id
int64
0
4.52k
code
stringlengths
142
31.2k
answer
stringclasses
7 values
prompt
stringlengths
1.64k
32.6k
test_prompt
stringlengths
1.7k
32.7k
token_length
int64
373
7.8k
__index_level_0__
int64
0
4.5k
2,721
import java.io.BufferedReader; import java.io.IOException; import java.io.InputStream; import java.io.InputStreamReader; import java.io.OutputStream; import java.io.PrintWriter; import java.util.ArrayList; public class Task235A { public static void main(String... args) throws NumberFormatException, IOException { Solution.main(System.in, System.out); } static class Scanner { private final BufferedReader br; private String[] cache; private int cacheIndex; Scanner(InputStream is) { br = new BufferedReader(new InputStreamReader(is)); cache = new String[0]; cacheIndex = 0; } int nextInt() throws IOException { if (cacheIndex >= cache.length) { cache = br.readLine().split(" "); cacheIndex = 0; } return Integer.parseInt(cache[cacheIndex++]); } long nextLong() throws IOException { if (cacheIndex >= cache.length) { cache = br.readLine().split(" "); cacheIndex = 0; } return Long.parseLong(cache[cacheIndex++]); } String next() throws IOException { if (cacheIndex >= cache.length) { cache = br.readLine().split(" "); cacheIndex = 0; } return cache[cacheIndex++]; } void close() throws IOException { br.close(); } } static class Solution { public static void main(InputStream is, OutputStream os) throws NumberFormatException, IOException { PrintWriter pw = new PrintWriter(os); Scanner sc = new Scanner(is); long n = sc.nextInt(); if (n < 3) { pw.println(n); } else { if (n % 2 != 0) { pw.println(n * (n - 1) * (n - 2)); } else { if (n % 3 != 0) { pw.println(n * (n - 1) * (n - 3)); } else { long cand1 = n * (n - 1) * (n - 2) / 2; long cand2 = (n - 1) * (n - 2) * (n - 3); pw.println(Math.max(cand1, cand2)); } } } pw.flush(); sc.close(); } } }
O(1)
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n. </TASK> <CODE> import java.io.BufferedReader; import java.io.IOException; import java.io.InputStream; import java.io.InputStreamReader; import java.io.OutputStream; import java.io.PrintWriter; import java.util.ArrayList; public class Task235A { public static void main(String... args) throws NumberFormatException, IOException { Solution.main(System.in, System.out); } static class Scanner { private final BufferedReader br; private String[] cache; private int cacheIndex; Scanner(InputStream is) { br = new BufferedReader(new InputStreamReader(is)); cache = new String[0]; cacheIndex = 0; } int nextInt() throws IOException { if (cacheIndex >= cache.length) { cache = br.readLine().split(" "); cacheIndex = 0; } return Integer.parseInt(cache[cacheIndex++]); } long nextLong() throws IOException { if (cacheIndex >= cache.length) { cache = br.readLine().split(" "); cacheIndex = 0; } return Long.parseLong(cache[cacheIndex++]); } String next() throws IOException { if (cacheIndex >= cache.length) { cache = br.readLine().split(" "); cacheIndex = 0; } return cache[cacheIndex++]; } void close() throws IOException { br.close(); } } static class Solution { public static void main(InputStream is, OutputStream os) throws NumberFormatException, IOException { PrintWriter pw = new PrintWriter(os); Scanner sc = new Scanner(is); long n = sc.nextInt(); if (n < 3) { pw.println(n); } else { if (n % 2 != 0) { pw.println(n * (n - 1) * (n - 2)); } else { if (n % 3 != 0) { pw.println(n * (n - 1) * (n - 3)); } else { long cand1 = n * (n - 1) * (n - 2) / 2; long cand2 = (n - 1) * (n - 2) * (n - 3); pw.println(Math.max(cand1, cand2)); } } } pw.flush(); sc.close(); } } } </CODE> <EVALUATION_RUBRIC> - O(n^2): The execution time ascends in proportion to the square of the input size n. - O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially. - O(log(n)): The execution time ascends in proportion to the logarithm of the input size n. - O(n): The execution time ascends in a one-to-one ratio with the input size n. - O(n^3): The execution time ascends in proportion to the cube of the input size n. - non-polynomial: The running time increases non-polynomially with input size n, typically exponentially. - O(1): The execution time is unaffected by the size of the input n. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Determine the worst-case time complexity category of a given Java code based on input size n. </TASK> <CODE> import java.io.BufferedReader; import java.io.IOException; import java.io.InputStream; import java.io.InputStreamReader; import java.io.OutputStream; import java.io.PrintWriter; import java.util.ArrayList; public class Task235A { public static void main(String... args) throws NumberFormatException, IOException { Solution.main(System.in, System.out); } static class Scanner { private final BufferedReader br; private String[] cache; private int cacheIndex; Scanner(InputStream is) { br = new BufferedReader(new InputStreamReader(is)); cache = new String[0]; cacheIndex = 0; } int nextInt() throws IOException { if (cacheIndex >= cache.length) { cache = br.readLine().split(" "); cacheIndex = 0; } return Integer.parseInt(cache[cacheIndex++]); } long nextLong() throws IOException { if (cacheIndex >= cache.length) { cache = br.readLine().split(" "); cacheIndex = 0; } return Long.parseLong(cache[cacheIndex++]); } String next() throws IOException { if (cacheIndex >= cache.length) { cache = br.readLine().split(" "); cacheIndex = 0; } return cache[cacheIndex++]; } void close() throws IOException { br.close(); } } static class Solution { public static void main(InputStream is, OutputStream os) throws NumberFormatException, IOException { PrintWriter pw = new PrintWriter(os); Scanner sc = new Scanner(is); long n = sc.nextInt(); if (n < 3) { pw.println(n); } else { if (n % 2 != 0) { pw.println(n * (n - 1) * (n - 2)); } else { if (n % 3 != 0) { pw.println(n * (n - 1) * (n - 3)); } else { long cand1 = n * (n - 1) * (n - 2) / 2; long cand2 = (n - 1) * (n - 2) * (n - 3); pw.println(Math.max(cand1, cand2)); } } } pw.flush(); sc.close(); } } } </CODE> <EVALUATION_RUBRIC> - O(n): The time complexity increases proportionally to the input size n in a linear manner. - O(nlog(n)): The time complexity combines linear and logarithmic growth factors. - O(n^3): The time complexity scales proportionally to the cube of the input size. - non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially. - O(log(n)): The time complexity increases logarithmically in relation to the input size. - O(n^2): The time complexity grows proportionally to the square of the input size. - O(1): The time complexity is constant to the input size n. - others: The time complexity does not fit any of the above categories or cannot be clearly classified. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
858
2,715
2,945
import java.io.*; import java.lang.reflect.Array; import java.math.BigInteger; import java.util.Arrays; import java.util.Scanner; import java.util.StringTokenizer; import java.util.TreeMap; public class A { public static void main(String [] args) throws IOException { Scanner in = new Scanner(System.in); System.out.println(rec(in.nextLong(), in.nextLong())); } private static long rec(long a, long b) { return b == 0 ? 0 : a/b + rec(b, a%b); } }
O(1)
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n. </TASK> <CODE> import java.io.*; import java.lang.reflect.Array; import java.math.BigInteger; import java.util.Arrays; import java.util.Scanner; import java.util.StringTokenizer; import java.util.TreeMap; public class A { public static void main(String [] args) throws IOException { Scanner in = new Scanner(System.in); System.out.println(rec(in.nextLong(), in.nextLong())); } private static long rec(long a, long b) { return b == 0 ? 0 : a/b + rec(b, a%b); } } </CODE> <EVALUATION_RUBRIC> - O(1): The execution time is unaffected by the size of the input n. - O(n): The execution time ascends in a one-to-one ratio with the input size n. - O(log(n)): The execution time ascends in proportion to the logarithm of the input size n. - O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially. - O(n^2): The execution time ascends in proportion to the square of the input size n. - non-polynomial: The running time increases non-polynomially with input size n, typically exponentially. - O(n^3): The execution time ascends in proportion to the cube of the input size n. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Determine the worst-case time complexity category of a given Java code based on input size n. </TASK> <CODE> import java.io.*; import java.lang.reflect.Array; import java.math.BigInteger; import java.util.Arrays; import java.util.Scanner; import java.util.StringTokenizer; import java.util.TreeMap; public class A { public static void main(String [] args) throws IOException { Scanner in = new Scanner(System.in); System.out.println(rec(in.nextLong(), in.nextLong())); } private static long rec(long a, long b) { return b == 0 ? 0 : a/b + rec(b, a%b); } } </CODE> <EVALUATION_RUBRIC> - O(log(n)): The time complexity increases logarithmically in relation to the input size. - others: The time complexity does not fit any of the above categories or cannot be clearly classified. - O(n^2): The time complexity grows proportionally to the square of the input size. - non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially. - O(1): The time complexity is constant to the input size n. - O(n^3): The time complexity scales proportionally to the cube of the input size. - O(n): The time complexity increases proportionally to the input size n in a linear manner. - O(nlog(n)): The time complexity combines linear and logarithmic growth factors. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
465
2,939
2,104
import java.io.*; import java.util.*; public class Replacement { public static void main(String[] args) throws IOException { // TODO Auto-generated method stub BufferedReader r=new BufferedReader(new InputStreamReader(System.in)); String s=r.readLine(); int n=new Integer(s); int[]arr=new int[n]; String[]sp=r.readLine().split("[ ]+"); for (int i = 0; i < sp.length; i++) { arr[i]=new Integer(sp[i]); } Arrays.sort(arr); if(arr[arr.length-1]==1){ arr[arr.length-1]=2; Arrays.sort(arr); for (int i = 0; i < n; i++) { if(i==n-1){ System.out.println(arr[i]); }else System.out.print(arr[i]+" "); } return; } arr[arr.length-1]=1; Arrays.sort(arr); for (int i = 0; i < n; i++) { if(i==n-1){ System.out.println(arr[i]); }else System.out.print(arr[i]+" "); } } }
O(nlog(n))
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n. </TASK> <CODE> import java.io.*; import java.util.*; public class Replacement { public static void main(String[] args) throws IOException { // TODO Auto-generated method stub BufferedReader r=new BufferedReader(new InputStreamReader(System.in)); String s=r.readLine(); int n=new Integer(s); int[]arr=new int[n]; String[]sp=r.readLine().split("[ ]+"); for (int i = 0; i < sp.length; i++) { arr[i]=new Integer(sp[i]); } Arrays.sort(arr); if(arr[arr.length-1]==1){ arr[arr.length-1]=2; Arrays.sort(arr); for (int i = 0; i < n; i++) { if(i==n-1){ System.out.println(arr[i]); }else System.out.print(arr[i]+" "); } return; } arr[arr.length-1]=1; Arrays.sort(arr); for (int i = 0; i < n; i++) { if(i==n-1){ System.out.println(arr[i]); }else System.out.print(arr[i]+" "); } } } </CODE> <EVALUATION_RUBRIC> - O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially. - O(n): The execution time ascends in a one-to-one ratio with the input size n. - non-polynomial: The running time increases non-polynomially with input size n, typically exponentially. - O(n^2): The execution time ascends in proportion to the square of the input size n. - O(1): The execution time is unaffected by the size of the input n. - O(log(n)): The execution time ascends in proportion to the logarithm of the input size n. - O(n^3): The execution time ascends in proportion to the cube of the input size n. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Determine the worst-case time complexity category of a given Java code based on input size n. </TASK> <CODE> import java.io.*; import java.util.*; public class Replacement { public static void main(String[] args) throws IOException { // TODO Auto-generated method stub BufferedReader r=new BufferedReader(new InputStreamReader(System.in)); String s=r.readLine(); int n=new Integer(s); int[]arr=new int[n]; String[]sp=r.readLine().split("[ ]+"); for (int i = 0; i < sp.length; i++) { arr[i]=new Integer(sp[i]); } Arrays.sort(arr); if(arr[arr.length-1]==1){ arr[arr.length-1]=2; Arrays.sort(arr); for (int i = 0; i < n; i++) { if(i==n-1){ System.out.println(arr[i]); }else System.out.print(arr[i]+" "); } return; } arr[arr.length-1]=1; Arrays.sort(arr); for (int i = 0; i < n; i++) { if(i==n-1){ System.out.println(arr[i]); }else System.out.print(arr[i]+" "); } } } </CODE> <EVALUATION_RUBRIC> - O(n^3): The time complexity scales proportionally to the cube of the input size. - O(nlog(n)): The time complexity combines linear and logarithmic growth factors. - O(1): The time complexity is constant to the input size n. - non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially. - others: The time complexity does not fit any of the above categories or cannot be clearly classified. - O(n^2): The time complexity grows proportionally to the square of the input size. - O(log(n)): The time complexity increases logarithmically in relation to the input size. - O(n): The time complexity increases proportionally to the input size n in a linear manner. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
603
2,100
2,086
import java.io.*; import java.util.*; public class A implements Runnable { private MyScanner in; private PrintWriter out; private void solve() { int n = in.nextInt(); int[] a = new int[n]; int max = -1, maxp = -1; for (int i = 0; i < n; ++i) { a[i] = in.nextInt(); if (a[i] > max) { max = a[i]; maxp = i; } } if (max == 1) { for (int i = 0; i < n - 1; ++i) { out.print(1 + " "); } out.println(2); return; } a[maxp] = 1; Arrays.sort(a); for (int i = 0; i < n; ++i) { out.print(a[i] + " "); } out.println(); } @Override public void run() { in = new MyScanner(); out = new PrintWriter(System.out); solve(); in.close(); out.close(); } public static void main(String[] args) { new A().run(); } static class MyScanner { private BufferedReader br; private StringTokenizer st; public MyScanner() { br = new BufferedReader(new InputStreamReader(System.in)); } public void close() { try { br.close(); } catch (IOException e) { e.printStackTrace(); } } private String nextToken() { while (st == null || !st.hasMoreTokens()) { try { st = new StringTokenizer(br.readLine()); } catch (IOException e) { e.printStackTrace(); return null; } } return st.nextToken(); } public String nextLine() { try { return br.readLine(); } catch (IOException e) { e.printStackTrace(); return null; } } public String next() { return nextToken(); } public int nextInt() { return Integer.parseInt(nextToken()); } public long nextLong() { return Long.parseLong(nextToken()); } public double nextDouble() { return Double.parseDouble(nextToken()); } } }
