt();
int y=sc.nextInt();
queue.add(new Pair(x-1, y-1));
c[x-1][y-1]='X';
level[x-1][y-1]=-1;
Visite[x-1][y-1]=true;
}
BFS(c, n, m);
pWriter.close();
sc.close();
}
static void addEdge(int v,int w){
if(adj[v]==null){
adj[v]=new LinkedList();
}
adj[v].add(w);
}
public static int BFS2(int startVert,int dest){
Visited=new boolean[V];
for(int i=1;i<V;i++){
lev_dfs[i]=-1;
}
Queue<Integer> q=new LinkedList<Integer>();
q.add(startVert);
lev_dfs[startVert]=0;
while(!q.isEmpty()){
int top=q.poll();
Iterator<Integer> i= adj[top].listIterator();
while(i.hasNext()){
int n=i.next();
if(!Visited[n]){
q.add(n);
Visited[n]=true;
lev_dfs[n]=lev_dfs[top]+1;
if(n==dest){
q.clear();
return lev_dfs[n];
}
}
}
}
q.clear();
return -1;
}
public int getEd(){
return degree/2;
}
public void get(int from,int to){
int h=lev_dfs[from]-lev_dfs[to];
if(h<=0){
System.out.println(-1);
}else{
System.out.println(h-1);
}
}
public static void setup(int n,int m){
level=new int[n][m];
Visite=new boolean[n][m];
}
private static boolean check(int x,int y,char c[][]){
if((x>=0 && y>=0) && (x<c.length && y<c[0].length) && c[x][y]=='.'){
return true;
}
return false;
}
public static int BFS(char[][] c,int n,int m)
{
//Visited[s]=true;
// queue.add(new Pair(x,y));
int count=0;
// level[x][y]=-1;
while (!queue.isEmpty())
{
Pair temp = queue.poll();
int x=temp.w;
int y=temp.h;
Visite[x][y]=true;
if(check(x+1,y,c) && !Visite[x+1][y]){
level[x+1][y]=level[x][y]+1;
queue.add(new Pair(x+1, y));
Visite[x+1][y]=true;
}
if(check(x-1,y,c) && !Visite[x-1][y]){
level[x-1][y]=level[x][y]+1;
queue.add(new Pair(x-1, y));
Visite[x-1][y]=true;
}
if(check(x,y+1,c) && !Visite[x][y+1]){
level[x][y+1]=level[x][y]+1;
queue.add(new Pair(x, y+1));
Visite[x][y+1]=true;
}
if(check(x,y-1,c) && !Visite[x][y-1]){
level[x][y-1]=level[x][y]+1;
queue.add(new Pair(x, y-1));
Visite[x][y-1]=true;
}
}
int prev_lev=-1,x=-1,y=-1;
for(int i=0;i<n;i++){
for(int j=0;j<m;j++){
if(level[i][j]>=prev_lev){
prev_lev=level[i][j];
x=i;y=j;
}
//System.out.println(level[i][j]+" ");
}
//System.out.println();
}
pWriter.println((x+1)+" "+(y+1));
return V;
}
private void getAns(int startVertex){
for(int i=0;i<adj[startVertex].size();i++){
int ch=adj[startVertex].get(i);
for(int j=0;j<adj[ch].size();j++){
int ch2=adj[ch].get(j);
if(adj[ch2].contains(startVertex)){
System.out.println(startVertex+" "+ch+" "+ch2);
System.exit(0);
}
}
}
}
public long dfs(int startVertex){
// getAns(startVertex);
if(!Visited[startVertex]) {
return dfsUtil(startVertex,Visited);
//return getAns();
}
return 0;
}
private long dfsUtil(int startVertex, boolean[] Visited) {//0-Blue 1-Pink
//System.out.println(startVertex);
int c=1;
long cout=0;
degree=0;
Visited[startVertex]=true;
// lev_dfs[startVertex]=1;
st.push(startVertex);
while(!st.isEmpty()){
int top=st.pop();
Iterator<Integer> i=adj[top].listIterator();
degree+=adj[top].size();
while(i.hasNext()){
// System.out.println(top+" "+adj[top].size());
int n=i.next();
// System.out.print(n+" ");
if( !Visited[n]){
Visited[n]=true;
st.push(n);
// System.out.print(n+" ");
lev_dfs[n]=top;
}
}
// System.out.println("--------------------------------");
}
for(int i=1;i<V;i++){
if(lev_dfs[i]!=0){
System.out.print(lev_dfs[i]+" ");
}
}
return cout;
// System.out.println("NO");
// return c;
}
}
class Pair implements Comparable<Pair>{
int w;
int h;
Pair(int w,int h){
this.w=w;
this.h=h;
}
@Override
public int compareTo(Pair o) {
// TODO Auto-generated method stub
// Sort in increasing order
if(w>o.w){
return 1;
}else if(w<o.w){
return -1;
}else{
if(h>o.h)
return 1;
else if(h<o.h)
return -1;
else
return 0;
}
}
}
|
O(n^3)
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Determine the worst-case time complexity category of a given Java code based on input size n.
</TASK>
<CODE>
import java.io.*;
import java.io.IOException;
import java.util.Iterator;
import java.util.LinkedList;
import java.util.Queue;
import java.util.Scanner;
import java.util.Stack;
import java.util.TreeSet;
public class ViewAngle{
private static int V,level[][],count=-1,lev_dfs[],degree=0,no_vert_conn_comp=0;
private static Stack <Integer>st=new Stack();
private static LinkedList<Integer > adj[];
private static boolean[][] Visite;
private static boolean [] Visited;
private static TreeSet<Integer> ts=new TreeSet();
// private static HashMap
private static Queue<Pair> queue = new LinkedList<Pair>();
ViewAngle(int V){
V++;
this.V=(V);
adj=new LinkedList[V];
Visite=new boolean[100][100];
Visited=new boolean[V];
lev_dfs=new int[V];
for(int i=0;i<V;i++)
adj[i]=new LinkedList<Integer>();
}
static File inFile,outFile;
static FileWriter fWriter;
static PrintWriter pWriter;
public static void main(String[] args) throws IOException {
inFile=new File("input.txt");
outFile = new File ("output.txt");
fWriter = new FileWriter (outFile);
pWriter = new PrintWriter (fWriter);
Scanner sc = new Scanner (inFile);
int n=sc.nextInt();
int m=sc.nextInt();
char c[][]=new char[n][m];
for(int i=0;i<n;i++){
for(int j=0;j<m;j++){
c[i][j]='.';
}
}
setup(n, m);
int k=sc.nextInt();
for(int i=0;i<k;i++){
int x=sc.nextInt();
int y=sc.nextInt();
queue.add(new Pair(x-1, y-1));
c[x-1][y-1]='X';
level[x-1][y-1]=-1;
Visite[x-1][y-1]=true;
}
BFS(c, n, m);
pWriter.close();
sc.close();
}
static void addEdge(int v,int w){
if(adj[v]==null){
adj[v]=new LinkedList();
}
adj[v].add(w);
}
public static int BFS2(int startVert,int dest){
Visited=new boolean[V];
for(int i=1;i<V;i++){
lev_dfs[i]=-1;
}
Queue<Integer> q=new LinkedList<Integer>();
q.add(startVert);
lev_dfs[startVert]=0;
while(!q.isEmpty()){
int top=q.poll();
Iterator<Integer> i= adj[top].listIterator();
while(i.hasNext()){
int n=i.next();
if(!Visited[n]){
q.add(n);
Visited[n]=true;
lev_dfs[n]=lev_dfs[top]+1;
if(n==dest){
q.clear();
return lev_dfs[n];
}
}
}
}
q.clear();
return -1;
}
public int getEd(){
return degree/2;
}
public void get(int from,int to){
int h=lev_dfs[from]-lev_dfs[to];
if(h<=0){
System.out.println(-1);
}else{
System.out.println(h-1);
}
}
public static void setup(int n,int m){
level=new int[n][m];
Visite=new boolean[n][m];
}
private static boolean check(int x,int y,char c[][]){
if((x>=0 && y>=0) && (x<c.length && y<c[0].length) && c[x][y]=='.'){
return true;
}
return false;
}
public static int BFS(char[][] c,int n,int m)
{
//Visited[s]=true;
// queue.add(new Pair(x,y));
int count=0;
// level[x][y]=-1;
while (!queue.isEmpty())
{
Pair temp = queue.poll();
int x=temp.w;
int y=temp.h;
Visite[x][y]=true;
if(check(x+1,y,c) && !Visite[x+1][y]){
level[x+1][y]=level[x][y]+1;
queue.add(new Pair(x+1, y));
Visite[x+1][y]=true;
}
if(check(x-1,y,c) && !Visite[x-1][y]){
level[x-1][y]=level[x][y]+1;
queue.add(new Pair(x-1, y));
Visite[x-1][y]=true;
}
if(check(x,y+1,c) && !Visite[x][y+1]){
level[x][y+1]=level[x][y]+1;
queue.add(new Pair(x, y+1));
Visite[x][y+1]=true;
}
if(check(x,y-1,c) && !Visite[x][y-1]){
level[x][y-1]=level[x][y]+1;
queue.add(new Pair(x, y-1));
Visite[x][y-1]=true;
}
}
int prev_lev=-1,x=-1,y=-1;
for(int i=0;i<n;i++){
for(int j=0;j<m;j++){
if(level[i][j]>=prev_lev){
prev_lev=level[i][j];
x=i;y=j;
}
//System.out.println(level[i][j]+" ");
}
//System.out.println();
}
pWriter.println((x+1)+" "+(y+1));
return V;
}
private void getAns(int startVertex){
for(int i=0;i<adj[startVertex].size();i++){
int ch=adj[startVertex].get(i);
for(int j=0;j<adj[ch].size();j++){
int ch2=adj[ch].get(j);
if(adj[ch2].contains(startVertex)){
System.out.println(startVertex+" "+ch+" "+ch2);
System.exit(0);
}
}
}
}
public long dfs(int startVertex){
// getAns(startVertex);
if(!Visited[startVertex]) {
return dfsUtil(startVertex,Visited);
//return getAns();
}
return 0;
}
private long dfsUtil(int startVertex, boolean[] Visited) {//0-Blue 1-Pink
//System.out.println(startVertex);
int c=1;
long cout=0;
degree=0;
Visited[startVertex]=true;
// lev_dfs[startVertex]=1;
st.push(startVertex);
while(!st.isEmpty()){
int top=st.pop();
Iterator<Integer> i=adj[top].listIterator();
degree+=adj[top].size();
while(i.hasNext()){
// System.out.println(top+" "+adj[top].size());
int n=i.next();
// System.out.print(n+" ");
if( !Visited[n]){
Visited[n]=true;
st.push(n);
// System.out.print(n+" ");
lev_dfs[n]=top;
}
}
// System.out.println("--------------------------------");
}
for(int i=1;i<V;i++){
if(lev_dfs[i]!=0){
System.out.print(lev_dfs[i]+" ");
}
}
return cout;
// System.out.println("NO");
// return c;
}
}
class Pair implements Comparable<Pair>{
int w;
int h;
Pair(int w,int h){
this.w=w;
this.h=h;
}
@Override
public int compareTo(Pair o) {
// TODO Auto-generated method stub
// Sort in increasing order
if(w>o.w){
return 1;
}else if(w<o.w){
return -1;
}else{
if(h>o.h)
return 1;
else if(h<o.h)
return -1;
else
return 0;
}
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(log(n)): The time complexity increases logarithmically in relation to the input size.
- O(n^3): The time complexity scales proportionally to the cube of the input size.
- O(1): The time complexity is constant to the input size n.
- O(nlog(n)): The time complexity combines linear and logarithmic growth factors.
- non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially.
- O(n): The time complexity increases proportionally to the input size n in a linear manner.
- O(n^2): The time complexity grows proportionally to the square of the input size.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Determine the worst-case time complexity category of a given Java code based on input size n.
</TASK>
<CODE>
import java.io.*;
import java.io.IOException;
import java.util.Iterator;
import java.util.LinkedList;
import java.util.Queue;
import java.util.Scanner;
import java.util.Stack;
import java.util.TreeSet;
public class ViewAngle{
private static int V,level[][],count=-1,lev_dfs[],degree=0,no_vert_conn_comp=0;
private static Stack <Integer>st=new Stack();
private static LinkedList<Integer > adj[];
private static boolean[][] Visite;
private static boolean [] Visited;
private static TreeSet<Integer> ts=new TreeSet();
// private static HashMap
private static Queue<Pair> queue = new LinkedList<Pair>();
ViewAngle(int V){
V++;
this.V=(V);
adj=new LinkedList[V];
Visite=new boolean[100][100];
Visited=new boolean[V];
lev_dfs=new int[V];
for(int i=0;i<V;i++)
adj[i]=new LinkedList<Integer>();
}
static File inFile,outFile;
static FileWriter fWriter;
static PrintWriter pWriter;
public static void main(String[] args) throws IOException {
inFile=new File("input.txt");
outFile = new File ("output.txt");
fWriter = new FileWriter (outFile);
pWriter = new PrintWriter (fWriter);
Scanner sc = new Scanner (inFile);
int n=sc.nextInt();
int m=sc.nextInt();
char c[][]=new char[n][m];
for(int i=0;i<n;i++){
for(int j=0;j<m;j++){
c[i][j]='.';
}
}
setup(n, m);
int k=sc.nextInt();
for(int i=0;i<k;i++){
int x=sc.nextInt();
int y=sc.nextInt();
queue.add(new Pair(x-1, y-1));
c[x-1][y-1]='X';
level[x-1][y-1]=-1;
Visite[x-1][y-1]=true;
}
BFS(c, n, m);
pWriter.close();
sc.close();
}
static void addEdge(int v,int w){
if(adj[v]==null){
adj[v]=new LinkedList();
}
adj[v].add(w);
}
public static int BFS2(int startVert,int dest){
Visited=new boolean[V];
for(int i=1;i<V;i++){
lev_dfs[i]=-1;
}
Queue<Integer> q=new LinkedList<Integer>();
q.add(startVert);
lev_dfs[startVert]=0;
while(!q.isEmpty()){
int top=q.poll();
Iterator<Integer> i= adj[top].listIterator();
while(i.hasNext()){
int n=i.next();
if(!Visited[n]){
q.add(n);
Visited[n]=true;
lev_dfs[n]=lev_dfs[top]+1;
if(n==dest){
q.clear();
return lev_dfs[n];
}
}
}
}
q.clear();
return -1;
}
public int getEd(){
return degree/2;
}
public void get(int from,int to){
int h=lev_dfs[from]-lev_dfs[to];
if(h<=0){
System.out.println(-1);
}else{
System.out.println(h-1);
}
}
public static void setup(int n,int m){
level=new int[n][m];
Visite=new boolean[n][m];
}
private static boolean check(int x,int y,char c[][]){
if((x>=0 && y>=0) && (x<c.length && y<c[0].length) && c[x][y]=='.'){
return true;
}
return false;
}
public static int BFS(char[][] c,int n,int m)
{
//Visited[s]=true;
// queue.add(new Pair(x,y));
int count=0;
// level[x][y]=-1;
while (!queue.isEmpty())
{
Pair temp = queue.poll();
int x=temp.w;
int y=temp.h;
Visite[x][y]=true;
if(check(x+1,y,c) && !Visite[x+1][y]){
level[x+1][y]=level[x][y]+1;
queue.add(new Pair(x+1, y));
Visite[x+1][y]=true;
}
if(check(x-1,y,c) && !Visite[x-1][y]){
level[x-1][y]=level[x][y]+1;
queue.add(new Pair(x-1, y));
Visite[x-1][y]=true;
}
if(check(x,y+1,c) && !Visite[x][y+1]){
level[x][y+1]=level[x][y]+1;
queue.add(new Pair(x, y+1));
Visite[x][y+1]=true;
}
if(check(x,y-1,c) && !Visite[x][y-1]){
level[x][y-1]=level[x][y]+1;
queue.add(new Pair(x, y-1));
Visite[x][y-1]=true;
}
}
int prev_lev=-1,x=-1,y=-1;
for(int i=0;i<n;i++){
for(int j=0;j<m;j++){
if(level[i][j]>=prev_lev){
prev_lev=level[i][j];
x=i;y=j;
}
//System.out.println(level[i][j]+" ");
}
//System.out.println();
}
pWriter.println((x+1)+" "+(y+1));
return V;
}
private void getAns(int startVertex){
for(int i=0;i<adj[startVertex].size();i++){
int ch=adj[startVertex].get(i);
for(int j=0;j<adj[ch].size();j++){
int ch2=adj[ch].get(j);
if(adj[ch2].contains(startVertex)){
System.out.println(startVertex+" "+ch+" "+ch2);
System.exit(0);
}
}
}
}
public long dfs(int startVertex){
// getAns(startVertex);
if(!Visited[startVertex]) {
return dfsUtil(startVertex,Visited);
//return getAns();
}
return 0;
}
private long dfsUtil(int startVertex, boolean[] Visited) {//0-Blue 1-Pink
//System.out.println(startVertex);
int c=1;
long cout=0;
degree=0;
Visited[startVertex]=true;
// lev_dfs[startVertex]=1;
st.push(startVertex);
while(!st.isEmpty()){
int top=st.pop();
Iterator<Integer> i=adj[top].listIterator();
degree+=adj[top].size();
while(i.hasNext()){
// System.out.println(top+" "+adj[top].size());
int n=i.next();
// System.out.print(n+" ");
if( !Visited[n]){
Visited[n]=true;
st.push(n);
// System.out.print(n+" ");
lev_dfs[n]=top;
}
}
// System.out.println("--------------------------------");
}
for(int i=1;i<V;i++){
if(lev_dfs[i]!=0){
System.out.print(lev_dfs[i]+" ");
}
}
return cout;
// System.out.println("NO");
// return c;
}
}
class Pair implements Comparable<Pair>{
int w;
int h;
Pair(int w,int h){
this.w=w;
this.h=h;
}
@Override
public int compareTo(Pair o) {
// TODO Auto-generated method stub
// Sort in increasing order
if(w>o.w){
return 1;
}else if(w<o.w){
return -1;
}else{
if(h>o.h)
return 1;
else if(h<o.h)
return -1;
else
return 0;
}
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(1): The time complexity is constant to the input size n.
- O(log(n)): The time complexity increases logarithmically in relation to the input size.
- O(n): The time complexity increases proportionally to the input size n in a linear manner.
- O(nlog(n)): The time complexity combines linear and logarithmic growth factors.
- O(n^3): The time complexity scales proportionally to the cube of the input size.
- non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially.
- O(n^2): The time complexity grows proportionally to the square of the input size.
- others: The time complexity does not fit any of the above categories or cannot be clearly classified.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
| 2,186
| 3,586
|
3,611
|
import java.io.*;
import java.util.*;
public class MainF {
public static void main(String[]args) throws IOException{
BufferedReader br = new BufferedReader(new FileReader(new File("input.txt")));
BufferedWriter bw = new BufferedWriter(new FileWriter(new File("output.txt")));
String S = br.readLine();
String[]J = S.split(" ");
int N = Integer.parseInt(J[0]);
int M = Integer.parseInt(J[1]);
int K = Integer.parseInt(br.readLine());
int[]x = new int[K];
int[]y = new int[K];
S = br.readLine();
J = S.split(" ");
for(int i = 0; i<2*K; i = i + 2){
x[i/2] = Integer.parseInt(J[i]);
y[i/2] = Integer.parseInt(J[i+1]);
}
int ans = -1;
int ansX = -1;
int ansY = -1;
for (int i = 1; i<=N; i++){
for (int j = 1; j<=M; j++){
int W = M + N;
for (int k = 0; k<K; k++){
W = Math.min(W, Math.abs(i-x[k]) + Math.abs(j-y[k]));
}
if (W < ans)continue;
ans = W;
ansX = i;
ansY = j;
}
}
bw.write(Integer.toString(ansX)+" "+Integer.toString(ansY));
br.close();
bw.close();
}
}
|
O(n^3)
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n.
</TASK>
<CODE>
import java.io.*;
import java.util.*;
public class MainF {
public static void main(String[]args) throws IOException{
BufferedReader br = new BufferedReader(new FileReader(new File("input.txt")));
BufferedWriter bw = new BufferedWriter(new FileWriter(new File("output.txt")));
String S = br.readLine();
String[]J = S.split(" ");
int N = Integer.parseInt(J[0]);
int M = Integer.parseInt(J[1]);
int K = Integer.parseInt(br.readLine());
int[]x = new int[K];
int[]y = new int[K];
S = br.readLine();
J = S.split(" ");
for(int i = 0; i<2*K; i = i + 2){
x[i/2] = Integer.parseInt(J[i]);
y[i/2] = Integer.parseInt(J[i+1]);
}
int ans = -1;
int ansX = -1;
int ansY = -1;
for (int i = 1; i<=N; i++){
for (int j = 1; j<=M; j++){
int W = M + N;
for (int k = 0; k<K; k++){
W = Math.min(W, Math.abs(i-x[k]) + Math.abs(j-y[k]));
}
if (W < ans)continue;
ans = W;
ansX = i;
ansY = j;
}
}
bw.write(Integer.toString(ansX)+" "+Integer.toString(ansY));
br.close();
bw.close();
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(n^2): The execution time ascends in proportion to the square of the input size n.
- O(n^3): The execution time ascends in proportion to the cube of the input size n.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially.
- O(log(n)): The execution time ascends in proportion to the logarithm of the input size n.
- O(1): The execution time is unaffected by the size of the input n.
- O(n): The execution time ascends in a one-to-one ratio with the input size n.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n.
</TASK>
<CODE>
import java.io.*;
import java.util.*;
public class MainF {
public static void main(String[]args) throws IOException{
BufferedReader br = new BufferedReader(new FileReader(new File("input.txt")));
BufferedWriter bw = new BufferedWriter(new FileWriter(new File("output.txt")));
String S = br.readLine();
String[]J = S.split(" ");
int N = Integer.parseInt(J[0]);
int M = Integer.parseInt(J[1]);
int K = Integer.parseInt(br.readLine());
int[]x = new int[K];
int[]y = new int[K];
S = br.readLine();
J = S.split(" ");
for(int i = 0; i<2*K; i = i + 2){
x[i/2] = Integer.parseInt(J[i]);
y[i/2] = Integer.parseInt(J[i+1]);
}
int ans = -1;
int ansX = -1;
int ansY = -1;
for (int i = 1; i<=N; i++){
for (int j = 1; j<=M; j++){
int W = M + N;
for (int k = 0; k<K; k++){
W = Math.min(W, Math.abs(i-x[k]) + Math.abs(j-y[k]));
}
if (W < ans)continue;
ans = W;
ansX = i;
ansY = j;
}
}
bw.write(Integer.toString(ansX)+" "+Integer.toString(ansY));
br.close();
bw.close();
}
}
</CODE>
<EVALUATION_RUBRIC>
- others: The time complexity does not fit to any of the given categories or is ambiguous.
- O(n): The execution time ascends in a one-to-one ratio with the input size n.
- O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially.
- O(n^2): The execution time ascends in proportion to the square of the input size n.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- O(log(n)): The execution time ascends in proportion to the logarithm of the input size n.
- O(n^3): The execution time ascends in proportion to the cube of the input size n.
- O(1): The execution time is unaffected by the size of the input n.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
| 685
| 3,603
|
2,560
|
import java.util.*;
import java.io.*;
public class Main {
static Scanner console;
public static void main(String[] args) {
console = new Scanner(System.in);
int n = console.nextInt();
List<Integer> arr= new ArrayList<>();
for(int i = 0; i < n; i++) arr.add( console.nextInt());
Collections.sort(arr);
List<Integer> groups = new ArrayList<>();
// System.out.println(arr);
for(int i = 0; i < arr.size() - 1; i++) {
int j = i+1;
groups.add(arr.get(i));
// System.out.println(groups);
while(j < arr.size()) {
// System.out.println(j);
if(arr.get(j) % arr.get(i) == 0) {
arr.remove(j);
}
else {
// groups.add(arr.get(j));
j++;
}
}
}
// System.out.println(arr);
System.out.println(arr.size());
}
}
|
O(n^2)
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n.
</TASK>
<CODE>
import java.util.*;
import java.io.*;
public class Main {
static Scanner console;
public static void main(String[] args) {
console = new Scanner(System.in);
int n = console.nextInt();
List<Integer> arr= new ArrayList<>();
for(int i = 0; i < n; i++) arr.add( console.nextInt());
Collections.sort(arr);
List<Integer> groups = new ArrayList<>();
// System.out.println(arr);
for(int i = 0; i < arr.size() - 1; i++) {
int j = i+1;
groups.add(arr.get(i));
// System.out.println(groups);
while(j < arr.size()) {
// System.out.println(j);
if(arr.get(j) % arr.get(i) == 0) {
arr.remove(j);
}
else {
// groups.add(arr.get(j));
j++;
}
}
}
// System.out.println(arr);
System.out.println(arr.size());
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(1): The execution time is unaffected by the size of the input n.
- O(n): The execution time ascends in a one-to-one ratio with the input size n.
- O(n^3): The execution time ascends in proportion to the cube of the input size n.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- O(log(n)): The execution time ascends in proportion to the logarithm of the input size n.
- O(n^2): The execution time ascends in proportion to the square of the input size n.
- O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Classify the following Java code's worst-case time complexity according to its relationship to the input size n.
</TASK>
<CODE>
import java.util.*;
import java.io.*;
public class Main {
static Scanner console;
public static void main(String[] args) {
console = new Scanner(System.in);
int n = console.nextInt();
List<Integer> arr= new ArrayList<>();
for(int i = 0; i < n; i++) arr.add( console.nextInt());
Collections.sort(arr);
List<Integer> groups = new ArrayList<>();
// System.out.println(arr);
for(int i = 0; i < arr.size() - 1; i++) {
int j = i+1;
groups.add(arr.get(i));
// System.out.println(groups);
while(j < arr.size()) {
// System.out.println(j);
if(arr.get(j) % arr.get(i) == 0) {
arr.remove(j);
}
else {
// groups.add(arr.get(j));
j++;
}
}
}
// System.out.println(arr);
System.out.println(arr.size());
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(nlog(n)): The running time increases with the product of n and logarithm of n.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- O(1): The running time does not change regardless of the input size n.
- others: The code does not clearly correspond to the listed classes or has an unclassified time complexity.
- O(n^2): The running time increases with the square of the input size n.
- O(n^3): The running time increases with the cube of the input size n.
- O(n): The running time grows linearly with the input size n.
- O(log(n)): The running time increases with the logarithm of the input size n.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
| 568
| 2,554
|
3,203
|
import java.io.*;
public class Main {
public static void main(String[] args) throws Exception {
int n = nextInt();
String nn = Integer.toString(n);
if(n >= 0){
println(n);
} else {
println(Math.max(Integer.parseInt(nn.substring(0,nn.length() - 1)), Integer.parseInt(nn.substring(0, nn.length() - 2) + nn.charAt(nn.length() - 1))));
}
}
private static PrintWriter out = new PrintWriter(System.out);
private static BufferedReader inB = new BufferedReader(new InputStreamReader(System.in));
private static StreamTokenizer in = new StreamTokenizer(inB);
private static void exit(Object o) throws Exception {
out.println(o);
out.flush();
System.exit(0);
}
private static void println(Object o) throws Exception{
out.println(o);
out.flush();
}
private static void print(Object o) throws Exception{
out.print(o);
out.flush();
}
private static long nextLong() throws Exception {
in.nextToken();
return (long)in.nval;
}
private static int nextInt() throws Exception {
in.nextToken();
return (int)in.nval;
}
private static String nextString() throws Exception {
in.nextToken();
return in.sval;
}
}
|
O(1)
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Classify the following Java code's worst-case time complexity according to its relationship to the input size n.
</TASK>
<CODE>
import java.io.*;
public class Main {
public static void main(String[] args) throws Exception {
int n = nextInt();
String nn = Integer.toString(n);
if(n >= 0){
println(n);
} else {
println(Math.max(Integer.parseInt(nn.substring(0,nn.length() - 1)), Integer.parseInt(nn.substring(0, nn.length() - 2) + nn.charAt(nn.length() - 1))));
}
}
private static PrintWriter out = new PrintWriter(System.out);
private static BufferedReader inB = new BufferedReader(new InputStreamReader(System.in));
private static StreamTokenizer in = new StreamTokenizer(inB);
private static void exit(Object o) throws Exception {
out.println(o);
out.flush();
System.exit(0);
}
private static void println(Object o) throws Exception{
out.println(o);
out.flush();
}
private static void print(Object o) throws Exception{
out.print(o);
out.flush();
}
private static long nextLong() throws Exception {
in.nextToken();
return (long)in.nval;
}
private static int nextInt() throws Exception {
in.nextToken();
return (int)in.nval;
}
private static String nextString() throws Exception {
in.nextToken();
return in.sval;
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(n^2): The running time increases with the square of the input size n.
- O(log(n)): The running time increases with the logarithm of the input size n.
- O(nlog(n)): The running time increases with the product of n and logarithm of n.
- O(1): The running time does not change regardless of the input size n.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- O(n): The running time grows linearly with the input size n.
- O(n^3): The running time increases with the cube of the input size n.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Determine the worst-case time complexity category of a given Java code based on input size n.
</TASK>
<CODE>
import java.io.*;
public class Main {
public static void main(String[] args) throws Exception {
int n = nextInt();
String nn = Integer.toString(n);
if(n >= 0){
println(n);
} else {
println(Math.max(Integer.parseInt(nn.substring(0,nn.length() - 1)), Integer.parseInt(nn.substring(0, nn.length() - 2) + nn.charAt(nn.length() - 1))));
}
}
private static PrintWriter out = new PrintWriter(System.out);
private static BufferedReader inB = new BufferedReader(new InputStreamReader(System.in));
private static StreamTokenizer in = new StreamTokenizer(inB);
private static void exit(Object o) throws Exception {
out.println(o);
out.flush();
System.exit(0);
}
private static void println(Object o) throws Exception{
out.println(o);
out.flush();
}
private static void print(Object o) throws Exception{
out.print(o);
out.flush();
}
private static long nextLong() throws Exception {
in.nextToken();
return (long)in.nval;
}
private static int nextInt() throws Exception {
in.nextToken();
return (int)in.nval;
}
private static String nextString() throws Exception {
in.nextToken();
return in.sval;
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(1): The time complexity is constant to the input size n.
- O(n^2): The time complexity grows proportionally to the square of the input size.
- others: The time complexity does not fit any of the above categories or cannot be clearly classified.
- O(log(n)): The time complexity increases logarithmically in relation to the input size.
- O(n): The time complexity increases proportionally to the input size n in a linear manner.
- O(n^3): The time complexity scales proportionally to the cube of the input size.
- O(nlog(n)): The time complexity combines linear and logarithmic growth factors.
- non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
| 614
| 3,197
|
177
|
//Author: Patel Rag
//Java version "1.8.0_211"
import java.util.*;
import java.io.*;
public class Main
{
static class FastReader
{
BufferedReader br;
StringTokenizer st;
public FastReader(){ br = new BufferedReader(new InputStreamReader(System.in)); }
String next()
{
while (st == null || !st.hasMoreElements())
{
try
{
st = new StringTokenizer(br.readLine());
}
catch (IOException e)
{
e.printStackTrace();
}
}
return st.nextToken();
}
int nextInt() { return Integer.parseInt(next()); }
long nextLong(){ return Long.parseLong(next()); }
double nextDouble(){ return Double.parseDouble(next()); }
float nextFloat() { return Float.parseFloat(next()); }
boolean nextBoolean() { return Boolean.parseBoolean(next()); }
String nextLine()
{
String str = "";
try
{
str = br.readLine();
}
catch (IOException e)
{
e.printStackTrace();
}
return str;
}
}
static long modExp(long x, long n, long mod) //binary Modular exponentiation
{
long result = 1;
while(n > 0)
{
if(n % 2 == 1)
result = (result%mod * x%mod)%mod;
x = (x%mod * x%mod)%mod;
n=n/2;
}
return result;
}
static long gcd(long a, long b)
{
if(a==0) return b;
return gcd(b%a,a);
}
public static void main(String[] args)
throws IOException
{
FastReader fr = new FastReader();
int n = fr.nextInt();
int q = fr.nextInt();
long[] a = new long[n];
long[] k = new long[q];
for(int i = 0; i < n; i++) a[i] = fr.nextLong();
for(int i = 0; i < q; i++) k[i] = fr.nextLong();
long[] pre = new long[n];
pre[0] = a[0];
for(int i = 1; i < n; i++) pre[i] = pre[i-1] + a[i];
long pd = 0;
for(int i = 0; i < q; i++)
{
int l = 0;
int r = n - 1;
while(r > l)
{
int mid = (l + r) >> 1;
if(pre[mid] - pd < k[i])
{
l = mid + 1;
}
else if(pre[mid] - pd > k[i])
{
r = mid - 1;
}
else
{
l = r = mid;
}
}
int ans = 0;
if(pre[l] - pd <= k[i])
{
ans = n - l - 1;
}
else
{
ans = n - l;
}
if(ans == 0) ans = n;
pd = pd + k[i];
if(pd >= pre[n-1]) pd = 0;
System.out.println(ans);
}
}
}
class pair
{
public int first;
public int second;
public pair(int first,int second)
{
this.first = first;
this.second = second;
}
public pair(pair p)
{
this.first = p.first;
this.second = p.second;
}
public int first() { return first; }
public int second() { return second; }
public void setFirst(int first) { this.first = first; }
public void setSecond(int second) { this.second = second; }
}
class myComp implements Comparator<pair>
{
public int compare(pair a,pair b)
{
if(a.first != b.first) return (a.first - b.first);
return (b.second - a.second);
}
}
class BIT //Binary Indexed Tree aka Fenwick Tree
{
public long[] m_array;
public BIT(long[] dat)
{
m_array = new long[dat.length + 1];
Arrays.fill(m_array,0);
for(int i = 0; i < dat.length; i++)
{
m_array[i + 1] = dat[i];
}
for(int i = 1; i < m_array.length; i++)
{
int j = i + (i & -i);
if(j < m_array.length)
{
m_array[j] = m_array[j] + m_array[i];
}
}
}
public final long prefix_query(int i)
{
long result = 0;
for(++i; i > 0; i = i - (i & -i))
{
result = result + m_array[i];
}
return result;
}
public final long range_query(int fro, int to)
{
if(fro == 0)
{
return prefix_query(to);
}
else
{
return (prefix_query(to) - prefix_query(fro - 1));
}
}
public void update(int i, long add)
{
for(++i; i < m_array.length; i = i + (i & -i))
{
m_array[i] = m_array[i] + add;
}
}
}
|
O(nlog(n))
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Determine the worst-case time complexity category of a given Java code based on input size n.
</TASK>
<CODE>
//Author: Patel Rag
//Java version "1.8.0_211"
import java.util.*;
import java.io.*;
public class Main
{
static class FastReader
{
BufferedReader br;
StringTokenizer st;
public FastReader(){ br = new BufferedReader(new InputStreamReader(System.in)); }
String next()
{
while (st == null || !st.hasMoreElements())
{
try
{
st = new StringTokenizer(br.readLine());
}
catch (IOException e)
{
e.printStackTrace();
}
}
return st.nextToken();
}
int nextInt() { return Integer.parseInt(next()); }
long nextLong(){ return Long.parseLong(next()); }
double nextDouble(){ return Double.parseDouble(next()); }
float nextFloat() { return Float.parseFloat(next()); }
boolean nextBoolean() { return Boolean.parseBoolean(next()); }
String nextLine()
{
String str = "";
try
{
str = br.readLine();
}
catch (IOException e)
{
e.printStackTrace();
}
return str;
}
}
static long modExp(long x, long n, long mod) //binary Modular exponentiation
{
long result = 1;
while(n > 0)
{
if(n % 2 == 1)
result = (result%mod * x%mod)%mod;
x = (x%mod * x%mod)%mod;
n=n/2;
}
return result;
}
static long gcd(long a, long b)
{
if(a==0) return b;
return gcd(b%a,a);
}
public static void main(String[] args)
throws IOException
{
FastReader fr = new FastReader();
int n = fr.nextInt();
int q = fr.nextInt();
long[] a = new long[n];
long[] k = new long[q];
for(int i = 0; i < n; i++) a[i] = fr.nextLong();
for(int i = 0; i < q; i++) k[i] = fr.nextLong();
long[] pre = new long[n];
pre[0] = a[0];
for(int i = 1; i < n; i++) pre[i] = pre[i-1] + a[i];
long pd = 0;
for(int i = 0; i < q; i++)
{
int l = 0;
int r = n - 1;
while(r > l)
{
int mid = (l + r) >> 1;
if(pre[mid] - pd < k[i])
{
l = mid + 1;
}
else if(pre[mid] - pd > k[i])
{
r = mid - 1;
}
else
{
l = r = mid;
}
}
int ans = 0;
if(pre[l] - pd <= k[i])
{
ans = n - l - 1;
}
else
{
ans = n - l;
}
if(ans == 0) ans = n;
pd = pd + k[i];
if(pd >= pre[n-1]) pd = 0;
System.out.println(ans);
}
}
}
class pair
{
public int first;
public int second;
public pair(int first,int second)
{
this.first = first;
this.second = second;
}
public pair(pair p)
{
this.first = p.first;
this.second = p.second;
}
public int first() { return first; }
public int second() { return second; }
public void setFirst(int first) { this.first = first; }
public void setSecond(int second) { this.second = second; }
}
class myComp implements Comparator<pair>
{
public int compare(pair a,pair b)
{
if(a.first != b.first) return (a.first - b.first);
return (b.second - a.second);
}
}
class BIT //Binary Indexed Tree aka Fenwick Tree
{
public long[] m_array;
public BIT(long[] dat)
{
m_array = new long[dat.length + 1];
Arrays.fill(m_array,0);
for(int i = 0; i < dat.length; i++)
{
m_array[i + 1] = dat[i];
}
for(int i = 1; i < m_array.length; i++)
{
int j = i + (i & -i);
if(j < m_array.length)
{
m_array[j] = m_array[j] + m_array[i];
}
}
}
public final long prefix_query(int i)
{
long result = 0;
for(++i; i > 0; i = i - (i & -i))
{
result = result + m_array[i];
}
return result;
}
public final long range_query(int fro, int to)
{
if(fro == 0)
{
return prefix_query(to);
}
else
{
return (prefix_query(to) - prefix_query(fro - 1));
}
}
public void update(int i, long add)
{
for(++i; i < m_array.length; i = i + (i & -i))
{
m_array[i] = m_array[i] + add;
}
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(n^2): The time complexity grows proportionally to the square of the input size.
- O(log(n)): The time complexity increases logarithmically in relation to the input size.
- O(1): The time complexity is constant to the input size n.
- non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially.
- O(nlog(n)): The time complexity combines linear and logarithmic growth factors.
- O(n): The time complexity increases proportionally to the input size n in a linear manner.
- O(n^3): The time complexity scales proportionally to the cube of the input size.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Classify the following Java code's worst-case time complexity according to its relationship to the input size n.
</TASK>
<CODE>
//Author: Patel Rag
//Java version "1.8.0_211"
import java.util.*;
import java.io.*;
public class Main
{
static class FastReader
{
BufferedReader br;
StringTokenizer st;
public FastReader(){ br = new BufferedReader(new InputStreamReader(System.in)); }
String next()
{
while (st == null || !st.hasMoreElements())
{
try
{
st = new StringTokenizer(br.readLine());
}
catch (IOException e)
{
e.printStackTrace();
}
}
return st.nextToken();
}
int nextInt() { return Integer.parseInt(next()); }
long nextLong(){ return Long.parseLong(next()); }
double nextDouble(){ return Double.parseDouble(next()); }
float nextFloat() { return Float.parseFloat(next()); }
boolean nextBoolean() { return Boolean.parseBoolean(next()); }
String nextLine()
{
String str = "";
try
{
str = br.readLine();
}
catch (IOException e)
{
e.printStackTrace();
}
return str;
}
}
static long modExp(long x, long n, long mod) //binary Modular exponentiation
{
long result = 1;
while(n > 0)
{
if(n % 2 == 1)
result = (result%mod * x%mod)%mod;
x = (x%mod * x%mod)%mod;
n=n/2;
}
return result;
}
static long gcd(long a, long b)
{
if(a==0) return b;
return gcd(b%a,a);
}
public static void main(String[] args)
throws IOException
{
FastReader fr = new FastReader();
int n = fr.nextInt();
int q = fr.nextInt();
long[] a = new long[n];
long[] k = new long[q];
for(int i = 0; i < n; i++) a[i] = fr.nextLong();
for(int i = 0; i < q; i++) k[i] = fr.nextLong();
long[] pre = new long[n];
pre[0] = a[0];
for(int i = 1; i < n; i++) pre[i] = pre[i-1] + a[i];
long pd = 0;
for(int i = 0; i < q; i++)
{
int l = 0;
int r = n - 1;
while(r > l)
{
int mid = (l + r) >> 1;
if(pre[mid] - pd < k[i])
{
l = mid + 1;
}
else if(pre[mid] - pd > k[i])
{
r = mid - 1;
}
else
{
l = r = mid;
}
}
int ans = 0;
if(pre[l] - pd <= k[i])
{
ans = n - l - 1;
}
else
{
ans = n - l;
}
if(ans == 0) ans = n;
pd = pd + k[i];
if(pd >= pre[n-1]) pd = 0;
System.out.println(ans);
}
}
}
class pair
{
public int first;
public int second;
public pair(int first,int second)
{
this.first = first;
this.second = second;
}
public pair(pair p)
{
this.first = p.first;
this.second = p.second;
}
public int first() { return first; }
public int second() { return second; }
public void setFirst(int first) { this.first = first; }
public void setSecond(int second) { this.second = second; }
}
class myComp implements Comparator<pair>
{
public int compare(pair a,pair b)
{
if(a.first != b.first) return (a.first - b.first);
return (b.second - a.second);
}
}
class BIT //Binary Indexed Tree aka Fenwick Tree
{
public long[] m_array;
public BIT(long[] dat)
{
m_array = new long[dat.length + 1];
Arrays.fill(m_array,0);
for(int i = 0; i < dat.length; i++)
{
m_array[i + 1] = dat[i];
}
for(int i = 1; i < m_array.length; i++)
{
int j = i + (i & -i);
if(j < m_array.length)
{
m_array[j] = m_array[j] + m_array[i];
}
}
}
public final long prefix_query(int i)
{
long result = 0;
for(++i; i > 0; i = i - (i & -i))
{
result = result + m_array[i];
}
return result;
}
public final long range_query(int fro, int to)
{
if(fro == 0)
{
return prefix_query(to);
}
else
{
return (prefix_query(to) - prefix_query(fro - 1));
}
}
public void update(int i, long add)
{
for(++i; i < m_array.length; i = i + (i & -i))
{
m_array[i] = m_array[i] + add;
}
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(nlog(n)): The running time increases with the product of n and logarithm of n.
- O(log(n)): The running time increases with the logarithm of the input size n.
- O(1): The running time does not change regardless of the input size n.
- O(n^2): The running time increases with the square of the input size n.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- O(n): The running time grows linearly with the input size n.
- others: The code does not clearly correspond to the listed classes or has an unclassified time complexity.
- O(n^3): The running time increases with the cube of the input size n.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
| 1,510
| 177
|
2,243
|
import java.io.*;
import java.util.*;
public class CC {
public static void main(String[] args)throws Throwable {
MyScanner sc=new MyScanner();
PrintWriter pw=new PrintWriter(System.out);
n=sc.nextInt();
s=new char [n];
for(int i=0;i<n;i++)
s[i]=sc.next().charAt(0);
mem=new int [2*n+1][n+1];
for(int [] x : mem)
Arrays.fill(x, -1);
pw.println(dp(0, 0));
pw.flush();
pw.close();
}
static int n;
static char [] s;
static int [][] mem;
static int dp(int i,int j){
if(i==n)
return j==0? 1 : 0;
if(mem[i][j]!=-1)
return mem[i][j];
int ans=0;
if(s[i]=='f'){
ans+=dp(i+1, j+1);
ans%=mod;
}else{
ans+=dp(i+1, j);
ans%=mod;
if(j>0){
ans+=dp(i, j-1);
ans%=mod;
}
}
return mem[i][j]=ans;
}
static int mod=(int)(1e9+7);
static class MyScanner {
BufferedReader br;
StringTokenizer st;
public MyScanner() {
br = new BufferedReader(new InputStreamReader(System.in));
}
String next() {while (st == null || !st.hasMoreElements()) {
try {st = new StringTokenizer(br.readLine());}
catch (IOException e) {e.printStackTrace();}}
return st.nextToken();}
int nextInt() {return Integer.parseInt(next());}
long nextLong() {return Long.parseLong(next());}
double nextDouble() {return Double.parseDouble(next());}
String nextLine(){String str = "";
try {str = br.readLine();}
catch (IOException e) {e.printStackTrace();}
return str;}
}
}
|
O(n^2)
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Classify the following Java code's worst-case time complexity according to its relationship to the input size n.
</TASK>
<CODE>
import java.io.*;
import java.util.*;
public class CC {
public static void main(String[] args)throws Throwable {
MyScanner sc=new MyScanner();
PrintWriter pw=new PrintWriter(System.out);
n=sc.nextInt();
s=new char [n];
for(int i=0;i<n;i++)
s[i]=sc.next().charAt(0);
mem=new int [2*n+1][n+1];
for(int [] x : mem)
Arrays.fill(x, -1);
pw.println(dp(0, 0));
pw.flush();
pw.close();
}
static int n;
static char [] s;
static int [][] mem;
static int dp(int i,int j){
if(i==n)
return j==0? 1 : 0;
if(mem[i][j]!=-1)
return mem[i][j];
int ans=0;
if(s[i]=='f'){
ans+=dp(i+1, j+1);
ans%=mod;
}else{
ans+=dp(i+1, j);
ans%=mod;
if(j>0){
ans+=dp(i, j-1);
ans%=mod;
}
}
return mem[i][j]=ans;
}
static int mod=(int)(1e9+7);
static class MyScanner {
BufferedReader br;
StringTokenizer st;
public MyScanner() {
br = new BufferedReader(new InputStreamReader(System.in));
}
String next() {while (st == null || !st.hasMoreElements()) {
try {st = new StringTokenizer(br.readLine());}
catch (IOException e) {e.printStackTrace();}}
return st.nextToken();}
int nextInt() {return Integer.parseInt(next());}
long nextLong() {return Long.parseLong(next());}
double nextDouble() {return Double.parseDouble(next());}
String nextLine(){String str = "";
try {str = br.readLine();}
catch (IOException e) {e.printStackTrace();}
return str;}
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(1): The running time does not change regardless of the input size n.
- O(nlog(n)): The running time increases with the product of n and logarithm of n.
- O(n^3): The running time increases with the cube of the input size n.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- O(n): The running time grows linearly with the input size n.
- O(log(n)): The running time increases with the logarithm of the input size n.
- O(n^2): The running time increases with the square of the input size n.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Classify the following Java code's worst-case time complexity according to its relationship to the input size n.
</TASK>
<CODE>
import java.io.*;
import java.util.*;
public class CC {
public static void main(String[] args)throws Throwable {
MyScanner sc=new MyScanner();
PrintWriter pw=new PrintWriter(System.out);
n=sc.nextInt();
s=new char [n];
for(int i=0;i<n;i++)
s[i]=sc.next().charAt(0);
mem=new int [2*n+1][n+1];
for(int [] x : mem)
Arrays.fill(x, -1);
pw.println(dp(0, 0));
pw.flush();
pw.close();
}
static int n;
static char [] s;
static int [][] mem;
static int dp(int i,int j){
if(i==n)
return j==0? 1 : 0;
if(mem[i][j]!=-1)
return mem[i][j];
int ans=0;
if(s[i]=='f'){
ans+=dp(i+1, j+1);
ans%=mod;
}else{
ans+=dp(i+1, j);
ans%=mod;
if(j>0){
ans+=dp(i, j-1);
ans%=mod;
}
}
return mem[i][j]=ans;
}
static int mod=(int)(1e9+7);
static class MyScanner {
BufferedReader br;
StringTokenizer st;
public MyScanner() {
br = new BufferedReader(new InputStreamReader(System.in));
}
String next() {while (st == null || !st.hasMoreElements()) {
try {st = new StringTokenizer(br.readLine());}
catch (IOException e) {e.printStackTrace();}}
return st.nextToken();}
int nextInt() {return Integer.parseInt(next());}
long nextLong() {return Long.parseLong(next());}
double nextDouble() {return Double.parseDouble(next());}
String nextLine(){String str = "";
try {str = br.readLine();}
catch (IOException e) {e.printStackTrace();}
return str;}
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(n^2): The running time increases with the square of the input size n.
- O(1): The running time does not change regardless of the input size n.
- others: The code does not clearly correspond to the listed classes or has an unclassified time complexity.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- O(nlog(n)): The running time increases with the product of n and logarithm of n.
- O(log(n)): The running time increases with the logarithm of the input size n.
- O(n): The running time grows linearly with the input size n.
- O(n^3): The running time increases with the cube of the input size n.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
| 763
| 2,239
|
482
|
//package que_a;
import java.io.*;
import java.util.*;
import java.math.*;
public class utkarsh {
InputStream is;
PrintWriter out;
long mod = (long) (1e9 + 7);
boolean SHOW_TIME;
void solve() {
//Enter code here utkarsh
//SHOW_TIME = true;
int n = ni();
HashMap <String, Integer> mp = new HashMap<>();
mp.put("M", 0);
mp.put("S", 1); mp.put("XS", 2); mp.put("XXS", 3); mp.put("XXXS", 4);
mp.put("L", 5); mp.put("XL", 6); mp.put("XXL", 7); mp.put("XXXL", 8);
int a[] = new int[10];
for(int i = 0; i < n; i++) {
int j = mp.get(ns());
a[j]++;
}
for(int i = 0; i < n; i++) {
int j = mp.get(ns());
a[j]--;
}
int ans = 0;
for(int i = 0; i < 10; i++) {
if(a[i] > 0) ans += a[i];
}
out.println(ans);
}
//---------- I/O Template ----------
public static void main(String[] args) { new utkarsh().run(); }
void run() {
is = System.in;
out = new PrintWriter(System.out);
long start = System.currentTimeMillis();
solve();
long end = System.currentTimeMillis();
if(SHOW_TIME) out.println("\n" + (end - start) + " ms");
out.flush();
}
byte input[] = new byte[1024];
int len = 0, ptr = 0;
int readByte() {
if(ptr >= len) { ptr = 0;
try { len = is.read(input); }
catch(IOException e) { throw new InputMismatchException(); }
if(len <= 0) { return -1; }
} return input[ptr++];
}
boolean isSpaceChar(int c) { return !( c >= 33 && c <= 126 ); }
int skip() {
int b = readByte();
while(b != -1 && isSpaceChar(b)) { b = readByte(); }
return b;
}
char nc() { return (char)skip(); }
String ns() {
int b = skip();
StringBuilder sb = new StringBuilder();
while(!isSpaceChar(b)) { sb.appendCodePoint(b); b = readByte(); }
return sb.toString();
}
String nLine() {
int b = skip();
StringBuilder sb = new StringBuilder();
while( !(isSpaceChar(b) && b != ' ') ) { sb.appendCodePoint(b); b = readByte(); }
return sb.toString();
}
int ni() {
int n = 0, b = readByte();
boolean minus = false;
while(b != -1 && !( (b >= '0' && b <= '9') || b == '-')) { b = readByte(); }
if(b == '-') { minus = true; b = readByte(); }
if(b == -1) { return -1; } //no input
while(b >= '0' && b <= '9') { n = n * 10 + (b - '0'); b = readByte(); }
return minus ? -n : n;
}
long nl() {
long n = 0L; int b = readByte();
boolean minus = false;
while(b != -1 && !( (b >= '0' && b <= '9') || b == '-')) { b = readByte(); }
if(b == '-') { minus = true; b = readByte(); }
while(b >= '0' && b <= '9') { n = n * 10 + (b - '0'); b = readByte(); }
return minus ? -n : n;
}
double nd() { return Double.parseDouble(ns()); }
float nf() { return Float.parseFloat(ns()); }
int[] na(int n) {
int a[] = new int[n];
for(int i = 0; i < n; i++) { a[i] = ni(); }
return a;
}
char[] ns(int n) {
char c[] = new char[n];
int i, b = skip();
for(i = 0; i < n; i++) {
if(isSpaceChar(b)) { break; }
c[i] = (char)b; b = readByte();
} return i == n ? c : Arrays.copyOf(c,i);
}
}
|
O(n)
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Determine the worst-case time complexity category of a given Java code based on input size n.
</TASK>
<CODE>
//package que_a;
import java.io.*;
import java.util.*;
import java.math.*;
public class utkarsh {
InputStream is;
PrintWriter out;
long mod = (long) (1e9 + 7);
boolean SHOW_TIME;
void solve() {
//Enter code here utkarsh
//SHOW_TIME = true;
int n = ni();
HashMap <String, Integer> mp = new HashMap<>();
mp.put("M", 0);
mp.put("S", 1); mp.put("XS", 2); mp.put("XXS", 3); mp.put("XXXS", 4);
mp.put("L", 5); mp.put("XL", 6); mp.put("XXL", 7); mp.put("XXXL", 8);
int a[] = new int[10];
for(int i = 0; i < n; i++) {
int j = mp.get(ns());
a[j]++;
}
for(int i = 0; i < n; i++) {
int j = mp.get(ns());
a[j]--;
}
int ans = 0;
for(int i = 0; i < 10; i++) {
if(a[i] > 0) ans += a[i];
}
out.println(ans);
}
//---------- I/O Template ----------
public static void main(String[] args) { new utkarsh().run(); }
void run() {
is = System.in;
out = new PrintWriter(System.out);
long start = System.currentTimeMillis();
solve();
long end = System.currentTimeMillis();
if(SHOW_TIME) out.println("\n" + (end - start) + " ms");
out.flush();
}
byte input[] = new byte[1024];
int len = 0, ptr = 0;
int readByte() {
if(ptr >= len) { ptr = 0;
try { len = is.read(input); }
catch(IOException e) { throw new InputMismatchException(); }
if(len <= 0) { return -1; }
} return input[ptr++];
}
boolean isSpaceChar(int c) { return !( c >= 33 && c <= 126 ); }
int skip() {
int b = readByte();
while(b != -1 && isSpaceChar(b)) { b = readByte(); }
return b;
}
char nc() { return (char)skip(); }
String ns() {
int b = skip();
StringBuilder sb = new StringBuilder();
while(!isSpaceChar(b)) { sb.appendCodePoint(b); b = readByte(); }
return sb.toString();
}
String nLine() {
int b = skip();
StringBuilder sb = new StringBuilder();
while( !(isSpaceChar(b) && b != ' ') ) { sb.appendCodePoint(b); b = readByte(); }
return sb.toString();
}
int ni() {
int n = 0, b = readByte();
boolean minus = false;
while(b != -1 && !( (b >= '0' && b <= '9') || b == '-')) { b = readByte(); }
if(b == '-') { minus = true; b = readByte(); }
if(b == -1) { return -1; } //no input
while(b >= '0' && b <= '9') { n = n * 10 + (b - '0'); b = readByte(); }
return minus ? -n : n;
}
long nl() {
long n = 0L; int b = readByte();
boolean minus = false;
while(b != -1 && !( (b >= '0' && b <= '9') || b == '-')) { b = readByte(); }
if(b == '-') { minus = true; b = readByte(); }
while(b >= '0' && b <= '9') { n = n * 10 + (b - '0'); b = readByte(); }
return minus ? -n : n;
}
double nd() { return Double.parseDouble(ns()); }
float nf() { return Float.parseFloat(ns()); }
int[] na(int n) {
int a[] = new int[n];
for(int i = 0; i < n; i++) { a[i] = ni(); }
return a;
}
char[] ns(int n) {
char c[] = new char[n];
int i, b = skip();
for(i = 0; i < n; i++) {
if(isSpaceChar(b)) { break; }
c[i] = (char)b; b = readByte();
} return i == n ? c : Arrays.copyOf(c,i);
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(1): The time complexity is constant to the input size n.
- O(n^3): The time complexity scales proportionally to the cube of the input size.
- O(n): The time complexity increases proportionally to the input size n in a linear manner.
- O(n^2): The time complexity grows proportionally to the square of the input size.
- O(log(n)): The time complexity increases logarithmically in relation to the input size.
- non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially.
- O(nlog(n)): The time complexity combines linear and logarithmic growth factors.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Determine the worst-case time complexity category of a given Java code based on input size n.
</TASK>
<CODE>
//package que_a;
import java.io.*;
import java.util.*;
import java.math.*;
public class utkarsh {
InputStream is;
PrintWriter out;
long mod = (long) (1e9 + 7);
boolean SHOW_TIME;
void solve() {
//Enter code here utkarsh
//SHOW_TIME = true;
int n = ni();
HashMap <String, Integer> mp = new HashMap<>();
mp.put("M", 0);
mp.put("S", 1); mp.put("XS", 2); mp.put("XXS", 3); mp.put("XXXS", 4);
mp.put("L", 5); mp.put("XL", 6); mp.put("XXL", 7); mp.put("XXXL", 8);
int a[] = new int[10];
for(int i = 0; i < n; i++) {
int j = mp.get(ns());
a[j]++;
}
for(int i = 0; i < n; i++) {
int j = mp.get(ns());
a[j]--;
}
int ans = 0;
for(int i = 0; i < 10; i++) {
if(a[i] > 0) ans += a[i];
}
out.println(ans);
}
//---------- I/O Template ----------
public static void main(String[] args) { new utkarsh().run(); }
void run() {
is = System.in;
out = new PrintWriter(System.out);
long start = System.currentTimeMillis();
solve();
long end = System.currentTimeMillis();
if(SHOW_TIME) out.println("\n" + (end - start) + " ms");
out.flush();
}
byte input[] = new byte[1024];
int len = 0, ptr = 0;
int readByte() {
if(ptr >= len) { ptr = 0;
try { len = is.read(input); }
catch(IOException e) { throw new InputMismatchException(); }
if(len <= 0) { return -1; }
} return input[ptr++];
}
boolean isSpaceChar(int c) { return !( c >= 33 && c <= 126 ); }
int skip() {
int b = readByte();
while(b != -1 && isSpaceChar(b)) { b = readByte(); }
return b;
}
char nc() { return (char)skip(); }
String ns() {
int b = skip();
StringBuilder sb = new StringBuilder();
while(!isSpaceChar(b)) { sb.appendCodePoint(b); b = readByte(); }
return sb.toString();
}
String nLine() {
int b = skip();
StringBuilder sb = new StringBuilder();
while( !(isSpaceChar(b) && b != ' ') ) { sb.appendCodePoint(b); b = readByte(); }
return sb.toString();
}
int ni() {
int n = 0, b = readByte();
boolean minus = false;
while(b != -1 && !( (b >= '0' && b <= '9') || b == '-')) { b = readByte(); }
if(b == '-') { minus = true; b = readByte(); }
if(b == -1) { return -1; } //no input
while(b >= '0' && b <= '9') { n = n * 10 + (b - '0'); b = readByte(); }
return minus ? -n : n;
}
long nl() {
long n = 0L; int b = readByte();
boolean minus = false;
while(b != -1 && !( (b >= '0' && b <= '9') || b == '-')) { b = readByte(); }
if(b == '-') { minus = true; b = readByte(); }
while(b >= '0' && b <= '9') { n = n * 10 + (b - '0'); b = readByte(); }
return minus ? -n : n;
}
double nd() { return Double.parseDouble(ns()); }
float nf() { return Float.parseFloat(ns()); }
int[] na(int n) {
int a[] = new int[n];
for(int i = 0; i < n; i++) { a[i] = ni(); }
return a;
}
char[] ns(int n) {
char c[] = new char[n];
int i, b = skip();
for(i = 0; i < n; i++) {
if(isSpaceChar(b)) { break; }
c[i] = (char)b; b = readByte();
} return i == n ? c : Arrays.copyOf(c,i);
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(n): The time complexity increases proportionally to the input size n in a linear manner.
- O(log(n)): The time complexity increases logarithmically in relation to the input size.
- non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially.
- O(n^2): The time complexity grows proportionally to the square of the input size.
- others: The time complexity does not fit any of the above categories or cannot be clearly classified.
- O(nlog(n)): The time complexity combines linear and logarithmic growth factors.
- O(1): The time complexity is constant to the input size n.
- O(n^3): The time complexity scales proportionally to the cube of the input size.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
| 1,413
| 481
|
1,470
|
import java.util.Scanner;
public class D {
static long max;
public static long[] getOneRange(long min, long max,int bit) {
long st=(min&(((1l<<63)-1)&~((1l<<(bit+1))-1)))|(1l<<bit);
long end=st|((1l<<(bit+1))-1);
long interSt=Math.max(st,min);
long interEnd=Math.min(end, max);
if(interSt>interEnd) return null;
return new long[]{interSt,interEnd};
}
public static long[] getZeroRange(long min, long max,int bit) {
long st=min&(((1l<<63)-1)&~((1l<<(bit+1))-1));
long end=st|((1l<<bit)-1);
long interSt=Math.max(st,min);
long interEnd=Math.min(end, max);
if(interSt>interEnd) return null;
return new long[]{interSt,interEnd};
}
public static void solve(int bitPosition, long min1, long max1, long min2,
long max2, long curNum) {
if (bitPosition == -1) {
max = Math.max(max, curNum);
return;
}
long[] firZeroRange = getZeroRange(min1, max1,bitPosition);
long[] secZeroRange = getZeroRange(min2, max2,bitPosition);
long[] firOneRange = getOneRange(min1, max1,bitPosition);
long[] secOneRange = getOneRange(min2, max2,bitPosition);
if ((firOneRange != null && secZeroRange != null)
|| (firZeroRange != null && secOneRange != null)) {
long newNum = curNum | (1l << bitPosition);
if (firOneRange != null && secZeroRange != null&&
(firOneRange[1]-firOneRange[0]+1)==1l<<bitPosition&&
(secZeroRange[1]-secZeroRange[0]+1)==1l<<bitPosition) {
solve(bitPosition - 1, firOneRange[0], firOneRange[1],
secZeroRange[0], secZeroRange[1], newNum);
return;
}
if (firZeroRange != null && secOneRange != null&&
(firZeroRange[1]-firZeroRange[0]+1)==1l<<bitPosition&&
(secOneRange[1]-secOneRange[0]+1)==1l<<bitPosition) {
solve(bitPosition - 1, firZeroRange[0], firZeroRange[1],
secOneRange[0], secOneRange[1], newNum);
return;
}
if (firOneRange != null && secZeroRange != null) {
solve(bitPosition - 1, firOneRange[0], firOneRange[1],
secZeroRange[0], secZeroRange[1], newNum);
}
if (firZeroRange != null && secOneRange != null) {
solve(bitPosition - 1, firZeroRange[0], firZeroRange[1],
secOneRange[0], secOneRange[1], newNum);
}
} else {
solve(bitPosition - 1, min1, max1, min2, max2, curNum);
}
}
public static void main(String[] args) {
Scanner sc = new Scanner(System.in);
long l = sc.nextLong();
long r = sc.nextLong();
max = 0;
solve(62, l, r, l, r, 0);
System.out.println(max);
}
}
|
O(log(n))
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Classify the following Java code's worst-case time complexity according to its relationship to the input size n.
</TASK>
<CODE>
import java.util.Scanner;
public class D {
static long max;
public static long[] getOneRange(long min, long max,int bit) {
long st=(min&(((1l<<63)-1)&~((1l<<(bit+1))-1)))|(1l<<bit);
long end=st|((1l<<(bit+1))-1);
long interSt=Math.max(st,min);
long interEnd=Math.min(end, max);
if(interSt>interEnd) return null;
return new long[]{interSt,interEnd};
}
public static long[] getZeroRange(long min, long max,int bit) {
long st=min&(((1l<<63)-1)&~((1l<<(bit+1))-1));
long end=st|((1l<<bit)-1);
long interSt=Math.max(st,min);
long interEnd=Math.min(end, max);
if(interSt>interEnd) return null;
return new long[]{interSt,interEnd};
}
public static void solve(int bitPosition, long min1, long max1, long min2,
long max2, long curNum) {
if (bitPosition == -1) {
max = Math.max(max, curNum);
return;
}
long[] firZeroRange = getZeroRange(min1, max1,bitPosition);
long[] secZeroRange = getZeroRange(min2, max2,bitPosition);
long[] firOneRange = getOneRange(min1, max1,bitPosition);
long[] secOneRange = getOneRange(min2, max2,bitPosition);
if ((firOneRange != null && secZeroRange != null)
|| (firZeroRange != null && secOneRange != null)) {
long newNum = curNum | (1l << bitPosition);
if (firOneRange != null && secZeroRange != null&&
(firOneRange[1]-firOneRange[0]+1)==1l<<bitPosition&&
(secZeroRange[1]-secZeroRange[0]+1)==1l<<bitPosition) {
solve(bitPosition - 1, firOneRange[0], firOneRange[1],
secZeroRange[0], secZeroRange[1], newNum);
return;
}
if (firZeroRange != null && secOneRange != null&&
(firZeroRange[1]-firZeroRange[0]+1)==1l<<bitPosition&&
(secOneRange[1]-secOneRange[0]+1)==1l<<bitPosition) {
solve(bitPosition - 1, firZeroRange[0], firZeroRange[1],
secOneRange[0], secOneRange[1], newNum);
return;
}
if (firOneRange != null && secZeroRange != null) {
solve(bitPosition - 1, firOneRange[0], firOneRange[1],
secZeroRange[0], secZeroRange[1], newNum);
}
if (firZeroRange != null && secOneRange != null) {
solve(bitPosition - 1, firZeroRange[0], firZeroRange[1],
secOneRange[0], secOneRange[1], newNum);
}
} else {
solve(bitPosition - 1, min1, max1, min2, max2, curNum);
}
}
public static void main(String[] args) {
Scanner sc = new Scanner(System.in);
long l = sc.nextLong();
long r = sc.nextLong();
max = 0;
solve(62, l, r, l, r, 0);
System.out.println(max);
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(nlog(n)): The running time increases with the product of n and logarithm of n.
- O(log(n)): The running time increases with the logarithm of the input size n.
- O(1): The running time does not change regardless of the input size n.
- O(n^3): The running time increases with the cube of the input size n.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- O(n): The running time grows linearly with the input size n.
- O(n^2): The running time increases with the square of the input size n.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n.
</TASK>
<CODE>
import java.util.Scanner;
public class D {
static long max;
public static long[] getOneRange(long min, long max,int bit) {
long st=(min&(((1l<<63)-1)&~((1l<<(bit+1))-1)))|(1l<<bit);
long end=st|((1l<<(bit+1))-1);
long interSt=Math.max(st,min);
long interEnd=Math.min(end, max);
if(interSt>interEnd) return null;
return new long[]{interSt,interEnd};
}
public static long[] getZeroRange(long min, long max,int bit) {
long st=min&(((1l<<63)-1)&~((1l<<(bit+1))-1));
long end=st|((1l<<bit)-1);
long interSt=Math.max(st,min);
long interEnd=Math.min(end, max);
if(interSt>interEnd) return null;
return new long[]{interSt,interEnd};
}
public static void solve(int bitPosition, long min1, long max1, long min2,
long max2, long curNum) {
if (bitPosition == -1) {
max = Math.max(max, curNum);
return;
}
long[] firZeroRange = getZeroRange(min1, max1,bitPosition);
long[] secZeroRange = getZeroRange(min2, max2,bitPosition);
long[] firOneRange = getOneRange(min1, max1,bitPosition);
long[] secOneRange = getOneRange(min2, max2,bitPosition);
if ((firOneRange != null && secZeroRange != null)
|| (firZeroRange != null && secOneRange != null)) {
long newNum = curNum | (1l << bitPosition);
if (firOneRange != null && secZeroRange != null&&
(firOneRange[1]-firOneRange[0]+1)==1l<<bitPosition&&
(secZeroRange[1]-secZeroRange[0]+1)==1l<<bitPosition) {
solve(bitPosition - 1, firOneRange[0], firOneRange[1],
secZeroRange[0], secZeroRange[1], newNum);
return;
}
if (firZeroRange != null && secOneRange != null&&
(firZeroRange[1]-firZeroRange[0]+1)==1l<<bitPosition&&
(secOneRange[1]-secOneRange[0]+1)==1l<<bitPosition) {
solve(bitPosition - 1, firZeroRange[0], firZeroRange[1],
secOneRange[0], secOneRange[1], newNum);
return;
}
if (firOneRange != null && secZeroRange != null) {
solve(bitPosition - 1, firOneRange[0], firOneRange[1],
secZeroRange[0], secZeroRange[1], newNum);
}
if (firZeroRange != null && secOneRange != null) {
solve(bitPosition - 1, firZeroRange[0], firZeroRange[1],
secOneRange[0], secOneRange[1], newNum);
}
} else {
solve(bitPosition - 1, min1, max1, min2, max2, curNum);
}
}
public static void main(String[] args) {
Scanner sc = new Scanner(System.in);
long l = sc.nextLong();
long r = sc.nextLong();
max = 0;
solve(62, l, r, l, r, 0);
System.out.println(max);
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(n^2): The execution time ascends in proportion to the square of the input size n.
- O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- O(n^3): The execution time ascends in proportion to the cube of the input size n.
- O(log(n)): The execution time ascends in proportion to the logarithm of the input size n.
- O(1): The execution time is unaffected by the size of the input n.
- O(n): The execution time ascends in a one-to-one ratio with the input size n.
- others: The time complexity does not fit to any of the given categories or is ambiguous.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
| 1,143
| 1,468
|
2,059
|
import java.io.*;
import java.util.*;
import java.math.*;
public class TaskA {
void Run() throws IOException {
int n=ReadInt();
int[] arr=new int[n];
for(int i=0;i<n;++i)
arr[i]=ReadInt();
Arrays.sort(arr);
boolean one=true;
for(int x : arr)
if(x!=1) {
one=false;
break;
}
if(one) {
for(int i=1;i<n;++i)
output.print("1 ");
output.print("2");
return;
}
int prev=1;
for(int x : arr)
if(x==prev) {
output.print(prev);
output.print(" ");
} else {
output.print(prev);
output.print(" ");
prev=x;
}
}
public static void main(String[] args) throws IOException {
boolean oj = System.getProperty("ONLINE_JUDGE") != null;
Reader reader;
reader=oj ? new InputStreamReader(System.in) : new FileReader("input.txt");
input=new BufferedReader(reader);
Writer writer=new OutputStreamWriter(System.out);
writer=new BufferedWriter(writer);
output=new PrintWriter(writer);
new TaskA().Run();
output.close();
}
static int ReadInt() throws IOException {
return Integer.parseInt(ReadString());
}
static long ReadLong() throws IOException {
return Long.parseLong(ReadString());
}
static String ReadString() throws IOException {
while(tokenizer==null || !tokenizer.hasMoreTokens())
tokenizer=new StringTokenizer(input.readLine());
return tokenizer.nextToken();
}
static StringTokenizer tokenizer;
static BufferedReader input;
static PrintWriter output;
}
|
O(nlog(n))
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Determine the worst-case time complexity category of a given Java code based on input size n.
</TASK>
<CODE>
import java.io.*;
import java.util.*;
import java.math.*;
public class TaskA {
void Run() throws IOException {
int n=ReadInt();
int[] arr=new int[n];
for(int i=0;i<n;++i)
arr[i]=ReadInt();
Arrays.sort(arr);
boolean one=true;
for(int x : arr)
if(x!=1) {
one=false;
break;
}
if(one) {
for(int i=1;i<n;++i)
output.print("1 ");
output.print("2");
return;
}
int prev=1;
for(int x : arr)
if(x==prev) {
output.print(prev);
output.print(" ");
} else {
output.print(prev);
output.print(" ");
prev=x;
}
}
public static void main(String[] args) throws IOException {
boolean oj = System.getProperty("ONLINE_JUDGE") != null;
Reader reader;
reader=oj ? new InputStreamReader(System.in) : new FileReader("input.txt");
input=new BufferedReader(reader);
Writer writer=new OutputStreamWriter(System.out);
writer=new BufferedWriter(writer);
output=new PrintWriter(writer);
new TaskA().Run();
output.close();
}
static int ReadInt() throws IOException {
return Integer.parseInt(ReadString());
}
static long ReadLong() throws IOException {
return Long.parseLong(ReadString());
}
static String ReadString() throws IOException {
while(tokenizer==null || !tokenizer.hasMoreTokens())
tokenizer=new StringTokenizer(input.readLine());
return tokenizer.nextToken();
}
static StringTokenizer tokenizer;
static BufferedReader input;
static PrintWriter output;
}
</CODE>
<EVALUATION_RUBRIC>
- non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially.
- O(n^2): The time complexity grows proportionally to the square of the input size.
- O(nlog(n)): The time complexity combines linear and logarithmic growth factors.
- O(n): The time complexity increases proportionally to the input size n in a linear manner.
- O(log(n)): The time complexity increases logarithmically in relation to the input size.
- O(1): The time complexity is constant to the input size n.
- O(n^3): The time complexity scales proportionally to the cube of the input size.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Determine the worst-case time complexity category of a given Java code based on input size n.
</TASK>
<CODE>
import java.io.*;
import java.util.*;
import java.math.*;
public class TaskA {
void Run() throws IOException {
int n=ReadInt();
int[] arr=new int[n];
for(int i=0;i<n;++i)
arr[i]=ReadInt();
Arrays.sort(arr);
boolean one=true;
for(int x : arr)
if(x!=1) {
one=false;
break;
}
if(one) {
for(int i=1;i<n;++i)
output.print("1 ");
output.print("2");
return;
}
int prev=1;
for(int x : arr)
if(x==prev) {
output.print(prev);
output.print(" ");
} else {
output.print(prev);
output.print(" ");
prev=x;
}
}
public static void main(String[] args) throws IOException {
boolean oj = System.getProperty("ONLINE_JUDGE") != null;
Reader reader;
reader=oj ? new InputStreamReader(System.in) : new FileReader("input.txt");
input=new BufferedReader(reader);
Writer writer=new OutputStreamWriter(System.out);
writer=new BufferedWriter(writer);
output=new PrintWriter(writer);
new TaskA().Run();
output.close();
}
static int ReadInt() throws IOException {
return Integer.parseInt(ReadString());
}
static long ReadLong() throws IOException {
return Long.parseLong(ReadString());
}
static String ReadString() throws IOException {
while(tokenizer==null || !tokenizer.hasMoreTokens())
tokenizer=new StringTokenizer(input.readLine());
return tokenizer.nextToken();
}
static StringTokenizer tokenizer;
static BufferedReader input;
static PrintWriter output;
}
</CODE>
<EVALUATION_RUBRIC>
- O(nlog(n)): The time complexity combines linear and logarithmic growth factors.
- O(n): The time complexity increases proportionally to the input size n in a linear manner.
- others: The time complexity does not fit any of the above categories or cannot be clearly classified.
- O(log(n)): The time complexity increases logarithmically in relation to the input size.
- O(n^2): The time complexity grows proportionally to the square of the input size.
- O(n^3): The time complexity scales proportionally to the cube of the input size.
- O(1): The time complexity is constant to the input size n.
- non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
| 687
| 2,055
|
2,025
|
import java.io.InputStreamReader;
import java.util.Arrays;
import java.util.Scanner;
public class A {
/**
* @param args
*/
public static void main(String[] args) {
Scanner s = new Scanner(new InputStreamReader(System.in));
int n = s.nextInt();
int [] ar = new int[n];
for (int i = 0; i < n ; i++) {
ar[i] = s.nextInt();
}
if(ar.length == 1){
System.out.println("NO");
}else{
Arrays.sort(ar);
int num = ar[0];
boolean flag = false;
for (int i = 1; i < ar.length; i++) {
if(ar[i]!= num){
System.out.println(ar[i]);
flag = true;
break;
}
}
if(!flag)
System.out.println("NO");
}
}
}
|
O(nlog(n))
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n.
</TASK>
<CODE>
import java.io.InputStreamReader;
import java.util.Arrays;
import java.util.Scanner;
public class A {
/**
* @param args
*/
public static void main(String[] args) {
Scanner s = new Scanner(new InputStreamReader(System.in));
int n = s.nextInt();
int [] ar = new int[n];
for (int i = 0; i < n ; i++) {
ar[i] = s.nextInt();
}
if(ar.length == 1){
System.out.println("NO");
}else{
Arrays.sort(ar);
int num = ar[0];
boolean flag = false;
for (int i = 1; i < ar.length; i++) {
if(ar[i]!= num){
System.out.println(ar[i]);
flag = true;
break;
}
}
if(!flag)
System.out.println("NO");
}
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially.
- O(n): The execution time ascends in a one-to-one ratio with the input size n.
- O(n^3): The execution time ascends in proportion to the cube of the input size n.
- O(n^2): The execution time ascends in proportion to the square of the input size n.
- O(1): The execution time is unaffected by the size of the input n.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- O(log(n)): The execution time ascends in proportion to the logarithm of the input size n.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Classify the following Java code's worst-case time complexity according to its relationship to the input size n.
</TASK>
<CODE>
import java.io.InputStreamReader;
import java.util.Arrays;
import java.util.Scanner;
public class A {
/**
* @param args
*/
public static void main(String[] args) {
Scanner s = new Scanner(new InputStreamReader(System.in));
int n = s.nextInt();
int [] ar = new int[n];
for (int i = 0; i < n ; i++) {
ar[i] = s.nextInt();
}
if(ar.length == 1){
System.out.println("NO");
}else{
Arrays.sort(ar);
int num = ar[0];
boolean flag = false;
for (int i = 1; i < ar.length; i++) {
if(ar[i]!= num){
System.out.println(ar[i]);
flag = true;
break;
}
}
if(!flag)
System.out.println("NO");
}
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(n^2): The running time increases with the square of the input size n.