O(nlog(n))
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n. </TASK> <CODE> import java.io.*; import java.util.*; public class A implements Runnable { private MyScanner in; private PrintWriter out; private void solve() { int n = in.nextInt(); int[] a = new int[n]; int max = -1, maxp = -1; for (int i = 0; i < n; ++i) { a[i] = in.nextInt(); if (a[i] > max) { max = a[i]; maxp = i; } } if (max == 1) { for (int i = 0; i < n - 1; ++i) { out.print(1 + " "); } out.println(2); return; } a[maxp] = 1; Arrays.sort(a); for (int i = 0; i < n; ++i) { out.print(a[i] + " "); } out.println(); } @Override public void run() { in = new MyScanner(); out = new PrintWriter(System.out); solve(); in.close(); out.close(); } public static void main(String[] args) { new A().run(); } static class MyScanner { private BufferedReader br; private StringTokenizer st; public MyScanner() { br = new BufferedReader(new InputStreamReader(System.in)); } public void close() { try { br.close(); } catch (IOException e) { e.printStackTrace(); } } private String nextToken() { while (st == null || !st.hasMoreTokens()) { try { st = new StringTokenizer(br.readLine()); } catch (IOException e) { e.printStackTrace(); return null; } } return st.nextToken(); } public String nextLine() { try { return br.readLine(); } catch (IOException e) { e.printStackTrace(); return null; } } public String next() { return nextToken(); } public int nextInt() { return Integer.parseInt(nextToken()); } public long nextLong() { return Long.parseLong(nextToken()); } public double nextDouble() { return Double.parseDouble(nextToken()); } } } </CODE> <EVALUATION_RUBRIC> - non-polynomial: The running time increases non-polynomially with input size n, typically exponentially. - O(log(n)): The execution time ascends in proportion to the logarithm of the input size n. - O(n): The execution time ascends in a one-to-one ratio with the input size n. - O(1): The execution time is unaffected by the size of the input n. - O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially. - O(n^2): The execution time ascends in proportion to the square of the input size n. - O(n^3): The execution time ascends in proportion to the cube of the input size n. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Classify the following Java code's worst-case time complexity according to its relationship to the input size n. </TASK> <CODE> import java.io.*; import java.util.*; public class A implements Runnable { private MyScanner in; private PrintWriter out; private void solve() { int n = in.nextInt(); int[] a = new int[n]; int max = -1, maxp = -1; for (int i = 0; i < n; ++i) { a[i] = in.nextInt(); if (a[i] > max) { max = a[i]; maxp = i; } } if (max == 1) { for (int i = 0; i < n - 1; ++i) { out.print(1 + " "); } out.println(2); return; } a[maxp] = 1; Arrays.sort(a); for (int i = 0; i < n; ++i) { out.print(a[i] + " "); } out.println(); } @Override public void run() { in = new MyScanner(); out = new PrintWriter(System.out); solve(); in.close(); out.close(); } public static void main(String[] args) { new A().run(); } static class MyScanner { private BufferedReader br; private StringTokenizer st; public MyScanner() { br = new BufferedReader(new InputStreamReader(System.in)); } public void close() { try { br.close(); } catch (IOException e) { e.printStackTrace(); } } private String nextToken() { while (st == null || !st.hasMoreTokens()) { try { st = new StringTokenizer(br.readLine()); } catch (IOException e) { e.printStackTrace(); return null; } } return st.nextToken(); } public String nextLine() { try { return br.readLine(); } catch (IOException e) { e.printStackTrace(); return null; } } public String next() { return nextToken(); } public int nextInt() { return Integer.parseInt(nextToken()); } public long nextLong() { return Long.parseLong(nextToken()); } public double nextDouble() { return Double.parseDouble(nextToken()); } } } </CODE> <EVALUATION_RUBRIC> - O(n^2): The running time increases with the square of the input size n. - O(nlog(n)): The running time increases with the product of n and logarithm of n. - non-polynomial: The running time increases non-polynomially with input size n, typically exponentially. - others: The code does not clearly correspond to the listed classes or has an unclassified time complexity. - O(n^3): The running time increases with the cube of the input size n. - O(1): The running time does not change regardless of the input size n. - O(n): The running time grows linearly with the input size n. - O(log(n)): The running time increases with the logarithm of the input size n. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
836
2,082
2,359
import java.util.*; import java.io.*; public class P911d { private static void solve() { int n = nextInt(); int[] a = new int[n]; for (int i = 0; i < n; i++) { a[i] = nextInt(); } int cnt = 0; for (int i = 0; i < n; i++) { for (int j = i + 1; j < n; j++) { if (a[i] > a[j]) { cnt++; } } } cnt %= 2; int m = nextInt(); for (int i = 0; i < m; i++) { int l = nextInt(); int r = nextInt(); int size = r - l + 1; long sum = ((long)size * (size - 1)) / 2; sum %= 2; cnt += sum; cnt %= 2; System.out.println(cnt == 0 ? "even" : "odd"); } } private static void run() { br = new BufferedReader(new InputStreamReader(System.in)); out = new PrintWriter(System.out); solve(); out.close(); } private static StringTokenizer st; private static BufferedReader br; private static PrintWriter out; private static String next() { while (st == null || !st.hasMoreElements()) { String s; try { s = br.readLine(); } catch (IOException e) { return null; } st = new StringTokenizer(s); } return st.nextToken(); } private static int nextInt() { return Integer.parseInt(next()); } private static long nextLong() { return Long.parseLong(next()); } public static void main(String[] args) { run(); } }
O(n^2)
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Classify the following Java code's worst-case time complexity according to its relationship to the input size n. </TASK> <CODE> import java.util.*; import java.io.*; public class P911d { private static void solve() { int n = nextInt(); int[] a = new int[n]; for (int i = 0; i < n; i++) { a[i] = nextInt(); } int cnt = 0; for (int i = 0; i < n; i++) { for (int j = i + 1; j < n; j++) { if (a[i] > a[j]) { cnt++; } } } cnt %= 2; int m = nextInt(); for (int i = 0; i < m; i++) { int l = nextInt(); int r = nextInt(); int size = r - l + 1; long sum = ((long)size * (size - 1)) / 2; sum %= 2; cnt += sum; cnt %= 2; System.out.println(cnt == 0 ? "even" : "odd"); } } private static void run() { br = new BufferedReader(new InputStreamReader(System.in)); out = new PrintWriter(System.out); solve(); out.close(); } private static StringTokenizer st; private static BufferedReader br; private static PrintWriter out; private static String next() { while (st == null || !st.hasMoreElements()) { String s; try { s = br.readLine(); } catch (IOException e) { return null; } st = new StringTokenizer(s); } return st.nextToken(); } private static int nextInt() { return Integer.parseInt(next()); } private static long nextLong() { return Long.parseLong(next()); } public static void main(String[] args) { run(); } } </CODE> <EVALUATION_RUBRIC> - O(n^2): The running time increases with the square of the input size n. - O(n^3): The running time increases with the cube of the input size n. - O(nlog(n)): The running time increases with the product of n and logarithm of n. - non-polynomial: The running time increases non-polynomially with input size n, typically exponentially. - O(1): The running time does not change regardless of the input size n. - O(n): The running time grows linearly with the input size n. - O(log(n)): The running time increases with the logarithm of the input size n. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Determine the worst-case time complexity category of a given Java code based on input size n. </TASK> <CODE> import java.util.*; import java.io.*; public class P911d { private static void solve() { int n = nextInt(); int[] a = new int[n]; for (int i = 0; i < n; i++) { a[i] = nextInt(); } int cnt = 0; for (int i = 0; i < n; i++) { for (int j = i + 1; j < n; j++) { if (a[i] > a[j]) { cnt++; } } } cnt %= 2; int m = nextInt(); for (int i = 0; i < m; i++) { int l = nextInt(); int r = nextInt(); int size = r - l + 1; long sum = ((long)size * (size - 1)) / 2; sum %= 2; cnt += sum; cnt %= 2; System.out.println(cnt == 0 ? "even" : "odd"); } } private static void run() { br = new BufferedReader(new InputStreamReader(System.in)); out = new PrintWriter(System.out); solve(); out.close(); } private static StringTokenizer st; private static BufferedReader br; private static PrintWriter out; private static String next() { while (st == null || !st.hasMoreElements()) { String s; try { s = br.readLine(); } catch (IOException e) { return null; } st = new StringTokenizer(s); } return st.nextToken(); } private static int nextInt() { return Integer.parseInt(next()); } private static long nextLong() { return Long.parseLong(next()); } public static void main(String[] args) { run(); } } </CODE> <EVALUATION_RUBRIC> - O(n): The time complexity increases proportionally to the input size n in a linear manner. - others: The time complexity does not fit any of the above categories or cannot be clearly classified. - non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially. - O(n^2): The time complexity grows proportionally to the square of the input size. - O(1): The time complexity is constant to the input size n. - O(n^3): The time complexity scales proportionally to the cube of the input size. - O(nlog(n)): The time complexity combines linear and logarithmic growth factors. - O(log(n)): The time complexity increases logarithmically in relation to the input size. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
730
2,354
1,873
import java.math.BigInteger; import java.util.Scanner; public class d { public static void main(String[] args) { Scanner in = new Scanner(System.in); int N = in.nextInt(); int[] arr = new int[N]; for(int n=0;n<N;n++){ arr[n] = in.nextInt(); } Wavelet waveyMcWaveFace = new Wavelet(arr); BigInteger bigSum = BigInteger.ZERO; for(int n=0;n<N;n++){ // calculate the amount added for all j = n all at once // it's a[j] - a[i] // step one // positive part long amtPlus = arr[n] * (long)(waveyMcWaveFace.numValsBtwn(1, arr[n] - 2, 0, n) + waveyMcWaveFace.numValsBtwn(arr[n] + 2, 2147483647, 0, n)); // step two // negative part long amtMinus = waveyMcWaveFace.sumOfValsBtwn(1, arr[n] - 2, 0, n) + waveyMcWaveFace.sumOfValsBtwn(arr[n] + 2, 2147483647, 0, n); // System.out.println(amtPlus+" "+amtMinus); bigSum = bigSum.add(new BigInteger(""+(amtPlus - amtMinus))); } System.out.println(bigSum); } static class Wavelet{ int l = 2147483647, h = -2147483648; int[] arr, ldex, hdex; long[] sum; Wavelet low = null, high = null; Wavelet(int[] arr){ this.arr = arr; for(int i : arr){ l = Math.min(l, i); h = Math.max(h, i); } ldex = new int[arr.length + 1]; hdex = new int[arr.length + 1]; sum = new long[arr.length + 1]; int mid = l + (h - l) / 2; for(int n = 0; n < arr.length; n++){ sum[n+1] = sum[n] + arr[n]; if(arr[n] > mid){ ldex[n+1] = ldex[n]; hdex[n+1] = hdex[n] + 1; } else{ ldex[n+1] = ldex[n] + 1; hdex[n+1] = hdex[n]; } } if(l == h) return; int[] larr = new int[ldex[arr.length]]; int[] harr = new int[hdex[arr.length]]; for(int n=0;n<arr.length;n++){ if(hdex[n] == hdex[n+1]){ larr[ldex[n]] = arr[n]; } else{ harr[hdex[n]] = arr[n]; } } low = new Wavelet(larr); high = new Wavelet(harr); } // range [ll, rr) int kthLowest(int k, int ll, int rr){ if(l == h){ return arr[ll + k-1]; } if(ldex[rr] - ldex[ll] >= k){ return low.kthLowest(k, ldex[ll], ldex[rr]); } return high.kthLowest(k - ldex[rr] + ldex[ll], hdex[ll], hdex[rr]); } // number of values in between [lo, hi] in range [ll, rr) int numValsBtwn(int lo, int hi, int ll, int rr){ if(hi < lo) return 0; if(lo <= l && h <= hi){ return rr - ll; } if(l == h) return 0; if(hi < high.l){ return low.numValsBtwn(lo, hi, ldex[ll], ldex[rr]); } if(low.h < lo){ return high.numValsBtwn(lo, hi, hdex[ll], hdex[rr]); } return low.numValsBtwn(lo, hi, ldex[ll], ldex[rr]) + high.numValsBtwn(lo, hi, hdex[ll], hdex[rr]); } // sum of values between [lo, hi] in range [ll, rr) long sumOfValsBtwn(int lo, int hi, int ll, int rr){ if(lo <= l && h <= hi){ return sum[rr] - sum[ll]; } if(l == h) return 0; if(hi < high.l){ return low.sumOfValsBtwn(lo, hi, ldex[ll], ldex[rr]); } if(low.h < lo){ return high.sumOfValsBtwn(lo, hi, hdex[ll], hdex[rr]); } return low.sumOfValsBtwn(lo, hi, ldex[ll], ldex[rr]) + high.sumOfValsBtwn(lo, hi, hdex[ll], hdex[rr]); } } }
O(nlog(n))
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Classify the following Java code's worst-case time complexity according to its relationship to the input size n. </TASK> <CODE> import java.math.BigInteger; import java.util.Scanner; public class d { public static void main(String[] args) { Scanner in = new Scanner(System.in); int N = in.nextInt(); int[] arr = new int[N]; for(int n=0;n<N;n++){ arr[n] = in.nextInt(); } Wavelet waveyMcWaveFace = new Wavelet(arr); BigInteger bigSum = BigInteger.ZERO; for(int n=0;n<N;n++){ // calculate the amount added for all j = n all at once // it's a[j] - a[i] // step one // positive part long amtPlus = arr[n] * (long)(waveyMcWaveFace.numValsBtwn(1, arr[n] - 2, 0, n) + waveyMcWaveFace.numValsBtwn(arr[n] + 2, 2147483647, 0, n)); // step two // negative part long amtMinus = waveyMcWaveFace.sumOfValsBtwn(1, arr[n] - 2, 0, n) + waveyMcWaveFace.sumOfValsBtwn(arr[n] + 2, 2147483647, 0, n); // System.out.println(amtPlus+" "+amtMinus); bigSum = bigSum.add(new BigInteger(""+(amtPlus - amtMinus))); } System.out.println(bigSum); } static class Wavelet{ int l = 2147483647, h = -2147483648; int[] arr, ldex, hdex; long[] sum; Wavelet low = null, high = null; Wavelet(int[] arr){ this.arr = arr; for(int i : arr){ l = Math.min(l, i); h = Math.max(h, i); } ldex = new int[arr.length + 1]; hdex = new int[arr.length + 1]; sum = new long[arr.length + 1]; int mid = l + (h - l) / 2; for(int n = 0; n < arr.length; n++){ sum[n+1] = sum[n] + arr[n]; if(arr[n] > mid){ ldex[n+1] = ldex[n]; hdex[n+1] = hdex[n] + 1; } else{ ldex[n+1] = ldex[n] + 1; hdex[n+1] = hdex[n]; } } if(l == h) return; int[] larr = new int[ldex[arr.length]]; int[] harr = new int[hdex[arr.length]]; for(int n=0;n<arr.length;n++){ if(hdex[n] == hdex[n+1]){ larr[ldex[n]] = arr[n]; } else{ harr[hdex[n]] = arr[n]; } } low = new Wavelet(larr); high = new Wavelet(harr); } // range [ll, rr) int kthLowest(int k, int ll, int rr){ if(l == h){ return arr[ll + k-1]; } if(ldex[rr] - ldex[ll] >= k){ return low.kthLowest(k, ldex[ll], ldex[rr]); } return high.kthLowest(k - ldex[rr] + ldex[ll], hdex[ll], hdex[rr]); } // number of values in between [lo, hi] in range [ll, rr) int numValsBtwn(int lo, int hi, int ll, int rr){ if(hi < lo) return 0; if(lo <= l && h <= hi){ return rr - ll; } if(l == h) return 0; if(hi < high.l){ return low.numValsBtwn(lo, hi, ldex[ll], ldex[rr]); } if(low.h < lo){ return high.numValsBtwn(lo, hi, hdex[ll], hdex[rr]); } return low.numValsBtwn(lo, hi, ldex[ll], ldex[rr]) + high.numValsBtwn(lo, hi, hdex[ll], hdex[rr]); } // sum of values between [lo, hi] in range [ll, rr) long sumOfValsBtwn(int lo, int hi, int ll, int rr){ if(lo <= l && h <= hi){ return sum[rr] - sum[ll]; } if(l == h) return 0; if(hi < high.l){ return low.sumOfValsBtwn(lo, hi, ldex[ll], ldex[rr]); } if(low.h < lo){ return high.sumOfValsBtwn(lo, hi, hdex[ll], hdex[rr]); } return low.sumOfValsBtwn(lo, hi, ldex[ll], ldex[rr]) + high.sumOfValsBtwn(lo, hi, hdex[ll], hdex[rr]); } } } </CODE> <EVALUATION_RUBRIC> - O(n^3): The running time increases with the cube of the input size n. - non-polynomial: The running time increases non-polynomially with input size n, typically exponentially. - O(nlog(n)): The running time increases with the product of n and logarithm of n. - O(n^2): The running time increases with the square of the input size n. - O(log(n)): The running time increases with the logarithm of the input size n. - O(1): The running time does not change regardless of the input size n. - O(n): The running time grows linearly with the input size n. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Classify the following Java code's worst-case time complexity according to its relationship to the input size n. </TASK> <CODE> import java.math.BigInteger; import java.util.Scanner; public class d { public static void main(String[] args) { Scanner in = new Scanner(System.in); int N = in.nextInt(); int[] arr = new int[N]; for(int n=0;n<N;n++){ arr[n] = in.nextInt(); } Wavelet waveyMcWaveFace = new Wavelet(arr); BigInteger bigSum = BigInteger.ZERO; for(int n=0;n<N;n++){ // calculate the amount added for all j = n all at once // it's a[j] - a[i] // step one // positive part long amtPlus = arr[n] * (long)(waveyMcWaveFace.numValsBtwn(1, arr[n] - 2, 0, n) + waveyMcWaveFace.numValsBtwn(arr[n] + 2, 2147483647, 0, n)); // step two // negative part long amtMinus = waveyMcWaveFace.sumOfValsBtwn(1, arr[n] - 2, 0, n) + waveyMcWaveFace.sumOfValsBtwn(arr[n] + 2, 2147483647, 0, n); // System.out.println(amtPlus+" "+amtMinus); bigSum = bigSum.add(new BigInteger(""+(amtPlus - amtMinus))); } System.out.println(bigSum); } static class Wavelet{ int l = 2147483647, h = -2147483648; int[] arr, ldex, hdex; long[] sum; Wavelet low = null, high = null; Wavelet(int[] arr){ this.arr = arr; for(int i : arr){ l = Math.min(l, i); h = Math.max(h, i); } ldex = new int[arr.length + 1]; hdex = new int[arr.length + 1]; sum = new long[arr.length + 1]; int mid = l + (h - l) / 2; for(int n = 0; n < arr.length; n++){ sum[n+1] = sum[n] + arr[n]; if(arr[n] > mid){ ldex[n+1] = ldex[n]; hdex[n+1] = hdex[n] + 1; } else{ ldex[n+1] = ldex[n] + 1; hdex[n+1] = hdex[n]; } } if(l == h) return; int[] larr = new int[ldex[arr.length]]; int[] harr = new int[hdex[arr.length]]; for(int n=0;n<arr.length;n++){ if(hdex[n] == hdex[n+1]){ larr[ldex[n]] = arr[n]; } else{ harr[hdex[n]] = arr[n]; } } low = new Wavelet(larr); high = new Wavelet(harr); } // range [ll, rr) int kthLowest(int k, int ll, int rr){ if(l == h){ return arr[ll + k-1]; } if(ldex[rr] - ldex[ll] >= k){ return low.kthLowest(k, ldex[ll], ldex[rr]); } return high.kthLowest(k - ldex[rr] + ldex[ll], hdex[ll], hdex[rr]); } // number of values in between [lo, hi] in range [ll, rr) int numValsBtwn(int lo, int hi, int ll, int rr){ if(hi < lo) return 0; if(lo <= l && h <= hi){ return rr - ll; } if(l == h) return 0; if(hi < high.l){ return low.numValsBtwn(lo, hi, ldex[ll], ldex[rr]); } if(low.h < lo){ return high.numValsBtwn(lo, hi, hdex[ll], hdex[rr]); } return low.numValsBtwn(lo, hi, ldex[ll], ldex[rr]) + high.numValsBtwn(lo, hi, hdex[ll], hdex[rr]); } // sum of values between [lo, hi] in range [ll, rr) long sumOfValsBtwn(int lo, int hi, int ll, int rr){ if(lo <= l && h <= hi){ return sum[rr] - sum[ll]; } if(l == h) return 0; if(hi < high.l){ return low.sumOfValsBtwn(lo, hi, ldex[ll], ldex[rr]); } if(low.h < lo){ return high.sumOfValsBtwn(lo, hi, hdex[ll], hdex[rr]); } return low.sumOfValsBtwn(lo, hi, ldex[ll], ldex[rr]) + high.sumOfValsBtwn(lo, hi, hdex[ll], hdex[rr]); } } } </CODE> <EVALUATION_RUBRIC> - O(1): The running time does not change regardless of the input size n. - O(nlog(n)): The running time increases with the product of n and logarithm of n. - others: The code does not clearly correspond to the listed classes or has an unclassified time complexity. - O(n^3): The running time increases with the cube of the input size n. - O(n^2): The running time increases with the square of the input size n. - O(n): The running time grows linearly with the input size n. - O(log(n)): The running time increases with the logarithm of the input size n. - non-polynomial: The running time increases non-polynomially with input size n, typically exponentially. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
1,561
1,869
956
import java.io.*; import java.util.*; public class Main { static class FastScanner { private BufferedReader bufferedReader; private StringTokenizer stringTokenizer; public FastScanner(InputStream inputStream) { bufferedReader = new BufferedReader(new InputStreamReader(inputStream)); } public String next() { while (stringTokenizer == null || !stringTokenizer.hasMoreTokens()) { try { stringTokenizer = new StringTokenizer(bufferedReader.readLine()); } catch (IOException ignored) { } } return stringTokenizer.nextToken(); } public int nextInt() { return Integer.parseInt(next()); } public long nextLong() { return Long.parseLong(next()); } public double nextDouble() { return Double.parseDouble(next()); } } static class Node implements Comparable { Node left; Node right; private int value; Node(Node left, Node right, int value) { this.left = left; this.right = right; this.value = value; } @Override public int compareTo(Object o) { return Integer.compare(this.value, ((Node) o).value); } } private static int fib(int n, int m) { if (n < 2) return n; int a = 0; int b = 1; for (int i = 0; i < n - 2; i++) { int c = (a + b) % m; a = b; b = c; } return (a + b) % m; } static long gcd(long a, long b) { if (b == 0) return a; return gcd(b, a % b); } static long lcm(long a, long b) { return Math.abs(a * b) / gcd(a, b); } static class DSU { private int[] p; private int[] r; DSU(int n) { p = new int[n]; r = new int[n]; Arrays.fill(p, -1); Arrays.fill(r, 0); } int find(int x) { if (p[x] < 0) { return x; } return p[x] = find(p[x]); } void union(int a, int b) { a = find(a); b = find(b); if (a == b) return; if (r[a] < r[b]) { p[a] = b; } else { p[b] = a; } if (r[a] == r[b]) { r[a]++; } } } private static boolean isPrime(long n) { for (int i = 2; i < n; i++) { if (n % i == 0) return false; } return true; } private static double med(Integer[] a) { Arrays.sort(a); if (a.length % 2 == 0) { int r = a.length / 2; int l = r - 1; double s = a[l] + a[r]; return s / 2.0; } int m = a.length / 2; return a[m]; } static Map<Integer, ArrayList<Integer>> g; static Map<Integer, Integer> color; static void dfs(int v, int c) { color.put(v, c); for (int i = 0; i < g.get(v).size(); i++) { int u = g.get(v).get(i); if (!color.containsKey(u)) { dfs(u, c); } } } static void reverse(Integer[] a) { Collections.reverse(Arrays.asList(a)); } static boolean next(Integer[] a) { int i = a.length - 1; while (a[i] == 0) i--; int c = 0; while (i >= 0 && a[i] == 1) { c++; i--; } if (i < 0) return false; a[i] = 1; for (int j = i + 1; j < a.length; j++) { a[j] = 0; } c--; for (int j = 0; j < c; j++) { a[a.length - 1 - j] = 1; } return true; } private static int bin(Integer[] a, int l, int r, int x) { if (l >= r) return l; int m = (l + r) / 2; if (a[m] > x) { return bin(a, l, m, x); } else if (a[m] < x || (m < a.length - 1 && a[m + 1] == x)) { return bin(a, m + 1, r, x); } return m + 1; } private static class SegmentTree { private long[] d; private long[] a; SegmentTree(int n) { a = new long[n]; d = new long[5 * n]; } void update(int v, int l, int r, int pos, long val) { if (l == r) { d[v] += val; a[l] += val; } else { int mid = (l + r) / 2; if (pos <= mid) { update(v * 2, l, mid, pos, val); } else { update(v * 2 + 1, mid + 1, r, pos, val); } d[v] = d[v * 2] + d[v * 2 + 1]; } } int find(int v, int l, int r, long w) { if (v >= d.length) return -1; int mid = (l + r) / 2; if (d[v] <= w) return r; long o = w - d[v * 2]; if (mid + 1 < a.length && o >= a[mid + 1]) { return find(v * 2 + 1, mid + 1, r, o); } if (w >= a[l]) return find(v * 2, l, mid, w); return -1; } int iterFind(long w) { if (a[0] > w) return -1; int l = 0, r = a.length - 1; int v = 1; while (d[v] > w) { int mid = (l + r) / 2; long o = w - d[v * 2]; if (mid + 1 < a.length && o >= a[mid + 1]) { l = mid + 1; v = v * 2 + 1; w = o; } else { v = v * 2; r = mid; } } return r; } int get(int v, int vl, int vr, long w) { // cout << t[v] << " "<< v << " " << vl << " " << vr<<" " << w << endl; if (d[v] < w) return -1; if (vl > vr) return -1; if (vl == vr) { if (d[v] > w) return vl - 1; else return -1; } if (d[v * 2] > w) return get(v * 2, vl, (vl + vr) / 2, w); else return get(v * 2 + 1, (vl + vr + 2) / 2, vr, w - d[v * 2]); } } private static class FenwickTree { long[] t; FenwickTree(int n) { t = new long[n]; } long sum(int r) { long result = 0; for (; r >= 0; r = (r & (r + 1)) - 1) result += t[r]; return result; } void inc(int i, long delta) { int n = t.length; for (; i < n; i = (i | (i + 1))) t[i] += delta; } } void insert(List<Long> list, Long element) { int index = Collections.binarySearch(list, element); if (index < 0) { index = -index - 1; } list.add(index, element); } public static void main(String[] args) { FastScanner scanner = new FastScanner(System.in); PrintWriter printer = new PrintWriter(System.out); long n = scanner.nextLong(); long k = scanner.nextLong(); long l = 1; long r = n; while(true){ long m = (l + r) / 2; long x = (m * (m + 1)) / 2; x -= n - m; if (x == k) { printer.println(n - m); break; } else if (x < k) { l = m + 1; } else { r = m - 1; } } printer.flush(); printer.close(); } } /* 4 2 1 1 4 0 2 3 5 3 1 2 4 0 4 5 0 3 5 4 3 1 2 3 1 1 2 0 1 3 NO */
O(log(n))
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Determine the worst-case time complexity category of a given Java code based on input size n. </TASK> <CODE> import java.io.*; import java.util.*; public class Main { static class FastScanner { private BufferedReader bufferedReader; private StringTokenizer stringTokenizer; public FastScanner(InputStream inputStream) { bufferedReader = new BufferedReader(new InputStreamReader(inputStream)); } public String next() { while (stringTokenizer == null || !stringTokenizer.hasMoreTokens()) { try { stringTokenizer = new StringTokenizer(bufferedReader.readLine()); } catch (IOException ignored) { } } return stringTokenizer.nextToken(); } public int nextInt() { return Integer.parseInt(next()); } public long nextLong() { return Long.parseLong(next()); } public double nextDouble() { return Double.parseDouble(next()); } } static class Node implements Comparable { Node left; Node right; private int value; Node(Node left, Node right, int value) { this.left = left; this.right = right; this.value = value; } @Override public int compareTo(Object o) { return Integer.compare(this.value, ((Node) o).value); } } private static int fib(int n, int m) { if (n < 2) return n; int a = 0; int b = 1; for (int i = 0; i < n - 2; i++) { int c = (a + b) % m; a = b; b = c; } return (a + b) % m; } static long gcd(long a, long b) { if (b == 0) return a; return gcd(b, a % b); } static long lcm(long a, long b) { return Math.abs(a * b) / gcd(a, b); } static class DSU { private int[] p; private int[] r; DSU(int n) { p = new int[n]; r = new int[n]; Arrays.fill(p, -1); Arrays.fill(r, 0); } int find(int x) { if (p[x] < 0) { return x; } return p[x] = find(p[x]); } void union(int a, int b) { a = find(a); b = find(b); if (a == b) return; if (r[a] < r[b]) { p[a] = b; } else { p[b] = a; } if (r[a] == r[b]) { r[a]++; } } } private static boolean isPrime(long n) { for (int i = 2; i < n; i++) { if (n % i == 0) return false; } return true; } private static double med(Integer[] a) { Arrays.sort(a); if (a.length % 2 == 0) { int r = a.length / 2; int l = r - 1; double s = a[l] + a[r]; return s / 2.0; } int m = a.length / 2; return a[m]; } static Map<Integer, ArrayList<Integer>> g; static Map<Integer, Integer> color; static void dfs(int v, int c) { color.put(v, c); for (int i = 0; i < g.get(v).size(); i++) { int u = g.get(v).get(i); if (!color.containsKey(u)) { dfs(u, c); } } } static void reverse(Integer[] a) { Collections.reverse(Arrays.asList(a)); } static boolean next(Integer[] a) { int i = a.length - 1; while (a[i] == 0) i--; int c = 0; while (i >= 0 && a[i] == 1) { c++; i--; } if (i < 0) return false; a[i] = 1; for (int j = i + 1; j < a.length; j++) { a[j] = 0; } c--; for (int j = 0; j < c; j++) { a[a.length - 1 - j] = 1; } return true; } private static int bin(Integer[] a, int l, int r, int x) { if (l >= r) return l; int m = (l + r) / 2; if (a[m] > x) { return bin(a, l, m, x); } else if (a[m] < x || (m < a.length - 1 && a[m + 1] == x)) { return bin(a, m + 1, r, x); } return m + 1; } private static class SegmentTree { private long[] d; private long[] a; SegmentTree(int n) { a = new long[n]; d = new long[5 * n]; } void update(int v, int l, int r, int pos, long val) { if (l == r) { d[v] += val; a[l] += val; } else { int mid = (l + r) / 2; if (pos <= mid) { update(v * 2, l, mid, pos, val); } else { update(v * 2 + 1, mid + 1, r, pos, val); } d[v] = d[v * 2] + d[v * 2 + 1]; } } int find(int v, int l, int r, long w) { if (v >= d.length) return -1; int mid = (l + r) / 2; if (d[v] <= w) return r; long o = w - d[v * 2]; if (mid + 1 < a.length && o >= a[mid + 1]) { return find(v * 2 + 1, mid + 1, r, o); } if (w >= a[l]) return find(v * 2, l, mid, w); return -1; } int iterFind(long w) { if (a[0] > w) return -1; int l = 0, r = a.length - 1; int v = 1; while (d[v] > w) { int mid = (l + r) / 2; long o = w - d[v * 2]; if (mid + 1 < a.length && o >= a[mid + 1]) { l = mid + 1; v = v * 2 + 1; w = o; } else { v = v * 2; r = mid; } } return r; } int get(int v, int vl, int vr, long w) { // cout << t[v] << " "<< v << " " << vl << " " << vr<<" " << w << endl; if (d[v] < w) return -1; if (vl > vr) return -1; if (vl == vr) { if (d[v] > w) return vl - 1; else return -1; } if (d[v * 2] > w) return get(v * 2, vl, (vl + vr) / 2, w); else return get(v * 2 + 1, (vl + vr + 2) / 2, vr, w - d[v * 2]); } } private static class FenwickTree { long[] t; FenwickTree(int n) { t = new long[n]; } long sum(int r) { long result = 0; for (; r >= 0; r = (r & (r + 1)) - 1) result += t[r]; return result; } void inc(int i, long delta) { int n = t.length; for (; i < n; i = (i | (i + 1))) t[i] += delta; } } void insert(List<Long> list, Long element) { int index = Collections.binarySearch(list, element); if (index < 0) { index = -index - 1; } list.add(index, element); } public static void main(String[] args) { FastScanner scanner = new FastScanner(System.in); PrintWriter printer = new PrintWriter(System.out); long n = scanner.nextLong(); long k = scanner.nextLong(); long l = 1; long r = n; while(true){ long m = (l + r) / 2; long x = (m * (m + 1)) / 2; x -= n - m; if (x == k) { printer.println(n - m); break; } else if (x < k) { l = m + 1; } else { r = m - 1; } } printer.flush(); printer.close(); } } /* 4 2 1 1 4 0 2 3 5 3 1 2 4 0 4 5 0 3 5 4 3 1 2 3 1 1 2 0 1 3 NO */ </CODE> <EVALUATION_RUBRIC> - O(nlog(n)): The time complexity combines linear and logarithmic growth factors. - O(n^3): The time complexity scales proportionally to the cube of the input size. - O(n^2): The time complexity grows proportionally to the square of the input size. - non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially. - O(1): The time complexity is constant to the input size n. - O(n): The time complexity increases proportionally to the input size n in a linear manner. - O(log(n)): The time complexity increases logarithmically in relation to the input size. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Determine the worst-case time complexity category of a given Java code based on input size n. </TASK> <CODE> import java.io.*; import java.util.*; public class Main { static class FastScanner { private BufferedReader bufferedReader; private StringTokenizer stringTokenizer; public FastScanner(InputStream inputStream) { bufferedReader = new BufferedReader(new InputStreamReader(inputStream)); } public String next() { while (stringTokenizer == null || !stringTokenizer.hasMoreTokens()) { try { stringTokenizer = new StringTokenizer(bufferedReader.readLine()); } catch (IOException ignored) { } } return stringTokenizer.nextToken(); } public int nextInt() { return Integer.parseInt(next()); } public long nextLong() { return Long.parseLong(next()); } public double nextDouble() { return Double.parseDouble(next()); } } static class Node implements Comparable { Node left; Node right; private int value; Node(Node left, Node right, int value) { this.left = left; this.right = right; this.value = value; } @Override public int compareTo(Object o) { return Integer.compare(this.value, ((Node) o).value); } } private static int fib(int n, int m) { if (n < 2) return n; int a = 0; int b = 1; for (int i = 0; i < n - 2; i++) { int c = (a + b) % m; a = b; b = c; } return (a + b) % m; } static long gcd(long a, long b) { if (b == 0) return a; return gcd(b, a % b); } static long lcm(long a, long b) { return Math.abs(a * b) / gcd(a, b); } static class DSU { private int[] p; private int[] r; DSU(int n) { p = new int[n]; r = new int[n]; Arrays.fill(p, -1); Arrays.fill(r, 0); } int find(int x) { if (p[x] < 0) { return x; } return p[x] = find(p[x]); } void union(int a, int b) { a = find(a); b = find(b); if (a == b) return; if (r[a] < r[b]) { p[a] = b; } else { p[b] = a; } if (r[a] == r[b]) { r[a]++; } } } private static boolean isPrime(long n) { for (int i = 2; i < n; i++) { if (n % i == 0) return false; } return true; } private static double med(Integer[] a) { Arrays.sort(a); if (a.length % 2 == 0) { int r = a.length / 2; int l = r - 1; double s = a[l] + a[r]; return s / 2.0; } int m = a.length / 2; return a[m]; } static Map<Integer, ArrayList<Integer>> g; static Map<Integer, Integer> color; static void dfs(int v, int c) { color.put(v, c); for (int i = 0; i < g.get(v).size(); i++) { int u = g.get(v).get(i); if (!color.containsKey(u)) { dfs(u, c); } } } static void reverse(Integer[] a) { Collections.reverse(Arrays.asList(a)); } static boolean next(Integer[] a) { int i = a.length - 1; while (a[i] == 0) i--; int c = 0; while (i >= 0 && a[i] == 1) { c++; i--; } if (i < 0) return false; a[i] = 1; for (int j = i + 1; j < a.length; j++) { a[j] = 0; } c--; for (int j = 0; j < c; j++) { a[a.length - 1 - j] = 1; } return true; } private static int bin(Integer[] a, int l, int r, int x) { if (l >= r) return l; int m = (l + r) / 2; if (a[m] > x) { return bin(a, l, m, x); } else if (a[m] < x || (m < a.length - 1 && a[m + 1] == x)) { return bin(a, m + 1, r, x); } return m + 1; } private static class SegmentTree { private long[] d; private long[] a; SegmentTree(int n) { a = new long[n]; d = new long[5 * n]; } void update(int v, int l, int r, int pos, long val) { if (l == r) { d[v] += val; a[l] += val; } else { int mid = (l + r) / 2; if (pos <= mid) { update(v * 2, l, mid, pos, val); } else { update(v * 2 + 1, mid + 1, r, pos, val); } d[v] = d[v * 2] + d[v * 2 + 1]; } } int find(int v, int l, int r, long w) { if (v >= d.length) return -1; int mid = (l + r) / 2; if (d[v] <= w) return r; long o = w - d[v * 2]; if (mid + 1 < a.length && o >= a[mid + 1]) { return find(v * 2 + 1, mid + 1, r, o); } if (w >= a[l]) return find(v * 2, l, mid, w); return -1; } int iterFind(long w) { if (a[0] > w) return -1; int l = 0, r = a.length - 1; int v = 1; while (d[v] > w) { int mid = (l + r) / 2; long o = w - d[v * 2]; if (mid + 1 < a.length && o >= a[mid + 1]) { l = mid + 1; v = v * 2 + 1; w = o; } else { v = v * 2; r = mid; } } return r; } int get(int v, int vl, int vr, long w) { // cout << t[v] << " "<< v << " " << vl << " " << vr<<" " << w << endl; if (d[v] < w) return -1; if (vl > vr) return -1; if (vl == vr) { if (d[v] > w) return vl - 1; else return -1; } if (d[v * 2] > w) return get(v * 2, vl, (vl + vr) / 2, w); else return get(v * 2 + 1, (vl + vr + 2) / 2, vr, w - d[v * 2]); } } private static class FenwickTree { long[] t; FenwickTree(int n) { t = new long[n]; } long sum(int r) { long result = 0; for (; r >= 0; r = (r & (r + 1)) - 1) result += t[r]; return result; } void inc(int i, long delta) { int n = t.length; for (; i < n; i = (i | (i + 1))) t[i] += delta; } } void insert(List<Long> list, Long element) { int index = Collections.binarySearch(list, element); if (index < 0) { index = -index - 1; } list.add(index, element); } public static void main(String[] args) { FastScanner scanner = new FastScanner(System.in); PrintWriter printer = new PrintWriter(System.out); long n = scanner.nextLong(); long k = scanner.nextLong(); long l = 1; long r = n; while(true){ long m = (l + r) / 2; long x = (m * (m + 1)) / 2; x -= n - m; if (x == k) { printer.println(n - m); break; } else if (x < k) { l = m + 1; } else { r = m - 1; } } printer.flush(); printer.close(); } } /* 4 2 1 1 4 0 2 3 5 3 1 2 4 0 4 5 0 3 5 4 3 1 2 3 1 1 2 0 1 3 NO */ </CODE> <EVALUATION_RUBRIC> - O(n^3): The time complexity scales proportionally to the cube of the input size. - O(1): The time complexity is constant to the input size n. - O(nlog(n)): The time complexity combines linear and logarithmic growth factors. - O(n): The time complexity increases proportionally to the input size n in a linear manner. - others: The time complexity does not fit any of the above categories or cannot be clearly classified. - O(log(n)): The time complexity increases logarithmically in relation to the input size. - O(n^2): The time complexity grows proportionally to the square of the input size. - non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
2,436
955
821
import java.io.IOException; import java.io.InputStream; import java.io.PrintWriter; import java.math.BigInteger; import java.util.InputMismatchException; /** * @author Egor Kulikov ([email protected]) * Created on 14.03.2010 */ public class TaskA implements Runnable { private InputReader in; private PrintWriter out; public static void main(String[] args) { new Thread(new TaskA()).start(); // new Template().run(); } public TaskA() { // String id = getClass().getName().toLowerCase(); // try { // System.setIn(new FileInputStream(id + ".in")); // System.setOut(new PrintStream(new FileOutputStream(id + ".out"))); // System.setIn(new FileInputStream("input.txt")); // System.setOut(new PrintStream(new FileOutputStream("output.txt"))); // } catch (FileNotFoundException e) { // throw new RuntimeException(); // } in = new InputReader(System.in); out = new PrintWriter(System.out); } public void run() { // int numTests = in.readInt(); // for (int testNumber = 0; testNumber < numTests; testNumber++) { // } int n = in.readInt(); int k = in.readInt(); int last = 2; for (int i = 3; i + last < n; i++) { boolean good = true; for (int j = 2; j * j <= i; j++) { if (i % j == 0) { good = false; break; } } if (good) { int p = i + last + 1; for (int j = 2; j * j <= p; j++) { if (p % j == 0) { good = false; break; } } if (good) k--; last = i; } } if (k <= 0) out.println("YES"); else out.println("NO"); out.close(); } private static class InputReader { private InputStream stream; private byte[] buf = new byte[1000]; private int curChar, numChars; public InputReader(InputStream stream) { this.stream = stream; } private int read() { if (numChars == -1) throw new InputMismatchException(); if (curChar >= numChars) { curChar = 0; try { numChars = stream.read(buf); } catch (IOException e) { throw new InputMismatchException(); } if (numChars <= 0) return -1; } return buf[curChar++]; } public int readInt() { int c = read(); while (isSpaceChar(c)) c = read(); int sgn = 1; if (c == '-') { sgn = -1; c = read(); } int res = 0; do { if (c < '0' || c > '9') throw new InputMismatchException(); res *= 10; res += c - '0'; c = read(); } while (!isSpaceChar(c)); return res * sgn; } public long readLong() { int c = read(); while (isSpaceChar(c)) c = read(); int sgn = 1; if (c == '-') { sgn = -1; c = read(); } long res = 0; do { if (c < '0' || c > '9') throw new InputMismatchException(); res *= 10; res += c - '0'; c = read(); } while (!isSpaceChar(c)); return res * sgn; } public String readString() { int c = read(); while (isSpaceChar(c)) c = read(); StringBuffer res = new StringBuffer(); do { res.appendCodePoint(c); c = read(); } while (!isSpaceChar(c)); return res.toString(); } private boolean isSpaceChar(int c) { return c == ' ' || c == '\n' || c == '\r' || c == '\t' || c == -1; } private String readLine0() { StringBuffer buf = new StringBuffer(); int c = read(); while (c != '\n' && c != -1) { buf.appendCodePoint(c); c = read(); } return buf.toString(); } public String readLine() { String s = readLine0(); while (s.trim().length() == 0) s = readLine0(); return s; } public String readLine(boolean ignoreEmptyLines) { if (ignoreEmptyLines) return readLine(); else return readLine0(); } public BigInteger readBigInteger() { try { return new BigInteger(readString()); } catch (NumberFormatException e) { throw new InputMismatchException(); } } public char readCharacter() { int c = read(); while (isSpaceChar(c)) c = read(); return (char) c; } public double readDouble() { int c = read(); while (isSpaceChar(c)) c = read(); int sgn = 1; if (c == '-') { sgn = -1; c = read(); } double res = 0; while (!isSpaceChar(c) && c != '.') { if (c < '0' || c > '9') throw new InputMismatchException(); res *= 10; res += c - '0'; c = read(); } if (c == '.') { c = read(); double m = 1; while (!isSpaceChar(c)) { if (c < '0' || c > '9') throw new InputMismatchException(); m /= 10; res += (c - '0') * m; c = read(); } } return res * sgn; } } }
O(n)
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n. </TASK> <CODE> import java.io.IOException; import java.io.InputStream; import java.io.PrintWriter; import java.math.BigInteger; import java.util.InputMismatchException; /** * @author Egor Kulikov ([email protected]) * Created on 14.03.2010 */ public class TaskA implements Runnable { private InputReader in; private PrintWriter out; public static void main(String[] args) { new Thread(new TaskA()).start(); // new Template().run(); } public TaskA() { // String id = getClass().getName().toLowerCase(); // try { // System.setIn(new FileInputStream(id + ".in")); // System.setOut(new PrintStream(new FileOutputStream(id + ".out"))); // System.setIn(new FileInputStream("input.txt")); // System.setOut(new PrintStream(new FileOutputStream("output.txt"))); // } catch (FileNotFoundException e) { // throw new RuntimeException(); // } in = new InputReader(System.in); out = new PrintWriter(System.out); } public void run() { // int numTests = in.readInt(); // for (int testNumber = 0; testNumber < numTests; testNumber++) { // } int n = in.readInt(); int k = in.readInt(); int last = 2; for (int i = 3; i + last < n; i++) { boolean good = true; for (int j = 2; j * j <= i; j++) { if (i % j == 0) { good = false; break; } } if (good) { int p = i + last + 1; for (int j = 2; j * j <= p; j++) { if (p % j == 0) { good = false; break; } } if (good) k--; last = i; } } if (k <= 0) out.println("YES"); else out.println("NO"); out.close(); } private static class InputReader { private InputStream stream; private byte[] buf = new byte[1000]; private int curChar, numChars; public InputReader(InputStream stream) { this.stream = stream; } private int read() { if (numChars == -1) throw new InputMismatchException(); if (curChar >= numChars) { curChar = 0; try { numChars = stream.read(buf); } catch (IOException e) { throw new InputMismatchException(); } if (numChars <= 0) return -1; } return buf[curChar++]; } public int readInt() { int c = read(); while (isSpaceChar(c)) c = read(); int sgn = 1; if (c == '-') { sgn = -1; c = read(); } int res = 0; do { if (c < '0' || c > '9') throw new InputMismatchException(); res *= 10; res += c - '0'; c = read(); } while (!isSpaceChar(c)); return res * sgn; } public long readLong() { int c = read(); while (isSpaceChar(c)) c = read(); int sgn = 1; if (c == '-') { sgn = -1; c = read(); } long res = 0; do { if (c < '0' || c > '9') throw new InputMismatchException(); res *= 10; res += c - '0'; c = read(); } while (!isSpaceChar(c)); return res * sgn; } public String readString() { int c = read(); while (isSpaceChar(c)) c = read(); StringBuffer res = new StringBuffer(); do { res.appendCodePoint(c); c = read(); } while (!isSpaceChar(c)); return res.toString(); } private boolean isSpaceChar(int c) { return c == ' ' || c == '\n' || c == '\r' || c == '\t' || c == -1; } private String readLine0() { StringBuffer buf = new StringBuffer(); int c = read(); while (c != '\n' && c != -1) { buf.appendCodePoint(c); c = read(); } return buf.toString(); } public String readLine() { String s = readLine0(); while (s.trim().length() == 0) s = readLine0(); return s; } public String readLine(boolean ignoreEmptyLines) { if (ignoreEmptyLines) return readLine(); else return readLine0(); } public BigInteger readBigInteger() { try { return new BigInteger(readString()); } catch (NumberFormatException e) { throw new InputMismatchException(); } } public char readCharacter() { int c = read(); while (isSpaceChar(c)) c = read(); return (char) c; } public double readDouble() { int c = read(); while (isSpaceChar(c)) c = read(); int sgn = 1; if (c == '-') { sgn = -1; c = read(); } double res = 0; while (!isSpaceChar(c) && c != '.') { if (c < '0' || c > '9') throw new InputMismatchException(); res *= 10; res += c - '0'; c = read(); } if (c == '.') { c = read(); double m = 1; while (!isSpaceChar(c)) { if (c < '0' || c > '9') throw new InputMismatchException(); m /= 10; res += (c - '0') * m; c = read(); } } return res * sgn; } } } </CODE> <EVALUATION_RUBRIC> - non-polynomial: The running time increases non-polynomially with input size n, typically exponentially. - O(n^2): The execution time ascends in proportion to the square of the input size n. - O(n^3): The execution time ascends in proportion to the cube of the input size n. - O(log(n)): The execution time ascends in proportion to the logarithm of the input size n. - O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially. - O(1): The execution time is unaffected by the size of the input n. - O(n): The execution time ascends in a one-to-one ratio with the input size n. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Classify the following Java code's worst-case time complexity according to its relationship to the input size n. </TASK> <CODE> import java.io.IOException; import java.io.InputStream; import java.io.PrintWriter; import java.math.BigInteger; import java.util.InputMismatchException; /** * @author Egor Kulikov ([email protected]) * Created on 14.03.2010 */ public class TaskA implements Runnable { private InputReader in; private PrintWriter out; public static void main(String[] args) { new Thread(new TaskA()).start(); // new Template().run(); } public TaskA() { // String id = getClass().getName().toLowerCase(); // try { // System.setIn(new FileInputStream(id + ".in")); // System.setOut(new PrintStream(new FileOutputStream(id + ".out"))); // System.setIn(new FileInputStream("input.txt")); // System.setOut(new PrintStream(new FileOutputStream("output.txt"))); // } catch (FileNotFoundException e) { // throw new RuntimeException(); // } in = new InputReader(System.in); out = new PrintWriter(System.out); } public void run() { // int numTests = in.readInt(); // for (int testNumber = 0; testNumber < numTests; testNumber++) { // } int n = in.readInt(); int k = in.readInt(); int last = 2; for (int i = 3; i + last < n; i++) { boolean good = true; for (int j = 2; j * j <= i; j++) { if (i % j == 0) { good = false; break; } } if (good) { int p = i + last + 1; for (int j = 2; j * j <= p; j++) { if (p % j == 0) { good = false; break; } } if (good) k--; last = i; } } if (k <= 0) out.println("YES"); else out.println("NO"); out.close(); } private static class InputReader { private InputStream stream; private byte[] buf = new byte[1000]; private int curChar, numChars; public InputReader(InputStream stream) { this.stream = stream; } private int read() { if (numChars == -1) throw new InputMismatchException(); if (curChar >= numChars) { curChar = 0; try { numChars = stream.read(buf); } catch (IOException e) { throw new InputMismatchException(); } if (numChars <= 0) return -1; } return buf[curChar++]; } public int readInt() { int c = read(); while (isSpaceChar(c)) c = read(); int sgn = 1; if (c == '-') { sgn = -1; c = read(); } int res = 0; do { if (c < '0' || c > '9') throw new InputMismatchException(); res *= 10; res += c - '0'; c = read(); } while (!isSpaceChar(c)); return res * sgn; } public long readLong() { int c = read(); while (isSpaceChar(c)) c = read(); int sgn = 1; if (c == '-') { sgn = -1; c = read(); } long res = 0; do { if (c < '0' || c > '9') throw new InputMismatchException(); res *= 10; res += c - '0'; c = read(); } while (!isSpaceChar(c)); return res * sgn; } public String readString() { int c = read(); while (isSpaceChar(c)) c = read(); StringBuffer res = new StringBuffer(); do { res.appendCodePoint(c); c = read(); } while (!isSpaceChar(c)); return res.toString(); } private boolean isSpaceChar(int c) { return c == ' ' || c == '\n' || c == '\r' || c == '\t' || c == -1; } private String readLine0() { StringBuffer buf = new StringBuffer(); int c = read(); while (c != '\n' && c != -1) { buf.appendCodePoint(c); c = read(); } return buf.toString(); } public String readLine() { String s = readLine0(); while (s.trim().length() == 0) s = readLine0(); return s; } public String readLine(boolean ignoreEmptyLines) { if (ignoreEmptyLines) return readLine(); else return readLine0(); } public BigInteger readBigInteger() { try { return new BigInteger(readString()); } catch (NumberFormatException e) { throw new InputMismatchException(); } } public char readCharacter() { int c = read(); while (isSpaceChar(c)) c = read(); return (char) c; } public double readDouble() { int c = read(); while (isSpaceChar(c)) c = read(); int sgn = 1; if (c == '-') { sgn = -1; c = read(); } double res = 0; while (!isSpaceChar(c) && c != '.') { if (c < '0' || c > '9') throw new InputMismatchException(); res *= 10; res += c - '0'; c = read(); } if (c == '.') { c = read(); double m = 1; while (!isSpaceChar(c)) { if (c < '0' || c > '9') throw new InputMismatchException(); m /= 10; res += (c - '0') * m; c = read(); } } return res * sgn; } } } </CODE> <EVALUATION_RUBRIC> - O(n^2): The running time increases with the square of the input size n. - others: The code does not clearly correspond to the listed classes or has an unclassified time complexity. - O(log(n)): The running time increases with the logarithm of the input size n. - O(1): The running time does not change regardless of the input size n. - O(nlog(n)): The running time increases with the product of n and logarithm of n. - non-polynomial: The running time increases non-polynomially with input size n, typically exponentially. - O(n): The running time grows linearly with the input size n. - O(n^3): The running time increases with the cube of the input size n. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
1,733
820
1,520
import java.io.BufferedReader; import java.io.IOException; import java.io.InputStreamReader; import java.util.Arrays; import java.util.StringTokenizer; public class CoveredPointsCount { //UPSOLVE public static void main(String[] args) throws IOException { BufferedReader br = new BufferedReader(new InputStreamReader(System.in)); StringTokenizer st = new StringTokenizer(br.readLine()); int n = Integer.parseInt(st.nextToken()); long[] myArray = new long[2 * n]; for (int i = 0; i < n; i++) { StringTokenizer st1 = new StringTokenizer(br.readLine()); myArray[2 * i] = Long.parseLong(st1.nextToken()) * 2; myArray[2 * i + 1] = Long.parseLong(st1.nextToken()) * 2 + 1; } Arrays.sort(myArray); long[] ans = new long[n + 1]; int cnt = 0; for (int i = 0; i < 2 * n - 1; i++) { if (myArray[i] % 2 == 0) cnt++; else cnt--; ans[cnt] += (myArray[i + 1] + 1) / 2 - (myArray[i] + 1) / 2; } StringBuilder answer = new StringBuilder(); for (int i = 1; i < n + 1; i++) { answer.append(ans[i]); answer.append(" "); } System.out.println(answer); } }
O(nlog(n))
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n. </TASK> <CODE> import java.io.BufferedReader; import java.io.IOException; import java.io.InputStreamReader; import java.util.Arrays; import java.util.StringTokenizer; public class CoveredPointsCount { //UPSOLVE public static void main(String[] args) throws IOException { BufferedReader br = new BufferedReader(new InputStreamReader(System.in)); StringTokenizer st = new StringTokenizer(br.readLine()); int n = Integer.parseInt(st.nextToken()); long[] myArray = new long[2 * n]; for (int i = 0; i < n; i++) { StringTokenizer st1 = new StringTokenizer(br.readLine()); myArray[2 * i] = Long.parseLong(st1.nextToken()) * 2; myArray[2 * i + 1] = Long.parseLong(st1.nextToken()) * 2 + 1; } Arrays.sort(myArray); long[] ans = new long[n + 1]; int cnt = 0; for (int i = 0; i < 2 * n - 1; i++) { if (myArray[i] % 2 == 0) cnt++; else cnt--; ans[cnt] += (myArray[i + 1] + 1) / 2 - (myArray[i] + 1) / 2; } StringBuilder answer = new StringBuilder(); for (int i = 1; i < n + 1; i++) { answer.append(ans[i]); answer.append(" "); } System.out.println(answer); } } </CODE> <EVALUATION_RUBRIC> - O(log(n)): The execution time ascends in proportion to the logarithm of the input size n. - O(n): The execution time ascends in a one-to-one ratio with the input size n. - O(1): The execution time is unaffected by the size of the input n. - O(n^3): The execution time ascends in proportion to the cube of the input size n. - non-polynomial: The running time increases non-polynomially with input size n, typically exponentially. - O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially. - O(n^2): The execution time ascends in proportion to the square of the input size n. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n. </TASK> <CODE> import java.io.BufferedReader; import java.io.IOException; import java.io.InputStreamReader; import java.util.Arrays; import java.util.StringTokenizer; public class CoveredPointsCount { //UPSOLVE public static void main(String[] args) throws IOException { BufferedReader br = new BufferedReader(new InputStreamReader(System.in)); StringTokenizer st = new StringTokenizer(br.readLine()); int n = Integer.parseInt(st.nextToken()); long[] myArray = new long[2 * n]; for (int i = 0; i < n; i++) { StringTokenizer st1 = new StringTokenizer(br.readLine()); myArray[2 * i] = Long.parseLong(st1.nextToken()) * 2; myArray[2 * i + 1] = Long.parseLong(st1.nextToken()) * 2 + 1; } Arrays.sort(myArray); long[] ans = new long[n + 1]; int cnt = 0; for (int i = 0; i < 2 * n - 1; i++) { if (myArray[i] % 2 == 0) cnt++; else cnt--; ans[cnt] += (myArray[i + 1] + 1) / 2 - (myArray[i] + 1) / 2; } StringBuilder answer = new StringBuilder(); for (int i = 1; i < n + 1; i++) { answer.append(ans[i]); answer.append(" "); } System.out.println(answer); } } </CODE> <EVALUATION_RUBRIC> - O(n^2): The execution time ascends in proportion to the square of the input size n. - non-polynomial: The running time increases non-polynomially with input size n, typically exponentially. - O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially. - O(log(n)): The execution time ascends in proportion to the logarithm of the input size n. - O(n): The execution time ascends in a one-to-one ratio with the input size n. - O(n^3): The execution time ascends in proportion to the cube of the input size n. - others: The time complexity does not fit to any of the given categories or is ambiguous. - O(1): The execution time is unaffected by the size of the input n. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
682
1,518
320
import java.io.IOException; import java.io.InputStream; import java.util.InputMismatchException; import java.util.Stack; public class D527A2 { public static void main(String[] args) { FastScanner in = new FastScanner(System.in); int N = in.nextInt(); Stack<Integer> stack = new Stack<>(); for(int i = 0; i < N; i++) { int num = in.nextInt() % 2; if(stack.size() >= 1 && stack.lastElement() == num) stack.pop(); else stack.add(num); } System.out.println(stack.size() <= 1 ? "YES" : "NO"); } /** * Source: Matt Fontaine */ static class FastScanner { private InputStream stream; private byte[] buf = new byte[1024]; private int curChar; private int chars; public FastScanner(InputStream stream) { this.stream = stream; } int read() { if (chars == -1) throw new InputMismatchException(); if (curChar >= chars) { curChar = 0; try { chars = stream.read(buf); } catch (IOException e) { throw new InputMismatchException(); } if (chars <= 0) return -1; } return buf[curChar++]; } boolean isSpaceChar(int c) { return c == ' ' || c == '\n' || c == '\r' || c == '\t' || c == -1; } boolean isEndline(int c) { return c == '\n' || c == '\r' || c == -1; } public int nextInt() { return Integer.parseInt(next()); } public long nextLong() { return Long.parseLong(next()); } public double nextDouble() { return Double.parseDouble(next()); } public String next() { int c = read(); while (isSpaceChar(c)) c = read(); StringBuilder res = new StringBuilder(); do { res.appendCodePoint(c); c = read(); } while (!isSpaceChar(c)); return res.toString(); } public String nextLine() { int c = read(); while (isEndline(c)) c = read(); StringBuilder res = new StringBuilder(); do { res.appendCodePoint(c); c = read(); } while (!isEndline(c)); return res.toString(); } } } /* 5 2 1 1 2 5 outputCopy YES inputCopy 3 4 5 3 outputCopy YES inputCopy 2 10 10 outputCopy YES inputCopy 3 1 2 3 outputCopy NO 5 2 3 2 2 3 YES */
O(n)