- O(1): The running time does not change regardless of the input size n.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- O(log(n)): The running time increases with the logarithm of the input size n.
- O(n): The running time grows linearly with the input size n.
- O(nlog(n)): The running time increases with the product of n and logarithm of n.
- O(n^3): The running time increases with the cube of the input size n.
- others: The code does not clearly correspond to the listed classes or has an unclassified time complexity.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
| 546
| 2,021
|
883
|
import java.util.*;
import java.math.*;
public class Main {
static final long MOD = 1000000007L;
public static void main(String[] args) throws Exception {
Scanner scan = new Scanner(System.in);
int n = scan.nextInt();
int k = scan.nextInt();
int res = -1;
int[] arr = new int[n];
for (int i = 0; i < arr.length; i++) {
arr[i] = scan.nextInt();
}
BitSet bits = new BitSet();
int count = 0;
int end = -1;
for (int i = 0; i < arr.length; i++) {
if (!bits.get(arr[i])) {
bits.set(arr[i]);
count++;
if (count == k) {
end = i;
break;
}
}
}
if (end == -1) {
System.out.print("-1 -1");
return;
}
bits = new BitSet();
count = 0;
int start = end;
while (start >= 0) {
if (!bits.get(arr[start])) {
bits.set(arr[start]);
count++;
if (count == k) {
break;
}
}
start--;
}
System.out.println((start + 1) + " " + (end + 1));
}
}
|
O(n)
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Classify the following Java code's worst-case time complexity according to its relationship to the input size n.
</TASK>
<CODE>
import java.util.*;
import java.math.*;
public class Main {
static final long MOD = 1000000007L;
public static void main(String[] args) throws Exception {
Scanner scan = new Scanner(System.in);
int n = scan.nextInt();
int k = scan.nextInt();
int res = -1;
int[] arr = new int[n];
for (int i = 0; i < arr.length; i++) {
arr[i] = scan.nextInt();
}
BitSet bits = new BitSet();
int count = 0;
int end = -1;
for (int i = 0; i < arr.length; i++) {
if (!bits.get(arr[i])) {
bits.set(arr[i]);
count++;
if (count == k) {
end = i;
break;
}
}
}
if (end == -1) {
System.out.print("-1 -1");
return;
}
bits = new BitSet();
count = 0;
int start = end;
while (start >= 0) {
if (!bits.get(arr[start])) {
bits.set(arr[start]);
count++;
if (count == k) {
break;
}
}
start--;
}
System.out.println((start + 1) + " " + (end + 1));
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(nlog(n)): The running time increases with the product of n and logarithm of n.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- O(n^3): The running time increases with the cube of the input size n.
- O(n^2): The running time increases with the square of the input size n.
- O(1): The running time does not change regardless of the input size n.
- O(n): The running time grows linearly with the input size n.
- O(log(n)): The running time increases with the logarithm of the input size n.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Determine the worst-case time complexity category of a given Java code based on input size n.
</TASK>
<CODE>
import java.util.*;
import java.math.*;
public class Main {
static final long MOD = 1000000007L;
public static void main(String[] args) throws Exception {
Scanner scan = new Scanner(System.in);
int n = scan.nextInt();
int k = scan.nextInt();
int res = -1;
int[] arr = new int[n];
for (int i = 0; i < arr.length; i++) {
arr[i] = scan.nextInt();
}
BitSet bits = new BitSet();
int count = 0;
int end = -1;
for (int i = 0; i < arr.length; i++) {
if (!bits.get(arr[i])) {
bits.set(arr[i]);
count++;
if (count == k) {
end = i;
break;
}
}
}
if (end == -1) {
System.out.print("-1 -1");
return;
}
bits = new BitSet();
count = 0;
int start = end;
while (start >= 0) {
if (!bits.get(arr[start])) {
bits.set(arr[start]);
count++;
if (count == k) {
break;
}
}
start--;
}
System.out.println((start + 1) + " " + (end + 1));
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(nlog(n)): The time complexity combines linear and logarithmic growth factors.
- O(n): The time complexity increases proportionally to the input size n in a linear manner.
- non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially.
- others: The time complexity does not fit any of the above categories or cannot be clearly classified.
- O(n^2): The time complexity grows proportionally to the square of the input size.
- O(1): The time complexity is constant to the input size n.
- O(n^3): The time complexity scales proportionally to the cube of the input size.
- O(log(n)): The time complexity increases logarithmically in relation to the input size.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
| 631
| 882
|
3,419
|
import java.io.*;
import java.math.*;
import java.util.*;
import java.util.Map.Entry;
public class StringsProb {
private void solve() throws IOException {
String s = nextToken();
int res = 0;
Map<String , Integer> m = new HashMap<String, Integer>();
for (int i = 0; i < s.length(); i++)
for (int j = 0; j <= s.length(); j++) {
if (i > j) continue;
String a = s.substring(i , j);
if (a.equals("")) continue;
if (m.containsKey(a)) {
m.put(a, m.get(a) + 1);
}
else
m.put(a, 1);
}
for (Entry<String , Integer> e : m.entrySet()) {
if (e.getValue() >= 2)
res = Math.max(res, e.getKey().length());
}
System.out.println(res);
}
public static void main(String[] args) {
new StringsProb().run();
}
BufferedReader reader;
StringTokenizer tokenizer;
PrintWriter writer;
public void run() {
try {
reader = new BufferedReader(new InputStreamReader(System.in));
tokenizer = null;
writer = new PrintWriter(System.out);
solve();
reader.close();
writer.close();
} catch (Exception e) {
e.printStackTrace();
System.exit(1);
}
}
int[] readIntArray(int size) throws IOException {
int[] res = new int[size];
for (int i = 0; i < size; i++) {
res[i] = nextInt();
}
return res;
}
long[] readLongArray(int size) throws IOException {
long[] res = new long[size];
for (int i = 0; i < size; i++) {
res[i] = nextLong();
}
return res;
}
double[] readDoubleArray(int size) throws IOException {
double[] res = new double[size];
for (int i = 0; i < size; i++) {
res[i] = nextDouble();
}
return res;
}
int nextInt() throws IOException {
return Integer.parseInt(nextToken());
}
long nextLong() throws IOException {
return Long.parseLong(nextToken());
}
double nextDouble() throws IOException {
return Double.parseDouble(nextToken());
}
BigInteger nextBigInteger() throws IOException {
return new BigInteger(nextToken());
}
String nextToken() throws IOException {
while (tokenizer == null || !tokenizer.hasMoreTokens()) {
tokenizer = new StringTokenizer(reader.readLine());
}
return tokenizer.nextToken();
}
}
|
O(n^3)
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Determine the worst-case time complexity category of a given Java code based on input size n.
</TASK>
<CODE>
import java.io.*;
import java.math.*;
import java.util.*;
import java.util.Map.Entry;
public class StringsProb {
private void solve() throws IOException {
String s = nextToken();
int res = 0;
Map<String , Integer> m = new HashMap<String, Integer>();
for (int i = 0; i < s.length(); i++)
for (int j = 0; j <= s.length(); j++) {
if (i > j) continue;
String a = s.substring(i , j);
if (a.equals("")) continue;
if (m.containsKey(a)) {
m.put(a, m.get(a) + 1);
}
else
m.put(a, 1);
}
for (Entry<String , Integer> e : m.entrySet()) {
if (e.getValue() >= 2)
res = Math.max(res, e.getKey().length());
}
System.out.println(res);
}
public static void main(String[] args) {
new StringsProb().run();
}
BufferedReader reader;
StringTokenizer tokenizer;
PrintWriter writer;
public void run() {
try {
reader = new BufferedReader(new InputStreamReader(System.in));
tokenizer = null;
writer = new PrintWriter(System.out);
solve();
reader.close();
writer.close();
} catch (Exception e) {
e.printStackTrace();
System.exit(1);
}
}
int[] readIntArray(int size) throws IOException {
int[] res = new int[size];
for (int i = 0; i < size; i++) {
res[i] = nextInt();
}
return res;
}
long[] readLongArray(int size) throws IOException {
long[] res = new long[size];
for (int i = 0; i < size; i++) {
res[i] = nextLong();
}
return res;
}
double[] readDoubleArray(int size) throws IOException {
double[] res = new double[size];
for (int i = 0; i < size; i++) {
res[i] = nextDouble();
}
return res;
}
int nextInt() throws IOException {
return Integer.parseInt(nextToken());
}
long nextLong() throws IOException {
return Long.parseLong(nextToken());
}
double nextDouble() throws IOException {
return Double.parseDouble(nextToken());
}
BigInteger nextBigInteger() throws IOException {
return new BigInteger(nextToken());
}
String nextToken() throws IOException {
while (tokenizer == null || !tokenizer.hasMoreTokens()) {
tokenizer = new StringTokenizer(reader.readLine());
}
return tokenizer.nextToken();
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(1): The time complexity is constant to the input size n.
- O(n^3): The time complexity scales proportionally to the cube of the input size.
- O(log(n)): The time complexity increases logarithmically in relation to the input size.
- non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially.
- O(nlog(n)): The time complexity combines linear and logarithmic growth factors.
- O(n^2): The time complexity grows proportionally to the square of the input size.
- O(n): The time complexity increases proportionally to the input size n in a linear manner.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Classify the following Java code's worst-case time complexity according to its relationship to the input size n.
</TASK>
<CODE>
import java.io.*;
import java.math.*;
import java.util.*;
import java.util.Map.Entry;
public class StringsProb {
private void solve() throws IOException {
String s = nextToken();
int res = 0;
Map<String , Integer> m = new HashMap<String, Integer>();
for (int i = 0; i < s.length(); i++)
for (int j = 0; j <= s.length(); j++) {
if (i > j) continue;
String a = s.substring(i , j);
if (a.equals("")) continue;
if (m.containsKey(a)) {
m.put(a, m.get(a) + 1);
}
else
m.put(a, 1);
}
for (Entry<String , Integer> e : m.entrySet()) {
if (e.getValue() >= 2)
res = Math.max(res, e.getKey().length());
}
System.out.println(res);
}
public static void main(String[] args) {
new StringsProb().run();
}
BufferedReader reader;
StringTokenizer tokenizer;
PrintWriter writer;
public void run() {
try {
reader = new BufferedReader(new InputStreamReader(System.in));
tokenizer = null;
writer = new PrintWriter(System.out);
solve();
reader.close();
writer.close();
} catch (Exception e) {
e.printStackTrace();
System.exit(1);
}
}
int[] readIntArray(int size) throws IOException {
int[] res = new int[size];
for (int i = 0; i < size; i++) {
res[i] = nextInt();
}
return res;
}
long[] readLongArray(int size) throws IOException {
long[] res = new long[size];
for (int i = 0; i < size; i++) {
res[i] = nextLong();
}
return res;
}
double[] readDoubleArray(int size) throws IOException {
double[] res = new double[size];
for (int i = 0; i < size; i++) {
res[i] = nextDouble();
}
return res;
}
int nextInt() throws IOException {
return Integer.parseInt(nextToken());
}
long nextLong() throws IOException {
return Long.parseLong(nextToken());
}
double nextDouble() throws IOException {
return Double.parseDouble(nextToken());
}
BigInteger nextBigInteger() throws IOException {
return new BigInteger(nextToken());
}
String nextToken() throws IOException {
while (tokenizer == null || !tokenizer.hasMoreTokens()) {
tokenizer = new StringTokenizer(reader.readLine());
}
return tokenizer.nextToken();
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(n): The running time grows linearly with the input size n.
- O(n^3): The running time increases with the cube of the input size n.
- O(n^2): The running time increases with the square of the input size n.
- O(log(n)): The running time increases with the logarithm of the input size n.
- others: The code does not clearly correspond to the listed classes or has an unclassified time complexity.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- O(nlog(n)): The running time increases with the product of n and logarithm of n.
- O(1): The running time does not change regardless of the input size n.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
| 891
| 3,413
|
3,751
|
//package round429;
import java.io.ByteArrayInputStream;
import java.io.IOException;
import java.io.InputStream;
import java.io.PrintWriter;
import java.util.Arrays;
import java.util.InputMismatchException;
public class C2 {
InputStream is;
PrintWriter out;
String INPUT = "";
void solve()
{
int n = ni();
int[] a = na(n);
for(int i = 0;i < n;i++){
int v = a[i];
for(int j = 2;j*j <= v;j++){
while(v % (j*j) == 0){
v /= j*j;
}
}
a[i] = v;
}
Arrays.sort(a);
int[] f = new int[n];
int p = 0;
for(int i= 0;i < n;i++){
if(i > 0 && a[i] != a[i-1]){
p++;
}
f[p]++;
}
f = Arrays.copyOf(f, p+1);
int mod = 1000000007;
int[][] fif = enumFIF(1000, mod);
long[] res = countSameNeighborsSequence(f, fif, mod);
long ans = res[0];
for(int v : f){
ans = ans * fif[0][v] % mod;
}
out.println(ans);
}
public static int[][] enumFIF(int n, int mod) {
int[] f = new int[n + 1];
int[] invf = new int[n + 1];
f[0] = 1;
for (int i = 1; i <= n; i++) {
f[i] = (int) ((long) f[i - 1] * i % mod);
}
long a = f[n];
long b = mod;
long p = 1, q = 0;
while (b > 0) {
long c = a / b;
long d;
d = a;
a = b;
b = d % b;
d = p;
p = q;
q = d - c * q;
}
invf[n] = (int) (p < 0 ? p + mod : p);
for (int i = n - 1; i >= 0; i--) {
invf[i] = (int) ((long) invf[i + 1] * (i + 1) % mod);
}
return new int[][] { f, invf };
}
public static long[] countSameNeighborsSequence(int[] a, int[][] fif, int mod)
{
int n = a.length;
int bef = a[0];
int aft = a[0];
long[] dp = new long[bef];
dp[bef-1] = 1;
for(int u = 1;u < n;u++){
int v = a[u];
aft += v;
long[][] ldp = new long[bef][aft];
for(int i = 0;i < dp.length;i++){
ldp[i][0] = dp[i];
}
for(int i = 0;i < v;i++){
long[][] ndp = new long[bef][aft];
for(int j = 0;j < bef;j++){
for(int k = 0;j+k < aft;k++){
if(ldp[j][k] == 0)continue;
// XX -> XCX
if(j > 0){
ndp[j-1][k] += ldp[j][k] * j;
ndp[j-1][k] %= mod;
}
// CC -> CCC
if(k > 0){
ndp[j][k+1] += ldp[j][k] * k;
ndp[j][k+1] %= mod;
}
// XC -> XCC
// #XC = 2*(i-k)
if(2*(i-k) > 0){
ndp[j][k+1] += ldp[j][k] * (2*(i-k));
ndp[j][k+1] %= mod;
}
// XY -> XCY
// #XY = bef+i+1-#XC-#CC-#XX
if(bef+i+1-j-k-2*(i-k) > 0){
ndp[j][k] += ldp[j][k] * (bef+i+1-j-k-2*(i-k));
ndp[j][k] %= mod;
}
}
}
ldp = ndp;
}
dp = new long[aft];
for(int j = 0;j < bef;j++){
for(int k = 0;j+k < aft;k++){
dp[j+k] += ldp[j][k];
if(dp[j+k] >= mod)dp[j+k] -= mod;
}
}
for(int j = 0;j < aft;j++)dp[j] = dp[j] * fif[1][v] % mod;
bef = aft;
}
return dp;
}
void run() throws Exception
{
is = oj ? System.in : new ByteArrayInputStream(INPUT.getBytes());
out = new PrintWriter(System.out);
long s = System.currentTimeMillis();
solve();
out.flush();
tr(System.currentTimeMillis()-s+"ms");
}
public static void main(String[] args) throws Exception { new C2().run(); }
private byte[] inbuf = new byte[1024];
public int lenbuf = 0, ptrbuf = 0;
private int readByte()
{
if(lenbuf == -1)throw new InputMismatchException();
if(ptrbuf >= lenbuf){
ptrbuf = 0;
try { lenbuf = is.read(inbuf); } catch (IOException e) { throw new InputMismatchException(); }
if(lenbuf <= 0)return -1;
}
return inbuf[ptrbuf++];
}
private boolean isSpaceChar(int c) { return !(c >= 33 && c <= 126); }
private int skip() { int b; while((b = readByte()) != -1 && isSpaceChar(b)); return b; }
private double nd() { return Double.parseDouble(ns()); }
private char nc() { return (char)skip(); }
private String ns()
{
int b = skip();
StringBuilder sb = new StringBuilder();
while(!(isSpaceChar(b))){ // when nextLine, (isSpaceChar(b) && b != ' ')
sb.appendCodePoint(b);
b = readByte();
}
return sb.toString();
}
private char[] ns(int n)
{
char[] buf = new char[n];
int b = skip(), p = 0;
while(p < n && !(isSpaceChar(b))){
buf[p++] = (char)b;
b = readByte();
}
return n == p ? buf : Arrays.copyOf(buf, p);
}
private char[][] nm(int n, int m)
{
char[][] map = new char[n][];
for(int i = 0;i < n;i++)map[i] = ns(m);
return map;
}
private int[] na(int n)
{
int[] a = new int[n];
for(int i = 0;i < n;i++)a[i] = ni();
return a;
}
private int ni()
{
int num = 0, b;
boolean minus = false;
while((b = readByte()) != -1 && !((b >= '0' && b <= '9') || b == '-'));
if(b == '-'){
minus = true;
b = readByte();
}
while(true){
if(b >= '0' && b <= '9'){
num = num * 10 + (b - '0');
}else{
return minus ? -num : num;
}
b = readByte();
}
}
private long nl()
{
long num = 0;
int b;
boolean minus = false;
while((b = readByte()) != -1 && !((b >= '0' && b <= '9') || b == '-'));
if(b == '-'){
minus = true;
b = readByte();
}
while(true){
if(b >= '0' && b <= '9'){
num = num * 10 + (b - '0');
}else{
return minus ? -num : num;
}
b = readByte();
}
}
private boolean oj = System.getProperty("ONLINE_JUDGE") != null;
private void tr(Object... o) { if(!oj)System.out.println(Arrays.deepToString(o)); }
}
|
O(n^3)
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n.
</TASK>
<CODE>
//package round429;
import java.io.ByteArrayInputStream;
import java.io.IOException;
import java.io.InputStream;
import java.io.PrintWriter;
import java.util.Arrays;
import java.util.InputMismatchException;
public class C2 {
InputStream is;
PrintWriter out;
String INPUT = "";
void solve()
{
int n = ni();
int[] a = na(n);
for(int i = 0;i < n;i++){
int v = a[i];
for(int j = 2;j*j <= v;j++){
while(v % (j*j) == 0){
v /= j*j;
}
}
a[i] = v;
}
Arrays.sort(a);
int[] f = new int[n];
int p = 0;
for(int i= 0;i < n;i++){
if(i > 0 && a[i] != a[i-1]){
p++;
}
f[p]++;
}
f = Arrays.copyOf(f, p+1);
int mod = 1000000007;
int[][] fif = enumFIF(1000, mod);
long[] res = countSameNeighborsSequence(f, fif, mod);
long ans = res[0];
for(int v : f){
ans = ans * fif[0][v] % mod;
}
out.println(ans);
}
public static int[][] enumFIF(int n, int mod) {
int[] f = new int[n + 1];
int[] invf = new int[n + 1];
f[0] = 1;
for (int i = 1; i <= n; i++) {
f[i] = (int) ((long) f[i - 1] * i % mod);
}
long a = f[n];
long b = mod;
long p = 1, q = 0;
while (b > 0) {
long c = a / b;
long d;
d = a;
a = b;
b = d % b;
d = p;
p = q;
q = d - c * q;
}
invf[n] = (int) (p < 0 ? p + mod : p);
for (int i = n - 1; i >= 0; i--) {
invf[i] = (int) ((long) invf[i + 1] * (i + 1) % mod);
}
return new int[][] { f, invf };
}
public static long[] countSameNeighborsSequence(int[] a, int[][] fif, int mod)
{
int n = a.length;
int bef = a[0];
int aft = a[0];
long[] dp = new long[bef];
dp[bef-1] = 1;
for(int u = 1;u < n;u++){
int v = a[u];
aft += v;
long[][] ldp = new long[bef][aft];
for(int i = 0;i < dp.length;i++){
ldp[i][0] = dp[i];
}
for(int i = 0;i < v;i++){
long[][] ndp = new long[bef][aft];
for(int j = 0;j < bef;j++){
for(int k = 0;j+k < aft;k++){
if(ldp[j][k] == 0)continue;
// XX -> XCX
if(j > 0){
ndp[j-1][k] += ldp[j][k] * j;
ndp[j-1][k] %= mod;
}
// CC -> CCC
if(k > 0){
ndp[j][k+1] += ldp[j][k] * k;
ndp[j][k+1] %= mod;
}
// XC -> XCC
// #XC = 2*(i-k)
if(2*(i-k) > 0){
ndp[j][k+1] += ldp[j][k] * (2*(i-k));
ndp[j][k+1] %= mod;
}
// XY -> XCY
// #XY = bef+i+1-#XC-#CC-#XX
if(bef+i+1-j-k-2*(i-k) > 0){
ndp[j][k] += ldp[j][k] * (bef+i+1-j-k-2*(i-k));
ndp[j][k] %= mod;
}
}
}
ldp = ndp;
}
dp = new long[aft];
for(int j = 0;j < bef;j++){
for(int k = 0;j+k < aft;k++){
dp[j+k] += ldp[j][k];
if(dp[j+k] >= mod)dp[j+k] -= mod;
}
}
for(int j = 0;j < aft;j++)dp[j] = dp[j] * fif[1][v] % mod;
bef = aft;
}
return dp;
}
void run() throws Exception
{
is = oj ? System.in : new ByteArrayInputStream(INPUT.getBytes());
out = new PrintWriter(System.out);
long s = System.currentTimeMillis();
solve();
out.flush();
tr(System.currentTimeMillis()-s+"ms");
}
public static void main(String[] args) throws Exception { new C2().run(); }
private byte[] inbuf = new byte[1024];
public int lenbuf = 0, ptrbuf = 0;
private int readByte()
{
if(lenbuf == -1)throw new InputMismatchException();
if(ptrbuf >= lenbuf){
ptrbuf = 0;
try { lenbuf = is.read(inbuf); } catch (IOException e) { throw new InputMismatchException(); }
if(lenbuf <= 0)return -1;
}
return inbuf[ptrbuf++];
}
private boolean isSpaceChar(int c) { return !(c >= 33 && c <= 126); }
private int skip() { int b; while((b = readByte()) != -1 && isSpaceChar(b)); return b; }
private double nd() { return Double.parseDouble(ns()); }
private char nc() { return (char)skip(); }
private String ns()
{
int b = skip();
StringBuilder sb = new StringBuilder();
while(!(isSpaceChar(b))){ // when nextLine, (isSpaceChar(b) && b != ' ')
sb.appendCodePoint(b);
b = readByte();
}
return sb.toString();
}
private char[] ns(int n)
{
char[] buf = new char[n];
int b = skip(), p = 0;
while(p < n && !(isSpaceChar(b))){
buf[p++] = (char)b;
b = readByte();
}
return n == p ? buf : Arrays.copyOf(buf, p);
}
private char[][] nm(int n, int m)
{
char[][] map = new char[n][];
for(int i = 0;i < n;i++)map[i] = ns(m);
return map;
}
private int[] na(int n)
{
int[] a = new int[n];
for(int i = 0;i < n;i++)a[i] = ni();
return a;
}
private int ni()
{
int num = 0, b;
boolean minus = false;
while((b = readByte()) != -1 && !((b >= '0' && b <= '9') || b == '-'));
if(b == '-'){
minus = true;
b = readByte();
}
while(true){
if(b >= '0' && b <= '9'){
num = num * 10 + (b - '0');
}else{
return minus ? -num : num;
}
b = readByte();
}
}
private long nl()
{
long num = 0;
int b;
boolean minus = false;
while((b = readByte()) != -1 && !((b >= '0' && b <= '9') || b == '-'));
if(b == '-'){
minus = true;
b = readByte();
}
while(true){
if(b >= '0' && b <= '9'){
num = num * 10 + (b - '0');
}else{
return minus ? -num : num;
}
b = readByte();
}
}
private boolean oj = System.getProperty("ONLINE_JUDGE") != null;
private void tr(Object... o) { if(!oj)System.out.println(Arrays.deepToString(o)); }
}
</CODE>
<EVALUATION_RUBRIC>
- O(n): The execution time ascends in a one-to-one ratio with the input size n.
- O(log(n)): The execution time ascends in proportion to the logarithm of the input size n.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- O(n^2): The execution time ascends in proportion to the square of the input size n.
- O(n^3): The execution time ascends in proportion to the cube of the input size n.
- O(1): The execution time is unaffected by the size of the input n.
- O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n.
</TASK>
<CODE>
//package round429;
import java.io.ByteArrayInputStream;
import java.io.IOException;
import java.io.InputStream;
import java.io.PrintWriter;
import java.util.Arrays;
import java.util.InputMismatchException;
public class C2 {
InputStream is;
PrintWriter out;
String INPUT = "";
void solve()
{
int n = ni();
int[] a = na(n);
for(int i = 0;i < n;i++){
int v = a[i];
for(int j = 2;j*j <= v;j++){
while(v % (j*j) == 0){
v /= j*j;
}
}
a[i] = v;
}
Arrays.sort(a);
int[] f = new int[n];
int p = 0;
for(int i= 0;i < n;i++){
if(i > 0 && a[i] != a[i-1]){
p++;
}
f[p]++;
}
f = Arrays.copyOf(f, p+1);
int mod = 1000000007;
int[][] fif = enumFIF(1000, mod);
long[] res = countSameNeighborsSequence(f, fif, mod);
long ans = res[0];
for(int v : f){
ans = ans * fif[0][v] % mod;
}
out.println(ans);
}
public static int[][] enumFIF(int n, int mod) {
int[] f = new int[n + 1];
int[] invf = new int[n + 1];
f[0] = 1;
for (int i = 1; i <= n; i++) {
f[i] = (int) ((long) f[i - 1] * i % mod);
}
long a = f[n];
long b = mod;
long p = 1, q = 0;
while (b > 0) {
long c = a / b;
long d;
d = a;
a = b;
b = d % b;
d = p;
p = q;
q = d - c * q;
}
invf[n] = (int) (p < 0 ? p + mod : p);
for (int i = n - 1; i >= 0; i--) {
invf[i] = (int) ((long) invf[i + 1] * (i + 1) % mod);
}
return new int[][] { f, invf };
}
public static long[] countSameNeighborsSequence(int[] a, int[][] fif, int mod)
{
int n = a.length;
int bef = a[0];
int aft = a[0];
long[] dp = new long[bef];
dp[bef-1] = 1;
for(int u = 1;u < n;u++){
int v = a[u];
aft += v;
long[][] ldp = new long[bef][aft];
for(int i = 0;i < dp.length;i++){
ldp[i][0] = dp[i];
}
for(int i = 0;i < v;i++){
long[][] ndp = new long[bef][aft];
for(int j = 0;j < bef;j++){
for(int k = 0;j+k < aft;k++){
if(ldp[j][k] == 0)continue;
// XX -> XCX
if(j > 0){
ndp[j-1][k] += ldp[j][k] * j;
ndp[j-1][k] %= mod;
}
// CC -> CCC
if(k > 0){
ndp[j][k+1] += ldp[j][k] * k;
ndp[j][k+1] %= mod;
}
// XC -> XCC
// #XC = 2*(i-k)
if(2*(i-k) > 0){
ndp[j][k+1] += ldp[j][k] * (2*(i-k));
ndp[j][k+1] %= mod;
}
// XY -> XCY
// #XY = bef+i+1-#XC-#CC-#XX
if(bef+i+1-j-k-2*(i-k) > 0){
ndp[j][k] += ldp[j][k] * (bef+i+1-j-k-2*(i-k));
ndp[j][k] %= mod;
}
}
}
ldp = ndp;
}
dp = new long[aft];
for(int j = 0;j < bef;j++){
for(int k = 0;j+k < aft;k++){
dp[j+k] += ldp[j][k];
if(dp[j+k] >= mod)dp[j+k] -= mod;
}
}
for(int j = 0;j < aft;j++)dp[j] = dp[j] * fif[1][v] % mod;
bef = aft;
}
return dp;
}
void run() throws Exception
{
is = oj ? System.in : new ByteArrayInputStream(INPUT.getBytes());
out = new PrintWriter(System.out);
long s = System.currentTimeMillis();
solve();
out.flush();
tr(System.currentTimeMillis()-s+"ms");
}
public static void main(String[] args) throws Exception { new C2().run(); }
private byte[] inbuf = new byte[1024];
public int lenbuf = 0, ptrbuf = 0;
private int readByte()
{
if(lenbuf == -1)throw new InputMismatchException();
if(ptrbuf >= lenbuf){
ptrbuf = 0;
try { lenbuf = is.read(inbuf); } catch (IOException e) { throw new InputMismatchException(); }
if(lenbuf <= 0)return -1;
}
return inbuf[ptrbuf++];
}
private boolean isSpaceChar(int c) { return !(c >= 33 && c <= 126); }
private int skip() { int b; while((b = readByte()) != -1 && isSpaceChar(b)); return b; }
private double nd() { return Double.parseDouble(ns()); }
private char nc() { return (char)skip(); }
private String ns()
{
int b = skip();
StringBuilder sb = new StringBuilder();
while(!(isSpaceChar(b))){ // when nextLine, (isSpaceChar(b) && b != ' ')
sb.appendCodePoint(b);
b = readByte();
}
return sb.toString();
}
private char[] ns(int n)
{
char[] buf = new char[n];
int b = skip(), p = 0;
while(p < n && !(isSpaceChar(b))){
buf[p++] = (char)b;
b = readByte();
}
return n == p ? buf : Arrays.copyOf(buf, p);
}
private char[][] nm(int n, int m)
{
char[][] map = new char[n][];
for(int i = 0;i < n;i++)map[i] = ns(m);
return map;
}
private int[] na(int n)
{
int[] a = new int[n];
for(int i = 0;i < n;i++)a[i] = ni();
return a;
}
private int ni()
{
int num = 0, b;
boolean minus = false;
while((b = readByte()) != -1 && !((b >= '0' && b <= '9') || b == '-'));
if(b == '-'){
minus = true;
b = readByte();
}
while(true){
if(b >= '0' && b <= '9'){
num = num * 10 + (b - '0');
}else{
return minus ? -num : num;
}
b = readByte();
}
}
private long nl()
{
long num = 0;
int b;
boolean minus = false;
while((b = readByte()) != -1 && !((b >= '0' && b <= '9') || b == '-'));
if(b == '-'){
minus = true;
b = readByte();
}
while(true){
if(b >= '0' && b <= '9'){
num = num * 10 + (b - '0');
}else{
return minus ? -num : num;
}
b = readByte();
}
}
private boolean oj = System.getProperty("ONLINE_JUDGE") != null;
private void tr(Object... o) { if(!oj)System.out.println(Arrays.deepToString(o)); }
}
</CODE>
<EVALUATION_RUBRIC>
- O(n^2): The execution time ascends in proportion to the square of the input size n.
- O(log(n)): The execution time ascends in proportion to the logarithm of the input size n.
- others: The time complexity does not fit to any of the given categories or is ambiguous.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- O(n): The execution time ascends in a one-to-one ratio with the input size n.
- O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially.
- O(1): The execution time is unaffected by the size of the input n.
- O(n^3): The execution time ascends in proportion to the cube of the input size n.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
| 2,327
| 3,743
|
4,089
|
import java.io.*;
import static java.lang.Math.*;
import java.util.*;
import java.util.function.*;
import java.lang.*;
public class Main {
final static boolean debug = false;
final static String fileName = "";
final static boolean useFiles = false;
public static void main(String[] args) throws FileNotFoundException {
long start;
if (debug)
start = System.nanoTime();
InputStream inputStream;
OutputStream outputStream;
if (useFiles) {
inputStream = new FileInputStream(fileName + ".in");
outputStream = new FileOutputStream(fileName + ".out");
} else {
inputStream = System.in;
outputStream = System.out;
}
InputReader in = new InputReader(inputStream);
PrintWriter out = new PrintWriter(outputStream);
Task solver = new Task(in, out);
solver.solve();
if(debug)
out.println((System.nanoTime() - start) / 1e+9);
out.close();
}
}
class Task {
int[][] dist, pre;
int[] x, y, d, prev;
String[] leafDescription;
String[] linerDescription;
String[][] allDescriptions;
int xs, ys, n;
int dist(int i, int j) {
return (x[i] - x[j]) * (x[i] - x[j]) + (y[i] - y[j]) * (y[i] - y[j]);
}
void go(int[] prev, String[] leafDescription, int[] d, int len, int add, String description){
for (int mask = 0; mask < d.length; mask++) {
if ((mask & add) != add)
continue;
int newValue = d[mask & (~add)] + len;
if (d[mask] > newValue){
d[mask] = newValue;
leafDescription[mask] = description;
prev[mask] = mask & (~add);
}
}
}
int rec(int mask) {
if (d[mask] != -1)
return d[mask];
int lowest = 0;
for (; ((1 << lowest) & mask) == 0; lowest++) ;
int newMask = mask & (~(1 << lowest));
d[mask] = rec(newMask) + dist[lowest][n];
prev[mask] = newMask;
leafDescription[mask] = linerDescription[lowest];
for (int bit = lowest + 1; bit < n; bit++) {
if (((1 << bit) & mask) > 0) {
newMask = mask & (~(1 << bit)) & (~(1 << lowest));
int newValue = rec(newMask) + pre[bit][lowest];
if (newValue < d[mask]) {
d[mask] = newValue;
prev[mask] = newMask;
leafDescription[mask] = allDescriptions[lowest][bit];
}
}
}
return d[mask];
}
public void solve() {
final int inf = (int) 1e+9;
xs = in.nextInt();
ys = in.nextInt();
n = in.nextInt();
x = new int[n + 1];
y = new int[n + 1];
for (int i = 0; i < n; i++) {
x[i] = in.nextInt();
y[i] = in.nextInt();
}
x[n] = xs;
y[n] = ys;
allDescriptions = new String[n][n];
for (int i = 0; i < n; i++){
for (int j = 0; j < n; j++){
allDescriptions[i][j] = (i + 1) + " " + (j + 1) + " ";
}
}
linerDescription = new String[n];
for (int i = 0; i < n; i++){
linerDescription[i] = (i + 1) + " ";
}
dist = new int[n + 1][n + 1];
pre = new int[n + 1][n + 1];
for (int i = 0; i <= n; i++) {
for (int j = 0; j <= n; j++) {
dist[i][j] = 2 * dist(i, j);
pre[i][j] = dist(i, n) + dist(i, j) + dist(j, n);
}
}
d = new int[1 << n];
Arrays.fill(d, -1);
d[0] = 0;
prev = new int[1 << n];
leafDescription = new String[1 << n];
// Arrays.fill(d, inf);
// prev[0] = 0;
// d[0] = 0;
// for (int i = 0; i < n; i++) {
// int add = 1 << i;
// int len = 2 * dist[n][i];
// String description = (i + 1) + " ";
//
// go(prev, leafDescription, d, len, add, description);
// }
// for (int i = 0; i < n; i++) {
// for (int j = i + 1; j < n; j++) {
// int add = (1 << i) | (1 << j);
// int len = dist[n][i] + dist[i][j] + dist[n][j];
// String description = (i + 1) + " " + (j + 1) + " ";
//
// go(prev, leafDescription, d, len, add, description);
// }
// }
// Debug.printObjects(out, d);
// Debug.printObjects(out, prev);
// Debug.printObjects(out, leafDescription);
int result = rec((1 << n) - 1);
String answer = "";
for (int curr = d.length - 1; prev[curr] != curr; curr = prev[curr] ){
answer += "0 " + leafDescription[curr];
}
answer += "0";
out.println(result);
out.println(answer);
}
private InputReader in;
private PrintWriter out;
Task(InputReader in, PrintWriter out) {
this.in = in;
this.out = out;
}
}
class InputReader {
public BufferedReader reader;
public StringTokenizer tokenizer;
public InputReader(InputStream stream) {
reader = new BufferedReader(new InputStreamReader(stream), 32768);
tokenizer = null;
}
public String next() {
while (tokenizer == null || !tokenizer.hasMoreTokens()) {
try {
tokenizer = new StringTokenizer(reader.readLine());
} catch (IOException e) {
throw new RuntimeException(e);
}
}
return tokenizer.nextToken();
}
public double nextDouble(){
return Double.parseDouble(next());
}
public int nextInt() {
return Integer.parseInt(next());
}
public long nextLong(){
return Long.parseLong(next());
}
public byte nextByte(){
return Byte.parseByte(next());
}
}
|
non-polynomial
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Determine the worst-case time complexity category of a given Java code based on input size n.
</TASK>
<CODE>
import java.io.*;
import static java.lang.Math.*;
import java.util.*;
import java.util.function.*;
import java.lang.*;
public class Main {
final static boolean debug = false;
final static String fileName = "";
final static boolean useFiles = false;
public static void main(String[] args) throws FileNotFoundException {
long start;
if (debug)
start = System.nanoTime();
InputStream inputStream;
OutputStream outputStream;
if (useFiles) {
inputStream = new FileInputStream(fileName + ".in");
outputStream = new FileOutputStream(fileName + ".out");
} else {
inputStream = System.in;
outputStream = System.out;
}
InputReader in = new InputReader(inputStream);
PrintWriter out = new PrintWriter(outputStream);
Task solver = new Task(in, out);
solver.solve();
if(debug)
out.println((System.nanoTime() - start) / 1e+9);
out.close();
}
}
class Task {
int[][] dist, pre;
int[] x, y, d, prev;
String[] leafDescription;
String[] linerDescription;
String[][] allDescriptions;
int xs, ys, n;
int dist(int i, int j) {
return (x[i] - x[j]) * (x[i] - x[j]) + (y[i] - y[j]) * (y[i] - y[j]);
}
void go(int[] prev, String[] leafDescription, int[] d, int len, int add, String description){
for (int mask = 0; mask < d.length; mask++) {
if ((mask & add) != add)
continue;
int newValue = d[mask & (~add)] + len;
if (d[mask] > newValue){
d[mask] = newValue;
leafDescription[mask] = description;
prev[mask] = mask & (~add);
}
}
}
int rec(int mask) {
if (d[mask] != -1)
return d[mask];
int lowest = 0;
for (; ((1 << lowest) & mask) == 0; lowest++) ;
int newMask = mask & (~(1 << lowest));
d[mask] = rec(newMask) + dist[lowest][n];
prev[mask] = newMask;
leafDescription[mask] = linerDescription[lowest];
for (int bit = lowest + 1; bit < n; bit++) {
if (((1 << bit) & mask) > 0) {
newMask = mask & (~(1 << bit)) & (~(1 << lowest));
int newValue = rec(newMask) + pre[bit][lowest];
if (newValue < d[mask]) {
d[mask] = newValue;
prev[mask] = newMask;
leafDescription[mask] = allDescriptions[lowest][bit];
}
}
}
return d[mask];
}
public void solve() {
final int inf = (int) 1e+9;
xs = in.nextInt();
ys = in.nextInt();
n = in.nextInt();
x = new int[n + 1];
y = new int[n + 1];
for (int i = 0; i < n; i++) {
x[i] = in.nextInt();
y[i] = in.nextInt();
}
x[n] = xs;
y[n] = ys;
allDescriptions = new String[n][n];
for (int i = 0; i < n; i++){
for (int j = 0; j < n; j++){
allDescriptions[i][j] = (i + 1) + " " + (j + 1) + " ";
}
}
linerDescription = new String[n];
for (int i = 0; i < n; i++){
linerDescription[i] = (i + 1) + " ";
}
dist = new int[n + 1][n + 1];
pre = new int[n + 1][n + 1];
for (int i = 0; i <= n; i++) {
for (int j = 0; j <= n; j++) {
dist[i][j] = 2 * dist(i, j);
pre[i][j] = dist(i, n) + dist(i, j) + dist(j, n);
}
}
d = new int[1 << n];
Arrays.fill(d, -1);
d[0] = 0;
prev = new int[1 << n];
leafDescription = new String[1 << n];
// Arrays.fill(d, inf);
// prev[0] = 0;
// d[0] = 0;
// for (int i = 0; i < n; i++) {
// int add = 1 << i;
// int len = 2 * dist[n][i];
// String description = (i + 1) + " ";
//
// go(prev, leafDescription, d, len, add, description);
// }
// for (int i = 0; i < n; i++) {
// for (int j = i + 1; j < n; j++) {
// int add = (1 << i) | (1 << j);
// int len = dist[n][i] + dist[i][j] + dist[n][j];
// String description = (i + 1) + " " + (j + 1) + " ";
//
// go(prev, leafDescription, d, len, add, description);
// }
// }
// Debug.printObjects(out, d);
// Debug.printObjects(out, prev);
// Debug.printObjects(out, leafDescription);
int result = rec((1 << n) - 1);
String answer = "";
for (int curr = d.length - 1; prev[curr] != curr; curr = prev[curr] ){
answer += "0 " + leafDescription[curr];
}
answer += "0";
out.println(result);
out.println(answer);
}
private InputReader in;
private PrintWriter out;
Task(InputReader in, PrintWriter out) {
this.in = in;
this.out = out;
}
}
class InputReader {
public BufferedReader reader;
public StringTokenizer tokenizer;
public InputReader(InputStream stream) {
reader = new BufferedReader(new InputStreamReader(stream), 32768);
tokenizer = null;
}
public String next() {
while (tokenizer == null || !tokenizer.hasMoreTokens()) {
try {
tokenizer = new StringTokenizer(reader.readLine());
} catch (IOException e) {
throw new RuntimeException(e);
}
}
return tokenizer.nextToken();
}
public double nextDouble(){
return Double.parseDouble(next());
}
public int nextInt() {
return Integer.parseInt(next());
}
public long nextLong(){
return Long.parseLong(next());
}
public byte nextByte(){
return Byte.parseByte(next());
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(n^3): The time complexity scales proportionally to the cube of the input size.
- non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially.
- O(n): The time complexity increases proportionally to the input size n in a linear manner.
- O(nlog(n)): The time complexity combines linear and logarithmic growth factors.
- O(log(n)): The time complexity increases logarithmically in relation to the input size.
- O(1): The time complexity is constant to the input size n.
- O(n^2): The time complexity grows proportionally to the square of the input size.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Determine the worst-case time complexity category of a given Java code based on input size n.
</TASK>
<CODE>
import java.io.*;
import static java.lang.Math.*;
import java.util.*;
import java.util.function.*;
import java.lang.*;
public class Main {
final static boolean debug = false;
final static String fileName = "";
final static boolean useFiles = false;
public static void main(String[] args) throws FileNotFoundException {
long start;
if (debug)
start = System.nanoTime();
InputStream inputStream;
OutputStream outputStream;
if (useFiles) {
inputStream = new FileInputStream(fileName + ".in");
outputStream = new FileOutputStream(fileName + ".out");
} else {
inputStream = System.in;
outputStream = System.out;
}
InputReader in = new InputReader(inputStream);
PrintWriter out = new PrintWriter(outputStream);
Task solver = new Task(in, out);
solver.solve();
if(debug)
out.println((System.nanoTime() - start) / 1e+9);
out.close();
}
}
class Task {
int[][] dist, pre;
int[] x, y, d, prev;
String[] leafDescription;
String[] linerDescription;
String[][] allDescriptions;
int xs, ys, n;
int dist(int i, int j) {
return (x[i] - x[j]) * (x[i] - x[j]) + (y[i] - y[j]) * (y[i] - y[j]);
}
void go(int[] prev, String[] leafDescription, int[] d, int len, int add, String description){
for (int mask = 0; mask < d.length; mask++) {
if ((mask & add) != add)
continue;
int newValue = d[mask & (~add)] + len;
if (d[mask] > newValue){
d[mask] = newValue;
leafDescription[mask] = description;
prev[mask] = mask & (~add);
}
}
}
int rec(int mask) {
if (d[mask] != -1)
return d[mask];
int lowest = 0;
for (; ((1 << lowest) & mask) == 0; lowest++) ;
int newMask = mask & (~(1 << lowest));
d[mask] = rec(newMask) + dist[lowest][n];
prev[mask] = newMask;
leafDescription[mask] = linerDescription[lowest];
for (int bit = lowest + 1; bit < n; bit++) {
if (((1 << bit) & mask) > 0) {
newMask = mask & (~(1 << bit)) & (~(1 << lowest));
int newValue = rec(newMask) + pre[bit][lowest];
if (newValue < d[mask]) {
d[mask] = newValue;
prev[mask] = newMask;
leafDescription[mask] = allDescriptions[lowest][bit];
}
}
}
return d[mask];
}
public void solve() {
final int inf = (int) 1e+9;
xs = in.nextInt();
ys = in.nextInt();
n = in.nextInt();
x = new int[n + 1];
y = new int[n + 1];
for (int i = 0; i < n; i++) {
x[i] = in.nextInt();
y[i] = in.nextInt();
}
x[n] = xs;
y[n] = ys;
allDescriptions = new String[n][n];
for (int i = 0; i < n; i++){
for (int j = 0; j < n; j++){
allDescriptions[i][j] = (i + 1) + " " + (j + 1) + " ";
}
}
linerDescription = new String[n];
for (int i = 0; i < n; i++){
linerDescription[i] = (i + 1) + " ";
}
dist = new int[n + 1][n + 1];
pre = new int[n + 1][n + 1];
for (int i = 0; i <= n; i++) {
for (int j = 0; j <= n; j++) {
dist[i][j] = 2 * dist(i, j);
pre[i][j] = dist(i, n) + dist(i, j) + dist(j, n);
}
}
d = new int[1 << n];
Arrays.fill(d, -1);
d[0] = 0;
prev = new int[1 << n];
leafDescription = new String[1 << n];
// Arrays.fill(d, inf);
// prev[0] = 0;
// d[0] = 0;
// for (int i = 0; i < n; i++) {
// int add = 1 << i;
// int len = 2 * dist[n][i];
// String description = (i + 1) + " ";
//
// go(prev, leafDescription, d, len, add, description);
// }
// for (int i = 0; i < n; i++) {
// for (int j = i + 1; j < n; j++) {
// int add = (1 << i) | (1 << j);
// int len = dist[n][i] + dist[i][j] + dist[n][j];
// String description = (i + 1) + " " + (j + 1) + " ";
//
// go(prev, leafDescription, d, len, add, description);
// }
// }
// Debug.printObjects(out, d);
// Debug.printObjects(out, prev);
// Debug.printObjects(out, leafDescription);
int result = rec((1 << n) - 1);
String answer = "";
for (int curr = d.length - 1; prev[curr] != curr; curr = prev[curr] ){
answer += "0 " + leafDescription[curr];
}
answer += "0";
out.println(result);
out.println(answer);
}
private InputReader in;
private PrintWriter out;
Task(InputReader in, PrintWriter out) {
this.in = in;
this.out = out;
}
}
class InputReader {
public BufferedReader reader;
public StringTokenizer tokenizer;
public InputReader(InputStream stream) {
reader = new BufferedReader(new InputStreamReader(stream), 32768);
tokenizer = null;
}
public String next() {
while (tokenizer == null || !tokenizer.hasMoreTokens()) {
try {
tokenizer = new StringTokenizer(reader.readLine());
} catch (IOException e) {
throw new RuntimeException(e);
}
}
return tokenizer.nextToken();
}
public double nextDouble(){
return Double.parseDouble(next());
}
public int nextInt() {
return Integer.parseInt(next());
}
public long nextLong(){
return Long.parseLong(next());
}
public byte nextByte(){
return Byte.parseByte(next());
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(n): The time complexity increases proportionally to the input size n in a linear manner.
- non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially.
- O(1): The time complexity is constant to the input size n.
- O(nlog(n)): The time complexity combines linear and logarithmic growth factors.
- others: The time complexity does not fit any of the above categories or cannot be clearly classified.
- O(n^2): The time complexity grows proportionally to the square of the input size.
- O(log(n)): The time complexity increases logarithmically in relation to the input size.
- O(n^3): The time complexity scales proportionally to the cube of the input size.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
| 1,824
| 4,078
|
4,475
|
import java.io.OutputStream;
import java.io.IOException;
import java.io.InputStream;
import java.io.PrintWriter;
import java.util.Arrays;
import java.util.InputMismatchException;
import java.io.IOException;
import java.util.Collections;
import java.util.ArrayList;
import java.io.InputStream;
/**
* Built using CHelper plug-in
* Actual solution is at the top
*
* @author beginner1010
*/
public class Main {
public static void main(String[] args) {
InputStream inputStream = System.in;
OutputStream outputStream = System.out;
InputReader in = new InputReader(inputStream);
PrintWriter out = new PrintWriter(outputStream);
TaskE2 solver = new TaskE2();
solver.solve(1, in, out);
out.close();
}
static class TaskE2 {
int[][] grid;
int[][] val;
int[][] dp;
int rows;
int two(int bit) {
return 1 << bit;
}
boolean contain(int mask, int bit) {
return (mask & two(bit)) > 0;
}
int rec(int col, int mask) {
if (col == grid[0].length)
return 0;
if (dp[col][mask] != -1)
return dp[col][mask];
int res = rec(col + 1, mask);
for (int newMask = mask; newMask > 0; newMask = (mask & (newMask - 1))) {
res = Math.max(res, rec(col + 1, mask ^ newMask) + val[col][newMask]);
}
dp[col][mask] = res;
return res;
}
public void solve(int testNumber, InputReader in, PrintWriter out) {
int T = in.nextInt();
for (int t = 0; t < T; t++) {
int n = in.nextInt();
int m = in.nextInt();
rows = n;
int[][] input = new int[n][m];
for (int i = 0; i < n; i++) {
for (int j = 0; j < m; j++) {
input[i][j] = in.nextInt();
}
}
ArrayList<Col> cols = new ArrayList<>();
for (int col = 0; col < m; col++) {
int maxVal = 0;
for (int row = 0; row < n; row++) {
maxVal = Math.max(maxVal, input[row][col]);
}
cols.add(new Col(maxVal, col));
}
Collections.sort(cols);
m = Math.min(n, m);
grid = new int[n][m];
for (int i = 0; i < m; i++) {
int c = cols.get(i).colID;
for (int row = 0; row < n; row++) {
grid[row][i] = input[row][c];
}
}
val = new int[m][two(n)];
for (int c = 0; c < m; c++) {
for (int mask = 0; mask < two(n); mask++) {
val[c][mask] = 0;
for (int offset = 0; offset < n; offset++) {
int sum = 0;
for (int bit = 0; bit < n; bit++) {
if (contain(mask, bit) == true)
sum += grid[(bit + offset) % n][c];
}
val[c][mask] = Math.max(val[c][mask], sum);
}
}
}
dp = new int[m][two(n)];
for (int[] aux : dp)
Arrays.fill(aux, -1);
int ans = rec(0, two(n) - 1);
out.println(ans);
}
}
class Col implements Comparable<Col> {
int maxVal;
int colID;
Col(int _maxVal, int _colID) {
this.maxVal = _maxVal;
this.colID = _colID;
}
public int compareTo(Col o) {
if (o.maxVal != this.maxVal) return this.maxVal > o.maxVal ? -1 : 1;
if (o.colID != this.colID) return this.colID < o.colID ? -1 : 1;
return 0;
}
}
}
static class InputReader {
private byte[] buf = new byte[1024];
private int curChar;
private int numChars;
private InputStream stream;
public InputReader(InputStream stream) {
this.stream = stream;
}
private boolean isWhitespace(int c) {
return c == ' ' || c == '\n' || c == '\r' || c == '\t' || c == -1;
}
private int read() {
if (numChars == -1)
throw new InputMismatchException();
if (curChar >= numChars) {
curChar = 0;
try {
numChars = stream.read(buf);
} catch (IOException e) {
throw new InputMismatchException();
}
if (numChars <= 0)
return -1;
}
return buf[curChar++];
}
public int nextInt() {
int c = read();
while (isWhitespace(c))
c = read();
int sgn = 1;
if (c == '-') {
sgn = -1;
c = read();
}
int res = 0;
do {
if (c < '0' || c > '9')
throw new InputMismatchException();
res *= 10;
res += c - '0';
c = read();
} while (!isWhitespace(c));
return res * sgn;
}
}
}
|
non-polynomial
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Determine the worst-case time complexity category of a given Java code based on input size n.
</TASK>
<CODE>
import java.io.OutputStream;
import java.io.IOException;
import java.io.InputStream;
import java.io.PrintWriter;
import java.util.Arrays;
import java.util.InputMismatchException;
import java.io.IOException;
import java.util.Collections;
import java.util.ArrayList;
import java.io.InputStream;
/**
* Built using CHelper plug-in
* Actual solution is at the top
*
* @author beginner1010
*/
public class Main {
public static void main(String[] args) {
InputStream inputStream = System.in;
OutputStream outputStream = System.out;
InputReader in = new InputReader(inputStream);
PrintWriter out = new PrintWriter(outputStream);
TaskE2 solver = new TaskE2();
solver.solve(1, in, out);
out.close();
}
static class TaskE2 {
int[][] grid;
int[][] val;
int[][] dp;
int rows;
int two(int bit) {
return 1 << bit;
}
boolean contain(int mask, int bit) {
return (mask & two(bit)) > 0;
}
int rec(int col, int mask) {
if (col == grid[0].length)
return 0;
if (dp[col][mask] != -1)
return dp[col][mask];
int res = rec(col + 1, mask);
for (int newMask = mask; newMask > 0; newMask = (mask & (newMask - 1))) {
res = Math.max(res, rec(col + 1, mask ^ newMask) + val[col][newMask]);
}
dp[col][mask] = res;
return res;
}
public void solve(int testNumber, InputReader in, PrintWriter out) {
int T = in.nextInt();
for (int t = 0; t < T; t++) {
int n = in.nextInt();
int m = in.nextInt();
rows = n;
int[][] input = new int[n][m];
for (int i = 0; i < n; i++) {
for (int j = 0; j < m; j++) {
input[i][j] = in.nextInt();
}
}
ArrayList<Col> cols = new ArrayList<>();
for (int col = 0; col < m; col++) {
int maxVal = 0;
for (int row = 0; row < n; row++) {
maxVal = Math.max(maxVal, input[row][col]);
}
cols.add(new Col(maxVal, col));
}
Collections.sort(cols);
m = Math.min(n, m);
grid = new int[n][m];
for (int i = 0; i < m; i++) {
int c = cols.get(i).colID;
for (int row = 0; row < n; row++) {
grid[row][i] = input[row][c];
}
}
val = new int[m][two(n)];
for (int c = 0; c < m; c++) {
for (int mask = 0; mask < two(n); mask++) {
val[c][mask] = 0;
for (int offset = 0; offset < n; offset++) {
int sum = 0;
for (int bit = 0; bit < n; bit++) {
if (contain(mask, bit) == true)
sum += grid[(bit + offset) % n][c];
}
val[c][mask] = Math.max(val[c][mask], sum);
}
}
}
dp = new int[m][two(n)];
for (int[] aux : dp)
Arrays.fill(aux, -1);
int ans = rec(0, two(n) - 1);
out.println(ans);
}
}
class Col implements Comparable<Col> {
int maxVal;
int colID;
Col(int _maxVal, int _colID) {
this.maxVal = _maxVal;
this.colID = _colID;
}
public int compareTo(Col o) {
if (o.maxVal != this.maxVal) return this.maxVal > o.maxVal ? -1 : 1;
if (o.colID != this.colID) return this.colID < o.colID ? -1 : 1;
return 0;
}
}
}
static class InputReader {
private byte[] buf = new byte[1024];
private int curChar;
private int numChars;
private InputStream stream;
public InputReader(InputStream stream) {
this.stream = stream;
}
private boolean isWhitespace(int c) {
return c == ' ' || c == '\n' || c == '\r' || c == '\t' || c == -1;
}
private int read() {
if (numChars == -1)
throw new InputMismatchException();
if (curChar >= numChars) {
curChar = 0;
try {
numChars = stream.read(buf);
} catch (IOException e) {
throw new InputMismatchException();
}
if (numChars <= 0)
return -1;
}
return buf[curChar++];
}
public int nextInt() {
int c = read();
while (isWhitespace(c))
c = read();
int sgn = 1;
if (c == '-') {
sgn = -1;
c = read();
}
int res = 0;
do {
if (c < '0' || c > '9')
throw new InputMismatchException();
res *= 10;
res += c - '0';
c = read();
} while (!isWhitespace(c));
return res * sgn;
}
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(1): The time complexity is constant to the input size n.
- O(nlog(n)): The time complexity combines linear and logarithmic growth factors.
- non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially.
- O(log(n)): The time complexity increases logarithmically in relation to the input size.
- O(n): The time complexity increases proportionally to the input size n in a linear manner.
- O(n^3): The time complexity scales proportionally to the cube of the input size.
- O(n^2): The time complexity grows proportionally to the square of the input size.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Classify the following Java code's worst-case time complexity according to its relationship to the input size n.
</TASK>
<CODE>
import java.io.OutputStream;
import java.io.IOException;
import java.io.InputStream;
import java.io.PrintWriter;
import java.util.Arrays;
import java.util.InputMismatchException;
import java.io.IOException;
import java.util.Collections;
import java.util.ArrayList;
import java.io.InputStream;
/**
* Built using CHelper plug-in
* Actual solution is at the top
*
* @author beginner1010
*/
public class Main {
public static void main(String[] args) {
InputStream inputStream = System.in;
OutputStream outputStream = System.out;
InputReader in = new InputReader(inputStream);
PrintWriter out = new PrintWriter(outputStream);
TaskE2 solver = new TaskE2();
solver.solve(1, in, out);
out.close();
}
static class TaskE2 {
int[][] grid;
int[][] val;
int[][] dp;
int rows;
int two(int bit) {
return 1 << bit;
}
boolean contain(int mask, int bit) {
return (mask & two(bit)) > 0;
}
int rec(int col, int mask) {
if (col == grid[0].length)
return 0;
if (dp[col][mask] != -1)
return dp[col][mask];
int res = rec(col + 1, mask);
for (int newMask = mask; newMask > 0; newMask = (mask & (newMask - 1))) {
res = Math.max(res, rec(col + 1, mask ^ newMask) + val[col][newMask]);
}
dp[col][mask] = res;
return res;
}
public void solve(int testNumber, InputReader in, PrintWriter out) {
int T = in.nextInt();
for (int t = 0; t < T; t++) {
int n = in.nextInt();
int m = in.nextInt();
rows = n;
int[][] input = new int[n][m];
for (int i = 0; i < n; i++) {
for (int j = 0; j < m; j++) {
input[i][j] = in.nextInt();
}
}
ArrayList<Col> cols = new ArrayList<>();
for (int col = 0; col < m; col++) {
int maxVal = 0;
for (int row = 0; row < n; row++) {
maxVal = Math.max(maxVal, input[row][col]);
}
cols.add(new Col(maxVal, col));
}
Collections.sort(cols);
m = Math.min(n, m);
grid = new int[n][m];
for (int i = 0; i < m; i++) {
int c = cols.get(i).colID;
for (int row = 0; row < n; row++) {
grid[row][i] = input[row][c];
}
}
val = new int[m][two(n)];
for (int c = 0; c < m; c++) {
for (int mask = 0; mask < two(n); mask++) {
val[c][mask] = 0;
for (int offset = 0; offset < n; offset++) {
int sum = 0;
for (int bit = 0; bit < n; bit++) {
if (contain(mask, bit) == true)
sum += grid[(bit + offset) % n][c];
}
val[c][mask] = Math.max(val[c][mask], sum);
}
}
}
dp = new int[m][two(n)];
for (int[] aux : dp)
Arrays.fill(aux, -1);
int ans = rec(0, two(n) - 1);
out.println(ans);
}
}
class Col implements Comparable<Col> {
int maxVal;
int colID;
Col(int _maxVal, int _colID) {
this.maxVal = _maxVal;
this.colID = _colID;
}
public int compareTo(Col o) {
if (o.maxVal != this.maxVal) return this.maxVal > o.maxVal ? -1 : 1;
if (o.colID != this.colID) return this.colID < o.colID ? -1 : 1;
return 0;
}
}
}
static class InputReader {
private byte[] buf = new byte[1024];
private int curChar;
private int numChars;
private InputStream stream;
public InputReader(InputStream stream) {
this.stream = stream;
}
private boolean isWhitespace(int c) {
return c == ' ' || c == '\n' || c == '\r' || c == '\t' || c == -1;
}
private int read() {
if (numChars == -1)
throw new InputMismatchException();
if (curChar >= numChars) {
curChar = 0;
try {
numChars = stream.read(buf);
} catch (IOException e) {
throw new InputMismatchException();
}
if (numChars <= 0)
return -1;
}
return buf[curChar++];
}
public int nextInt() {
int c = read();
while (isWhitespace(c))
c = read();
int sgn = 1;
if (c == '-') {
sgn = -1;
c = read();
}
int res = 0;
do {
if (c < '0' || c > '9')
throw new InputMismatchException();
res *= 10;
res += c - '0';
c = read();
} while (!isWhitespace(c));
return res * sgn;
}
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(n^3): The running time increases with the cube of the input size n.
- O(log(n)): The running time increases with the logarithm of the input size n.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- others: The code does not clearly correspond to the listed classes or has an unclassified time complexity.
- O(nlog(n)): The running time increases with the product of n and logarithm of n.
- O(n): The running time grows linearly with the input size n.
- O(1): The running time does not change regardless of the input size n.
- O(n^2): The running time increases with the square of the input size n.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
| 1,578
| 4,464
|
1,240
|
import java.io.BufferedReader;
import java.io.BufferedWriter;
import java.io.IOException;
import java.io.InputStreamReader;
import java.io.OutputStreamWriter;
import java.io.PrintWriter;
import java.math.BigInteger;
import java.util.StringTokenizer;
public class C {
private static BufferedReader in;
private static StringTokenizer st;
private static PrintWriter out;
public static void main(String[] args) throws NumberFormatException, IOException {
in = new BufferedReader(new InputStreamReader(System.in));
st = new StringTokenizer("");
out = new PrintWriter(new BufferedWriter(new OutputStreamWriter(System.out)));
int n = nextInt();
int m = nextInt();
int k = nextInt();
int mod = (int) (1e9+9);
int correct = n - n / k;
int carry = n % k;
long ans;
if(correct >= m){
ans = m;
}else{
m -= correct;
int block = n / k;
BigInteger pow = BigInteger.valueOf(2).modPow(BigInteger.valueOf(m + 1), BigInteger.valueOf(mod));
ans = (pow.longValue() - 2 + mod) % mod;
ans = (ans * (long) k) % mod;
ans = (ans + (long)(block - m)* (long)(k-1) + carry) % mod;
}
System.out.println(ans);
}
static String next() throws IOException{
while(!st.hasMoreTokens()){
st = new StringTokenizer(in.readLine());
}
return st.nextToken();
}
static int nextInt() throws NumberFormatException, IOException{
return Integer.parseInt(next());
}
static long nextLong() throws NumberFormatException, IOException{
return Long.parseLong(next());
}
static double nextDouble() throws NumberFormatException, IOException{
return Double.parseDouble(next());
}
}
|
O(log(n))
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n.
</TASK>
<CODE>
import java.io.BufferedReader;
import java.io.BufferedWriter;
import java.io.IOException;
import java.io.InputStreamReader;
import java.io.OutputStreamWriter;
import java.io.PrintWriter;
import java.math.BigInteger;
import java.util.StringTokenizer;
public class C {
private static BufferedReader in;
private static StringTokenizer st;
private static PrintWriter out;
public static void main(String[] args) throws NumberFormatException, IOException {
in = new BufferedReader(new InputStreamReader(System.in));
st = new StringTokenizer("");
out = new PrintWriter(new BufferedWriter(new OutputStreamWriter(System.out)));
int n = nextInt();
int m = nextInt();
int k = nextInt();
int mod = (int) (1e9+9);
int correct = n - n / k;
int carry = n % k;
long ans;
if(correct >= m){
ans = m;
}else{
m -= correct;
int block = n / k;
BigInteger pow = BigInteger.valueOf(2).modPow(BigInteger.valueOf(m + 1), BigInteger.valueOf(mod));
ans = (pow.longValue() - 2 + mod) % mod;
ans = (ans * (long) k) % mod;
ans = (ans + (long)(block - m)* (long)(k-1) + carry) % mod;
}
System.out.println(ans);
}
static String next() throws IOException{
while(!st.hasMoreTokens()){
st = new StringTokenizer(in.readLine());
}
return st.nextToken();
}
static int nextInt() throws NumberFormatException, IOException{
return Integer.parseInt(next());
}
static long nextLong() throws NumberFormatException, IOException{
return Long.parseLong(next());
}
static double nextDouble() throws NumberFormatException, IOException{
return Double.parseDouble(next());
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(n^3): The execution time ascends in proportion to the cube of the input size n.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially.
- O(n^2): The execution time ascends in proportion to the square of the input size n.
- O(n): The execution time ascends in a one-to-one ratio with the input size n.
- O(1): The execution time is unaffected by the size of the input n.
- O(log(n)): The execution time ascends in proportion to the logarithm of the input size n.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n.
</TASK>
<CODE>
import java.io.BufferedReader;
import java.io.BufferedWriter;
import java.io.IOException;
import java.io.InputStreamReader;
import java.io.OutputStreamWriter;
import java.io.PrintWriter;
import java.math.BigInteger;
import java.util.StringTokenizer;
public class C {
private static BufferedReader in;
private static StringTokenizer st;
private static PrintWriter out;
public static void main(String[] args) throws NumberFormatException, IOException {
in = new BufferedReader(new InputStreamReader(System.in));
st = new StringTokenizer("");
out = new PrintWriter(new BufferedWriter(new OutputStreamWriter(System.out)));
int n = nextInt();
int m = nextInt();
int k = nextInt();
int mod = (int) (1e9+9);
int correct = n - n / k;
int carry = n % k;
long ans;
if(correct >= m){
ans = m;
}else{
m -= correct;
int block = n / k;
BigInteger pow = BigInteger.valueOf(2).modPow(BigInteger.valueOf(m + 1), BigInteger.valueOf(mod));
ans = (pow.longValue() - 2 + mod) % mod;
ans = (ans * (long) k) % mod;
ans = (ans + (long)(block - m)* (long)(k-1) + carry) % mod;
}
System.out.println(ans);
}
static String next() throws IOException{
while(!st.hasMoreTokens()){
st = new StringTokenizer(in.readLine());
}
return st.nextToken();
}
static int nextInt() throws NumberFormatException, IOException{
return Integer.parseInt(next());
}
static long nextLong() throws NumberFormatException, IOException{
return Long.parseLong(next());
}
static double nextDouble() throws NumberFormatException, IOException{
return Double.parseDouble(next());
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(n): The execution time ascends in a one-to-one ratio with the input size n.
- O(n^2): The execution time ascends in proportion to the square of the input size n.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- O(n^3): The execution time ascends in proportion to the cube of the input size n.
- O(log(n)): The execution time ascends in proportion to the logarithm of the input size n.
- O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially.
- others: The time complexity does not fit to any of the given categories or is ambiguous.
- O(1): The execution time is unaffected by the size of the input n.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
| 730
| 1,239
|
1,378
|
import java.util.Scanner;
public class Pipeline {
public static void main(String[] args) {
Scanner sc = new Scanner(System.in);
long n = sc.nextLong();
long k = sc.nextLong();
sc.close();
if (k * (k - 1) / 2 + 1 < n) {
System.out.println(-1);
} else {
long l = -1, r = k;
while (r - l > 1) {
long m = (r + l) / 2;
if (cantidadPosible(k, m) >= n) {
r = m;
} else {
l = m;
}
}
System.out.println(r);
}
}
private static long cantidadPosible(long k, long usadas) {
return (k * (k - 1) / 2 + 1 - (k - usadas) * (k - usadas - 1) / 2);
}
}
|
O(log(n))
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n.
</TASK>
<CODE>
import java.util.Scanner;
public class Pipeline {
public static void main(String[] args) {
Scanner sc = new Scanner(System.in);
long n = sc.nextLong();
long k = sc.nextLong();
sc.close();
if (k * (k - 1) / 2 + 1 < n) {
System.out.println(-1);
} else {
long l = -1, r = k;
while (r - l > 1) {
long m = (r + l) / 2;
if (cantidadPosible(k, m) >= n) {
r = m;
} else {
l = m;
}
}
System.out.println(r);
}
}
private static long cantidadPosible(long k, long usadas) {
return (k * (k - 1) / 2 + 1 - (k - usadas) * (k - usadas - 1) / 2);
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially.
- O(n): The execution time ascends in a one-to-one ratio with the input size n.
- O(n^3): The execution time ascends in proportion to the cube of the input size n.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- O(1): The execution time is unaffected by the size of the input n.
- O(n^2): The execution time ascends in proportion to the square of the input size n.
- O(log(n)): The execution time ascends in proportion to the logarithm of the input size n.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Determine the worst-case time complexity category of a given Java code based on input size n.
</TASK>
<CODE>
import java.util.Scanner;
public class Pipeline {
public static void main(String[] args) {
Scanner sc = new Scanner(System.in);
long n = sc.nextLong();
long k = sc.nextLong();
sc.close();
if (k * (k - 1) / 2 + 1 < n) {
System.out.println(-1);
} else {
long l = -1, r = k;
while (r - l > 1) {
long m = (r + l) / 2;
if (cantidadPosible(k, m) >= n) {
r = m;
} else {
l = m;
}
}
System.out.println(r);
}
}
private static long cantidadPosible(long k, long usadas) {
return (k * (k - 1) / 2 + 1 - (k - usadas) * (k - usadas - 1) / 2);
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(log(n)): The time complexity increases logarithmically in relation to the input size.
- non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially.
- O(n^2): The time complexity grows proportionally to the square of the input size.
- O(n^3): The time complexity scales proportionally to the cube of the input size.
- others: The time complexity does not fit any of the above categories or cannot be clearly classified.
- O(1): The time complexity is constant to the input size n.
- O(n): The time complexity increases proportionally to the input size n in a linear manner.
- O(nlog(n)): The time complexity combines linear and logarithmic growth factors.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
| 567
| 1,376
|
4,463
|
import java.io.*;
import java.util.*;
public class Main{
static int[][]memo;
static int n,m,in[][];
static int dp(int col,int maxRowMask) {
if(col>=Math.min(n, m) || maxRowMask==((1<<n)-1))return 0;
if(memo[col][maxRowMask]!=-1)return memo[col][maxRowMask];
int ans=0;
int availableBits=maxRowMask^((1<<n)-1);
//all masks that don't intersect with maxRowMask
for(int colMask=availableBits;colMask!=0;colMask=(colMask-1)&availableBits) {
ans=Math.max(ans, maxMask[col][colMask]+dp(col+1, maxRowMask|colMask));
}
return memo[col][maxRowMask]=ans;
}
static int[][]sumOfMask;
static int[][]maxMask;
public static void main(String[] args) throws Exception{
pw=new PrintWriter(System.out);
sc = new MScanner(System.in);
int tc=sc.nextInt();
while(tc-->0) {
n=sc.nextInt();m=sc.nextInt();
int[]maxInCol=new int[m];
in=new int[m][n+1];
for(int i=0;i<n;i++) {
for(int j=0;j<m;j++) {
in[j][i]=sc.nextInt();
maxInCol[j]=Math.max(maxInCol[j], in[j][i]);
in[j][n]=j;
}
}
Arrays.sort(in,(x,y)->maxInCol[y[n]]-maxInCol[x[n]]);
memo=new int[n][1<<n];
sumOfMask=new int[n][1<<n];
maxMask=new int[n][1<<n];
for(int i=0;i<n;i++) {
for(int msk=0;msk<memo[i].length;msk++) {
memo[i][msk]=-1;
if(i>=m)continue;
for(int bit=0;bit<n;bit++) {
if(((msk>>bit)&1)!=0) {
sumOfMask[i][msk]+=in[i][bit];
}
}
}
}
for(int col=0;col<n;col++) {
for(int msk=0;msk<(1<<n);msk++) {
int curMask=msk;
for(int cyclicShift=0;cyclicShift<n;cyclicShift++) {
maxMask[col][msk]=Math.max(maxMask[col][msk], sumOfMask[col][curMask]);
int lastBit=curMask&1;
curMask>>=1;
curMask|=(lastBit<<(n-1));
}
}
}
pw.println(dp(0, 0));
}
pw.flush();
}
static PrintWriter pw;
static MScanner sc;
static class MScanner {
StringTokenizer st;
BufferedReader br;
public MScanner(InputStream system) {
br = new BufferedReader(new InputStreamReader(system));
}
public MScanner(String file) throws Exception {
br = new BufferedReader(new FileReader(file));
}
public String next() throws IOException {
while (st == null || !st.hasMoreTokens())
st = new StringTokenizer(br.readLine());
return st.nextToken();
}
public int[] intArr(int n) throws IOException {
int[]in=new int[n];for(int i=0;i<n;i++)in[i]=nextInt();
return in;
}
public long[] longArr(int n) throws IOException {
long[]in=new long[n];for(int i=0;i<n;i++)in[i]=nextLong();
return in;
}
public int[] intSortedArr(int n) throws IOException {
int[]in=new int[n];for(int i=0;i<n;i++)in[i]=nextInt();
shuffle(in);
Arrays.sort(in);
return in;
}
public long[] longSortedArr(int n) throws IOException {
long[]in=new long[n];for(int i=0;i<n;i++)in[i]=nextLong();
shuffle(in);
Arrays.sort(in);
return in;
}
public Integer[] IntegerArr(int n) throws IOException {
Integer[]in=new Integer[n];for(int i=0;i<n;i++)in[i]=nextInt();
return in;
}
public Long[] LongArr(int n) throws IOException {
Long[]in=new Long[n];for(int i=0;i<n;i++)in[i]=nextLong();
return in;
}
public String nextLine() throws IOException {
return br.readLine();
}
public int nextInt() throws IOException {
return Integer.parseInt(next());
}
public double nextDouble() throws IOException {
return Double.parseDouble(next());
}
public char nextChar() throws IOException {
return next().charAt(0);
}
public long nextLong() throws IOException {
return Long.parseLong(next());
}
public boolean ready() throws IOException {
return br.ready();
}
public void waitForInput() throws InterruptedException {
Thread.sleep(3000);
}
}
static void shuffle(int[]in) {
for(int i=0;i<in.length;i++) {
int idx=(int)(Math.random()*in.length);
int tmp=in[i];
in[i]=in[idx];
in[idx]=tmp;
}
}
static void shuffle(long[]in) {
for(int i=0;i<in.length;i++) {
int idx=(int)(Math.random()*in.length);
long tmp=in[i];
in[i]=in[idx];
in[idx]=tmp;
}
}
}
|
non-polynomial
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Determine the worst-case time complexity category of a given Java code based on input size n.
</TASK>
<CODE>
import java.io.*;
import java.util.*;
public class Main{
static int[][]memo;
static int n,m,in[][];
static int dp(int col,int maxRowMask) {
if(col>=Math.min(n, m) || maxRowMask==((1<<n)-1))return 0;
if(memo[col][maxRowMask]!=-1)return memo[col][maxRowMask];
int ans=0;
int availableBits=maxRowMask^((1<<n)-1);
//all masks that don't intersect with maxRowMask
for(int colMask=availableBits;colMask!=0;colMask=(colMask-1)&availableBits) {
ans=Math.max(ans, maxMask[col][colMask]+dp(col+1, maxRowMask|colMask));
}
return memo[col][maxRowMask]=ans;
}
static int[][]sumOfMask;
static int[][]maxMask;
public static void main(String[] args) throws Exception{
pw=new PrintWriter(System.out);
sc = new MScanner(System.in);
int tc=sc.nextInt();
while(tc-->0) {
n=sc.nextInt();m=sc.nextInt();
int[]maxInCol=new int[m];
in=new int[m][n+1];
for(int i=0;i<n;i++) {
for(int j=0;j<m;j++) {
in[j][i]=sc.nextInt();
maxInCol[j]=Math.max(maxInCol[j], in[j][i]);
in[j][n]=j;
}
}
Arrays.sort(in,(x,y)->maxInCol[y[n]]-maxInCol[x[n]]);
memo=new int[n][1<<n];
sumOfMask=new int[n][1<<n];
maxMask=new int[n][1<<n];
for(int i=0;i<n;i++) {
for(int msk=0;msk<memo[i].length;msk++) {
memo[i][msk]=-1;
if(i>=m)continue;
for(int bit=0;bit<n;bit++) {
if(((msk>>bit)&1)!=0) {
sumOfMask[i][msk]+=in[i][bit];
}
}
}
}
for(int col=0;col<n;col++) {
for(int msk=0;msk<(1<<n);msk++) {
int curMask=msk;
for(int cyclicShift=0;cyclicShift<n;cyclicShift++) {
maxMask[col][msk]=Math.max(maxMask[col][msk], sumOfMask[col][curMask]);
int lastBit=curMask&1;
curMask>>=1;
curMask|=(lastBit<<(n-1));
}
}
}
pw.println(dp(0, 0));
}
pw.flush();
}
static PrintWriter pw;
static MScanner sc;
static class MScanner {
StringTokenizer st;
BufferedReader br;
public MScanner(InputStream system) {
br = new BufferedReader(new InputStreamReader(system));
}
public MScanner(String file) throws Exception {
br = new BufferedReader(new FileReader(file));
}
public String next() throws IOException {
while (st == null || !st.hasMoreTokens())
st = new StringTokenizer(br.readLine());
return st.nextToken();
}
public int[] intArr(int n) throws IOException {
int[]in=new int[n];for(int i=0;i<n;i++)in[i]=nextInt();
return in;
}
public long[] longArr(int n) throws IOException {
long[]in=new long[n];for(int i=0;i<n;i++)in[i]=nextLong();
return in;
}
public int[] intSortedArr(int n) throws IOException {
int[]in=new int[n];for(int i=0;i<n;i++)in[i]=nextInt();
shuffle(in);
Arrays.sort(in);
return in;
}
public long[] longSortedArr(int n) throws IOException {
long[]in=new long[n];for(int i=0;i<n;i++)in[i]=nextLong();
shuffle(in);
Arrays.sort(in);
return in;
}
public Integer[] IntegerArr(int n) throws IOException {
Integer[]in=new Integer[n];for(int i=0;i<n;i++)in[i]=nextInt();
return in;
}
public Long[] LongArr(int n) throws IOException {
Long[]in=new Long[n];for(int i=0;i<n;i++)in[i]=nextLong();
return in;
}
public String nextLine() throws IOException {
return br.readLine();
}
public int nextInt() throws IOException {
return Integer.parseInt(next());
}
public double nextDouble() throws IOException {
return Double.parseDouble(next());
}
public char nextChar() throws IOException {
return next().charAt(0);
}
public long nextLong() throws IOException {
return Long.parseLong(next());
}
public boolean ready() throws IOException {
return br.ready();
}
public void waitForInput() throws InterruptedException {
Thread.sleep(3000);
}
}
static void shuffle(int[]in) {
for(int i=0;i<in.length;i++) {
int idx=(int)(Math.random()*in.length);
int tmp=in[i];
in[i]=in[idx];
in[idx]=tmp;
}
}
static void shuffle(long[]in) {
for(int i=0;i<in.length;i++) {
int idx=(int)(Math.random()*in.length);
long tmp=in[i];
in[i]=in[idx];
in[idx]=tmp;
}
}
}
</CODE>
<EVALUATION_RUBRIC>
- non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially.
- O(1): The time complexity is constant to the input size n.
- O(nlog(n)): The time complexity combines linear and logarithmic growth factors.
- O(n): The time complexity increases proportionally to the input size n in a linear manner.
- O(log(n)): The time complexity increases logarithmically in relation to the input size.
- O(n^2): The time complexity grows proportionally to the square of the input size.
- O(n^3): The time complexity scales proportionally to the cube of the input size.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n.
</TASK>
<CODE>
import java.io.*;
import java.util.*;
public class Main{
static int[][]memo;
static int n,m,in[][];
static int dp(int col,int maxRowMask) {
if(col>=Math.min(n, m) || maxRowMask==((1<<n)-1))return 0;
if(memo[col][maxRowMask]!=-1)return memo[col][maxRowMask];
int ans=0;
int availableBits=maxRowMask^((1<<n)-1);
//all masks that don't intersect with maxRowMask
for(int colMask=availableBits;colMask!=0;colMask=(colMask-1)&availableBits) {
ans=Math.max(ans, maxMask[col][colMask]+dp(col+1, maxRowMask|colMask));
}
return memo[col][maxRowMask]=ans;
}
static int[][]sumOfMask;
static int[][]maxMask;
public static void main(String[] args) throws Exception{
pw=new PrintWriter(System.out);
sc = new MScanner(System.in);
int tc=sc.nextInt();
while(tc-->0) {
n=sc.nextInt();m=sc.nextInt();
int[]maxInCol=new int[m];
in=new int[m][n+1];
for(int i=0;i<n;i++) {
for(int j=0;j<m;j++) {
in[j][i]=sc.nextInt();
maxInCol[j]=Math.max(maxInCol[j], in[j][i]);
in[j][n]=j;
}
}
Arrays.sort(in,(x,y)->maxInCol[y[n]]-maxInCol[x[n]]);
memo=new int[n][1<<n];
sumOfMask=new int[n][1<<n];
maxMask=new int[n][1<<n];
for(int i=0;i<n;i++) {
for(int msk=0;msk<memo[i].length;msk++) {
memo[i][msk]=-1;
if(i>=m)continue;
for(int bit=0;bit<n;bit++) {
if(((msk>>bit)&1)!=0) {
sumOfMask[i][msk]+=in[i][bit];
}
}
}
}
for(int col=0;col<n;col++) {
for(int msk=0;msk<(1<<n);msk++) {
int curMask=msk;
for(int cyclicShift=0;cyclicShift<n;cyclicShift++) {
maxMask[col][msk]=Math.max(maxMask[col][msk], sumOfMask[col][curMask]);
int lastBit=curMask&1;
curMask>>=1;
curMask|=(lastBit<<(n-1));
}
}
}
pw.println(dp(0, 0));
}
pw.flush();
}
static PrintWriter pw;
static MScanner sc;
static class MScanner {
StringTokenizer st;
BufferedReader br;
public MScanner(InputStream system) {
br = new BufferedReader(new InputStreamReader(system));
}
public MScanner(String file) throws Exception {
br = new BufferedReader(new FileReader(file));
}
public String next() throws IOException {
while (st == null || !st.hasMoreTokens())
st = new StringTokenizer(br.readLine());
return st.nextToken();
}
public int[] intArr(int n) throws IOException {
int[]in=new int[n];for(int i=0;i<n;i++)in[i]=nextInt();
return in;
}
public long[] longArr(int n) throws IOException {
long[]in=new long[n];for(int i=0;i<n;i++)in[i]=nextLong();
return in;
}
public int[] intSortedArr(int n) throws IOException {
int[]in=new int[n];for(int i=0;i<n;i++)in[i]=nextInt();
shuffle(in);
Arrays.sort(in);
return in;
}
public long[] longSortedArr(int n) throws IOException {
long[]in=new long[n];for(int i=0;i<n;i++)in[i]=nextLong();
shuffle(in);
Arrays.sort(in);
return in;
}
public Integer[] IntegerArr(int n) throws IOException {
Integer[]in=new Integer[n];for(int i=0;i<n;i++)in[i]=nextInt();
return in;
}
public Long[] LongArr(int n) throws IOException {
Long[]in=new Long[n];for(int i=0;i<n;i++)in[i]=nextLong();
return in;
}
public String nextLine() throws IOException {
return br.readLine();
}
public int nextInt() throws IOException {
return Integer.parseInt(next());
}
public double nextDouble() throws IOException {
return Double.parseDouble(next());
}
public char nextChar() throws IOException {
return next().charAt(0);
}
public long nextLong() throws IOException {
return Long.parseLong(next());
}
public boolean ready() throws IOException {
return br.ready();
}
public void waitForInput() throws InterruptedException {
Thread.sleep(3000);
}
}
static void shuffle(int[]in) {
for(int i=0;i<in.length;i++) {
int idx=(int)(Math.random()*in.length);
int tmp=in[i];
in[i]=in[idx];
in[idx]=tmp;
}
}
static void shuffle(long[]in) {
for(int i=0;i<in.length;i++) {
int idx=(int)(Math.random()*in.length);
long tmp=in[i];
in[i]=in[idx];
in[idx]=tmp;
}
}
}
</CODE>
<EVALUATION_RUBRIC>
- others: The time complexity does not fit to any of the given categories or is ambiguous.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- O(n): The execution time ascends in a one-to-one ratio with the input size n.
- O(1): The execution time is unaffected by the size of the input n.
- O(n^2): The execution time ascends in proportion to the square of the input size n.
- O(log(n)): The execution time ascends in proportion to the logarithm of the input size n.
- O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially.
- O(n^3): The execution time ascends in proportion to the cube of the input size n.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
| 1,587
| 4,452
|
3,855
|
import java.io.*;
import java.util.*;
public class tank {
static final FastScanner fs = new FastScanner();
static PrintWriter out = new PrintWriter(System.out);
public static void main(String[] args) {
int t = fs.nextInt();
while(t-->0) {
run_case();
}
out.close();
}
static void run_case() {
int n = fs.nextInt(), prevLen = 1, one = 1;
int[] arr = fs.readArray(n);
int[] len = new int[1001];
StringBuilder[] prev = new StringBuilder[1001];
len[1] = 1;
out.println(1);
for (int i = 0; i < 1001; i++) {
prev[i] = new StringBuilder();
}
prev[1].append("1");
for (int i = 1; i < n; i++) {
if(arr[i] == 1) {
prev[prevLen + 1] = new StringBuilder(prev[prevLen]);
prev[prevLen + 1].append(".1");
out.println(prev[prevLen + 1]);
prevLen++;
len[prevLen] = 1;
}else {
for (int j = 1000; j > 0; j--) {
if(len[j] == arr[i] - 1 && j <= prevLen) {
char[] tmp = prev[j].toString().toCharArray();
if(fn(tmp)) {
prev[j] = new StringBuilder("" + (len[j] + 1));
}else {
prev[j] = new StringBuilder();
int ub = fn2(tmp);
for (int k = 0; k <= ub; k++) {
prev[j].append(tmp[k]);
}
prev[j].append(len[j] + 1);
}
out.println(prev[j]);
len[j] = len[j] + 1;
prevLen = j;
break;
}
if(j == 1) {
prev[j] = new StringBuilder("" + (one + 1));
out.println(prev[j]);
len[j] = one + 1;
prevLen = j;
one++;
}
}
}
}
}
static boolean fn(char[] arr) {
for(char c: arr) {
if(c == '.') return false;
}
return true;
}
static int fn2(char[] arr) {
int ret = 0;
for (int i = 0; i < arr.length; i++) {
if(arr[i] == '.') ret = i;
}
return ret;
}
static class FastScanner {
BufferedReader br=new BufferedReader(new InputStreamReader(System.in));
StringTokenizer st=new StringTokenizer("");
String next() {
while (!st.hasMoreTokens())
try {
st=new StringTokenizer(br.readLine());
} catch (IOException e) {
e.printStackTrace();
}
return st.nextToken();
}
String nextLine(){
try {
return br.readLine();
} catch (IOException e) {
e.printStackTrace();
}
return "";
}
int nextInt() {
return Integer.parseInt(next());
}
int[] readArray(int n) {
int[] a=new int[n];
for (int i=0; i<n; i++) a[i]=nextInt();
return a;
}
long nextLong() {
return Long.parseLong(next());
}
double nextDouble() {
return Double.parseDouble(next());
}
}
}
|
O(n^3)
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Determine the worst-case time complexity category of a given Java code based on input size n.
</TASK>
<CODE>
import java.io.*;
import java.util.*;
public class tank {
static final FastScanner fs = new FastScanner();
static PrintWriter out = new PrintWriter(System.out);
public static void main(String[] args) {
int t = fs.nextInt();
while(t-->0) {
run_case();
}
out.close();
}
static void run_case() {
int n = fs.nextInt(), prevLen = 1, one = 1;
int[] arr = fs.readArray(n);
int[] len = new int[1001];
StringBuilder[] prev = new StringBuilder[1001];
len[1] = 1;
out.println(1);
for (int i = 0; i < 1001; i++) {
prev[i] = new StringBuilder();
}
prev[1].append("1");
for (int i = 1; i < n; i++) {
if(arr[i] == 1) {
prev[prevLen + 1] = new StringBuilder(prev[prevLen]);
prev[prevLen + 1].append(".1");
out.println(prev[prevLen + 1]);
prevLen++;
len[prevLen] = 1;
}else {
for (int j = 1000; j > 0; j--) {
if(len[j] == arr[i] - 1 && j <= prevLen) {
char[] tmp = prev[j].toString().toCharArray();
if(fn(tmp)) {
prev[j] = new StringBuilder("" + (len[j] + 1));
}else {
prev[j] = new StringBuilder();
int ub = fn2(tmp);
for (int k = 0; k <= ub; k++) {
prev[j].append(tmp[k]);
}
prev[j].append(len[j] + 1);
}
out.println(prev[j]);
len[j] = len[j] + 1;
prevLen = j;
break;
}
if(j == 1) {
prev[j] = new StringBuilder("" + (one + 1));
out.println(prev[j]);
len[j] = one + 1;
prevLen = j;
one++;
}
}
}
}
}
static boolean fn(char[] arr) {
for(char c: arr) {
if(c == '.') return false;
}
return true;
}
static int fn2(char[] arr) {
int ret = 0;
for (int i = 0; i < arr.length; i++) {
if(arr[i] == '.') ret = i;
}
return ret;
}
static class FastScanner {
BufferedReader br=new BufferedReader(new InputStreamReader(System.in));
StringTokenizer st=new StringTokenizer("");
String next() {
while (!st.hasMoreTokens())
try {
st=new StringTokenizer(br.readLine());
} catch (IOException e) {
e.printStackTrace();
}
return st.nextToken();
}
String nextLine(){
try {
return br.readLine();
} catch (IOException e) {
e.printStackTrace();
}
return "";
}
int nextInt() {
return Integer.parseInt(next());
}
int[] readArray(int n) {
int[] a=new int[n];
for (int i=0; i<n; i++) a[i]=nextInt();
return a;
}
long nextLong() {
return Long.parseLong(next());
}
double nextDouble() {
return Double.parseDouble(next());
}
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(n^3): The time complexity scales proportionally to the cube of the input size.
- O(log(n)): The time complexity increases logarithmically in relation to the input size.
- O(n): The time complexity increases proportionally to the input size n in a linear manner.
- O(1): The time complexity is constant to the input size n.
- O(n^2): The time complexity grows proportionally to the square of the input size.
- non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially.
- O(nlog(n)): The time complexity combines linear and logarithmic growth factors.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Classify the following Java code's worst-case time complexity according to its relationship to the input size n.
</TASK>
<CODE>
import java.io.*;
import java.util.*;
public class tank {
static final FastScanner fs = new FastScanner();
static PrintWriter out = new PrintWriter(System.out);
public static void main(String[] args) {
int t = fs.nextInt();
while(t-->0) {
run_case();
}
out.close();
}
static void run_case() {
int n = fs.nextInt(), prevLen = 1, one = 1;
int[] arr = fs.readArray(n);
int[] len = new int[1001];
StringBuilder[] prev = new StringBuilder[1001];
len[1] = 1;
out.println(1);
for (int i = 0; i < 1001; i++) {
prev[i] = new StringBuilder();
}
prev[1].append("1");
for (int i = 1; i < n; i++) {
if(arr[i] == 1) {
prev[prevLen + 1] = new StringBuilder(prev[prevLen]);
prev[prevLen + 1].append(".1");
out.println(prev[prevLen + 1]);
prevLen++;
len[prevLen] = 1;
}else {
for (int j = 1000; j > 0; j--) {
if(len[j] == arr[i] - 1 && j <= prevLen) {
char[] tmp = prev[j].toString().toCharArray();
if(fn(tmp)) {
prev[j] = new StringBuilder("" + (len[j] + 1));
}else {
prev[j] = new StringBuilder();
int ub = fn2(tmp);
for (int k = 0; k <= ub; k++) {
prev[j].append(tmp[k]);
}
prev[j].append(len[j] + 1);
}
out.println(prev[j]);
len[j] = len[j] + 1;
prevLen = j;
break;
}
if(j == 1) {
prev[j] = new StringBuilder("" + (one + 1));
out.println(prev[j]);
len[j] = one + 1;
prevLen = j;
one++;
}
}
}
}
}
static boolean fn(char[] arr) {
for(char c: arr) {
if(c == '.') return false;
}
return true;
}
static int fn2(char[] arr) {
int ret = 0;
for (int i = 0; i < arr.length; i++) {
if(arr[i] == '.') ret = i;
}
return ret;
}
static class FastScanner {
BufferedReader br=new BufferedReader(new InputStreamReader(System.in));
StringTokenizer st=new StringTokenizer("");
String next() {
while (!st.hasMoreTokens())
try {
st=new StringTokenizer(br.readLine());
} catch (IOException e) {
e.printStackTrace();
}
return st.nextToken();
}
String nextLine(){
try {
return br.readLine();
} catch (IOException e) {
e.printStackTrace();
}
return "";
}
int nextInt() {
return Integer.parseInt(next());
}
int[] readArray(int n) {
int[] a=new int[n];
for (int i=0; i<n; i++) a[i]=nextInt();
return a;
}
long nextLong() {
return Long.parseLong(next());
}
double nextDouble() {
return Double.parseDouble(next());
}
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(nlog(n)): The running time increases with the product of n and logarithm of n.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- O(1): The running time does not change regardless of the input size n.
- others: The code does not clearly correspond to the listed classes or has an unclassified time complexity.
- O(n^3): The running time increases with the cube of the input size n.
- O(n^2): The running time increases with the square of the input size n.
- O(n): The running time grows linearly with the input size n.
- O(log(n)): The running time increases with the logarithm of the input size n.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
| 1,089
| 3,845
|
2,656
|
import java.io.*;
import java.lang.reflect.Array;
import java.math.*;
import java.util.*;
public class icpc
{
public static void main(String[] args) throws IOException
{
Reader in = new Reader();
// BufferedReader in = new BufferedReader(new InputStreamReader(System.in));
int n = in.nextInt();
boolean[] A = new boolean[n];
int count = 0;
int[] B = new int[n];
for (int i=0;i<n;i++)
B[i] = in.nextInt();
Arrays.sort(B);
for (int i=0;i<n;i++)
{
if (!A[i])
{
int gcd = B[i];
for (int j=0;j<n;j++)
{
if(!A[j])
{
gcd = gcd(B[j], gcd);
if(gcd == B[i])
{
A[j] = true;
}
else
{
gcd = B[i];
}
}
}
count++;
A[i] = true;
}
}
System.out.println(count);
}
public static int gcd(int a, int b)
{
if (b == 0)
return a;
return gcd(b, a % b);
}
}
class DSU
{
int[] parent;
int[] size;
//Pass number of total nodes as parameter to the constructor
DSU(int n)
{
this.parent = new int[n];
this.size = new int[n];
Arrays.fill(parent, -1);
}
public void makeSet(int v)
{
parent[v] = v;
size[v] = 1;
}
public int findSet(int v)
{
if (v == parent[v]) return v;
return parent[v] = findSet(parent[v]);
}
public void unionSets(int a, int b)
{
a = findSet(a);
b = findSet(b);
if (a != b)
{
if (size[a] < size[b])
{
int temp = a;
a = b;
b = temp;
}
parent[b] = a;
size[a] += size[b];
}
}
}
class FastFourierTransform
{
private void fft(double[] a, double[] b, boolean invert)
{
int count = a.length;
for (int i = 1, j = 0; i < count; i++)
{
int bit = count >> 1;
for (; j >= bit; bit >>= 1)
j -= bit;
j += bit;
if (i < j)
{
double temp = a[i];
a[i] = a[j];
a[j] = temp;
temp = b[i];
b[i] = b[j];
b[j] = temp;
}
}
for (int len = 2; len <= count; len <<= 1)
{
int halfLen = len >> 1;
double angle = 2 * Math.PI / len;
if (invert)
angle = -angle;
double wLenA = Math.cos(angle);
double wLenB = Math.sin(angle);
for (int i = 0; i < count; i += len)
{
double wA = 1;
double wB = 0;
for (int j = 0; j < halfLen; j++)
{
double uA = a[i + j];
double uB = b[i + j];
double vA = a[i + j + halfLen] * wA - b[i + j + halfLen] * wB;
double vB = a[i + j + halfLen] * wB + b[i + j + halfLen] * wA;
a[i + j] = uA + vA;
b[i + j] = uB + vB;
a[i + j + halfLen] = uA - vA;
b[i + j + halfLen] = uB - vB;
double nextWA = wA * wLenA - wB * wLenB;
wB = wA * wLenB + wB * wLenA;
wA = nextWA;
}
}
}
if (invert)
{
for (int i = 0; i < count; i++)
{
a[i] /= count;
b[i] /= count;
}
}
}
public long[] multiply(long[] a, long[] b)
{
int resultSize = Integer.highestOneBit(Math.max(a.length, b.length) - 1) << 2;
resultSize = Math.max(resultSize, 1);
double[] aReal = new double[resultSize];
double[] aImaginary = new double[resultSize];
double[] bReal = new double[resultSize];
double[] bImaginary = new double[resultSize];
for (int i = 0; i < a.length; i++)
aReal[i] = a[i];
for (int i = 0; i < b.length; i++)
bReal[i] = b[i];
fft(aReal, aImaginary, false);
fft(bReal, bImaginary, false);
for (int i = 0; i < resultSize; i++)
{
double real = aReal[i] * bReal[i] - aImaginary[i] * bImaginary[i];
aImaginary[i] = aImaginary[i] * bReal[i] + bImaginary[i] * aReal[i];
aReal[i] = real;
}
fft(aReal, aImaginary, true);
long[] result = new long[resultSize];
for (int i = 0; i < resultSize; i++)
result[i] = Math.round(aReal[i]);
return result;
}
}
class NumberTheory
{
public boolean isPrime(long n)
{
if(n < 2)
return false;
for(long x = 2;x * x <= n;x++)
{
if(n % x == 0)
return false;
}
return true;
}
public ArrayList<Long> primeFactorisation(long n)
{
ArrayList<Long> f = new ArrayList<>();
for(long x=2;x * x <= n;x++)
{
while(n % x == 0)
{
f.add(x);
n /= x;
}
}
if(n > 1)
f.add(n);
return f;
}
public int[] sieveOfEratosthenes(int n)
{
//Returns an array with the smallest prime factor for each number and primes marked as 0
int[] sieve = new int[n + 1];
for(int x=2;x * x <= n;x++)
{
if(sieve[x] != 0)
continue;
for(int u=x*x;u<=n;u+=x)
{
if(sieve[u] == 0)
{
sieve[u] = x;
}
}
}
return sieve;
}
public long gcd(long a, long b)
{
if(b == 0)
return a;
return gcd(b, a % b);
}
public long phi(long n)
{
double result = n;
for(long p=2;p*p<=n;p++)
{
if(n % p == 0)
{
while (n % p == 0)
n /= p;
result *= (1.0 - (1.0 / (double)p));
}
}
if(n > 1)
result *= (1.0 - (1.0 / (double)n));
return (long)result;
}
public Name extendedEuclid(long a, long b)
{
if(b == 0)
return new Name(a, 1, 0);
Name n1 = extendedEuclid(b, a % b);
Name n2 = new Name(n1.d, n1.y, n1.x - (long)Math.floor((double)a / b) * n1.y);
return n2;
}
public long modularExponentiation(long a, long b, long n)
{
long d = 1L;
String bString = Long.toBinaryString(b);
for(int i=0;i<bString.length();i++)
{
d = (d * d) % n;
if(bString.charAt(i) == '1')
d = (d * a) % n;
}
return d;
}
}
class Name
{
long d;
long x;
long y;
public Name(long d, long x, long y)
{
this.d = d;
this.x = x;
this.y = y;
}
}
class SuffixArray
{
int ALPHABET_SZ = 256, N;
int[] T, lcp, sa, sa2, rank, tmp, c;
public SuffixArray(String str)
{
this(toIntArray(str));
}
private static int[] toIntArray(String s)
{
int[] text = new int[s.length()];
for (int i = 0; i < s.length(); i++) text[i] = s.charAt(i);
return text;
}
public SuffixArray(int[] text)
{
T = text;
N = text.length;
sa = new int[N];
sa2 = new int[N];
rank = new int[N];
c = new int[Math.max(ALPHABET_SZ, N)];
construct();
kasai();
}
private void construct()
{
int i, p, r;
for (i = 0; i < N; ++i) c[rank[i] = T[i]]++;
for (i = 1; i < ALPHABET_SZ; ++i) c[i] += c[i - 1];
for (i = N - 1; i >= 0; --i) sa[--c[T[i]]] = i;
for (p = 1; p < N; p <<= 1)
{
for (r = 0, i = N - p; i < N; ++i) sa2[r++] = i;
for (i = 0; i < N; ++i) if (sa[i] >= p) sa2[r++] = sa[i] - p;
Arrays.fill(c, 0, ALPHABET_SZ, 0);
for (i = 0; i < N; ++i) c[rank[i]]++;
for (i = 1; i < ALPHABET_SZ; ++i) c[i] += c[i - 1];
for (i = N - 1; i >= 0; --i) sa[--c[rank[sa2[i]]]] = sa2[i];
for (sa2[sa[0]] = r = 0, i = 1; i < N; ++i)
{
if (!(rank[sa[i - 1]] == rank[sa[i]]
&& sa[i - 1] + p < N
&& sa[i] + p < N
&& rank[sa[i - 1] + p] == rank[sa[i] + p])) r++;
sa2[sa[i]] = r;
}
tmp = rank;
rank = sa2;
sa2 = tmp;
if (r == N - 1) break;
ALPHABET_SZ = r + 1;
}
}
private void kasai()
{
lcp = new int[N];
int[] inv = new int[N];
for (int i = 0; i < N; i++) inv[sa[i]] = i;
for (int i = 0, len = 0; i < N; i++)
{
if (inv[i] > 0)
{
int k = sa[inv[i] - 1];
while ((i + len < N) && (k + len < N) && T[i + len] == T[k + len]) len++;
lcp[inv[i] - 1] = len;
if (len > 0) len--;
}
}
}
}
class ZAlgorithm
{
public int[] calculateZ(char input[])
{
int Z[] = new int[input.length];
int left = 0;
int right = 0;
for(int k = 1; k < input.length; k++) {
if(k > right) {
left = right = k;
while(right < input.length && input[right] == input[right - left]) {
right++;
}
Z[k] = right - left;
right--;
} else {
//we are operating inside box
int k1 = k - left;
//if value does not stretches till right bound then just copy it.
if(Z[k1] < right - k + 1) {
Z[k] = Z[k1];
} else { //otherwise try to see if there are more matches.
left = k;
while(right < input.length && input[right] == input[right - left]) {
right++;
}
Z[k] = right - left;
right--;
}
}
}
return Z;
}
public ArrayList<Integer> matchPattern(char text[], char pattern[])
{
char newString[] = new char[text.length + pattern.length + 1];
int i = 0;
for(char ch : pattern) {
newString[i] = ch;
i++;
}
newString[i] = '$';
i++;
for(char ch : text) {
newString[i] = ch;
i++;
}
ArrayList<Integer> result = new ArrayList<>();
int Z[] = calculateZ(newString);
for(i = 0; i < Z.length ; i++) {
if(Z[i] == pattern.length) {
result.add(i - pattern.length - 1);
}
}
return result;
}
}
class KMPAlgorithm
{
public int[] computeTemporalArray(char[] pattern)
{
int[] lps = new int[pattern.length];
int index = 0;
for(int i=1;i<pattern.length;)
{
if(pattern[i] == pattern[index])
{
lps[i] = index + 1;
index++;
i++;
}
else
{
if(index != 0)
{
index = lps[index - 1];
}
else
{
lps[i] = 0;
i++;
}
}
}
return lps;
}
public ArrayList<Integer> KMPMatcher(char[] text, char[] pattern)
{
int[] lps = computeTemporalArray(pattern);
int j = 0;
int i = 0;
int n = text.length;
int m = pattern.length;
ArrayList<Integer> indices = new ArrayList<>();
while(i < n)
{
if(pattern[j] == text[i])
{
i++;
j++;
}
if(j == m)
{
indices.add(i - j);
j = lps[j - 1];
}
else if(i < n && pattern[j] != text[i])
{
if(j != 0)
j = lps[j - 1];
else
i = i + 1;
}
}
return indices;
}
}
class Hashing
{
public long[] computePowers(long p, int n, long m)
{
long[] powers = new long[n];
powers[0] = 1;
for(int i=1;i<n;i++)
{
powers[i] = (powers[i - 1] * p) % m;
}
return powers;
}
public long computeHash(String s)
{
long p = 31;
long m = 1_000_000_009;
long hashValue = 0L;
long[] powers = computePowers(p, s.length(), m);
for(int i=0;i<s.length();i++)
{
char ch = s.charAt(i);
hashValue = (hashValue + (ch - 'a' + 1) * powers[i]) % m;
}
return hashValue;
}
}
class BasicFunctions
{
public long min(long[] A)
{
long min = Long.MAX_VALUE;
for(int i=0;i<A.length;i++)
{
min = Math.min(min, A[i]);
}
return min;
}
public long max(long[] A)
{
long max = Long.MAX_VALUE;
for(int i=0;i<A.length;i++)
{
max = Math.max(max, A[i]);
}
return max;
}
}
class MergeSortInt
{
// Merges two subarrays of arr[].
// First subarray is arr[l..m]
// Second subarray is arr[m+1..r]
void merge(int arr[], int l, int m, int r) {
// Find sizes of two subarrays to be merged
int n1 = m - l + 1;
int n2 = r - m;
/* Create temp arrays */
int L[] = new int[n1];
int R[] = new int[n2];
/*Copy data to temp arrays*/
for (int i = 0; i < n1; ++i)
L[i] = arr[l + i];
for (int j = 0; j < n2; ++j)
R[j] = arr[m + 1 + j];
/* Merge the temp arrays */
// Initial indexes of first and second subarrays
int i = 0, j = 0;
// Initial index of merged subarry array
int k = l;
while (i < n1 && j < n2) {
if (L[i] <= R[j]) {
arr[k] = L[i];
i++;
} else {
arr[k] = R[j];
j++;
}
k++;
}
/* Copy remaining elements of L[] if any */
while (i < n1) {
arr[k] = L[i];
i++;
k++;
}
/* Copy remaining elements of R[] if any */
while (j < n2) {
arr[k] = R[j];
j++;
k++;
}
}
// Main function that sorts arr[l..r] using
// merge()
void sort(int arr[], int l, int r) {
if (l < r) {
// Find the middle point
int m = (l + r) / 2;
// Sort first and second halves
sort(arr, l, m);
sort(arr, m + 1, r);
// Merge the sorted halves
merge(arr, l, m, r);
}
}
}
class MergeSortLong
{
// Merges two subarrays of arr[].
// First subarray is arr[l..m]
// Second subarray is arr[m+1..r]
void merge(long arr[], int l, int m, int r) {
// Find sizes of two subarrays to be merged
int n1 = m - l + 1;
int n2 = r - m;
/* Create temp arrays */
long L[] = new long[n1];
long R[] = new long[n2];
/*Copy data to temp arrays*/
for (int i = 0; i < n1; ++i)
L[i] = arr[l + i];
for (int j = 0; j < n2; ++j)
R[j] = arr[m + 1 + j];
/* Merge the temp arrays */
// Initial indexes of first and second subarrays
int i = 0, j = 0;
// Initial index of merged subarry array
int k = l;
while (i < n1 && j < n2) {
if (L[i] <= R[j]) {
arr[k] = L[i];
i++;
} else {
arr[k] = R[j];
j++;
}
k++;
}
/* Copy remaining elements of L[] if any */
while (i < n1) {
arr[k] = L[i];
i++;
k++;
}
/* Copy remaining elements of R[] if any */
while (j < n2) {
arr[k] = R[j];
j++;
k++;
}
}
// Main function that sorts arr[l..r] using
// merge()
void sort(long arr[], int l, int r) {
if (l < r) {
// Find the middle point
int m = (l + r) / 2;
// Sort first and second halves
sort(arr, l, m);
sort(arr, m + 1, r);
// Merge the sorted halves
merge(arr, l, m, r);
}
}
}
class Node
{
String s;
Node(String s)
{
this.s = s;
}
@Override
public boolean equals(Object ob)
{
if(ob == null)
return false;
if(!(ob instanceof Node))
return false;
if(ob == this)
return true;
Node obj = (Node)ob;
if(this.s.equals(obj.s))
return true;
return false;
}
@Override
public int hashCode()
{
return (int)this.s.length();
}
}
class Reader
{
final private int BUFFER_SIZE = 1 << 16;
private DataInputStream din;
private byte[] buffer;
private int bufferPointer, bytesRead;
public Reader()
{
din = new DataInputStream(System.in);
buffer = new byte[BUFFER_SIZE];
bufferPointer = bytesRead = 0;
}
public Reader(String file_name) throws IOException
{
din = new DataInputStream(new FileInputStream(file_name));
buffer = new byte[BUFFER_SIZE];
bufferPointer = bytesRead = 0;
}
public String readLine() throws IOException
{
byte[] buf = new byte[64]; // line length
int cnt = 0, c;
while ((c = read()) != -1)
{
if (c == '\n')
break;
buf[cnt++] = (byte) c;
}
return new String(buf, 0, cnt);
}
public int nextInt() throws IOException
{
int ret = 0;
byte c = read();
while (c <= ' ')
c = read();
boolean neg = (c == '-');
if (neg)
c = read();
do
{
ret = ret * 10 + c - '0';
} while ((c = read()) >= '0' && c <= '9');
if (neg)
return -ret;
return ret;
}
public long nextLong() throws IOException
{
long ret = 0;
byte c = read();
while (c <= ' ')
c = read();
boolean neg = (c == '-');
if (neg)
c = read();
do {
ret = ret * 10 + c - '0';
}
while ((c = read()) >= '0' && c <= '9');
if (neg)
return -ret;
return ret;
}
public double nextDouble() throws IOException
{
double ret = 0, div = 1;
byte c = read();
while (c <= ' ')
c = read();
boolean neg = (c == '-');
if (neg)
c = read();
do {
ret = ret * 10 + c - '0';
}
while ((c = read()) >= '0' && c <= '9');
if (c == '.')
{
while ((c = read()) >= '0' && c <= '9')
{
ret += (c - '0') / (div *= 10);
}
}
if (neg)
return -ret;
return ret;
}
private void fillBuffer() throws IOException
{
bytesRead = din.read(buffer, bufferPointer = 0, BUFFER_SIZE);
if (bytesRead == -1)
buffer[0] = -1;
}
private byte read() throws IOException
{
if (bufferPointer == bytesRead)
fillBuffer();
return buffer[bufferPointer++];
}
public void close() throws IOException
{
if (din == null)
return;
din.close();
}
}
class FenwickTree
{
public void update(long[] fenwickTree,long delta,int index)
{
index += 1;
while(index < fenwickTree.length)
{
fenwickTree[index] += delta;
index = index + (index & (-index));
}
}
public long prefixSum(long[] fenwickTree,int index)
{
long sum = 0L;
index += 1;
while(index > 0)
{
sum += fenwickTree[index];
index -= (index & (-index));
}
return sum;
}
}
class SegmentTree
{
public int nextPowerOfTwo(int num)
{
if(num == 0)
return 1;
if(num > 0 && (num & (num - 1)) == 0)
return num;
while((num &(num - 1)) > 0)
{
num = num & (num - 1);
}
return num << 1;
}
public int[] createSegmentTree(int[] input)
{
int np2 = nextPowerOfTwo(input.length);
int[] segmentTree = new int[np2 * 2 - 1];
for(int i=0;i<segmentTree.length;i++)
segmentTree[i] = Integer.MIN_VALUE;
constructSegmentTree(segmentTree,input,0,input.length-1,0);
return segmentTree;
}
private void constructSegmentTree(int[] segmentTree,int[] input,int low,int high,int pos)
{
if(low == high)
{
segmentTree[pos] = input[low];
return;
}
int mid = (low + high)/ 2;
constructSegmentTree(segmentTree,input,low,mid,2*pos + 1);
constructSegmentTree(segmentTree,input,mid+1,high,2*pos + 2);
segmentTree[pos] = Math.max(segmentTree[2*pos + 1],segmentTree[2*pos + 2]);
}
public int rangeMinimumQuery(int []segmentTree,int qlow,int qhigh,int len)
{
return rangeMinimumQuery(segmentTree,0,len-1,qlow,qhigh,0);
}
private int rangeMinimumQuery(int segmentTree[],int low,int high,int qlow,int qhigh,int pos)
{
if(qlow <= low && qhigh >= high){
return segmentTree[pos];
}
if(qlow > high || qhigh < low){
return Integer.MIN_VALUE;
}
int mid = (low+high)/2;
return Math.max(rangeMinimumQuery(segmentTree, low, mid, qlow, qhigh, 2 * pos + 1),
rangeMinimumQuery(segmentTree, mid + 1, high, qlow, qhigh, 2 * pos + 2));
}
}
class Trie
{
private class TrieNode
{
Map<Character, TrieNode> children;
boolean endOfWord;
public TrieNode()
{
children = new HashMap<>();
endOfWord = false;
}
}
private final TrieNode root;
public Trie()
{
root = new TrieNode();
}
public void insert(String word)
{
TrieNode current = root;
for (int i = 0; i < word.length(); i++)
{
char ch = word.charAt(i);
TrieNode node = current.children.get(ch);
if (node == null)
{
node = new TrieNode();
current.children.put(ch, node);
}
current = node;
}
current.endOfWord = true;
}
public boolean search(String word)
{
TrieNode current = root;
for (int i = 0; i < word.length(); i++)
{
char ch = word.charAt(i);
TrieNode node = current.children.get(ch);
if (node == null)
{
return false;
}
current = node;
}
return current.endOfWord;
}
public void delete(String word)
{
delete(root, word, 0);
}
private boolean delete(TrieNode current, String word, int index)
{
if (index == word.length())
{
if (!current.endOfWord)
{
return false;
}
current.endOfWord = false;
return current.children.size() == 0;
}
char ch = word.charAt(index);
TrieNode node = current.children.get(ch);
if (node == null)
{
return false;
}
boolean shouldDeleteCurrentNode = delete(node, word, index + 1);
if (shouldDeleteCurrentNode)
{
current.children.remove(ch);
return current.children.size() == 0;
}
return false;
}
}
class SegmentTreeLazy
{
public int nextPowerOfTwo(int num)
{
if(num == 0)
return 1;
if(num > 0 && (num & (num - 1)) == 0)
return num;
while((num &(num - 1)) > 0)
{
num = num & (num - 1);
}
return num << 1;
}
public int[] createSegmentTree(int input[])
{
int nextPowOfTwo = nextPowerOfTwo(input.length);
int segmentTree[] = new int[nextPowOfTwo*2 -1];
for(int i=0; i < segmentTree.length; i++){
segmentTree[i] = Integer.MAX_VALUE;
}
constructMinSegmentTree(segmentTree, input, 0, input.length - 1, 0);
return segmentTree;
}
private void constructMinSegmentTree(int segmentTree[], int input[], int low, int high,int pos)
{
if(low == high)
{
segmentTree[pos] = input[low];
return;
}
int mid = (low + high)/2;
constructMinSegmentTree(segmentTree, input, low, mid, 2 * pos + 1);
constructMinSegmentTree(segmentTree, input, mid + 1, high, 2 * pos + 2);
segmentTree[pos] = Math.min(segmentTree[2*pos+1], segmentTree[2*pos+2]);
}
public void updateSegmentTreeRangeLazy(int input[], int segmentTree[], int lazy[], int startRange, int endRange, int delta)
{
updateSegmentTreeRangeLazy(segmentTree, lazy, startRange, endRange, delta, 0, input.length - 1, 0);
}
private void updateSegmentTreeRangeLazy(int segmentTree[], int lazy[], int startRange, int endRange, int delta, int low, int high, int pos)
{
if(low > high)
{
return;
}
if (lazy[pos] != 0)
{
segmentTree[pos] += lazy[pos];
if (low != high)
{
lazy[2 * pos + 1] += lazy[pos];
lazy[2 * pos + 2] += lazy[pos];
}
lazy[pos] = 0;
}
if(startRange > high || endRange < low)
{
return;
}
if(startRange <= low && endRange >= high)
{
segmentTree[pos] += delta;
if(low != high) {
lazy[2*pos + 1] += delta;
lazy[2*pos + 2] += delta;
}
return;
}
int mid = (low + high)/2;
updateSegmentTreeRangeLazy(segmentTree, lazy, startRange, endRange, delta, low, mid, 2*pos+1);
updateSegmentTreeRangeLazy(segmentTree, lazy, startRange, endRange, delta, mid+1, high, 2*pos+2);
segmentTree[pos] = Math.min(segmentTree[2*pos + 1], segmentTree[2*pos + 2]);
}
public int rangeMinimumQueryLazy(int segmentTree[], int lazy[], int qlow, int qhigh, int len)
{
return rangeMinimumQueryLazy(segmentTree, lazy, qlow, qhigh, 0, len - 1, 0);
}
private int rangeMinimumQueryLazy(int segmentTree[], int lazy[], int qlow, int qhigh, int low, int high, int pos)
{
if(low > high)
{
return Integer.MAX_VALUE;
}
if (lazy[pos] != 0)
{
segmentTree[pos] += lazy[pos];
if (low != high)
{
lazy[2 * pos + 1] += lazy[pos];
lazy[2 * pos + 2] += lazy[pos];
}
lazy[pos] = 0;
}
if(qlow > high || qhigh < low)
{
return Integer.MAX_VALUE;
}
if(qlow <= low && qhigh >= high)
{
return segmentTree[pos];
}
int mid = (low+high)/2;
return Math.min(rangeMinimumQueryLazy(segmentTree, lazy, qlow, qhigh, low, mid, 2 * pos + 1), rangeMinimumQueryLazy(segmentTree, lazy, qlow, qhigh, mid + 1, high, 2 * pos + 2));
}
}
|
O(n^2)
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n.
</TASK>
<CODE>
import java.io.*;
import java.lang.reflect.Array;
import java.math.*;
import java.util.*;
public class icpc
{
public static void main(String[] args) throws IOException
{
Reader in = new Reader();
// BufferedReader in = new BufferedReader(new InputStreamReader(System.in));
int n = in.nextInt();
boolean[] A = new boolean[n];
int count = 0;
int[] B = new int[n];
for (int i=0;i<n;i++)
B[i] = in.nextInt();
Arrays.sort(B);
for (int i=0;i<n;i++)
{
if (!A[i])
{
int gcd = B[i];
for (int j=0;j<n;j++)
{
if(!A[j])
{
gcd = gcd(B[j], gcd);
if(gcd == B[i])
{
A[j] = true;
}
else
{
gcd = B[i];
}
}
}
count++;
A[i] = true;
}
}
System.out.println(count);
}
public static int gcd(int a, int b)
{
if (b == 0)
return a;
return gcd(b, a % b);
}
}
class DSU
{
int[] parent;
int[] size;
//Pass number of total nodes as parameter to the constructor
DSU(int n)
{
this.parent = new int[n];
this.size = new int[n];
Arrays.fill(parent, -1);
}
public void makeSet(int v)
{
parent[v] = v;
size[v] = 1;
}
public int findSet(int v)
{
if (v == parent[v]) return v;
return parent[v] = findSet(parent[v]);
}
public void unionSets(int a, int b)
{
a = findSet(a);
b = findSet(b);
if (a != b)
{
if (size[a] < size[b])
{
int temp = a;
a = b;
b = temp;
}
parent[b] = a;
size[a] += size[b];
}
}
}
class FastFourierTransform
{
private void fft(double[] a, double[] b, boolean invert)
{
int count = a.length;
for (int i = 1, j = 0; i < count; i++)
{
int bit = count >> 1;
for (; j >= bit; bit >>= 1)
j -= bit;
j += bit;
if (i < j)
{
double temp = a[i];
a[i] = a[j];
a[j] = temp;
temp = b[i];
b[i] = b[j];
b[j] = temp;
}
}
for (int len = 2; len <= count; len <<= 1)
{
int halfLen = len >> 1;
double angle = 2 * Math.PI / len;
if (invert)
angle = -angle;
double wLenA = Math.cos(angle);
double wLenB = Math.sin(angle);
for (int i = 0; i < count; i += len)
{
double wA = 1;
double wB = 0;
for (int j = 0; j < halfLen; j++)
{
double uA = a[i + j];
double uB = b[i + j];
double vA = a[i + j + halfLen] * wA - b[i + j + halfLen] * wB;
double vB = a[i + j + halfLen] * wB + b[i + j + halfLen] * wA;
a[i + j] = uA + vA;
b[i + j] = uB + vB;
a[i + j + halfLen] = uA - vA;
b[i + j + halfLen] = uB - vB;
double nextWA = wA * wLenA - wB * wLenB;
wB = wA * wLenB + wB * wLenA;
wA = nextWA;
}
}
}
if (invert)
{
for (int i = 0; i < count; i++)
{
a[i] /= count;
b[i] /= count;
}
}
}
public long[] multiply(long[] a, long[] b)
{
int resultSize = Integer.highestOneBit(Math.max(a.length, b.length) - 1) << 2;
resultSize = Math.max(resultSize, 1);
double[] aReal = new double[resultSize];
double[] aImaginary = new double[resultSize];
double[] bReal = new double[resultSize];
double[] bImaginary = new double[resultSize];
for (int i = 0; i < a.length; i++)
aReal[i] = a[i];
for (int i = 0; i < b.length; i++)
bReal[i] = b[i];
fft(aReal, aImaginary, false);
fft(bReal, bImaginary, false);
for (int i = 0; i < resultSize; i++)
{
double real = aReal[i] * bReal[i] - aImaginary[i] * bImaginary[i];
aImaginary[i] = aImaginary[i] * bReal[i] + bImaginary[i] * aReal[i];
aReal[i] = real;
}
fft(aReal, aImaginary, true);
long[] result = new long[resultSize];
for (int i = 0; i < resultSize; i++)
result[i] = Math.round(aReal[i]);
return result;
}
}
class NumberTheory
{
public boolean isPrime(long n)
{
if(n < 2)
return false;
for(long x = 2;x * x <= n;x++)
{
if(n % x == 0)
return false;
}
return true;
}
public ArrayList<Long> primeFactorisation(long n)
{
ArrayList<Long> f = new ArrayList<>();
for(long x=2;x * x <= n;x++)
{
while(n % x == 0)
{
f.add(x);
n /= x;
}
}
if(n > 1)
f.add(n);
return f;
}
public int[] sieveOfEratosthenes(int n)
{
//Returns an array with the smallest prime factor for each number and primes marked as 0
int[] sieve = new int[n + 1];
for(int x=2;x * x <= n;x++)
{
if(sieve[x] != 0)
continue;
for(int u=x*x;u<=n;u+=x)
{
if(sieve[u] == 0)
{
sieve[u] = x;
}
}
}
return sieve;
}
public long gcd(long a, long b)
{
if(b == 0)
return a;
return gcd(b, a % b);
}
public long phi(long n)
{
double result = n;
for(long p=2;p*p<=n;p++)
{
if(n % p == 0)
{
while (n % p == 0)
n /= p;
result *= (1.0 - (1.0 / (double)p));
}
}
if(n > 1)
result *= (1.0 - (1.0 / (double)n));
return (long)result;
}
public Name extendedEuclid(long a, long b)
{
if(b == 0)
return new Name(a, 1, 0);
Name n1 = extendedEuclid(b, a % b);
Name n2 = new Name(n1.d, n1.y, n1.x - (long)Math.floor((double)a / b) * n1.y);
return n2;
}
public long modularExponentiation(long a, long b, long n)
{
long d = 1L;
String bString = Long.toBinaryString(b);
for(int i=0;i<bString.length();i++)
{
d = (d * d) % n;
if(bString.charAt(i) == '1')
d = (d * a) % n;
}
return d;
}
}
class Name
{
long d;
long x;
long y;
public Name(long d, long x, long y)
{
this.d = d;
this.x = x;
this.y = y;
}
}
class SuffixArray
{
int ALPHABET_SZ = 256, N;
int[] T, lcp, sa, sa2, rank, tmp, c;
public SuffixArray(String str)
{
this(toIntArray(str));
}
private static int[] toIntArray(String s)
{
int[] text = new int[s.length()];
for (int i = 0; i < s.length(); i++) text[i] = s.charAt(i);
return text;
}
public SuffixArray(int[] text)
{
T = text;
N = text.length;
sa = new int[N];
sa2 = new int[N];
rank = new int[N];
c = new int[Math.max(ALPHABET_SZ, N)];
construct();
kasai();
}
private void construct()
{
int i, p, r;
for (i = 0; i < N; ++i) c[rank[i] = T[i]]++;
for (i = 1; i < ALPHABET_SZ; ++i) c[i] += c[i - 1];
for (i = N - 1; i >= 0; --i) sa[--c[T[i]]] = i;
for (p = 1; p < N; p <<= 1)
{
for (r = 0, i = N - p; i < N; ++i) sa2[r++] = i;
for (i = 0; i < N; ++i) if (sa[i] >= p) sa2[r++] = sa[i] - p;
Arrays.fill(c, 0, ALPHABET_SZ, 0);
for (i = 0; i < N; ++i) c[rank[i]]++;
for (i = 1; i < ALPHABET_SZ; ++i) c[i] += c[i - 1];
for (i = N - 1; i >= 0; --i) sa[--c[rank[sa2[i]]]] = sa2[i];
for (sa2[sa[0]] = r = 0, i = 1; i < N; ++i)
{
if (!(rank[sa[i - 1]] == rank[sa[i]]
&& sa[i - 1] + p < N
&& sa[i] + p < N
&& rank[sa[i - 1] + p] == rank[sa[i] + p])) r++;
sa2[sa[i]] = r;
}
tmp = rank;
rank = sa2;
sa2 = tmp;
if (r == N - 1) break;
ALPHABET_SZ = r + 1;
}
}
private void kasai()
{
lcp = new int[N];
int[] inv = new int[N];
for (int i = 0; i < N; i++) inv[sa[i]] = i;
for (int i = 0, len = 0; i < N; i++)
{
if (inv[i] > 0)
{
int k = sa[inv[i] - 1];
while ((i + len < N) && (k + len < N) && T[i + len] == T[k + len]) len++;
lcp[inv[i] - 1] = len;
if (len > 0) len--;
}
}
}
}
class ZAlgorithm
{
public int[] calculateZ(char input[])
{
int Z[] = new int[input.length];
int left = 0;
int right = 0;
for(int k = 1; k < input.length; k++) {
if(k > right) {
left = right = k;
while(right < input.length && input[right] == input[right - left]) {
right++;
}
Z[k] = right - left;
right--;
} else {
//we are operating inside box
int k1 = k - left;
//if value does not stretches till right bound then just copy it.
if(Z[k1] < right - k + 1) {
Z[k] = Z[k1];
} else { //otherwise try to see if there are more matches.
left = k;
while(right < input.length && input[right] == input[right - left]) {
right++;
}
Z[k] = right - left;
right--;
}
}
}
return Z;
}
public ArrayList<Integer> matchPattern(char text[], char pattern[])
{
char newString[] = new char[text.length + pattern.length + 1];
int i = 0;
for(char ch : pattern) {
newString[i] = ch;
i++;
}
newString[i] = '$';
i++;
for(char ch : text) {
newString[i] = ch;
i++;
}
ArrayList<Integer> result = new ArrayList<>();
int Z[] = calculateZ(newString);
for(i = 0; i < Z.length ; i++) {
if(Z[i] == pattern.length) {
result.add(i - pattern.length - 1);
}
}
return result;
}
}
class KMPAlgorithm
{
public int[] computeTemporalArray(char[] pattern)
{
int[] lps = new int[pattern.length];
int index = 0;
for(int i=1;i<pattern.length;)
{
if(pattern[i] == pattern[index])
{
lps[i] = index + 1;
index++;
i++;
}
else
{
if(index != 0)
{
index = lps[index - 1];
}
else
{
lps[i] = 0;
i++;
}
}
}
return lps;
}
public ArrayList<Integer> KMPMatcher(char[] text, char[] pattern)
{
int[] lps = computeTemporalArray(pattern);
int j = 0;
int i = 0;
int n = text.length;
int m = pattern.length;
ArrayList<Integer> indices = new ArrayList<>();
while(i < n)
{
if(pattern[j] == text[i])
{
i++;
j++;
}
if(j == m)
{
indices.add(i - j);
j = lps[j - 1];
}
else if(i < n && pattern[j] != text[i])
{
if(j != 0)
j = lps[j - 1];
else
i = i + 1;
}
}
return indices;
}
}
class Hashing
{
public long[] computePowers(long p, int n, long m)
{
long[] powers = new long[n];
powers[0] = 1;
for(int i=1;i<n;i++)
{
powers[i] = (powers[i - 1] * p) % m;
}
return powers;
}
public long computeHash(String s)
{
long p = 31;
long m = 1_000_000_009;
long hashValue = 0L;
long[] powers = computePowers(p, s.length(), m);
for(int i=0;i<s.length();i++)
{
char ch = s.charAt(i);
hashValue = (hashValue + (ch - 'a' + 1) * powers[i]) % m;
}
return hashValue;
}
}
class BasicFunctions
{
public long min(long[] A)
{
long min = Long.MAX_VALUE;
for(int i=0;i<A.length;i++)
{
min = Math.min(min, A[i]);
}
return min;
}
public long max(long[] A)
{
long max = Long.MAX_VALUE;
for(int i=0;i<A.length;i++)
{
max = Math.max(max, A[i]);
}
return max;
}
}
class MergeSortInt
{
// Merges two subarrays of arr[].
// First subarray is arr[l..m]
// Second subarray is arr[m+1..r]
void merge(int arr[], int l, int m, int r) {
// Find sizes of two subarrays to be merged
int n1 = m - l + 1;
int n2 = r - m;
/* Create temp arrays */
int L[] = new int[n1];
int R[] = new int[n2];
/*Copy data to temp arrays*/
for (int i = 0; i < n1; ++i)
L[i] = arr[l + i];
for (int j = 0; j < n2; ++j)
R[j] = arr[m + 1 + j];
/* Merge the temp arrays */
// Initial indexes of first and second subarrays
int i = 0, j = 0;
// Initial index of merged subarry array
int k = l;
while (i < n1 && j < n2) {
if (L[i] <= R[j]) {
arr[k] = L[i];
i++;
} else {
arr[k] = R[j];
j++;
}
k++;
}
/* Copy remaining elements of L[] if any */
while (i < n1) {
arr[k] = L[i];
i++;
k++;
}
/* Copy remaining elements of R[] if any */
while (j < n2) {
arr[k] = R[j];
j++;
k++;
}
}
// Main function that sorts arr[l..r] using
// merge()
void sort(int arr[], int l, int r) {
if (l < r) {
// Find the middle point
int m = (l + r) / 2;
// Sort first and second halves
sort(arr, l, m);
sort(arr, m + 1, r);
// Merge the sorted halves
merge(arr, l, m, r);
}
}
}
class MergeSortLong
{
// Merges two subarrays of arr[].
// First subarray is arr[l..m]
// Second subarray is arr[m+1..r]
void merge(long arr[], int l, int m, int r) {
// Find sizes of two subarrays to be merged
int n1 = m - l + 1;
int n2 = r - m;
/* Create temp arrays */
long L[] = new long[n1];
long R[] = new long[n2];
/*Copy data to temp arrays*/
for (int i = 0; i < n1; ++i)
L[i] = arr[l + i];
for (int j = 0; j < n2; ++j)
R[j] = arr[m + 1 + j];
/* Merge the temp arrays */
// Initial indexes of first and second subarrays
int i = 0, j = 0;
// Initial index of merged subarry array
int k = l;
while (i < n1 && j < n2) {
if (L[i] <= R[j]) {
arr[k] = L[i];
i++;
} else {
arr[k] = R[j];
j++;
}
k++;
}
/* Copy remaining elements of L[] if any */
while (i < n1) {
arr[k] = L[i];
i++;
k++;
}
/* Copy remaining elements of R[] if any */
while (j < n2) {
arr[k] = R[j];
j++;
k++;
}
}
// Main function that sorts arr[l..r] using
// merge()
void sort(long arr[], int l, int r) {
if (l < r) {
// Find the middle point
int m = (l + r) / 2;
// Sort first and second halves
sort(arr, l, m);
sort(arr, m + 1, r);
// Merge the sorted halves
merge(arr, l, m, r);
}
}
}
class Node
{
String s;
Node(String s)
{
this.s = s;
}
@Override
public boolean equals(Object ob)
{
if(ob == null)
return false;
if(!(ob instanceof Node))
return false;
if(ob == this)
return true;
Node obj = (Node)ob;
if(this.s.equals(obj.s))
return true;
return false;
}
@Override
public int hashCode()
{
return (int)this.s.length();
}
}
class Reader
{
final private int BUFFER_SIZE = 1 << 16;
private DataInputStream din;
private byte[] buffer;
private int bufferPointer, bytesRead;
public Reader()
{
din = new DataInputStream(System.in);
buffer = new byte[BUFFER_SIZE];
bufferPointer = bytesRead = 0;
}
public Reader(String file_name) throws IOException
{
din = new DataInputStream(new FileInputStream(file_name));
buffer = new byte[BUFFER_SIZE];
bufferPointer = bytesRead = 0;
}
public String readLine() throws IOException
{
byte[] buf = new byte[64]; // line length
int cnt = 0, c;
while ((c = read()) != -1)
{
if (c == '\n')
break;
buf[cnt++] = (byte) c;
}
return new String(buf, 0, cnt);
}
public int nextInt() throws IOException
{
int ret = 0;
byte c = read();
while (c <= ' ')
c = read();
boolean neg = (c == '-');
if (neg)
c = read();
do
{
ret = ret * 10 + c - '0';
} while ((c = read()) >= '0' && c <= '9');
if (neg)
return -ret;
return ret;
}
public long nextLong() throws IOException
{
long ret = 0;
byte c = read();
while (c <= ' ')
c = read();
boolean neg = (c == '-');
if (neg)
c = read();
do {
ret = ret * 10 + c - '0';
}
while ((c = read()) >= '0' && c <= '9');
if (neg)
return -ret;
return ret;
}
public double nextDouble() throws IOException
{
double ret = 0, div = 1;
byte c = read();
while (c <= ' ')
c = read();
boolean neg = (c == '-');
if (neg)
c = read();
do {
ret = ret * 10 + c - '0';
}
while ((c = read()) >= '0' && c <= '9');
if (c == '.')
{
while ((c = read()) >= '0' && c <= '9')
{
ret += (c - '0') / (div *= 10);
}
}
if (neg)
return -ret;
return ret;
}
private void fillBuffer() throws IOException
{
bytesRead = din.read(buffer, bufferPointer = 0, BUFFER_SIZE);
if (bytesRead == -1)
buffer[0] = -1;
}
private byte read() throws IOException
{
if (bufferPointer == bytesRead)
fillBuffer();
return buffer[bufferPointer++];
}
public void close() throws IOException
{
if (din == null)
return;
din.close();
}
}
class FenwickTree
{
public void update(long[] fenwickTree,long delta,int index)
{
index += 1;
while(index < fenwickTree.length)
{
fenwickTree[index] += delta;
index = index + (index & (-index));
}
}
public long prefixSum(long[] fenwickTree,int index)
{
long sum = 0L;
index += 1;
while(index > 0)
{
sum += fenwickTree[index];
index -= (index & (-index));
}
return sum;
}
}
class SegmentTree
{
public int nextPowerOfTwo(int num)
{
if(num == 0)
return 1;
if(num > 0 && (num & (num - 1)) == 0)
return num;
while((num &(num - 1)) > 0)
{
num = num & (num - 1);
}
return num << 1;
}
public int[] createSegmentTree(int[] input)
{
int np2 = nextPowerOfTwo(input.length);
int[] segmentTree = new int[np2 * 2 - 1];
for(int i=0;i<segmentTree.length;i++)
segmentTree[i] = Integer.MIN_VALUE;
constructSegmentTree(segmentTree,input,0,input.length-1,0);
return segmentTree;
}
private void constructSegmentTree(int[] segmentTree,int[] input,int low,int high,int pos)
{
if(low == high)
{
segmentTree[pos] = input[low];
return;
}
int mid = (low + high)/ 2;
constructSegmentTree(segmentTree,input,low,mid,2*pos + 1);
constructSegmentTree(segmentTree,input,mid+1,high,2*pos + 2);
segmentTree[pos] = Math.max(segmentTree[2*pos + 1],segmentTree[2*pos + 2]);
}
public int rangeMinimumQuery(int []segmentTree,int qlow,int qhigh,int len)
{
return rangeMinimumQuery(segmentTree,0,len-1,qlow,qhigh,0);
}
private int rangeMinimumQuery(int segmentTree[],int low,int high,int qlow,int qhigh,int pos)
{
if(qlow <= low && qhigh >= high){
return segmentTree[pos];
}
if(qlow > high || qhigh < low){
return Integer.MIN_VALUE;
}
int mid = (low+high)/2;
return Math.max(rangeMinimumQuery(segmentTree, low, mid, qlow, qhigh, 2 * pos + 1),
rangeMinimumQuery(segmentTree, mid + 1, high, qlow, qhigh, 2 * pos + 2));
}
}
class Trie
{
private class TrieNode
{
Map<Character, TrieNode> children;
boolean endOfWord;
public TrieNode()
{
children = new HashMap<>();
endOfWord = false;
}
}
private final TrieNode root;
public Trie()
{
root = new TrieNode();
}
public void insert(String word)
{
TrieNode current = root;
for (int i = 0; i < word.length(); i++)
{
char ch = word.charAt(i);
TrieNode node = current.children.get(ch);
if (node == null)
{
node = new TrieNode();
current.children.put(ch, node);
}
current = node;
}
current.endOfWord = true;
}
public boolean search(String word)
{
TrieNode current = root;
for (int i = 0; i < word.length(); i++)
{
char ch = word.charAt(i);
TrieNode node = current.children.get(ch);
if (node == null)
{
return false;
}
current = node;
}
return current.endOfWord;
}
public void delete(String word)
{
delete(root, word, 0);
}
private boolean delete(TrieNode current, String word, int index)
{
if (index == word.length())
{
if (!current.endOfWord)
{
return false;
}
current.endOfWord = false;
return current.children.size() == 0;
}
char ch = word.charAt(index);
TrieNode node = current.children.get(ch);
if (node == null)
{
return false;
}
boolean shouldDeleteCurrentNode = delete(node, word, index + 1);
if (shouldDeleteCurrentNode)
{
current.children.remove(ch);
return current.children.size() == 0;
}
return false;
}
}
class SegmentTreeLazy
{
public int nextPowerOfTwo(int num)
{
if(num == 0)
return 1;
if(num > 0 && (num & (num - 1)) == 0)
return num;
while((num &(num - 1)) > 0)
{
num = num & (num - 1);
}
return num << 1;
}
public int[] createSegmentTree(int input[])
{
int nextPowOfTwo = nextPowerOfTwo(input.length);
int segmentTree[] = new int[nextPowOfTwo*2 -1];
for(int i=0; i < segmentTree.length; i++){
segmentTree[i] = Integer.MAX_VALUE;
}
constructMinSegmentTree(segmentTree, input, 0, input.length - 1, 0);
return segmentTree;
}
private void constructMinSegmentTree(int segmentTree[], int input[], int low, int high,int pos)
{
if(low == high)
{
segmentTree[pos] = input[low];
return;
}
int mid = (low + high)/2;
constructMinSegmentTree(segmentTree, input, low, mid, 2 * pos + 1);
constructMinSegmentTree(segmentTree, input, mid + 1, high, 2 * pos + 2);
segmentTree[pos] = Math.min(segmentTree[2*pos+1], segmentTree[2*pos+2]);
}
public void updateSegmentTreeRangeLazy(int input[], int segmentTree[], int lazy[], int startRange, int endRange, int delta)
{
updateSegmentTreeRangeLazy(segmentTree, lazy, startRange, endRange, delta, 0, input.length - 1, 0);
}
private void updateSegmentTreeRangeLazy(int segmentTree[], int lazy[], int startRange, int endRange, int delta, int low, int high, int pos)
{
if(low > high)
{
return;
}
if (lazy[pos] != 0)
{
segmentTree[pos] += lazy[pos];
if (low != high)
{
lazy[2 * pos + 1] += lazy[pos];
lazy[2 * pos + 2] += lazy[pos];
}
lazy[pos] = 0;
}
if(startRange > high || endRange < low)
{
return;
}
if(startRange <= low && endRange >= high)
{
segmentTree[pos] += delta;
if(low != high) {
lazy[2*pos + 1] += delta;
lazy[2*pos + 2] += delta;
}
return;
}
int mid = (low + high)/2;
updateSegmentTreeRangeLazy(segmentTree, lazy, startRange, endRange, delta, low, mid, 2*pos+1);
updateSegmentTreeRangeLazy(segmentTree, lazy, startRange, endRange, delta, mid+1, high, 2*pos+2);
segmentTree[pos] = Math.min(segmentTree[2*pos + 1], segmentTree[2*pos + 2]);
}
public int rangeMinimumQueryLazy(int segmentTree[], int lazy[], int qlow, int qhigh, int len)
{
return rangeMinimumQueryLazy(segmentTree, lazy, qlow, qhigh, 0, len - 1, 0);
}
private int rangeMinimumQueryLazy(int segmentTree[], int lazy[], int qlow, int qhigh, int low, int high, int pos)
{
if(low > high)
{
return Integer.MAX_VALUE;
}
if (lazy[pos] != 0)
{
segmentTree[pos] += lazy[pos];
if (low != high)
{
lazy[2 * pos + 1] += lazy[pos];
lazy[2 * pos + 2] += lazy[pos];
}
lazy[pos] = 0;
}
if(qlow > high || qhigh < low)
{
return Integer.MAX_VALUE;
}
if(qlow <= low && qhigh >= high)
{
return segmentTree[pos];
}
int mid = (low+high)/2;
return Math.min(rangeMinimumQueryLazy(segmentTree, lazy, qlow, qhigh, low, mid, 2 * pos + 1), rangeMinimumQueryLazy(segmentTree, lazy, qlow, qhigh, mid + 1, high, 2 * pos + 2));
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(n^2): The execution time ascends in proportion to the square of the input size n.
- O(log(n)): The execution time ascends in proportion to the logarithm of the input size n.
- O(1): The execution time is unaffected by the size of the input n.
- O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially.
- O(n): The execution time ascends in a one-to-one ratio with the input size n.
- O(n^3): The execution time ascends in proportion to the cube of the input size n.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Classify the following Java code's worst-case time complexity according to its relationship to the input size n.
</TASK>
<CODE>
import java.io.*;
import java.lang.reflect.Array;
import java.math.*;
import java.util.*;
public class icpc
{
public static void main(String[] args) throws IOException
{
Reader in = new Reader();
// BufferedReader in = new BufferedReader(new InputStreamReader(System.in));
int n = in.nextInt();
boolean[] A = new boolean[n];
int count = 0;
int[] B = new int[n];
for (int i=0;i<n;i++)
B[i] = in.nextInt();
Arrays.sort(B);
for (int i=0;i<n;i++)
{
if (!A[i])
{
int gcd = B[i];
for (int j=0;j<n;j++)
{
if(!A[j])
{
gcd = gcd(B[j], gcd);
if(gcd == B[i])
{
A[j] = true;
}
else
{
gcd = B[i];
}
}
}
count++;
A[i] = true;
}
}
System.out.println(count);
}
public static int gcd(int a, int b)
{
if (b == 0)
return a;
return gcd(b, a % b);
}
}
class DSU
{
int[] parent;
int[] size;
//Pass number of total nodes as parameter to the constructor
DSU(int n)
{
this.parent = new int[n];
this.size = new int[n];
Arrays.fill(parent, -1);
}
public void makeSet(int v)
{
parent[v] = v;
size[v] = 1;
}
public int findSet(int v)
{
if (v == parent[v]) return v;
return parent[v] = findSet(parent[v]);
}
public void unionSets(int a, int b)
{
a = findSet(a);
b = findSet(b);
if (a != b)
{
if (size[a] < size[b])
{
int temp = a;
a = b;
b = temp;
}
parent[b] = a;
size[a] += size[b];
}
}
}
class FastFourierTransform
{
private void fft(double[] a, double[] b, boolean invert)
{
int count = a.length;
for (int i = 1, j = 0; i < count; i++)
{
int bit = count >> 1;
for (; j >= bit; bit >>= 1)
j -= bit;
j += bit;
if (i < j)
{
double temp = a[i];
a[i] = a[j];
a[j] = temp;
temp = b[i];
b[i] = b[j];
b[j] = temp;
}
}
for (int len = 2; len <= count; len <<= 1)
{
int halfLen = len >> 1;
double angle = 2 * Math.PI / len;
if (invert)
angle = -angle;
double wLenA = Math.cos(angle);
double wLenB = Math.sin(angle);
for (int i = 0; i < count; i += len)
{
double wA = 1;
double wB = 0;
for (int j = 0; j < halfLen; j++)
{
double uA = a[i + j];
double uB = b[i + j];
double vA = a[i + j + halfLen] * wA - b[i + j + halfLen] * wB;
double vB = a[i + j + halfLen] * wB + b[i + j + halfLen] * wA;
a[i + j] = uA + vA;
b[i + j] = uB + vB;
a[i + j + halfLen] = uA - vA;
b[i + j + halfLen] = uB - vB;
double nextWA = wA * wLenA - wB * wLenB;
wB = wA * wLenB + wB * wLenA;
wA = nextWA;
}
}
}
if (invert)
{
for (int i = 0; i < count; i++)
{
a[i] /= count;
b[i] /= count;
}
}
}
public long[] multiply(long[] a, long[] b)
{
int resultSize = Integer.highestOneBit(Math.max(a.length, b.length) - 1) << 2;
resultSize = Math.max(resultSize, 1);
double[] aReal = new double[resultSize];
double[] aImaginary = new double[resultSize];
double[] bReal = new double[resultSize];
double[] bImaginary = new double[resultSize];
for (int i = 0; i < a.length; i++)
aReal[i] = a[i];
for (int i = 0; i < b.length; i++)
bReal[i] = b[i];
fft(aReal, aImaginary, false);
fft(bReal, bImaginary, false);
for (int i = 0; i < resultSize; i++)
{
double real = aReal[i] * bReal[i] - aImaginary[i] * bImaginary[i];
aImaginary[i] = aImaginary[i] * bReal[i] + bImaginary[i] * aReal[i];
aReal[i] = real;
}
fft(aReal, aImaginary, true);
long[] result = new long[resultSize];
for (int i = 0; i < resultSize; i++)
result[i] = Math.round(aReal[i]);
return result;
}
}
class NumberTheory
{
public boolean isPrime(long n)
{
if(n < 2)
return false;
for(long x = 2;x * x <= n;x++)
{
if(n % x == 0)
return false;
}
return true;
}
public ArrayList<Long> primeFactorisation(long n)
{
ArrayList<Long> f = new ArrayList<>();
for(long x=2;x * x <= n;x++)
{
while(n % x == 0)
{
f.add(x);
n /= x;
}
}
if(n > 1)
f.add(n);
return f;
}
public int[] sieveOfEratosthenes(int n)
{
//Returns an array with the smallest prime factor for each number and primes marked as 0
int[] sieve = new int[n + 1];
for(int x=2;x * x <= n;x++)
{
if(sieve[x] != 0)
continue;
for(int u=x*x;u<=n;u+=x)
{
if(sieve[u] == 0)
{
sieve[u] = x;
}
}
}
return sieve;
}
public long gcd(long a, long b)
{
if(b == 0)
return a;
return gcd(b, a % b);
}
public long phi(long n)
{
double result = n;
for(long p=2;p*p<=n;p++)
{
if(n % p == 0)
{
while (n % p == 0)
n /= p;
result *= (1.0 - (1.0 / (double)p));
}
}
if(n > 1)
result *= (1.0 - (1.0 / (double)n));
return (long)result;
}
public Name extendedEuclid(long a, long b)
{
if(b == 0)
return new Name(a, 1, 0);
Name n1 = extendedEuclid(b, a % b);
Name n2 = new Name(n1.d, n1.y, n1.x - (long)Math.floor((double)a / b) * n1.y);
return n2;
}
public long modularExponentiation(long a, long b, long n)
{
long d = 1L;
String bString = Long.toBinaryString(b);
for(int i=0;i<bString.length();i++)
{
d = (d * d) % n;
if(bString.charAt(i) == '1')
d = (d * a) % n;
}
return d;
}
}
class Name
{
long d;
long x;
long y;
public Name(long d, long x, long y)
{
this.d = d;
this.x = x;
this.y = y;
}
}
class SuffixArray
{
int ALPHABET_SZ = 256, N;
int[] T, lcp, sa, sa2, rank, tmp, c;
public SuffixArray(String str)
{
this(toIntArray(str));
}
private static int[] toIntArray(String s)
{
int[] text = new int[s.length()];
for (int i = 0; i < s.length(); i++) text[i] = s.charAt(i);
return text;
}
public SuffixArray(int[] text)
{
T = text;
N = text.length;
sa = new int[N];
sa2 = new int[N];
rank = new int[N];
c = new int[Math.max(ALPHABET_SZ, N)];
construct();
kasai();
}
private void construct()
{
int i, p, r;
for (i = 0; i < N; ++i) c[rank[i] = T[i]]++;
for (i = 1; i < ALPHABET_SZ; ++i) c[i] += c[i - 1];
for (i = N - 1; i >= 0; --i) sa[--c[T[i]]] = i;
for (p = 1; p < N; p <<= 1)
{
for (r = 0, i = N - p; i < N; ++i) sa2[r++] = i;
for (i = 0; i < N; ++i) if (sa[i] >= p) sa2[r++] = sa[i] - p;
Arrays.fill(c, 0, ALPHABET_SZ, 0);
for (i = 0; i < N; ++i) c[rank[i]]++;
for (i = 1; i < ALPHABET_SZ; ++i) c[i] += c[i - 1];
for (i = N - 1; i >= 0; --i) sa[--c[rank[sa2[i]]]] = sa2[i];
for (sa2[sa[0]] = r = 0, i = 1; i < N; ++i)
{
if (!(rank[sa[i - 1]] == rank[sa[i]]
&& sa[i - 1] + p < N
&& sa[i] + p < N
&& rank[sa[i - 1] + p] == rank[sa[i] + p])) r++;
sa2[sa[i]] = r;
}
tmp = rank;
rank = sa2;
sa2 = tmp;
if (r == N - 1) break;
ALPHABET_SZ = r + 1;
}
}
private void kasai()
{
lcp = new int[N];
int[] inv = new int[N];
for (int i = 0; i < N; i++) inv[sa[i]] = i;
for (int i = 0, len = 0; i < N; i++)
{
if (inv[i] > 0)
{
int k = sa[inv[i] - 1];
while ((i + len < N) && (k + len < N) && T[i + len] == T[k + len]) len++;
lcp[inv[i] - 1] = len;
if (len > 0) len--;
}
}
}
}
class ZAlgorithm
{
public int[] calculateZ(char input[])
{
int Z[] = new int[input.length];
int left = 0;
int right = 0;
for(int k = 1; k < input.length; k++) {
if(k > right) {
left = right = k;
while(right < input.length && input[right] == input[right - left]) {
right++;
}
Z[k] = right - left;
right--;
} else {
//we are operating inside box
int k1 = k - left;
//if value does not stretches till right bound then just copy it.
if(Z[k1] < right - k + 1) {
Z[k] = Z[k1];
} else { //otherwise try to see if there are more matches.
left = k;
while(right < input.length && input[right] == input[right - left]) {
right++;
}
Z[k] = right - left;
right--;
}
}
}
return Z;
}
public ArrayList<Integer> matchPattern(char text[], char pattern[])
{
char newString[] = new char[text.length + pattern.length + 1];
int i = 0;
for(char ch : pattern) {
newString[i] = ch;
i++;
}
newString[i] = '$';
i++;
for(char ch : text) {
newString[i] = ch;
i++;
}
ArrayList<Integer> result = new ArrayList<>();
int Z[] = calculateZ(newString);
for(i = 0; i < Z.length ; i++) {
if(Z[i] == pattern.length) {
result.add(i - pattern.length - 1);
}
}
return result;
}
}
class KMPAlgorithm
{
public int[] computeTemporalArray(char[] pattern)
{
int[] lps = new int[pattern.length];
int index = 0;
for(int i=1;i<pattern.length;)
{
if(pattern[i] == pattern[index])
{
lps[i] = index + 1;
index++;
i++;
}
else
{
if(index != 0)
{
index = lps[index - 1];
}
else
{
lps[i] = 0;
i++;
}
}
}
return lps;
}
public ArrayList<Integer> KMPMatcher(char[] text, char[] pattern)
{
int[] lps = computeTemporalArray(pattern);
int j = 0;
int i = 0;
int n = text.length;
int m = pattern.length;
ArrayList<Integer> indices = new ArrayList<>();
while(i < n)
{
if(pattern[j] == text[i])
{
i++;
j++;
}
if(j == m)
{
indices.add(i - j);
j = lps[j - 1];
}
else if(i < n && pattern[j] != text[i])
{
if(j != 0)
j = lps[j - 1];
else
i = i + 1;
}
}
return indices;
}
}
class Hashing
{
public long[] computePowers(long p, int n, long m)
{
long[] powers = new long[n];
powers[0] = 1;
for(int i=1;i<n;i++)
{
powers[i] = (powers[i - 1] * p) % m;
}
return powers;
}
public long computeHash(String s)
{
long p = 31;
long m = 1_000_000_009;
long hashValue = 0L;
long[] powers = computePowers(p, s.length(), m);
for(int i=0;i<s.length();i++)
{
char ch = s.charAt(i);
hashValue = (hashValue + (ch - 'a' + 1) * powers[i]) % m;
}
return hashValue;
}
}
class BasicFunctions
{
public long min(long[] A)
{
long min = Long.MAX_VALUE;
for(int i=0;i<A.length;i++)
{
min = Math.min(min, A[i]);
}
return min;
}
public long max(long[] A)
{
long max = Long.MAX_VALUE;
for(int i=0;i<A.length;i++)
{
max = Math.max(max, A[i]);
}
return max;
}
}
class MergeSortInt
{
// Merges two subarrays of arr[].