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n. </TASK> <CODE> import java.io.IOException; import java.io.InputStream; import java.util.InputMismatchException; import java.util.Stack; public class D527A2 { public static void main(String[] args) { FastScanner in = new FastScanner(System.in); int N = in.nextInt(); Stack<Integer> stack = new Stack<>(); for(int i = 0; i < N; i++) { int num = in.nextInt() % 2; if(stack.size() >= 1 && stack.lastElement() == num) stack.pop(); else stack.add(num); } System.out.println(stack.size() <= 1 ? "YES" : "NO"); } /** * Source: Matt Fontaine */ static class FastScanner { private InputStream stream; private byte[] buf = new byte[1024]; private int curChar; private int chars; public FastScanner(InputStream stream) { this.stream = stream; } int read() { if (chars == -1) throw new InputMismatchException(); if (curChar >= chars) { curChar = 0; try { chars = stream.read(buf); } catch (IOException e) { throw new InputMismatchException(); } if (chars <= 0) return -1; } return buf[curChar++]; } boolean isSpaceChar(int c) { return c == ' ' || c == '\n' || c == '\r' || c == '\t' || c == -1; } boolean isEndline(int c) { return c == '\n' || c == '\r' || c == -1; } public int nextInt() { return Integer.parseInt(next()); } public long nextLong() { return Long.parseLong(next()); } public double nextDouble() { return Double.parseDouble(next()); } public String next() { int c = read(); while (isSpaceChar(c)) c = read(); StringBuilder res = new StringBuilder(); do { res.appendCodePoint(c); c = read(); } while (!isSpaceChar(c)); return res.toString(); } public String nextLine() { int c = read(); while (isEndline(c)) c = read(); StringBuilder res = new StringBuilder(); do { res.appendCodePoint(c); c = read(); } while (!isEndline(c)); return res.toString(); } } } /* 5 2 1 1 2 5 outputCopy YES inputCopy 3 4 5 3 outputCopy YES inputCopy 2 10 10 outputCopy YES inputCopy 3 1 2 3 outputCopy NO 5 2 3 2 2 3 YES */ </CODE> <EVALUATION_RUBRIC> - O(n): The execution time ascends in a one-to-one ratio with the input size n. - O(n^2): The execution time ascends in proportion to the square of the input size n. - non-polynomial: The running time increases non-polynomially with input size n, typically exponentially. - O(log(n)): The execution time ascends in proportion to the logarithm of the input size n. - O(1): The execution time is unaffected by the size of the input n. - O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially. - O(n^3): The execution time ascends in proportion to the cube of the input size n. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n. </TASK> <CODE> import java.io.IOException; import java.io.InputStream; import java.util.InputMismatchException; import java.util.Stack; public class D527A2 { public static void main(String[] args) { FastScanner in = new FastScanner(System.in); int N = in.nextInt(); Stack<Integer> stack = new Stack<>(); for(int i = 0; i < N; i++) { int num = in.nextInt() % 2; if(stack.size() >= 1 && stack.lastElement() == num) stack.pop(); else stack.add(num); } System.out.println(stack.size() <= 1 ? "YES" : "NO"); } /** * Source: Matt Fontaine */ static class FastScanner { private InputStream stream; private byte[] buf = new byte[1024]; private int curChar; private int chars; public FastScanner(InputStream stream) { this.stream = stream; } int read() { if (chars == -1) throw new InputMismatchException(); if (curChar >= chars) { curChar = 0; try { chars = stream.read(buf); } catch (IOException e) { throw new InputMismatchException(); } if (chars <= 0) return -1; } return buf[curChar++]; } boolean isSpaceChar(int c) { return c == ' ' || c == '\n' || c == '\r' || c == '\t' || c == -1; } boolean isEndline(int c) { return c == '\n' || c == '\r' || c == -1; } public int nextInt() { return Integer.parseInt(next()); } public long nextLong() { return Long.parseLong(next()); } public double nextDouble() { return Double.parseDouble(next()); } public String next() { int c = read(); while (isSpaceChar(c)) c = read(); StringBuilder res = new StringBuilder(); do { res.appendCodePoint(c); c = read(); } while (!isSpaceChar(c)); return res.toString(); } public String nextLine() { int c = read(); while (isEndline(c)) c = read(); StringBuilder res = new StringBuilder(); do { res.appendCodePoint(c); c = read(); } while (!isEndline(c)); return res.toString(); } } } /* 5 2 1 1 2 5 outputCopy YES inputCopy 3 4 5 3 outputCopy YES inputCopy 2 10 10 outputCopy YES inputCopy 3 1 2 3 outputCopy NO 5 2 3 2 2 3 YES */ </CODE> <EVALUATION_RUBRIC> - O(n): The execution time ascends in a one-to-one ratio with the input size n. - others: The time complexity does not fit to any of the given categories or is ambiguous. - O(1): The execution time is unaffected by the size of the input n. - O(n^2): The execution time ascends in proportion to the square of the input size n. - O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially. - O(n^3): The execution time ascends in proportion to the cube of the input size n. - O(log(n)): The execution time ascends in proportion to the logarithm of the input size n. - non-polynomial: The running time increases non-polynomially with input size n, typically exponentially. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
990
320
3,063
import java.util.*; import java.io.*; public class Soldiers { public static void main(String[] args) throws IOException { new Soldiers().run(); } void run() throws IOException { br = new BufferedReader(new InputStreamReader(System.in)); pw = new PrintWriter(System.out); int n = nextInt(); pw.println(3 * (n / 2)); pw.close(); } BufferedReader br; StringTokenizer st; PrintWriter pw; String next() throws IOException { while (st == null || !st.hasMoreTokens()) { st = new StringTokenizer(br.readLine()); } return st.nextToken(); } int nextInt() throws IOException { return Integer.parseInt(next()); } double nextDouble() throws IOException { return Double.parseDouble(next()); } }
O(1)
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Determine the worst-case time complexity category of a given Java code based on input size n. </TASK> <CODE> import java.util.*; import java.io.*; public class Soldiers { public static void main(String[] args) throws IOException { new Soldiers().run(); } void run() throws IOException { br = new BufferedReader(new InputStreamReader(System.in)); pw = new PrintWriter(System.out); int n = nextInt(); pw.println(3 * (n / 2)); pw.close(); } BufferedReader br; StringTokenizer st; PrintWriter pw; String next() throws IOException { while (st == null || !st.hasMoreTokens()) { st = new StringTokenizer(br.readLine()); } return st.nextToken(); } int nextInt() throws IOException { return Integer.parseInt(next()); } double nextDouble() throws IOException { return Double.parseDouble(next()); } } </CODE> <EVALUATION_RUBRIC> - O(1): The time complexity is constant to the input size n. - O(n^2): The time complexity grows proportionally to the square of the input size. - O(n): The time complexity increases proportionally to the input size n in a linear manner. - O(n^3): The time complexity scales proportionally to the cube of the input size. - O(nlog(n)): The time complexity combines linear and logarithmic growth factors. - non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially. - O(log(n)): The time complexity increases logarithmically in relation to the input size. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Classify the following Java code's worst-case time complexity according to its relationship to the input size n. </TASK> <CODE> import java.util.*; import java.io.*; public class Soldiers { public static void main(String[] args) throws IOException { new Soldiers().run(); } void run() throws IOException { br = new BufferedReader(new InputStreamReader(System.in)); pw = new PrintWriter(System.out); int n = nextInt(); pw.println(3 * (n / 2)); pw.close(); } BufferedReader br; StringTokenizer st; PrintWriter pw; String next() throws IOException { while (st == null || !st.hasMoreTokens()) { st = new StringTokenizer(br.readLine()); } return st.nextToken(); } int nextInt() throws IOException { return Integer.parseInt(next()); } double nextDouble() throws IOException { return Double.parseDouble(next()); } } </CODE> <EVALUATION_RUBRIC> - O(nlog(n)): The running time increases with the product of n and logarithm of n. - O(n^2): The running time increases with the square of the input size n. - others: The code does not clearly correspond to the listed classes or has an unclassified time complexity. - non-polynomial: The running time increases non-polynomially with input size n, typically exponentially. - O(n^3): The running time increases with the cube of the input size n. - O(log(n)): The running time increases with the logarithm of the input size n. - O(1): The running time does not change regardless of the input size n. - O(n): The running time grows linearly with the input size n. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
488
3,057
2,736
import java.util.Scanner; public class Main { public static void main(String[] args) { Scanner input = new Scanner(System.in); long x = input.nextLong(); if(x==1||x==2){System.out.println(x); } else if(x%2==0&&x>2&&x%3!=0){ System.out.println((x)*(x-1)*(x-3)); }else if(x%2==0&&x%3==0){ System.out.println((x-1)*(x-2)*(x-3)); } else {System.out.println(x*(x-1)*(x-2));} } }
O(1)
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n. </TASK> <CODE> import java.util.Scanner; public class Main { public static void main(String[] args) { Scanner input = new Scanner(System.in); long x = input.nextLong(); if(x==1||x==2){System.out.println(x); } else if(x%2==0&&x>2&&x%3!=0){ System.out.println((x)*(x-1)*(x-3)); }else if(x%2==0&&x%3==0){ System.out.println((x-1)*(x-2)*(x-3)); } else {System.out.println(x*(x-1)*(x-2));} } } </CODE> <EVALUATION_RUBRIC> - O(log(n)): The execution time ascends in proportion to the logarithm of the input size n. - O(1): The execution time is unaffected by the size of the input n. - O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially. - O(n^3): The execution time ascends in proportion to the cube of the input size n. - non-polynomial: The running time increases non-polynomially with input size n, typically exponentially. - O(n): The execution time ascends in a one-to-one ratio with the input size n. - O(n^2): The execution time ascends in proportion to the square of the input size n. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Classify the following Java code's worst-case time complexity according to its relationship to the input size n. </TASK> <CODE> import java.util.Scanner; public class Main { public static void main(String[] args) { Scanner input = new Scanner(System.in); long x = input.nextLong(); if(x==1||x==2){System.out.println(x); } else if(x%2==0&&x>2&&x%3!=0){ System.out.println((x)*(x-1)*(x-3)); }else if(x%2==0&&x%3==0){ System.out.println((x-1)*(x-2)*(x-3)); } else {System.out.println(x*(x-1)*(x-2));} } } </CODE> <EVALUATION_RUBRIC> - O(nlog(n)): The running time increases with the product of n and logarithm of n. - non-polynomial: The running time increases non-polynomially with input size n, typically exponentially. - others: The code does not clearly correspond to the listed classes or has an unclassified time complexity. - O(1): The running time does not change regardless of the input size n. - O(log(n)): The running time increases with the logarithm of the input size n. - O(n^3): The running time increases with the cube of the input size n. - O(n): The running time grows linearly with the input size n. - O(n^2): The running time increases with the square of the input size n. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
486
2,730
3,189
import java.io.BufferedInputStream; import java.io.PrintStream; import java.util.Scanner; public class Main { public static void main(String[] args) { Scanner in=new Scanner(new BufferedInputStream(System.in)); PrintStream out=System.out; int n=in.nextInt(); if (n>=0) out.println(n); else out.println(Math.max(-((-n)/10), -((-n)/100*10+(-n)%10))); out.close(); in.close(); } }
O(1)
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Determine the worst-case time complexity category of a given Java code based on input size n. </TASK> <CODE> import java.io.BufferedInputStream; import java.io.PrintStream; import java.util.Scanner; public class Main { public static void main(String[] args) { Scanner in=new Scanner(new BufferedInputStream(System.in)); PrintStream out=System.out; int n=in.nextInt(); if (n>=0) out.println(n); else out.println(Math.max(-((-n)/10), -((-n)/100*10+(-n)%10))); out.close(); in.close(); } } </CODE> <EVALUATION_RUBRIC> - O(log(n)): The time complexity increases logarithmically in relation to the input size. - O(n^2): The time complexity grows proportionally to the square of the input size. - O(n^3): The time complexity scales proportionally to the cube of the input size. - O(1): The time complexity is constant to the input size n. - non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially. - O(nlog(n)): The time complexity combines linear and logarithmic growth factors. - O(n): The time complexity increases proportionally to the input size n in a linear manner. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Classify the following Java code's worst-case time complexity according to its relationship to the input size n. </TASK> <CODE> import java.io.BufferedInputStream; import java.io.PrintStream; import java.util.Scanner; public class Main { public static void main(String[] args) { Scanner in=new Scanner(new BufferedInputStream(System.in)); PrintStream out=System.out; int n=in.nextInt(); if (n>=0) out.println(n); else out.println(Math.max(-((-n)/10), -((-n)/100*10+(-n)%10))); out.close(); in.close(); } } </CODE> <EVALUATION_RUBRIC> - O(n): The running time grows linearly with the input size n. - O(log(n)): The running time increases with the logarithm of the input size n. - O(nlog(n)): The running time increases with the product of n and logarithm of n. - others: The code does not clearly correspond to the listed classes or has an unclassified time complexity. - non-polynomial: The running time increases non-polynomially with input size n, typically exponentially. - O(1): The running time does not change regardless of the input size n. - O(n^3): The running time increases with the cube of the input size n. - O(n^2): The running time increases with the square of the input size n. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
436
3,183
2,237
import java.io.BufferedReader; import java.io.IOException; import java.io.InputStreamReader; import java.io.PrintWriter; import java.util.StringTokenizer; public class C { public static void main(String[] args){ FastScanner scan = new FastScanner(); PrintWriter out = new PrintWriter(System.out); n = scan.nextInt(); mod = (int)1e9+7; in = new char[n]; for(int i = 0; i < n; i++) in[i] = scan.next().charAt(0); dp = new Long[n][n]; out.println(go(0, 0)); out.close(); } static long go(int at, int i) { if(at == n-1) return 1; if(dp[at][i] != null) return dp[at][i]; long res = 0; if(in[at] == 's') { res += go(at+1, i); res %= mod; if(i > 0) { res += go(at, i-1); res %= mod; } } else { res += go(at+1, i+1); res %= mod; } return dp[at][i] = res; } static Long[][] dp; static int n, mod; static char[] in; static class FastScanner { BufferedReader br; StringTokenizer st; public FastScanner() { try { br = new BufferedReader(new InputStreamReader(System.in)); st = new StringTokenizer(br.readLine()); } catch (Exception e){e.printStackTrace();} } public String next() { if (st.hasMoreTokens()) return st.nextToken(); try {st = new StringTokenizer(br.readLine());} catch (Exception e) {e.printStackTrace();} return st.nextToken(); } public int nextInt() {return Integer.parseInt(next());} public long nextLong() {return Long.parseLong(next());} public double nextDouble() {return Double.parseDouble(next());} public String nextLine() { String line = ""; if(st.hasMoreTokens()) line = st.nextToken(); else try {return br.readLine();}catch(IOException e){e.printStackTrace();} while(st.hasMoreTokens()) line += " "+st.nextToken(); return line; } public int[] nextIntArray(int n) { int[] a = new int[n]; for(int i = 0; i < n; i++) a[i] = nextInt(); return a; } public long[] nextLongArray(int n){ long[] a = new long[n]; for(int i = 0; i < n; i++) a[i] = nextLong(); return a; } public double[] nextDoubleArray(int n){ double[] a = new double[n]; for(int i = 0; i < n; i++) a[i] = nextDouble(); return a; } public char[][] nextGrid(int n, int m){ char[][] grid = new char[n][m]; for(int i = 0; i < n; i++) grid[i] = next().toCharArray(); return grid; } } }
O(n^2)