// First subarray is arr[l..m]
// Second subarray is arr[m+1..r]
void merge(int arr[], int l, int m, int r) {
// Find sizes of two subarrays to be merged
int n1 = m - l + 1;
int n2 = r - m;
/* Create temp arrays */
int L[] = new int[n1];
int R[] = new int[n2];
/*Copy data to temp arrays*/
for (int i = 0; i < n1; ++i)
L[i] = arr[l + i];
for (int j = 0; j < n2; ++j)
R[j] = arr[m + 1 + j];
/* Merge the temp arrays */
// Initial indexes of first and second subarrays
int i = 0, j = 0;
// Initial index of merged subarry array
int k = l;
while (i < n1 && j < n2) {
if (L[i] <= R[j]) {
arr[k] = L[i];
i++;
} else {
arr[k] = R[j];
j++;
}
k++;
}
/* Copy remaining elements of L[] if any */
while (i < n1) {
arr[k] = L[i];
i++;
k++;
}
/* Copy remaining elements of R[] if any */
while (j < n2) {
arr[k] = R[j];
j++;
k++;
}
}
// Main function that sorts arr[l..r] using
// merge()
void sort(int arr[], int l, int r) {
if (l < r) {
// Find the middle point
int m = (l + r) / 2;
// Sort first and second halves
sort(arr, l, m);
sort(arr, m + 1, r);
// Merge the sorted halves
merge(arr, l, m, r);
}
}
}
class MergeSortLong
{
// Merges two subarrays of arr[].
// First subarray is arr[l..m]
// Second subarray is arr[m+1..r]
void merge(long arr[], int l, int m, int r) {
// Find sizes of two subarrays to be merged
int n1 = m - l + 1;
int n2 = r - m;
/* Create temp arrays */
long L[] = new long[n1];
long R[] = new long[n2];
/*Copy data to temp arrays*/
for (int i = 0; i < n1; ++i)
L[i] = arr[l + i];
for (int j = 0; j < n2; ++j)
R[j] = arr[m + 1 + j];
/* Merge the temp arrays */
// Initial indexes of first and second subarrays
int i = 0, j = 0;
// Initial index of merged subarry array
int k = l;
while (i < n1 && j < n2) {
if (L[i] <= R[j]) {
arr[k] = L[i];
i++;
} else {
arr[k] = R[j];
j++;
}
k++;
}
/* Copy remaining elements of L[] if any */
while (i < n1) {
arr[k] = L[i];
i++;
k++;
}
/* Copy remaining elements of R[] if any */
while (j < n2) {
arr[k] = R[j];
j++;
k++;
}
}
// Main function that sorts arr[l..r] using
// merge()
void sort(long arr[], int l, int r) {
if (l < r) {
// Find the middle point
int m = (l + r) / 2;
// Sort first and second halves
sort(arr, l, m);
sort(arr, m + 1, r);
// Merge the sorted halves
merge(arr, l, m, r);
}
}
}
class Node
{
String s;
Node(String s)
{
this.s = s;
}
@Override
public boolean equals(Object ob)
{
if(ob == null)
return false;
if(!(ob instanceof Node))
return false;
if(ob == this)
return true;
Node obj = (Node)ob;
if(this.s.equals(obj.s))
return true;
return false;
}
@Override
public int hashCode()
{
return (int)this.s.length();
}
}
class Reader
{
final private int BUFFER_SIZE = 1 << 16;
private DataInputStream din;
private byte[] buffer;
private int bufferPointer, bytesRead;
public Reader()
{
din = new DataInputStream(System.in);
buffer = new byte[BUFFER_SIZE];
bufferPointer = bytesRead = 0;
}
public Reader(String file_name) throws IOException
{
din = new DataInputStream(new FileInputStream(file_name));
buffer = new byte[BUFFER_SIZE];
bufferPointer = bytesRead = 0;
}
public String readLine() throws IOException
{
byte[] buf = new byte[64]; // line length
int cnt = 0, c;
while ((c = read()) != -1)
{
if (c == '\n')
break;
buf[cnt++] = (byte) c;
}
return new String(buf, 0, cnt);
}
public int nextInt() throws IOException
{
int ret = 0;
byte c = read();
while (c <= ' ')
c = read();
boolean neg = (c == '-');
if (neg)
c = read();
do
{
ret = ret * 10 + c - '0';
} while ((c = read()) >= '0' && c <= '9');
if (neg)
return -ret;
return ret;
}
public long nextLong() throws IOException
{
long ret = 0;
byte c = read();
while (c <= ' ')
c = read();
boolean neg = (c == '-');
if (neg)
c = read();
do {
ret = ret * 10 + c - '0';
}
while ((c = read()) >= '0' && c <= '9');
if (neg)
return -ret;
return ret;
}
public double nextDouble() throws IOException
{
double ret = 0, div = 1;
byte c = read();
while (c <= ' ')
c = read();
boolean neg = (c == '-');
if (neg)
c = read();
do {
ret = ret * 10 + c - '0';
}
while ((c = read()) >= '0' && c <= '9');
if (c == '.')
{
while ((c = read()) >= '0' && c <= '9')
{
ret += (c - '0') / (div *= 10);
}
}
if (neg)
return -ret;
return ret;
}
private void fillBuffer() throws IOException
{
bytesRead = din.read(buffer, bufferPointer = 0, BUFFER_SIZE);
if (bytesRead == -1)
buffer[0] = -1;
}
private byte read() throws IOException
{
if (bufferPointer == bytesRead)
fillBuffer();
return buffer[bufferPointer++];
}
public void close() throws IOException
{
if (din == null)
return;
din.close();
}
}
class FenwickTree
{
public void update(long[] fenwickTree,long delta,int index)
{
index += 1;
while(index < fenwickTree.length)
{
fenwickTree[index] += delta;
index = index + (index & (-index));
}
}
public long prefixSum(long[] fenwickTree,int index)
{
long sum = 0L;
index += 1;
while(index > 0)
{
sum += fenwickTree[index];
index -= (index & (-index));
}
return sum;
}
}
class SegmentTree
{
public int nextPowerOfTwo(int num)
{
if(num == 0)
return 1;
if(num > 0 && (num & (num - 1)) == 0)
return num;
while((num &(num - 1)) > 0)
{
num = num & (num - 1);
}
return num << 1;
}
public int[] createSegmentTree(int[] input)
{
int np2 = nextPowerOfTwo(input.length);
int[] segmentTree = new int[np2 * 2 - 1];
for(int i=0;i<segmentTree.length;i++)
segmentTree[i] = Integer.MIN_VALUE;
constructSegmentTree(segmentTree,input,0,input.length-1,0);
return segmentTree;
}
private void constructSegmentTree(int[] segmentTree,int[] input,int low,int high,int pos)
{
if(low == high)
{
segmentTree[pos] = input[low];
return;
}
int mid = (low + high)/ 2;
constructSegmentTree(segmentTree,input,low,mid,2*pos + 1);
constructSegmentTree(segmentTree,input,mid+1,high,2*pos + 2);
segmentTree[pos] = Math.max(segmentTree[2*pos + 1],segmentTree[2*pos + 2]);
}
public int rangeMinimumQuery(int []segmentTree,int qlow,int qhigh,int len)
{
return rangeMinimumQuery(segmentTree,0,len-1,qlow,qhigh,0);
}
private int rangeMinimumQuery(int segmentTree[],int low,int high,int qlow,int qhigh,int pos)
{
if(qlow <= low && qhigh >= high){
return segmentTree[pos];
}
if(qlow > high || qhigh < low){
return Integer.MIN_VALUE;
}
int mid = (low+high)/2;
return Math.max(rangeMinimumQuery(segmentTree, low, mid, qlow, qhigh, 2 * pos + 1),
rangeMinimumQuery(segmentTree, mid + 1, high, qlow, qhigh, 2 * pos + 2));
}
}
class Trie
{
private class TrieNode
{
Map<Character, TrieNode> children;
boolean endOfWord;
public TrieNode()
{
children = new HashMap<>();
endOfWord = false;
}
}
private final TrieNode root;
public Trie()
{
root = new TrieNode();
}
public void insert(String word)
{
TrieNode current = root;
for (int i = 0; i < word.length(); i++)
{
char ch = word.charAt(i);
TrieNode node = current.children.get(ch);
if (node == null)
{
node = new TrieNode();
current.children.put(ch, node);
}
current = node;
}
current.endOfWord = true;
}
public boolean search(String word)
{
TrieNode current = root;
for (int i = 0; i < word.length(); i++)
{
char ch = word.charAt(i);
TrieNode node = current.children.get(ch);
if (node == null)
{
return false;
}
current = node;
}
return current.endOfWord;
}
public void delete(String word)
{
delete(root, word, 0);
}
private boolean delete(TrieNode current, String word, int index)
{
if (index == word.length())
{
if (!current.endOfWord)
{
return false;
}
current.endOfWord = false;
return current.children.size() == 0;
}
char ch = word.charAt(index);
TrieNode node = current.children.get(ch);
if (node == null)
{
return false;
}
boolean shouldDeleteCurrentNode = delete(node, word, index + 1);
if (shouldDeleteCurrentNode)
{
current.children.remove(ch);
return current.children.size() == 0;
}
return false;
}
}
class SegmentTreeLazy
{
public int nextPowerOfTwo(int num)
{
if(num == 0)
return 1;
if(num > 0 && (num & (num - 1)) == 0)
return num;
while((num &(num - 1)) > 0)
{
num = num & (num - 1);
}
return num << 1;
}
public int[] createSegmentTree(int input[])
{
int nextPowOfTwo = nextPowerOfTwo(input.length);
int segmentTree[] = new int[nextPowOfTwo*2 -1];
for(int i=0; i < segmentTree.length; i++){
segmentTree[i] = Integer.MAX_VALUE;
}
constructMinSegmentTree(segmentTree, input, 0, input.length - 1, 0);
return segmentTree;
}
private void constructMinSegmentTree(int segmentTree[], int input[], int low, int high,int pos)
{
if(low == high)
{
segmentTree[pos] = input[low];
return;
}
int mid = (low + high)/2;
constructMinSegmentTree(segmentTree, input, low, mid, 2 * pos + 1);
constructMinSegmentTree(segmentTree, input, mid + 1, high, 2 * pos + 2);
segmentTree[pos] = Math.min(segmentTree[2*pos+1], segmentTree[2*pos+2]);
}
public void updateSegmentTreeRangeLazy(int input[], int segmentTree[], int lazy[], int startRange, int endRange, int delta)
{
updateSegmentTreeRangeLazy(segmentTree, lazy, startRange, endRange, delta, 0, input.length - 1, 0);
}
private void updateSegmentTreeRangeLazy(int segmentTree[], int lazy[], int startRange, int endRange, int delta, int low, int high, int pos)
{
if(low > high)
{
return;
}
if (lazy[pos] != 0)
{
segmentTree[pos] += lazy[pos];
if (low != high)
{
lazy[2 * pos + 1] += lazy[pos];
lazy[2 * pos + 2] += lazy[pos];
}
lazy[pos] = 0;
}
if(startRange > high || endRange < low)
{
return;
}
if(startRange <= low && endRange >= high)
{
segmentTree[pos] += delta;
if(low != high) {
lazy[2*pos + 1] += delta;
lazy[2*pos + 2] += delta;
}
return;
}
int mid = (low + high)/2;
updateSegmentTreeRangeLazy(segmentTree, lazy, startRange, endRange, delta, low, mid, 2*pos+1);
updateSegmentTreeRangeLazy(segmentTree, lazy, startRange, endRange, delta, mid+1, high, 2*pos+2);
segmentTree[pos] = Math.min(segmentTree[2*pos + 1], segmentTree[2*pos + 2]);
}
public int rangeMinimumQueryLazy(int segmentTree[], int lazy[], int qlow, int qhigh, int len)
{
return rangeMinimumQueryLazy(segmentTree, lazy, qlow, qhigh, 0, len - 1, 0);
}
private int rangeMinimumQueryLazy(int segmentTree[], int lazy[], int qlow, int qhigh, int low, int high, int pos)
{
if(low > high)
{
return Integer.MAX_VALUE;
}
if (lazy[pos] != 0)
{
segmentTree[pos] += lazy[pos];
if (low != high)
{
lazy[2 * pos + 1] += lazy[pos];
lazy[2 * pos + 2] += lazy[pos];
}
lazy[pos] = 0;
}
if(qlow > high || qhigh < low)
{
return Integer.MAX_VALUE;
}
if(qlow <= low && qhigh >= high)
{
return segmentTree[pos];
}
int mid = (low+high)/2;
return Math.min(rangeMinimumQueryLazy(segmentTree, lazy, qlow, qhigh, low, mid, 2 * pos + 1), rangeMinimumQueryLazy(segmentTree, lazy, qlow, qhigh, mid + 1, high, 2 * pos + 2));
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(nlog(n)): The running time increases with the product of n and logarithm of n.
- others: The code does not clearly correspond to the listed classes or has an unclassified time complexity.
- O(log(n)): The running time increases with the logarithm of the input size n.
- O(n^3): The running time increases with the cube of the input size n.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- O(n^2): The running time increases with the square of the input size n.
- O(1): The running time does not change regardless of the input size n.
- O(n): The running time grows linearly with the input size n.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
| 7,801
| 2,650
|
3,879
|
import java.io.ByteArrayInputStream;
import java.io.IOException;
import java.io.InputStream;
import java.io.PrintWriter;
import java.util.Arrays;
import java.util.InputMismatchException;
import java.util.Stack;
public class C {
private static PrintWriter out = new PrintWriter(System.out);
public static void solve() {
In in = new In();
int tests = in.ni();
while (tests-- > 0) {
int n = in.ni();
int[] a = in.nia(n);
Stack<Integer> st = new Stack<>();
StringBuilder sb = new StringBuilder();
for (int num : a) {
// System.out.println("Checking " + num);
if (st.isEmpty()) {
st.push(num);
sb.append(num);
} else {
// increment current level
if (num == st.peek() + 1) {
st.pop();
st.push(num);
while (sb.length() > 0 && sb.charAt(sb.length() - 1) != '.') {
sb.deleteCharAt(sb.length() - 1);
}
sb.append(num);
}
// expand current level by 1
else if (num == 1) {
st.push(num);
sb.append(".");
sb.append(num);
}
// increment higher level
else {
// search which higher level is the previous of the current number
while (!st.isEmpty() && st.peek() + 1 != num) {
st.pop();
while (sb.length() > 0 && sb.charAt(sb.length() - 1) != '.') {
sb.deleteCharAt(sb.length() - 1);
}
if (sb.length() > 0)
sb.deleteCharAt(sb.length() - 1);
}
// System.out.println(" " + st.toString() + " " + sb.toString());
if (!st.isEmpty() && st.peek() + 1 == num) {
st.pop();
st.add(num);
while (sb.length() > 0 && sb.charAt(sb.length() - 1) != '.') {
sb.deleteCharAt(sb.length() - 1);
}
sb.append(num);
}
}
}
// System.out.println(">>" + st.toString());
out.println(sb);
}
}
}
public static void main(String[] args) throws IOException {
// long start = System.nanoTime();
solve();
// System.out.println("Elapsed: " + (System.nanoTime() - start) / 1000000 +
// "ns");
out.flush();
}
@SuppressWarnings("unused")
private static class In {
final private static int BUFFER_SIZE = 1024;
private byte[] buf;
private InputStream is;
private int buflen;
private int bufptr;
public In() {
is = System.in;
buf = new byte[BUFFER_SIZE];
buflen = bufptr = 0;
}
public In(String input) {
is = new ByteArrayInputStream(input.getBytes());
buf = new byte[BUFFER_SIZE];
buflen = bufptr = 0;
}
public int readByte() {
if (bufptr >= buflen) {
try {
buflen = is.read(buf);
} catch (IOException ioe) {
throw new InputMismatchException();
}
bufptr = 0;
}
if (buflen <= 0)
return -1;
return buf[bufptr++];
}
public boolean isSpaceChar(int c) {
return !(c >= 33 && c <= 126);
}
public int skip() {
int b;
while ((b = readByte()) != -1 && isSpaceChar(b))
;
return b;
}
/* Next character */
public char nc() {
return (char) skip();
}
/* Next double */
public double nd() {
return Double.parseDouble(ns());
}
/* Next string */
public String ns() {
final StringBuilder sb = new StringBuilder();
int b = skip();
while (!isSpaceChar(b)) {
sb.appendCodePoint(b);
b = readByte();
}
return sb.toString();
}
/* Next integer */
public int ni() {
boolean minus = false;
int num = 0;
int b;
while ((b = readByte()) != -1 && !((b >= '0' && b <= '9') || b == '-'))
;
if (b == '-') {
minus = true;
b = readByte();
}
while (b >= '0' && b <= '9') {
num = num * 10 + (b - '0');
b = readByte();
}
return minus ? -num : num;
}
/* Next long */
public long nl() {
boolean minus = false;
long num = 0;
int b;
while ((b = readByte()) != -1 && !((b >= '0' && b <= '9') || b == '-'))
;
if (b == '-') {
minus = true;
b = readByte();
}
while (b >= '0' && b <= '9') {
num = num * 10 + (b - '0');
b = readByte();
}
return minus ? -num : num;
}
/* Next integer 1D array */
public int[] nia(int n) {
final int[] arr = new int[n];
for (int i = 0; i < n; i++)
arr[i] = ni();
return arr;
}
/* Next long 1D array */
public long[] nla(int n) {
final long[] arr = new long[n];
for (int i = 0; i < n; i++)
arr[i] = nl();
return arr;
}
/* Next string 1D array */
public String[] nsa(int n) {
final String[] arr = new String[n];
for (int i = 0; i < n; i++)
arr[i] = ns();
return arr;
}
/* Next char 1D array */
public char[] nca(int n) {
final char[] arr = new char[n];
for (int i = 0; i < n; i++)
arr[i] = nc();
return arr;
}
/* Next double 1D array */
public double[] nda(int n) {
final double[] arr = new double[n];
for (int i = 0; i < n; i++)
arr[i] = nc();
return arr;
}
/* Next integer matrix */
public int[][] nim(int n, int m) {
final int[][] arr = new int[n][m];
for (int i = 0; i < n; i++)
for (int j = 0; j < m; j++)
arr[i][j] = ni();
return arr;
}
/* Next long matrix */
public long[][] nlm(int n, int m) {
final long[][] arr = new long[n][m];
for (int i = 0; i < n; i++)
for (int j = 0; j < m; j++)
arr[i][j] = nl();
return arr;
}
/* Next string matrix */
public String[][] nsm(int n, int m) {
final String[][] arr = new String[n][m];
for (int i = 0; i < n; i++)
for (int j = 0; j < m; j++)
arr[i][j] = ns();
return arr;
}
/* Next char matrix */
public char[][] ncm(int n, int m) {
final char[][] arr = new char[n][m];
for (int i = 0; i < n; i++)
for (int j = 0; j < m; j++)
arr[i][j] = nc();
return arr;
}
/* Next double matrix */
public double[][] ndm(int n, int m) {
final double[][] arr = new double[n][m];
for (int i = 0; i < n; i++)
for (int j = 0; j < m; j++)
arr[i][j] = nd();
return arr;
}
public static void log(Object... o) {
System.out.println(Arrays.deepToString(o));
}
}
}
|
O(n^3)
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n.
</TASK>
<CODE>
import java.io.ByteArrayInputStream;
import java.io.IOException;
import java.io.InputStream;
import java.io.PrintWriter;
import java.util.Arrays;
import java.util.InputMismatchException;
import java.util.Stack;
public class C {
private static PrintWriter out = new PrintWriter(System.out);
public static void solve() {
In in = new In();
int tests = in.ni();
while (tests-- > 0) {
int n = in.ni();
int[] a = in.nia(n);
Stack<Integer> st = new Stack<>();
StringBuilder sb = new StringBuilder();
for (int num : a) {
// System.out.println("Checking " + num);
if (st.isEmpty()) {
st.push(num);
sb.append(num);
} else {
// increment current level
if (num == st.peek() + 1) {
st.pop();
st.push(num);
while (sb.length() > 0 && sb.charAt(sb.length() - 1) != '.') {
sb.deleteCharAt(sb.length() - 1);
}
sb.append(num);
}
// expand current level by 1
else if (num == 1) {
st.push(num);
sb.append(".");
sb.append(num);
}
// increment higher level
else {
// search which higher level is the previous of the current number
while (!st.isEmpty() && st.peek() + 1 != num) {
st.pop();
while (sb.length() > 0 && sb.charAt(sb.length() - 1) != '.') {
sb.deleteCharAt(sb.length() - 1);
}
if (sb.length() > 0)
sb.deleteCharAt(sb.length() - 1);
}
// System.out.println(" " + st.toString() + " " + sb.toString());
if (!st.isEmpty() && st.peek() + 1 == num) {
st.pop();
st.add(num);
while (sb.length() > 0 && sb.charAt(sb.length() - 1) != '.') {
sb.deleteCharAt(sb.length() - 1);
}
sb.append(num);
}
}
}
// System.out.println(">>" + st.toString());
out.println(sb);
}
}
}
public static void main(String[] args) throws IOException {
// long start = System.nanoTime();
solve();
// System.out.println("Elapsed: " + (System.nanoTime() - start) / 1000000 +
// "ns");
out.flush();
}
@SuppressWarnings("unused")
private static class In {
final private static int BUFFER_SIZE = 1024;
private byte[] buf;
private InputStream is;
private int buflen;
private int bufptr;
public In() {
is = System.in;
buf = new byte[BUFFER_SIZE];
buflen = bufptr = 0;
}
public In(String input) {
is = new ByteArrayInputStream(input.getBytes());
buf = new byte[BUFFER_SIZE];
buflen = bufptr = 0;
}
public int readByte() {
if (bufptr >= buflen) {
try {
buflen = is.read(buf);
} catch (IOException ioe) {
throw new InputMismatchException();
}
bufptr = 0;
}
if (buflen <= 0)
return -1;
return buf[bufptr++];
}
public boolean isSpaceChar(int c) {
return !(c >= 33 && c <= 126);
}
public int skip() {
int b;
while ((b = readByte()) != -1 && isSpaceChar(b))
;
return b;
}
/* Next character */
public char nc() {
return (char) skip();
}
/* Next double */
public double nd() {
return Double.parseDouble(ns());
}
/* Next string */
public String ns() {
final StringBuilder sb = new StringBuilder();
int b = skip();
while (!isSpaceChar(b)) {
sb.appendCodePoint(b);
b = readByte();
}
return sb.toString();
}
/* Next integer */
public int ni() {
boolean minus = false;
int num = 0;
int b;
while ((b = readByte()) != -1 && !((b >= '0' && b <= '9') || b == '-'))
;
if (b == '-') {
minus = true;
b = readByte();
}
while (b >= '0' && b <= '9') {
num = num * 10 + (b - '0');
b = readByte();
}
return minus ? -num : num;
}
/* Next long */
public long nl() {
boolean minus = false;
long num = 0;
int b;
while ((b = readByte()) != -1 && !((b >= '0' && b <= '9') || b == '-'))
;
if (b == '-') {
minus = true;
b = readByte();
}
while (b >= '0' && b <= '9') {
num = num * 10 + (b - '0');
b = readByte();
}
return minus ? -num : num;
}
/* Next integer 1D array */
public int[] nia(int n) {
final int[] arr = new int[n];
for (int i = 0; i < n; i++)
arr[i] = ni();
return arr;
}
/* Next long 1D array */
public long[] nla(int n) {
final long[] arr = new long[n];
for (int i = 0; i < n; i++)
arr[i] = nl();
return arr;
}
/* Next string 1D array */
public String[] nsa(int n) {
final String[] arr = new String[n];
for (int i = 0; i < n; i++)
arr[i] = ns();
return arr;
}
/* Next char 1D array */
public char[] nca(int n) {
final char[] arr = new char[n];
for (int i = 0; i < n; i++)
arr[i] = nc();
return arr;
}
/* Next double 1D array */
public double[] nda(int n) {
final double[] arr = new double[n];
for (int i = 0; i < n; i++)
arr[i] = nc();
return arr;
}
/* Next integer matrix */
public int[][] nim(int n, int m) {
final int[][] arr = new int[n][m];
for (int i = 0; i < n; i++)
for (int j = 0; j < m; j++)
arr[i][j] = ni();
return arr;
}
/* Next long matrix */
public long[][] nlm(int n, int m) {
final long[][] arr = new long[n][m];
for (int i = 0; i < n; i++)
for (int j = 0; j < m; j++)
arr[i][j] = nl();
return arr;
}
/* Next string matrix */
public String[][] nsm(int n, int m) {
final String[][] arr = new String[n][m];
for (int i = 0; i < n; i++)
for (int j = 0; j < m; j++)
arr[i][j] = ns();
return arr;
}
/* Next char matrix */
public char[][] ncm(int n, int m) {
final char[][] arr = new char[n][m];
for (int i = 0; i < n; i++)
for (int j = 0; j < m; j++)
arr[i][j] = nc();
return arr;
}
/* Next double matrix */
public double[][] ndm(int n, int m) {
final double[][] arr = new double[n][m];
for (int i = 0; i < n; i++)
for (int j = 0; j < m; j++)
arr[i][j] = nd();
return arr;
}
public static void log(Object... o) {
System.out.println(Arrays.deepToString(o));
}
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(n^2): The execution time ascends in proportion to the square of the input size n.
- O(n^3): The execution time ascends in proportion to the cube of the input size n.
- O(n): The execution time ascends in a one-to-one ratio with the input size n.
- O(log(n)): The execution time ascends in proportion to the logarithm of the input size n.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- O(1): The execution time is unaffected by the size of the input n.
- O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Classify the following Java code's worst-case time complexity according to its relationship to the input size n.
</TASK>
<CODE>
import java.io.ByteArrayInputStream;
import java.io.IOException;
import java.io.InputStream;
import java.io.PrintWriter;
import java.util.Arrays;
import java.util.InputMismatchException;
import java.util.Stack;
public class C {
private static PrintWriter out = new PrintWriter(System.out);
public static void solve() {
In in = new In();
int tests = in.ni();
while (tests-- > 0) {
int n = in.ni();
int[] a = in.nia(n);
Stack<Integer> st = new Stack<>();
StringBuilder sb = new StringBuilder();
for (int num : a) {
// System.out.println("Checking " + num);
if (st.isEmpty()) {
st.push(num);
sb.append(num);
} else {
// increment current level
if (num == st.peek() + 1) {
st.pop();
st.push(num);
while (sb.length() > 0 && sb.charAt(sb.length() - 1) != '.') {
sb.deleteCharAt(sb.length() - 1);
}
sb.append(num);
}
// expand current level by 1
else if (num == 1) {
st.push(num);
sb.append(".");
sb.append(num);
}
// increment higher level
else {
// search which higher level is the previous of the current number
while (!st.isEmpty() && st.peek() + 1 != num) {
st.pop();
while (sb.length() > 0 && sb.charAt(sb.length() - 1) != '.') {
sb.deleteCharAt(sb.length() - 1);
}
if (sb.length() > 0)
sb.deleteCharAt(sb.length() - 1);
}
// System.out.println(" " + st.toString() + " " + sb.toString());
if (!st.isEmpty() && st.peek() + 1 == num) {
st.pop();
st.add(num);
while (sb.length() > 0 && sb.charAt(sb.length() - 1) != '.') {
sb.deleteCharAt(sb.length() - 1);
}
sb.append(num);
}
}
}
// System.out.println(">>" + st.toString());
out.println(sb);
}
}
}
public static void main(String[] args) throws IOException {
// long start = System.nanoTime();
solve();
// System.out.println("Elapsed: " + (System.nanoTime() - start) / 1000000 +
// "ns");
out.flush();
}
@SuppressWarnings("unused")
private static class In {
final private static int BUFFER_SIZE = 1024;
private byte[] buf;
private InputStream is;
private int buflen;
private int bufptr;
public In() {
is = System.in;
buf = new byte[BUFFER_SIZE];
buflen = bufptr = 0;
}
public In(String input) {
is = new ByteArrayInputStream(input.getBytes());
buf = new byte[BUFFER_SIZE];
buflen = bufptr = 0;
}
public int readByte() {
if (bufptr >= buflen) {
try {
buflen = is.read(buf);
} catch (IOException ioe) {
throw new InputMismatchException();
}
bufptr = 0;
}
if (buflen <= 0)
return -1;
return buf[bufptr++];
}
public boolean isSpaceChar(int c) {
return !(c >= 33 && c <= 126);
}
public int skip() {
int b;
while ((b = readByte()) != -1 && isSpaceChar(b))
;
return b;
}
/* Next character */
public char nc() {
return (char) skip();
}
/* Next double */
public double nd() {
return Double.parseDouble(ns());
}
/* Next string */
public String ns() {
final StringBuilder sb = new StringBuilder();
int b = skip();
while (!isSpaceChar(b)) {
sb.appendCodePoint(b);
b = readByte();
}
return sb.toString();
}
/* Next integer */
public int ni() {
boolean minus = false;
int num = 0;
int b;
while ((b = readByte()) != -1 && !((b >= '0' && b <= '9') || b == '-'))
;
if (b == '-') {
minus = true;
b = readByte();
}
while (b >= '0' && b <= '9') {
num = num * 10 + (b - '0');
b = readByte();
}
return minus ? -num : num;
}
/* Next long */
public long nl() {
boolean minus = false;
long num = 0;
int b;
while ((b = readByte()) != -1 && !((b >= '0' && b <= '9') || b == '-'))
;
if (b == '-') {
minus = true;
b = readByte();
}
while (b >= '0' && b <= '9') {
num = num * 10 + (b - '0');
b = readByte();
}
return minus ? -num : num;
}
/* Next integer 1D array */
public int[] nia(int n) {
final int[] arr = new int[n];
for (int i = 0; i < n; i++)
arr[i] = ni();
return arr;
}
/* Next long 1D array */
public long[] nla(int n) {
final long[] arr = new long[n];
for (int i = 0; i < n; i++)
arr[i] = nl();
return arr;
}
/* Next string 1D array */
public String[] nsa(int n) {
final String[] arr = new String[n];
for (int i = 0; i < n; i++)
arr[i] = ns();
return arr;
}
/* Next char 1D array */
public char[] nca(int n) {
final char[] arr = new char[n];
for (int i = 0; i < n; i++)
arr[i] = nc();
return arr;
}
/* Next double 1D array */
public double[] nda(int n) {
final double[] arr = new double[n];
for (int i = 0; i < n; i++)
arr[i] = nc();
return arr;
}
/* Next integer matrix */
public int[][] nim(int n, int m) {
final int[][] arr = new int[n][m];
for (int i = 0; i < n; i++)
for (int j = 0; j < m; j++)
arr[i][j] = ni();
return arr;
}
/* Next long matrix */
public long[][] nlm(int n, int m) {
final long[][] arr = new long[n][m];
for (int i = 0; i < n; i++)
for (int j = 0; j < m; j++)
arr[i][j] = nl();
return arr;
}
/* Next string matrix */
public String[][] nsm(int n, int m) {
final String[][] arr = new String[n][m];
for (int i = 0; i < n; i++)
for (int j = 0; j < m; j++)
arr[i][j] = ns();
return arr;
}
/* Next char matrix */
public char[][] ncm(int n, int m) {
final char[][] arr = new char[n][m];
for (int i = 0; i < n; i++)
for (int j = 0; j < m; j++)
arr[i][j] = nc();
return arr;
}
/* Next double matrix */
public double[][] ndm(int n, int m) {
final double[][] arr = new double[n][m];
for (int i = 0; i < n; i++)
for (int j = 0; j < m; j++)
arr[i][j] = nd();
return arr;
}
public static void log(Object... o) {
System.out.println(Arrays.deepToString(o));
}
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(log(n)): The running time increases with the logarithm of the input size n.
- others: The code does not clearly correspond to the listed classes or has an unclassified time complexity.
- O(n): The running time grows linearly with the input size n.
- O(n^3): The running time increases with the cube of the input size n.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- O(nlog(n)): The running time increases with the product of n and logarithm of n.
- O(n^2): The running time increases with the square of the input size n.
- O(1): The running time does not change regardless of the input size n.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
| 2,264
| 3,869
|
2,612
|
// package cf1209;
import java.io.ByteArrayInputStream;
import java.io.IOException;
import java.io.InputStream;
import java.io.PrintWriter;
import java.math.BigInteger;
import java.util.Arrays;
import java.util.Comparator;
import java.util.InputMismatchException;
import java.util.Random;
public class CFA {
private static final String INPUT = "8\n" +
"7 6 5 4 3 2 2 3\n";
private static final int MOD = 1_000_000_007;
private PrintWriter out;
private FastScanner sc;
public static void main(String[] args) {
new CFA().run();
}
public void run() {
sc = new FastScanner(oj ? System.in : new ByteArrayInputStream(INPUT.getBytes()));
out = new PrintWriter(System.out);
long s = System.currentTimeMillis();
solve();
out.flush();
tr(System.currentTimeMillis() - s + "ms");
}
static class Color {
int nr;
boolean used;
public Color(int nr) {
this.nr = nr;
}
}
private void solve() {
int n = sc.nextInt();
Color[] a = new Color[n];
for (int i = 0; i < n; i++) {
a[i] = new Color(sc.nextInt());
}
Arrays.sort(a, Comparator.comparingInt(c -> c.nr));
int ans = 0;
for (int i = 0; i < n; i++) {
if (a[i].used) continue;
ans++;
for (int j = i+1; j < n; j++) {
if (a[j].nr % a[i].nr == 0) {
a[j].used = true;
}
}
}
out.println(ans);
}
//********************************************************************************************
//********************************************************************************************
//********************************************************************************************
static class SolutionFailedException extends Exception {
int code;
public SolutionFailedException(int code) {
this.code = code;
}
}
int [] sort(int [] a) {
final int SHIFT = 16, MASK = (1 << SHIFT) - 1, SIZE = (1 << SHIFT) + 1;
int n = a.length, ta [] = new int [n], ai [] = new int [SIZE];
for (int i = 0; i < n; ai[(a[i] & MASK) + 1]++, i++);
for (int i = 1; i < SIZE; ai[i] += ai[i - 1], i++);
for (int i = 0; i < n; ta[ai[a[i] & MASK]++] = a[i], i++);
int [] t = a; a = ta; ta = t;
ai = new int [SIZE];
for (int i = 0; i < n; ai[(a[i] >> SHIFT) + 1]++, i++);
for (int i = 1; i < SIZE; ai[i] += ai[i - 1], i++);
for (int i = 0; i < n; ta[ai[a[i] >> SHIFT]++] = a[i], i++);
return ta;
}
private static void shuffle(int[] array) {
Random random = new Random();
for (int i = array.length - 1; i > 0; i--) {
int index = random.nextInt(i + 1);
int temp = array[index];
array[index] = array[i];
array[i] = temp;
}
}
/**
* If searched element doesn't exist, returns index of first element which is bigger than searched value.<br>
* If searched element is bigger than any array element function returns first index after last element.<br>
* If searched element is lower than any array element function returns index of first element.<br>
* If there are many values equals searched value function returns first occurrence.<br>
*/
private static int lowerBound(long[] arr, long key) {
int lo = 0;
int hi = arr.length - 1;
while (lo < hi) {
int mid = (lo + hi) / 2;
if (key <= arr[mid]) {
hi = mid - 1;
} else {
lo = mid + 1;
}
}
return arr[lo] < key ? lo + 1 : lo;
}
/**
* Returns index of first element which is grater than searched value.
* If searched element is bigger than any array element, returns first index after last element.
*/
private static int upperBound(long[] arr, long key) {
int lo = 0;
int hi = arr.length - 1;
while (lo < hi) {
int mid = (lo + hi) / 2;
if (key >= arr[mid]) {
lo = mid + 1;
} else {
hi = mid;
}
}
return arr[lo] <= key ? lo + 1 : lo;
}
private static int ceil(double d) {
int ret = (int) d;
return ret == d ? ret : ret + 1;
}
private static int round(double d) {
return (int) (d + 0.5);
}
private static int gcd(int a, int b) {
BigInteger b1 = BigInteger.valueOf(a);
BigInteger b2 = BigInteger.valueOf(b);
BigInteger gcd = b1.gcd(b2);
return gcd.intValue();
}
private static long gcd(long a, long b) {
BigInteger b1 = BigInteger.valueOf(a);
BigInteger b2 = BigInteger.valueOf(b);
BigInteger gcd = b1.gcd(b2);
return gcd.longValue();
}
private int[] readIntArray(int n) {
int[] res = new int[n];
for (int i = 0; i < n; i++) {
res[i] = sc.nextInt();
}
return res;
}
private long[] readLongArray(int n) {
long[] res = new long[n];
for (int i = 0; i < n; i++) {
res[i] = sc.nextLong();
}
return res;
}
@SuppressWarnings("unused")
static class FastScanner {
private InputStream stream;
private byte[] buf = new byte[1024];
private int curChar;
private int numChars;
FastScanner(InputStream stream) {
this.stream = stream;
}
int read() {
if (numChars == -1)
throw new InputMismatchException();
if (curChar >= numChars) {
curChar = 0;
try {
numChars = stream.read(buf);
} catch (IOException e) {
throw new InputMismatchException();
}
if (numChars <= 0) return -1;
}
return buf[curChar++];
}
boolean isSpaceChar(int c) {
return c == ' ' || c == '\n' || c == '\r' || c == '\t' || c == -1;
}
boolean isEndline(int c) {
return c == '\n' || c == '\r' || c == -1;
}
public int nextInt() {
return Integer.parseInt(next());
}
public long nextLong() {
return Long.parseLong(next());
}
public double nextDouble() {
return Double.parseDouble(next());
}
public String next() {
int c = read();
while (isSpaceChar(c)) c = read();
StringBuilder res = new StringBuilder();
do {
res.appendCodePoint(c);
c = read();
} while (!isSpaceChar(c));
return res.toString();
}
public String nextLine() {
int c = read();
while (isEndline(c))
c = read();
StringBuilder res = new StringBuilder();
do {
res.appendCodePoint(c);
c = read();
} while (!isEndline(c));
return res.toString();
}
}
private boolean oj = System.getProperty("ONLINE_JUDGE") != null;
private void tr(Object... o) {
if (!oj) System.out.println(Arrays.deepToString(o));
}
}
|
O(n^2)
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Determine the worst-case time complexity category of a given Java code based on input size n.
</TASK>
<CODE>
// package cf1209;
import java.io.ByteArrayInputStream;
import java.io.IOException;
import java.io.InputStream;
import java.io.PrintWriter;
import java.math.BigInteger;
import java.util.Arrays;
import java.util.Comparator;
import java.util.InputMismatchException;
import java.util.Random;
public class CFA {
private static final String INPUT = "8\n" +
"7 6 5 4 3 2 2 3\n";
private static final int MOD = 1_000_000_007;
private PrintWriter out;
private FastScanner sc;
public static void main(String[] args) {
new CFA().run();
}
public void run() {
sc = new FastScanner(oj ? System.in : new ByteArrayInputStream(INPUT.getBytes()));
out = new PrintWriter(System.out);
long s = System.currentTimeMillis();
solve();
out.flush();
tr(System.currentTimeMillis() - s + "ms");
}
static class Color {
int nr;
boolean used;
public Color(int nr) {
this.nr = nr;
}
}
private void solve() {
int n = sc.nextInt();
Color[] a = new Color[n];
for (int i = 0; i < n; i++) {
a[i] = new Color(sc.nextInt());
}
Arrays.sort(a, Comparator.comparingInt(c -> c.nr));
int ans = 0;
for (int i = 0; i < n; i++) {
if (a[i].used) continue;
ans++;
for (int j = i+1; j < n; j++) {
if (a[j].nr % a[i].nr == 0) {
a[j].used = true;
}
}
}
out.println(ans);
}
//********************************************************************************************
//********************************************************************************************
//********************************************************************************************
static class SolutionFailedException extends Exception {
int code;
public SolutionFailedException(int code) {
this.code = code;
}
}
int [] sort(int [] a) {
final int SHIFT = 16, MASK = (1 << SHIFT) - 1, SIZE = (1 << SHIFT) + 1;
int n = a.length, ta [] = new int [n], ai [] = new int [SIZE];
for (int i = 0; i < n; ai[(a[i] & MASK) + 1]++, i++);
for (int i = 1; i < SIZE; ai[i] += ai[i - 1], i++);
for (int i = 0; i < n; ta[ai[a[i] & MASK]++] = a[i], i++);
int [] t = a; a = ta; ta = t;
ai = new int [SIZE];
for (int i = 0; i < n; ai[(a[i] >> SHIFT) + 1]++, i++);
for (int i = 1; i < SIZE; ai[i] += ai[i - 1], i++);
for (int i = 0; i < n; ta[ai[a[i] >> SHIFT]++] = a[i], i++);
return ta;
}
private static void shuffle(int[] array) {
Random random = new Random();
for (int i = array.length - 1; i > 0; i--) {
int index = random.nextInt(i + 1);
int temp = array[index];
array[index] = array[i];
array[i] = temp;
}
}
/**
* If searched element doesn't exist, returns index of first element which is bigger than searched value.<br>
* If searched element is bigger than any array element function returns first index after last element.<br>
* If searched element is lower than any array element function returns index of first element.<br>
* If there are many values equals searched value function returns first occurrence.<br>
*/
private static int lowerBound(long[] arr, long key) {
int lo = 0;
int hi = arr.length - 1;
while (lo < hi) {
int mid = (lo + hi) / 2;
if (key <= arr[mid]) {
hi = mid - 1;
} else {
lo = mid + 1;
}
}
return arr[lo] < key ? lo + 1 : lo;
}
/**
* Returns index of first element which is grater than searched value.
* If searched element is bigger than any array element, returns first index after last element.
*/
private static int upperBound(long[] arr, long key) {
int lo = 0;
int hi = arr.length - 1;
while (lo < hi) {
int mid = (lo + hi) / 2;
if (key >= arr[mid]) {
lo = mid + 1;
} else {
hi = mid;
}
}
return arr[lo] <= key ? lo + 1 : lo;
}
private static int ceil(double d) {
int ret = (int) d;
return ret == d ? ret : ret + 1;
}
private static int round(double d) {
return (int) (d + 0.5);
}
private static int gcd(int a, int b) {
BigInteger b1 = BigInteger.valueOf(a);
BigInteger b2 = BigInteger.valueOf(b);
BigInteger gcd = b1.gcd(b2);
return gcd.intValue();
}
private static long gcd(long a, long b) {
BigInteger b1 = BigInteger.valueOf(a);
BigInteger b2 = BigInteger.valueOf(b);
BigInteger gcd = b1.gcd(b2);
return gcd.longValue();
}
private int[] readIntArray(int n) {
int[] res = new int[n];
for (int i = 0; i < n; i++) {
res[i] = sc.nextInt();
}
return res;
}
private long[] readLongArray(int n) {
long[] res = new long[n];
for (int i = 0; i < n; i++) {
res[i] = sc.nextLong();
}
return res;
}
@SuppressWarnings("unused")
static class FastScanner {
private InputStream stream;
private byte[] buf = new byte[1024];
private int curChar;
private int numChars;
FastScanner(InputStream stream) {
this.stream = stream;
}
int read() {
if (numChars == -1)
throw new InputMismatchException();
if (curChar >= numChars) {
curChar = 0;
try {
numChars = stream.read(buf);
} catch (IOException e) {
throw new InputMismatchException();
}
if (numChars <= 0) return -1;
}
return buf[curChar++];
}
boolean isSpaceChar(int c) {
return c == ' ' || c == '\n' || c == '\r' || c == '\t' || c == -1;
}
boolean isEndline(int c) {
return c == '\n' || c == '\r' || c == -1;
}
public int nextInt() {
return Integer.parseInt(next());
}
public long nextLong() {
return Long.parseLong(next());
}
public double nextDouble() {
return Double.parseDouble(next());
}
public String next() {
int c = read();
while (isSpaceChar(c)) c = read();
StringBuilder res = new StringBuilder();
do {
res.appendCodePoint(c);
c = read();
} while (!isSpaceChar(c));
return res.toString();
}
public String nextLine() {
int c = read();
while (isEndline(c))
c = read();
StringBuilder res = new StringBuilder();
do {
res.appendCodePoint(c);
c = read();
} while (!isEndline(c));
return res.toString();
}
}
private boolean oj = System.getProperty("ONLINE_JUDGE") != null;
private void tr(Object... o) {
if (!oj) System.out.println(Arrays.deepToString(o));
}
}
</CODE>
<EVALUATION_RUBRIC>
- non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially.
- O(n^2): The time complexity grows proportionally to the square of the input size.
- O(n): The time complexity increases proportionally to the input size n in a linear manner.
- O(nlog(n)): The time complexity combines linear and logarithmic growth factors.
- O(n^3): The time complexity scales proportionally to the cube of the input size.
- O(log(n)): The time complexity increases logarithmically in relation to the input size.
- O(1): The time complexity is constant to the input size n.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Determine the worst-case time complexity category of a given Java code based on input size n.
</TASK>
<CODE>
// package cf1209;
import java.io.ByteArrayInputStream;
import java.io.IOException;
import java.io.InputStream;
import java.io.PrintWriter;
import java.math.BigInteger;
import java.util.Arrays;
import java.util.Comparator;
import java.util.InputMismatchException;
import java.util.Random;
public class CFA {
private static final String INPUT = "8\n" +
"7 6 5 4 3 2 2 3\n";
private static final int MOD = 1_000_000_007;
private PrintWriter out;
private FastScanner sc;
public static void main(String[] args) {
new CFA().run();
}
public void run() {
sc = new FastScanner(oj ? System.in : new ByteArrayInputStream(INPUT.getBytes()));
out = new PrintWriter(System.out);
long s = System.currentTimeMillis();
solve();
out.flush();
tr(System.currentTimeMillis() - s + "ms");
}
static class Color {
int nr;
boolean used;
public Color(int nr) {
this.nr = nr;
}
}
private void solve() {
int n = sc.nextInt();
Color[] a = new Color[n];
for (int i = 0; i < n; i++) {
a[i] = new Color(sc.nextInt());
}
Arrays.sort(a, Comparator.comparingInt(c -> c.nr));
int ans = 0;
for (int i = 0; i < n; i++) {
if (a[i].used) continue;
ans++;
for (int j = i+1; j < n; j++) {
if (a[j].nr % a[i].nr == 0) {
a[j].used = true;
}
}
}
out.println(ans);
}
//********************************************************************************************
//********************************************************************************************
//********************************************************************************************
static class SolutionFailedException extends Exception {
int code;
public SolutionFailedException(int code) {
this.code = code;
}
}
int [] sort(int [] a) {
final int SHIFT = 16, MASK = (1 << SHIFT) - 1, SIZE = (1 << SHIFT) + 1;
int n = a.length, ta [] = new int [n], ai [] = new int [SIZE];
for (int i = 0; i < n; ai[(a[i] & MASK) + 1]++, i++);
for (int i = 1; i < SIZE; ai[i] += ai[i - 1], i++);
for (int i = 0; i < n; ta[ai[a[i] & MASK]++] = a[i], i++);
int [] t = a; a = ta; ta = t;
ai = new int [SIZE];
for (int i = 0; i < n; ai[(a[i] >> SHIFT) + 1]++, i++);
for (int i = 1; i < SIZE; ai[i] += ai[i - 1], i++);
for (int i = 0; i < n; ta[ai[a[i] >> SHIFT]++] = a[i], i++);
return ta;
}
private static void shuffle(int[] array) {
Random random = new Random();
for (int i = array.length - 1; i > 0; i--) {
int index = random.nextInt(i + 1);
int temp = array[index];
array[index] = array[i];
array[i] = temp;
}
}
/**
* If searched element doesn't exist, returns index of first element which is bigger than searched value.<br>
* If searched element is bigger than any array element function returns first index after last element.<br>
* If searched element is lower than any array element function returns index of first element.<br>
* If there are many values equals searched value function returns first occurrence.<br>
*/
private static int lowerBound(long[] arr, long key) {
int lo = 0;
int hi = arr.length - 1;
while (lo < hi) {
int mid = (lo + hi) / 2;
if (key <= arr[mid]) {
hi = mid - 1;
} else {
lo = mid + 1;
}
}
return arr[lo] < key ? lo + 1 : lo;
}
/**
* Returns index of first element which is grater than searched value.
* If searched element is bigger than any array element, returns first index after last element.
*/
private static int upperBound(long[] arr, long key) {
int lo = 0;
int hi = arr.length - 1;
while (lo < hi) {
int mid = (lo + hi) / 2;
if (key >= arr[mid]) {
lo = mid + 1;
} else {
hi = mid;
}
}
return arr[lo] <= key ? lo + 1 : lo;
}
private static int ceil(double d) {
int ret = (int) d;
return ret == d ? ret : ret + 1;
}
private static int round(double d) {
return (int) (d + 0.5);
}
private static int gcd(int a, int b) {
BigInteger b1 = BigInteger.valueOf(a);
BigInteger b2 = BigInteger.valueOf(b);
BigInteger gcd = b1.gcd(b2);
return gcd.intValue();
}
private static long gcd(long a, long b) {
BigInteger b1 = BigInteger.valueOf(a);
BigInteger b2 = BigInteger.valueOf(b);
BigInteger gcd = b1.gcd(b2);
return gcd.longValue();
}
private int[] readIntArray(int n) {
int[] res = new int[n];
for (int i = 0; i < n; i++) {
res[i] = sc.nextInt();
}
return res;
}
private long[] readLongArray(int n) {
long[] res = new long[n];
for (int i = 0; i < n; i++) {
res[i] = sc.nextLong();
}
return res;
}
@SuppressWarnings("unused")
static class FastScanner {
private InputStream stream;
private byte[] buf = new byte[1024];
private int curChar;
private int numChars;
FastScanner(InputStream stream) {
this.stream = stream;
}
int read() {
if (numChars == -1)
throw new InputMismatchException();
if (curChar >= numChars) {
curChar = 0;
try {
numChars = stream.read(buf);
} catch (IOException e) {
throw new InputMismatchException();
}
if (numChars <= 0) return -1;
}
return buf[curChar++];
}
boolean isSpaceChar(int c) {
return c == ' ' || c == '\n' || c == '\r' || c == '\t' || c == -1;
}
boolean isEndline(int c) {
return c == '\n' || c == '\r' || c == -1;
}
public int nextInt() {
return Integer.parseInt(next());
}
public long nextLong() {
return Long.parseLong(next());
}
public double nextDouble() {
return Double.parseDouble(next());
}
public String next() {
int c = read();
while (isSpaceChar(c)) c = read();
StringBuilder res = new StringBuilder();
do {
res.appendCodePoint(c);
c = read();
} while (!isSpaceChar(c));
return res.toString();
}
public String nextLine() {
int c = read();
while (isEndline(c))
c = read();
StringBuilder res = new StringBuilder();
do {
res.appendCodePoint(c);
c = read();
} while (!isEndline(c));
return res.toString();
}
}
private boolean oj = System.getProperty("ONLINE_JUDGE") != null;
private void tr(Object... o) {
if (!oj) System.out.println(Arrays.deepToString(o));
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(n): The time complexity increases proportionally to the input size n in a linear manner.
- others: The time complexity does not fit any of the above categories or cannot be clearly classified.
- non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially.
- O(nlog(n)): The time complexity combines linear and logarithmic growth factors.
- O(n^3): The time complexity scales proportionally to the cube of the input size.
- O(1): The time complexity is constant to the input size n.
- O(n^2): The time complexity grows proportionally to the square of the input size.
- O(log(n)): The time complexity increases logarithmically in relation to the input size.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
| 2,104
| 2,606
|
415
|
import java.util.*;
import java.io.*;
public class Main {
BufferedReader in;
StringTokenizer str = null;
PrintWriter out;
private String next() throws Exception{
while (str == null || !str.hasMoreElements())
str = new StringTokenizer(in.readLine());
return str.nextToken();
}
private int nextInt() throws Exception{
return Integer.parseInt(next());
}
private long nextLong() throws Exception{
return Long.parseLong(next());
}
private double nextDouble() throws Exception{
return Double.parseDouble(next());
}
Map<Integer, Integer> map;
int []p, rank;
public void run() throws Exception{
in = new BufferedReader(new InputStreamReader(System.in));
out = new PrintWriter(System.out);
map = new HashMap<Integer, Integer>();
int n = nextInt();
int x = nextInt(), y = nextInt();
int []a = new int[n];
p = new int[n];
for(int i = 1; i < n; ++i) p[i] = i;
rank = new int[n];
for(int i = 0; i < n; ++i) {
a[i] = nextInt();
map.put(a[i], i);
}
int mask[] = new int[n];
for(int i = 0; i < n; ++i) {
if (map.containsKey(x - a[i])) {
union(map.get(x - a[i]), i);
mask[i] |= 1;
}
if (map.containsKey(y - a[i])) {
union(map.get(y - a[i]), i);
mask[i] |= 2;
}
}
int []b = new int[n];
Arrays.fill(b, 3);
for(int i = 0; i < n; ++i) b[find(i)] &= mask[i];
for(int i = 0; i < n; ++i) {
if (b[i] == 0) {
out.println("NO");
out.close();
return;
}
}
out.println("YES");
for(int i = 0; i < n; ++i) {
out.print((b[find(i)] & 1) == 1 ? 0 : 1);
if (i != n - 1) out.print(" ");
}
out.println();
out.close();
}
private int find(int x) {
if (x != p[x])
return p[x] = find(p[x]);
return x;
}
private void union(int a, int b) {
a = find(a);
b = find(b);
if (rank[a] < rank[b]) {
int tmp = a;
a = b;
b = tmp;
}
p[b] = a;
if (rank[a] == rank[b]) ++rank[a];
}
public static void main(String[] args) throws Exception{
new Main().run();
}
}
|
O(n)
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Classify the following Java code's worst-case time complexity according to its relationship to the input size n.
</TASK>
<CODE>
import java.util.*;
import java.io.*;
public class Main {
BufferedReader in;
StringTokenizer str = null;
PrintWriter out;
private String next() throws Exception{
while (str == null || !str.hasMoreElements())
str = new StringTokenizer(in.readLine());
return str.nextToken();
}
private int nextInt() throws Exception{
return Integer.parseInt(next());
}
private long nextLong() throws Exception{
return Long.parseLong(next());
}
private double nextDouble() throws Exception{
return Double.parseDouble(next());
}
Map<Integer, Integer> map;
int []p, rank;
public void run() throws Exception{
in = new BufferedReader(new InputStreamReader(System.in));
out = new PrintWriter(System.out);
map = new HashMap<Integer, Integer>();
int n = nextInt();
int x = nextInt(), y = nextInt();
int []a = new int[n];
p = new int[n];
for(int i = 1; i < n; ++i) p[i] = i;
rank = new int[n];
for(int i = 0; i < n; ++i) {
a[i] = nextInt();
map.put(a[i], i);
}
int mask[] = new int[n];
for(int i = 0; i < n; ++i) {
if (map.containsKey(x - a[i])) {
union(map.get(x - a[i]), i);
mask[i] |= 1;
}
if (map.containsKey(y - a[i])) {
union(map.get(y - a[i]), i);
mask[i] |= 2;
}
}
int []b = new int[n];
Arrays.fill(b, 3);
for(int i = 0; i < n; ++i) b[find(i)] &= mask[i];
for(int i = 0; i < n; ++i) {
if (b[i] == 0) {
out.println("NO");
out.close();
return;
}
}
out.println("YES");
for(int i = 0; i < n; ++i) {
out.print((b[find(i)] & 1) == 1 ? 0 : 1);
if (i != n - 1) out.print(" ");
}
out.println();
out.close();
}
private int find(int x) {
if (x != p[x])
return p[x] = find(p[x]);
return x;
}
private void union(int a, int b) {
a = find(a);
b = find(b);
if (rank[a] < rank[b]) {
int tmp = a;
a = b;
b = tmp;
}
p[b] = a;
if (rank[a] == rank[b]) ++rank[a];
}
public static void main(String[] args) throws Exception{
new Main().run();
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(log(n)): The running time increases with the logarithm of the input size n.
- O(nlog(n)): The running time increases with the product of n and logarithm of n.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- O(n^3): The running time increases with the cube of the input size n.
- O(1): The running time does not change regardless of the input size n.
- O(n^2): The running time increases with the square of the input size n.
- O(n): The running time grows linearly with the input size n.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Classify the following Java code's worst-case time complexity according to its relationship to the input size n.
</TASK>
<CODE>
import java.util.*;
import java.io.*;
public class Main {
BufferedReader in;
StringTokenizer str = null;
PrintWriter out;
private String next() throws Exception{
while (str == null || !str.hasMoreElements())
str = new StringTokenizer(in.readLine());
return str.nextToken();
}
private int nextInt() throws Exception{
return Integer.parseInt(next());
}
private long nextLong() throws Exception{
return Long.parseLong(next());
}
private double nextDouble() throws Exception{
return Double.parseDouble(next());
}
Map<Integer, Integer> map;
int []p, rank;
public void run() throws Exception{
in = new BufferedReader(new InputStreamReader(System.in));
out = new PrintWriter(System.out);
map = new HashMap<Integer, Integer>();
int n = nextInt();
int x = nextInt(), y = nextInt();
int []a = new int[n];
p = new int[n];
for(int i = 1; i < n; ++i) p[i] = i;
rank = new int[n];
for(int i = 0; i < n; ++i) {
a[i] = nextInt();
map.put(a[i], i);
}
int mask[] = new int[n];
for(int i = 0; i < n; ++i) {
if (map.containsKey(x - a[i])) {
union(map.get(x - a[i]), i);
mask[i] |= 1;
}
if (map.containsKey(y - a[i])) {
union(map.get(y - a[i]), i);
mask[i] |= 2;
}
}
int []b = new int[n];
Arrays.fill(b, 3);
for(int i = 0; i < n; ++i) b[find(i)] &= mask[i];
for(int i = 0; i < n; ++i) {
if (b[i] == 0) {
out.println("NO");
out.close();
return;
}
}
out.println("YES");
for(int i = 0; i < n; ++i) {
out.print((b[find(i)] & 1) == 1 ? 0 : 1);
if (i != n - 1) out.print(" ");
}
out.println();
out.close();
}
private int find(int x) {
if (x != p[x])
return p[x] = find(p[x]);
return x;
}
private void union(int a, int b) {
a = find(a);
b = find(b);
if (rank[a] < rank[b]) {
int tmp = a;
a = b;
b = tmp;
}
p[b] = a;
if (rank[a] == rank[b]) ++rank[a];
}
public static void main(String[] args) throws Exception{
new Main().run();
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(n): The running time grows linearly with the input size n.
- O(n^2): The running time increases with the square of the input size n.
- O(nlog(n)): The running time increases with the product of n and logarithm of n.
- others: The code does not clearly correspond to the listed classes or has an unclassified time complexity.
- O(n^3): The running time increases with the cube of the input size n.
- O(1): The running time does not change regardless of the input size n.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- O(log(n)): The running time increases with the logarithm of the input size n.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
| 974
| 414
|
943
|
import java.io.*;
import java.util.*;
public class Main {
public static void main(String[] args) {
Scanner scan = new Scanner(System.in);
long n = scan.nextLong();
long k = scan.nextLong();
long D = 9 + 4 * (2 * k + 2 * n);
long y = (- 3 + (long)Math.sqrt(D)) / 2;
System.out.println(n - y);
}
}
|
O(log(n))
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Classify the following Java code's worst-case time complexity according to its relationship to the input size n.
</TASK>
<CODE>
import java.io.*;
import java.util.*;
public class Main {
public static void main(String[] args) {
Scanner scan = new Scanner(System.in);
long n = scan.nextLong();
long k = scan.nextLong();
long D = 9 + 4 * (2 * k + 2 * n);
long y = (- 3 + (long)Math.sqrt(D)) / 2;
System.out.println(n - y);
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(n): The running time grows linearly with the input size n.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- O(n^2): The running time increases with the square of the input size n.
- O(log(n)): The running time increases with the logarithm of the input size n.
- O(nlog(n)): The running time increases with the product of n and logarithm of n.
- O(1): The running time does not change regardless of the input size n.
- O(n^3): The running time increases with the cube of the input size n.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Determine the worst-case time complexity category of a given Java code based on input size n.
</TASK>
<CODE>
import java.io.*;
import java.util.*;
public class Main {
public static void main(String[] args) {
Scanner scan = new Scanner(System.in);
long n = scan.nextLong();
long k = scan.nextLong();
long D = 9 + 4 * (2 * k + 2 * n);
long y = (- 3 + (long)Math.sqrt(D)) / 2;
System.out.println(n - y);
}
}
</CODE>
<EVALUATION_RUBRIC>
- non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially.
- O(n^2): The time complexity grows proportionally to the square of the input size.
- O(n^3): The time complexity scales proportionally to the cube of the input size.
- others: The time complexity does not fit any of the above categories or cannot be clearly classified.
- O(n): The time complexity increases proportionally to the input size n in a linear manner.
- O(1): The time complexity is constant to the input size n.
- O(log(n)): The time complexity increases logarithmically in relation to the input size.
- O(nlog(n)): The time complexity combines linear and logarithmic growth factors.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
| 428
| 942
|
2,876
|
import java.io.BufferedReader;
import java.io.IOException;
import java.io.InputStreamReader;
import java.io.PrintWriter;
import java.util.StringTokenizer;
public class A {
FastScanner in;
PrintWriter out;
public void run() {
try {
in = new FastScanner(new InputStreamReader(System.in));
out = new PrintWriter(System.out);
solve();
out.close();
} catch (IOException e) {
e.printStackTrace();
}
}
public void solve() throws IOException {
long l = new Long(in.next());
long r = new Long(in.next());
if (r - l < 2 || (r - l == 2 && l % 2 != 0)) {
out.println("-1");
} else {
if (l % 2 != 0) {
l++;
}
out.println(l);
out.println(l+1);
out.println(l+2);
}
}
class FastScanner {
BufferedReader br;
StringTokenizer st;
FastScanner(InputStreamReader in) {
br = new BufferedReader(in);
}
String nextLine() {
String str = null;
try {
str = br.readLine();
} catch (IOException e) {
e.printStackTrace();
}
return str;
}
String next() {
while (st == null || !st.hasMoreTokens()) {
try {
st = new StringTokenizer(br.readLine());
} catch (IOException e) {
e.printStackTrace();
}
}
return st.nextToken();
}
int nextInt() {
return Integer.parseInt(next());
}
}
public static void main(String[] arg) {
A o = new A();
o.run();
}
}
|
O(1)
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Classify the following Java code's worst-case time complexity according to its relationship to the input size n.
</TASK>
<CODE>
import java.io.BufferedReader;
import java.io.IOException;
import java.io.InputStreamReader;
import java.io.PrintWriter;
import java.util.StringTokenizer;
public class A {
FastScanner in;
PrintWriter out;
public void run() {
try {
in = new FastScanner(new InputStreamReader(System.in));
out = new PrintWriter(System.out);
solve();
out.close();
} catch (IOException e) {
e.printStackTrace();
}
}
public void solve() throws IOException {
long l = new Long(in.next());
long r = new Long(in.next());
if (r - l < 2 || (r - l == 2 && l % 2 != 0)) {
out.println("-1");
} else {
if (l % 2 != 0) {
l++;
}
out.println(l);
out.println(l+1);
out.println(l+2);
}
}
class FastScanner {
BufferedReader br;
StringTokenizer st;
FastScanner(InputStreamReader in) {
br = new BufferedReader(in);
}
String nextLine() {
String str = null;
try {
str = br.readLine();
} catch (IOException e) {
e.printStackTrace();
}
return str;
}
String next() {
while (st == null || !st.hasMoreTokens()) {
try {
st = new StringTokenizer(br.readLine());
} catch (IOException e) {
e.printStackTrace();
}
}
return st.nextToken();
}
int nextInt() {
return Integer.parseInt(next());
}
}
public static void main(String[] arg) {
A o = new A();
o.run();
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(n^2): The running time increases with the square of the input size n.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- O(log(n)): The running time increases with the logarithm of the input size n.
- O(nlog(n)): The running time increases with the product of n and logarithm of n.
- O(1): The running time does not change regardless of the input size n.
- O(n): The running time grows linearly with the input size n.
- O(n^3): The running time increases with the cube of the input size n.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n.
</TASK>
<CODE>
import java.io.BufferedReader;
import java.io.IOException;
import java.io.InputStreamReader;
import java.io.PrintWriter;
import java.util.StringTokenizer;
public class A {
FastScanner in;
PrintWriter out;
public void run() {
try {
in = new FastScanner(new InputStreamReader(System.in));
out = new PrintWriter(System.out);
solve();
out.close();
} catch (IOException e) {
e.printStackTrace();
}
}
public void solve() throws IOException {
long l = new Long(in.next());
long r = new Long(in.next());
if (r - l < 2 || (r - l == 2 && l % 2 != 0)) {
out.println("-1");
} else {
if (l % 2 != 0) {
l++;
}
out.println(l);
out.println(l+1);
out.println(l+2);
}
}
class FastScanner {
BufferedReader br;
StringTokenizer st;
FastScanner(InputStreamReader in) {
br = new BufferedReader(in);
}
String nextLine() {
String str = null;
try {
str = br.readLine();
} catch (IOException e) {
e.printStackTrace();
}
return str;
}
String next() {
while (st == null || !st.hasMoreTokens()) {
try {
st = new StringTokenizer(br.readLine());
} catch (IOException e) {
e.printStackTrace();
}
}
return st.nextToken();
}
int nextInt() {
return Integer.parseInt(next());
}
}
public static void main(String[] arg) {
A o = new A();
o.run();
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(log(n)): The execution time ascends in proportion to the logarithm of the input size n.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- O(n): The execution time ascends in a one-to-one ratio with the input size n.
- O(n^3): The execution time ascends in proportion to the cube of the input size n.
- O(1): The execution time is unaffected by the size of the input n.
- O(n^2): The execution time ascends in proportion to the square of the input size n.
- others: The time complexity does not fit to any of the given categories or is ambiguous.
- O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
| 688
| 2,870
|
3,788
|
//package Codeforces.Round718Div1_2;
import java.io.*;
import java.util.*;
public class D {
static boolean isValid(int n, int m, int i, int j){
return 0<=i && i<n && 0<=j && j<m;
}
public static void main(String[] args) throws IOException {
Soumit sc = new Soumit();
int n = sc.nextInt();
int m = sc.nextInt();
int k = sc.nextInt();
StringBuilder sb = new StringBuilder();
if(k%2==1){
for(int i=0;i<n;i++){
for(int j=0;j<m;j++){
sb.append("-1 ");
}
sb.append("\n");
}
System.out.println(sb);
System.exit(0);
}
k/=2;
long[][] horizontaledge = new long[n][m-1];
long[][] verticaledge = new long[n-1][m];
for(int i=0;i<n;i++)
horizontaledge[i] = sc.nextLongArray(m-1);
for(int i=0;i<n-1;i++)
verticaledge[i] = sc.nextLongArray(m);
long[][][] dp = new long[11][n][m];
for(int i=0;i<n;i++){
for(int j=0;j<m;j++){
dp[0][i][j] = 0;
}
}
for(int i=1;i<=k;i++){
for(int j1=0;j1<n;j1++){
for(int j2=0;j2<m;j2++){
long min = Long.MAX_VALUE/2000;
//for up
if(isValid(n, m, j1-1, j2)){
min = Math.min(dp[i-1][j1-1][j2]+verticaledge[j1-1][j2], min);
}
//for down
if(isValid(n, m, j1+1, j2)){
min = Math.min(min, dp[i-1][j1+1][j2]+verticaledge[j1][j2]);
}
//for left
if(isValid(n, m, j1, j2-1)){
min = Math.min(min, dp[i-1][j1][j2-1]+horizontaledge[j1][j2-1]);
}
//for right
if(isValid(n, m, j1, j2+1)){
min = Math.min(min, dp[i-1][j1][j2+1]+horizontaledge[j1][j2]);
}
dp[i][j1][j2] = min;
}
}
}
for(int i=0;i<n;i++){
for(int j=0;j<m;j++){
sb.append(dp[k][i][j]*2).append(" ");
}
sb.append("\n");
}
System.out.println(sb);
sc.close();
}
static class Soumit {
final private int BUFFER_SIZE = 1 << 18;
final private DataInputStream din;
final private byte[] buffer;
private PrintWriter pw;
private int bufferPointer, bytesRead;
StringTokenizer st;
public Soumit() {
din = new DataInputStream(System.in);
buffer = new byte[BUFFER_SIZE];
bufferPointer = bytesRead = 0;
}
public Soumit(String file_name) throws IOException {
din = new DataInputStream(new FileInputStream(file_name));
buffer = new byte[BUFFER_SIZE];
bufferPointer = bytesRead = 0;
}
public void streamOutput(String file) throws IOException {
FileWriter fw = new FileWriter(file);
BufferedWriter bw = new BufferedWriter(fw);
pw = new PrintWriter(bw);
}
public void println(String a) {
pw.println(a);
}
public void print(String a) {
pw.print(a);
}
public String readLine() throws IOException {
byte[] buf = new byte[3000064]; // line length
int cnt = 0, c;
while ((c = read()) != -1) {
if (c == '\n')
break;
buf[cnt++] = (byte) c;
}
return new String(buf, 0, cnt);
}
String next() {
while (st == null || !st.hasMoreElements()) {
try {
st = new StringTokenizer(readLine());
} catch (IOException e) {
e.printStackTrace();
}
}
return st.nextToken();
}
public void sort(int[] arr) {
ArrayList<Integer> arlist = new ArrayList<>();
for (int i : arr)
arlist.add(i);
Collections.sort(arlist);
for (int i = 0; i < arr.length; i++)
arr[i] = arlist.get(i);
}
public void sort(long[] arr) {
ArrayList<Long> arlist = new ArrayList<>();
for (long i : arr)
arlist.add(i);
Collections.sort(arlist);
for (int i = 0; i < arr.length; i++)
arr[i] = arlist.get(i);
}
public int[] nextIntArray(int n) throws IOException {
int[] arr = new int[n];
for (int i = 0; i < n; i++) {
arr[i] = nextInt();
}
return arr;
}
public long[] nextLongArray(int n) throws IOException {
long[] arr = new long[n];
for (int i = 0; i < n; i++) {
arr[i] = nextLong();
}
return arr;
}
public double[] nextDoubleArray(int n) throws IOException {
double[] arr = new double[n];
for (int i = 0; i < n; i++) {
arr[i] = nextDouble();
}
return arr;
}
public int nextInt() throws IOException {
int ret = 0;
byte c = read();
while (c <= ' ')
c = read();
boolean neg = (c == '-');
if (neg)
c = read();
do {
ret = ret * 10 + c - '0';
} while ((c = read()) >= '0' && c <= '9');
if (neg)
return -ret;
return ret;
}
public long nextLong() throws IOException {
long ret = 0;
byte c = read();
while (c <= ' ')
c = read();
boolean neg = (c == '-');
if (neg)
c = read();
do {
ret = ret * 10 + c - '0';
}
while ((c = read()) >= '0' && c <= '9');
if (neg)
return -ret;
return ret;
}
public double nextDouble() throws IOException {
double ret = 0, div = 1;
byte c = read();
while (c <= ' ')
c = read();
boolean neg = (c == '-');
if (neg)
c = read();
do {
ret = ret * 10 + c - '0';
}
while ((c = read()) >= '0' && c <= '9');
if (c == '.') {
while ((c = read()) >= '0' && c <= '9') {
ret += (c - '0') / (div *= 10);
}
}
if (neg)
return -ret;
return ret;
}
private void fillBuffer() throws IOException {
bytesRead = din.read(buffer, bufferPointer = 0, BUFFER_SIZE);
if (bytesRead == -1)
buffer[0] = -1;
}
private byte read() throws IOException {
if (bufferPointer == bytesRead)
fillBuffer();
return buffer[bufferPointer++];
}
public void close() throws IOException {
/*if (din == null)
return;*/
if (din != null) din.close();
if (pw != null) pw.close();
}
}
}
|
O(n^3)
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Determine the worst-case time complexity category of a given Java code based on input size n.
</TASK>
<CODE>
//package Codeforces.Round718Div1_2;
import java.io.*;
import java.util.*;
public class D {
static boolean isValid(int n, int m, int i, int j){
return 0<=i && i<n && 0<=j && j<m;
}
public static void main(String[] args) throws IOException {
Soumit sc = new Soumit();
int n = sc.nextInt();
int m = sc.nextInt();
int k = sc.nextInt();
StringBuilder sb = new StringBuilder();
if(k%2==1){
for(int i=0;i<n;i++){
for(int j=0;j<m;j++){
sb.append("-1 ");
}
sb.append("\n");
}
System.out.println(sb);
System.exit(0);
}
k/=2;
long[][] horizontaledge = new long[n][m-1];
long[][] verticaledge = new long[n-1][m];
for(int i=0;i<n;i++)
horizontaledge[i] = sc.nextLongArray(m-1);
for(int i=0;i<n-1;i++)
verticaledge[i] = sc.nextLongArray(m);
long[][][] dp = new long[11][n][m];
for(int i=0;i<n;i++){
for(int j=0;j<m;j++){
dp[0][i][j] = 0;
}
}
for(int i=1;i<=k;i++){
for(int j1=0;j1<n;j1++){
for(int j2=0;j2<m;j2++){
long min = Long.MAX_VALUE/2000;
//for up
if(isValid(n, m, j1-1, j2)){
min = Math.min(dp[i-1][j1-1][j2]+verticaledge[j1-1][j2], min);
}
//for down
if(isValid(n, m, j1+1, j2)){
min = Math.min(min, dp[i-1][j1+1][j2]+verticaledge[j1][j2]);
}
//for left
if(isValid(n, m, j1, j2-1)){
min = Math.min(min, dp[i-1][j1][j2-1]+horizontaledge[j1][j2-1]);
}
//for right
if(isValid(n, m, j1, j2+1)){
min = Math.min(min, dp[i-1][j1][j2+1]+horizontaledge[j1][j2]);
}
dp[i][j1][j2] = min;
}
}
}
for(int i=0;i<n;i++){
for(int j=0;j<m;j++){
sb.append(dp[k][i][j]*2).append(" ");
}
sb.append("\n");
}
System.out.println(sb);
sc.close();
}
static class Soumit {
final private int BUFFER_SIZE = 1 << 18;
final private DataInputStream din;
final private byte[] buffer;
private PrintWriter pw;
private int bufferPointer, bytesRead;
StringTokenizer st;
public Soumit() {
din = new DataInputStream(System.in);
buffer = new byte[BUFFER_SIZE];
bufferPointer = bytesRead = 0;
}
public Soumit(String file_name) throws IOException {
din = new DataInputStream(new FileInputStream(file_name));
buffer = new byte[BUFFER_SIZE];
bufferPointer = bytesRead = 0;
}
public void streamOutput(String file) throws IOException {
FileWriter fw = new FileWriter(file);
BufferedWriter bw = new BufferedWriter(fw);
pw = new PrintWriter(bw);
}
public void println(String a) {
pw.println(a);
}
public void print(String a) {
pw.print(a);
}
public String readLine() throws IOException {
byte[] buf = new byte[3000064]; // line length
int cnt = 0, c;
while ((c = read()) != -1) {
if (c == '\n')
break;
buf[cnt++] = (byte) c;
}
return new String(buf, 0, cnt);
}
String next() {
while (st == null || !st.hasMoreElements()) {
try {
st = new StringTokenizer(readLine());
} catch (IOException e) {
e.printStackTrace();
}
}
return st.nextToken();
}
public void sort(int[] arr) {
ArrayList<Integer> arlist = new ArrayList<>();
for (int i : arr)
arlist.add(i);
Collections.sort(arlist);
for (int i = 0; i < arr.length; i++)
arr[i] = arlist.get(i);
}
public void sort(long[] arr) {
ArrayList<Long> arlist = new ArrayList<>();
for (long i : arr)
arlist.add(i);
Collections.sort(arlist);
for (int i = 0; i < arr.length; i++)
arr[i] = arlist.get(i);
}
public int[] nextIntArray(int n) throws IOException {
int[] arr = new int[n];
for (int i = 0; i < n; i++) {
arr[i] = nextInt();
}
return arr;
}
public long[] nextLongArray(int n) throws IOException {
long[] arr = new long[n];
for (int i = 0; i < n; i++) {
arr[i] = nextLong();
}
return arr;
}
public double[] nextDoubleArray(int n) throws IOException {
double[] arr = new double[n];
for (int i = 0; i < n; i++) {
arr[i] = nextDouble();
}
return arr;
}
public int nextInt() throws IOException {
int ret = 0;
byte c = read();
while (c <= ' ')
c = read();
boolean neg = (c == '-');
if (neg)
c = read();
do {
ret = ret * 10 + c - '0';
} while ((c = read()) >= '0' && c <= '9');
if (neg)
return -ret;
return ret;
}
public long nextLong() throws IOException {
long ret = 0;
byte c = read();
while (c <= ' ')
c = read();
boolean neg = (c == '-');
if (neg)
c = read();
do {
ret = ret * 10 + c - '0';
}
while ((c = read()) >= '0' && c <= '9');
if (neg)
return -ret;
return ret;
}
public double nextDouble() throws IOException {
double ret = 0, div = 1;
byte c = read();
while (c <= ' ')
c = read();
boolean neg = (c == '-');
if (neg)
c = read();
do {
ret = ret * 10 + c - '0';
}
while ((c = read()) >= '0' && c <= '9');
if (c == '.') {
while ((c = read()) >= '0' && c <= '9') {
ret += (c - '0') / (div *= 10);
}
}
if (neg)
return -ret;
return ret;
}
private void fillBuffer() throws IOException {
bytesRead = din.read(buffer, bufferPointer = 0, BUFFER_SIZE);
if (bytesRead == -1)
buffer[0] = -1;
}
private byte read() throws IOException {
if (bufferPointer == bytesRead)
fillBuffer();
return buffer[bufferPointer++];
}
public void close() throws IOException {
/*if (din == null)
return;*/
if (din != null) din.close();
if (pw != null) pw.close();
}
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(log(n)): The time complexity increases logarithmically in relation to the input size.