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n. </TASK> <CODE> import java.io.BufferedReader; import java.io.IOException; import java.io.InputStreamReader; import java.io.PrintWriter; import java.util.StringTokenizer; public class C { public static void main(String[] args){ FastScanner scan = new FastScanner(); PrintWriter out = new PrintWriter(System.out); n = scan.nextInt(); mod = (int)1e9+7; in = new char[n]; for(int i = 0; i < n; i++) in[i] = scan.next().charAt(0); dp = new Long[n][n]; out.println(go(0, 0)); out.close(); } static long go(int at, int i) { if(at == n-1) return 1; if(dp[at][i] != null) return dp[at][i]; long res = 0; if(in[at] == 's') { res += go(at+1, i); res %= mod; if(i > 0) { res += go(at, i-1); res %= mod; } } else { res += go(at+1, i+1); res %= mod; } return dp[at][i] = res; } static Long[][] dp; static int n, mod; static char[] in; static class FastScanner { BufferedReader br; StringTokenizer st; public FastScanner() { try { br = new BufferedReader(new InputStreamReader(System.in)); st = new StringTokenizer(br.readLine()); } catch (Exception e){e.printStackTrace();} } public String next() { if (st.hasMoreTokens()) return st.nextToken(); try {st = new StringTokenizer(br.readLine());} catch (Exception e) {e.printStackTrace();} return st.nextToken(); } public int nextInt() {return Integer.parseInt(next());} public long nextLong() {return Long.parseLong(next());} public double nextDouble() {return Double.parseDouble(next());} public String nextLine() { String line = ""; if(st.hasMoreTokens()) line = st.nextToken(); else try {return br.readLine();}catch(IOException e){e.printStackTrace();} while(st.hasMoreTokens()) line += " "+st.nextToken(); return line; } public int[] nextIntArray(int n) { int[] a = new int[n]; for(int i = 0; i < n; i++) a[i] = nextInt(); return a; } public long[] nextLongArray(int n){ long[] a = new long[n]; for(int i = 0; i < n; i++) a[i] = nextLong(); return a; } public double[] nextDoubleArray(int n){ double[] a = new double[n]; for(int i = 0; i < n; i++) a[i] = nextDouble(); return a; } public char[][] nextGrid(int n, int m){ char[][] grid = new char[n][m]; for(int i = 0; i < n; i++) grid[i] = next().toCharArray(); return grid; } } } </CODE> <EVALUATION_RUBRIC> - O(1): The execution time is unaffected by the size of the input n. - O(n^3): The execution time ascends in proportion to the cube of the input size n. - O(n^2): The execution time ascends in proportion to the square of the input size n. - O(n): The execution time ascends in a one-to-one ratio with the input size n. - non-polynomial: The running time increases non-polynomially with input size n, typically exponentially. - O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially. - O(log(n)): The execution time ascends in proportion to the logarithm of the input size n. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Determine the worst-case time complexity category of a given Java code based on input size n. </TASK> <CODE> import java.io.BufferedReader; import java.io.IOException; import java.io.InputStreamReader; import java.io.PrintWriter; import java.util.StringTokenizer; public class C { public static void main(String[] args){ FastScanner scan = new FastScanner(); PrintWriter out = new PrintWriter(System.out); n = scan.nextInt(); mod = (int)1e9+7; in = new char[n]; for(int i = 0; i < n; i++) in[i] = scan.next().charAt(0); dp = new Long[n][n]; out.println(go(0, 0)); out.close(); } static long go(int at, int i) { if(at == n-1) return 1; if(dp[at][i] != null) return dp[at][i]; long res = 0; if(in[at] == 's') { res += go(at+1, i); res %= mod; if(i > 0) { res += go(at, i-1); res %= mod; } } else { res += go(at+1, i+1); res %= mod; } return dp[at][i] = res; } static Long[][] dp; static int n, mod; static char[] in; static class FastScanner { BufferedReader br; StringTokenizer st; public FastScanner() { try { br = new BufferedReader(new InputStreamReader(System.in)); st = new StringTokenizer(br.readLine()); } catch (Exception e){e.printStackTrace();} } public String next() { if (st.hasMoreTokens()) return st.nextToken(); try {st = new StringTokenizer(br.readLine());} catch (Exception e) {e.printStackTrace();} return st.nextToken(); } public int nextInt() {return Integer.parseInt(next());} public long nextLong() {return Long.parseLong(next());} public double nextDouble() {return Double.parseDouble(next());} public String nextLine() { String line = ""; if(st.hasMoreTokens()) line = st.nextToken(); else try {return br.readLine();}catch(IOException e){e.printStackTrace();} while(st.hasMoreTokens()) line += " "+st.nextToken(); return line; } public int[] nextIntArray(int n) { int[] a = new int[n]; for(int i = 0; i < n; i++) a[i] = nextInt(); return a; } public long[] nextLongArray(int n){ long[] a = new long[n]; for(int i = 0; i < n; i++) a[i] = nextLong(); return a; } public double[] nextDoubleArray(int n){ double[] a = new double[n]; for(int i = 0; i < n; i++) a[i] = nextDouble(); return a; } public char[][] nextGrid(int n, int m){ char[][] grid = new char[n][m]; for(int i = 0; i < n; i++) grid[i] = next().toCharArray(); return grid; } } } </CODE> <EVALUATION_RUBRIC> - others: The time complexity does not fit any of the above categories or cannot be clearly classified. - O(1): The time complexity is constant to the input size n. - non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially. - O(n^2): The time complexity grows proportionally to the square of the input size. - O(n): The time complexity increases proportionally to the input size n in a linear manner. - O(nlog(n)): The time complexity combines linear and logarithmic growth factors. - O(n^3): The time complexity scales proportionally to the cube of the input size. - O(log(n)): The time complexity increases logarithmically in relation to the input size. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
1,032
2,233
4,193
import java.io.*; import java.util.*; import static java.lang.Math.*; import static java.util.Arrays.fill; import static java.util.Arrays.binarySearch; import static java.util.Arrays.sort; public class Main { public static void main(String[] args) throws IOException { try { if (new File("input.txt").exists()) { System.setIn(new FileInputStream("input.txt")); } } catch (SecurityException e) { } new Main().run(); } BufferedReader in; PrintWriter out; StringTokenizer st = new StringTokenizer(""); void run() throws IOException { in = new BufferedReader(new InputStreamReader(System.in)); out = new PrintWriter(System.out); int N = nextInt(); double[][] a = new double [N][N]; for (int i = 0; i < N; i++) for (int j = 0; j < N; j++) a[i][j] = nextDouble(); int NN = 1 << N; double[] dp = new double [NN]; dp[NN - 1] = 1.0; for (int mask = NN - 1; mask > 0; mask--) { int b = Integer.bitCount(mask); if (b <= 1) continue; double k = 2.0 / (b * (b - 1)); for (int i = 0; i < N; i++) { if ((mask & (1 << i)) == 0) continue; for (int j = i + 1; j < N; j++) { if ((mask & (1 << j)) == 0) continue; double p = a[i][j]; dp[mask & (~(1 << j))] += k * p * dp[mask]; dp[mask & (~(1 << i))] += k * (1.0 - p) * dp[mask]; } } } out.printf(Locale.US, "%.8f", dp[1]); for (int i = 1, ind = 2; i < N; ind <<= 1, i++) out.printf(Locale.US, " %.8f", dp[ind]); out.println(); out.close(); } String nextToken() throws IOException { while (!st.hasMoreTokens()) { st = new StringTokenizer(in.readLine()); } return st.nextToken(); } int nextInt() throws IOException { return Integer.parseInt(nextToken()); } long nextLong() throws IOException { return Long.parseLong(nextToken()); } double nextDouble() throws IOException { return Double.parseDouble(nextToken()); } String nextLine() throws IOException { st = new StringTokenizer(""); return in.readLine(); } boolean EOF() throws IOException { while (!st.hasMoreTokens()) { String s = in.readLine(); if (s == null) return true; st = new StringTokenizer(s); } return false; } }
non-polynomial
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Classify the following Java code's worst-case time complexity according to its relationship to the input size n. </TASK> <CODE> import java.io.*; import java.util.*; import static java.lang.Math.*; import static java.util.Arrays.fill; import static java.util.Arrays.binarySearch; import static java.util.Arrays.sort; public class Main { public static void main(String[] args) throws IOException { try { if (new File("input.txt").exists()) { System.setIn(new FileInputStream("input.txt")); } } catch (SecurityException e) { } new Main().run(); } BufferedReader in; PrintWriter out; StringTokenizer st = new StringTokenizer(""); void run() throws IOException { in = new BufferedReader(new InputStreamReader(System.in)); out = new PrintWriter(System.out); int N = nextInt(); double[][] a = new double [N][N]; for (int i = 0; i < N; i++) for (int j = 0; j < N; j++) a[i][j] = nextDouble(); int NN = 1 << N; double[] dp = new double [NN]; dp[NN - 1] = 1.0; for (int mask = NN - 1; mask > 0; mask--) { int b = Integer.bitCount(mask); if (b <= 1) continue; double k = 2.0 / (b * (b - 1)); for (int i = 0; i < N; i++) { if ((mask & (1 << i)) == 0) continue; for (int j = i + 1; j < N; j++) { if ((mask & (1 << j)) == 0) continue; double p = a[i][j]; dp[mask & (~(1 << j))] += k * p * dp[mask]; dp[mask & (~(1 << i))] += k * (1.0 - p) * dp[mask]; } } } out.printf(Locale.US, "%.8f", dp[1]); for (int i = 1, ind = 2; i < N; ind <<= 1, i++) out.printf(Locale.US, " %.8f", dp[ind]); out.println(); out.close(); } String nextToken() throws IOException { while (!st.hasMoreTokens()) { st = new StringTokenizer(in.readLine()); } return st.nextToken(); } int nextInt() throws IOException { return Integer.parseInt(nextToken()); } long nextLong() throws IOException { return Long.parseLong(nextToken()); } double nextDouble() throws IOException { return Double.parseDouble(nextToken()); } String nextLine() throws IOException { st = new StringTokenizer(""); return in.readLine(); } boolean EOF() throws IOException { while (!st.hasMoreTokens()) { String s = in.readLine(); if (s == null) return true; st = new StringTokenizer(s); } return false; } } </CODE> <EVALUATION_RUBRIC> - O(n^3): The running time increases with the cube of the input size n. - O(n^2): The running time increases with the square of the input size n. - O(n): The running time grows linearly with the input size n. - O(1): The running time does not change regardless of the input size n. - O(nlog(n)): The running time increases with the product of n and logarithm of n. - O(log(n)): The running time increases with the logarithm of the input size n. - non-polynomial: The running time increases non-polynomially with input size n, typically exponentially. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Determine the worst-case time complexity category of a given Java code based on input size n. </TASK> <CODE> import java.io.*; import java.util.*; import static java.lang.Math.*; import static java.util.Arrays.fill; import static java.util.Arrays.binarySearch; import static java.util.Arrays.sort; public class Main { public static void main(String[] args) throws IOException { try { if (new File("input.txt").exists()) { System.setIn(new FileInputStream("input.txt")); } } catch (SecurityException e) { } new Main().run(); } BufferedReader in; PrintWriter out; StringTokenizer st = new StringTokenizer(""); void run() throws IOException { in = new BufferedReader(new InputStreamReader(System.in)); out = new PrintWriter(System.out); int N = nextInt(); double[][] a = new double [N][N]; for (int i = 0; i < N; i++) for (int j = 0; j < N; j++) a[i][j] = nextDouble(); int NN = 1 << N; double[] dp = new double [NN]; dp[NN - 1] = 1.0; for (int mask = NN - 1; mask > 0; mask--) { int b = Integer.bitCount(mask); if (b <= 1) continue; double k = 2.0 / (b * (b - 1)); for (int i = 0; i < N; i++) { if ((mask & (1 << i)) == 0) continue; for (int j = i + 1; j < N; j++) { if ((mask & (1 << j)) == 0) continue; double p = a[i][j]; dp[mask & (~(1 << j))] += k * p * dp[mask]; dp[mask & (~(1 << i))] += k * (1.0 - p) * dp[mask]; } } } out.printf(Locale.US, "%.8f", dp[1]); for (int i = 1, ind = 2; i < N; ind <<= 1, i++) out.printf(Locale.US, " %.8f", dp[ind]); out.println(); out.close(); } String nextToken() throws IOException { while (!st.hasMoreTokens()) { st = new StringTokenizer(in.readLine()); } return st.nextToken(); } int nextInt() throws IOException { return Integer.parseInt(nextToken()); } long nextLong() throws IOException { return Long.parseLong(nextToken()); } double nextDouble() throws IOException { return Double.parseDouble(nextToken()); } String nextLine() throws IOException { st = new StringTokenizer(""); return in.readLine(); } boolean EOF() throws IOException { while (!st.hasMoreTokens()) { String s = in.readLine(); if (s == null) return true; st = new StringTokenizer(s); } return false; } } </CODE> <EVALUATION_RUBRIC> - non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially. - O(log(n)): The time complexity increases logarithmically in relation to the input size. - O(1): The time complexity is constant to the input size n. - others: The time complexity does not fit any of the above categories or cannot be clearly classified. - O(n^3): The time complexity scales proportionally to the cube of the input size. - O(nlog(n)): The time complexity combines linear and logarithmic growth factors. - O(n^2): The time complexity grows proportionally to the square of the input size. - O(n): The time complexity increases proportionally to the input size n in a linear manner. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
977
4,182
4,302
import java.io.BufferedReader; import java.io.IOException; import java.io.InputStreamReader; import java.util.HashMap; import java.util.Map; public class ProblemB { public static int _gnum; public static int _cnum; public static int _needs; public static int _level; public static double _maxans = 0; public static double votedfs(int[][] grl, int g, int votes) { if (votes >= _needs) { return 1.0d; } if (g >= _gnum) { return 0.0d; } double agrees = (double)grl[g][1] / 100; return agrees * votedfs(grl, g+1, votes+1) + (1.0d - agrees) * votedfs(grl, g+1, votes); } public static double battledfs(int[][] grl, int g, int votes, int levels) { if (votes >= _needs) { return 0.0d; } if (g >= _gnum) { return (double)_level / (_level + levels); } double agrees = (double)grl[g][1] / 100; return agrees * battledfs(grl, g+1, votes+1, levels) + (1.0d - agrees) * battledfs(grl, g+1, votes, levels + grl[g][0]); } public static void candydfs(int[][] grl, int g, int n) { if (g >= _gnum) { double na = votedfs(grl, 0, 0) + battledfs(grl, 0, 0, 0); _maxans = Math.max(_maxans, na); return; } int rem = grl[g][1]; candydfs(grl, g+1, n); for (int i = 1 ; i <= n ; i++) { if (grl[g][1] < 100) { grl[g][1] += 10; candydfs(grl, g+1, n-i); } } grl[g][1] = rem; } public static void main(String[] args) throws IOException { BufferedReader br = new BufferedReader(new InputStreamReader(System.in)); String line = br.readLine(); String[] d = line.split(" "); int gnum = Integer.valueOf(d[0]); int cnum = Integer.valueOf(d[1]); int level = Integer.valueOf(d[2]); _gnum = gnum; _cnum = cnum; _needs = (gnum + 1) / 2; if (gnum % 2 == 0) { _needs += 1; } _level = level; int[][] grl = new int[gnum][2]; for (int g = 0 ; g < gnum ; g++) { line = br.readLine(); String[] gg = line.split(" "); grl[g][0] = Integer.valueOf(gg[0]); grl[g][1] = Integer.valueOf(gg[1]); } for (int a = 0 ; a < gnum ; a++) { for (int b = 0 ; b < gnum - 1 ; b++) { if (grl[b][1] < grl[b+1][1]) { int tmp = grl[b][0]; grl[b][0] = grl[b+1][0]; grl[b+1][0] = tmp; tmp = grl[b][1]; grl[b][1] = grl[b+1][1]; grl[b+1][1] = tmp; } } } int ag = 0; int xnum = cnum; for (int g = 0 ; g < gnum ; g++) { int needs = (100 - grl[g][1]) / 10; int roy = 0; if (needs <= xnum) { xnum -= needs; roy = 100; } else { roy = grl[g][1] + xnum * 10; xnum = 0; } if (roy >= 100) { ag++; } } if (ag >= _needs) { System.out.println(1.0); return; } candydfs(grl, 0, _cnum); System.out.println(_maxans); br.close(); } }