- O(1): The time complexity is constant to the input size n.
- O(nlog(n)): The time complexity combines linear and logarithmic growth factors.
- non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially.
- O(n^3): The time complexity scales proportionally to the cube of the input size.
- O(n): The time complexity increases proportionally to the input size n in a linear manner.
- O(n^2): The time complexity grows proportionally to the square of the input size.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n.
</TASK>
<CODE>
//package Codeforces.Round718Div1_2;
import java.io.*;
import java.util.*;
public class D {
static boolean isValid(int n, int m, int i, int j){
return 0<=i && i<n && 0<=j && j<m;
}
public static void main(String[] args) throws IOException {
Soumit sc = new Soumit();
int n = sc.nextInt();
int m = sc.nextInt();
int k = sc.nextInt();
StringBuilder sb = new StringBuilder();
if(k%2==1){
for(int i=0;i<n;i++){
for(int j=0;j<m;j++){
sb.append("-1 ");
}
sb.append("\n");
}
System.out.println(sb);
System.exit(0);
}
k/=2;
long[][] horizontaledge = new long[n][m-1];
long[][] verticaledge = new long[n-1][m];
for(int i=0;i<n;i++)
horizontaledge[i] = sc.nextLongArray(m-1);
for(int i=0;i<n-1;i++)
verticaledge[i] = sc.nextLongArray(m);
long[][][] dp = new long[11][n][m];
for(int i=0;i<n;i++){
for(int j=0;j<m;j++){
dp[0][i][j] = 0;
}
}
for(int i=1;i<=k;i++){
for(int j1=0;j1<n;j1++){
for(int j2=0;j2<m;j2++){
long min = Long.MAX_VALUE/2000;
//for up
if(isValid(n, m, j1-1, j2)){
min = Math.min(dp[i-1][j1-1][j2]+verticaledge[j1-1][j2], min);
}
//for down
if(isValid(n, m, j1+1, j2)){
min = Math.min(min, dp[i-1][j1+1][j2]+verticaledge[j1][j2]);
}
//for left
if(isValid(n, m, j1, j2-1)){
min = Math.min(min, dp[i-1][j1][j2-1]+horizontaledge[j1][j2-1]);
}
//for right
if(isValid(n, m, j1, j2+1)){
min = Math.min(min, dp[i-1][j1][j2+1]+horizontaledge[j1][j2]);
}
dp[i][j1][j2] = min;
}
}
}
for(int i=0;i<n;i++){
for(int j=0;j<m;j++){
sb.append(dp[k][i][j]*2).append(" ");
}
sb.append("\n");
}
System.out.println(sb);
sc.close();
}
static class Soumit {
final private int BUFFER_SIZE = 1 << 18;
final private DataInputStream din;
final private byte[] buffer;
private PrintWriter pw;
private int bufferPointer, bytesRead;
StringTokenizer st;
public Soumit() {
din = new DataInputStream(System.in);
buffer = new byte[BUFFER_SIZE];
bufferPointer = bytesRead = 0;
}
public Soumit(String file_name) throws IOException {
din = new DataInputStream(new FileInputStream(file_name));
buffer = new byte[BUFFER_SIZE];
bufferPointer = bytesRead = 0;
}
public void streamOutput(String file) throws IOException {
FileWriter fw = new FileWriter(file);
BufferedWriter bw = new BufferedWriter(fw);
pw = new PrintWriter(bw);
}
public void println(String a) {
pw.println(a);
}
public void print(String a) {
pw.print(a);
}
public String readLine() throws IOException {
byte[] buf = new byte[3000064]; // line length
int cnt = 0, c;
while ((c = read()) != -1) {
if (c == '\n')
break;
buf[cnt++] = (byte) c;
}
return new String(buf, 0, cnt);
}
String next() {
while (st == null || !st.hasMoreElements()) {
try {
st = new StringTokenizer(readLine());
} catch (IOException e) {
e.printStackTrace();
}
}
return st.nextToken();
}
public void sort(int[] arr) {
ArrayList<Integer> arlist = new ArrayList<>();
for (int i : arr)
arlist.add(i);
Collections.sort(arlist);
for (int i = 0; i < arr.length; i++)
arr[i] = arlist.get(i);
}
public void sort(long[] arr) {
ArrayList<Long> arlist = new ArrayList<>();
for (long i : arr)
arlist.add(i);
Collections.sort(arlist);
for (int i = 0; i < arr.length; i++)
arr[i] = arlist.get(i);
}
public int[] nextIntArray(int n) throws IOException {
int[] arr = new int[n];
for (int i = 0; i < n; i++) {
arr[i] = nextInt();
}
return arr;
}
public long[] nextLongArray(int n) throws IOException {
long[] arr = new long[n];
for (int i = 0; i < n; i++) {
arr[i] = nextLong();
}
return arr;
}
public double[] nextDoubleArray(int n) throws IOException {
double[] arr = new double[n];
for (int i = 0; i < n; i++) {
arr[i] = nextDouble();
}
return arr;
}
public int nextInt() throws IOException {
int ret = 0;
byte c = read();
while (c <= ' ')
c = read();
boolean neg = (c == '-');
if (neg)
c = read();
do {
ret = ret * 10 + c - '0';
} while ((c = read()) >= '0' && c <= '9');
if (neg)
return -ret;
return ret;
}
public long nextLong() throws IOException {
long ret = 0;
byte c = read();
while (c <= ' ')
c = read();
boolean neg = (c == '-');
if (neg)
c = read();
do {
ret = ret * 10 + c - '0';
}
while ((c = read()) >= '0' && c <= '9');
if (neg)
return -ret;
return ret;
}
public double nextDouble() throws IOException {
double ret = 0, div = 1;
byte c = read();
while (c <= ' ')
c = read();
boolean neg = (c == '-');
if (neg)
c = read();
do {
ret = ret * 10 + c - '0';
}
while ((c = read()) >= '0' && c <= '9');
if (c == '.') {
while ((c = read()) >= '0' && c <= '9') {
ret += (c - '0') / (div *= 10);
}
}
if (neg)
return -ret;
return ret;
}
private void fillBuffer() throws IOException {
bytesRead = din.read(buffer, bufferPointer = 0, BUFFER_SIZE);
if (bytesRead == -1)
buffer[0] = -1;
}
private byte read() throws IOException {
if (bufferPointer == bytesRead)
fillBuffer();
return buffer[bufferPointer++];
}
public void close() throws IOException {
/*if (din == null)
return;*/
if (din != null) din.close();
if (pw != null) pw.close();
}
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(n^3): The execution time ascends in proportion to the cube of the input size n.
- others: The time complexity does not fit to any of the given categories or is ambiguous.
- O(n): The execution time ascends in a one-to-one ratio with the input size n.
- O(1): The execution time is unaffected by the size of the input n.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially.
- O(n^2): The execution time ascends in proportion to the square of the input size n.
- O(log(n)): The execution time ascends in proportion to the logarithm of the input size n.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
| 2,089
| 3,780
|
1,848
|
import java.util.*;
import java.util.Map.Entry;
import java.io.*;
import java.lang.reflect.Array;
import java.math.*;
import java.security.SecureRandom;
public class WCS {
public static class Vector implements Comparable <Vector> {
long x, y;
int position;
Vector first, second;
boolean toReverse;
public Vector(long xx, long yy, int p) {
x = xx;
y = yy;
position = p;
first = null;
second = null;
toReverse = false;
}
public Vector negate() {
Vector vv = new Vector(-x, -y, position);
vv.first = first;
vv.second = second;
vv.toReverse = !toReverse;
return vv;
}
public Vector add(Vector v) {
Vector sum = new Vector(this.x + v.x, this.y + v.y, position);
sum.first = this;
sum.second = v;
return sum;
}
public Vector subtract(Vector v) {
return this.add(v.negate());
}
public double euclideanNorm() {
return Math.sqrt(x * x + y * y);
}
@Override
public int compareTo(Vector v) {
double thisa = Math.atan2(this.y, this.x);
double va = Math.atan2(v.y, v.x);
if(thisa < 0)
thisa += 2 * Math.PI;
if(va < 0)
va += 2 * Math.PI;
if(thisa < va)
return -1;
if(thisa > va)
return 1;
return Integer.compare(this.position, v.position);
}
@Override
public String toString() {
return x + " " + y;
}
}
public static void dfs(Vector curr, int[] ans) {
if(curr.first == null) {
ans[curr.position] = curr.toReverse ? -1 : 1;
return;
}
curr.first.toReverse ^= curr.toReverse;
curr.second.toReverse ^= curr.toReverse;
dfs(curr.first, ans);
dfs(curr.second, ans);
}
public static boolean ok(Vector v1, Vector v2) {
return v1.add(v2).euclideanNorm() <= Math.max(v1.euclideanNorm(), v2.euclideanNorm());
}
public static void stop(long k) {
long time = System.currentTimeMillis();
while(System.currentTimeMillis() - time < k);
}
public static void main(String[] args) throws IOException {
int n = in.nextInt();
TreeSet <Vector> vectors = new TreeSet <> ();
for(int i = 0; i < n; i ++) {
Vector v = new Vector(in.nextLong(), in.nextLong(), i);
vectors.add(v);
}
while(vectors.size() > 2) {
//System.out.println(vectors);
//stop(500);
TreeSet <Vector> support = new TreeSet <> ();
while(vectors.size() > 0) {
Vector curr = vectors.pollFirst();
Vector next1 = vectors.higher(curr);
Vector next2 = vectors.lower(curr.negate());
Vector next3 = vectors.higher(curr.negate());
Vector next4 = vectors.lower(curr);
//System.out.println("CURR: " + curr + "\n" + next1 + "\n" + next2);
if(next1 != null) {
if(ok(curr, next1)) {
support.add(curr.add(next1));
vectors.remove(next1);
continue;
}
}
if(next1 != null) {
if(ok(curr, next1.negate())) {
support.add(curr.subtract(next1));
vectors.remove(next1);
continue;
}
}
if(next2 != null) {
if(ok(curr, next2)) {
support.add(curr.add(next2));
vectors.remove(next2);
continue;
}
}
if(next2 != null) {
if(ok(curr, next2.negate())) {
support.add(curr.subtract(next2));
vectors.remove(next2);
continue;
}
}
if(next3 != null) {
if(ok(curr, next3)) {
support.add(curr.add(next3));
vectors.remove(next3);
continue;
}
}
if(next3 != null) {
if(ok(curr, next3.negate())) {
support.add(curr.subtract(next3));
vectors.remove(next3);
continue;
}
}
if(next4 != null) {
if(ok(curr, next4)) {
support.add(curr.add(next4));
vectors.remove(next4);
continue;
}
}
if(next4 != null) {
if(ok(curr, next4.negate())) {
support.add(curr.subtract(next4));
vectors.remove(next4);
continue;
}
}
support.add(curr);
}
vectors = support;
}
if(vectors.size() == 2) {
Vector curr = vectors.pollFirst();
Vector next = vectors.pollFirst();
Vector add = curr.add(next);
Vector sub = curr.subtract(next);
if(sub.euclideanNorm() <= add.euclideanNorm())
vectors.add(sub);
else
vectors.add(add);
}
//System.out.println(vectors.first().euclideanNorm());
StringBuilder buffer = new StringBuilder();
int[] ans = new int[n];
dfs(vectors.pollFirst(), ans);
for(int i = 0; i < n; i ++)
buffer.append(ans[i] + " ");
System.out.println(buffer);
}
static class FastReader {
BufferedReader br;
StringTokenizer st;
public FastReader() {
br = new BufferedReader(new InputStreamReader(System.in));
}
String next() {
while (st == null || !st.hasMoreElements()) {
try {
st = new StringTokenizer(br.readLine());
}
catch (IOException e) {
e.printStackTrace();
}
}
return st.nextToken();
}
BigInteger nextBigInteger() {
return new BigInteger(in.next());
}
int nextInt() {
return Integer.parseInt(next());
}
char nextChar() {
return in.next().charAt(0);
}
long nextLong() {
return Long.parseLong(next());
}
double nextDouble() {
return Double.parseDouble(next());
}
String nextLine() {
String str = "";
try {
str = br.readLine();
}
catch (IOException e) {
e.printStackTrace();
}
return str;
}
}
static FastReader in = new FastReader();
static OutputStream out = new BufferedOutputStream(System.out);
public static byte[] toByte(Object o) {
return String.valueOf(o).getBytes();
}
public static void sop(Object o) {
System.out.print(o);
}
}
|
O(nlog(n))
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Determine the worst-case time complexity category of a given Java code based on input size n.
</TASK>
<CODE>
import java.util.*;
import java.util.Map.Entry;
import java.io.*;
import java.lang.reflect.Array;
import java.math.*;
import java.security.SecureRandom;
public class WCS {
public static class Vector implements Comparable <Vector> {
long x, y;
int position;
Vector first, second;
boolean toReverse;
public Vector(long xx, long yy, int p) {
x = xx;
y = yy;
position = p;
first = null;
second = null;
toReverse = false;
}
public Vector negate() {
Vector vv = new Vector(-x, -y, position);
vv.first = first;
vv.second = second;
vv.toReverse = !toReverse;
return vv;
}
public Vector add(Vector v) {
Vector sum = new Vector(this.x + v.x, this.y + v.y, position);
sum.first = this;
sum.second = v;
return sum;
}
public Vector subtract(Vector v) {
return this.add(v.negate());
}
public double euclideanNorm() {
return Math.sqrt(x * x + y * y);
}
@Override
public int compareTo(Vector v) {
double thisa = Math.atan2(this.y, this.x);
double va = Math.atan2(v.y, v.x);
if(thisa < 0)
thisa += 2 * Math.PI;
if(va < 0)
va += 2 * Math.PI;
if(thisa < va)
return -1;
if(thisa > va)
return 1;
return Integer.compare(this.position, v.position);
}
@Override
public String toString() {
return x + " " + y;
}
}
public static void dfs(Vector curr, int[] ans) {
if(curr.first == null) {
ans[curr.position] = curr.toReverse ? -1 : 1;
return;
}
curr.first.toReverse ^= curr.toReverse;
curr.second.toReverse ^= curr.toReverse;
dfs(curr.first, ans);
dfs(curr.second, ans);
}
public static boolean ok(Vector v1, Vector v2) {
return v1.add(v2).euclideanNorm() <= Math.max(v1.euclideanNorm(), v2.euclideanNorm());
}
public static void stop(long k) {
long time = System.currentTimeMillis();
while(System.currentTimeMillis() - time < k);
}
public static void main(String[] args) throws IOException {
int n = in.nextInt();
TreeSet <Vector> vectors = new TreeSet <> ();
for(int i = 0; i < n; i ++) {
Vector v = new Vector(in.nextLong(), in.nextLong(), i);
vectors.add(v);
}
while(vectors.size() > 2) {
//System.out.println(vectors);
//stop(500);
TreeSet <Vector> support = new TreeSet <> ();
while(vectors.size() > 0) {
Vector curr = vectors.pollFirst();
Vector next1 = vectors.higher(curr);
Vector next2 = vectors.lower(curr.negate());
Vector next3 = vectors.higher(curr.negate());
Vector next4 = vectors.lower(curr);
//System.out.println("CURR: " + curr + "\n" + next1 + "\n" + next2);
if(next1 != null) {
if(ok(curr, next1)) {
support.add(curr.add(next1));
vectors.remove(next1);
continue;
}
}
if(next1 != null) {
if(ok(curr, next1.negate())) {
support.add(curr.subtract(next1));
vectors.remove(next1);
continue;
}
}
if(next2 != null) {
if(ok(curr, next2)) {
support.add(curr.add(next2));
vectors.remove(next2);
continue;
}
}
if(next2 != null) {
if(ok(curr, next2.negate())) {
support.add(curr.subtract(next2));
vectors.remove(next2);
continue;
}
}
if(next3 != null) {
if(ok(curr, next3)) {
support.add(curr.add(next3));
vectors.remove(next3);
continue;
}
}
if(next3 != null) {
if(ok(curr, next3.negate())) {
support.add(curr.subtract(next3));
vectors.remove(next3);
continue;
}
}
if(next4 != null) {
if(ok(curr, next4)) {
support.add(curr.add(next4));
vectors.remove(next4);
continue;
}
}
if(next4 != null) {
if(ok(curr, next4.negate())) {
support.add(curr.subtract(next4));
vectors.remove(next4);
continue;
}
}
support.add(curr);
}
vectors = support;
}
if(vectors.size() == 2) {
Vector curr = vectors.pollFirst();
Vector next = vectors.pollFirst();
Vector add = curr.add(next);
Vector sub = curr.subtract(next);
if(sub.euclideanNorm() <= add.euclideanNorm())
vectors.add(sub);
else
vectors.add(add);
}
//System.out.println(vectors.first().euclideanNorm());
StringBuilder buffer = new StringBuilder();
int[] ans = new int[n];
dfs(vectors.pollFirst(), ans);
for(int i = 0; i < n; i ++)
buffer.append(ans[i] + " ");
System.out.println(buffer);
}
static class FastReader {
BufferedReader br;
StringTokenizer st;
public FastReader() {
br = new BufferedReader(new InputStreamReader(System.in));
}
String next() {
while (st == null || !st.hasMoreElements()) {
try {
st = new StringTokenizer(br.readLine());
}
catch (IOException e) {
e.printStackTrace();
}
}
return st.nextToken();
}
BigInteger nextBigInteger() {
return new BigInteger(in.next());
}
int nextInt() {
return Integer.parseInt(next());
}
char nextChar() {
return in.next().charAt(0);
}
long nextLong() {
return Long.parseLong(next());
}
double nextDouble() {
return Double.parseDouble(next());
}
String nextLine() {
String str = "";
try {
str = br.readLine();
}
catch (IOException e) {
e.printStackTrace();
}
return str;
}
}
static FastReader in = new FastReader();
static OutputStream out = new BufferedOutputStream(System.out);
public static byte[] toByte(Object o) {
return String.valueOf(o).getBytes();
}
public static void sop(Object o) {
System.out.print(o);
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(nlog(n)): The time complexity combines linear and logarithmic growth factors.
- non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially.
- O(n): The time complexity increases proportionally to the input size n in a linear manner.
- O(n^3): The time complexity scales proportionally to the cube of the input size.
- O(1): The time complexity is constant to the input size n.
- O(n^2): The time complexity grows proportionally to the square of the input size.
- O(log(n)): The time complexity increases logarithmically in relation to the input size.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n.
</TASK>
<CODE>
import java.util.*;
import java.util.Map.Entry;
import java.io.*;
import java.lang.reflect.Array;
import java.math.*;
import java.security.SecureRandom;
public class WCS {
public static class Vector implements Comparable <Vector> {
long x, y;
int position;
Vector first, second;
boolean toReverse;
public Vector(long xx, long yy, int p) {
x = xx;
y = yy;
position = p;
first = null;
second = null;
toReverse = false;
}
public Vector negate() {
Vector vv = new Vector(-x, -y, position);
vv.first = first;
vv.second = second;
vv.toReverse = !toReverse;
return vv;
}
public Vector add(Vector v) {
Vector sum = new Vector(this.x + v.x, this.y + v.y, position);
sum.first = this;
sum.second = v;
return sum;
}
public Vector subtract(Vector v) {
return this.add(v.negate());
}
public double euclideanNorm() {
return Math.sqrt(x * x + y * y);
}
@Override
public int compareTo(Vector v) {
double thisa = Math.atan2(this.y, this.x);
double va = Math.atan2(v.y, v.x);
if(thisa < 0)
thisa += 2 * Math.PI;
if(va < 0)
va += 2 * Math.PI;
if(thisa < va)
return -1;
if(thisa > va)
return 1;
return Integer.compare(this.position, v.position);
}
@Override
public String toString() {
return x + " " + y;
}
}
public static void dfs(Vector curr, int[] ans) {
if(curr.first == null) {
ans[curr.position] = curr.toReverse ? -1 : 1;
return;
}
curr.first.toReverse ^= curr.toReverse;
curr.second.toReverse ^= curr.toReverse;
dfs(curr.first, ans);
dfs(curr.second, ans);
}
public static boolean ok(Vector v1, Vector v2) {
return v1.add(v2).euclideanNorm() <= Math.max(v1.euclideanNorm(), v2.euclideanNorm());
}
public static void stop(long k) {
long time = System.currentTimeMillis();
while(System.currentTimeMillis() - time < k);
}
public static void main(String[] args) throws IOException {
int n = in.nextInt();
TreeSet <Vector> vectors = new TreeSet <> ();
for(int i = 0; i < n; i ++) {
Vector v = new Vector(in.nextLong(), in.nextLong(), i);
vectors.add(v);
}
while(vectors.size() > 2) {
//System.out.println(vectors);
//stop(500);
TreeSet <Vector> support = new TreeSet <> ();
while(vectors.size() > 0) {
Vector curr = vectors.pollFirst();
Vector next1 = vectors.higher(curr);
Vector next2 = vectors.lower(curr.negate());
Vector next3 = vectors.higher(curr.negate());
Vector next4 = vectors.lower(curr);
//System.out.println("CURR: " + curr + "\n" + next1 + "\n" + next2);
if(next1 != null) {
if(ok(curr, next1)) {
support.add(curr.add(next1));
vectors.remove(next1);
continue;
}
}
if(next1 != null) {
if(ok(curr, next1.negate())) {
support.add(curr.subtract(next1));
vectors.remove(next1);
continue;
}
}
if(next2 != null) {
if(ok(curr, next2)) {
support.add(curr.add(next2));
vectors.remove(next2);
continue;
}
}
if(next2 != null) {
if(ok(curr, next2.negate())) {
support.add(curr.subtract(next2));
vectors.remove(next2);
continue;
}
}
if(next3 != null) {
if(ok(curr, next3)) {
support.add(curr.add(next3));
vectors.remove(next3);
continue;
}
}
if(next3 != null) {
if(ok(curr, next3.negate())) {
support.add(curr.subtract(next3));
vectors.remove(next3);
continue;
}
}
if(next4 != null) {
if(ok(curr, next4)) {
support.add(curr.add(next4));
vectors.remove(next4);
continue;
}
}
if(next4 != null) {
if(ok(curr, next4.negate())) {
support.add(curr.subtract(next4));
vectors.remove(next4);
continue;
}
}
support.add(curr);
}
vectors = support;
}
if(vectors.size() == 2) {
Vector curr = vectors.pollFirst();
Vector next = vectors.pollFirst();
Vector add = curr.add(next);
Vector sub = curr.subtract(next);
if(sub.euclideanNorm() <= add.euclideanNorm())
vectors.add(sub);
else
vectors.add(add);
}
//System.out.println(vectors.first().euclideanNorm());
StringBuilder buffer = new StringBuilder();
int[] ans = new int[n];
dfs(vectors.pollFirst(), ans);
for(int i = 0; i < n; i ++)
buffer.append(ans[i] + " ");
System.out.println(buffer);
}
static class FastReader {
BufferedReader br;
StringTokenizer st;
public FastReader() {
br = new BufferedReader(new InputStreamReader(System.in));
}
String next() {
while (st == null || !st.hasMoreElements()) {
try {
st = new StringTokenizer(br.readLine());
}
catch (IOException e) {
e.printStackTrace();
}
}
return st.nextToken();
}
BigInteger nextBigInteger() {
return new BigInteger(in.next());
}
int nextInt() {
return Integer.parseInt(next());
}
char nextChar() {
return in.next().charAt(0);
}
long nextLong() {
return Long.parseLong(next());
}
double nextDouble() {
return Double.parseDouble(next());
}
String nextLine() {
String str = "";
try {
str = br.readLine();
}
catch (IOException e) {
e.printStackTrace();
}
return str;
}
}
static FastReader in = new FastReader();
static OutputStream out = new BufferedOutputStream(System.out);
public static byte[] toByte(Object o) {
return String.valueOf(o).getBytes();
}
public static void sop(Object o) {
System.out.print(o);
}
}
</CODE>
<EVALUATION_RUBRIC>
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- O(n^2): The execution time ascends in proportion to the square of the input size n.
- others: The time complexity does not fit to any of the given categories or is ambiguous.
- O(n): The execution time ascends in a one-to-one ratio with the input size n.
- O(1): The execution time is unaffected by the size of the input n.
- O(n^3): The execution time ascends in proportion to the cube of the input size n.
- O(log(n)): The execution time ascends in proportion to the logarithm of the input size n.
- O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
| 1,869
| 1,844
|
2,976
|
import java.io.*;
import java.util.*;
public class Main {
public static long func(long a, long b) {
if (a < b)
return func(b, a);
if (b < 2)
return a;
long q = a / b;
long r = a - q * b;
return q + func(b, r);
}
public static void main(String[] args) throws IOException {
BufferedReader br = new BufferedReader(new InputStreamReader(System.in));
String[] ss = br.readLine().split(" +");
long a = Long.parseLong(ss[0]);
long b = Long.parseLong(ss[1]);
System.out.println(func(a, b));
}
}
|
O(1)
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Determine the worst-case time complexity category of a given Java code based on input size n.
</TASK>
<CODE>
import java.io.*;
import java.util.*;
public class Main {
public static long func(long a, long b) {
if (a < b)
return func(b, a);
if (b < 2)
return a;
long q = a / b;
long r = a - q * b;
return q + func(b, r);
}
public static void main(String[] args) throws IOException {
BufferedReader br = new BufferedReader(new InputStreamReader(System.in));
String[] ss = br.readLine().split(" +");
long a = Long.parseLong(ss[0]);
long b = Long.parseLong(ss[1]);
System.out.println(func(a, b));
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(1): The time complexity is constant to the input size n.
- O(n): The time complexity increases proportionally to the input size n in a linear manner.
- O(nlog(n)): The time complexity combines linear and logarithmic growth factors.
- O(log(n)): The time complexity increases logarithmically in relation to the input size.
- non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially.
- O(n^3): The time complexity scales proportionally to the cube of the input size.
- O(n^2): The time complexity grows proportionally to the square of the input size.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Determine the worst-case time complexity category of a given Java code based on input size n.
</TASK>
<CODE>
import java.io.*;
import java.util.*;
public class Main {
public static long func(long a, long b) {
if (a < b)
return func(b, a);
if (b < 2)
return a;
long q = a / b;
long r = a - q * b;
return q + func(b, r);
}
public static void main(String[] args) throws IOException {
BufferedReader br = new BufferedReader(new InputStreamReader(System.in));
String[] ss = br.readLine().split(" +");
long a = Long.parseLong(ss[0]);
long b = Long.parseLong(ss[1]);
System.out.println(func(a, b));
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(n^2): The time complexity grows proportionally to the square of the input size.
- O(1): The time complexity is constant to the input size n.
- non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially.
- O(nlog(n)): The time complexity combines linear and logarithmic growth factors.
- O(n): The time complexity increases proportionally to the input size n in a linear manner.
- others: The time complexity does not fit any of the above categories or cannot be clearly classified.
- O(n^3): The time complexity scales proportionally to the cube of the input size.
- O(log(n)): The time complexity increases logarithmically in relation to the input size.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
| 482
| 2,970
|
3,088
|
import java.awt.Point;
import java.io.*;
import java.math.BigInteger;
import java.util.*;
import static java.lang.Math.*;
public class ProblemA_72 {
final boolean ONLINE_JUDGE = System.getProperty("ONLINE_JUDGE")!=null;
BufferedReader in;
PrintWriter out;
StringTokenizer tok = new StringTokenizer("");
void init() throws FileNotFoundException{
if (ONLINE_JUDGE){
in = new BufferedReader(new InputStreamReader(System.in));
out = new PrintWriter(System.out);
}else{
in = new BufferedReader(new FileReader("input.txt"));
out = new PrintWriter("output.txt");
}
}
String readString() throws IOException{
while(!tok.hasMoreTokens()){
tok = new StringTokenizer(in.readLine());
}
return tok.nextToken();
}
int readInt() throws IOException{
return Integer.parseInt(readString());
}
public static void main(String[] args){
new ProblemA_72().run();
}
public void run(){
try{
long t1 = System.currentTimeMillis();
init();
solve();
out.close();
long t2 = System.currentTimeMillis();
System.err.println("Time = "+(t2-t1));
}catch (Exception e){
e.printStackTrace(System.err);
System.exit(-1);
}
}
void solve() throws IOException{
int n = readInt();
out.print((n + n/2));
}
static class MyAlgo{
long gcd(long a, long b){
if (a == 0) return b;
return gcd(b % a, a);
}
long lcm(long a, long b){
return a / gcd(a, b)*b;
}
long[] gcdPlus(long a, long b){
long[] d = new long[3];
if (a == 0){
d[0] = b;
d[1] = 0;
d[2] = 1;
}else{
d = gcdPlus(b % a, a);
long r = d[1];
d[1] = d[2] - b/a*d[1];
d[2] = r;
}
return d;
}
long binpow(long a, int n){
if (n == 0) return 1;
if ((n & 1) == 0){
long b = binpow(a, n/2);
return b*b;
}else return binpow(a, n-1)*a;
}
long binpowmod(long a, int n, int m){
if (n == 0) return 1;
if ((n & 1) == 0){
long b = binpow(a, n/2);
return (b*b) % m;
}else return binpow(a, n-1)*a % m;
}
long f(long n, int x, int k){ //Кол-во десятичных чисел (включая 0), содержащих в себе цифры от 0 до k-1
if (n == 0) return 1;
long b = binpow(10, x - 1);
long c = n / b;
return (c < k? c: k)*binpow(k, x - 1) + (c < k? 1: 0)*f(n % b, x - 1, k);
}
long fib(int n){
if (n == 0) return 0;
if ((n & 1) == 0){
long f1 = fib(n/2 - 1);
long f2 = fib(n/2 + 1);
return f2*f2 - f1*f1;
}else{
long f1 = fib(n/2);
long f2 = fib(n/2 + 1);
return f1*f1 + f2*f2;
}
}
BigInteger BigFib(int n){
if (n == 0) return BigInteger.ZERO;
if ((n & 1) == 0){
BigInteger f1 = BigFib(n/2 - 1);
f1 = f1.multiply(f1);
BigInteger f2 = BigFib(n/2 + 1);
f2 = f2.multiply(f2);
return f2.subtract(f1);
}else{
BigInteger f1 = BigFib(n/2);
f1 = f1.multiply(f1);
BigInteger f2 = BigFib(n/2 + 1);
f2 = f2.multiply(f2);
return f2.add(f1);
}
}
boolean IsProbablyPrime(long n){
if (n == 1) return false;
if ((n & 1) == 0) return false;
for (int j = 3; j < sqrt(n) + 1; j += 2){
if (n % j == 0) return false;
}
return true;
}
int[] Sieve(int n){
boolean[] b = new boolean[n+1];
Arrays.fill(b, true);
b[0] = false;
b[1] = false;
long nLong = n;
int j=0;
for (int i = 1; i <= n; i++) {
if (b[i]){
j++;
if (((long)i)*i <= nLong) {
for (int k = i*i; k <= n; k += i) {
b[k] = false;
}
}
}
}
int[] p = new int[j];
Arrays.fill(p, 0);
j=0;
for (int i = 2; i <= n; i++) {
if (b[i]){
p[j]=i;
j++;
}
}
return p;
}
public class Permutation {
int[] a;
int n;
public Permutation(int n){
this.n=n;
a=new int[n];
for (int i=0; i<n; i++){
a[i]=i;
}
}
public boolean nextPermutation(){ //Пишется с do{}while(nextPermutation(a));
int i=n-1;
for (i=n-2; i>=0; i--){
if (a[i]<a[i+1]){
break;
}
}
if (i==-1){
return false;
}
int jMin=i+1;
for (int j=n-1; j>i; j--){
if (a[i]<a[j]&&a[j]<a[jMin]){
jMin=j;
}
}
swap(i, jMin);
for (int j=1; j<=(n-i)/2; j++){
swap(i+j, n-j);
}
return true;
}
public int get(int i){
return a[i];
}
void swap(int i, int j){
int r=a[i];
a[i]=a[j];
a[j]=r;
}
}
public class Fraction implements Comparable<Fraction>, Cloneable{
public final Fraction FRACTION_ZERO = new Fraction();
public final Fraction FRACTION_ONE = new Fraction(1);
public long numerator = 0;
public long denominator = 1;
public Fraction(){
numerator = 0;
denominator = 1;
}
public Fraction(long numerator){
this.numerator = numerator;
denominator = 1;
}
public Fraction(long numerator, long denominator){
this.numerator = numerator;
this.denominator = denominator;
Cancellation();
}
public Fraction(double numerator, double denominator, int accuracy){
this.numerator = (long)(numerator*pow(10,accuracy));
this.denominator = (long)(denominator*pow(10,accuracy));
Cancellation();
}
public Fraction(String s){
if (s.charAt(0) == '-'){
denominator = -1;
s = s.substring(1);
}
if (s.indexOf("/") != -1){
denominator *= Integer.parseInt(s.substring(s.indexOf("/") + 1));
}
if (s.indexOf(" ") != -1){
numerator = Integer.parseInt(s.substring(0, s.indexOf(" "))) * abs(denominator) + Integer.parseInt(s.substring(s.indexOf(" ") + 1, s.indexOf("/")));
}else{
if (s.indexOf("/") != -1){
numerator = Integer.parseInt(s.substring(0, s.indexOf("/")));
}else{
numerator = Integer.parseInt(s)*abs(denominator);
}
}
this.Cancellation();
}
void Cancellation(){
long g = gcd(abs(numerator), abs(denominator));
numerator /= g;
denominator /= g;
if (denominator < 0){
numerator *= -1;
denominator *= -1;
}
}
public String toString(){
String s = "";
if (numerator == 0){
return "0";
}
if (numerator < 0){
s += "-";
}
if (abs(numerator) >= denominator){
s += Long.toString(abs(numerator) / denominator) + " ";
}
if (abs(numerator) % denominator != 0){
s += Long.toString(abs(numerator) % denominator);
}else{
s = s.substring(0, s.length()-1);
}
if (denominator != 1){
s += "/" + Long.toString(denominator);
}
return s;
}
public Fraction add(Fraction f){
Fraction fResult = new Fraction();
fResult.denominator = lcm(denominator, f.denominator);
fResult.numerator = numerator * fResult.denominator / denominator + f.numerator * fResult.denominator / f.denominator;
fResult.Cancellation();
return fResult;
}
public Fraction subtract(Fraction f){
Fraction fResult = new Fraction();
fResult.denominator = lcm(denominator, f.denominator);
fResult.numerator = numerator * fResult.denominator / denominator - f.numerator * fResult.denominator / f.denominator;
fResult.Cancellation();
return fResult;
}
public Fraction multiply(Fraction f){
Fraction fResult = new Fraction();
fResult.numerator = numerator * f.numerator;
fResult.denominator = denominator * f.denominator;
fResult.Cancellation();
return fResult;
}
public Fraction divide(Fraction f){
Fraction fResult = new Fraction();
fResult.numerator = numerator * f.denominator;
fResult.denominator = denominator * f.numerator;
fResult.Cancellation();
return fResult;
}
@Override
public int compareTo(Fraction f){
long g = gcd(denominator, f.denominator);
long res = numerator * (f.denominator / g) - f.numerator * (denominator / g);
if (res < 0){
return -1;
}
if (res > 0){
return 1;
}
return 0;
}
public Fraction clone(){
Fraction fResult = new Fraction(numerator, denominator);
return fResult;
}
public Fraction floor(){
Fraction fResult = this.clone();
fResult.numerator = (fResult.numerator / fResult.denominator) * fResult.denominator;
return fResult;
}
public Fraction ceil(){
Fraction fResult = this.clone();
fResult.numerator = (fResult.numerator/fResult.denominator + 1) * fResult.denominator;
return fResult;
}
public Fraction binpow(int n){
if (n==0) return FRACTION_ONE;
if ((n&1)==0){
Fraction f=this.binpow(n/2);
return f.multiply(f);
}else return binpow(n-1).multiply(this);
}
}
class FenwickTree_1{ //One-dimensional array
int n;
long[] t;
public FenwickTree_1(int n){
this.n = n;
t = new long[n];
}
public long sum(int xl, int xr){
return sum(xr) - sum(xl);
}
public long sum(int x){
long result = 0;
for (int i = x; i >= 0; i = (i & (i + 1)) - 1){
result += t[i];
}
return result;
}
public void update(int x, long delta){
for (int i = x; i < n; i = (i | (i + 1))){
t[i] += delta;
}
}
}
class FenwickTree_2{ //Two-dimensional array
int n, m;
long[][] t;
public FenwickTree_2(int n, int m){
this.n = n;
this.m = m;
t = new long[n][m];
}
public long sum(int xl, int yl, int xr, int yr){
return sum(xr, yr) - sum(xl - 1, yr) - sum(xr, yl - 1) + sum(xl - 1, yl - 1);
}
public long sum(int x, int y){
long result = 0;
for (int i = x; i >= 0; i = (i & (i + 1)) - 1){
for (int j = y; j >= 0; j = (j & (j + 1)) - 1){
result+=t[i][j];
}
}
return result;
}
public void update(int x, int y, long delta){
for (int i = x; i < n; i = (i | (i + 1))){
for (int j = y; j < m; j = (j | (j + 1))){
t[i][j] += delta;
}
}
}
}
class FenwickTree_3{ //Three-dimensional array
int n, m, l;
long[][][] t;
public FenwickTree_3(int n, int m, int l){
this.n = n;
this.m = m;
this.l = l;
t = new long[n][m][l];
}
public long sum(int xl, int yl, int zl, int xr, int yr, int zr){
return sum(xr, yr, zr) - sum(xl - 1, yr, zr)
+ sum(xl - 1, yr, zl - 1) - sum(xr, yr, zl - 1)
- sum(xr, yl - 1, zr) + sum(xl - 1, yl - 1, zr)
- sum(xl - 1, yl - 1, zl - 1) + sum(xr, yl - 1, zl - 1);
}
public long sum(int x, int y, int z){
long result = 0;
for (int i = x; i >= 0; i = (i & (i + 1)) - 1){
for (int j = y; j >= 0; j = (j & (j + 1)) - 1){
for (int k = z; k >= 0; k = (k & (k + 1)) - 1){
result += t[i][j][k];
}
}
}
return result;
}
public void update(int x, int y, int z, long delta){
for (int i = x; i < n; i = (i | (i + 1))){
for (int j = y; j < n; j = (j | (j + 1))){
for (int k = z; k < n; k = (k | (k + 1))){
t[i][j][k] += delta;
}
}
}
}
}
}
}
|
O(1)
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Determine the worst-case time complexity category of a given Java code based on input size n.
</TASK>
<CODE>
import java.awt.Point;
import java.io.*;
import java.math.BigInteger;
import java.util.*;
import static java.lang.Math.*;
public class ProblemA_72 {
final boolean ONLINE_JUDGE = System.getProperty("ONLINE_JUDGE")!=null;
BufferedReader in;
PrintWriter out;
StringTokenizer tok = new StringTokenizer("");
void init() throws FileNotFoundException{
if (ONLINE_JUDGE){
in = new BufferedReader(new InputStreamReader(System.in));
out = new PrintWriter(System.out);
}else{
in = new BufferedReader(new FileReader("input.txt"));
out = new PrintWriter("output.txt");
}
}
String readString() throws IOException{
while(!tok.hasMoreTokens()){
tok = new StringTokenizer(in.readLine());
}
return tok.nextToken();
}
int readInt() throws IOException{
return Integer.parseInt(readString());
}
public static void main(String[] args){
new ProblemA_72().run();
}
public void run(){
try{
long t1 = System.currentTimeMillis();
init();
solve();
out.close();
long t2 = System.currentTimeMillis();
System.err.println("Time = "+(t2-t1));
}catch (Exception e){
e.printStackTrace(System.err);
System.exit(-1);
}
}
void solve() throws IOException{
int n = readInt();
out.print((n + n/2));
}
static class MyAlgo{
long gcd(long a, long b){
if (a == 0) return b;
return gcd(b % a, a);
}
long lcm(long a, long b){
return a / gcd(a, b)*b;
}
long[] gcdPlus(long a, long b){
long[] d = new long[3];
if (a == 0){
d[0] = b;
d[1] = 0;
d[2] = 1;
}else{
d = gcdPlus(b % a, a);
long r = d[1];
d[1] = d[2] - b/a*d[1];
d[2] = r;
}
return d;
}
long binpow(long a, int n){
if (n == 0) return 1;
if ((n & 1) == 0){
long b = binpow(a, n/2);
return b*b;
}else return binpow(a, n-1)*a;
}
long binpowmod(long a, int n, int m){
if (n == 0) return 1;
if ((n & 1) == 0){
long b = binpow(a, n/2);
return (b*b) % m;
}else return binpow(a, n-1)*a % m;
}
long f(long n, int x, int k){ //Кол-во десятичных чисел (включая 0), содержащих в себе цифры от 0 до k-1
if (n == 0) return 1;
long b = binpow(10, x - 1);
long c = n / b;
return (c < k? c: k)*binpow(k, x - 1) + (c < k? 1: 0)*f(n % b, x - 1, k);
}
long fib(int n){
if (n == 0) return 0;
if ((n & 1) == 0){
long f1 = fib(n/2 - 1);
long f2 = fib(n/2 + 1);
return f2*f2 - f1*f1;
}else{
long f1 = fib(n/2);
long f2 = fib(n/2 + 1);
return f1*f1 + f2*f2;
}
}
BigInteger BigFib(int n){
if (n == 0) return BigInteger.ZERO;
if ((n & 1) == 0){
BigInteger f1 = BigFib(n/2 - 1);
f1 = f1.multiply(f1);
BigInteger f2 = BigFib(n/2 + 1);
f2 = f2.multiply(f2);
return f2.subtract(f1);
}else{
BigInteger f1 = BigFib(n/2);
f1 = f1.multiply(f1);
BigInteger f2 = BigFib(n/2 + 1);
f2 = f2.multiply(f2);
return f2.add(f1);
}
}
boolean IsProbablyPrime(long n){
if (n == 1) return false;
if ((n & 1) == 0) return false;
for (int j = 3; j < sqrt(n) + 1; j += 2){
if (n % j == 0) return false;
}
return true;
}
int[] Sieve(int n){
boolean[] b = new boolean[n+1];
Arrays.fill(b, true);
b[0] = false;
b[1] = false;
long nLong = n;
int j=0;
for (int i = 1; i <= n; i++) {
if (b[i]){
j++;
if (((long)i)*i <= nLong) {
for (int k = i*i; k <= n; k += i) {
b[k] = false;
}
}
}
}
int[] p = new int[j];
Arrays.fill(p, 0);
j=0;
for (int i = 2; i <= n; i++) {
if (b[i]){
p[j]=i;
j++;
}
}
return p;
}
public class Permutation {
int[] a;
int n;
public Permutation(int n){
this.n=n;
a=new int[n];
for (int i=0; i<n; i++){
a[i]=i;
}
}
public boolean nextPermutation(){ //Пишется с do{}while(nextPermutation(a));
int i=n-1;
for (i=n-2; i>=0; i--){
if (a[i]<a[i+1]){
break;
}
}
if (i==-1){
return false;
}
int jMin=i+1;
for (int j=n-1; j>i; j--){
if (a[i]<a[j]&&a[j]<a[jMin]){
jMin=j;
}
}
swap(i, jMin);
for (int j=1; j<=(n-i)/2; j++){
swap(i+j, n-j);
}
return true;
}
public int get(int i){
return a[i];
}
void swap(int i, int j){
int r=a[i];
a[i]=a[j];
a[j]=r;
}
}
public class Fraction implements Comparable<Fraction>, Cloneable{
public final Fraction FRACTION_ZERO = new Fraction();
public final Fraction FRACTION_ONE = new Fraction(1);
public long numerator = 0;
public long denominator = 1;
public Fraction(){
numerator = 0;
denominator = 1;
}
public Fraction(long numerator){
this.numerator = numerator;
denominator = 1;
}
public Fraction(long numerator, long denominator){
this.numerator = numerator;
this.denominator = denominator;
Cancellation();
}
public Fraction(double numerator, double denominator, int accuracy){
this.numerator = (long)(numerator*pow(10,accuracy));
this.denominator = (long)(denominator*pow(10,accuracy));
Cancellation();
}
public Fraction(String s){
if (s.charAt(0) == '-'){
denominator = -1;
s = s.substring(1);
}
if (s.indexOf("/") != -1){
denominator *= Integer.parseInt(s.substring(s.indexOf("/") + 1));
}
if (s.indexOf(" ") != -1){
numerator = Integer.parseInt(s.substring(0, s.indexOf(" "))) * abs(denominator) + Integer.parseInt(s.substring(s.indexOf(" ") + 1, s.indexOf("/")));
}else{
if (s.indexOf("/") != -1){
numerator = Integer.parseInt(s.substring(0, s.indexOf("/")));
}else{
numerator = Integer.parseInt(s)*abs(denominator);
}
}
this.Cancellation();
}
void Cancellation(){
long g = gcd(abs(numerator), abs(denominator));
numerator /= g;
denominator /= g;
if (denominator < 0){
numerator *= -1;
denominator *= -1;
}
}
public String toString(){
String s = "";
if (numerator == 0){
return "0";
}
if (numerator < 0){
s += "-";
}
if (abs(numerator) >= denominator){
s += Long.toString(abs(numerator) / denominator) + " ";
}
if (abs(numerator) % denominator != 0){
s += Long.toString(abs(numerator) % denominator);
}else{
s = s.substring(0, s.length()-1);
}
if (denominator != 1){
s += "/" + Long.toString(denominator);
}
return s;
}
public Fraction add(Fraction f){
Fraction fResult = new Fraction();
fResult.denominator = lcm(denominator, f.denominator);
fResult.numerator = numerator * fResult.denominator / denominator + f.numerator * fResult.denominator / f.denominator;
fResult.Cancellation();
return fResult;
}
public Fraction subtract(Fraction f){
Fraction fResult = new Fraction();
fResult.denominator = lcm(denominator, f.denominator);
fResult.numerator = numerator * fResult.denominator / denominator - f.numerator * fResult.denominator / f.denominator;
fResult.Cancellation();
return fResult;
}
public Fraction multiply(Fraction f){
Fraction fResult = new Fraction();
fResult.numerator = numerator * f.numerator;
fResult.denominator = denominator * f.denominator;
fResult.Cancellation();
return fResult;
}
public Fraction divide(Fraction f){
Fraction fResult = new Fraction();
fResult.numerator = numerator * f.denominator;
fResult.denominator = denominator * f.numerator;
fResult.Cancellation();
return fResult;
}
@Override
public int compareTo(Fraction f){
long g = gcd(denominator, f.denominator);
long res = numerator * (f.denominator / g) - f.numerator * (denominator / g);
if (res < 0){
return -1;
}
if (res > 0){
return 1;
}
return 0;
}
public Fraction clone(){
Fraction fResult = new Fraction(numerator, denominator);
return fResult;
}
public Fraction floor(){
Fraction fResult = this.clone();
fResult.numerator = (fResult.numerator / fResult.denominator) * fResult.denominator;
return fResult;
}
public Fraction ceil(){
Fraction fResult = this.clone();
fResult.numerator = (fResult.numerator/fResult.denominator + 1) * fResult.denominator;
return fResult;
}
public Fraction binpow(int n){
if (n==0) return FRACTION_ONE;
if ((n&1)==0){
Fraction f=this.binpow(n/2);
return f.multiply(f);
}else return binpow(n-1).multiply(this);
}
}
class FenwickTree_1{ //One-dimensional array
int n;
long[] t;
public FenwickTree_1(int n){
this.n = n;
t = new long[n];
}
public long sum(int xl, int xr){
return sum(xr) - sum(xl);
}
public long sum(int x){
long result = 0;
for (int i = x; i >= 0; i = (i & (i + 1)) - 1){
result += t[i];
}
return result;
}
public void update(int x, long delta){
for (int i = x; i < n; i = (i | (i + 1))){
t[i] += delta;
}
}
}
class FenwickTree_2{ //Two-dimensional array
int n, m;
long[][] t;
public FenwickTree_2(int n, int m){
this.n = n;
this.m = m;
t = new long[n][m];
}
public long sum(int xl, int yl, int xr, int yr){
return sum(xr, yr) - sum(xl - 1, yr) - sum(xr, yl - 1) + sum(xl - 1, yl - 1);
}
public long sum(int x, int y){
long result = 0;
for (int i = x; i >= 0; i = (i & (i + 1)) - 1){
for (int j = y; j >= 0; j = (j & (j + 1)) - 1){
result+=t[i][j];
}
}
return result;
}
public void update(int x, int y, long delta){
for (int i = x; i < n; i = (i | (i + 1))){
for (int j = y; j < m; j = (j | (j + 1))){
t[i][j] += delta;
}
}
}
}
class FenwickTree_3{ //Three-dimensional array
int n, m, l;
long[][][] t;
public FenwickTree_3(int n, int m, int l){
this.n = n;
this.m = m;
this.l = l;
t = new long[n][m][l];
}
public long sum(int xl, int yl, int zl, int xr, int yr, int zr){
return sum(xr, yr, zr) - sum(xl - 1, yr, zr)
+ sum(xl - 1, yr, zl - 1) - sum(xr, yr, zl - 1)
- sum(xr, yl - 1, zr) + sum(xl - 1, yl - 1, zr)
- sum(xl - 1, yl - 1, zl - 1) + sum(xr, yl - 1, zl - 1);
}
public long sum(int x, int y, int z){
long result = 0;
for (int i = x; i >= 0; i = (i & (i + 1)) - 1){
for (int j = y; j >= 0; j = (j & (j + 1)) - 1){
for (int k = z; k >= 0; k = (k & (k + 1)) - 1){
result += t[i][j][k];
}
}
}
return result;
}
public void update(int x, int y, int z, long delta){
for (int i = x; i < n; i = (i | (i + 1))){
for (int j = y; j < n; j = (j | (j + 1))){
for (int k = z; k < n; k = (k | (k + 1))){
t[i][j][k] += delta;
}
}
}
}
}
}
}
</CODE>
<EVALUATION_RUBRIC>
- non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially.
- O(log(n)): The time complexity increases logarithmically in relation to the input size.
- O(n): The time complexity increases proportionally to the input size n in a linear manner.
- O(1): The time complexity is constant to the input size n.
- O(n^3): The time complexity scales proportionally to the cube of the input size.
- O(nlog(n)): The time complexity combines linear and logarithmic growth factors.
- O(n^2): The time complexity grows proportionally to the square of the input size.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n.
</TASK>
<CODE>
import java.awt.Point;
import java.io.*;
import java.math.BigInteger;
import java.util.*;
import static java.lang.Math.*;
public class ProblemA_72 {
final boolean ONLINE_JUDGE = System.getProperty("ONLINE_JUDGE")!=null;
BufferedReader in;
PrintWriter out;
StringTokenizer tok = new StringTokenizer("");
void init() throws FileNotFoundException{
if (ONLINE_JUDGE){
in = new BufferedReader(new InputStreamReader(System.in));
out = new PrintWriter(System.out);
}else{
in = new BufferedReader(new FileReader("input.txt"));
out = new PrintWriter("output.txt");
}
}
String readString() throws IOException{
while(!tok.hasMoreTokens()){
tok = new StringTokenizer(in.readLine());
}
return tok.nextToken();
}
int readInt() throws IOException{
return Integer.parseInt(readString());
}
public static void main(String[] args){
new ProblemA_72().run();
}
public void run(){
try{
long t1 = System.currentTimeMillis();
init();
solve();
out.close();
long t2 = System.currentTimeMillis();
System.err.println("Time = "+(t2-t1));
}catch (Exception e){
e.printStackTrace(System.err);
System.exit(-1);
}
}
void solve() throws IOException{
int n = readInt();
out.print((n + n/2));
}
static class MyAlgo{
long gcd(long a, long b){
if (a == 0) return b;
return gcd(b % a, a);
}
long lcm(long a, long b){
return a / gcd(a, b)*b;
}
long[] gcdPlus(long a, long b){
long[] d = new long[3];
if (a == 0){
d[0] = b;
d[1] = 0;
d[2] = 1;
}else{
d = gcdPlus(b % a, a);
long r = d[1];
d[1] = d[2] - b/a*d[1];
d[2] = r;
}
return d;
}
long binpow(long a, int n){
if (n == 0) return 1;
if ((n & 1) == 0){
long b = binpow(a, n/2);
return b*b;
}else return binpow(a, n-1)*a;
}
long binpowmod(long a, int n, int m){
if (n == 0) return 1;
if ((n & 1) == 0){
long b = binpow(a, n/2);
return (b*b) % m;
}else return binpow(a, n-1)*a % m;
}
long f(long n, int x, int k){ //Кол-во десятичных чисел (включая 0), содержащих в себе цифры от 0 до k-1
if (n == 0) return 1;
long b = binpow(10, x - 1);
long c = n / b;
return (c < k? c: k)*binpow(k, x - 1) + (c < k? 1: 0)*f(n % b, x - 1, k);
}
long fib(int n){
if (n == 0) return 0;
if ((n & 1) == 0){
long f1 = fib(n/2 - 1);
long f2 = fib(n/2 + 1);
return f2*f2 - f1*f1;
}else{
long f1 = fib(n/2);
long f2 = fib(n/2 + 1);
return f1*f1 + f2*f2;
}
}
BigInteger BigFib(int n){
if (n == 0) return BigInteger.ZERO;
if ((n & 1) == 0){
BigInteger f1 = BigFib(n/2 - 1);
f1 = f1.multiply(f1);
BigInteger f2 = BigFib(n/2 + 1);
f2 = f2.multiply(f2);
return f2.subtract(f1);
}else{
BigInteger f1 = BigFib(n/2);
f1 = f1.multiply(f1);
BigInteger f2 = BigFib(n/2 + 1);
f2 = f2.multiply(f2);
return f2.add(f1);
}
}
boolean IsProbablyPrime(long n){
if (n == 1) return false;
if ((n & 1) == 0) return false;
for (int j = 3; j < sqrt(n) + 1; j += 2){
if (n % j == 0) return false;
}
return true;
}
int[] Sieve(int n){
boolean[] b = new boolean[n+1];
Arrays.fill(b, true);
b[0] = false;
b[1] = false;
long nLong = n;
int j=0;
for (int i = 1; i <= n; i++) {
if (b[i]){
j++;
if (((long)i)*i <= nLong) {
for (int k = i*i; k <= n; k += i) {
b[k] = false;
}
}
}
}
int[] p = new int[j];
Arrays.fill(p, 0);
j=0;
for (int i = 2; i <= n; i++) {
if (b[i]){
p[j]=i;
j++;
}
}
return p;
}
public class Permutation {
int[] a;
int n;
public Permutation(int n){
this.n=n;
a=new int[n];
for (int i=0; i<n; i++){
a[i]=i;
}
}
public boolean nextPermutation(){ //Пишется с do{}while(nextPermutation(a));
int i=n-1;
for (i=n-2; i>=0; i--){
if (a[i]<a[i+1]){
break;
}
}
if (i==-1){
return false;
}
int jMin=i+1;
for (int j=n-1; j>i; j--){
if (a[i]<a[j]&&a[j]<a[jMin]){
jMin=j;
}
}
swap(i, jMin);
for (int j=1; j<=(n-i)/2; j++){
swap(i+j, n-j);
}
return true;
}
public int get(int i){
return a[i];
}
void swap(int i, int j){
int r=a[i];
a[i]=a[j];
a[j]=r;
}
}
public class Fraction implements Comparable<Fraction>, Cloneable{
public final Fraction FRACTION_ZERO = new Fraction();
public final Fraction FRACTION_ONE = new Fraction(1);
public long numerator = 0;
public long denominator = 1;
public Fraction(){
numerator = 0;
denominator = 1;
}
public Fraction(long numerator){
this.numerator = numerator;
denominator = 1;
}
public Fraction(long numerator, long denominator){
this.numerator = numerator;
this.denominator = denominator;
Cancellation();
}
public Fraction(double numerator, double denominator, int accuracy){
this.numerator = (long)(numerator*pow(10,accuracy));
this.denominator = (long)(denominator*pow(10,accuracy));
Cancellation();
}
public Fraction(String s){
if (s.charAt(0) == '-'){
denominator = -1;
s = s.substring(1);
}
if (s.indexOf("/") != -1){
denominator *= Integer.parseInt(s.substring(s.indexOf("/") + 1));
}
if (s.indexOf(" ") != -1){
numerator = Integer.parseInt(s.substring(0, s.indexOf(" "))) * abs(denominator) + Integer.parseInt(s.substring(s.indexOf(" ") + 1, s.indexOf("/")));
}else{
if (s.indexOf("/") != -1){
numerator = Integer.parseInt(s.substring(0, s.indexOf("/")));
}else{
numerator = Integer.parseInt(s)*abs(denominator);
}
}
this.Cancellation();
}
void Cancellation(){
long g = gcd(abs(numerator), abs(denominator));
numerator /= g;
denominator /= g;
if (denominator < 0){
numerator *= -1;
denominator *= -1;
}
}
public String toString(){
String s = "";
if (numerator == 0){
return "0";
}
if (numerator < 0){
s += "-";
}
if (abs(numerator) >= denominator){
s += Long.toString(abs(numerator) / denominator) + " ";
}
if (abs(numerator) % denominator != 0){
s += Long.toString(abs(numerator) % denominator);
}else{
s = s.substring(0, s.length()-1);
}
if (denominator != 1){
s += "/" + Long.toString(denominator);
}
return s;
}
public Fraction add(Fraction f){
Fraction fResult = new Fraction();
fResult.denominator = lcm(denominator, f.denominator);
fResult.numerator = numerator * fResult.denominator / denominator + f.numerator * fResult.denominator / f.denominator;
fResult.Cancellation();
return fResult;
}
public Fraction subtract(Fraction f){
Fraction fResult = new Fraction();
fResult.denominator = lcm(denominator, f.denominator);
fResult.numerator = numerator * fResult.denominator / denominator - f.numerator * fResult.denominator / f.denominator;
fResult.Cancellation();
return fResult;
}
public Fraction multiply(Fraction f){
Fraction fResult = new Fraction();
fResult.numerator = numerator * f.numerator;
fResult.denominator = denominator * f.denominator;
fResult.Cancellation();
return fResult;
}
public Fraction divide(Fraction f){
Fraction fResult = new Fraction();
fResult.numerator = numerator * f.denominator;
fResult.denominator = denominator * f.numerator;
fResult.Cancellation();
return fResult;
}
@Override
public int compareTo(Fraction f){
long g = gcd(denominator, f.denominator);
long res = numerator * (f.denominator / g) - f.numerator * (denominator / g);
if (res < 0){
return -1;
}
if (res > 0){
return 1;
}
return 0;
}
public Fraction clone(){
Fraction fResult = new Fraction(numerator, denominator);
return fResult;
}
public Fraction floor(){
Fraction fResult = this.clone();
fResult.numerator = (fResult.numerator / fResult.denominator) * fResult.denominator;
return fResult;
}
public Fraction ceil(){
Fraction fResult = this.clone();
fResult.numerator = (fResult.numerator/fResult.denominator + 1) * fResult.denominator;
return fResult;
}
public Fraction binpow(int n){
if (n==0) return FRACTION_ONE;
if ((n&1)==0){
Fraction f=this.binpow(n/2);
return f.multiply(f);
}else return binpow(n-1).multiply(this);
}
}
class FenwickTree_1{ //One-dimensional array
int n;
long[] t;
public FenwickTree_1(int n){
this.n = n;
t = new long[n];
}
public long sum(int xl, int xr){
return sum(xr) - sum(xl);
}
public long sum(int x){
long result = 0;
for (int i = x; i >= 0; i = (i & (i + 1)) - 1){
result += t[i];
}
return result;
}
public void update(int x, long delta){
for (int i = x; i < n; i = (i | (i + 1))){
t[i] += delta;
}
}
}
class FenwickTree_2{ //Two-dimensional array
int n, m;
long[][] t;
public FenwickTree_2(int n, int m){
this.n = n;
this.m = m;
t = new long[n][m];
}
public long sum(int xl, int yl, int xr, int yr){
return sum(xr, yr) - sum(xl - 1, yr) - sum(xr, yl - 1) + sum(xl - 1, yl - 1);
}
public long sum(int x, int y){
long result = 0;
for (int i = x; i >= 0; i = (i & (i + 1)) - 1){
for (int j = y; j >= 0; j = (j & (j + 1)) - 1){
result+=t[i][j];
}
}
return result;
}
public void update(int x, int y, long delta){
for (int i = x; i < n; i = (i | (i + 1))){
for (int j = y; j < m; j = (j | (j + 1))){
t[i][j] += delta;
}
}
}
}
class FenwickTree_3{ //Three-dimensional array
int n, m, l;
long[][][] t;
public FenwickTree_3(int n, int m, int l){
this.n = n;
this.m = m;
this.l = l;
t = new long[n][m][l];
}
public long sum(int xl, int yl, int zl, int xr, int yr, int zr){
return sum(xr, yr, zr) - sum(xl - 1, yr, zr)
+ sum(xl - 1, yr, zl - 1) - sum(xr, yr, zl - 1)
- sum(xr, yl - 1, zr) + sum(xl - 1, yl - 1, zr)
- sum(xl - 1, yl - 1, zl - 1) + sum(xr, yl - 1, zl - 1);
}
public long sum(int x, int y, int z){
long result = 0;
for (int i = x; i >= 0; i = (i & (i + 1)) - 1){
for (int j = y; j >= 0; j = (j & (j + 1)) - 1){
for (int k = z; k >= 0; k = (k & (k + 1)) - 1){
result += t[i][j][k];
}
}
}
return result;
}
public void update(int x, int y, int z, long delta){
for (int i = x; i < n; i = (i | (i + 1))){
for (int j = y; j < n; j = (j | (j + 1))){
for (int k = z; k < n; k = (k | (k + 1))){
t[i][j][k] += delta;
}
}
}
}
}
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially.
- O(log(n)): The execution time ascends in proportion to the logarithm of the input size n.
- O(1): The execution time is unaffected by the size of the input n.
- others: The time complexity does not fit to any of the given categories or is ambiguous.
- O(n^2): The execution time ascends in proportion to the square of the input size n.
- O(n): The execution time ascends in a one-to-one ratio with the input size n.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- O(n^3): The execution time ascends in proportion to the cube of the input size n.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
| 3,878
| 3,082
|
3,761
|
import java.util.*;
import java.io.*;
public class D {
public static int dir[][]={{-1,0},{1,0},{0,-1},{0,1}};
public static void main(String[] args) {
// Scanner sc=new Scanner(System.in);
FastScanner sc = new FastScanner();
FastOutput out = new FastOutput(System.out);
int n=sc.nextInt();
int m=sc.nextInt();
int k=sc.nextInt();
int ans[][][]=new int[n][m][11];
int arr[][]=new int[n*m][4];
for(int i=0;i<n;i++){
for(int j=0;j<m-1;j++){
int x=sc.nextInt();
arr[i*m+j][3]=x;
arr[i*m+j+1][2]=x;
}
}
for(int i=0;i<n-1;i++){
for(int j=0;j<m;j++){
int x=sc.nextInt();
arr[i*m+j][1]=x;
arr[(i+1)*m+j][0]=x;
}
}
if(k%2==1){
for(int i=0;i<n;i++){
StringBuilder sb=new StringBuilder("");
for(int j=0;j<m;j++){
ans[i][j][10]=-1;
sb.append(ans[i][j][10]+" ");
}
out.println(sb.toString());
}
}else{
for(int ceng=1;ceng<=k/2;ceng++){
for(int i=0;i<n;i++){
for(int j=0;j<m;j++){
ans[i][j][ceng]=Integer.MAX_VALUE/3;
for(int dr=0;dr<4;dr++){
int nx=i+dir[dr][0];
int ny=j+dir[dr][1];
if(nx<n&&ny<m&&nx>=0&&ny>=0){
ans[i][j][ceng]=Math.min(ans[i][j][ceng], ans[nx][ny][ceng-1]+arr[i*m+j][dr]);
}
}
}
}
}
for(int i=0;i<n;i++){
StringBuilder sb=new StringBuilder("");
for(int j=0;j<m;j++){
sb.append(ans[i][j][k/2]*2+" ");
}
out.println(sb.toString());
}
}
out.close();
}
static class FastScanner {
BufferedReader br=new BufferedReader(new InputStreamReader(System.in));
StringTokenizer st=new StringTokenizer("");
String next() {
while (!st.hasMoreTokens())
try {
st=new StringTokenizer(br.readLine());
} catch (IOException e) {
e.printStackTrace();
}
return st.nextToken();
}
int nextInt() {
return Integer.parseInt(next());
}
int[] readIntArray(int n) {
int[] a=new int[n];
for (int i=0; i<n; i++) a[i]=nextInt();
return a;
}
long[] readLongArray(int n) {
long[] a=new long[n];
for (int i=0; i<n; i++) a[i]=nextLong();
return a;
}
long nextLong() {
return Long.parseLong(next());
}
}
static class FastOutput implements AutoCloseable, Closeable, Appendable {
private static final int THRESHOLD = 1 << 13;
private final Writer os;
private StringBuilder cache = new StringBuilder(THRESHOLD * 2);
public FastOutput append(CharSequence csq) {
cache.append(csq);
return this;
}
public FastOutput append(CharSequence csq, int start, int end) {
cache.append(csq, start, end);
return this;
}
private void afterWrite() {
if (cache.length() < THRESHOLD) {
return;
}
flush();
}
public FastOutput(Writer os) {
this.os = os;
}
public FastOutput(OutputStream os) {
this(new OutputStreamWriter(os));
}
public FastOutput append(char c) {
cache.append(c);
afterWrite();
return this;
}
public FastOutput append(int c) {
cache.append(c);
afterWrite();
return this;
}
public FastOutput append(String c) {
cache.append(c);
afterWrite();
return this;
}
public FastOutput println(String c) {
return append(c).println();
}
public FastOutput println() {
return append(System.lineSeparator());
}
public FastOutput flush() {
try {
os.append(cache);
os.flush();
cache.setLength(0);
} catch (IOException e) {
throw new UncheckedIOException(e);
}
return this;
}
public void close() {
flush();
try {
os.close();
} catch (IOException e) {
throw new UncheckedIOException(e);
}
}
public String toString() {
return cache.toString();
}
}
}
|
O(n^3)
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Classify the following Java code's worst-case time complexity according to its relationship to the input size n.
</TASK>
<CODE>
import java.util.*;
import java.io.*;
public class D {
public static int dir[][]={{-1,0},{1,0},{0,-1},{0,1}};
public static void main(String[] args) {
// Scanner sc=new Scanner(System.in);
FastScanner sc = new FastScanner();
FastOutput out = new FastOutput(System.out);
int n=sc.nextInt();
int m=sc.nextInt();
int k=sc.nextInt();
int ans[][][]=new int[n][m][11];
int arr[][]=new int[n*m][4];
for(int i=0;i<n;i++){
for(int j=0;j<m-1;j++){
int x=sc.nextInt();
arr[i*m+j][3]=x;
arr[i*m+j+1][2]=x;
}
}
for(int i=0;i<n-1;i++){
for(int j=0;j<m;j++){
int x=sc.nextInt();
arr[i*m+j][1]=x;
arr[(i+1)*m+j][0]=x;
}
}
if(k%2==1){
for(int i=0;i<n;i++){
StringBuilder sb=new StringBuilder("");
for(int j=0;j<m;j++){
ans[i][j][10]=-1;
sb.append(ans[i][j][10]+" ");
}
out.println(sb.toString());
}
}else{
for(int ceng=1;ceng<=k/2;ceng++){
for(int i=0;i<n;i++){
for(int j=0;j<m;j++){
ans[i][j][ceng]=Integer.MAX_VALUE/3;
for(int dr=0;dr<4;dr++){
int nx=i+dir[dr][0];
int ny=j+dir[dr][1];
if(nx<n&&ny<m&&nx>=0&&ny>=0){
ans[i][j][ceng]=Math.min(ans[i][j][ceng], ans[nx][ny][ceng-1]+arr[i*m+j][dr]);
}
}
}
}
}
for(int i=0;i<n;i++){
StringBuilder sb=new StringBuilder("");
for(int j=0;j<m;j++){
sb.append(ans[i][j][k/2]*2+" ");
}
out.println(sb.toString());
}
}
out.close();
}
static class FastScanner {
BufferedReader br=new BufferedReader(new InputStreamReader(System.in));
StringTokenizer st=new StringTokenizer("");
String next() {
while (!st.hasMoreTokens())
try {
st=new StringTokenizer(br.readLine());
} catch (IOException e) {
e.printStackTrace();
}
return st.nextToken();
}
int nextInt() {
return Integer.parseInt(next());
}
int[] readIntArray(int n) {
int[] a=new int[n];
for (int i=0; i<n; i++) a[i]=nextInt();
return a;
}
long[] readLongArray(int n) {
long[] a=new long[n];
for (int i=0; i<n; i++) a[i]=nextLong();
return a;
}
long nextLong() {
return Long.parseLong(next());
}
}
static class FastOutput implements AutoCloseable, Closeable, Appendable {
private static final int THRESHOLD = 1 << 13;
private final Writer os;
private StringBuilder cache = new StringBuilder(THRESHOLD * 2);
public FastOutput append(CharSequence csq) {
cache.append(csq);
return this;
}
public FastOutput append(CharSequence csq, int start, int end) {
cache.append(csq, start, end);
return this;
}
private void afterWrite() {
if (cache.length() < THRESHOLD) {
return;
}
flush();
}
public FastOutput(Writer os) {
this.os = os;
}
public FastOutput(OutputStream os) {
this(new OutputStreamWriter(os));
}
public FastOutput append(char c) {
cache.append(c);
afterWrite();
return this;
}
public FastOutput append(int c) {
cache.append(c);
afterWrite();
return this;
}
public FastOutput append(String c) {
cache.append(c);
afterWrite();
return this;
}
public FastOutput println(String c) {
return append(c).println();
}
public FastOutput println() {
return append(System.lineSeparator());
}
public FastOutput flush() {
try {
os.append(cache);
os.flush();
cache.setLength(0);
} catch (IOException e) {
throw new UncheckedIOException(e);
}
return this;
}
public void close() {
flush();
try {
os.close();
} catch (IOException e) {
throw new UncheckedIOException(e);
}
}
public String toString() {
return cache.toString();
}
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(nlog(n)): The running time increases with the product of n and logarithm of n.
- O(n^2): The running time increases with the square of the input size n.
- O(n): The running time grows linearly with the input size n.
- O(1): The running time does not change regardless of the input size n.
- O(n^3): The running time increases with the cube of the input size n.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- O(log(n)): The running time increases with the logarithm of the input size n.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Classify the following Java code's worst-case time complexity according to its relationship to the input size n.
</TASK>
<CODE>
import java.util.*;
import java.io.*;
public class D {
public static int dir[][]={{-1,0},{1,0},{0,-1},{0,1}};
public static void main(String[] args) {
// Scanner sc=new Scanner(System.in);
FastScanner sc = new FastScanner();
FastOutput out = new FastOutput(System.out);
int n=sc.nextInt();
int m=sc.nextInt();
int k=sc.nextInt();
int ans[][][]=new int[n][m][11];
int arr[][]=new int[n*m][4];
for(int i=0;i<n;i++){
for(int j=0;j<m-1;j++){
int x=sc.nextInt();
arr[i*m+j][3]=x;
arr[i*m+j+1][2]=x;
}
}
for(int i=0;i<n-1;i++){
for(int j=0;j<m;j++){
int x=sc.nextInt();
arr[i*m+j][1]=x;
arr[(i+1)*m+j][0]=x;
}
}
if(k%2==1){
for(int i=0;i<n;i++){
StringBuilder sb=new StringBuilder("");
for(int j=0;j<m;j++){
ans[i][j][10]=-1;
sb.append(ans[i][j][10]+" ");
}
out.println(sb.toString());
}
}else{
for(int ceng=1;ceng<=k/2;ceng++){
for(int i=0;i<n;i++){
for(int j=0;j<m;j++){
ans[i][j][ceng]=Integer.MAX_VALUE/3;
for(int dr=0;dr<4;dr++){
int nx=i+dir[dr][0];
int ny=j+dir[dr][1];
if(nx<n&&ny<m&&nx>=0&&ny>=0){
ans[i][j][ceng]=Math.min(ans[i][j][ceng], ans[nx][ny][ceng-1]+arr[i*m+j][dr]);
}
}
}
}
}
for(int i=0;i<n;i++){
StringBuilder sb=new StringBuilder("");
for(int j=0;j<m;j++){
sb.append(ans[i][j][k/2]*2+" ");
}
out.println(sb.toString());
}
}
out.close();
}
static class FastScanner {
BufferedReader br=new BufferedReader(new InputStreamReader(System.in));
StringTokenizer st=new StringTokenizer("");
String next() {
while (!st.hasMoreTokens())
try {
st=new StringTokenizer(br.readLine());
} catch (IOException e) {
e.printStackTrace();
}
return st.nextToken();
}
int nextInt() {
return Integer.parseInt(next());
}
int[] readIntArray(int n) {
int[] a=new int[n];
for (int i=0; i<n; i++) a[i]=nextInt();
return a;
}
long[] readLongArray(int n) {
long[] a=new long[n];
for (int i=0; i<n; i++) a[i]=nextLong();
return a;
}
long nextLong() {
return Long.parseLong(next());
}
}
static class FastOutput implements AutoCloseable, Closeable, Appendable {
private static final int THRESHOLD = 1 << 13;
private final Writer os;
private StringBuilder cache = new StringBuilder(THRESHOLD * 2);
public FastOutput append(CharSequence csq) {
cache.append(csq);
return this;
}
public FastOutput append(CharSequence csq, int start, int end) {
cache.append(csq, start, end);
return this;
}
private void afterWrite() {
if (cache.length() < THRESHOLD) {
return;
}
flush();
}
public FastOutput(Writer os) {
this.os = os;
}
public FastOutput(OutputStream os) {
this(new OutputStreamWriter(os));
}
public FastOutput append(char c) {
cache.append(c);
afterWrite();
return this;
}
public FastOutput append(int c) {
cache.append(c);
afterWrite();
return this;
}
public FastOutput append(String c) {
cache.append(c);
afterWrite();
return this;
}
public FastOutput println(String c) {
return append(c).println();
}
public FastOutput println() {
return append(System.lineSeparator());
}
public FastOutput flush() {
try {
os.append(cache);
os.flush();
cache.setLength(0);
} catch (IOException e) {
throw new UncheckedIOException(e);
}
return this;
}
public void close() {
flush();
try {
os.close();
} catch (IOException e) {
throw new UncheckedIOException(e);
}
}
public String toString() {
return cache.toString();
}
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(n): The running time grows linearly with the input size n.
- O(log(n)): The running time increases with the logarithm of the input size n.
- O(nlog(n)): The running time increases with the product of n and logarithm of n.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- O(1): The running time does not change regardless of the input size n.
- O(n^3): The running time increases with the cube of the input size n.
- O(n^2): The running time increases with the square of the input size n.
- others: The code does not clearly correspond to the listed classes or has an unclassified time complexity.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
| 1,443
| 3,753
|
3,353
|
import java.util.Scanner;
public class prob1 {
public static void main(String[] args) {
Scanner input = new Scanner(System.in);
String s = input.next();
int n = s.length();
int i = n-1;
CharSequence temp;
for(i = n-1; i > 0; i--)
for(int j = 0 ; j <= n-i; j++)
{
temp = s.subSequence(j, i+j);
if( s.substring(j+1, n).contains(temp) || s.substring(0, j+i-1).contains(temp))
{
System.out.println(i);
return;
}
}
System.out.println(0);
}
}
|
O(n^3)
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n.
</TASK>
<CODE>
import java.util.Scanner;
public class prob1 {
public static void main(String[] args) {
Scanner input = new Scanner(System.in);
String s = input.next();
int n = s.length();
int i = n-1;
CharSequence temp;
for(i = n-1; i > 0; i--)
for(int j = 0 ; j <= n-i; j++)
{
temp = s.subSequence(j, i+j);
if( s.substring(j+1, n).contains(temp) || s.substring(0, j+i-1).contains(temp))
{
System.out.println(i);
return;
}
}
System.out.println(0);
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(n^2): The execution time ascends in proportion to the square of the input size n.
- O(n): The execution time ascends in a one-to-one ratio with the input size n.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially.
- O(log(n)): The execution time ascends in proportion to the logarithm of the input size n.
- O(1): The execution time is unaffected by the size of the input n.
- O(n^3): The execution time ascends in proportion to the cube of the input size n.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n.
</TASK>
<CODE>
import java.util.Scanner;
public class prob1 {
public static void main(String[] args) {
Scanner input = new Scanner(System.in);
String s = input.next();
int n = s.length();
int i = n-1;
CharSequence temp;
for(i = n-1; i > 0; i--)
for(int j = 0 ; j <= n-i; j++)
{
temp = s.subSequence(j, i+j);
if( s.substring(j+1, n).contains(temp) || s.substring(0, j+i-1).contains(temp))
{
System.out.println(i);
return;
}
}
System.out.println(0);
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(n): The execution time ascends in a one-to-one ratio with the input size n.
- others: The time complexity does not fit to any of the given categories or is ambiguous.
- O(n^3): The execution time ascends in proportion to the cube of the input size n.
- O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially.
- O(log(n)): The execution time ascends in proportion to the logarithm of the input size n.
- O(1): The execution time is unaffected by the size of the input n.
- O(n^2): The execution time ascends in proportion to the square of the input size n.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
| 507
| 3,347
|
3,442
|
import java.util.*;
import java.io.*;
import java.math.*;
public class Main {
public static Scanner scan = new Scanner(System.in);
public static boolean bg = true;
public static void main(String[] args) throws Exception {
String k1 = scan.next();
HashSet<String> met = new HashSet();
String ans = "";
for (int i=1;i<=k1.length()-1;i++){
for (int j=0;j+i<=k1.length();j++){
String cur = k1.substring(j, j+i);
if (!met.contains(cur)){
met.add(cur);
}
else {
if (cur.length()>ans.length())ans=cur;
}
}
}
System.out.println(ans.length());
}
}
|
O(n^3)
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n.
</TASK>
<CODE>
import java.util.*;
import java.io.*;
import java.math.*;
public class Main {
public static Scanner scan = new Scanner(System.in);
public static boolean bg = true;
public static void main(String[] args) throws Exception {
String k1 = scan.next();
HashSet<String> met = new HashSet();
String ans = "";
for (int i=1;i<=k1.length()-1;i++){
for (int j=0;j+i<=k1.length();j++){
String cur = k1.substring(j, j+i);
if (!met.contains(cur)){
met.add(cur);
}
else {
if (cur.length()>ans.length())ans=cur;
}
}
}
System.out.println(ans.length());
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(1): The execution time is unaffected by the size of the input n.
- O(log(n)): The execution time ascends in proportion to the logarithm of the input size n.
- O(n): The execution time ascends in a one-to-one ratio with the input size n.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- O(n^3): The execution time ascends in proportion to the cube of the input size n.
- O(n^2): The execution time ascends in proportion to the square of the input size n.
- O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Classify the following Java code's worst-case time complexity according to its relationship to the input size n.
</TASK>
<CODE>
import java.util.*;
import java.io.*;
import java.math.*;
public class Main {
public static Scanner scan = new Scanner(System.in);
public static boolean bg = true;
public static void main(String[] args) throws Exception {
String k1 = scan.next();
HashSet<String> met = new HashSet();
String ans = "";
for (int i=1;i<=k1.length()-1;i++){
for (int j=0;j+i<=k1.length();j++){
String cur = k1.substring(j, j+i);
if (!met.contains(cur)){
met.add(cur);
}
else {
if (cur.length()>ans.length())ans=cur;
}
}
}
System.out.println(ans.length());
}
}
</CODE>
<EVALUATION_RUBRIC>
- others: The code does not clearly correspond to the listed classes or has an unclassified time complexity.
- O(1): The running time does not change regardless of the input size n.
- O(nlog(n)): The running time increases with the product of n and logarithm of n.
- O(n): The running time grows linearly with the input size n.
- O(n^2): The running time increases with the square of the input size n.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- O(log(n)): The running time increases with the logarithm of the input size n.
- O(n^3): The running time increases with the cube of the input size n.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
| 511
| 3,436
|
1,913
|
import java.io.*;
import java.util.*;
import java.math.*;
public class Main
{
BufferedReader br=new BufferedReader(new InputStreamReader(System.in));
StringTokenizer tokenizer=null;
public static void main(String[] args) throws IOException
{
new Main().execute();
}
void debug(Object...os)
{
System.out.println(Arrays.deepToString(os));
}
int ni() throws IOException
{
return Integer.parseInt(ns());
}
long nl() throws IOException
{
return Long.parseLong(ns());
}
double nd() throws IOException
{
return Double.parseDouble(ns());
}
String ns() throws IOException
{
while (tokenizer == null || !tokenizer.hasMoreTokens())
tokenizer = new StringTokenizer(br.readLine());
return tokenizer.nextToken();
}
String nline() throws IOException
{
tokenizer=null;
return br.readLine();
}
//Main Code starts Here
int totalCases, testNum;
int sum;
int n;
int arr[];
void execute() throws IOException
{
totalCases = 1;
for(testNum = 1; testNum <= totalCases; testNum++)
{
if(!input())
break;
solve();
}
}
void solve() throws IOException
{
Arrays.sort(arr);
int count = 0;
int ans = 0;
for(int i = n-1;i>=0;i--)
{
count+= arr[i];
if(count>sum-count)
{
ans = n-i;
break;
}
}
System.out.println(ans);
}
boolean input() throws IOException
{
n = ni();
sum = 0;
arr = new int[n];
for(int i = 0;i<n;i++)
{
arr[i] = ni();
sum = sum+arr[i];
}
return true;
}
}
|
O(nlog(n))
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n.
</TASK>
<CODE>
import java.io.*;
import java.util.*;
import java.math.*;
public class Main
{
BufferedReader br=new BufferedReader(new InputStreamReader(System.in));
StringTokenizer tokenizer=null;
public static void main(String[] args) throws IOException
{
new Main().execute();
}
void debug(Object...os)
{
System.out.println(Arrays.deepToString(os));
}
int ni() throws IOException
{
return Integer.parseInt(ns());
}
long nl() throws IOException
{
return Long.parseLong(ns());
}
double nd() throws IOException
{
return Double.parseDouble(ns());
}
String ns() throws IOException
{
while (tokenizer == null || !tokenizer.hasMoreTokens())
tokenizer = new StringTokenizer(br.readLine());
return tokenizer.nextToken();
}
String nline() throws IOException
{
tokenizer=null;
return br.readLine();
}
//Main Code starts Here
int totalCases, testNum;
int sum;
int n;
int arr[];
void execute() throws IOException
{
totalCases = 1;
for(testNum = 1; testNum <= totalCases; testNum++)
{
if(!input())
break;
solve();
}
}
void solve() throws IOException
{
Arrays.sort(arr);
int count = 0;
int ans = 0;
for(int i = n-1;i>=0;i--)
{
count+= arr[i];
if(count>sum-count)
{
ans = n-i;
break;
}
}
System.out.println(ans);
}
boolean input() throws IOException
{
n = ni();
sum = 0;
arr = new int[n];
for(int i = 0;i<n;i++)
{
arr[i] = ni();
sum = sum+arr[i];
}
return true;
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(1): The execution time is unaffected by the size of the input n.
- O(n^3): The execution time ascends in proportion to the cube of the input size n.
- O(n^2): The execution time ascends in proportion to the square of the input size n.
- O(log(n)): The execution time ascends in proportion to the logarithm of the input size n.
- O(n): The execution time ascends in a one-to-one ratio with the input size n.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n.
</TASK>
<CODE>
import java.io.*;
import java.util.*;
import java.math.*;
public class Main
{
BufferedReader br=new BufferedReader(new InputStreamReader(System.in));
StringTokenizer tokenizer=null;
public static void main(String[] args) throws IOException
{
new Main().execute();
}
void debug(Object...os)
{
System.out.println(Arrays.deepToString(os));
}
int ni() throws IOException
{
return Integer.parseInt(ns());
}
long nl() throws IOException
{
return Long.parseLong(ns());
}
double nd() throws IOException
{
return Double.parseDouble(ns());
}
String ns() throws IOException
{
while (tokenizer == null || !tokenizer.hasMoreTokens())
tokenizer = new StringTokenizer(br.readLine());
return tokenizer.nextToken();
}
String nline() throws IOException
{
tokenizer=null;
return br.readLine();
}
//Main Code starts Here
int totalCases, testNum;
int sum;
int n;
int arr[];
void execute() throws IOException
{
totalCases = 1;
for(testNum = 1; testNum <= totalCases; testNum++)
{
if(!input())
break;
solve();
}
}
void solve() throws IOException
{
Arrays.sort(arr);
int count = 0;
int ans = 0;
for(int i = n-1;i>=0;i--)
{
count+= arr[i];
if(count>sum-count)
{
ans = n-i;
break;
}
}
System.out.println(ans);
}
boolean input() throws IOException
{
n = ni();
sum = 0;
arr = new int[n];
for(int i = 0;i<n;i++)
{
arr[i] = ni();
sum = sum+arr[i];
}
return true;
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(log(n)): The execution time ascends in proportion to the logarithm of the input size n.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- O(n^2): The execution time ascends in proportion to the square of the input size n.
- O(n): The execution time ascends in a one-to-one ratio with the input size n.
- O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially.
- O(n^3): The execution time ascends in proportion to the cube of the input size n.
- O(1): The execution time is unaffected by the size of the input n.
- others: The time complexity does not fit to any of the given categories or is ambiguous.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
| 762
| 1,909
|
1,978
|
import java.io.*;
import java.util.*;
import java.math.*;
public class Teams {
BufferedReader in;
PrintWriter out;
StringTokenizer st;
Random rnd;
class Pair implements Comparable<Pair> {
int a, b;
public Pair(int a, int b) {
this.a = a;
this.b = b;
}
public int compareTo(Pair p) {
if(a != p.a) {
return -(a - p.a);
}
return (b - p.b);
}
}
void solve() throws IOException {
int n = nextInt(), k = nextInt();
Pair[] ps = new Pair[n];
for(int i = 0; i < n; i++)
ps[i] = new Pair(nextInt(), nextInt());
Arrays.sort(ps);
int curPlace = 1, res = 0;
int[] places = new int[n];
for(int i = 0; i < n; i++) {
if(i - 1 >= 0 && ps[i].compareTo(ps[i - 1]) != 0)
++curPlace;
places[i] = curPlace;
}
for(int i = 0; i < n; i++) {
if(places[i] == places[k - 1])
++res;
}
out.println(res);
}
public static void main(String[] args) {
new Teams().run();
}
public void run() {
try {
final String className = this.getClass().getName().toLowerCase();
try {
in = new BufferedReader(new FileReader(className + ".in"));
out = new PrintWriter(new FileWriter(className + ".out"));
} catch (FileNotFoundException e) {
in = new BufferedReader(new InputStreamReader(System.in));
out = new PrintWriter(System.out);
}
rnd = new Random();
solve();
out.close();
} catch (IOException e) {
e.printStackTrace();
System.exit(42);
}
}
String nextToken() throws IOException {
while (st == null || !st.hasMoreTokens()) {
String line = in.readLine();
if (line == null)
return null;
st = new StringTokenizer(line);
}
return st.nextToken();
}
int nextInt() throws IOException {
return Integer.parseInt(nextToken());
}
long nextLong() throws IOException {
return Long.parseLong(nextToken());
}
double nextDouble() throws IOException {
return Double.parseDouble(nextToken());
}
}
|
O(nlog(n))
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Determine the worst-case time complexity category of a given Java code based on input size n.
</TASK>
<CODE>
import java.io.*;
import java.util.*;
import java.math.*;
public class Teams {
BufferedReader in;
PrintWriter out;
StringTokenizer st;
Random rnd;
class Pair implements Comparable<Pair> {
int a, b;
public Pair(int a, int b) {
this.a = a;
this.b = b;
}
public int compareTo(Pair p) {
if(a != p.a) {
return -(a - p.a);
}
return (b - p.b);
}
}
void solve() throws IOException {
int n = nextInt(), k = nextInt();
Pair[] ps = new Pair[n];
for(int i = 0; i < n; i++)
ps[i] = new Pair(nextInt(), nextInt());
Arrays.sort(ps);
int curPlace = 1, res = 0;
int[] places = new int[n];
for(int i = 0; i < n; i++) {
if(i - 1 >= 0 && ps[i].compareTo(ps[i - 1]) != 0)
++curPlace;
places[i] = curPlace;
}
for(int i = 0; i < n; i++) {
if(places[i] == places[k - 1])
++res;
}
out.println(res);
}
public static void main(String[] args) {
new Teams().run();
}
public void run() {
try {
final String className = this.getClass().getName().toLowerCase();
try {
in = new BufferedReader(new FileReader(className + ".in"));
out = new PrintWriter(new FileWriter(className + ".out"));
} catch (FileNotFoundException e) {
in = new BufferedReader(new InputStreamReader(System.in));
out = new PrintWriter(System.out);
}
rnd = new Random();
solve();
out.close();
} catch (IOException e) {
e.printStackTrace();
System.exit(42);
}
}
String nextToken() throws IOException {
while (st == null || !st.hasMoreTokens()) {
String line = in.readLine();
if (line == null)
return null;
st = new StringTokenizer(line);
}
return st.nextToken();
}
int nextInt() throws IOException {
return Integer.parseInt(nextToken());
}
long nextLong() throws IOException {
return Long.parseLong(nextToken());
}
double nextDouble() throws IOException {
return Double.parseDouble(nextToken());
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(n^2): The time complexity grows proportionally to the square of the input size.
- O(1): The time complexity is constant to the input size n.
- O(nlog(n)): The time complexity combines linear and logarithmic growth factors.
- O(n): The time complexity increases proportionally to the input size n in a linear manner.
- O(n^3): The time complexity scales proportionally to the cube of the input size.
- non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially.
- O(log(n)): The time complexity increases logarithmically in relation to the input size.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Classify the following Java code's worst-case time complexity according to its relationship to the input size n.
</TASK>
<CODE>
import java.io.*;
import java.util.*;
import java.math.*;
public class Teams {
BufferedReader in;
PrintWriter out;
StringTokenizer st;
Random rnd;
class Pair implements Comparable<Pair> {
int a, b;
public Pair(int a, int b) {
this.a = a;
this.b = b;
}
public int compareTo(Pair p) {
if(a != p.a) {
return -(a - p.a);
}
return (b - p.b);
}
}
void solve() throws IOException {
int n = nextInt(), k = nextInt();
Pair[] ps = new Pair[n];
for(int i = 0; i < n; i++)
ps[i] = new Pair(nextInt(), nextInt());
Arrays.sort(ps);
int curPlace = 1, res = 0;
int[] places = new int[n];
for(int i = 0; i < n; i++) {
if(i - 1 >= 0 && ps[i].compareTo(ps[i - 1]) != 0)
++curPlace;
places[i] = curPlace;
}
for(int i = 0; i < n; i++) {
if(places[i] == places[k - 1])
++res;
}
out.println(res);
}
public static void main(String[] args) {
new Teams().run();
}
public void run() {
try {
final String className = this.getClass().getName().toLowerCase();
try {
in = new BufferedReader(new FileReader(className + ".in"));
out = new PrintWriter(new FileWriter(className + ".out"));
} catch (FileNotFoundException e) {
in = new BufferedReader(new InputStreamReader(System.in));
out = new PrintWriter(System.out);
}
rnd = new Random();
solve();
out.close();
} catch (IOException e) {
e.printStackTrace();
System.exit(42);
}
}
String nextToken() throws IOException {
while (st == null || !st.hasMoreTokens()) {
String line = in.readLine();
if (line == null)
return null;
st = new StringTokenizer(line);
}
return st.nextToken();
}
int nextInt() throws IOException {
return Integer.parseInt(nextToken());
}
long nextLong() throws IOException {
return Long.parseLong(nextToken());
}
double nextDouble() throws IOException {
return Double.parseDouble(nextToken());
}
}
</CODE>
<EVALUATION_RUBRIC>
- others: The code does not clearly correspond to the listed classes or has an unclassified time complexity.
- O(n^2): The running time increases with the square of the input size n.
- O(log(n)): The running time increases with the logarithm of the input size n.
- O(1): The running time does not change regardless of the input size n.
- O(nlog(n)): The running time increases with the product of n and logarithm of n.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- O(n^3): The running time increases with the cube of the input size n.
- O(n): The running time grows linearly with the input size n.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
| 864
| 1,974
|
67
|
import java.util.*;
import java.io.*;
public class Waw{
public static void main(String[] args) throws Exception {
Scanner sc = new Scanner(System.in);
int n = sc.nextInt();
long[] a = new long[n];
for(int i=0;i<n;i++) a[i] = sc.nextLong();
long[] p = new long[n];
p[n-1] = a[n-1];
for(int i=n-2;i>=0;i--){
if(a[i]<p[i+1]) p[i] = p[i+1]-1;
else p[i] = a[i];
}
long max = p[0];
long res = p[0] - a[0];
for(int i=1;i<n;i++){
if(max < p[i]) max = p[i];
res += max - a[i];
}
System.out.println(res);
}
}
|
O(n)
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Determine the worst-case time complexity category of a given Java code based on input size n.
</TASK>
<CODE>
import java.util.*;
import java.io.*;
public class Waw{
public static void main(String[] args) throws Exception {
Scanner sc = new Scanner(System.in);
int n = sc.nextInt();
long[] a = new long[n];
for(int i=0;i<n;i++) a[i] = sc.nextLong();
long[] p = new long[n];
p[n-1] = a[n-1];
for(int i=n-2;i>=0;i--){
if(a[i]<p[i+1]) p[i] = p[i+1]-1;
else p[i] = a[i];
}
long max = p[0];
long res = p[0] - a[0];
for(int i=1;i<n;i++){
if(max < p[i]) max = p[i];
res += max - a[i];
}
System.out.println(res);
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(n): The time complexity increases proportionally to the input size n in a linear manner.
- O(n^3): The time complexity scales proportionally to the cube of the input size.
- O(log(n)): The time complexity increases logarithmically in relation to the input size.
- non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially.
- O(1): The time complexity is constant to the input size n.
- O(nlog(n)): The time complexity combines linear and logarithmic growth factors.
- O(n^2): The time complexity grows proportionally to the square of the input size.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Classify the following Java code's worst-case time complexity according to its relationship to the input size n.
</TASK>
<CODE>
import java.util.*;
import java.io.*;
public class Waw{
public static void main(String[] args) throws Exception {
Scanner sc = new Scanner(System.in);
int n = sc.nextInt();
long[] a = new long[n];
for(int i=0;i<n;i++) a[i] = sc.nextLong();
long[] p = new long[n];
p[n-1] = a[n-1];
for(int i=n-2;i>=0;i--){
if(a[i]<p[i+1]) p[i] = p[i+1]-1;
else p[i] = a[i];
}
long max = p[0];
long res = p[0] - a[0];
for(int i=1;i<n;i++){
if(max < p[i]) max = p[i];
res += max - a[i];
}
System.out.println(res);
}
}
</CODE>
<EVALUATION_RUBRIC>
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- O(n^2): The running time increases with the square of the input size n.
- others: The code does not clearly correspond to the listed classes or has an unclassified time complexity.
- O(n^3): The running time increases with the cube of the input size n.
- O(log(n)): The running time increases with the logarithm of the input size n.
- O(1): The running time does not change regardless of the input size n.
- O(nlog(n)): The running time increases with the product of n and logarithm of n.
- O(n): The running time grows linearly with the input size n.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
| 525
| 67
|
3,412
|
import java.util.Scanner;
public class GivenString {
public static void main(String[] args) {
Scanner input = new Scanner(System.in);
String s = input.nextLine();
int max = 0;
for(int i = 0; i < s.length(); i++) {
for(int j = i + 1; j <= s.length(); j++) {
String tmp = s.substring(i, j);
int match = 0;
for(int k = 0; k + tmp.length() <= s.length(); k++) {
if(tmp.equals(s.substring(k, k + tmp.length()))) {
match++;
}
}
if(match >= 2) {
max = Math.max(max, tmp.length());
}
}
}
System.out.println(max);
System.exit(0);
}
}
|
O(n^3)
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n.
</TASK>
<CODE>
import java.util.Scanner;
public class GivenString {
public static void main(String[] args) {
Scanner input = new Scanner(System.in);
String s = input.nextLine();
int max = 0;
for(int i = 0; i < s.length(); i++) {
for(int j = i + 1; j <= s.length(); j++) {
String tmp = s.substring(i, j);
int match = 0;
for(int k = 0; k + tmp.length() <= s.length(); k++) {
if(tmp.equals(s.substring(k, k + tmp.length()))) {
match++;
}
}
if(match >= 2) {
max = Math.max(max, tmp.length());
}
}
}
System.out.println(max);
System.exit(0);
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(n^2): The execution time ascends in proportion to the square of the input size n.
- O(log(n)): The execution time ascends in proportion to the logarithm of the input size n.
- O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially.
- O(1): The execution time is unaffected by the size of the input n.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- O(n): The execution time ascends in a one-to-one ratio with the input size n.
- O(n^3): The execution time ascends in proportion to the cube of the input size n.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Determine the worst-case time complexity category of a given Java code based on input size n.
</TASK>
<CODE>
import java.util.Scanner;
public class GivenString {
public static void main(String[] args) {
Scanner input = new Scanner(System.in);
String s = input.nextLine();
int max = 0;
for(int i = 0; i < s.length(); i++) {
for(int j = i + 1; j <= s.length(); j++) {
String tmp = s.substring(i, j);
int match = 0;
for(int k = 0; k + tmp.length() <= s.length(); k++) {
if(tmp.equals(s.substring(k, k + tmp.length()))) {
match++;
}
}
if(match >= 2) {
max = Math.max(max, tmp.length());
}
}
}
System.out.println(max);
System.exit(0);
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(n^2): The time complexity grows proportionally to the square of the input size.
- O(n): The time complexity increases proportionally to the input size n in a linear manner.
- non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially.
- O(nlog(n)): The time complexity combines linear and logarithmic growth factors.
- O(log(n)): The time complexity increases logarithmically in relation to the input size.
- O(n^3): The time complexity scales proportionally to the cube of the input size.
- O(1): The time complexity is constant to the input size n.
- others: The time complexity does not fit any of the above categories or cannot be clearly classified.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
| 529
| 3,406
|
3,538
|
import java.io.*;
import java.util.*;
public class G{
public static void main(String[] args) {
InputStream inputStream = System.in;
OutputStream outputStream = System.out;
InputReader in = new InputReader(inputStream);
PrintWriter out = new PrintWriter(outputStream);
TaskE solver = new TaskE();
solver.solve(1, in, out);
out.flush();out.close();
}
static class TaskE {
class MinCostMaxFlow{
ArrayList<Edge> al[];
Edge ja[][];
int d[]; // shortest distances
int N , S , T , maxFlow ; int minCost;
final int gmax = Integer.MAX_VALUE / 100;
int edges = 0;
class Edge{
int u , flow, rid, cost;
Edge(int a, int b, int c, int d){u = a; flow = b; cost = c; rid = d;}
}
void addEdge(int u , int v , int flow , int cost){
int lu = al[u].size(), lv = al[v].size();
al[u].add(new Edge(v, flow, cost, lv));
al[v].add(new Edge(u, 0, -cost, lu));
}
void convertToArray(){
ja = new Edge[N][];
for(int i = 0; i < N; i++){
int sz = al[i].size();
ja[i] = new Edge[sz];
for(int j = 0; j < sz; j++){
ja[i][j] = al[i].get(j);
}
al[i].clear();
}
}
MinCostMaxFlow(int n , int source , int sink){
N = n; S = source; T = sink; maxFlow = 0; minCost = 0;
al = new ArrayList[N];
d = new int[N];
for(int i = 0; i < N; i++){
al[i] = new ArrayList<>();
}
}
boolean BellmanFord(boolean check){
d[0] = 0;
for(int i = 0; i < N - 1; i++){
for(int j = 0; j < N; j++){
for(Edge e : ja[j]){
if(e.flow == 0)continue; // not to consider reverse edges
d[e.u] = Math.min(d[e.u] , d[j] + e.cost);
}
}
}
if(check){// check for negative cycles
for(int j = 0; j < N; j++){
for(Edge e : ja[j]){
if(e.flow == 0)continue;
if(d[j] + e.cost < d[e.u]) return false;
}
}
}return true;
}
int node[]; // present node
int visit[]; // 0 -> not added 1 -> not removed 2 -> removed
int prv[], prve[]; // previous node for augmentation
int dist[]; // min dist
boolean simple(){
node = new int[N];
visit = new int[N];
prv = new int[N];
prve = new int[N];
dist = new int[N]; Arrays.fill(dist , gmax);
node[0] = S; dist[0] = 0;
int front = 1, back = 0;
while(front != back){
int u = node[back++]; int distu = dist[u];
if(back == N)back = 0;
visit[u] = 2;
for(int i = 0; i < ja[u].length; i++){
Edge e = ja[u][i];
if(e.flow == 0)continue;
int cdist = distu + e.cost; // no need of reduced cost
if(cdist < dist[e.u]){
if(visit[e.u] == 0){
node[front] = e.u;
if(++front == N)front = 0;
}else if(visit[e.u] == 2){
if(--back == -1)back += N;
node[back] = e.u;
}
visit[e.u] = 1;
prve[e.u] = i; prv[e.u] = u; dist[e.u] = cdist;
}
}
}
return visit[T] != 0;
}
class pair{
int F; int S;
pair(int a, int b){F = a; S = b;}
}
boolean dijkstra(){
visit = new int[N];
prv = new int[N];
prve = new int[N];
dist = new int[N]; Arrays.fill(dist, gmax);
PriorityQueue<pair> pq = new PriorityQueue<>((A, B) -> Double.compare(A.S , B.S));
pq.add(new pair(S , 0)); dist[0] = 0;
o : while(!pq.isEmpty()){
pair p = pq.poll();
while(dist[p.F] < p.S){
if(pq.isEmpty()) break o; // had a better val
p = pq.poll();
}
visit[p.F] = 2;
for(int i = 0; i < ja[p.F].length; i++){
Edge e = ja[p.F][i];
if(e.flow == 0)continue; // important
int cdist = p.S + (e.cost + d[p.F] - d[e.u]); // reduced cost
if(cdist < dist[e.u]){
if(visit[e.u] == 2) return false;
pq.add(new pair(e.u , cdist));
dist[e.u] = cdist; prv[e.u] = p.F; prve[e.u] = i;
visit[e.u] = 1;
}
}
}
return visit[T] != 0;
}
int augment(){
int p = T; int min = gmax;
while(p != 0){
int pp = prv[p], pe = prve[p];
int val = ja[pp][pe].flow;
min = Math.min(min , val);
p = pp;
}
p = T;
while(p != 0){
int pp = prv[p], pe = prve[p];
ja[pp][pe].flow -= min;
ja[p][ja[pp][pe].rid].flow += min;
p = pp;
}
maxFlow += min;
return min;
}
// if(dist[T] >= 0)return true; // non contributing flow
boolean calSimple(){
// uncomment to check for negative cycles
/* boolean possible = BellmanFord(true);
if(!possible) return false; */
while(simple()){
/*if(dist[T] >= 0)return true;*/
minCost += dist[T] * augment();
}
return true;
}
void updPotential(){
for(int i = 0; i < N; i++){
if(visit[i] != 0){
d[i] += dist[i] - dist[S];
}
}
}
boolean calWithPotential(){
// set true to check for negative cycles
// boolean possible = BellmanFord(false);
// if(!possible) return false;
while(dijkstra()){
int min = dist[T] + d[T] - d[S]; // getting back the original cost
/*if(dist[T] >= 0)return true;*/
minCost += min * augment();
updPotential();
}
return true;
}
}
int n , m, k, c, d, a[], f[];
public void solve(int testNumber, InputReader in, PrintWriter out) {
n = in.nextInt(); m = in.nextInt(); k = in.nextInt(); c = in.nextInt(); d= in.nextInt();
// S + n
int maxl = n + k, T = n * maxl + 1;
MinCostMaxFlow ans = new MinCostMaxFlow(T + 1, 0, T);
a = new int[k + 1]; f = new int[n + 1];
for(int i = 1; i <= k; i++){
a[i] = in.nextInt();
f[a[i]]++;
}
for(int i = 1; i <= n; i++){
if(f[i] == 0)continue;
ans.addEdge(0 , i , f[i], 0);
}
for(int i = 2; i <= n; i++){
for(int l = 0; l < maxl - 1; l++){
ans.addEdge(l * n + i , (l + 1) * n + i, k, c);
}
}
for(int i = 1; i <= m; i++){
int a = in.nextInt(), b = in.nextInt();
for(int l = 0; l < maxl - 1; l++){
for(int p = 1; p <= k; p++){
if(a != 1)
ans.addEdge(n * l + a, n * (l + 1) + b, 1, d * (2 * p - 1) + c);
if(b != 1)
ans.addEdge(n * l + b, n * (l + 1) + a, 1, d * (2 * p - 1) + c);
}
}
}
for(int l = 1; l < maxl; l++){
ans.addEdge(l * n + 1, T, k, 0);
}
ans.convertToArray();
ans.calWithPotential();
// ans.calSimple();
if(ans.maxFlow != k){
out.println("BUG");
}else{
out.println((int)ans.minCost);
}
}
}
static class InputReader {
BufferedReader br;
StringTokenizer st;
public InputReader(InputStream stream) {
br = new BufferedReader(new InputStreamReader(stream));
st = null;
}
String next() {
while (st == null || !st.hasMoreTokens()) {
String s = null;
try {
s = br.readLine();
} catch (IOException e) {
e.printStackTrace();
}
if (s == null)
return null;
st = new StringTokenizer(s);
}
return st.nextToken();
}
boolean hasMoreTokens() {
while (st == null || !st.hasMoreTokens()) {
String s = null;
try {
s = br.readLine();
} catch (IOException e) {
e.printStackTrace();
}
if (s == null)
return false;
st = new StringTokenizer(s);
}
return true;
}
public int nextInt() {
return Integer.parseInt(next());
}
public long nextLong() {
return Long.parseLong(next());
}
public double nextDouble() {
return Double.parseDouble(next());
}
}
}
|
O(n^3)
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Determine the worst-case time complexity category of a given Java code based on input size n.
</TASK>
<CODE>
import java.io.*;
import java.util.*;
public class G{
public static void main(String[] args) {
InputStream inputStream = System.in;
OutputStream outputStream = System.out;
InputReader in = new InputReader(inputStream);
PrintWriter out = new PrintWriter(outputStream);
TaskE solver = new TaskE();
solver.solve(1, in, out);
out.flush();out.close();
}
static class TaskE {
class MinCostMaxFlow{
ArrayList<Edge> al[];
Edge ja[][];
int d[]; // shortest distances
int N , S , T , maxFlow ; int minCost;
final int gmax = Integer.MAX_VALUE / 100;
int edges = 0;
class Edge{
int u , flow, rid, cost;
Edge(int a, int b, int c, int d){u = a; flow = b; cost = c; rid = d;}
}
void addEdge(int u , int v , int flow , int cost){
int lu = al[u].size(), lv = al[v].size();
al[u].add(new Edge(v, flow, cost, lv));
al[v].add(new Edge(u, 0, -cost, lu));
}
void convertToArray(){
ja = new Edge[N][];
for(int i = 0; i < N; i++){
int sz = al[i].size();
ja[i] = new Edge[sz];
for(int j = 0; j < sz; j++){
ja[i][j] = al[i].get(j);
}
al[i].clear();
}
}
MinCostMaxFlow(int n , int source , int sink){
N = n; S = source; T = sink; maxFlow = 0; minCost = 0;
al = new ArrayList[N];
d = new int[N];
for(int i = 0; i < N; i++){
al[i] = new ArrayList<>();
}
}
boolean BellmanFord(boolean check){
d[0] = 0;
for(int i = 0; i < N - 1; i++){
for(int j = 0; j < N; j++){
for(Edge e : ja[j]){
if(e.flow == 0)continue; // not to consider reverse edges
d[e.u] = Math.min(d[e.u] , d[j] + e.cost);
}
}
}
if(check){// check for negative cycles
for(int j = 0; j < N; j++){
for(Edge e : ja[j]){
if(e.flow == 0)continue;
if(d[j] + e.cost < d[e.u]) return false;
}
}
}return true;
}
int node[]; // present node
int visit[]; // 0 -> not added 1 -> not removed 2 -> removed
int prv[], prve[]; // previous node for augmentation
int dist[]; // min dist
boolean simple(){
node = new int[N];
visit = new int[N];
prv = new int[N];
prve = new int[N];
dist = new int[N]; Arrays.fill(dist , gmax);
node[0] = S; dist[0] = 0;
int front = 1, back = 0;
while(front != back){
int u = node[back++]; int distu = dist[u];
if(back == N)back = 0;
visit[u] = 2;
for(int i = 0; i < ja[u].length; i++){
Edge e = ja[u][i];
if(e.flow == 0)continue;
int cdist = distu + e.cost; // no need of reduced cost
if(cdist < dist[e.u]){
if(visit[e.u] == 0){
node[front] = e.u;
if(++front == N)front = 0;
}else if(visit[e.u] == 2){
if(--back == -1)back += N;
node[back] = e.u;
}
visit[e.u] = 1;
prve[e.u] = i; prv[e.u] = u; dist[e.u] = cdist;
}
}
}
return visit[T] != 0;
}
class pair{
int F; int S;
pair(int a, int b){F = a; S = b;}
}
boolean dijkstra(){
visit = new int[N];
prv = new int[N];
prve = new int[N];
dist = new int[N]; Arrays.fill(dist, gmax);
PriorityQueue<pair> pq = new PriorityQueue<>((A, B) -> Double.compare(A.S , B.S));
pq.add(new pair(S , 0)); dist[0] = 0;
o : while(!pq.isEmpty()){
pair p = pq.poll();
while(dist[p.F] < p.S){
if(pq.isEmpty()) break o; // had a better val
p = pq.poll();
}
visit[p.F] = 2;
for(int i = 0; i < ja[p.F].length; i++){
Edge e = ja[p.F][i];
if(e.flow == 0)continue; // important
int cdist = p.S + (e.cost + d[p.F] - d[e.u]); // reduced cost
if(cdist < dist[e.u]){
if(visit[e.u] == 2) return false;
pq.add(new pair(e.u , cdist));
dist[e.u] = cdist; prv[e.u] = p.F; prve[e.u] = i;
visit[e.u] = 1;
}
}
}
return visit[T] != 0;
}
int augment(){
int p = T; int min = gmax;
while(p != 0){
int pp = prv[p], pe = prve[p];
int val = ja[pp][pe].flow;
min = Math.min(min , val);
p = pp;
}
p = T;
while(p != 0){
int pp = prv[p], pe = prve[p];
ja[pp][pe].flow -= min;
ja[p][ja[pp][pe].rid].flow += min;
p = pp;
}
maxFlow += min;
return min;
}
// if(dist[T] >= 0)return true; // non contributing flow
boolean calSimple(){
// uncomment to check for negative cycles
/* boolean possible = BellmanFord(true);
if(!possible) return false; */
while(simple()){
/*if(dist[T] >= 0)return true;*/
minCost += dist[T] * augment();
}
return true;
}
void updPotential(){
for(int i = 0; i < N; i++){
if(visit[i] != 0){
d[i] += dist[i] - dist[S];
}
}
}
boolean calWithPotential(){
// set true to check for negative cycles
// boolean possible = BellmanFord(false);
// if(!possible) return false;
while(dijkstra()){
int min = dist[T] + d[T] - d[S]; // getting back the original cost
/*if(dist[T] >= 0)return true;*/
minCost += min * augment();
updPotential();
}
return true;
}
}
int n , m, k, c, d, a[], f[];
public void solve(int testNumber, InputReader in, PrintWriter out) {
n = in.nextInt(); m = in.nextInt(); k = in.nextInt(); c = in.nextInt(); d= in.nextInt();
// S + n
int maxl = n + k, T = n * maxl + 1;
MinCostMaxFlow ans = new MinCostMaxFlow(T + 1, 0, T);
a = new int[k + 1]; f = new int[n + 1];
for(int i = 1; i <= k; i++){
a[i] = in.nextInt();
f[a[i]]++;
}
for(int i = 1; i <= n; i++){
if(f[i] == 0)continue;
ans.addEdge(0 , i , f[i], 0);
}
for(int i = 2; i <= n; i++){
for(int l = 0; l < maxl - 1; l++){
ans.addEdge(l * n + i , (l + 1) * n + i, k, c);
}
}
for(int i = 1; i <= m; i++){
int a = in.nextInt(), b = in.nextInt();
for(int l = 0; l < maxl - 1; l++){
for(int p = 1; p <= k; p++){
if(a != 1)
ans.addEdge(n * l + a, n * (l + 1) + b, 1, d * (2 * p - 1) + c);
if(b != 1)
ans.addEdge(n * l + b, n * (l + 1) + a, 1, d * (2 * p - 1) + c);
}
}
}
for(int l = 1; l < maxl; l++){
ans.addEdge(l * n + 1, T, k, 0);
}
ans.convertToArray();
ans.calWithPotential();
// ans.calSimple();
if(ans.maxFlow != k){
out.println("BUG");
}else{
out.println((int)ans.minCost);
}
}
}
static class InputReader {
BufferedReader br;
StringTokenizer st;
public InputReader(InputStream stream) {
br = new BufferedReader(new InputStreamReader(stream));
st = null;
}
String next() {
while (st == null || !st.hasMoreTokens()) {
String s = null;
try {
s = br.readLine();
} catch (IOException e) {
e.printStackTrace();
}
if (s == null)
return null;
st = new StringTokenizer(s);
}
return st.nextToken();
}
boolean hasMoreTokens() {
while (st == null || !st.hasMoreTokens()) {
String s = null;
try {
s = br.readLine();
} catch (IOException e) {
e.printStackTrace();
}
if (s == null)
return false;
st = new StringTokenizer(s);
}
return true;
}
public int nextInt() {
return Integer.parseInt(next());
}
public long nextLong() {
return Long.parseLong(next());
}
public double nextDouble() {
return Double.parseDouble(next());
}
}
}
</CODE>
<EVALUATION_RUBRIC>
- non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially.
- O(1): The time complexity is constant to the input size n.
- O(n^3): The time complexity scales proportionally to the cube of the input size.
- O(log(n)): The time complexity increases logarithmically in relation to the input size.
- O(n): The time complexity increases proportionally to the input size n in a linear manner.
- O(nlog(n)): The time complexity combines linear and logarithmic growth factors.
- O(n^2): The time complexity grows proportionally to the square of the input size.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Determine the worst-case time complexity category of a given Java code based on input size n.
</TASK>
<CODE>
import java.io.*;
import java.util.*;
public class G{
public static void main(String[] args) {
InputStream inputStream = System.in;
OutputStream outputStream = System.out;
InputReader in = new InputReader(inputStream);
PrintWriter out = new PrintWriter(outputStream);
TaskE solver = new TaskE();
solver.solve(1, in, out);
out.flush();out.close();
}
static class TaskE {
class MinCostMaxFlow{
ArrayList<Edge> al[];
Edge ja[][];
int d[]; // shortest distances
int N , S , T , maxFlow ; int minCost;
final int gmax = Integer.MAX_VALUE / 100;
int edges = 0;
class Edge{
int u , flow, rid, cost;
Edge(int a, int b, int c, int d){u = a; flow = b; cost = c; rid = d;}
}
void addEdge(int u , int v , int flow , int cost){
int lu = al[u].size(), lv = al[v].size();
al[u].add(new Edge(v, flow, cost, lv));
al[v].add(new Edge(u, 0, -cost, lu));
}
void convertToArray(){
ja = new Edge[N][];
for(int i = 0; i < N; i++){
int sz = al[i].size();
ja[i] = new Edge[sz];
for(int j = 0; j < sz; j++){
ja[i][j] = al[i].get(j);
}
al[i].clear();
}
}
MinCostMaxFlow(int n , int source , int sink){
N = n; S = source; T = sink; maxFlow = 0; minCost = 0;
al = new ArrayList[N];
d = new int[N];
for(int i = 0; i < N; i++){
al[i] = new ArrayList<>();
}
}
boolean BellmanFord(boolean check){
d[0] = 0;
for(int i = 0; i < N - 1; i++){
for(int j = 0; j < N; j++){
for(Edge e : ja[j]){
if(e.flow == 0)continue; // not to consider reverse edges
d[e.u] = Math.min(d[e.u] , d[j] + e.cost);
}
}
}
if(check){// check for negative cycles
for(int j = 0; j < N; j++){
for(Edge e : ja[j]){
if(e.flow == 0)continue;
if(d[j] + e.cost < d[e.u]) return false;
}
}
}return true;
}
int node[]; // present node
int visit[]; // 0 -> not added 1 -> not removed 2 -> removed
int prv[], prve[]; // previous node for augmentation
int dist[]; // min dist
boolean simple(){
node = new int[N];
visit = new int[N];
prv = new int[N];
prve = new int[N];
dist = new int[N]; Arrays.fill(dist , gmax);
node[0] = S; dist[0] = 0;
int front = 1, back = 0;
while(front != back){
int u = node[back++]; int distu = dist[u];
if(back == N)back = 0;
visit[u] = 2;
for(int i = 0; i < ja[u].length; i++){
Edge e = ja[u][i];
if(e.flow == 0)continue;
int cdist = distu + e.cost; // no need of reduced cost
if(cdist < dist[e.u]){
if(visit[e.u] == 0){
node[front] = e.u;
if(++front == N)front = 0;
}else if(visit[e.u] == 2){
if(--back == -1)back += N;
node[back] = e.u;
}
visit[e.u] = 1;
prve[e.u] = i; prv[e.u] = u; dist[e.u] = cdist;
}
}
}
return visit[T] != 0;
}
class pair{
int F; int S;
pair(int a, int b){F = a; S = b;}
}
boolean dijkstra(){
visit = new int[N];
prv = new int[N];
prve = new int[N];
dist = new int[N]; Arrays.fill(dist, gmax);
PriorityQueue<pair> pq = new PriorityQueue<>((A, B) -> Double.compare(A.S , B.S));
pq.add(new pair(S , 0)); dist[0] = 0;
o : while(!pq.isEmpty()){
pair p = pq.poll();
while(dist[p.F] < p.S){
if(pq.isEmpty()) break o; // had a better val
p = pq.poll();
}
visit[p.F] = 2;
for(int i = 0; i < ja[p.F].length; i++){
Edge e = ja[p.F][i];
if(e.flow == 0)continue; // important
int cdist = p.S + (e.cost + d[p.F] - d[e.u]); // reduced cost
if(cdist < dist[e.u]){
if(visit[e.u] == 2) return false;
pq.add(new pair(e.u , cdist));
dist[e.u] = cdist; prv[e.u] = p.F; prve[e.u] = i;
visit[e.u] = 1;
}
}
}
return visit[T] != 0;
}
int augment(){
int p = T; int min = gmax;
while(p != 0){
int pp = prv[p], pe = prve[p];
int val = ja[pp][pe].flow;
min = Math.min(min , val);
p = pp;
}
p = T;
while(p != 0){
int pp = prv[p], pe = prve[p];
ja[pp][pe].flow -= min;
ja[p][ja[pp][pe].rid].flow += min;
p = pp;
}
maxFlow += min;
return min;
}
// if(dist[T] >= 0)return true; // non contributing flow
boolean calSimple(){
// uncomment to check for negative cycles
/* boolean possible = BellmanFord(true);
if(!possible) return false; */
while(simple()){
/*if(dist[T] >= 0)return true;*/
minCost += dist[T] * augment();
}
return true;
}
void updPotential(){
for(int i = 0; i < N; i++){
if(visit[i] != 0){
d[i] += dist[i] - dist[S];
}
}
}
boolean calWithPotential(){
// set true to check for negative cycles
// boolean possible = BellmanFord(false);
// if(!possible) return false;
while(dijkstra()){
int min = dist[T] + d[T] - d[S]; // getting back the original cost
/*if(dist[T] >= 0)return true;*/
minCost += min * augment();
updPotential();
}
return true;
}
}
int n , m, k, c, d, a[], f[];
public void solve(int testNumber, InputReader in, PrintWriter out) {
n = in.nextInt(); m = in.nextInt(); k = in.nextInt(); c = in.nextInt(); d= in.nextInt();
// S + n
int maxl = n + k, T = n * maxl + 1;
MinCostMaxFlow ans = new MinCostMaxFlow(T + 1, 0, T);
a = new int[k + 1]; f = new int[n + 1];
for(int i = 1; i <= k; i++){
a[i] = in.nextInt();
f[a[i]]++;
}
for(int i = 1; i <= n; i++){
if(f[i] == 0)continue;
ans.addEdge(0 , i , f[i], 0);
}
for(int i = 2; i <= n; i++){
for(int l = 0; l < maxl - 1; l++){
ans.addEdge(l * n + i , (l + 1) * n + i, k, c);
}
}
for(int i = 1; i <= m; i++){
int a = in.nextInt(), b = in.nextInt();
for(int l = 0; l < maxl - 1; l++){
for(int p = 1; p <= k; p++){
if(a != 1)
ans.addEdge(n * l + a, n * (l + 1) + b, 1, d * (2 * p - 1) + c);
if(b != 1)
ans.addEdge(n * l + b, n * (l + 1) + a, 1, d * (2 * p - 1) + c);
}
}
}
for(int l = 1; l < maxl; l++){
ans.addEdge(l * n + 1, T, k, 0);
}
ans.convertToArray();
ans.calWithPotential();
// ans.calSimple();
if(ans.maxFlow != k){
out.println("BUG");
}else{
out.println((int)ans.minCost);
}
}
}
static class InputReader {
BufferedReader br;
StringTokenizer st;
public InputReader(InputStream stream) {
br = new BufferedReader(new InputStreamReader(stream));
st = null;
}
String next() {
while (st == null || !st.hasMoreTokens()) {
String s = null;
try {
s = br.readLine();
} catch (IOException e) {
e.printStackTrace();
}
if (s == null)
return null;
st = new StringTokenizer(s);
}
return st.nextToken();
}
boolean hasMoreTokens() {
while (st == null || !st.hasMoreTokens()) {
String s = null;
try {
s = br.readLine();
} catch (IOException e) {
e.printStackTrace();
}
if (s == null)
return false;
st = new StringTokenizer(s);
}
return true;
}
public int nextInt() {
return Integer.parseInt(next());
}
public long nextLong() {
return Long.parseLong(next());
}
public double nextDouble() {
return Double.parseDouble(next());
}
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(n^3): The time complexity scales proportionally to the cube of the input size.
- others: The time complexity does not fit any of the above categories or cannot be clearly classified.
- O(nlog(n)): The time complexity combines linear and logarithmic growth factors.
- O(n): The time complexity increases proportionally to the input size n in a linear manner.
- O(log(n)): The time complexity increases logarithmically in relation to the input size.
- O(n^2): The time complexity grows proportionally to the square of the input size.
- non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially.
- O(1): The time complexity is constant to the input size n.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
| 2,706
| 3,531
|
1,549
|
import java.util.Arrays;
import java.util.HashSet;
import java.util.Scanner;
/*
* To change this template, choose Tools | Templates
* and open the template in the editor.
*/
/**
*
* @author NAO93
*/
public class a {
public static void main(String[] args) {
Scanner in = new Scanner(System.in);
int n = in.nextInt();
long k = in.nextLong();
Long []a = new Long[n];
for (int i = 0; i<n; i++)
a[i] = in.nextLong();
HashSet<Long> hash = new HashSet<Long>();
Arrays.sort(a);
for (int i = 0; i<n; i++)
if (!hash.contains(a[i])){
hash.add(a[i] * k);
}
System.out.println(hash.size());
}
}
|
O(nlog(n))
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n.
</TASK>
<CODE>
import java.util.Arrays;
import java.util.HashSet;
import java.util.Scanner;
/*
* To change this template, choose Tools | Templates
* and open the template in the editor.
*/
/**
*
* @author NAO93
*/
public class a {
public static void main(String[] args) {
Scanner in = new Scanner(System.in);
int n = in.nextInt();
long k = in.nextLong();
Long []a = new Long[n];
for (int i = 0; i<n; i++)
a[i] = in.nextLong();
HashSet<Long> hash = new HashSet<Long>();
Arrays.sort(a);
for (int i = 0; i<n; i++)
if (!hash.contains(a[i])){
hash.add(a[i] * k);
}
System.out.println(hash.size());
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(log(n)): The execution time ascends in proportion to the logarithm of the input size n.
- O(1): The execution time is unaffected by the size of the input n.
- O(n^3): The execution time ascends in proportion to the cube of the input size n.
- O(n): The execution time ascends in a one-to-one ratio with the input size n.
- O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially.
- O(n^2): The execution time ascends in proportion to the square of the input size n.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Classify the following Java code's worst-case time complexity according to its relationship to the input size n.
</TASK>
<CODE>
import java.util.Arrays;
import java.util.HashSet;
import java.util.Scanner;
/*
* To change this template, choose Tools | Templates
* and open the template in the editor.
*/
/**
*
* @author NAO93
*/
public class a {
public static void main(String[] args) {
Scanner in = new Scanner(System.in);
int n = in.nextInt();
long k = in.nextLong();
Long []a = new Long[n];
for (int i = 0; i<n; i++)
a[i] = in.nextLong();
HashSet<Long> hash = new HashSet<Long>();
Arrays.sort(a);
for (int i = 0; i<n; i++)
if (!hash.contains(a[i])){
hash.add(a[i] * k);
}
System.out.println(hash.size());
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(n^3): The running time increases with the cube of the input size n.
- O(nlog(n)): The running time increases with the product of n and logarithm of n.
- O(log(n)): The running time increases with the logarithm of the input size n.
- O(1): The running time does not change regardless of the input size n.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- O(n): The running time grows linearly with the input size n.
- O(n^2): The running time increases with the square of the input size n.
- others: The code does not clearly correspond to the listed classes or has an unclassified time complexity.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
| 536
| 1,547
|
768
|
import java.io.BufferedReader;
import java.io.BufferedWriter;
import java.io.IOException;
import java.io.InputStreamReader;
import java.io.OutputStreamWriter;
import java.io.PrintWriter;
import java.util.Arrays;
import java.util.StringTokenizer;
public class C {
static StringTokenizer st;
static BufferedReader br;
static PrintWriter pw;
public static void main(String[] args) throws IOException {
br = new BufferedReader(new InputStreamReader(System.in));
pw = new PrintWriter(new BufferedWriter(new OutputStreamWriter(System.out)));
int n = nextInt();
char[]a = next().toCharArray();
int[]cnt = new int[256];
for (int i = 0; i < n; i++) {
cnt[a[i]]++;
}
int alldiff = 0;
for (int i = 0; i < 256; i++) {
if (cnt[i] > 0)
alldiff++;
}
Arrays.fill(cnt, 0);
int diff = 0, right = -1, ans = n+5;
for (int i = 0; i < n; i++) {
if (right < i) {
cnt[a[i]]++;
diff = 1;
right = i;
}
while (right < n-1 && diff < alldiff) {
right++;
cnt[a[right]]++;
if (cnt[a[right]]==1)
diff++;
}
if (diff==alldiff && right-i+1 < ans) {
ans = right-i+1;
}
cnt[a[i]]--;
if (cnt[a[i]]==0)
diff--;
}
System.out.println(ans);
pw.close();
}
private static int nextInt() throws IOException {
return Integer.parseInt(next());
}
private static long nextLong() throws IOException {
return Long.parseLong(next());
}
private static double nextDouble() throws IOException {
return Double.parseDouble(next());
}
private static String next() throws IOException {
while (st==null || !st.hasMoreTokens())
st = new StringTokenizer(br.readLine());
return st.nextToken();
}
}
|
O(n)
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Classify the following Java code's worst-case time complexity according to its relationship to the input size n.
</TASK>
<CODE>
import java.io.BufferedReader;
import java.io.BufferedWriter;
import java.io.IOException;
import java.io.InputStreamReader;
import java.io.OutputStreamWriter;
import java.io.PrintWriter;
import java.util.Arrays;
import java.util.StringTokenizer;
public class C {
static StringTokenizer st;
static BufferedReader br;
static PrintWriter pw;
public static void main(String[] args) throws IOException {
br = new BufferedReader(new InputStreamReader(System.in));
pw = new PrintWriter(new BufferedWriter(new OutputStreamWriter(System.out)));
int n = nextInt();
char[]a = next().toCharArray();
int[]cnt = new int[256];
for (int i = 0; i < n; i++) {
cnt[a[i]]++;
}
int alldiff = 0;
for (int i = 0; i < 256; i++) {
if (cnt[i] > 0)
alldiff++;
}
Arrays.fill(cnt, 0);
int diff = 0, right = -1, ans = n+5;
for (int i = 0; i < n; i++) {
if (right < i) {
cnt[a[i]]++;
diff = 1;
right = i;
}
while (right < n-1 && diff < alldiff) {
right++;
cnt[a[right]]++;
if (cnt[a[right]]==1)
diff++;
}
if (diff==alldiff && right-i+1 < ans) {
ans = right-i+1;
}
cnt[a[i]]--;
if (cnt[a[i]]==0)
diff--;
}
System.out.println(ans);
pw.close();
}
private static int nextInt() throws IOException {
return Integer.parseInt(next());
}
private static long nextLong() throws IOException {
return Long.parseLong(next());
}
private static double nextDouble() throws IOException {
return Double.parseDouble(next());
}
private static String next() throws IOException {
while (st==null || !st.hasMoreTokens())
st = new StringTokenizer(br.readLine());
return st.nextToken();
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(n^2): The running time increases with the square of the input size n.
- O(n): The running time grows linearly with the input size n.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- O(n^3): The running time increases with the cube of the input size n.
- O(nlog(n)): The running time increases with the product of n and logarithm of n.
- O(1): The running time does not change regardless of the input size n.
- O(log(n)): The running time increases with the logarithm of the input size n.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n.
</TASK>
<CODE>
import java.io.BufferedReader;
import java.io.BufferedWriter;
import java.io.IOException;
import java.io.InputStreamReader;
import java.io.OutputStreamWriter;
import java.io.PrintWriter;
import java.util.Arrays;
import java.util.StringTokenizer;
public class C {
static StringTokenizer st;
static BufferedReader br;
static PrintWriter pw;
public static void main(String[] args) throws IOException {
br = new BufferedReader(new InputStreamReader(System.in));
pw = new PrintWriter(new BufferedWriter(new OutputStreamWriter(System.out)));
int n = nextInt();
char[]a = next().toCharArray();
int[]cnt = new int[256];
for (int i = 0; i < n; i++) {
cnt[a[i]]++;
}
int alldiff = 0;
for (int i = 0; i < 256; i++) {
if (cnt[i] > 0)
alldiff++;
}
Arrays.fill(cnt, 0);
int diff = 0, right = -1, ans = n+5;
for (int i = 0; i < n; i++) {
if (right < i) {
cnt[a[i]]++;
diff = 1;
right = i;
}
while (right < n-1 && diff < alldiff) {
right++;
cnt[a[right]]++;
if (cnt[a[right]]==1)
diff++;
}
if (diff==alldiff && right-i+1 < ans) {
ans = right-i+1;
}
cnt[a[i]]--;
if (cnt[a[i]]==0)
diff--;
}
System.out.println(ans);
pw.close();
}
private static int nextInt() throws IOException {
return Integer.parseInt(next());
}
private static long nextLong() throws IOException {
return Long.parseLong(next());
}
private static double nextDouble() throws IOException {
return Double.parseDouble(next());
}
private static String next() throws IOException {
while (st==null || !st.hasMoreTokens())
st = new StringTokenizer(br.readLine());
return st.nextToken();
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(1): The execution time is unaffected by the size of the input n.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- others: The time complexity does not fit to any of the given categories or is ambiguous.
- O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially.
- O(log(n)): The execution time ascends in proportion to the logarithm of the input size n.
- O(n^3): The execution time ascends in proportion to the cube of the input size n.
- O(n^2): The execution time ascends in proportion to the square of the input size n.
- O(n): The execution time ascends in a one-to-one ratio with the input size n.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
| 786
| 767
|
302
|
import java.util.*;
import javax.lang.model.util.ElementScanner6;
import java.io.*;
public class Main {
public static void main(String[] args) {
InputStream inputStream = System.in;
OutputStream outputStream = System.out;
InputReader inp = new InputReader(inputStream);
PrintWriter out = new PrintWriter(outputStream);
Solver solver = new Solver();
solver.solve(inp, out);
out.close();
}
static class Solver {
class pair implements Comparable<pair>{
int i;
long dist;
public pair(int i,long dist)
{
this.i=i;
this.dist=dist;
}
public int compareTo(pair p)
{
return Long.compare(this.dist,p.dist);
}
}
class Node implements Comparable < Node > {
int i;
int cnt;
Node(int i, int cnt) {
this.i = i;
this.cnt = cnt;
}
public int compareTo(Node n) {
if (this.cnt == n.cnt) {
return Integer.compare(this.i, n.i);
}
return Integer.compare(this.cnt, n.cnt);
}
}
public boolean done(int[] sp, int[] par) {
int root;
root = findSet(sp[0], par);
for (int i = 1; i < sp.length; i++) {
if (root != findSet(sp[i], par))
return false;
}
return true;
}
public int findSet(int i, int[] par) {
int x = i;
boolean flag = false;
while (par[i] >= 0) {
flag = true;
i = par[i];
}
if (flag)
par[x] = i;
return i;
}
public void unionSet(int i, int j, int[] par) {
int x = findSet(i, par);
int y = findSet(j, par);
if (x < y) {
par[y] = x;
} else {
par[x] = y;
}
}
public long pow(long a, long b, long MOD) {
if (b == 0) {
return 1;
}
if (b == 1) {
return a;
}
long val = pow(a, b / 2, MOD);
if (b % 2 == 0) {
return val * val % MOD;
} else {
return val * (val * a % MOD) % MOD;
}
}
public boolean isPrime(int n)
{
for(int i=2;i<n;i++)
{
if(n%i==0)
{
return false;
}
}
return true;
}
public void minPrimeFactor(int n, int[] s) {
boolean prime[] = new boolean[n + 1];
Arrays.fill(prime, true);
s[1] = 1;
s[2] = 2;
for (int i = 4; i <= n; i += 2) {
prime[i] = false;
s[i] = 2;
}
for (int i = 3; i <= n; i += 2) {
if (prime[i]) {
s[i] = i;
for (int j = 2 * i; j <= n; j += i) {
prime[j] = false;
s[j] = i;
}
}
}
}
public void findAllPrime(int n, ArrayList < Node > al, int s[]) {
int curr = s[n];
int cnt = 1;
while (n > 1) {
n /= s[n];
if (curr == s[n]) {
cnt++;
continue;
}
Node n1 = new Node(curr, cnt);
al.add(n1);
curr = s[n];
cnt = 1;
}
}
public int binarySearch(int n, int k) {
int left = 1;
int right = 100000000 + 5;
int ans = 0;
while (left <= right) {
int mid = (left + right) / 2;
if (n / mid >= k) {
left = mid + 1;
ans = mid;
} else {
right = mid - 1;
}
}
return ans;
}
public boolean checkPallindrom(String s) {
char ch[] = s.toCharArray();
for (int i = 0; i < s.length() / 2; i++) {
if (ch[i] != ch[s.length() - 1 - i])
return false;
}
return true;
}
public void remove(ArrayList < Integer > [] al, int x) {
for (int i = 0; i < al.length; i++) {
for (int j = 0; j < al[i].size(); j++) {
if (al[i].get(j) == x)
al[i].remove(j);
}
}
}
public long gcd(long a, long b) {
if (a == 0)
return b;
return gcd(b % a, a);
}
public void printDivisors(long n, ArrayList < Long > al) {
// Note that this loop runs till square root
for (long i = 1; i <= Math.sqrt(n); i++) {
if (n % i == 0) {
// If divisors are equal, print only one
if (n / i == i) {
al.add(i);
} else // Otherwise print both
{
al.add(i);
al.add(n / i);
}
}
}
}
public static long constructSegment(long seg[], long arr[], int low, int high, int pos) {
if (low == high) {
seg[pos] = arr[low];
return seg[pos];
}
int mid = (low + high) / 2;
long t1 = constructSegment(seg, arr, low, mid, (2 * pos) + 1);
long t2 = constructSegment(seg, arr, mid + 1, high, (2 * pos) + 2);
seg[pos] = t1 + t2;
return seg[pos];
}
public static long querySegment(long seg[], int low, int high, int qlow, int qhigh, int pos) {
if (qlow <= low && qhigh >= high) {
return seg[pos];
} else if (qlow > high || qhigh < low) {
return 0;
} else {
long ans = 0;
int mid = (low + high) / 2;
ans += querySegment(seg, low, mid, qlow, qhigh, (2 * pos) + 1);
ans += querySegment(seg, mid + 1, high, qlow, qhigh, (2 * pos) + 2);
return ans;
}
}
public static int lcs(char[] X, char[] Y, int m, int n) {
if (m == 0 || n == 0)
return 0;
if (X[m - 1] == Y[n - 1])
return 1 + lcs(X, Y, m - 1, n - 1);
else
return Integer.max(lcs(X, Y, m, n - 1), lcs(X, Y, m - 1, n));
}
public static long recursion(long start, long end, long cnt[], int a, int b) {
long min = 0;
long count = 0;
int ans1 = -1;
int ans2 = -1;
int l = 0;
int r = cnt.length - 1;
while (l <= r) {
int mid = (l + r) / 2;
if (cnt[mid] >= start) {
ans1 = mid;
r = mid - 1;
} else {
l = mid + 1;
}
}
l = 0;
r = cnt.length - 1;
while (l <= r) {
int mid = (l + r) / 2;
if (cnt[mid] <= end) {
ans2 = mid;
l = mid + 1;
} else {
r = mid - 1;
}
}
if (ans1 == -1 || ans2 == -1 || ans2 < ans1) {
// System.out.println("min1 "+min);
min = a;
return a;
} else {
min = b * (end - start + 1) * (ans2 - ans1 + 1);
}
if (start == end) {
// System.out.println("min "+min);
return min;
}
long mid = (end + start) / 2;
min = Long.min(min, recursion(start, mid, cnt, a, b) + recursion(mid + 1, end, cnt, a, b));
// System.out.println("min "+min);
return min;
}
public int dfs_util(ArrayList < Integer > [] al, boolean vis[], int x, int[] s, int lvl[]) {
vis[x] = true;
int cnt = 1;
for (int i = 0; i < al[x].size(); i++) {
if (!vis[al[x].get(i)]) {
lvl[al[x].get(i)] = lvl[x] + 1;
cnt += dfs_util(al, vis, al[x].get(i), s, lvl);
}
}
s[x] = cnt;
return s[x];
}
public void dfs(ArrayList[] al, int[] s, int[] lvl) {
boolean vis[] = new boolean[al.length];
for (int i = 0; i < al.length; i++) {
if (!vis[i]) {
lvl[i] = 1;
dfs_util(al, vis, i, s, lvl);
}
}
}
public int[] computeLps(String s)
{
int ans[] =new int[s.length()];
char ch[] = s.toCharArray();
int n = s.length();
int i=1;
int len=0;
ans[0]=0;
while(i<n)
{
if(ch[i]==ch[len])
{
len++;
ans[i]=len;
i++;
}
else
{
if(len!=0)
{
len=ans[len-1];
}
else
{
ans[i]=len;
i++;
}
}
}
return ans;
}
private void solve(InputReader inp, PrintWriter out1) {
int n = inp.nextInt();
int m = inp.nextInt();
long k = inp.nextLong();
long arr[] = new long[n];
for(int i=0;i<n;i++)
{
arr[i] = inp.nextLong();
}
long ans=0;
for(int i=0;i<m;i++)
{
long sum=0;
for(int j=i;j<n;j++)
{
if(j%m==i)
{
if(sum<0)
{
sum=0;
}
sum-=k;
}
sum+=arr[j];
ans=Math.max(ans,sum);
}
}
System.out.println(ans);
}
}
static class InputReader {
BufferedReader reader;
StringTokenizer tokenizer;
InputReader(InputStream stream) {
reader = new BufferedReader(new InputStreamReader(stream), 32768);
tokenizer = null;
}
String next() {
while (tokenizer == null || !tokenizer.hasMoreTokens()) {
try {
tokenizer = new StringTokenizer(reader.readLine());
} catch (IOException e) {
throw new RuntimeException(e);
}
}
return tokenizer.nextToken();
}
public int nextInt() {
return Integer.parseInt(next());
}
public long nextLong() {
return Long.parseLong(next());
}
}
}
class ele implements Comparable < ele > {
int value;
int i;
boolean flag;
public ele(int value, int i) {
this.value = value;
this.i = i;
this.flag = false;
}
public int compareTo(ele e) {
return Integer.compare(this.value, e.value);
}
}
|
O(n^2)
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Determine the worst-case time complexity category of a given Java code based on input size n.
</TASK>
<CODE>
import java.util.*;
import javax.lang.model.util.ElementScanner6;
import java.io.*;
public class Main {
public static void main(String[] args) {
InputStream inputStream = System.in;
OutputStream outputStream = System.out;
InputReader inp = new InputReader(inputStream);
PrintWriter out = new PrintWriter(outputStream);
Solver solver = new Solver();
solver.solve(inp, out);
out.close();
}
static class Solver {
class pair implements Comparable<pair>{
int i;
long dist;
public pair(int i,long dist)
{
this.i=i;
this.dist=dist;
}
public int compareTo(pair p)
{
return Long.compare(this.dist,p.dist);
}
}
class Node implements Comparable < Node > {
int i;
int cnt;
Node(int i, int cnt) {
this.i = i;
this.cnt = cnt;
}
public int compareTo(Node n) {
if (this.cnt == n.cnt) {
return Integer.compare(this.i, n.i);
}
return Integer.compare(this.cnt, n.cnt);
}
}
public boolean done(int[] sp, int[] par) {
int root;
root = findSet(sp[0], par);
for (int i = 1; i < sp.length; i++) {
if (root != findSet(sp[i], par))
return false;
}
return true;
}
public int findSet(int i, int[] par) {
int x = i;
boolean flag = false;
while (par[i] >= 0) {
flag = true;
i = par[i];
}
if (flag)
par[x] = i;
return i;
}
public void unionSet(int i, int j, int[] par) {
int x = findSet(i, par);
int y = findSet(j, par);
if (x < y) {
par[y] = x;
} else {
par[x] = y;
}
}
public long pow(long a, long b, long MOD) {
if (b == 0) {
return 1;
}
if (b == 1) {
return a;
}
long val = pow(a, b / 2, MOD);
if (b % 2 == 0) {
return val * val % MOD;
} else {
return val * (val * a % MOD) % MOD;
}
}
public boolean isPrime(int n)
{
for(int i=2;i<n;i++)
{
if(n%i==0)
{
return false;
}
}
return true;
}
public void minPrimeFactor(int n, int[] s) {
boolean prime[] = new boolean[n + 1];
Arrays.fill(prime, true);
s[1] = 1;
s[2] = 2;
for (int i = 4; i <= n; i += 2) {
prime[i] = false;
s[i] = 2;
}
for (int i = 3; i <= n; i += 2) {
if (prime[i]) {
s[i] = i;
for (int j = 2 * i; j <= n; j += i) {
prime[j] = false;
s[j] = i;
}
}
}
}
public void findAllPrime(int n, ArrayList < Node > al, int s[]) {
int curr = s[n];
int cnt = 1;
while (n > 1) {
n /= s[n];
if (curr == s[n]) {
cnt++;
continue;
}
Node n1 = new Node(curr, cnt);
al.add(n1);
curr = s[n];
cnt = 1;
}
}
public int binarySearch(int n, int k) {
int left = 1;
int right = 100000000 + 5;
int ans = 0;
while (left <= right) {
int mid = (left + right) / 2;
if (n / mid >= k) {
left = mid + 1;
ans = mid;
} else {
right = mid - 1;
}
}
return ans;
}
public boolean checkPallindrom(String s) {
char ch[] = s.toCharArray();
for (int i = 0; i < s.length() / 2; i++) {
if (ch[i] != ch[s.length() - 1 - i])
return false;
}
return true;
}
public void remove(ArrayList < Integer > [] al, int x) {
for (int i = 0; i < al.length; i++) {
for (int j = 0; j < al[i].size(); j++) {
if (al[i].get(j) == x)
al[i].remove(j);
}
}
}
public long gcd(long a, long b) {
if (a == 0)
return b;
return gcd(b % a, a);
}
public void printDivisors(long n, ArrayList < Long > al) {
// Note that this loop runs till square root
for (long i = 1; i <= Math.sqrt(n); i++) {
if (n % i == 0) {
// If divisors are equal, print only one
if (n / i == i) {
al.add(i);
} else // Otherwise print both
{
al.add(i);
al.add(n / i);
}
}
}
}
public static long constructSegment(long seg[], long arr[], int low, int high, int pos) {
if (low == high) {
seg[pos] = arr[low];
return seg[pos];
}
int mid = (low + high) / 2;
long t1 = constructSegment(seg, arr, low, mid, (2 * pos) + 1);
long t2 = constructSegment(seg, arr, mid + 1, high, (2 * pos) + 2);
seg[pos] = t1 + t2;
return seg[pos];
}
public static long querySegment(long seg[], int low, int high, int qlow, int qhigh, int pos) {
if (qlow <= low && qhigh >= high) {
return seg[pos];
} else if (qlow > high || qhigh < low) {
return 0;
} else {
long ans = 0;
int mid = (low + high) / 2;
ans += querySegment(seg, low, mid, qlow, qhigh, (2 * pos) + 1);
ans += querySegment(seg, mid + 1, high, qlow, qhigh, (2 * pos) + 2);
return ans;
}
}
public static int lcs(char[] X, char[] Y, int m, int n) {
if (m == 0 || n == 0)
return 0;
if (X[m - 1] == Y[n - 1])
return 1 + lcs(X, Y, m - 1, n - 1);
else
return Integer.max(lcs(X, Y, m, n - 1), lcs(X, Y, m - 1, n));
}
public static long recursion(long start, long end, long cnt[], int a, int b) {
long min = 0;
long count = 0;
int ans1 = -1;
int ans2 = -1;
int l = 0;
int r = cnt.length - 1;
while (l <= r) {
int mid = (l + r) / 2;
if (cnt[mid] >= start) {
ans1 = mid;
r = mid - 1;
} else {
l = mid + 1;
}
}
l = 0;
r = cnt.length - 1;
while (l <= r) {
int mid = (l + r) / 2;
if (cnt[mid] <= end) {
ans2 = mid;
l = mid + 1;
} else {
r = mid - 1;
}
}
if (ans1 == -1 || ans2 == -1 || ans2 < ans1) {
// System.out.println("min1 "+min);
min = a;
return a;
} else {
min = b * (end - start + 1) * (ans2 - ans1 + 1);
}
if (start == end) {
// System.out.println("min "+min);
return min;
}
long mid = (end + start) / 2;
min = Long.min(min, recursion(start, mid, cnt, a, b) + recursion(mid + 1, end, cnt, a, b));
// System.out.println("min "+min);
return min;
}
public int dfs_util(ArrayList < Integer > [] al, boolean vis[], int x, int[] s, int lvl[]) {
vis[x] = true;
int cnt = 1;
for (int i = 0; i < al[x].size(); i++) {
if (!vis[al[x].get(i)]) {
lvl[al[x].get(i)] = lvl[x] + 1;
cnt += dfs_util(al, vis, al[x].get(i), s, lvl);
}
}
s[x] = cnt;
return s[x];
}
public void dfs(ArrayList[] al, int[] s, int[] lvl) {
boolean vis[] = new boolean[al.length];
for (int i = 0; i < al.length; i++) {
if (!vis[i]) {
lvl[i] = 1;
dfs_util(al, vis, i, s, lvl);
}
}
}
public int[] computeLps(String s)
{
int ans[] =new int[s.length()];
char ch[] = s.toCharArray();
int n = s.length();
int i=1;
int len=0;
ans[0]=0;
while(i<n)
{
if(ch[i]==ch[len])
{
len++;
ans[i]=len;
i++;
}
else
{
if(len!=0)
{
len=ans[len-1];
}
else
{
ans[i]=len;
i++;
}
}
}
return ans;
}
private void solve(InputReader inp, PrintWriter out1) {
int n = inp.nextInt();
int m = inp.nextInt();
long k = inp.nextLong();
long arr[] = new long[n];
for(int i=0;i<n;i++)
{
arr[i] = inp.nextLong();
}
long ans=0;
for(int i=0;i<m;i++)
{
long sum=0;
for(int j=i;j<n;j++)
{
if(j%m==i)
{
if(sum<0)
{
sum=0;
}
sum-=k;
}
sum+=arr[j];
ans=Math.max(ans,sum);
}
}
System.out.println(ans);
}
}
static class InputReader {
BufferedReader reader;
StringTokenizer tokenizer;
InputReader(InputStream stream) {
reader = new BufferedReader(new InputStreamReader(stream), 32768);
tokenizer = null;
}
String next() {
while (tokenizer == null || !tokenizer.hasMoreTokens()) {
try {
tokenizer = new StringTokenizer(reader.readLine());
} catch (IOException e) {
throw new RuntimeException(e);
}
}
return tokenizer.nextToken();
}
public int nextInt() {
return Integer.parseInt(next());
}
public long nextLong() {
return Long.parseLong(next());
}
}
}
class ele implements Comparable < ele > {
int value;
int i;
boolean flag;
public ele(int value, int i) {
this.value = value;
this.i = i;
this.flag = false;
}
public int compareTo(ele e) {
return Integer.compare(this.value, e.value);
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(n^2): The time complexity grows proportionally to the square of the input size.
- O(1): The time complexity is constant to the input size n.
- non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially.
- O(log(n)): The time complexity increases logarithmically in relation to the input size.
- O(nlog(n)): The time complexity combines linear and logarithmic growth factors.
- O(n^3): The time complexity scales proportionally to the cube of the input size.
- O(n): The time complexity increases proportionally to the input size n in a linear manner.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Determine the worst-case time complexity category of a given Java code based on input size n.
</TASK>
<CODE>
import java.util.*;
import javax.lang.model.util.ElementScanner6;
import java.io.*;
public class Main {
public static void main(String[] args) {
InputStream inputStream = System.in;
OutputStream outputStream = System.out;
InputReader inp = new InputReader(inputStream);
PrintWriter out = new PrintWriter(outputStream);
Solver solver = new Solver();
solver.solve(inp, out);
out.close();
}
static class Solver {
class pair implements Comparable<pair>{
int i;
long dist;
public pair(int i,long dist)
{
this.i=i;
this.dist=dist;
}
public int compareTo(pair p)
{
return Long.compare(this.dist,p.dist);
}
}
class Node implements Comparable < Node > {
int i;
int cnt;
Node(int i, int cnt) {
this.i = i;
this.cnt = cnt;
}
public int compareTo(Node n) {
if (this.cnt == n.cnt) {
return Integer.compare(this.i, n.i);
}
return Integer.compare(this.cnt, n.cnt);
}
}
public boolean done(int[] sp, int[] par) {
int root;
root = findSet(sp[0], par);
for (int i = 1; i < sp.length; i++) {
if (root != findSet(sp[i], par))
return false;
}
return true;
}
public int findSet(int i, int[] par) {
int x = i;
boolean flag = false;
while (par[i] >= 0) {
flag = true;
i = par[i];
}
if (flag)
par[x] = i;
return i;
}
public void unionSet(int i, int j, int[] par) {
int x = findSet(i, par);
int y = findSet(j, par);
if (x < y) {
par[y] = x;
} else {
par[x] = y;
}
}
public long pow(long a, long b, long MOD) {
if (b == 0) {
return 1;
}
if (b == 1) {
return a;
}
long val = pow(a, b / 2, MOD);
if (b % 2 == 0) {
return val * val % MOD;
} else {
return val * (val * a % MOD) % MOD;
}
}
public boolean isPrime(int n)
{
for(int i=2;i<n;i++)
{
if(n%i==0)
{
return false;
}
}
return true;
}
public void minPrimeFactor(int n, int[] s) {
boolean prime[] = new boolean[n + 1];
Arrays.fill(prime, true);
s[1] = 1;
s[2] = 2;
for (int i = 4; i <= n; i += 2) {
prime[i] = false;
s[i] = 2;
}
for (int i = 3; i <= n; i += 2) {
if (prime[i]) {
s[i] = i;
for (int j = 2 * i; j <= n; j += i) {
prime[j] = false;
s[j] = i;
}
}
}
}
public void findAllPrime(int n, ArrayList < Node > al, int s[]) {
int curr = s[n];
int cnt = 1;
while (n > 1) {
n /= s[n];
if (curr == s[n]) {
cnt++;
continue;
}
Node n1 = new Node(curr, cnt);
al.add(n1);
curr = s[n];
cnt = 1;
}
}
public int binarySearch(int n, int k) {
int left = 1;
int right = 100000000 + 5;
int ans = 0;
while (left <= right) {
int mid = (left + right) / 2;
if (n / mid >= k) {
left = mid + 1;
ans = mid;
} else {
right = mid - 1;
}
}
return ans;
}
public boolean checkPallindrom(String s) {
char ch[] = s.toCharArray();
for (int i = 0; i < s.length() / 2; i++) {
if (ch[i] != ch[s.length() - 1 - i])
return false;
}
return true;
}
public void remove(ArrayList < Integer > [] al, int x) {
for (int i = 0; i < al.length; i++) {
for (int j = 0; j < al[i].size(); j++) {
if (al[i].get(j) == x)
al[i].remove(j);
}
}
}
public long gcd(long a, long b) {
if (a == 0)
return b;
return gcd(b % a, a);
}
public void printDivisors(long n, ArrayList < Long > al) {
// Note that this loop runs till square root
for (long i = 1; i <= Math.sqrt(n); i++) {
if (n % i == 0) {
// If divisors are equal, print only one
if (n / i == i) {
al.add(i);
} else // Otherwise print both
{
al.add(i);
al.add(n / i);
}
}
}
}
public static long constructSegment(long seg[], long arr[], int low, int high, int pos) {
if (low == high) {
seg[pos] = arr[low];
return seg[pos];
}
int mid = (low + high) / 2;
long t1 = constructSegment(seg, arr, low, mid, (2 * pos) + 1);
long t2 = constructSegment(seg, arr, mid + 1, high, (2 * pos) + 2);
seg[pos] = t1 + t2;
return seg[pos];
}
public static long querySegment(long seg[], int low, int high, int qlow, int qhigh, int pos) {
if (qlow <= low && qhigh >= high) {
return seg[pos];
} else if (qlow > high || qhigh < low) {
return 0;
} else {
long ans = 0;
int mid = (low + high) / 2;
ans += querySegment(seg, low, mid, qlow, qhigh, (2 * pos) + 1);
ans += querySegment(seg, mid + 1, high, qlow, qhigh, (2 * pos) + 2);
return ans;
}
}
public static int lcs(char[] X, char[] Y, int m, int n) {
if (m == 0 || n == 0)
return 0;
if (X[m - 1] == Y[n - 1])
return 1 + lcs(X, Y, m - 1, n - 1);
else
return Integer.max(lcs(X, Y, m, n - 1), lcs(X, Y, m - 1, n));
}
public static long recursion(long start, long end, long cnt[], int a, int b) {
long min = 0;
long count = 0;
int ans1 = -1;
int ans2 = -1;
int l = 0;
int r = cnt.length - 1;
while (l <= r) {
int mid = (l + r) / 2;
if (cnt[mid] >= start) {
ans1 = mid;
r = mid - 1;
} else {
l = mid + 1;
}
}
l = 0;
r = cnt.length - 1;
while (l <= r) {
int mid = (l + r) / 2;
if (cnt[mid] <= end) {
ans2 = mid;
l = mid + 1;
} else {
r = mid - 1;
}
}
if (ans1 == -1 || ans2 == -1 || ans2 < ans1) {
// System.out.println("min1 "+min);
min = a;
return a;
} else {
min = b * (end - start + 1) * (ans2 - ans1 + 1);
}
if (start == end) {
// System.out.println("min "+min);
return min;
}
long mid = (end + start) / 2;
min = Long.min(min, recursion(start, mid, cnt, a, b) + recursion(mid + 1, end, cnt, a, b));
// System.out.println("min "+min);
return min;
}
public int dfs_util(ArrayList < Integer > [] al, boolean vis[], int x, int[] s, int lvl[]) {
vis[x] = true;
int cnt = 1;
for (int i = 0; i < al[x].size(); i++) {
if (!vis[al[x].get(i)]) {
lvl[al[x].get(i)] = lvl[x] + 1;
cnt += dfs_util(al, vis, al[x].get(i), s, lvl);
}
}
s[x] = cnt;
return s[x];
}
public void dfs(ArrayList[] al, int[] s, int[] lvl) {
boolean vis[] = new boolean[al.length];
for (int i = 0; i < al.length; i++) {
if (!vis[i]) {
lvl[i] = 1;
dfs_util(al, vis, i, s, lvl);
}
}
}
public int[] computeLps(String s)
{
int ans[] =new int[s.length()];
char ch[] = s.toCharArray();
int n = s.length();
int i=1;
int len=0;
ans[0]=0;
while(i<n)
{
if(ch[i]==ch[len])
{
len++;
ans[i]=len;
i++;
}
else
{
if(len!=0)
{
len=ans[len-1];
}
else
{
ans[i]=len;
i++;
}
}
}
return ans;
}
private void solve(InputReader inp, PrintWriter out1) {
int n = inp.nextInt();
int m = inp.nextInt();
long k = inp.nextLong();
long arr[] = new long[n];
for(int i=0;i<n;i++)
{
arr[i] = inp.nextLong();
}
long ans=0;
for(int i=0;i<m;i++)
{
long sum=0;
for(int j=i;j<n;j++)
{
if(j%m==i)
{
if(sum<0)
{
sum=0;
}
sum-=k;
}
sum+=arr[j];
ans=Math.max(ans,sum);
}
}
System.out.println(ans);
}
}
static class InputReader {
BufferedReader reader;
StringTokenizer tokenizer;
InputReader(InputStream stream) {
reader = new BufferedReader(new InputStreamReader(stream), 32768);
tokenizer = null;
}
String next() {
while (tokenizer == null || !tokenizer.hasMoreTokens()) {
try {
tokenizer = new StringTokenizer(reader.readLine());
} catch (IOException e) {
throw new RuntimeException(e);
}
}
return tokenizer.nextToken();
}
public int nextInt() {
return Integer.parseInt(next());
}
public long nextLong() {
return Long.parseLong(next());
}
}
}
class ele implements Comparable < ele > {
int value;
int i;
boolean flag;
public ele(int value, int i) {
this.value = value;
this.i = i;
this.flag = false;
}
public int compareTo(ele e) {
return Integer.compare(this.value, e.value);
}
}
</CODE>
<EVALUATION_RUBRIC>
- others: The time complexity does not fit any of the above categories or cannot be clearly classified.
- O(n^2): The time complexity grows proportionally to the square of the input size.
- O(1): The time complexity is constant to the input size n.
- non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially.
- O(n^3): The time complexity scales proportionally to the cube of the input size.
- O(nlog(n)): The time complexity combines linear and logarithmic growth factors.
- O(log(n)): The time complexity increases logarithmically in relation to the input size.
- O(n): The time complexity increases proportionally to the input size n in a linear manner.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
| 3,107
| 302
|
4,498
|
import java.util.*;
import java.io.*;
public class Main {
public static void main(String args[]) {new Main().run();}
FastReader in = new FastReader();
PrintWriter out = new PrintWriter(System.out);
void run(){
out.println(work());
out.flush();
}
long mod=1000000007;
long gcd(long a,long b) {
return b==0?a:gcd(b,a%b);
}
long work() {
int n=in.nextInt();
int m=in.nextInt();
String str=in.next();
long[] dp=new long[1<<m];
long[][] cnt=new long[m][m];
for(int i=1;i<n;i++) {
int n1=str.charAt(i-1)-'a';
int n2=str.charAt(i)-'a';
cnt[n1][n2]++;
cnt[n2][n1]++;
}
for(int i=1;i<1<<m;i++) {
dp[i]=9999999999L;
long v=0;
for(int j=0;j<m;j++) {
if((i&(1<<j))>0) {//第j个字母
for(int k=0;k<m;k++) {
if((i&(1<<k))==0) {
v+=cnt[j][k];
}
}
}
}
for(int j=0;j<m;j++) {
if((i&(1<<j))>0) {
dp[i]=Math.min(dp[i], dp[i-(1<<j)]+v);
}
}
}
return dp[(1<<m)-1];
}
}
class FastReader
{
BufferedReader br;
StringTokenizer st;
public FastReader()
{
br=new BufferedReader(new InputStreamReader(System.in));
}
public String next()
{
if(st==null || !st.hasMoreElements())
{
try {
st = new StringTokenizer(br.readLine());
} catch (IOException e) {
e.printStackTrace();
}
}
return st.nextToken();
}
public int nextInt()
{
return Integer.parseInt(next());
}
public long nextLong()
{
return Long.parseLong(next());
}
}
|
non-polynomial
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Determine the worst-case time complexity category of a given Java code based on input size n.
</TASK>
<CODE>
import java.util.*;
import java.io.*;
public class Main {
public static void main(String args[]) {new Main().run();}
FastReader in = new FastReader();
PrintWriter out = new PrintWriter(System.out);
void run(){
out.println(work());
out.flush();
}
long mod=1000000007;
long gcd(long a,long b) {
return b==0?a:gcd(b,a%b);
}
long work() {
int n=in.nextInt();
int m=in.nextInt();
String str=in.next();
long[] dp=new long[1<<m];
long[][] cnt=new long[m][m];
for(int i=1;i<n;i++) {
int n1=str.charAt(i-1)-'a';
int n2=str.charAt(i)-'a';
cnt[n1][n2]++;
cnt[n2][n1]++;
}
for(int i=1;i<1<<m;i++) {
dp[i]=9999999999L;
long v=0;
for(int j=0;j<m;j++) {
if((i&(1<<j))>0) {//第j个字母
for(int k=0;k<m;k++) {
if((i&(1<<k))==0) {
v+=cnt[j][k];
}
}
}
}
for(int j=0;j<m;j++) {
if((i&(1<<j))>0) {
dp[i]=Math.min(dp[i], dp[i-(1<<j)]+v);
}
}
}
return dp[(1<<m)-1];
}
}
class FastReader
{
BufferedReader br;
StringTokenizer st;
public FastReader()
{
br=new BufferedReader(new InputStreamReader(System.in));
}
public String next()
{
if(st==null || !st.hasMoreElements())
{
try {
st = new StringTokenizer(br.readLine());
} catch (IOException e) {
e.printStackTrace();
}
}
return st.nextToken();
}
public int nextInt()
{
return Integer.parseInt(next());
}
public long nextLong()
{
return Long.parseLong(next());
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(n^2): The time complexity grows proportionally to the square of the input size.
- O(n): The time complexity increases proportionally to the input size n in a linear manner.
- O(log(n)): The time complexity increases logarithmically in relation to the input size.
- O(n^3): The time complexity scales proportionally to the cube of the input size.
- non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially.
- O(nlog(n)): The time complexity combines linear and logarithmic growth factors.
- O(1): The time complexity is constant to the input size n.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Determine the worst-case time complexity category of a given Java code based on input size n.
</TASK>
<CODE>
import java.util.*;
import java.io.*;
public class Main {
public static void main(String args[]) {new Main().run();}
FastReader in = new FastReader();
PrintWriter out = new PrintWriter(System.out);
void run(){
out.println(work());
out.flush();
}
long mod=1000000007;
long gcd(long a,long b) {
return b==0?a:gcd(b,a%b);
}
long work() {
int n=in.nextInt();
int m=in.nextInt();
String str=in.next();
long[] dp=new long[1<<m];
long[][] cnt=new long[m][m];
for(int i=1;i<n;i++) {
int n1=str.charAt(i-1)-'a';
int n2=str.charAt(i)-'a';
cnt[n1][n2]++;
cnt[n2][n1]++;
}
for(int i=1;i<1<<m;i++) {
dp[i]=9999999999L;
long v=0;
for(int j=0;j<m;j++) {
if((i&(1<<j))>0) {//第j个字母
for(int k=0;k<m;k++) {
if((i&(1<<k))==0) {
v+=cnt[j][k];
}
}
}
}
for(int j=0;j<m;j++) {
if((i&(1<<j))>0) {
dp[i]=Math.min(dp[i], dp[i-(1<<j)]+v);
}
}
}
return dp[(1<<m)-1];
}
}
class FastReader
{
BufferedReader br;
StringTokenizer st;
public FastReader()
{
br=new BufferedReader(new InputStreamReader(System.in));
}
public String next()
{
if(st==null || !st.hasMoreElements())
{
try {
st = new StringTokenizer(br.readLine());
} catch (IOException e) {
e.printStackTrace();
}
}
return st.nextToken();
}
public int nextInt()
{
return Integer.parseInt(next());
}
public long nextLong()
{
return Long.parseLong(next());
}
}
</CODE>
<EVALUATION_RUBRIC>
- non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially.
- O(n^2): The time complexity grows proportionally to the square of the input size.
- others: The time complexity does not fit any of the above categories or cannot be clearly classified.
- O(nlog(n)): The time complexity combines linear and logarithmic growth factors.
- O(1): The time complexity is constant to the input size n.
- O(log(n)): The time complexity increases logarithmically in relation to the input size.
- O(n^3): The time complexity scales proportionally to the cube of the input size.
- O(n): The time complexity increases proportionally to the input size n in a linear manner.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
| 814
| 4,487
|
2,330
|
import java.io.OutputStream;
import java.io.IOException;
import java.io.InputStream;
import java.io.OutputStream;
import java.io.PrintWriter;
import java.io.BufferedWriter;
import java.io.Writer;
import java.io.OutputStreamWriter;
import java.util.InputMismatchException;
import java.io.IOException;
import java.io.InputStream;
/**
* Built using CHelper plug-in
* Actual solution is at the top
*/
public class Main {
public static void main(String[] args) {
InputStream inputStream = System.in;
OutputStream outputStream = System.out;
InputReader in = new InputReader(inputStream);
OutputWriter out = new OutputWriter(outputStream);
TaskC solver = new TaskC();
solver.solve(1, in, out);
out.close();
}
static class TaskC {
public void solve(int testNumber, InputReader in, OutputWriter out) {
int n = in.readInt();
boolean[] isF = new boolean[n];
for (int i = 0; i < n; i++) {
isF[i] = in.readCharacter() == 'f';
}
int[][] mem = new int[n + 1][n + 1];
mem[n][0] = 1;
for (int idx = n - 1; idx >= 0; idx--) {
for (int indentLevel = 0; indentLevel < n; indentLevel++) {
mem[idx + 1][indentLevel + 1] += mem[idx + 1][indentLevel];
mem[idx + 1][indentLevel + 1] %= MiscUtils.MOD7;
int res = isF[idx] ?
mem[idx + 1][indentLevel + 1] - mem[idx + 1][indentLevel] :
mem[idx + 1][indentLevel];
mem[idx][indentLevel] = (res + MiscUtils.MOD7) % MiscUtils.MOD7;
}
}
out.printLine(mem[0][0]);
}
}
static class InputReader {
private InputStream stream;
private byte[] buf = new byte[1024];
private int curChar;
private int numChars;
private InputReader.SpaceCharFilter filter;
public InputReader(InputStream stream) {
this.stream = stream;
}
public int read() {
if (numChars == -1) {
throw new InputMismatchException();
}
if (curChar >= numChars) {
curChar = 0;
try {
numChars = stream.read(buf);
} catch (IOException e) {
throw new InputMismatchException();
}
if (numChars <= 0) {
return -1;
}
}
return buf[curChar++];
}
public int readInt() {
int c = read();
while (isSpaceChar(c)) {
c = read();
}
int sgn = 1;
if (c == '-') {
sgn = -1;
c = read();
}
int res = 0;
do {
if (c < '0' || c > '9') {
throw new InputMismatchException();
}
res *= 10;
res += c - '0';
c = read();
} while (!isSpaceChar(c));
return res * sgn;
}
public boolean isSpaceChar(int c) {
if (filter != null) {
return filter.isSpaceChar(c);
}
return isWhitespace(c);
}
public static boolean isWhitespace(int c) {
return c == ' ' || c == '\n' || c == '\r' || c == '\t' || c == -1;
}
public char readCharacter() {
int c = read();
while (isSpaceChar(c)) {
c = read();
}
return (char) c;
}
public interface SpaceCharFilter {
public boolean isSpaceChar(int ch);
}
}
static class MiscUtils {
public static final int MOD7 = (int) (1e9 + 7);
}
static class OutputWriter {
private final PrintWriter writer;
public OutputWriter(OutputStream outputStream) {
writer = new PrintWriter(new BufferedWriter(new OutputStreamWriter(outputStream)));
}
public OutputWriter(Writer writer) {
this.writer = new PrintWriter(writer);
}
public void close() {
writer.close();
}
public void printLine(int i) {
writer.println(i);
}
}
}
|
O(n^2)
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n.
</TASK>
<CODE>
import java.io.OutputStream;
import java.io.IOException;
import java.io.InputStream;
import java.io.OutputStream;
import java.io.PrintWriter;
import java.io.BufferedWriter;
import java.io.Writer;
import java.io.OutputStreamWriter;
import java.util.InputMismatchException;
import java.io.IOException;
import java.io.InputStream;
/**
* Built using CHelper plug-in
* Actual solution is at the top
*/
public class Main {
public static void main(String[] args) {
InputStream inputStream = System.in;
OutputStream outputStream = System.out;
InputReader in = new InputReader(inputStream);
OutputWriter out = new OutputWriter(outputStream);
TaskC solver = new TaskC();
solver.solve(1, in, out);
out.close();
}
static class TaskC {
public void solve(int testNumber, InputReader in, OutputWriter out) {
int n = in.readInt();
boolean[] isF = new boolean[n];
for (int i = 0; i < n; i++) {
isF[i] = in.readCharacter() == 'f';
}
int[][] mem = new int[n + 1][n + 1];
mem[n][0] = 1;
for (int idx = n - 1; idx >= 0; idx--) {
for (int indentLevel = 0; indentLevel < n; indentLevel++) {
mem[idx + 1][indentLevel + 1] += mem[idx + 1][indentLevel];
mem[idx + 1][indentLevel + 1] %= MiscUtils.MOD7;
int res = isF[idx] ?
mem[idx + 1][indentLevel + 1] - mem[idx + 1][indentLevel] :
mem[idx + 1][indentLevel];
mem[idx][indentLevel] = (res + MiscUtils.MOD7) % MiscUtils.MOD7;
}
}
out.printLine(mem[0][0]);
}
}
static class InputReader {
private InputStream stream;
private byte[] buf = new byte[1024];
private int curChar;
private int numChars;
private InputReader.SpaceCharFilter filter;
public InputReader(InputStream stream) {
this.stream = stream;
}
public int read() {
if (numChars == -1) {
throw new InputMismatchException();
}
if (curChar >= numChars) {
curChar = 0;
try {
numChars = stream.read(buf);
} catch (IOException e) {
throw new InputMismatchException();
}
if (numChars <= 0) {
return -1;
}
}
return buf[curChar++];
}
public int readInt() {
int c = read();
while (isSpaceChar(c)) {
c = read();
}
int sgn = 1;
if (c == '-') {
sgn = -1;
c = read();
}
int res = 0;
do {
if (c < '0' || c > '9') {
throw new InputMismatchException();
}
res *= 10;
res += c - '0';
c = read();
} while (!isSpaceChar(c));
return res * sgn;
}
public boolean isSpaceChar(int c) {
if (filter != null) {
return filter.isSpaceChar(c);
}
return isWhitespace(c);
}
public static boolean isWhitespace(int c) {
return c == ' ' || c == '\n' || c == '\r' || c == '\t' || c == -1;
}
public char readCharacter() {
int c = read();
while (isSpaceChar(c)) {
c = read();
}
return (char) c;
}
public interface SpaceCharFilter {
public boolean isSpaceChar(int ch);
}
}
static class MiscUtils {
public static final int MOD7 = (int) (1e9 + 7);
}
static class OutputWriter {
private final PrintWriter writer;
public OutputWriter(OutputStream outputStream) {
writer = new PrintWriter(new BufferedWriter(new OutputStreamWriter(outputStream)));
}
public OutputWriter(Writer writer) {
this.writer = new PrintWriter(writer);
}
public void close() {
writer.close();
}
public void printLine(int i) {
writer.println(i);
}
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially.
- O(n): The execution time ascends in a one-to-one ratio with the input size n.
- O(n^2): The execution time ascends in proportion to the square of the input size n.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- O(log(n)): The execution time ascends in proportion to the logarithm of the input size n.
- O(n^3): The execution time ascends in proportion to the cube of the input size n.
- O(1): The execution time is unaffected by the size of the input n.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n.
</TASK>
<CODE>
import java.io.OutputStream;
import java.io.IOException;
import java.io.InputStream;
import java.io.OutputStream;
import java.io.PrintWriter;
import java.io.BufferedWriter;
import java.io.Writer;
import java.io.OutputStreamWriter;
import java.util.InputMismatchException;
import java.io.IOException;
import java.io.InputStream;
/**
* Built using CHelper plug-in
* Actual solution is at the top
*/
public class Main {
public static void main(String[] args) {
InputStream inputStream = System.in;
OutputStream outputStream = System.out;
InputReader in = new InputReader(inputStream);
OutputWriter out = new OutputWriter(outputStream);
TaskC solver = new TaskC();
solver.solve(1, in, out);
out.close();
}
static class TaskC {
public void solve(int testNumber, InputReader in, OutputWriter out) {
int n = in.readInt();
boolean[] isF = new boolean[n];
for (int i = 0; i < n; i++) {
isF[i] = in.readCharacter() == 'f';
}
int[][] mem = new int[n + 1][n + 1];
mem[n][0] = 1;
for (int idx = n - 1; idx >= 0; idx--) {
for (int indentLevel = 0; indentLevel < n; indentLevel++) {
mem[idx + 1][indentLevel + 1] += mem[idx + 1][indentLevel];
mem[idx + 1][indentLevel + 1] %= MiscUtils.MOD7;
int res = isF[idx] ?
mem[idx + 1][indentLevel + 1] - mem[idx + 1][indentLevel] :
mem[idx + 1][indentLevel];
mem[idx][indentLevel] = (res + MiscUtils.MOD7) % MiscUtils.MOD7;
}
}
out.printLine(mem[0][0]);
}
}
static class InputReader {
private InputStream stream;
private byte[] buf = new byte[1024];
private int curChar;
private int numChars;
private InputReader.SpaceCharFilter filter;
public InputReader(InputStream stream) {
this.stream = stream;
}
public int read() {
if (numChars == -1) {
throw new InputMismatchException();
}
if (curChar >= numChars) {
curChar = 0;
try {
numChars = stream.read(buf);
} catch (IOException e) {
throw new InputMismatchException();
}
if (numChars <= 0) {
return -1;
}
}
return buf[curChar++];
}
public int readInt() {
int c = read();
while (isSpaceChar(c)) {
c = read();
}
int sgn = 1;
if (c == '-') {
sgn = -1;
c = read();
}
int res = 0;
do {
if (c < '0' || c > '9') {
throw new InputMismatchException();
}
res *= 10;
res += c - '0';
c = read();
} while (!isSpaceChar(c));
return res * sgn;
}
public boolean isSpaceChar(int c) {
if (filter != null) {
return filter.isSpaceChar(c);
}
return isWhitespace(c);
}
public static boolean isWhitespace(int c) {
return c == ' ' || c == '\n' || c == '\r' || c == '\t' || c == -1;
}
public char readCharacter() {
int c = read();
while (isSpaceChar(c)) {
c = read();
}
return (char) c;
}
public interface SpaceCharFilter {
public boolean isSpaceChar(int ch);
}
}
static class MiscUtils {
public static final int MOD7 = (int) (1e9 + 7);
}
static class OutputWriter {
private final PrintWriter writer;
public OutputWriter(OutputStream outputStream) {
writer = new PrintWriter(new BufferedWriter(new OutputStreamWriter(outputStream)));
}
public OutputWriter(Writer writer) {
this.writer = new PrintWriter(writer);
}
public void close() {
writer.close();
}
public void printLine(int i) {
writer.println(i);
}
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(n^2): The execution time ascends in proportion to the square of the input size n.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- O(1): The execution time is unaffected by the size of the input n.
- others: The time complexity does not fit to any of the given categories or is ambiguous.
- O(n): The execution time ascends in a one-to-one ratio with the input size n.
- O(n^3): The execution time ascends in proportion to the cube of the input size n.
- O(log(n)): The execution time ascends in proportion to the logarithm of the input size n.
- O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
| 1,302
| 2,325
|
3,486
|
import java.io.*;
import java.util.*;
public class CF1515E{
public static void main(String[] args) {
Scanner sc = new Scanner(System.in);
int n = sc.nextInt();
int md = sc.nextInt();
int k = (n + 1) / 2;
int[][] dp = new int[k + 1][n + 1]; dp[0][0] = 1;
for (int h = 1; h <= k; h++)
for (int l = h; l <= n - h + 1; l++)
dp[h][l] = (int) ((dp[h][l - 1] * 2L + dp[h - 1][l - 1]) * h % md);
int ans = 0;
for (int h = 1; h <= k; h++)
ans = (ans + dp[h][n - h + 1]) % md;
System.out.println(ans);
}
}
|
O(n^3)
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Determine the worst-case time complexity category of a given Java code based on input size n.
</TASK>
<CODE>
import java.io.*;
import java.util.*;
public class CF1515E{
public static void main(String[] args) {
Scanner sc = new Scanner(System.in);
int n = sc.nextInt();
int md = sc.nextInt();
int k = (n + 1) / 2;
int[][] dp = new int[k + 1][n + 1]; dp[0][0] = 1;
for (int h = 1; h <= k; h++)
for (int l = h; l <= n - h + 1; l++)
dp[h][l] = (int) ((dp[h][l - 1] * 2L + dp[h - 1][l - 1]) * h % md);
int ans = 0;
for (int h = 1; h <= k; h++)
ans = (ans + dp[h][n - h + 1]) % md;
System.out.println(ans);
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(log(n)): The time complexity increases logarithmically in relation to the input size.
- O(1): The time complexity is constant to the input size n.
- O(n^3): The time complexity scales proportionally to the cube of the input size.
- O(n^2): The time complexity grows proportionally to the square of the input size.
- O(n): The time complexity increases proportionally to the input size n in a linear manner.
- O(nlog(n)): The time complexity combines linear and logarithmic growth factors.
- non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n.
</TASK>
<CODE>
import java.io.*;
import java.util.*;
public class CF1515E{
public static void main(String[] args) {
Scanner sc = new Scanner(System.in);
int n = sc.nextInt();
int md = sc.nextInt();
int k = (n + 1) / 2;
int[][] dp = new int[k + 1][n + 1]; dp[0][0] = 1;
for (int h = 1; h <= k; h++)
for (int l = h; l <= n - h + 1; l++)
dp[h][l] = (int) ((dp[h][l - 1] * 2L + dp[h - 1][l - 1]) * h % md);
int ans = 0;
for (int h = 1; h <= k; h++)
ans = (ans + dp[h][n - h + 1]) % md;
System.out.println(ans);
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(n^3): The execution time ascends in proportion to the cube of the input size n.
- O(n^2): The execution time ascends in proportion to the square of the input size n.
- O(log(n)): The execution time ascends in proportion to the logarithm of the input size n.
- others: The time complexity does not fit to any of the given categories or is ambiguous.
- O(1): The execution time is unaffected by the size of the input n.
- O(n): The execution time ascends in a one-to-one ratio with the input size n.
- O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
| 543
| 3,480
|
1,932
|
import java.util.Arrays;
import java.util.Scanner;
public class Round111ProbA {
public static void main(String[] args) {
Scanner in = new Scanner(System.in);
int n = in.nextInt();
int[]a = new int[n];
int s =0;
for(int i =0 ; i < n;i++)
{
a[i] = in.nextInt();
s += a[i];
}
Arrays.sort(a);
int x =0;
int c =0;
for(int i =n-1 ; i >-1;i-- )
{
x +=a[i];
s -= a[i];
c++;
if(x > s)break;
}
System.out.println(c);
}
}
|
O(nlog(n))
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Classify the following Java code's worst-case time complexity according to its relationship to the input size n.
</TASK>
<CODE>
import java.util.Arrays;
import java.util.Scanner;
public class Round111ProbA {
public static void main(String[] args) {
Scanner in = new Scanner(System.in);
int n = in.nextInt();
int[]a = new int[n];
int s =0;
for(int i =0 ; i < n;i++)
{
a[i] = in.nextInt();
s += a[i];
}
Arrays.sort(a);
int x =0;
int c =0;
for(int i =n-1 ; i >-1;i-- )
{
x +=a[i];
s -= a[i];
c++;
if(x > s)break;
}
System.out.println(c);
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(log(n)): The running time increases with the logarithm of the input size n.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- O(nlog(n)): The running time increases with the product of n and logarithm of n.
- O(1): The running time does not change regardless of the input size n.
- O(n): The running time grows linearly with the input size n.
- O(n^2): The running time increases with the square of the input size n.
- O(n^3): The running time increases with the cube of the input size n.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n.
</TASK>
<CODE>
import java.util.Arrays;
import java.util.Scanner;
public class Round111ProbA {
public static void main(String[] args) {
Scanner in = new Scanner(System.in);
int n = in.nextInt();
int[]a = new int[n];
int s =0;
for(int i =0 ; i < n;i++)
{
a[i] = in.nextInt();
s += a[i];
}
Arrays.sort(a);
int x =0;
int c =0;
for(int i =n-1 ; i >-1;i-- )
{
x +=a[i];
s -= a[i];
c++;
if(x > s)break;
}
System.out.println(c);
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(n^2): The execution time ascends in proportion to the square of the input size n.
- O(n): The execution time ascends in a one-to-one ratio with the input size n.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- O(1): The execution time is unaffected by the size of the input n.
- O(n^3): The execution time ascends in proportion to the cube of the input size n.
- O(log(n)): The execution time ascends in proportion to the logarithm of the input size n.
- O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially.
- others: The time complexity does not fit to any of the given categories or is ambiguous.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
| 494
| 1,928
|
1,167
|
import java.io.IOException;
import java.io.InputStream;
import java.io.PrintWriter;
import java.util.InputMismatchException;
import java.util.*;
public class ed817Q3 {
public static void main(String[] args){
InputReader in = new InputReader(System.in);
PrintWriter out = new PrintWriter(System.out);
int t = 1;
for(int zxz=0;zxz<t;zxz++){
// my code starts here
long n = in.nextLong();
long s = in.nextLong();
long start=0,end=n;
long ans=n+1;
while(start<=end){
long mid = start+(end-start)/2;
if(mid-digitSum(mid)>=s){
ans = mid;
end = mid-1;
}
else{
start=mid+1;
}
}
System.out.println(n-ans+1);
// my code ends here
}
}
static int digitSum(long n){
int sum=0;
while(n>0){
sum+=n%10;
n=n/10;
}
return sum;
}
static class InputReader {
private InputStream stream;
private byte[] buf = new byte[8192];
private int curChar, snumChars;
private SpaceCharFilter filter;
public InputReader(InputStream stream) {
this.stream = stream;
}
public int snext() {
if (snumChars == -1)
throw new InputMismatchException();
if (curChar >= snumChars) {
curChar = 0;
try {
snumChars = stream.read(buf);
} catch (IOException e) {
throw new InputMismatchException();
}
if (snumChars <= 0)
return -1;
}
return buf[curChar++];
}
public int nextInt() {
int c = snext();
while (isSpaceChar(c))
c = snext();
int sgn = 1;
if (c == '-') {
sgn = -1;
c = snext();
}
int res = 0;
do {
if (c < '0' || c > '9')
throw new InputMismatchException();
res *= 10;
res += c - '0';
c = snext();
} while (!isSpaceChar(c));
return res * sgn;
}
public long nextLong() {
int c = snext();
while (isSpaceChar(c))
c = snext();
int sgn = 1;
if (c == '-') {
sgn = -1;
c = snext();
}
long res = 0;
do {
if (c < '0' || c > '9')
throw new InputMismatchException();
res *= 10;
res += c - '0';
c = snext();
} while (!isSpaceChar(c));
return res * sgn;
}
public int[] nextIntArray(int n) {
int a[] = new int[n];
for (int i = 0; i < n; i++)
a[i] = nextInt();
return a;
}
public String readString() {
int c = snext();
while (isSpaceChar(c))
c = snext();
StringBuilder res = new StringBuilder();
do {
res.appendCodePoint(c);
c = snext();
} while (!isSpaceChar(c));
return res.toString();
}
public boolean isSpaceChar(int c) {
if (filter != null)
return filter.isSpaceChar(c);
return c == ' ' || c == '\n' || c == '\r' || c == '\t' || c == -1;
}
public interface SpaceCharFilter {
public boolean isSpaceChar(int ch);
}
}
}
|
O(log(n))
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Classify the following Java code's worst-case time complexity according to its relationship to the input size n.
</TASK>
<CODE>
import java.io.IOException;
import java.io.InputStream;
import java.io.PrintWriter;
import java.util.InputMismatchException;
import java.util.*;
public class ed817Q3 {
public static void main(String[] args){
InputReader in = new InputReader(System.in);
PrintWriter out = new PrintWriter(System.out);
int t = 1;
for(int zxz=0;zxz<t;zxz++){
// my code starts here
long n = in.nextLong();
long s = in.nextLong();
long start=0,end=n;
long ans=n+1;
while(start<=end){
long mid = start+(end-start)/2;
if(mid-digitSum(mid)>=s){
ans = mid;
end = mid-1;
}
else{
start=mid+1;
}
}
System.out.println(n-ans+1);
// my code ends here
}
}
static int digitSum(long n){
int sum=0;
while(n>0){
sum+=n%10;
n=n/10;
}
return sum;
}
static class InputReader {
private InputStream stream;
private byte[] buf = new byte[8192];
private int curChar, snumChars;
private SpaceCharFilter filter;
public InputReader(InputStream stream) {
this.stream = stream;
}
public int snext() {
if (snumChars == -1)
throw new InputMismatchException();
if (curChar >= snumChars) {
curChar = 0;
try {
snumChars = stream.read(buf);
} catch (IOException e) {
throw new InputMismatchException();
}
if (snumChars <= 0)
return -1;
}
return buf[curChar++];
}
public int nextInt() {
int c = snext();
while (isSpaceChar(c))
c = snext();
int sgn = 1;
if (c == '-') {
sgn = -1;
c = snext();
}
int res = 0;
do {
if (c < '0' || c > '9')
throw new InputMismatchException();
res *= 10;
res += c - '0';
c = snext();
} while (!isSpaceChar(c));
return res * sgn;
}
public long nextLong() {
int c = snext();
while (isSpaceChar(c))
c = snext();
int sgn = 1;
if (c == '-') {
sgn = -1;
c = snext();
}
long res = 0;
do {
if (c < '0' || c > '9')
throw new InputMismatchException();
res *= 10;
res += c - '0';
c = snext();
} while (!isSpaceChar(c));
return res * sgn;
}
public int[] nextIntArray(int n) {
int a[] = new int[n];
for (int i = 0; i < n; i++)
a[i] = nextInt();
return a;
}
public String readString() {
int c = snext();
while (isSpaceChar(c))
c = snext();
StringBuilder res = new StringBuilder();
do {
res.appendCodePoint(c);
c = snext();
} while (!isSpaceChar(c));
return res.toString();
}
public boolean isSpaceChar(int c) {
if (filter != null)
return filter.isSpaceChar(c);
return c == ' ' || c == '\n' || c == '\r' || c == '\t' || c == -1;
}
public interface SpaceCharFilter {
public boolean isSpaceChar(int ch);
}
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(nlog(n)): The running time increases with the product of n and logarithm of n.
- O(n^2): The running time increases with the square of the input size n.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- O(n): The running time grows linearly with the input size n.
- O(n^3): The running time increases with the cube of the input size n.
- O(1): The running time does not change regardless of the input size n.
- O(log(n)): The running time increases with the logarithm of the input size n.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n.
</TASK>
<CODE>
import java.io.IOException;
import java.io.InputStream;
import java.io.PrintWriter;
import java.util.InputMismatchException;
import java.util.*;
public class ed817Q3 {
public static void main(String[] args){
InputReader in = new InputReader(System.in);
PrintWriter out = new PrintWriter(System.out);
int t = 1;
for(int zxz=0;zxz<t;zxz++){
// my code starts here
long n = in.nextLong();
long s = in.nextLong();
long start=0,end=n;
long ans=n+1;
while(start<=end){
long mid = start+(end-start)/2;
if(mid-digitSum(mid)>=s){
ans = mid;
end = mid-1;
}
else{
start=mid+1;
}
}
System.out.println(n-ans+1);
// my code ends here
}
}
static int digitSum(long n){
int sum=0;
while(n>0){
sum+=n%10;
n=n/10;
}
return sum;
}
static class InputReader {
private InputStream stream;
private byte[] buf = new byte[8192];
private int curChar, snumChars;
private SpaceCharFilter filter;
public InputReader(InputStream stream) {
this.stream = stream;
}
public int snext() {
if (snumChars == -1)
throw new InputMismatchException();
if (curChar >= snumChars) {
curChar = 0;
try {
snumChars = stream.read(buf);
} catch (IOException e) {
throw new InputMismatchException();
}
if (snumChars <= 0)
return -1;
}
return buf[curChar++];
}
public int nextInt() {
int c = snext();
while (isSpaceChar(c))
c = snext();
int sgn = 1;
if (c == '-') {
sgn = -1;
c = snext();
}
int res = 0;
do {
if (c < '0' || c > '9')
throw new InputMismatchException();
res *= 10;
res += c - '0';
c = snext();
} while (!isSpaceChar(c));
return res * sgn;
}
public long nextLong() {
int c = snext();
while (isSpaceChar(c))
c = snext();
int sgn = 1;
if (c == '-') {
sgn = -1;
c = snext();
}
long res = 0;
do {
if (c < '0' || c > '9')
throw new InputMismatchException();
res *= 10;
res += c - '0';
c = snext();
} while (!isSpaceChar(c));
return res * sgn;
}
public int[] nextIntArray(int n) {
int a[] = new int[n];
for (int i = 0; i < n; i++)
a[i] = nextInt();
return a;
}
public String readString() {
int c = snext();
while (isSpaceChar(c))
c = snext();
StringBuilder res = new StringBuilder();
do {
res.appendCodePoint(c);
c = snext();
} while (!isSpaceChar(c));
return res.toString();
}
public boolean isSpaceChar(int c) {
if (filter != null)
return filter.isSpaceChar(c);
return c == ' ' || c == '\n' || c == '\r' || c == '\t' || c == -1;
}
public interface SpaceCharFilter {
public boolean isSpaceChar(int ch);
}
}
}
</CODE>
<EVALUATION_RUBRIC>
- others: The time complexity does not fit to any of the given categories or is ambiguous.
- O(log(n)): The execution time ascends in proportion to the logarithm of the input size n.
- O(1): The execution time is unaffected by the size of the input n.
- O(n): The execution time ascends in a one-to-one ratio with the input size n.
- O(n^2): The execution time ascends in proportion to the square of the input size n.
- O(n^3): The execution time ascends in proportion to the cube of the input size n.
- O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
| 1,191
| 1,166
|
1,757
|
import java.io.BufferedReader;
import java.io.IOException;
import java.io.InputStreamReader;
import java.util.Arrays;
import java.util.StringTokenizer;
/**
* Date 22.11.2011
* Time 17:49:45
* Author Woodey
* $
*/
public class A15 {
final double eps = 10e-9;
class Pair implements Comparable<Pair>{
int x;
int length;
Pair(int x, int length) {
this.x = x;
this.length = length;
}
public int compareTo(Pair p) {
return x - p.x;
}
}
private void Solution() throws IOException {
int n = nextInt(), t = nextInt(), ans = 2;
Pair[] pairs = new Pair[n];
for (int i = 0; i < n; i ++) {
int x = nextInt(), length = nextInt();
pairs[i] = new Pair(x, length);
}
Arrays.sort(pairs);
for (int i = 0; i < n-1; i ++) {
double place = pairs[i+1].x - pairs[i].x - (double) pairs[i+1].length/2 - (double) pairs[i].length/2;
if (place > t)
ans += 2; else
if ((int) (place+eps) == t)
ans ++;
}
System.out.println(ans);
}
public static void main(String[] args) {
new A15().run();
}
BufferedReader in;
StringTokenizer tokenizer;
public void run() {
try {
in = new BufferedReader(new InputStreamReader(System.in));
tokenizer = null;
Solution();
in.close();
} catch (Exception e) {
e.printStackTrace();
System.exit(1);
}
}
int nextInt() throws IOException {
return Integer.parseInt(nextToken());
}
String nextToken() throws IOException {
while (tokenizer == null || !tokenizer.hasMoreTokens())
tokenizer = new StringTokenizer(in.readLine());
return tokenizer.nextToken();
}
}
|
O(nlog(n))
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Determine the worst-case time complexity category of a given Java code based on input size n.
</TASK>
<CODE>
import java.io.BufferedReader;
import java.io.IOException;
import java.io.InputStreamReader;
import java.util.Arrays;
import java.util.StringTokenizer;
/**
* Date 22.11.2011
* Time 17:49:45
* Author Woodey
* $
*/
public class A15 {
final double eps = 10e-9;
class Pair implements Comparable<Pair>{
int x;
int length;
Pair(int x, int length) {
this.x = x;
this.length = length;
}
public int compareTo(Pair p) {
return x - p.x;
}
}
private void Solution() throws IOException {
int n = nextInt(), t = nextInt(), ans = 2;
Pair[] pairs = new Pair[n];
for (int i = 0; i < n; i ++) {
int x = nextInt(), length = nextInt();
pairs[i] = new Pair(x, length);
}
Arrays.sort(pairs);
for (int i = 0; i < n-1; i ++) {
double place = pairs[i+1].x - pairs[i].x - (double) pairs[i+1].length/2 - (double) pairs[i].length/2;
if (place > t)
ans += 2; else
if ((int) (place+eps) == t)
ans ++;
}
System.out.println(ans);
}
public static void main(String[] args) {
new A15().run();
}
BufferedReader in;
StringTokenizer tokenizer;
public void run() {
try {
in = new BufferedReader(new InputStreamReader(System.in));
tokenizer = null;
Solution();
in.close();
} catch (Exception e) {
e.printStackTrace();
System.exit(1);
}
}
int nextInt() throws IOException {
return Integer.parseInt(nextToken());
}
String nextToken() throws IOException {
while (tokenizer == null || !tokenizer.hasMoreTokens())
tokenizer = new StringTokenizer(in.readLine());
return tokenizer.nextToken();
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(n^3): The time complexity scales proportionally to the cube of the input size.
- O(nlog(n)): The time complexity combines linear and logarithmic growth factors.
- O(1): The time complexity is constant to the input size n.
- O(log(n)): The time complexity increases logarithmically in relation to the input size.
- O(n^2): The time complexity grows proportionally to the square of the input size.
- O(n): The time complexity increases proportionally to the input size n in a linear manner.
- non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n.
</TASK>
<CODE>
import java.io.BufferedReader;
import java.io.IOException;
import java.io.InputStreamReader;
import java.util.Arrays;
import java.util.StringTokenizer;
/**
* Date 22.11.2011
* Time 17:49:45
* Author Woodey
* $
*/
public class A15 {
final double eps = 10e-9;
class Pair implements Comparable<Pair>{
int x;
int length;
Pair(int x, int length) {
this.x = x;
this.length = length;
}
public int compareTo(Pair p) {
return x - p.x;
}
}
private void Solution() throws IOException {
int n = nextInt(), t = nextInt(), ans = 2;
Pair[] pairs = new Pair[n];
for (int i = 0; i < n; i ++) {
int x = nextInt(), length = nextInt();
pairs[i] = new Pair(x, length);
}
Arrays.sort(pairs);
for (int i = 0; i < n-1; i ++) {
double place = pairs[i+1].x - pairs[i].x - (double) pairs[i+1].length/2 - (double) pairs[i].length/2;
if (place > t)
ans += 2; else
if ((int) (place+eps) == t)
ans ++;
}
System.out.println(ans);
}
public static void main(String[] args) {
new A15().run();
}
BufferedReader in;
StringTokenizer tokenizer;
public void run() {
try {
in = new BufferedReader(new InputStreamReader(System.in));
tokenizer = null;
Solution();
in.close();
} catch (Exception e) {
e.printStackTrace();
System.exit(1);
}
}
int nextInt() throws IOException {
return Integer.parseInt(nextToken());
}
String nextToken() throws IOException {
while (tokenizer == null || !tokenizer.hasMoreTokens())
tokenizer = new StringTokenizer(in.readLine());
return tokenizer.nextToken();
}
}
</CODE>
<EVALUATION_RUBRIC>
- others: The time complexity does not fit to any of the given categories or is ambiguous.
- O(n^3): The execution time ascends in proportion to the cube of the input size n.
- O(log(n)): The execution time ascends in proportion to the logarithm of the input size n.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially.
- O(n^2): The execution time ascends in proportion to the square of the input size n.
- O(n): The execution time ascends in a one-to-one ratio with the input size n.
- O(1): The execution time is unaffected by the size of the input n.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
| 788
| 1,753
|
1,722
|
import java.util.Arrays;
import java.util.Scanner;
public class CottageVillage {
public static void main(String[] args){
Scanner scan = new Scanner(System.in);
while(scan.hasNext()){
int counter = 0;
int numbCottages = scan.nextInt();
int t = scan.nextInt();
House[] cottages = new House[numbCottages];
for(int i =0; i<numbCottages; i++){
int centre = scan.nextInt();
int length = scan.nextInt();
double beginning = centre - ((double)length)/2;
double end = centre + ((double)length)/2;
cottages[i]= new House(beginning, end);
}
Arrays.sort(cottages);
//check righthand side of first cottage
/*
if(cottages[0].end + t < cottages[1].beginning)
counter++;
//check lefthand side of last cottage
if(cottages[numbCottages-1].beginning -t > cottages[numbCottages-2].end)
counter++;
*/
for(int i =0; i<numbCottages-1; i++){
if(cottages[i].end + t <= cottages[i+1].beginning){
counter++;
// System.out.println(counter + "left hand");
}
if (cottages[i+1].beginning - t >= cottages[i].end){
counter++;
// System.out.println(counter + "right hand");
}
if (Math.abs((cottages[i].end + t - cottages[i+1].beginning)) < 1e-8){
counter--;
}
}
System.out.println(counter+2);
}
}
static class House implements Comparable<House>{
double beginning;
double end;
House(double _beginning, double _end){
beginning = _beginning;
end = _end;
}
@Override
public int compareTo(House house) {
// if(this.beginning<house.beginning){
// return -1;
// }
// else if(this.beginning==house.beginning){
// return 0;
// }
// else{
// return 1;
// }
return Double.valueOf(beginning).compareTo(house.beginning);
}
}
}
|
O(nlog(n))
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n.
</TASK>
<CODE>
import java.util.Arrays;
import java.util.Scanner;
public class CottageVillage {
public static void main(String[] args){
Scanner scan = new Scanner(System.in);
while(scan.hasNext()){
int counter = 0;
int numbCottages = scan.nextInt();
int t = scan.nextInt();
House[] cottages = new House[numbCottages];
for(int i =0; i<numbCottages; i++){
int centre = scan.nextInt();
int length = scan.nextInt();
double beginning = centre - ((double)length)/2;
double end = centre + ((double)length)/2;
cottages[i]= new House(beginning, end);
}
Arrays.sort(cottages);
//check righthand side of first cottage
/*
if(cottages[0].end + t < cottages[1].beginning)
counter++;
//check lefthand side of last cottage
if(cottages[numbCottages-1].beginning -t > cottages[numbCottages-2].end)
counter++;
*/
for(int i =0; i<numbCottages-1; i++){
if(cottages[i].end + t <= cottages[i+1].beginning){
counter++;
// System.out.println(counter + "left hand");
}
if (cottages[i+1].beginning - t >= cottages[i].end){
counter++;
// System.out.println(counter + "right hand");
}
if (Math.abs((cottages[i].end + t - cottages[i+1].beginning)) < 1e-8){
counter--;
}
}
System.out.println(counter+2);
}
}
static class House implements Comparable<House>{
double beginning;
double end;
House(double _beginning, double _end){
beginning = _beginning;
end = _end;
}
@Override
public int compareTo(House house) {
// if(this.beginning<house.beginning){
// return -1;
// }
// else if(this.beginning==house.beginning){
// return 0;
// }
// else{
// return 1;
// }
return Double.valueOf(beginning).compareTo(house.beginning);
}
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(n^2): The execution time ascends in proportion to the square of the input size n.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- O(1): The execution time is unaffected by the size of the input n.
- O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially.
- O(log(n)): The execution time ascends in proportion to the logarithm of the input size n.
- O(n): The execution time ascends in a one-to-one ratio with the input size n.
- O(n^3): The execution time ascends in proportion to the cube of the input size n.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Determine the worst-case time complexity category of a given Java code based on input size n.
</TASK>
<CODE>
import java.util.Arrays;
import java.util.Scanner;
public class CottageVillage {
public static void main(String[] args){
Scanner scan = new Scanner(System.in);
while(scan.hasNext()){
int counter = 0;
int numbCottages = scan.nextInt();
int t = scan.nextInt();
House[] cottages = new House[numbCottages];
for(int i =0; i<numbCottages; i++){
int centre = scan.nextInt();
int length = scan.nextInt();
double beginning = centre - ((double)length)/2;
double end = centre + ((double)length)/2;
cottages[i]= new House(beginning, end);
}
Arrays.sort(cottages);
//check righthand side of first cottage
/*
if(cottages[0].end + t < cottages[1].beginning)
counter++;
//check lefthand side of last cottage
if(cottages[numbCottages-1].beginning -t > cottages[numbCottages-2].end)
counter++;
*/
for(int i =0; i<numbCottages-1; i++){
if(cottages[i].end + t <= cottages[i+1].beginning){
counter++;
// System.out.println(counter + "left hand");
}
if (cottages[i+1].beginning - t >= cottages[i].end){
counter++;
// System.out.println(counter + "right hand");
}
if (Math.abs((cottages[i].end + t - cottages[i+1].beginning)) < 1e-8){
counter--;
}
}
System.out.println(counter+2);
}
}
static class House implements Comparable<House>{
double beginning;
double end;
House(double _beginning, double _end){
beginning = _beginning;
end = _end;
}
@Override
public int compareTo(House house) {
// if(this.beginning<house.beginning){
// return -1;
// }
// else if(this.beginning==house.beginning){
// return 0;
// }
// else{
// return 1;
// }
return Double.valueOf(beginning).compareTo(house.beginning);
}
}
}
</CODE>
<EVALUATION_RUBRIC>
- non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially.
- O(n^2): The time complexity grows proportionally to the square of the input size.
- O(n^3): The time complexity scales proportionally to the cube of the input size.
- O(n): The time complexity increases proportionally to the input size n in a linear manner.
- O(1): The time complexity is constant to the input size n.
- O(log(n)): The time complexity increases logarithmically in relation to the input size.
- O(nlog(n)): The time complexity combines linear and logarithmic growth factors.
- others: The time complexity does not fit any of the above categories or cannot be clearly classified.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
| 890
| 1,718
|
2,680
|
import java.util.*;
public class code_1 {
public static void main(String[] args) {
Scanner in=new Scanner(System.in);
int n=in.nextInt();
int a[]=new int[n];
for(int i=0;i<n;i++)
a[i]=in.nextInt();
Arrays.sort(a);
for(int i=0;i<n-1;i++) {
if(a[i]!=-1) {
for(int j=i+1;j<n;j++) {
if(a[j]%a[i]==0)
a[j]=-1;
}
}
}
int count=0;
for(int i=0;i<n;i++) {
if(a[i]!=-1)
count++;
}
System.out.println(count);
}
}
|
O(n^2)
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Determine the worst-case time complexity category of a given Java code based on input size n.
</TASK>
<CODE>
import java.util.*;
public class code_1 {
public static void main(String[] args) {
Scanner in=new Scanner(System.in);
int n=in.nextInt();
int a[]=new int[n];
for(int i=0;i<n;i++)
a[i]=in.nextInt();
Arrays.sort(a);
for(int i=0;i<n-1;i++) {
if(a[i]!=-1) {
for(int j=i+1;j<n;j++) {
if(a[j]%a[i]==0)
a[j]=-1;
}
}
}
int count=0;
for(int i=0;i<n;i++) {
if(a[i]!=-1)
count++;
}
System.out.println(count);
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(nlog(n)): The time complexity combines linear and logarithmic growth factors.
- O(n^3): The time complexity scales proportionally to the cube of the input size.
- O(n^2): The time complexity grows proportionally to the square of the input size.
- O(1): The time complexity is constant to the input size n.
- O(n): The time complexity increases proportionally to the input size n in a linear manner.
- non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially.
- O(log(n)): The time complexity increases logarithmically in relation to the input size.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n.
</TASK>
<CODE>
import java.util.*;
public class code_1 {
public static void main(String[] args) {
Scanner in=new Scanner(System.in);
int n=in.nextInt();
int a[]=new int[n];
for(int i=0;i<n;i++)
a[i]=in.nextInt();
Arrays.sort(a);
for(int i=0;i<n-1;i++) {
if(a[i]!=-1) {
for(int j=i+1;j<n;j++) {
if(a[j]%a[i]==0)
a[j]=-1;
}
}
}
int count=0;
for(int i=0;i<n;i++) {
if(a[i]!=-1)
count++;
}
System.out.println(count);
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(n^3): The execution time ascends in proportion to the cube of the input size n.
- O(1): The execution time is unaffected by the size of the input n.
- O(n^2): The execution time ascends in proportion to the square of the input size n.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- O(n): The execution time ascends in a one-to-one ratio with the input size n.
- others: The time complexity does not fit to any of the given categories or is ambiguous.
- O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially.
- O(log(n)): The execution time ascends in proportion to the logarithm of the input size n.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
| 505
| 2,674
|
4,467
|
import java.util.*;
import java.io.*;
public class E {
public static void main(String[] args) throws Exception {
BufferedReader br = new BufferedReader(new InputStreamReader(System.in));
ArrayList<Integer>[][] nexts = new ArrayList[13][];
ArrayList<Integer>[] bs = new ArrayList[13];
int[][] index = new int[13][];
int[][] eqcl = new int[13][];
for(int n = 1; n <= 12; n++) {
eqcl[n] = new int[(1 << n)];
bs[n] = new ArrayList<Integer>();
index[n] = new int[(1 << n)];
int ind = 0;
for(int mask = 0; mask < (1 << n); mask++) {
boolean add = true;
for(int k = 0; k < n; k++) {
if(rot(mask, k, n) < mask) add = false;
}
if(add) {
bs[n].add(mask);
index[n][mask] = ind; ind++;
}
}
nexts[n] = new ArrayList[bs[n].size()];
for(int i = 0; i < bs[n].size(); i++) {
int mask = bs[n].get(i);
for(int k = 0; k < n; k++) {
eqcl[n][rot(mask, k, n)] = mask;
}
nexts[n][i] = new ArrayList<>();
for(int y = 0; y < (1 << n); y++) {
if((mask & y) == 0) {
nexts[n][i].add(y);
}
}
}
}
int T = Integer.parseInt(br.readLine());
BufferedWriter bw = new BufferedWriter(new OutputStreamWriter(System.out));
for(int test = 0; test < T; test++) {
StringTokenizer st = new StringTokenizer(br.readLine());
int n = Integer.parseInt(st.nextToken());
int m = Integer.parseInt(st.nextToken());
int[][] arrt = new int[m][n];
for(int i = 0; i < n; i++) {
st = new StringTokenizer(br.readLine());
for(int j = 0; j < m; j++) {
arrt[j][i] = Integer.parseInt(st.nextToken());
}
}
Column[] cols = new Column[m];
for(int j = 0; j < m; j++) {
cols[j] = new Column(arrt[j]);
}
Arrays.sort(cols, Collections.reverseOrder());
m = Integer.min(n, m);
int[][] arr = new int[n][m];
for(int i = 0; i < n; i++) {
for(int j = 0; j < m; j++) {
arr[i][j] = cols[j].arr[i];
}
}
int[][] max = new int[m][bs[n].size()];
for(int c = 0; c < m; c++) {
for(int mask = 0; mask < (1 << n); mask++) {
int curr = 0;
for(int i = 0; i < n; i++) {
if((mask & (1 << i)) > 0) curr += arr[i][c];
}
int cl = eqcl[n][mask];
max[c][index[n][cl]] = Integer.max(max[c][index[n][cl]], curr);
}
}
int[][] dp = new int[m+1][bs[n].size()];
for(int c = 0; c < m; c++) {
for(int i = 0; i < bs[n].size(); i++) {
int mask = bs[n].get(i);
for(int next: nexts[n][i]) {
int cl = eqcl[n][next];
int dl = eqcl[n][mask | next];
if(dp[c][i] + max[c][index[n][cl]] > dp[c+1][index[n][dl]]) {
dp[c+1][index[n][dl]] = dp[c][i] + max[c][index[n][cl]];
}
}
}
}
bw.write(dp[m][bs[n].size() - 1]+"\n");
}
bw.flush();
}
static int rot(int x, int k, int n) {
int a = x << k;
int b = x >> (n - k);
return (a + b) & ((1 << n) - 1);
}
static class Column implements Comparable<Column>{
int[] arr;
int max;
public Column(int[] arr) {
this.arr = arr;
max = 0;
for(int k: arr) {
max = Integer.max(max, k);
}
}
@Override
public int compareTo(Column col) {
return max - col.max;
}
}
}
|
non-polynomial
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Determine the worst-case time complexity category of a given Java code based on input size n.
</TASK>
<CODE>
import java.util.*;
import java.io.*;
public class E {
public static void main(String[] args) throws Exception {
BufferedReader br = new BufferedReader(new InputStreamReader(System.in));
ArrayList<Integer>[][] nexts = new ArrayList[13][];
ArrayList<Integer>[] bs = new ArrayList[13];
int[][] index = new int[13][];
int[][] eqcl = new int[13][];
for(int n = 1; n <= 12; n++) {
eqcl[n] = new int[(1 << n)];
bs[n] = new ArrayList<Integer>();
index[n] = new int[(1 << n)];
int ind = 0;
for(int mask = 0; mask < (1 << n); mask++) {
boolean add = true;
for(int k = 0; k < n; k++) {
if(rot(mask, k, n) < mask) add = false;
}
if(add) {
bs[n].add(mask);
index[n][mask] = ind; ind++;
}
}
nexts[n] = new ArrayList[bs[n].size()];
for(int i = 0; i < bs[n].size(); i++) {
int mask = bs[n].get(i);
for(int k = 0; k < n; k++) {
eqcl[n][rot(mask, k, n)] = mask;
}
nexts[n][i] = new ArrayList<>();
for(int y = 0; y < (1 << n); y++) {
if((mask & y) == 0) {
nexts[n][i].add(y);
}
}
}
}
int T = Integer.parseInt(br.readLine());
BufferedWriter bw = new BufferedWriter(new OutputStreamWriter(System.out));
for(int test = 0; test < T; test++) {
StringTokenizer st = new StringTokenizer(br.readLine());
int n = Integer.parseInt(st.nextToken());
int m = Integer.parseInt(st.nextToken());
int[][] arrt = new int[m][n];
for(int i = 0; i < n; i++) {
st = new StringTokenizer(br.readLine());
for(int j = 0; j < m; j++) {
arrt[j][i] = Integer.parseInt(st.nextToken());
}
}
Column[] cols = new Column[m];
for(int j = 0; j < m; j++) {
cols[j] = new Column(arrt[j]);
}
Arrays.sort(cols, Collections.reverseOrder());
m = Integer.min(n, m);
int[][] arr = new int[n][m];
for(int i = 0; i < n; i++) {
for(int j = 0; j < m; j++) {
arr[i][j] = cols[j].arr[i];
}
}
int[][] max = new int[m][bs[n].size()];
for(int c = 0; c < m; c++) {
for(int mask = 0; mask < (1 << n); mask++) {
int curr = 0;
for(int i = 0; i < n; i++) {
if((mask & (1 << i)) > 0) curr += arr[i][c];
}
int cl = eqcl[n][mask];
max[c][index[n][cl]] = Integer.max(max[c][index[n][cl]], curr);
}
}
int[][] dp = new int[m+1][bs[n].size()];
for(int c = 0; c < m; c++) {
for(int i = 0; i < bs[n].size(); i++) {
int mask = bs[n].get(i);
for(int next: nexts[n][i]) {
int cl = eqcl[n][next];
int dl = eqcl[n][mask | next];
if(dp[c][i] + max[c][index[n][cl]] > dp[c+1][index[n][dl]]) {
dp[c+1][index[n][dl]] = dp[c][i] + max[c][index[n][cl]];
}
}
}
}
bw.write(dp[m][bs[n].size() - 1]+"\n");
}
bw.flush();
}
static int rot(int x, int k, int n) {
int a = x << k;
int b = x >> (n - k);
return (a + b) & ((1 << n) - 1);
}
static class Column implements Comparable<Column>{
int[] arr;
int max;
public Column(int[] arr) {
this.arr = arr;
max = 0;
for(int k: arr) {
max = Integer.max(max, k);
}
}
@Override
public int compareTo(Column col) {
return max - col.max;
}
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(nlog(n)): The time complexity combines linear and logarithmic growth factors.
- non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially.
- O(log(n)): The time complexity increases logarithmically in relation to the input size.
- O(n^3): The time complexity scales proportionally to the cube of the input size.
- O(n): The time complexity increases proportionally to the input size n in a linear manner.
- O(n^2): The time complexity grows proportionally to the square of the input size.
- O(1): The time complexity is constant to the input size n.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Classify the following Java code's worst-case time complexity according to its relationship to the input size n.
</TASK>
<CODE>
import java.util.*;
import java.io.*;
public class E {
public static void main(String[] args) throws Exception {
BufferedReader br = new BufferedReader(new InputStreamReader(System.in));
ArrayList<Integer>[][] nexts = new ArrayList[13][];
ArrayList<Integer>[] bs = new ArrayList[13];
int[][] index = new int[13][];
int[][] eqcl = new int[13][];
for(int n = 1; n <= 12; n++) {
eqcl[n] = new int[(1 << n)];
bs[n] = new ArrayList<Integer>();
index[n] = new int[(1 << n)];
int ind = 0;
for(int mask = 0; mask < (1 << n); mask++) {
boolean add = true;
for(int k = 0; k < n; k++) {
if(rot(mask, k, n) < mask) add = false;
}
if(add) {
bs[n].add(mask);
index[n][mask] = ind; ind++;
}
}
nexts[n] = new ArrayList[bs[n].size()];
for(int i = 0; i < bs[n].size(); i++) {
int mask = bs[n].get(i);
for(int k = 0; k < n; k++) {
eqcl[n][rot(mask, k, n)] = mask;
}
nexts[n][i] = new ArrayList<>();
for(int y = 0; y < (1 << n); y++) {
if((mask & y) == 0) {
nexts[n][i].add(y);
}
}
}
}
int T = Integer.parseInt(br.readLine());
BufferedWriter bw = new BufferedWriter(new OutputStreamWriter(System.out));
for(int test = 0; test < T; test++) {
StringTokenizer st = new StringTokenizer(br.readLine());
int n = Integer.parseInt(st.nextToken());
int m = Integer.parseInt(st.nextToken());
int[][] arrt = new int[m][n];
for(int i = 0; i < n; i++) {
st = new StringTokenizer(br.readLine());
for(int j = 0; j < m; j++) {
arrt[j][i] = Integer.parseInt(st.nextToken());
}
}
Column[] cols = new Column[m];
for(int j = 0; j < m; j++) {
cols[j] = new Column(arrt[j]);
}
Arrays.sort(cols, Collections.reverseOrder());
m = Integer.min(n, m);
int[][] arr = new int[n][m];
for(int i = 0; i < n; i++) {
for(int j = 0; j < m; j++) {
arr[i][j] = cols[j].arr[i];
}
}
int[][] max = new int[m][bs[n].size()];
for(int c = 0; c < m; c++) {
for(int mask = 0; mask < (1 << n); mask++) {
int curr = 0;
for(int i = 0; i < n; i++) {
if((mask & (1 << i)) > 0) curr += arr[i][c];
}
int cl = eqcl[n][mask];
max[c][index[n][cl]] = Integer.max(max[c][index[n][cl]], curr);
}
}
int[][] dp = new int[m+1][bs[n].size()];
for(int c = 0; c < m; c++) {
for(int i = 0; i < bs[n].size(); i++) {
int mask = bs[n].get(i);
for(int next: nexts[n][i]) {
int cl = eqcl[n][next];
int dl = eqcl[n][mask | next];
if(dp[c][i] + max[c][index[n][cl]] > dp[c+1][index[n][dl]]) {
dp[c+1][index[n][dl]] = dp[c][i] + max[c][index[n][cl]];
}
}
}
}
bw.write(dp[m][bs[n].size() - 1]+"\n");
}
bw.flush();
}
static int rot(int x, int k, int n) {
int a = x << k;
int b = x >> (n - k);
return (a + b) & ((1 << n) - 1);
}
static class Column implements Comparable<Column>{
int[] arr;
int max;
public Column(int[] arr) {
this.arr = arr;
max = 0;
for(int k: arr) {
max = Integer.max(max, k);
}
}
@Override
public int compareTo(Column col) {
return max - col.max;
}
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(n): The running time grows linearly with the input size n.
- O(nlog(n)): The running time increases with the product of n and logarithm of n.
- others: The code does not clearly correspond to the listed classes or has an unclassified time complexity.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- O(n^3): The running time increases with the cube of the input size n.
- O(1): The running time does not change regardless of the input size n.
- O(log(n)): The running time increases with the logarithm of the input size n.
- O(n^2): The running time increases with the square of the input size n.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
| 1,411
| 4,456
|
3,817
|
// Author : RegalBeast
import java.io.*;
import java.util.*;
public class Main {
static final FastReader FR = new FastReader();
static final PrintWriter PW = new PrintWriter(new OutputStreamWriter(System.out));
public static void main(String[] args) {
StringBuilder solution = new StringBuilder();
int rows = FR.nextInt();
int cols = FR.nextInt();
int moves = FR.nextInt();
int[][] horizontalEdgeWeights = new int[rows][cols-1];
for (int r = 0; r < rows; r++) {
for (int c = 0; c < cols - 1; c++) {
horizontalEdgeWeights[r][c] = FR.nextInt();
}
}
int[][] verticalEdgeWeights = new int[rows-1][cols];
for (int r = 0; r < rows - 1; r++) {
for (int c = 0; c < cols; c++) {
verticalEdgeWeights[r][c] = FR.nextInt();
}
}
int[][] result = getResult(rows, cols, moves, horizontalEdgeWeights, verticalEdgeWeights);
for (int r = 0; r < rows; r++) {
for (int c = 0; c < cols; c++) {
solution.append(result[r][c] + " ");
}
solution.append("\n");
}
PW.print(solution.toString());
PW.close();
}
static int[][] getResult(int rows, int cols, int moves, int[][] horizontalEdgeWeights, int[][] verticalEdgeWeights) {
int[][] result = new int[rows][cols];
if ((moves & 1) == 1) {
for (int r = 0; r < rows; r++) {
for (int c = 0; c < cols; c++) {
result[r][c] = -1;
}
}
return result;
}
int mid = moves >> 1;
int[][][] minForDistance = new int[rows][cols][mid+1];
for (int r = 0; r < rows; r++) {
for (int c = 0; c < cols; c++) {
for (int m = 1; m <= mid; m++) {
minForDistance[r][c][m] = Integer.MAX_VALUE;
}
}
}
for (int m = 1; m <= mid; m++) {
for (int r = 0; r < rows; r++) {
for (int c = 0; c < cols; c++) {
int minBoredom = minForDistance[r][c][m];
if (r > 0) {
int candidateBoredom = minForDistance[r-1][c][m-1] + verticalEdgeWeights[r-1][c];
minBoredom = Math.min(minBoredom, candidateBoredom);
}
if (c > 0) {
int candidateBoredom = minForDistance[r][c-1][m-1] + horizontalEdgeWeights[r][c-1];
minBoredom = Math.min(minBoredom, candidateBoredom);
}
if (r + 1 < rows) {
int candidateBoredom = minForDistance[r+1][c][m-1] + verticalEdgeWeights[r][c];
minBoredom = Math.min(minBoredom, candidateBoredom);
}
if (c + 1 < cols) {
int candidateBoredom = minForDistance[r][c+1][m-1] + horizontalEdgeWeights[r][c];
minBoredom = Math.min(minBoredom, candidateBoredom);
}
minForDistance[r][c][m] = minBoredom;
}
}
}
for (int r = 0; r < rows; r++) {
for (int c = 0; c < cols; c++) {
result[r][c] = minForDistance[r][c][mid] << 1;
}
}
return result;
}
static class FastReader {
BufferedReader br;
StringTokenizer st;
public FastReader() {
br = new BufferedReader(new InputStreamReader(System.in));
}
String next() {
while (st == null || !st.hasMoreElements()) {
try {
st = new StringTokenizer(br.readLine());
} catch (IOException e) {
e.printStackTrace();
}
}
return st.nextToken();
}
int nextInt() {
return Integer.parseInt(next());
}
long nextLong() {
return Long.parseLong(next());
}
double nextDouble() {
return Double.parseDouble(next());
}
String nextLine() {
String str = "";
try {
str = br.readLine();
} catch (IOException e) {
e.printStackTrace();
}
return str;
}
}
}
|
O(n^3)
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Determine the worst-case time complexity category of a given Java code based on input size n.
</TASK>
<CODE>
// Author : RegalBeast
import java.io.*;
import java.util.*;
public class Main {
static final FastReader FR = new FastReader();
static final PrintWriter PW = new PrintWriter(new OutputStreamWriter(System.out));
public static void main(String[] args) {
StringBuilder solution = new StringBuilder();
int rows = FR.nextInt();
int cols = FR.nextInt();
int moves = FR.nextInt();
int[][] horizontalEdgeWeights = new int[rows][cols-1];
for (int r = 0; r < rows; r++) {
for (int c = 0; c < cols - 1; c++) {
horizontalEdgeWeights[r][c] = FR.nextInt();
}
}
int[][] verticalEdgeWeights = new int[rows-1][cols];
for (int r = 0; r < rows - 1; r++) {
for (int c = 0; c < cols; c++) {
verticalEdgeWeights[r][c] = FR.nextInt();
}
}
int[][] result = getResult(rows, cols, moves, horizontalEdgeWeights, verticalEdgeWeights);
for (int r = 0; r < rows; r++) {
for (int c = 0; c < cols; c++) {
solution.append(result[r][c] + " ");
}
solution.append("\n");
}
PW.print(solution.toString());
PW.close();
}
static int[][] getResult(int rows, int cols, int moves, int[][] horizontalEdgeWeights, int[][] verticalEdgeWeights) {
int[][] result = new int[rows][cols];
if ((moves & 1) == 1) {
for (int r = 0; r < rows; r++) {
for (int c = 0; c < cols; c++) {
result[r][c] = -1;
}
}
return result;
}
int mid = moves >> 1;
int[][][] minForDistance = new int[rows][cols][mid+1];
for (int r = 0; r < rows; r++) {
for (int c = 0; c < cols; c++) {
for (int m = 1; m <= mid; m++) {
minForDistance[r][c][m] = Integer.MAX_VALUE;
}
}
}
for (int m = 1; m <= mid; m++) {
for (int r = 0; r < rows; r++) {
for (int c = 0; c < cols; c++) {
int minBoredom = minForDistance[r][c][m];
if (r > 0) {
int candidateBoredom = minForDistance[r-1][c][m-1] + verticalEdgeWeights[r-1][c];
minBoredom = Math.min(minBoredom, candidateBoredom);
}
if (c > 0) {
int candidateBoredom = minForDistance[r][c-1][m-1] + horizontalEdgeWeights[r][c-1];
minBoredom = Math.min(minBoredom, candidateBoredom);
}
if (r + 1 < rows) {
int candidateBoredom = minForDistance[r+1][c][m-1] + verticalEdgeWeights[r][c];
minBoredom = Math.min(minBoredom, candidateBoredom);
}
if (c + 1 < cols) {
int candidateBoredom = minForDistance[r][c+1][m-1] + horizontalEdgeWeights[r][c];
minBoredom = Math.min(minBoredom, candidateBoredom);
}
minForDistance[r][c][m] = minBoredom;
}
}
}
for (int r = 0; r < rows; r++) {
for (int c = 0; c < cols; c++) {
result[r][c] = minForDistance[r][c][mid] << 1;
}
}
return result;
}
static class FastReader {
BufferedReader br;
StringTokenizer st;
public FastReader() {
br = new BufferedReader(new InputStreamReader(System.in));
}
String next() {
while (st == null || !st.hasMoreElements()) {
try {
st = new StringTokenizer(br.readLine());
} catch (IOException e) {
e.printStackTrace();
}
}
return st.nextToken();
}
int nextInt() {
return Integer.parseInt(next());
}
long nextLong() {
return Long.parseLong(next());
}
double nextDouble() {
return Double.parseDouble(next());
}
String nextLine() {
String str = "";
try {
str = br.readLine();
} catch (IOException e) {
e.printStackTrace();
}
return str;
}
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(n^3): The time complexity scales proportionally to the cube of the input size.
- O(1): The time complexity is constant to the input size n.
- O(nlog(n)): The time complexity combines linear and logarithmic growth factors.
- O(n^2): The time complexity grows proportionally to the square of the input size.
- O(n): The time complexity increases proportionally to the input size n in a linear manner.
- O(log(n)): The time complexity increases logarithmically in relation to the input size.
- non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n.
</TASK>
<CODE>
// Author : RegalBeast
import java.io.*;
import java.util.*;
public class Main {
static final FastReader FR = new FastReader();
static final PrintWriter PW = new PrintWriter(new OutputStreamWriter(System.out));
public static void main(String[] args) {
StringBuilder solution = new StringBuilder();
int rows = FR.nextInt();
int cols = FR.nextInt();
int moves = FR.nextInt();
int[][] horizontalEdgeWeights = new int[rows][cols-1];
for (int r = 0; r < rows; r++) {
for (int c = 0; c < cols - 1; c++) {
horizontalEdgeWeights[r][c] = FR.nextInt();
}
}
int[][] verticalEdgeWeights = new int[rows-1][cols];
for (int r = 0; r < rows - 1; r++) {
for (int c = 0; c < cols; c++) {
verticalEdgeWeights[r][c] = FR.nextInt();
}
}
int[][] result = getResult(rows, cols, moves, horizontalEdgeWeights, verticalEdgeWeights);
for (int r = 0; r < rows; r++) {
for (int c = 0; c < cols; c++) {
solution.append(result[r][c] + " ");
}
solution.append("\n");
}
PW.print(solution.toString());
PW.close();
}
static int[][] getResult(int rows, int cols, int moves, int[][] horizontalEdgeWeights, int[][] verticalEdgeWeights) {
int[][] result = new int[rows][cols];
if ((moves & 1) == 1) {
for (int r = 0; r < rows; r++) {
for (int c = 0; c < cols; c++) {
result[r][c] = -1;
}
}
return result;
}
int mid = moves >> 1;
int[][][] minForDistance = new int[rows][cols][mid+1];
for (int r = 0; r < rows; r++) {
for (int c = 0; c < cols; c++) {
for (int m = 1; m <= mid; m++) {
minForDistance[r][c][m] = Integer.MAX_VALUE;
}
}
}
for (int m = 1; m <= mid; m++) {
for (int r = 0; r < rows; r++) {
for (int c = 0; c < cols; c++) {
int minBoredom = minForDistance[r][c][m];
if (r > 0) {
int candidateBoredom = minForDistance[r-1][c][m-1] + verticalEdgeWeights[r-1][c];
minBoredom = Math.min(minBoredom, candidateBoredom);
}
if (c > 0) {
int candidateBoredom = minForDistance[r][c-1][m-1] + horizontalEdgeWeights[r][c-1];
minBoredom = Math.min(minBoredom, candidateBoredom);
}
if (r + 1 < rows) {
int candidateBoredom = minForDistance[r+1][c][m-1] + verticalEdgeWeights[r][c];
minBoredom = Math.min(minBoredom, candidateBoredom);
}
if (c + 1 < cols) {
int candidateBoredom = minForDistance[r][c+1][m-1] + horizontalEdgeWeights[r][c];
minBoredom = Math.min(minBoredom, candidateBoredom);
}
minForDistance[r][c][m] = minBoredom;
}
}
}
for (int r = 0; r < rows; r++) {
for (int c = 0; c < cols; c++) {
result[r][c] = minForDistance[r][c][mid] << 1;
}
}
return result;
}
static class FastReader {
BufferedReader br;
StringTokenizer st;
public FastReader() {
br = new BufferedReader(new InputStreamReader(System.in));
}
String next() {
while (st == null || !st.hasMoreElements()) {
try {
st = new StringTokenizer(br.readLine());
} catch (IOException e) {
e.printStackTrace();
}
}
return st.nextToken();
}
int nextInt() {
return Integer.parseInt(next());
}
long nextLong() {
return Long.parseLong(next());
}
double nextDouble() {
return Double.parseDouble(next());
}
String nextLine() {
String str = "";
try {
str = br.readLine();
} catch (IOException e) {
e.printStackTrace();
}
return str;
}
}
}
</CODE>
<EVALUATION_RUBRIC>
- others: The time complexity does not fit to any of the given categories or is ambiguous.
- O(1): The execution time is unaffected by the size of the input n.
- O(log(n)): The execution time ascends in proportion to the logarithm of the input size n.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- O(n^3): The execution time ascends in proportion to the cube of the input size n.
- O(n^2): The execution time ascends in proportion to the square of the input size n.
- O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially.
- O(n): The execution time ascends in a one-to-one ratio with the input size n.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
| 1,389
| 3,807
|
2,632
|
import java.util.*;
public final class paint_and_numers {
public static void main(String[] args) {
Scanner in = new Scanner(System.in);
int n = in.nextInt();
int[] a = new int[n];
for(int i=0;i<n;i++) a[i] = in.nextInt();
Arrays.sort(a);
int count = 0;
boolean[] c = new boolean[n];
for(int i=0;i<n;i++) {
if(c[i]==false) {
c[i]=true;
count++;
for(int j=i+1;j<n;j++) {
if(a[j]%a[i]==0) {
c[j] = true;
}
}
}
}
System.out.println(count);
}
}
|
O(n^2)
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n.
</TASK>
<CODE>
import java.util.*;
public final class paint_and_numers {
public static void main(String[] args) {
Scanner in = new Scanner(System.in);
int n = in.nextInt();
int[] a = new int[n];
for(int i=0;i<n;i++) a[i] = in.nextInt();
Arrays.sort(a);
int count = 0;
boolean[] c = new boolean[n];
for(int i=0;i<n;i++) {
if(c[i]==false) {
c[i]=true;
count++;
for(int j=i+1;j<n;j++) {
if(a[j]%a[i]==0) {
c[j] = true;
}
}
}
}
System.out.println(count);
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(n^2): The execution time ascends in proportion to the square of the input size n.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- O(log(n)): The execution time ascends in proportion to the logarithm of the input size n.
- O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially.
- O(n): The execution time ascends in a one-to-one ratio with the input size n.
- O(n^3): The execution time ascends in proportion to the cube of the input size n.
- O(1): The execution time is unaffected by the size of the input n.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Determine the worst-case time complexity category of a given Java code based on input size n.
</TASK>
<CODE>
import java.util.*;
public final class paint_and_numers {
public static void main(String[] args) {
Scanner in = new Scanner(System.in);
int n = in.nextInt();
int[] a = new int[n];
for(int i=0;i<n;i++) a[i] = in.nextInt();
Arrays.sort(a);
int count = 0;
boolean[] c = new boolean[n];
for(int i=0;i<n;i++) {
if(c[i]==false) {
c[i]=true;
count++;
for(int j=i+1;j<n;j++) {
if(a[j]%a[i]==0) {
c[j] = true;
}
}
}
}
System.out.println(count);
}
}
</CODE>
<EVALUATION_RUBRIC>
- others: The time complexity does not fit any of the above categories or cannot be clearly classified.
- non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially.
- O(log(n)): The time complexity increases logarithmically in relation to the input size.
- O(n^2): The time complexity grows proportionally to the square of the input size.
- O(n^3): The time complexity scales proportionally to the cube of the input size.
- O(n): The time complexity increases proportionally to the input size n in a linear manner.
- O(1): The time complexity is constant to the input size n.
- O(nlog(n)): The time complexity combines linear and logarithmic growth factors.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
| 511
| 2,626
|
3,720
|
// https://codeforces.com/contest/1497/submission/110250082
import java.io.*;
import java.util.*;
public class CF1497E2 extends PrintWriter {
CF1497E2() { super(System.out); }
static class Scanner {
Scanner(InputStream in) { this.in = in; } InputStream in;
byte[] bb = new byte[1 << 15]; int i, n;
byte getc() {
if (i == n) {
i = n = 0;
try { n = in.read(bb); } catch (IOException e) {}
}
return i < n ? bb[i++] : 0;
}
int nextInt() {
byte c = 0; while (c <= ' ') c = getc();
int a = 0; while (c > ' ') { a = a * 10 + c - '0'; c = getc(); }
return a;
}
}
Scanner sc = new Scanner(System.in);
public static void main(String[] $) {
CF1497E2 o = new CF1497E2(); o.main(); o.flush();
}
static final int A = 10000000, K = 20;
int[] cc = new int[A + 1]; {
for (int a = 1; a <= A; a++)
cc[a] = a;
for (int a = 2; a <= A / a; a++) {
int s = a * a;
for (int b = s; b <= A; b += s)
while (cc[b] % s == 0)
cc[b] /= s;
}
}
void main() {
int[] pp = new int[A + 1]; Arrays.fill(pp, -1);
int t = sc.nextInt();
while (t-- > 0) {
int n = sc.nextInt();
int k = sc.nextInt();
int[] aa = new int[n];
for (int i = 0; i < n; i++)
aa[i] = cc[sc.nextInt()];
int[] mp = new int[k + 1];
int[] ip = new int[k + 1];
for (int i = 0; i < n; i++) {
int a = aa[i];
for (int h = k; h >= 0; h--) {
if (pp[a] >= ip[h]) {
mp[h]++;
ip[h] = i;
}
if (h > 0 && (mp[h - 1] < mp[h] || mp[h - 1] == mp[h] && ip[h - 1] > ip[h])) {
mp[h] = mp[h - 1];
ip[h] = ip[h - 1];
}
}
pp[a] = i;
}
println(mp[k] + 1);
for (int i = 0; i < n; i++) {
int a = aa[i];
pp[a] = -1;
}
}
}
}
|
O(n^3)
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Classify the following Java code's worst-case time complexity according to its relationship to the input size n.
</TASK>
<CODE>
// https://codeforces.com/contest/1497/submission/110250082
import java.io.*;
import java.util.*;
public class CF1497E2 extends PrintWriter {
CF1497E2() { super(System.out); }
static class Scanner {
Scanner(InputStream in) { this.in = in; } InputStream in;
byte[] bb = new byte[1 << 15]; int i, n;
byte getc() {
if (i == n) {
i = n = 0;
try { n = in.read(bb); } catch (IOException e) {}
}
return i < n ? bb[i++] : 0;
}
int nextInt() {
byte c = 0; while (c <= ' ') c = getc();
int a = 0; while (c > ' ') { a = a * 10 + c - '0'; c = getc(); }
return a;
}
}
Scanner sc = new Scanner(System.in);
public static void main(String[] $) {
CF1497E2 o = new CF1497E2(); o.main(); o.flush();
}
static final int A = 10000000, K = 20;
int[] cc = new int[A + 1]; {
for (int a = 1; a <= A; a++)
cc[a] = a;
for (int a = 2; a <= A / a; a++) {
int s = a * a;
for (int b = s; b <= A; b += s)
while (cc[b] % s == 0)
cc[b] /= s;
}
}
void main() {
int[] pp = new int[A + 1]; Arrays.fill(pp, -1);
int t = sc.nextInt();
while (t-- > 0) {
int n = sc.nextInt();
int k = sc.nextInt();
int[] aa = new int[n];
for (int i = 0; i < n; i++)
aa[i] = cc[sc.nextInt()];
int[] mp = new int[k + 1];
int[] ip = new int[k + 1];
for (int i = 0; i < n; i++) {
int a = aa[i];
for (int h = k; h >= 0; h--) {
if (pp[a] >= ip[h]) {
mp[h]++;
ip[h] = i;
}
if (h > 0 && (mp[h - 1] < mp[h] || mp[h - 1] == mp[h] && ip[h - 1] > ip[h])) {
mp[h] = mp[h - 1];
ip[h] = ip[h - 1];
}
}
pp[a] = i;
}
println(mp[k] + 1);
for (int i = 0; i < n; i++) {
int a = aa[i];
pp[a] = -1;
}
}
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(1): The running time does not change regardless of the input size n.
- O(n^2): The running time increases with the square of the input size n.
- O(n^3): The running time increases with the cube of the input size n.
- O(log(n)): The running time increases with the logarithm of the input size n.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- O(n): The running time grows linearly with the input size n.
- O(nlog(n)): The running time increases with the product of n and logarithm of n.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Determine the worst-case time complexity category of a given Java code based on input size n.
</TASK>
<CODE>
// https://codeforces.com/contest/1497/submission/110250082
import java.io.*;
import java.util.*;
public class CF1497E2 extends PrintWriter {
CF1497E2() { super(System.out); }
static class Scanner {
Scanner(InputStream in) { this.in = in; } InputStream in;
byte[] bb = new byte[1 << 15]; int i, n;
byte getc() {
if (i == n) {
i = n = 0;
try { n = in.read(bb); } catch (IOException e) {}
}
return i < n ? bb[i++] : 0;
}
int nextInt() {
byte c = 0; while (c <= ' ') c = getc();
int a = 0; while (c > ' ') { a = a * 10 + c - '0'; c = getc(); }
return a;
}
}
Scanner sc = new Scanner(System.in);
public static void main(String[] $) {
CF1497E2 o = new CF1497E2(); o.main(); o.flush();
}
static final int A = 10000000, K = 20;
int[] cc = new int[A + 1]; {
for (int a = 1; a <= A; a++)
cc[a] = a;
for (int a = 2; a <= A / a; a++) {
int s = a * a;
for (int b = s; b <= A; b += s)
while (cc[b] % s == 0)
cc[b] /= s;
}
}
void main() {
int[] pp = new int[A + 1]; Arrays.fill(pp, -1);
int t = sc.nextInt();
while (t-- > 0) {
int n = sc.nextInt();
int k = sc.nextInt();
int[] aa = new int[n];
for (int i = 0; i < n; i++)
aa[i] = cc[sc.nextInt()];
int[] mp = new int[k + 1];
int[] ip = new int[k + 1];
for (int i = 0; i < n; i++) {
int a = aa[i];
for (int h = k; h >= 0; h--) {
if (pp[a] >= ip[h]) {
mp[h]++;
ip[h] = i;
}
if (h > 0 && (mp[h - 1] < mp[h] || mp[h - 1] == mp[h] && ip[h - 1] > ip[h])) {
mp[h] = mp[h - 1];
ip[h] = ip[h - 1];
}
}
pp[a] = i;
}
println(mp[k] + 1);
for (int i = 0; i < n; i++) {
int a = aa[i];
pp[a] = -1;
}
}
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(1): The time complexity is constant to the input size n.
- non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially.
- O(n^2): The time complexity grows proportionally to the square of the input size.
- O(log(n)): The time complexity increases logarithmically in relation to the input size.
- O(n^3): The time complexity scales proportionally to the cube of the input size.
- O(nlog(n)): The time complexity combines linear and logarithmic growth factors.
- others: The time complexity does not fit any of the above categories or cannot be clearly classified.
- O(n): The time complexity increases proportionally to the input size n in a linear manner.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
| 1,026
| 3,712
|
3,396
|
import java.io.BufferedReader;
import java.io.IOException;
import java.io.InputStreamReader;
import java.util.ArrayList;
import java.util.Arrays;
import java.util.HashSet;
import java.util.Scanner;
public class Main20 {
static ArrayList<Integer> primes = new ArrayList<Integer>();
static boolean[] prime = new boolean[1001];
public static void gen(){
Arrays.fill(prime, true);
prime[0] = prime[1] = false;
for (int i = 2; i < 1001; i++) {
if (prime[i]){
primes.add(i);
for (int j = i*2; j < 1001; j+=i)
prime[j] = false;
}
}
}
public static boolean isVowel(char c){
Character r = Character.toLowerCase(c);
return (r == 'e' || r == 'a' || r == 'i' || r == 'o' || r == 'u'|| r == 'y');
}
public static void main(String[] args) throws IOException {
Scanner s = new Scanner(new InputStreamReader(System.in));
String str = s.next();
int x;
int max= 0;
for (int i = 0; i < str.length()-1; i++) {
for (int j = i+1; j < str.length(); j++) {
x = str.indexOf(str.substring(i,j),i+1) ;
if (x != -1){
if (j-i > max) max = j-i;
}
}
}
System.out.println(max);
}
}
|
O(n^3)
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n.
</TASK>
<CODE>
import java.io.BufferedReader;
import java.io.IOException;
import java.io.InputStreamReader;
import java.util.ArrayList;
import java.util.Arrays;
import java.util.HashSet;
import java.util.Scanner;
public class Main20 {
static ArrayList<Integer> primes = new ArrayList<Integer>();
static boolean[] prime = new boolean[1001];
public static void gen(){
Arrays.fill(prime, true);
prime[0] = prime[1] = false;
for (int i = 2; i < 1001; i++) {
if (prime[i]){
primes.add(i);
for (int j = i*2; j < 1001; j+=i)
prime[j] = false;
}
}
}
public static boolean isVowel(char c){
Character r = Character.toLowerCase(c);
return (r == 'e' || r == 'a' || r == 'i' || r == 'o' || r == 'u'|| r == 'y');
}
public static void main(String[] args) throws IOException {
Scanner s = new Scanner(new InputStreamReader(System.in));
String str = s.next();
int x;
int max= 0;
for (int i = 0; i < str.length()-1; i++) {
for (int j = i+1; j < str.length(); j++) {
x = str.indexOf(str.substring(i,j),i+1) ;
if (x != -1){
if (j-i > max) max = j-i;
}
}
}
System.out.println(max);
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(log(n)): The execution time ascends in proportion to the logarithm of the input size n.
- O(1): The execution time is unaffected by the size of the input n.
- O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially.
- O(n^2): The execution time ascends in proportion to the square of the input size n.
- O(n): The execution time ascends in a one-to-one ratio with the input size n.
- O(n^3): The execution time ascends in proportion to the cube of the input size n.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Classify the following Java code's worst-case time complexity according to its relationship to the input size n.
</TASK>
<CODE>
import java.io.BufferedReader;
import java.io.IOException;
import java.io.InputStreamReader;
import java.util.ArrayList;
import java.util.Arrays;
import java.util.HashSet;
import java.util.Scanner;
public class Main20 {
static ArrayList<Integer> primes = new ArrayList<Integer>();
static boolean[] prime = new boolean[1001];
public static void gen(){
Arrays.fill(prime, true);
prime[0] = prime[1] = false;
for (int i = 2; i < 1001; i++) {
if (prime[i]){
primes.add(i);
for (int j = i*2; j < 1001; j+=i)
prime[j] = false;
}
}
}
public static boolean isVowel(char c){
Character r = Character.toLowerCase(c);
return (r == 'e' || r == 'a' || r == 'i' || r == 'o' || r == 'u'|| r == 'y');
}
public static void main(String[] args) throws IOException {
Scanner s = new Scanner(new InputStreamReader(System.in));
String str = s.next();
int x;
int max= 0;
for (int i = 0; i < str.length()-1; i++) {
for (int j = i+1; j < str.length(); j++) {
x = str.indexOf(str.substring(i,j),i+1) ;
if (x != -1){
if (j-i > max) max = j-i;
}
}
}
System.out.println(max);
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(log(n)): The running time increases with the logarithm of the input size n.
- O(nlog(n)): The running time increases with the product of n and logarithm of n.
- O(1): The running time does not change regardless of the input size n.
- O(n^3): The running time increases with the cube of the input size n.
- O(n^2): The running time increases with the square of the input size n.
- others: The code does not clearly correspond to the listed classes or has an unclassified time complexity.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- O(n): The running time grows linearly with the input size n.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
| 701
| 3,390
|
1,857
|
import java.util.Scanner;
import java.util.Vector;
public class Main {
public static void main(String[] args) {
Scanner sc = new Scanner(System.in);
int n = sc.nextInt();
int m = sc.nextInt();
int a[] = new int[n];
int b[] = new int[n];
for (int i = 0; i < n; i++) a[i] = sc.nextInt();
for (int i = 0; i < n; i++) b[i] = sc.nextInt();
int c[] = new int[2 * n];
c[0] = a[0];
for (int i = 1; i < n; i++) {
c[i * 2] = a[i];
c[i * 2 - 1] = b[i];
if (a[i] == 1 || b[i] == 1) {
System.out.print(-1);
System.exit(0);
}
}
c[2 * n - 1] = b[0];
if (a[0] == 1 || b[0] == 1) {
System.out.print(-1);
System.exit(0);
}
System.out.println(bin_search(c, m));
}
private static double bin_search(int[] c, int m) {
double start = 0;
double end = Integer.MAX_VALUE;
double mid;
while (start + 0.0000001 < end) {
mid = (start + end) / 2;
if (test(mid, m, c)) end = mid;
else start = mid;
}
return end;
}
private static boolean test(double fuel, int m, int[] c) {
for (int i = 0; i < c.length; i++) {
fuel -= (m + fuel) / c[i];
if (fuel < 0) {
return false;
}
}
return true;
}
}
|
O(nlog(n))
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n.
</TASK>
<CODE>
import java.util.Scanner;
import java.util.Vector;
public class Main {
public static void main(String[] args) {
Scanner sc = new Scanner(System.in);
int n = sc.nextInt();
int m = sc.nextInt();
int a[] = new int[n];
int b[] = new int[n];
for (int i = 0; i < n; i++) a[i] = sc.nextInt();
for (int i = 0; i < n; i++) b[i] = sc.nextInt();
int c[] = new int[2 * n];
c[0] = a[0];
for (int i = 1; i < n; i++) {
c[i * 2] = a[i];
c[i * 2 - 1] = b[i];
if (a[i] == 1 || b[i] == 1) {
System.out.print(-1);
System.exit(0);
}
}
c[2 * n - 1] = b[0];
if (a[0] == 1 || b[0] == 1) {
System.out.print(-1);
System.exit(0);
}
System.out.println(bin_search(c, m));
}
private static double bin_search(int[] c, int m) {
double start = 0;
double end = Integer.MAX_VALUE;
double mid;
while (start + 0.0000001 < end) {
mid = (start + end) / 2;
if (test(mid, m, c)) end = mid;
else start = mid;
}
return end;
}
private static boolean test(double fuel, int m, int[] c) {
for (int i = 0; i < c.length; i++) {
fuel -= (m + fuel) / c[i];
if (fuel < 0) {
return false;
}
}
return true;
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially.
- O(1): The execution time is unaffected by the size of the input n.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- O(log(n)): The execution time ascends in proportion to the logarithm of the input size n.
- O(n^2): The execution time ascends in proportion to the square of the input size n.
- O(n^3): The execution time ascends in proportion to the cube of the input size n.
- O(n): The execution time ascends in a one-to-one ratio with the input size n.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Classify the following Java code's worst-case time complexity according to its relationship to the input size n.
</TASK>
<CODE>
import java.util.Scanner;
import java.util.Vector;
public class Main {
public static void main(String[] args) {
Scanner sc = new Scanner(System.in);
int n = sc.nextInt();
int m = sc.nextInt();
int a[] = new int[n];
int b[] = new int[n];
for (int i = 0; i < n; i++) a[i] = sc.nextInt();
for (int i = 0; i < n; i++) b[i] = sc.nextInt();
int c[] = new int[2 * n];
c[0] = a[0];
for (int i = 1; i < n; i++) {
c[i * 2] = a[i];
c[i * 2 - 1] = b[i];
if (a[i] == 1 || b[i] == 1) {
System.out.print(-1);
System.exit(0);
}
}
c[2 * n - 1] = b[0];
if (a[0] == 1 || b[0] == 1) {
System.out.print(-1);
System.exit(0);
}
System.out.println(bin_search(c, m));
}
private static double bin_search(int[] c, int m) {
double start = 0;
double end = Integer.MAX_VALUE;
double mid;
while (start + 0.0000001 < end) {
mid = (start + end) / 2;
if (test(mid, m, c)) end = mid;
else start = mid;
}
return end;
}
private static boolean test(double fuel, int m, int[] c) {
for (int i = 0; i < c.length; i++) {
fuel -= (m + fuel) / c[i];
if (fuel < 0) {
return false;
}
}
return true;
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(nlog(n)): The running time increases with the product of n and logarithm of n.
- O(n^3): The running time increases with the cube of the input size n.
- O(1): The running time does not change regardless of the input size n.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- O(n^2): The running time increases with the square of the input size n.
- others: The code does not clearly correspond to the listed classes or has an unclassified time complexity.
- O(log(n)): The running time increases with the logarithm of the input size n.
- O(n): The running time grows linearly with the input size n.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
| 781
| 1,853
|
3,098
|
import java.io.*;
import java.util.*;
public class Main {
StreamTokenizer in;
PrintWriter out;
public static void main(String[] args) throws Exception {
new Main().run();
}
public void run() throws Exception {
in = new StreamTokenizer (new BufferedReader(new InputStreamReader(System.in)));
out = new PrintWriter(new OutputStreamWriter(System.out));
solve();
out.flush();
}
int nextInt() throws Exception {
in.nextToken();
return (int) in.nval;
}
public void solve() throws Exception {
int n=nextInt();
long ans=0;
for (int i=0;i<n;i+=2)
ans+=3;
out.println(ans);
}
}
|
O(1)
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n.
</TASK>
<CODE>
import java.io.*;
import java.util.*;
public class Main {
StreamTokenizer in;
PrintWriter out;
public static void main(String[] args) throws Exception {
new Main().run();
}
public void run() throws Exception {
in = new StreamTokenizer (new BufferedReader(new InputStreamReader(System.in)));
out = new PrintWriter(new OutputStreamWriter(System.out));
solve();
out.flush();
}
int nextInt() throws Exception {
in.nextToken();
return (int) in.nval;
}
public void solve() throws Exception {
int n=nextInt();
long ans=0;
for (int i=0;i<n;i+=2)
ans+=3;
out.println(ans);
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(n^3): The execution time ascends in proportion to the cube of the input size n.
- O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- O(log(n)): The execution time ascends in proportion to the logarithm of the input size n.
- O(1): The execution time is unaffected by the size of the input n.
- O(n^2): The execution time ascends in proportion to the square of the input size n.
- O(n): The execution time ascends in a one-to-one ratio with the input size n.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Determine the worst-case time complexity category of a given Java code based on input size n.
</TASK>
<CODE>
import java.io.*;
import java.util.*;
public class Main {
StreamTokenizer in;
PrintWriter out;
public static void main(String[] args) throws Exception {
new Main().run();
}
public void run() throws Exception {
in = new StreamTokenizer (new BufferedReader(new InputStreamReader(System.in)));
out = new PrintWriter(new OutputStreamWriter(System.out));
solve();
out.flush();
}
int nextInt() throws Exception {
in.nextToken();
return (int) in.nval;
}
public void solve() throws Exception {
int n=nextInt();
long ans=0;
for (int i=0;i<n;i+=2)
ans+=3;
out.println(ans);
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(n): The time complexity increases proportionally to the input size n in a linear manner.
- O(1): The time complexity is constant to the input size n.
- non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially.
- O(n^2): The time complexity grows proportionally to the square of the input size.
- O(log(n)): The time complexity increases logarithmically in relation to the input size.
- others: The time complexity does not fit any of the above categories or cannot be clearly classified.
- O(nlog(n)): The time complexity combines linear and logarithmic growth factors.
- O(n^3): The time complexity scales proportionally to the cube of the input size.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
| 504
| 3,092
|
1,559
|
import static java.lang.Math.*;
import java.io.*;
import java.util.*;
public class Template {
BufferedReader in;
PrintWriter out;
StringTokenizer st;
String next() {
while (st==null || !st.hasMoreTokens()) {
try {
st = new StringTokenizer(in.readLine());
} catch (Exception e) {}
}
return st.nextToken();
}
int nextInt() {
return Integer.parseInt(next());
}
long nextLong() {
return Long.parseLong(next());
}
double nextDouble() {
return Double.parseDouble(next());
}
class Point implements Comparable<Point> {
int x, y;
public Point(int x, int y) {
this.x=x;
this.y=y;
}
public int compareTo(Point o) {
return x-o.x;
}
public String toString() {
return x + " " + y;
}
}
public void run() throws Exception {
in = new BufferedReader(new InputStreamReader(System.in));
out = new PrintWriter(System.out);
Long start = System.currentTimeMillis();
int n = nextInt();
long k = nextLong();
long[] a = new long[n];
TreeMap<Long, Integer> st = new TreeMap<Long, Integer>();
for (int i=0; i<n; i++) {
a[i] = nextLong();
st.put(a[i], 1);
}
Arrays.sort(a);
for (int i=0; i<n; i++) {
if (a[i] % k == 0) {
long x = a[i] / k;
if (st.containsKey(x)) {
int y = st.get(x);
st.remove(a[i]);
st.put(a[i], y + 1);
}
}
}
int ans = 0;
for (int i=0; i<n; i++) {
//System.err.println(a[n-i-1] + " " + st.get(a[n-i-1]));
ans+=(st.get(a[n-i-1]) + 1) / 2;
if (a[n-i-1] % k == 0) {
long x = a[n-i-1] / k;
if (st.containsKey(x)) {
//System.err.println(x);
st.remove(x);
st.put(x, 0);
}
}
}
out.println(ans);
Long end = System.currentTimeMillis();
out.close();
}
public static void main(String[] args) throws Exception {
new Template().run();
}
}
|
O(nlog(n))
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n.
</TASK>
<CODE>
import static java.lang.Math.*;
import java.io.*;
import java.util.*;
public class Template {
BufferedReader in;
PrintWriter out;
StringTokenizer st;
String next() {
while (st==null || !st.hasMoreTokens()) {
try {
st = new StringTokenizer(in.readLine());
} catch (Exception e) {}
}
return st.nextToken();
}
int nextInt() {
return Integer.parseInt(next());
}
long nextLong() {
return Long.parseLong(next());
}
double nextDouble() {
return Double.parseDouble(next());
}
class Point implements Comparable<Point> {
int x, y;
public Point(int x, int y) {
this.x=x;
this.y=y;
}
public int compareTo(Point o) {
return x-o.x;
}
public String toString() {
return x + " " + y;
}
}
public void run() throws Exception {
in = new BufferedReader(new InputStreamReader(System.in));
out = new PrintWriter(System.out);
Long start = System.currentTimeMillis();
int n = nextInt();
long k = nextLong();
long[] a = new long[n];
TreeMap<Long, Integer> st = new TreeMap<Long, Integer>();
for (int i=0; i<n; i++) {
a[i] = nextLong();
st.put(a[i], 1);
}
Arrays.sort(a);
for (int i=0; i<n; i++) {
if (a[i] % k == 0) {
long x = a[i] / k;
if (st.containsKey(x)) {
int y = st.get(x);
st.remove(a[i]);
st.put(a[i], y + 1);
}
}
}
int ans = 0;
for (int i=0; i<n; i++) {
//System.err.println(a[n-i-1] + " " + st.get(a[n-i-1]));
ans+=(st.get(a[n-i-1]) + 1) / 2;
if (a[n-i-1] % k == 0) {
long x = a[n-i-1] / k;
if (st.containsKey(x)) {
//System.err.println(x);
st.remove(x);
st.put(x, 0);
}
}
}
out.println(ans);
Long end = System.currentTimeMillis();
out.close();
}
public static void main(String[] args) throws Exception {
new Template().run();
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(n^3): The execution time ascends in proportion to the cube of the input size n.
- O(n^2): The execution time ascends in proportion to the square of the input size n.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- O(1): The execution time is unaffected by the size of the input n.
- O(log(n)): The execution time ascends in proportion to the logarithm of the input size n.
- O(n): The execution time ascends in a one-to-one ratio with the input size n.
- O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Classify the following Java code's worst-case time complexity according to its relationship to the input size n.
</TASK>
<CODE>
import static java.lang.Math.*;
import java.io.*;
import java.util.*;
public class Template {
BufferedReader in;
PrintWriter out;
StringTokenizer st;
String next() {
while (st==null || !st.hasMoreTokens()) {
try {
st = new StringTokenizer(in.readLine());
} catch (Exception e) {}
}
return st.nextToken();
}
int nextInt() {
return Integer.parseInt(next());
}
long nextLong() {
return Long.parseLong(next());
}
double nextDouble() {
return Double.parseDouble(next());
}
class Point implements Comparable<Point> {
int x, y;
public Point(int x, int y) {
this.x=x;
this.y=y;
}
public int compareTo(Point o) {
return x-o.x;
}
public String toString() {
return x + " " + y;
}
}
public void run() throws Exception {
in = new BufferedReader(new InputStreamReader(System.in));
out = new PrintWriter(System.out);
Long start = System.currentTimeMillis();
int n = nextInt();
long k = nextLong();
long[] a = new long[n];
TreeMap<Long, Integer> st = new TreeMap<Long, Integer>();
for (int i=0; i<n; i++) {
a[i] = nextLong();
st.put(a[i], 1);
}
Arrays.sort(a);
for (int i=0; i<n; i++) {
if (a[i] % k == 0) {
long x = a[i] / k;
if (st.containsKey(x)) {
int y = st.get(x);
st.remove(a[i]);
st.put(a[i], y + 1);
}
}
}
int ans = 0;
for (int i=0; i<n; i++) {
//System.err.println(a[n-i-1] + " " + st.get(a[n-i-1]));
ans+=(st.get(a[n-i-1]) + 1) / 2;
if (a[n-i-1] % k == 0) {
long x = a[n-i-1] / k;
if (st.containsKey(x)) {
//System.err.println(x);
st.remove(x);
st.put(x, 0);
}
}
}
out.println(ans);
Long end = System.currentTimeMillis();
out.close();
}
public static void main(String[] args) throws Exception {
new Template().run();
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(nlog(n)): The running time increases with the product of n and logarithm of n.
- others: The code does not clearly correspond to the listed classes or has an unclassified time complexity.
- O(n^2): The running time increases with the square of the input size n.
- O(log(n)): The running time increases with the logarithm of the input size n.
- O(1): The running time does not change regardless of the input size n.
- O(n): The running time grows linearly with the input size n.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- O(n^3): The running time increases with the cube of the input size n.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
| 936
| 1,557
|
3,279
|
import java.util.*;
public class A {
public static void main(String[] args) {
Scanner sc = new Scanner(System.in);
int n = sc.nextInt();
System.out.println("0 0 " + n);
}
}
|
O(1)
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Determine the worst-case time complexity category of a given Java code based on input size n.
</TASK>
<CODE>
import java.util.*;
public class A {
public static void main(String[] args) {
Scanner sc = new Scanner(System.in);
int n = sc.nextInt();
System.out.println("0 0 " + n);
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(n): The time complexity increases proportionally to the input size n in a linear manner.
- O(n^2): The time complexity grows proportionally to the square of the input size.
- O(log(n)): The time complexity increases logarithmically in relation to the input size.
- O(1): The time complexity is constant to the input size n.
- O(n^3): The time complexity scales proportionally to the cube of the input size.
- O(nlog(n)): The time complexity combines linear and logarithmic growth factors.
- non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n.
</TASK>
<CODE>
import java.util.*;
public class A {
public static void main(String[] args) {
Scanner sc = new Scanner(System.in);
int n = sc.nextInt();
System.out.println("0 0 " + n);
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(n^3): The execution time ascends in proportion to the cube of the input size n.
- O(n): The execution time ascends in a one-to-one ratio with the input size n.
- O(log(n)): The execution time ascends in proportion to the logarithm of the input size n.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially.
- others: The time complexity does not fit to any of the given categories or is ambiguous.
- O(n^2): The execution time ascends in proportion to the square of the input size n.
- O(1): The execution time is unaffected by the size of the input n.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
| 378
| 3,273
|
4,267
|
import java.io.InputStream;
import java.io.OutputStream;
import java.io.IOException;
import java.util.ArrayList;
import java.io.InputStream;
import java.io.BufferedWriter;
import java.io.Writer;
import java.io.OutputStreamWriter;
import java.io.IOException;
import java.util.InputMismatchException;
import java.io.PrintWriter;
import java.util.Arrays;
import java.io.OutputStream;
/**
* Built using CHelper plug-in
* Actual solution is at the top
*
* @author Alex
*/
public class Main {
public static void main(String[] args) {
InputStream inputStream = System.in;
OutputStream outputStream = System.out;
InputReader in = new InputReader(inputStream);
OutputWriter out = new OutputWriter(outputStream);
TaskB solver = new TaskB();
solver.solve(1, in, out);
out.close();
}
static class TaskB {
double special(int[] loyalties, int[] levels, int playerlevelsum) {
int poss = 1 << loyalties.length;
double res = 0;
for(int pos = 0; pos < poss; pos++) {
double occurs = 1;
int happy = 0;
int badlevelssum = 0;
for(int i = 0; i < loyalties.length; i++) {
if(((pos >> i) & 1) == 1) { //happy senator
happy++;
occurs *= (double) loyalties[i] / 100;
} else { //unhappy senator
badlevelssum += levels[i];
occurs *= (double) (100 - loyalties[i]) / 100;
}
}
double winprob = (happy <= levels.length / 2) ? (double) playerlevelsum / (playerlevelsum + badlevelssum) : 1;
res += occurs * winprob;
}
return res;
}
public void solve(int testNumber, InputReader in, OutputWriter out) {
int senators = in.readInt(); // n, [1, 8]
int sweets = in.readInt(); // k, [1, 8]
int playerlevelsum = in.readInt(); // A, [1, 9999]
int[] levels = new int[senators]; // [1, 9999]
int[] loyalties = new int[senators]; // [0, 100] divisible by 10
IOUtils.readIntArrays(in, levels, loyalties);
ArrayList<ArrayList<Integer>> possibilities = new ArrayList<>(Arrays.asList(new ArrayList<>()));
for(int senator = 0; senator < senators; senator++) {
ArrayList<ArrayList<Integer>> newpossibilities = new ArrayList<>();
for(ArrayList<Integer> al : possibilities) {
int sumsofar = 0;
for(int val : al) sumsofar += val;
int minadd = senator == senators - 1 ? sweets - sumsofar : 0;
for(int moar = minadd; moar <= sweets - sumsofar; moar++) {
ArrayList<Integer> copy = new ArrayList<>(al);
copy.add(moar);
newpossibilities.add(copy);
}
}
possibilities = newpossibilities;
}
double res = 0;
for(ArrayList<Integer> al : possibilities) {
int[] newloyalties = new int[senators];
for(int i = 0; i < senators; i++) newloyalties[i] = Math.min(100, loyalties[i] + 10 * al.get(i));
double special = special(newloyalties, levels, playerlevelsum);
double tot = special;
res = Math.max(res, tot);
}
out.printLine(res);
}
}
static class InputReader {
private InputStream stream;
private byte[] buf = new byte[1024];
private int curChar;
private int numChars;
private SpaceCharFilter filter;
public InputReader(InputStream stream) {
this.stream = stream;
}
public int read() {
if(numChars == -1)
throw new InputMismatchException();
if(curChar >= numChars) {
curChar = 0;
try {
numChars = stream.read(buf);
} catch(IOException e) {
throw new InputMismatchException();
}
if(numChars <= 0)
return -1;
}
return buf[curChar++];
}
public int readInt() {
int c = read();
while(isSpaceChar(c))
c = read();
int sgn = 1;
if(c == '-') {
sgn = -1;
c = read();
}
int res = 0;
do {
if(c < '0' || c > '9')
throw new InputMismatchException();
res *= 10;
res += c - '0';
c = read();
} while(!isSpaceChar(c));
return res * sgn;
}
public boolean isSpaceChar(int c) {
if(filter != null)
return filter.isSpaceChar(c);
return isWhitespace(c);
}
public static boolean isWhitespace(int c) {
return c == ' ' || c == '\n' || c == '\r' || c == '\t' || c == -1;
}
public interface SpaceCharFilter {
public boolean isSpaceChar(int ch);
}
}
static class OutputWriter {
private final PrintWriter writer;
public OutputWriter(OutputStream outputStream) {
writer = new PrintWriter(new BufferedWriter(new OutputStreamWriter(outputStream)));
}
public OutputWriter(Writer writer) {
this.writer = new PrintWriter(writer);
}
public void print(Object... objects) {
for(int i = 0; i < objects.length; i++) {
if(i != 0)
writer.print(' ');
writer.print(objects[i]);
}
}
public void printLine(Object... objects) {
print(objects);
writer.println();
}
public void close() {
writer.close();
}
}
static class IOUtils {
public static void readIntArrays(InputReader in, int[]... arrays) {
for(int i = 0; i < arrays[0].length; i++) {
for(int j = 0; j < arrays.length; j++)
arrays[j][i] = in.readInt();
}
}
}
}
|
non-polynomial
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Classify the following Java code's worst-case time complexity according to its relationship to the input size n.
</TASK>
<CODE>
import java.io.InputStream;
import java.io.OutputStream;
import java.io.IOException;
import java.util.ArrayList;
import java.io.InputStream;
import java.io.BufferedWriter;
import java.io.Writer;
import java.io.OutputStreamWriter;
import java.io.IOException;
import java.util.InputMismatchException;
import java.io.PrintWriter;
import java.util.Arrays;
import java.io.OutputStream;
/**
* Built using CHelper plug-in
* Actual solution is at the top
*
* @author Alex
*/
public class Main {
public static void main(String[] args) {
InputStream inputStream = System.in;
OutputStream outputStream = System.out;
InputReader in = new InputReader(inputStream);
OutputWriter out = new OutputWriter(outputStream);
TaskB solver = new TaskB();
solver.solve(1, in, out);
out.close();
}
static class TaskB {
double special(int[] loyalties, int[] levels, int playerlevelsum) {
int poss = 1 << loyalties.length;
double res = 0;
for(int pos = 0; pos < poss; pos++) {
double occurs = 1;
int happy = 0;
int badlevelssum = 0;
for(int i = 0; i < loyalties.length; i++) {
if(((pos >> i) & 1) == 1) { //happy senator
happy++;
occurs *= (double) loyalties[i] / 100;
} else { //unhappy senator
badlevelssum += levels[i];
occurs *= (double) (100 - loyalties[i]) / 100;
}
}
double winprob = (happy <= levels.length / 2) ? (double) playerlevelsum / (playerlevelsum + badlevelssum) : 1;
res += occurs * winprob;
}
return res;
}
public void solve(int testNumber, InputReader in, OutputWriter out) {
int senators = in.readInt(); // n, [1, 8]
int sweets = in.readInt(); // k, [1, 8]
int playerlevelsum = in.readInt(); // A, [1, 9999]
int[] levels = new int[senators]; // [1, 9999]
int[] loyalties = new int[senators]; // [0, 100] divisible by 10
IOUtils.readIntArrays(in, levels, loyalties);
ArrayList<ArrayList<Integer>> possibilities = new ArrayList<>(Arrays.asList(new ArrayList<>()));
for(int senator = 0; senator < senators; senator++) {
ArrayList<ArrayList<Integer>> newpossibilities = new ArrayList<>();
for(ArrayList<Integer> al : possibilities) {
int sumsofar = 0;
for(int val : al) sumsofar += val;
int minadd = senator == senators - 1 ? sweets - sumsofar : 0;
for(int moar = minadd; moar <= sweets - sumsofar; moar++) {
ArrayList<Integer> copy = new ArrayList<>(al);
copy.add(moar);
newpossibilities.add(copy);
}
}
possibilities = newpossibilities;
}
double res = 0;
for(ArrayList<Integer> al : possibilities) {
int[] newloyalties = new int[senators];
for(int i = 0; i < senators; i++) newloyalties[i] = Math.min(100, loyalties[i] + 10 * al.get(i));
double special = special(newloyalties, levels, playerlevelsum);
double tot = special;
res = Math.max(res, tot);
}
out.printLine(res);
}
}
static class InputReader {
private InputStream stream;
private byte[] buf = new byte[1024];
private int curChar;
private int numChars;
private SpaceCharFilter filter;
public InputReader(InputStream stream) {
this.stream = stream;
}
public int read() {
if(numChars == -1)
throw new InputMismatchException();
if(curChar >= numChars) {
curChar = 0;
try {
numChars = stream.read(buf);
} catch(IOException e) {
throw new InputMismatchException();
}
if(numChars <= 0)
return -1;
}
return buf[curChar++];
}
public int readInt() {
int c = read();
while(isSpaceChar(c))
c = read();
int sgn = 1;
if(c == '-') {
sgn = -1;
c = read();
}
int res = 0;
do {
if(c < '0' || c > '9')
throw new InputMismatchException();
res *= 10;
res += c - '0';
c = read();
} while(!isSpaceChar(c));
return res * sgn;
}
public boolean isSpaceChar(int c) {
if(filter != null)
return filter.isSpaceChar(c);
return isWhitespace(c);
}
public static boolean isWhitespace(int c) {
return c == ' ' || c == '\n' || c == '\r' || c == '\t' || c == -1;
}
public interface SpaceCharFilter {
public boolean isSpaceChar(int ch);
}
}
static class OutputWriter {
private final PrintWriter writer;
public OutputWriter(OutputStream outputStream) {
writer = new PrintWriter(new BufferedWriter(new OutputStreamWriter(outputStream)));
}
public OutputWriter(Writer writer) {
this.writer = new PrintWriter(writer);
}
public void print(Object... objects) {
for(int i = 0; i < objects.length; i++) {
if(i != 0)
writer.print(' ');
writer.print(objects[i]);
}
}
public void printLine(Object... objects) {
print(objects);
writer.println();
}
public void close() {
writer.close();
}
}
static class IOUtils {
public static void readIntArrays(InputReader in, int[]... arrays) {
for(int i = 0; i < arrays[0].length; i++) {
for(int j = 0; j < arrays.length; j++)
arrays[j][i] = in.readInt();
}
}
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(log(n)): The running time increases with the logarithm of the input size n.
- O(nlog(n)): The running time increases with the product of n and logarithm of n.
- O(n^3): The running time increases with the cube of the input size n.
- O(n): The running time grows linearly with the input size n.
- O(n^2): The running time increases with the square of the input size n.
- O(1): The running time does not change regardless of the input size n.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Classify the following Java code's worst-case time complexity according to its relationship to the input size n.
</TASK>
<CODE>
import java.io.InputStream;
import java.io.OutputStream;
import java.io.IOException;
import java.util.ArrayList;
import java.io.InputStream;
import java.io.BufferedWriter;
import java.io.Writer;
import java.io.OutputStreamWriter;
import java.io.IOException;
import java.util.InputMismatchException;
import java.io.PrintWriter;
import java.util.Arrays;
import java.io.OutputStream;
/**
* Built using CHelper plug-in
* Actual solution is at the top
*
* @author Alex
*/
public class Main {
public static void main(String[] args) {
InputStream inputStream = System.in;
OutputStream outputStream = System.out;
InputReader in = new InputReader(inputStream);
OutputWriter out = new OutputWriter(outputStream);
TaskB solver = new TaskB();
solver.solve(1, in, out);
out.close();
}
static class TaskB {
double special(int[] loyalties, int[] levels, int playerlevelsum) {
int poss = 1 << loyalties.length;
double res = 0;
for(int pos = 0; pos < poss; pos++) {
double occurs = 1;
int happy = 0;
int badlevelssum = 0;
for(int i = 0; i < loyalties.length; i++) {
if(((pos >> i) & 1) == 1) { //happy senator
happy++;
occurs *= (double) loyalties[i] / 100;
} else { //unhappy senator
badlevelssum += levels[i];
occurs *= (double) (100 - loyalties[i]) / 100;
}
}
double winprob = (happy <= levels.length / 2) ? (double) playerlevelsum / (playerlevelsum + badlevelssum) : 1;
res += occurs * winprob;
}
return res;
}
public void solve(int testNumber, InputReader in, OutputWriter out) {
int senators = in.readInt(); // n, [1, 8]
int sweets = in.readInt(); // k, [1, 8]
int playerlevelsum = in.readInt(); // A, [1, 9999]
int[] levels = new int[senators]; // [1, 9999]
int[] loyalties = new int[senators]; // [0, 100] divisible by 10
IOUtils.readIntArrays(in, levels, loyalties);
ArrayList<ArrayList<Integer>> possibilities = new ArrayList<>(Arrays.asList(new ArrayList<>()));
for(int senator = 0; senator < senators; senator++) {
ArrayList<ArrayList<Integer>> newpossibilities = new ArrayList<>();
for(ArrayList<Integer> al : possibilities) {
int sumsofar = 0;
for(int val : al) sumsofar += val;
int minadd = senator == senators - 1 ? sweets - sumsofar : 0;
for(int moar = minadd; moar <= sweets - sumsofar; moar++) {
ArrayList<Integer> copy = new ArrayList<>(al);
copy.add(moar);
newpossibilities.add(copy);
}
}
possibilities = newpossibilities;
}
double res = 0;
for(ArrayList<Integer> al : possibilities) {
int[] newloyalties = new int[senators];
for(int i = 0; i < senators; i++) newloyalties[i] = Math.min(100, loyalties[i] + 10 * al.get(i));
double special = special(newloyalties, levels, playerlevelsum);
double tot = special;
res = Math.max(res, tot);
}
out.printLine(res);
}
}
static class InputReader {
private InputStream stream;
private byte[] buf = new byte[1024];
private int curChar;
private int numChars;
private SpaceCharFilter filter;
public InputReader(InputStream stream) {
this.stream = stream;
}
public int read() {
if(numChars == -1)
throw new InputMismatchException();
if(curChar >= numChars) {
curChar = 0;
try {
numChars = stream.read(buf);
} catch(IOException e) {
throw new InputMismatchException();
}
if(numChars <= 0)
return -1;
}
return buf[curChar++];
}
public int readInt() {
int c = read();
while(isSpaceChar(c))
c = read();
int sgn = 1;
if(c == '-') {
sgn = -1;
c = read();
}
int res = 0;
do {
if(c < '0' || c > '9')
throw new InputMismatchException();
res *= 10;
res += c - '0';
c = read();
} while(!isSpaceChar(c));
return res * sgn;
}
public boolean isSpaceChar(int c) {
if(filter != null)
return filter.isSpaceChar(c);
return isWhitespace(c);
}
public static boolean isWhitespace(int c) {
return c == ' ' || c == '\n' || c == '\r' || c == '\t' || c == -1;
}
public interface SpaceCharFilter {
public boolean isSpaceChar(int ch);
}
}
static class OutputWriter {
private final PrintWriter writer;
public OutputWriter(OutputStream outputStream) {
writer = new PrintWriter(new BufferedWriter(new OutputStreamWriter(outputStream)));
}
public OutputWriter(Writer writer) {
this.writer = new PrintWriter(writer);
}
public void print(Object... objects) {
for(int i = 0; i < objects.length; i++) {
if(i != 0)
writer.print(' ');
writer.print(objects[i]);
}
}
public void printLine(Object... objects) {
print(objects);
writer.println();
}
public void close() {
writer.close();
}
}
static class IOUtils {
public static void readIntArrays(InputReader in, int[]... arrays) {
for(int i = 0; i < arrays[0].length; i++) {
for(int j = 0; j < arrays.length; j++)
arrays[j][i] = in.readInt();
}
}
}
}
</CODE>
<EVALUATION_RUBRIC>
- others: The code does not clearly correspond to the listed classes or has an unclassified time complexity.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- O(n^2): The running time increases with the square of the input size n.
- O(log(n)): The running time increases with the logarithm of the input size n.
- O(n): The running time grows linearly with the input size n.
- O(n^3): The running time increases with the cube of the input size n.
- O(1): The running time does not change regardless of the input size n.
- O(nlog(n)): The running time increases with the product of n and logarithm of n.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
| 1,705
| 4,256
|
2,267
|
import java.io.OutputStream;
import java.io.IOException;
import java.io.InputStream;
import java.io.PrintWriter;
import java.util.Arrays;
import java.io.IOException;
import java.io.InputStreamReader;
import java.io.File;
import java.io.FileNotFoundException;
import java.util.StringTokenizer;
import java.io.BufferedReader;
import java.io.FileReader;
import java.io.InputStream;
/**
* Built using CHelper plug-in
* Actual solution is at the top
*
* @author ShekharN
*/
public class Main {
public static void main(String[] args) {
InputStream inputStream = System.in;
OutputStream outputStream = System.out;
FastScanner in = new FastScanner(inputStream);
PrintWriter out = new PrintWriter(outputStream);
TaskC solver = new TaskC();
solver.solve(1, in, out);
out.close();
}
static class TaskC {
private final int MOD = (int) (1e9 + 7);
public void solve(int testNumber, FastScanner in, PrintWriter out) {
int n = in.nextInt();
String[] arr = new String[n];
for (int i = 0; i < n; i++) {
arr[i] = in.nextString();
}
int[] dp = new int[n];
Arrays.parallelSetAll(dp, i -> 0);
dp[0] = 1;
int cnt = 0;
for (int i = 0; i < n; i++) {
if (arr[i].equals("f")) {
cnt++;
continue;
}
calc(dp, n, cnt);
cnt = 0;
}
int sum = 0;
for (int i = 0; i < n; i++) {
sum += dp[i];
sum %= MOD;
}
out.println(sum);
}
private void calc(int[] dp, int n, int cnt) {
for (int i = n - 1; i >= 0; i--) {
if (i != n - 1) dp[i] += dp[i + 1];
dp[i] %= MOD;
}
//int[] tmp = new int[n];
int prev = dp[0];
for (int i = 0, y = 0; i < MathUtil.gcdInt(n, cnt); i++) {
//tmp[(i+cnt)%n] = dp[i];
y = i;
prev = dp[i];
do {
int nextId = (y + cnt) % n;
int tmp = dp[nextId];
dp[nextId] = prev;
prev = tmp;
y = nextId;
} while (y != i);
}
//Arrays.parallelSetAll(dp,i->tmp[i]);
}
}
static class FastScanner {
private BufferedReader br;
private StringTokenizer st;
public FastScanner(File f) {
try {
br = new BufferedReader(new FileReader(f));
} catch (FileNotFoundException e) {
e.printStackTrace();
}
}
public FastScanner(InputStream f) {
br = new BufferedReader(new InputStreamReader(f));
}
public String nextString() {
while (st == null || !st.hasMoreTokens()) {
String s = null;
try {
s = br.readLine();
} catch (IOException e) {
e.printStackTrace();
}
if (s == null)
return null;
st = new StringTokenizer(s);
}
return st.nextToken();
}
public int nextInt() {
return Integer.parseInt(nextString());
}
}
static class MathUtil {
public static int gcdInt(int a, int b) {
if (b == 0) return a;
return gcdInt(b, a % b);
}
}
}
|
O(n^2)
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Determine the worst-case time complexity category of a given Java code based on input size n.
</TASK>
<CODE>
import java.io.OutputStream;
import java.io.IOException;
import java.io.InputStream;
import java.io.PrintWriter;
import java.util.Arrays;
import java.io.IOException;
import java.io.InputStreamReader;
import java.io.File;
import java.io.FileNotFoundException;
import java.util.StringTokenizer;
import java.io.BufferedReader;
import java.io.FileReader;
import java.io.InputStream;
/**
* Built using CHelper plug-in
* Actual solution is at the top
*
* @author ShekharN
*/
public class Main {
public static void main(String[] args) {
InputStream inputStream = System.in;
OutputStream outputStream = System.out;
FastScanner in = new FastScanner(inputStream);
PrintWriter out = new PrintWriter(outputStream);
TaskC solver = new TaskC();
solver.solve(1, in, out);
out.close();
}
static class TaskC {
private final int MOD = (int) (1e9 + 7);
public void solve(int testNumber, FastScanner in, PrintWriter out) {
int n = in.nextInt();
String[] arr = new String[n];
for (int i = 0; i < n; i++) {
arr[i] = in.nextString();
}
int[] dp = new int[n];
Arrays.parallelSetAll(dp, i -> 0);
dp[0] = 1;
int cnt = 0;
for (int i = 0; i < n; i++) {
if (arr[i].equals("f")) {
cnt++;
continue;
}
calc(dp, n, cnt);
cnt = 0;
}
int sum = 0;
for (int i = 0; i < n; i++) {
sum += dp[i];
sum %= MOD;
}
out.println(sum);
}
private void calc(int[] dp, int n, int cnt) {
for (int i = n - 1; i >= 0; i--) {
if (i != n - 1) dp[i] += dp[i + 1];
dp[i] %= MOD;
}
//int[] tmp = new int[n];
int prev = dp[0];
for (int i = 0, y = 0; i < MathUtil.gcdInt(n, cnt); i++) {
//tmp[(i+cnt)%n] = dp[i];
y = i;
prev = dp[i];
do {
int nextId = (y + cnt) % n;
int tmp = dp[nextId];
dp[nextId] = prev;
prev = tmp;
y = nextId;
} while (y != i);
}
//Arrays.parallelSetAll(dp,i->tmp[i]);
}
}
static class FastScanner {
private BufferedReader br;
private StringTokenizer st;
public FastScanner(File f) {
try {
br = new BufferedReader(new FileReader(f));
} catch (FileNotFoundException e) {
e.printStackTrace();
}
}
public FastScanner(InputStream f) {
br = new BufferedReader(new InputStreamReader(f));
}
public String nextString() {
while (st == null || !st.hasMoreTokens()) {
String s = null;
try {
s = br.readLine();
} catch (IOException e) {
e.printStackTrace();
}
if (s == null)
return null;
st = new StringTokenizer(s);
}
return st.nextToken();
}
public int nextInt() {
return Integer.parseInt(nextString());
}
}
static class MathUtil {
public static int gcdInt(int a, int b) {
if (b == 0) return a;
return gcdInt(b, a % b);
}
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(nlog(n)): The time complexity combines linear and logarithmic growth factors.
- O(1): The time complexity is constant to the input size n.
- O(n): The time complexity increases proportionally to the input size n in a linear manner.
- O(n^2): The time complexity grows proportionally to the square of the input size.
- O(log(n)): The time complexity increases logarithmically in relation to the input size.
- O(n^3): The time complexity scales proportionally to the cube of the input size.
- non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Classify the following Java code's worst-case time complexity according to its relationship to the input size n.
</TASK>
<CODE>
import java.io.OutputStream;
import java.io.IOException;
import java.io.InputStream;
import java.io.PrintWriter;
import java.util.Arrays;
import java.io.IOException;
import java.io.InputStreamReader;
import java.io.File;
import java.io.FileNotFoundException;
import java.util.StringTokenizer;
import java.io.BufferedReader;
import java.io.FileReader;
import java.io.InputStream;
/**
* Built using CHelper plug-in
* Actual solution is at the top
*
* @author ShekharN
*/
public class Main {
public static void main(String[] args) {
InputStream inputStream = System.in;
OutputStream outputStream = System.out;
FastScanner in = new FastScanner(inputStream);
PrintWriter out = new PrintWriter(outputStream);
TaskC solver = new TaskC();
solver.solve(1, in, out);
out.close();
}
static class TaskC {
private final int MOD = (int) (1e9 + 7);
public void solve(int testNumber, FastScanner in, PrintWriter out) {
int n = in.nextInt();
String[] arr = new String[n];
for (int i = 0; i < n; i++) {
arr[i] = in.nextString();
}
int[] dp = new int[n];
Arrays.parallelSetAll(dp, i -> 0);
dp[0] = 1;
int cnt = 0;
for (int i = 0; i < n; i++) {
if (arr[i].equals("f")) {
cnt++;
continue;
}
calc(dp, n, cnt);
cnt = 0;
}
int sum = 0;
for (int i = 0; i < n; i++) {
sum += dp[i];
sum %= MOD;
}
out.println(sum);
}
private void calc(int[] dp, int n, int cnt) {
for (int i = n - 1; i >= 0; i--) {
if (i != n - 1) dp[i] += dp[i + 1];
dp[i] %= MOD;
}
//int[] tmp = new int[n];
int prev = dp[0];
for (int i = 0, y = 0; i < MathUtil.gcdInt(n, cnt); i++) {
//tmp[(i+cnt)%n] = dp[i];
y = i;
prev = dp[i];
do {
int nextId = (y + cnt) % n;
int tmp = dp[nextId];
dp[nextId] = prev;
prev = tmp;
y = nextId;
} while (y != i);
}
//Arrays.parallelSetAll(dp,i->tmp[i]);
}
}
static class FastScanner {
private BufferedReader br;
private StringTokenizer st;
public FastScanner(File f) {
try {
br = new BufferedReader(new FileReader(f));
} catch (FileNotFoundException e) {
e.printStackTrace();
}
}
public FastScanner(InputStream f) {
br = new BufferedReader(new InputStreamReader(f));
}
public String nextString() {
while (st == null || !st.hasMoreTokens()) {
String s = null;
try {
s = br.readLine();
} catch (IOException e) {
e.printStackTrace();
}
if (s == null)
return null;
st = new StringTokenizer(s);
}
return st.nextToken();
}
public int nextInt() {
return Integer.parseInt(nextString());
}
}
static class MathUtil {
public static int gcdInt(int a, int b) {
if (b == 0) return a;
return gcdInt(b, a % b);
}
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(n^3): The running time increases with the cube of the input size n.
- O(n^2): The running time increases with the square of the input size n.
- O(log(n)): The running time increases with the logarithm of the input size n.
- O(nlog(n)): The running time increases with the product of n and logarithm of n.
- O(1): The running time does not change regardless of the input size n.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- others: The code does not clearly correspond to the listed classes or has an unclassified time complexity.
- O(n): The running time grows linearly with the input size n.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
| 1,120
| 2,262
|
4,244
|
import java.io.*;
import java.util.*;
public class TaskE {
static int[][] transpose(int[][] a, int n, int m) {
int[][] t = new int[m][n];
for (int i = 0; i < n; i++) {
for (int j = 0; j < m; j++) {
t[j][i] = a[i][j];
}
}
return t;
}
public static void main(String[] args) {
FastReader in = new FastReader(System.in);
// FastReader in = new FastReader(new FileInputStream("input.txt"));
PrintWriter out = new PrintWriter(System.out);
// PrintWriter out = new PrintWriter(new FileOutputStream("output.txt"));
int t = in.nextInt();
while (t-- > 0) {
int n = in.nextInt();
int m = in.nextInt();
int[][] a = new int[n + 1][m];
for (int i = 0; i < n; i++) {
for (int j = 0; j < m; j++) {
a[i][j] = in.nextInt();
a[n][j] = Math.max(a[n][j], a[i][j]);
}
}
a = transpose(a, n, m);
Arrays.sort(a, new Comparator<int[]>() {
@Override
public int compare(int[] o1, int[] o2) {
int max1 = 0;
for (int i = 0; i < o1.length; i++) {
max1 = Math.max(max1, o1[i]);
}
int max2 = 0;
for (int i = 0; i < o2.length; i++) {
max2 = Math.max(max2, o2[i]);
}
return max2 - max1;
}
});
a = transpose(a, m, n);
int[] dp = new int[1 << n];
for (int i = 0; i < Math.min(n, m); i++) {
int[] best = new int[1 << n];
for (int j = 1; j < (1 << n); j++) {
for (int k = 0; k < n; k++) {
int sum = 0;
for (int l = 0; l < n; l++) {
if ((j & (1 << l)) != 0)
sum += a[(l + k) % n][i];
}
best[j] = Math.max(best[j], sum);
}
}
int[] dp1 = dp.clone();
for (int j = 0; j < (1 << n); j++) {
for (int k = j; k > 0; k = (k - 1) & j) {
dp[j] = Math.max(dp[j], dp1[k ^ j] + best[k]);
}
}
}
out.println(dp[(1 << n) - 1]);
}
out.close();
}
static class FastReader {
BufferedReader br;
StringTokenizer st;
FastReader(InputStream is) {
br = new BufferedReader(new InputStreamReader(is));
}
Integer nextInt() {
return Integer.parseInt(next());
}
Long nextLong() {
return Long.parseLong(next());
}
Double nextDouble() {
return Double.parseDouble(next());
}
String next() {
while (st == null || !st.hasMoreTokens()) {
st = new StringTokenizer(nextLine());
}
return st.nextToken();
}
String nextLine() {
String s = "";
try {
s = br.readLine();
} catch (IOException e) {
e.printStackTrace();
}
return s;
}
}
}
|
non-polynomial
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Determine the worst-case time complexity category of a given Java code based on input size n.
</TASK>
<CODE>
import java.io.*;
import java.util.*;
public class TaskE {
static int[][] transpose(int[][] a, int n, int m) {
int[][] t = new int[m][n];
for (int i = 0; i < n; i++) {
for (int j = 0; j < m; j++) {
t[j][i] = a[i][j];
}
}
return t;
}
public static void main(String[] args) {
FastReader in = new FastReader(System.in);
// FastReader in = new FastReader(new FileInputStream("input.txt"));
PrintWriter out = new PrintWriter(System.out);
// PrintWriter out = new PrintWriter(new FileOutputStream("output.txt"));
int t = in.nextInt();
while (t-- > 0) {
int n = in.nextInt();
int m = in.nextInt();
int[][] a = new int[n + 1][m];
for (int i = 0; i < n; i++) {
for (int j = 0; j < m; j++) {
a[i][j] = in.nextInt();
a[n][j] = Math.max(a[n][j], a[i][j]);
}
}
a = transpose(a, n, m);
Arrays.sort(a, new Comparator<int[]>() {
@Override
public int compare(int[] o1, int[] o2) {
int max1 = 0;
for (int i = 0; i < o1.length; i++) {
max1 = Math.max(max1, o1[i]);
}
int max2 = 0;
for (int i = 0; i < o2.length; i++) {
max2 = Math.max(max2, o2[i]);
}
return max2 - max1;
}
});
a = transpose(a, m, n);
int[] dp = new int[1 << n];
for (int i = 0; i < Math.min(n, m); i++) {
int[] best = new int[1 << n];
for (int j = 1; j < (1 << n); j++) {
for (int k = 0; k < n; k++) {
int sum = 0;
for (int l = 0; l < n; l++) {
if ((j & (1 << l)) != 0)
sum += a[(l + k) % n][i];
}
best[j] = Math.max(best[j], sum);
}
}
int[] dp1 = dp.clone();
for (int j = 0; j < (1 << n); j++) {
for (int k = j; k > 0; k = (k - 1) & j) {
dp[j] = Math.max(dp[j], dp1[k ^ j] + best[k]);
}
}
}
out.println(dp[(1 << n) - 1]);
}
out.close();
}
static class FastReader {
BufferedReader br;
StringTokenizer st;
FastReader(InputStream is) {
br = new BufferedReader(new InputStreamReader(is));
}
Integer nextInt() {
return Integer.parseInt(next());
}
Long nextLong() {
return Long.parseLong(next());
}
Double nextDouble() {
return Double.parseDouble(next());
}
String next() {
while (st == null || !st.hasMoreTokens()) {
st = new StringTokenizer(nextLine());
}
return st.nextToken();
}
String nextLine() {
String s = "";
try {
s = br.readLine();
} catch (IOException e) {
e.printStackTrace();
}
return s;
}
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(nlog(n)): The time complexity combines linear and logarithmic growth factors.
- non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially.
- O(log(n)): The time complexity increases logarithmically in relation to the input size.
- O(n^3): The time complexity scales proportionally to the cube of the input size.
- O(n): The time complexity increases proportionally to the input size n in a linear manner.
- O(1): The time complexity is constant to the input size n.
- O(n^2): The time complexity grows proportionally to the square of the input size.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Classify the following Java code's worst-case time complexity according to its relationship to the input size n.
</TASK>
<CODE>
import java.io.*;
import java.util.*;
public class TaskE {
static int[][] transpose(int[][] a, int n, int m) {
int[][] t = new int[m][n];
for (int i = 0; i < n; i++) {
for (int j = 0; j < m; j++) {
t[j][i] = a[i][j];
}
}
return t;
}
public static void main(String[] args) {
FastReader in = new FastReader(System.in);
// FastReader in = new FastReader(new FileInputStream("input.txt"));
PrintWriter out = new PrintWriter(System.out);
// PrintWriter out = new PrintWriter(new FileOutputStream("output.txt"));
int t = in.nextInt();
while (t-- > 0) {
int n = in.nextInt();
int m = in.nextInt();
int[][] a = new int[n + 1][m];
for (int i = 0; i < n; i++) {
for (int j = 0; j < m; j++) {
a[i][j] = in.nextInt();
a[n][j] = Math.max(a[n][j], a[i][j]);
}
}
a = transpose(a, n, m);
Arrays.sort(a, new Comparator<int[]>() {
@Override
public int compare(int[] o1, int[] o2) {
int max1 = 0;
for (int i = 0; i < o1.length; i++) {
max1 = Math.max(max1, o1[i]);
}
int max2 = 0;
for (int i = 0; i < o2.length; i++) {
max2 = Math.max(max2, o2[i]);
}
return max2 - max1;
}
});
a = transpose(a, m, n);
int[] dp = new int[1 << n];
for (int i = 0; i < Math.min(n, m); i++) {
int[] best = new int[1 << n];
for (int j = 1; j < (1 << n); j++) {
for (int k = 0; k < n; k++) {
int sum = 0;
for (int l = 0; l < n; l++) {
if ((j & (1 << l)) != 0)
sum += a[(l + k) % n][i];
}
best[j] = Math.max(best[j], sum);
}
}
int[] dp1 = dp.clone();
for (int j = 0; j < (1 << n); j++) {
for (int k = j; k > 0; k = (k - 1) & j) {
dp[j] = Math.max(dp[j], dp1[k ^ j] + best[k]);
}
}
}
out.println(dp[(1 << n) - 1]);
}
out.close();
}
static class FastReader {
BufferedReader br;
StringTokenizer st;
FastReader(InputStream is) {
br = new BufferedReader(new InputStreamReader(is));
}
Integer nextInt() {
return Integer.parseInt(next());
}
Long nextLong() {
return Long.parseLong(next());
}
Double nextDouble() {
return Double.parseDouble(next());
}
String next() {
while (st == null || !st.hasMoreTokens()) {
st = new StringTokenizer(nextLine());
}
return st.nextToken();
}
String nextLine() {
String s = "";
try {
s = br.readLine();
} catch (IOException e) {
e.printStackTrace();
}
return s;
}
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(log(n)): The running time increases with the logarithm of the input size n.
- O(nlog(n)): The running time increases with the product of n and logarithm of n.
- others: The code does not clearly correspond to the listed classes or has an unclassified time complexity.
- O(n): The running time grows linearly with the input size n.
- O(1): The running time does not change regardless of the input size n.
- O(n^2): The running time increases with the square of the input size n.
- O(n^3): The running time increases with the cube of the input size n.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
| 1,136
| 4,233
|
390
|
import java.util.*;
import java.math.*;
import java.io.*;
import static java.lang.Math.*;
import static java.util.Arrays.*;
import static java.util.Collections.*;
public class Main{
// ArrayList<Integer> lis = new ArrayList<Integer>();
// ArrayList<String> lis = new ArrayList<String>();
// PriorityQueue<P> que = new PriorityQueue<P>();
// PriorityQueue<Integer> que = new PriorityQueue<Integer>();
// Stack<Integer> que = new Stack<Integer>();
//HashMap<Long,Long> map = new HashMap<Long,Long>();
// static long sum=0;
// 1000000007 (10^9+7)
static int mod = 1000000007;
//static int mod = 1000000009,r=0; ArrayList<Integer> l[]= new ArrayList[n];
// static int dx[]={1,-1,0,0};
// static int dy[]={0,0,1,-1};
// static int dx[]={1,-1,0,0,1,1,-1,-1};
// static int dy[]={0,0,1,-1,1,-1,1,-1};
//static Set<Integer> set = new HashSet<Integer>();p
static ArrayList<Integer> cd[];
static int K=0;
public static void main(String[] args) throws Exception, IOException{
//String line=""; throws Exception, IOException
//(line=br.readLine())!=null
//Scanner sc =new Scanner(System.in);
// !!caution!! int long //
Reader sc = new Reader(System.in);
//,a=sc.nextInt(),b=sc.nextInt();
// int n=sc.nextInt(),p[]=new int[n],q[]=new int[n];
//int n=sc.nextInt(),a[]=new int[n],b[]=new int[n];
// int n=sc.nextInt(),m=sc.nextInt(),a=sc.nextInt(),b=sc.nextInt();
// int r=1<<28;
int n=sc.nextInt();//,k=sc.nextInt();
int a=sc.nextInt(),b=sc.nextInt(),d[]=new int[n];
HashMap<Integer,Integer> map = new HashMap<Integer,Integer>();
ArrayList<Integer> A = new ArrayList<Integer>();
for (int i = 0; i < n ; i++) {
d[i]=sc.nextInt();
map.put(d[i],i );
}
int c=1;
if( a>b ){c--; int x=a; a=b; b=x;}
int r[]=new int[n];
if(a==b){
for (int i = 0; i < n; i++) {
if(d[i]>a || !map.containsKey(a-d[i]) ){System.out.println("NO"); return;}
}
System.out.println("YES");
for (int i = 0; i < n; i++) {System.out.print("1 ");}
System.out.println();
return;
}
sort(d);
for (int j = 0; j < n; j++) {
int i=n-j-1;
int id=map.get(d[i]),idd=-1;
if( id<0)continue;
// db(id,d[i]);
if( d[i]<=a ){
if( map.containsKey(a-d[i]) && 0<=(idd=map.get(a-d[i])) ){
r[id]=r[idd]=(c+1)%2;
map.put(a-d[i], -1);
}
else if( map.containsKey(b-d[i]) && 0<=(idd=map.get(b-d[i])) ){
r[id]=r[idd]=c;
map.put(b-d[i], -1); }
else{ System.out.println("NO"); return; }
}
else{
if( map.containsKey(b-d[i]) && 0<=(idd=map.get(b-d[i])) ){
r[id]=r[idd]=c;
map.put(b-d[i], -1); }
else{ System.out.println("NO"); return; }
}
map.put(d[i], -1);
}
System.out.println("YES");
for (int j = 0; j < n; j++) {
System.out.print(r[j]+" ");
}
System.out.println();
}
static class P implements Comparable<P>{
// implements Comparable<Pair>
int id; long d; ;
P(int id,long d){
this.id=id;
this.d=d;
}
public int compareTo(P x){
return (-x.d+d)>=0?1:-1 ; // ascend long
// return -x.d+d ; // ascend
// return x.d-d ; //descend
}
}
static void db(Object... os){
System.err.println(Arrays.deepToString(os));
}
}
class Reader
{
private BufferedReader x;
private StringTokenizer st;
public Reader(InputStream in)
{
x = new BufferedReader(new InputStreamReader(in));
st = null;
}
public String nextString() throws IOException
{
while( st==null || !st.hasMoreTokens() )
st = new StringTokenizer(x.readLine());
return st.nextToken();
}
public int nextInt() throws IOException
{
return Integer.parseInt(nextString());
}
public long nextLong() throws IOException
{
return Long.parseLong(nextString());
}
public double nextDouble() throws IOException
{
return Double.parseDouble(nextString());
}
}
|
O(n)
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Determine the worst-case time complexity category of a given Java code based on input size n.
</TASK>
<CODE>
import java.util.*;
import java.math.*;
import java.io.*;
import static java.lang.Math.*;
import static java.util.Arrays.*;
import static java.util.Collections.*;
public class Main{
// ArrayList<Integer> lis = new ArrayList<Integer>();
// ArrayList<String> lis = new ArrayList<String>();
// PriorityQueue<P> que = new PriorityQueue<P>();
// PriorityQueue<Integer> que = new PriorityQueue<Integer>();
// Stack<Integer> que = new Stack<Integer>();
//HashMap<Long,Long> map = new HashMap<Long,Long>();
// static long sum=0;
// 1000000007 (10^9+7)
static int mod = 1000000007;
//static int mod = 1000000009,r=0; ArrayList<Integer> l[]= new ArrayList[n];
// static int dx[]={1,-1,0,0};
// static int dy[]={0,0,1,-1};
// static int dx[]={1,-1,0,0,1,1,-1,-1};
// static int dy[]={0,0,1,-1,1,-1,1,-1};
//static Set<Integer> set = new HashSet<Integer>();p
static ArrayList<Integer> cd[];
static int K=0;
public static void main(String[] args) throws Exception, IOException{
//String line=""; throws Exception, IOException
//(line=br.readLine())!=null
//Scanner sc =new Scanner(System.in);
// !!caution!! int long //
Reader sc = new Reader(System.in);
//,a=sc.nextInt(),b=sc.nextInt();
// int n=sc.nextInt(),p[]=new int[n],q[]=new int[n];
//int n=sc.nextInt(),a[]=new int[n],b[]=new int[n];
// int n=sc.nextInt(),m=sc.nextInt(),a=sc.nextInt(),b=sc.nextInt();
// int r=1<<28;
int n=sc.nextInt();//,k=sc.nextInt();
int a=sc.nextInt(),b=sc.nextInt(),d[]=new int[n];
HashMap<Integer,Integer> map = new HashMap<Integer,Integer>();
ArrayList<Integer> A = new ArrayList<Integer>();
for (int i = 0; i < n ; i++) {
d[i]=sc.nextInt();
map.put(d[i],i );
}
int c=1;
if( a>b ){c--; int x=a; a=b; b=x;}
int r[]=new int[n];
if(a==b){
for (int i = 0; i < n; i++) {
if(d[i]>a || !map.containsKey(a-d[i]) ){System.out.println("NO"); return;}
}
System.out.println("YES");
for (int i = 0; i < n; i++) {System.out.print("1 ");}
System.out.println();
return;
}
sort(d);
for (int j = 0; j < n; j++) {
int i=n-j-1;
int id=map.get(d[i]),idd=-1;
if( id<0)continue;
// db(id,d[i]);
if( d[i]<=a ){
if( map.containsKey(a-d[i]) && 0<=(idd=map.get(a-d[i])) ){
r[id]=r[idd]=(c+1)%2;
map.put(a-d[i], -1);
}
else if( map.containsKey(b-d[i]) && 0<=(idd=map.get(b-d[i])) ){
r[id]=r[idd]=c;
map.put(b-d[i], -1); }
else{ System.out.println("NO"); return; }
}
else{
if( map.containsKey(b-d[i]) && 0<=(idd=map.get(b-d[i])) ){
r[id]=r[idd]=c;
map.put(b-d[i], -1); }
else{ System.out.println("NO"); return; }
}
map.put(d[i], -1);
}
System.out.println("YES");
for (int j = 0; j < n; j++) {
System.out.print(r[j]+" ");
}
System.out.println();
}
static class P implements Comparable<P>{
// implements Comparable<Pair>
int id; long d; ;
P(int id,long d){
this.id=id;
this.d=d;
}
public int compareTo(P x){
return (-x.d+d)>=0?1:-1 ; // ascend long
// return -x.d+d ; // ascend
// return x.d-d ; //descend
}
}
static void db(Object... os){
System.err.println(Arrays.deepToString(os));
}
}
class Reader
{
private BufferedReader x;
private StringTokenizer st;
public Reader(InputStream in)
{
x = new BufferedReader(new InputStreamReader(in));
st = null;
}
public String nextString() throws IOException
{
while( st==null || !st.hasMoreTokens() )
st = new StringTokenizer(x.readLine());
return st.nextToken();
}
public int nextInt() throws IOException
{
return Integer.parseInt(nextString());
}
public long nextLong() throws IOException
{
return Long.parseLong(nextString());
}
public double nextDouble() throws IOException
{
return Double.parseDouble(nextString());
}
}
</CODE>
<EVALUATION_RUBRIC>
- non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially.
- O(n^3): The time complexity scales proportionally to the cube of the input size.
- O(n^2): The time complexity grows proportionally to the square of the input size.
- O(nlog(n)): The time complexity combines linear and logarithmic growth factors.
- O(log(n)): The time complexity increases logarithmically in relation to the input size.
- O(1): The time complexity is constant to the input size n.
- O(n): The time complexity increases proportionally to the input size n in a linear manner.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Determine the worst-case time complexity category of a given Java code based on input size n.
</TASK>
<CODE>
import java.util.*;
import java.math.*;
import java.io.*;
import static java.lang.Math.*;
import static java.util.Arrays.*;
import static java.util.Collections.*;
public class Main{
// ArrayList<Integer> lis = new ArrayList<Integer>();
// ArrayList<String> lis = new ArrayList<String>();
// PriorityQueue<P> que = new PriorityQueue<P>();
// PriorityQueue<Integer> que = new PriorityQueue<Integer>();
// Stack<Integer> que = new Stack<Integer>();
//HashMap<Long,Long> map = new HashMap<Long,Long>();
// static long sum=0;
// 1000000007 (10^9+7)
static int mod = 1000000007;
//static int mod = 1000000009,r=0; ArrayList<Integer> l[]= new ArrayList[n];
// static int dx[]={1,-1,0,0};
// static int dy[]={0,0,1,-1};
// static int dx[]={1,-1,0,0,1,1,-1,-1};
// static int dy[]={0,0,1,-1,1,-1,1,-1};
//static Set<Integer> set = new HashSet<Integer>();p
static ArrayList<Integer> cd[];
static int K=0;
public static void main(String[] args) throws Exception, IOException{
//String line=""; throws Exception, IOException
//(line=br.readLine())!=null
//Scanner sc =new Scanner(System.in);
// !!caution!! int long //
Reader sc = new Reader(System.in);
//,a=sc.nextInt(),b=sc.nextInt();
// int n=sc.nextInt(),p[]=new int[n],q[]=new int[n];
//int n=sc.nextInt(),a[]=new int[n],b[]=new int[n];
// int n=sc.nextInt(),m=sc.nextInt(),a=sc.nextInt(),b=sc.nextInt();
// int r=1<<28;
int n=sc.nextInt();//,k=sc.nextInt();
int a=sc.nextInt(),b=sc.nextInt(),d[]=new int[n];
HashMap<Integer,Integer> map = new HashMap<Integer,Integer>();
ArrayList<Integer> A = new ArrayList<Integer>();
for (int i = 0; i < n ; i++) {
d[i]=sc.nextInt();
map.put(d[i],i );
}
int c=1;
if( a>b ){c--; int x=a; a=b; b=x;}
int r[]=new int[n];
if(a==b){
for (int i = 0; i < n; i++) {
if(d[i]>a || !map.containsKey(a-d[i]) ){System.out.println("NO"); return;}
}
System.out.println("YES");
for (int i = 0; i < n; i++) {System.out.print("1 ");}
System.out.println();
return;
}
sort(d);
for (int j = 0; j < n; j++) {
int i=n-j-1;
int id=map.get(d[i]),idd=-1;
if( id<0)continue;
// db(id,d[i]);
if( d[i]<=a ){
if( map.containsKey(a-d[i]) && 0<=(idd=map.get(a-d[i])) ){
r[id]=r[idd]=(c+1)%2;
map.put(a-d[i], -1);
}
else if( map.containsKey(b-d[i]) && 0<=(idd=map.get(b-d[i])) ){
r[id]=r[idd]=c;
map.put(b-d[i], -1); }
else{ System.out.println("NO"); return; }
}
else{
if( map.containsKey(b-d[i]) && 0<=(idd=map.get(b-d[i])) ){
r[id]=r[idd]=c;
map.put(b-d[i], -1); }
else{ System.out.println("NO"); return; }
}
map.put(d[i], -1);
}
System.out.println("YES");
for (int j = 0; j < n; j++) {
System.out.print(r[j]+" ");
}
System.out.println();
}
static class P implements Comparable<P>{
// implements Comparable<Pair>
int id; long d; ;
P(int id,long d){
this.id=id;
this.d=d;
}
public int compareTo(P x){
return (-x.d+d)>=0?1:-1 ; // ascend long
// return -x.d+d ; // ascend
// return x.d-d ; //descend
}
}
static void db(Object... os){
System.err.println(Arrays.deepToString(os));
}
}
class Reader
{
private BufferedReader x;
private StringTokenizer st;
public Reader(InputStream in)
{
x = new BufferedReader(new InputStreamReader(in));
st = null;
}
public String nextString() throws IOException
{
while( st==null || !st.hasMoreTokens() )
st = new StringTokenizer(x.readLine());
return st.nextToken();
}
public int nextInt() throws IOException
{
return Integer.parseInt(nextString());
}
public long nextLong() throws IOException
{
return Long.parseLong(nextString());
}
public double nextDouble() throws IOException
{
return Double.parseDouble(nextString());
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(nlog(n)): The time complexity combines linear and logarithmic growth factors.
- non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially.
- others: The time complexity does not fit any of the above categories or cannot be clearly classified.
- O(log(n)): The time complexity increases logarithmically in relation to the input size.
- O(n): The time complexity increases proportionally to the input size n in a linear manner.
- O(n^3): The time complexity scales proportionally to the cube of the input size.
- O(n^2): The time complexity grows proportionally to the square of the input size.
- O(1): The time complexity is constant to the input size n.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
| 1,511
| 389
|
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.