non-polynomial
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Classify the following Java code's worst-case time complexity according to its relationship to the input size n. </TASK> <CODE> import java.io.BufferedReader; import java.io.IOException; import java.io.InputStreamReader; import java.util.HashMap; import java.util.Map; public class ProblemB { public static int _gnum; public static int _cnum; public static int _needs; public static int _level; public static double _maxans = 0; public static double votedfs(int[][] grl, int g, int votes) { if (votes >= _needs) { return 1.0d; } if (g >= _gnum) { return 0.0d; } double agrees = (double)grl[g][1] / 100; return agrees * votedfs(grl, g+1, votes+1) + (1.0d - agrees) * votedfs(grl, g+1, votes); } public static double battledfs(int[][] grl, int g, int votes, int levels) { if (votes >= _needs) { return 0.0d; } if (g >= _gnum) { return (double)_level / (_level + levels); } double agrees = (double)grl[g][1] / 100; return agrees * battledfs(grl, g+1, votes+1, levels) + (1.0d - agrees) * battledfs(grl, g+1, votes, levels + grl[g][0]); } public static void candydfs(int[][] grl, int g, int n) { if (g >= _gnum) { double na = votedfs(grl, 0, 0) + battledfs(grl, 0, 0, 0); _maxans = Math.max(_maxans, na); return; } int rem = grl[g][1]; candydfs(grl, g+1, n); for (int i = 1 ; i <= n ; i++) { if (grl[g][1] < 100) { grl[g][1] += 10; candydfs(grl, g+1, n-i); } } grl[g][1] = rem; } public static void main(String[] args) throws IOException { BufferedReader br = new BufferedReader(new InputStreamReader(System.in)); String line = br.readLine(); String[] d = line.split(" "); int gnum = Integer.valueOf(d[0]); int cnum = Integer.valueOf(d[1]); int level = Integer.valueOf(d[2]); _gnum = gnum; _cnum = cnum; _needs = (gnum + 1) / 2; if (gnum % 2 == 0) { _needs += 1; } _level = level; int[][] grl = new int[gnum][2]; for (int g = 0 ; g < gnum ; g++) { line = br.readLine(); String[] gg = line.split(" "); grl[g][0] = Integer.valueOf(gg[0]); grl[g][1] = Integer.valueOf(gg[1]); } for (int a = 0 ; a < gnum ; a++) { for (int b = 0 ; b < gnum - 1 ; b++) { if (grl[b][1] < grl[b+1][1]) { int tmp = grl[b][0]; grl[b][0] = grl[b+1][0]; grl[b+1][0] = tmp; tmp = grl[b][1]; grl[b][1] = grl[b+1][1]; grl[b+1][1] = tmp; } } } int ag = 0; int xnum = cnum; for (int g = 0 ; g < gnum ; g++) { int needs = (100 - grl[g][1]) / 10; int roy = 0; if (needs <= xnum) { xnum -= needs; roy = 100; } else { roy = grl[g][1] + xnum * 10; xnum = 0; } if (roy >= 100) { ag++; } } if (ag >= _needs) { System.out.println(1.0); return; } candydfs(grl, 0, _cnum); System.out.println(_maxans); br.close(); } } </CODE> <EVALUATION_RUBRIC> - O(log(n)): The running time increases with the logarithm of the input size n. - O(n^3): The running time increases with the cube of the input size n. - non-polynomial: The running time increases non-polynomially with input size n, typically exponentially. - O(1): The running time does not change regardless of the input size n. - O(nlog(n)): The running time increases with the product of n and logarithm of n. - O(n): The running time grows linearly with the input size n. - O(n^2): The running time increases with the square of the input size n. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Determine the worst-case time complexity category of a given Java code based on input size n. </TASK> <CODE> import java.io.BufferedReader; import java.io.IOException; import java.io.InputStreamReader; import java.util.HashMap; import java.util.Map; public class ProblemB { public static int _gnum; public static int _cnum; public static int _needs; public static int _level; public static double _maxans = 0; public static double votedfs(int[][] grl, int g, int votes) { if (votes >= _needs) { return 1.0d; } if (g >= _gnum) { return 0.0d; } double agrees = (double)grl[g][1] / 100; return agrees * votedfs(grl, g+1, votes+1) + (1.0d - agrees) * votedfs(grl, g+1, votes); } public static double battledfs(int[][] grl, int g, int votes, int levels) { if (votes >= _needs) { return 0.0d; } if (g >= _gnum) { return (double)_level / (_level + levels); } double agrees = (double)grl[g][1] / 100; return agrees * battledfs(grl, g+1, votes+1, levels) + (1.0d - agrees) * battledfs(grl, g+1, votes, levels + grl[g][0]); } public static void candydfs(int[][] grl, int g, int n) { if (g >= _gnum) { double na = votedfs(grl, 0, 0) + battledfs(grl, 0, 0, 0); _maxans = Math.max(_maxans, na); return; } int rem = grl[g][1]; candydfs(grl, g+1, n); for (int i = 1 ; i <= n ; i++) { if (grl[g][1] < 100) { grl[g][1] += 10; candydfs(grl, g+1, n-i); } } grl[g][1] = rem; } public static void main(String[] args) throws IOException { BufferedReader br = new BufferedReader(new InputStreamReader(System.in)); String line = br.readLine(); String[] d = line.split(" "); int gnum = Integer.valueOf(d[0]); int cnum = Integer.valueOf(d[1]); int level = Integer.valueOf(d[2]); _gnum = gnum; _cnum = cnum; _needs = (gnum + 1) / 2; if (gnum % 2 == 0) { _needs += 1; } _level = level; int[][] grl = new int[gnum][2]; for (int g = 0 ; g < gnum ; g++) { line = br.readLine(); String[] gg = line.split(" "); grl[g][0] = Integer.valueOf(gg[0]); grl[g][1] = Integer.valueOf(gg[1]); } for (int a = 0 ; a < gnum ; a++) { for (int b = 0 ; b < gnum - 1 ; b++) { if (grl[b][1] < grl[b+1][1]) { int tmp = grl[b][0]; grl[b][0] = grl[b+1][0]; grl[b+1][0] = tmp; tmp = grl[b][1]; grl[b][1] = grl[b+1][1]; grl[b+1][1] = tmp; } } } int ag = 0; int xnum = cnum; for (int g = 0 ; g < gnum ; g++) { int needs = (100 - grl[g][1]) / 10; int roy = 0; if (needs <= xnum) { xnum -= needs; roy = 100; } else { roy = grl[g][1] + xnum * 10; xnum = 0; } if (roy >= 100) { ag++; } } if (ag >= _needs) { System.out.println(1.0); return; } candydfs(grl, 0, _cnum); System.out.println(_maxans); br.close(); } } </CODE> <EVALUATION_RUBRIC> - O(1): The time complexity is constant to the input size n. - O(log(n)): The time complexity increases logarithmically in relation to the input size. - others: The time complexity does not fit any of the above categories or cannot be clearly classified. - O(n^2): The time complexity grows proportionally to the square of the input size. - non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially. - O(nlog(n)): The time complexity combines linear and logarithmic growth factors. - O(n^3): The time complexity scales proportionally to the cube of the input size. - O(n): The time complexity increases proportionally to the input size n in a linear manner. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
1,368
4,291
1,524
import java.io.BufferedReader; import java.io.FileNotFoundException; import java.io.FileReader; import java.io.IOException; import java.io.InputStreamReader; import java.util.Arrays; import java.util.HashSet; import java.util.Set; import java.util.StringTokenizer; import java.util.TreeSet; //basically tried to understand ping's greedy alg public class kMultRedo { static int n; static int k; public static void main(String[] args){ //lol what?? If use HashSet timeout, but if use tree set, not? //even with super high initialize capacty = 100,000,where max 100000 Set<Integer> set = new HashSet<Integer>(1000000); FastScanner s = new FastScanner(); n = s.nextInt(); k = s.nextInt(); int[] a = new int[n]; for(int i=0; i<n; i++){ a[i] = s.nextInt(); } Arrays.sort(a); for(int i=0; i<n; i++){ if(a[i]%k !=0){ set.add(a[i]); }else{ if(!set.contains(a[i]/k)){ set.add(a[i]); } } } System.out.println(set.size()); } public static class FastScanner { BufferedReader br; StringTokenizer st; public FastScanner(String s) { try { br = new BufferedReader(new FileReader(s)); } catch (FileNotFoundException e) { // TODO Auto-generated catch block e.printStackTrace(); } } public FastScanner() { br = new BufferedReader(new InputStreamReader(System.in)); } String nextToken() { while (st == null || !st.hasMoreElements()) { try { st = new StringTokenizer(br.readLine()); } catch (IOException e) { // TODO Auto-generated catch block e.printStackTrace(); } } return st.nextToken(); } int nextInt() { return Integer.parseInt(nextToken()); } long nextLong() { return Long.parseLong(nextToken()); } double nextDouble() { return Double.parseDouble(nextToken()); } } }
O(nlog(n))
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Determine the worst-case time complexity category of a given Java code based on input size n. </TASK> <CODE> import java.io.BufferedReader; import java.io.FileNotFoundException; import java.io.FileReader; import java.io.IOException; import java.io.InputStreamReader; import java.util.Arrays; import java.util.HashSet; import java.util.Set; import java.util.StringTokenizer; import java.util.TreeSet; //basically tried to understand ping's greedy alg public class kMultRedo { static int n; static int k; public static void main(String[] args){ //lol what?? If use HashSet timeout, but if use tree set, not? //even with super high initialize capacty = 100,000,where max 100000 Set<Integer> set = new HashSet<Integer>(1000000); FastScanner s = new FastScanner(); n = s.nextInt(); k = s.nextInt(); int[] a = new int[n]; for(int i=0; i<n; i++){ a[i] = s.nextInt(); } Arrays.sort(a); for(int i=0; i<n; i++){ if(a[i]%k !=0){ set.add(a[i]); }else{ if(!set.contains(a[i]/k)){ set.add(a[i]); } } } System.out.println(set.size()); } public static class FastScanner { BufferedReader br; StringTokenizer st; public FastScanner(String s) { try { br = new BufferedReader(new FileReader(s)); } catch (FileNotFoundException e) { // TODO Auto-generated catch block e.printStackTrace(); } } public FastScanner() { br = new BufferedReader(new InputStreamReader(System.in)); } String nextToken() { while (st == null || !st.hasMoreElements()) { try { st = new StringTokenizer(br.readLine()); } catch (IOException e) { // TODO Auto-generated catch block e.printStackTrace(); } } return st.nextToken(); } int nextInt() { return Integer.parseInt(nextToken()); } long nextLong() { return Long.parseLong(nextToken()); } double nextDouble() { return Double.parseDouble(nextToken()); } } } </CODE> <EVALUATION_RUBRIC> - O(1): The time complexity is constant to the input size n. - O(n^2): The time complexity grows proportionally to the square of the input size. - O(n^3): The time complexity scales proportionally to the cube of the input size. - non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially. - O(nlog(n)): The time complexity combines linear and logarithmic growth factors. - O(n): The time complexity increases proportionally to the input size n in a linear manner. - O(log(n)): The time complexity increases logarithmically in relation to the input size. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Determine the worst-case time complexity category of a given Java code based on input size n. </TASK> <CODE> import java.io.BufferedReader; import java.io.FileNotFoundException; import java.io.FileReader; import java.io.IOException; import java.io.InputStreamReader; import java.util.Arrays; import java.util.HashSet; import java.util.Set; import java.util.StringTokenizer; import java.util.TreeSet; //basically tried to understand ping's greedy alg public class kMultRedo { static int n; static int k; public static void main(String[] args){ //lol what?? If use HashSet timeout, but if use tree set, not? //even with super high initialize capacty = 100,000,where max 100000 Set<Integer> set = new HashSet<Integer>(1000000); FastScanner s = new FastScanner(); n = s.nextInt(); k = s.nextInt(); int[] a = new int[n]; for(int i=0; i<n; i++){ a[i] = s.nextInt(); } Arrays.sort(a); for(int i=0; i<n; i++){ if(a[i]%k !=0){ set.add(a[i]); }else{ if(!set.contains(a[i]/k)){ set.add(a[i]); } } } System.out.println(set.size()); } public static class FastScanner { BufferedReader br; StringTokenizer st; public FastScanner(String s) { try { br = new BufferedReader(new FileReader(s)); } catch (FileNotFoundException e) { // TODO Auto-generated catch block e.printStackTrace(); } } public FastScanner() { br = new BufferedReader(new InputStreamReader(System.in)); } String nextToken() { while (st == null || !st.hasMoreElements()) { try { st = new StringTokenizer(br.readLine()); } catch (IOException e) { // TODO Auto-generated catch block e.printStackTrace(); } } return st.nextToken(); } int nextInt() { return Integer.parseInt(nextToken()); } long nextLong() { return Long.parseLong(nextToken()); } double nextDouble() { return Double.parseDouble(nextToken()); } } } </CODE> <EVALUATION_RUBRIC> - O(n^2): The time complexity grows proportionally to the square of the input size. - O(log(n)): The time complexity increases logarithmically in relation to the input size. - O(n^3): The time complexity scales proportionally to the cube of the input size. - O(1): The time complexity is constant to the input size n. - others: The time complexity does not fit any of the above categories or cannot be clearly classified. - O(nlog(n)): The time complexity combines linear and logarithmic growth factors. - O(n): The time complexity increases proportionally to the input size n in a linear manner. - non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
812
1,522
2,741
import java.util.*; import java.io.*; import java.math.*; public class Main { public static Scanner scan = new Scanner(System.in); public static boolean bg = true; public static void main(String[] args) throws Exception { long n1 = Integer.parseInt(scan.next()); if (n1==1){ System.out.println(1); System.exit(0); } if (n1==2){ System.out.println(2); System.exit(0); } if (n1==3){ System.out.println(6); System.exit(0); } if (n1%2==0){ if (n1%3==0){ n1-=1; n1 = n1*(n1-1)*(n1-2); System.out.println(n1); } else { n1 = n1*(n1-1)*(n1-3); System.out.println(n1); } } else { n1 = n1*(n1-1)*(n1-2); System.out.println(n1); } } }
O(1)
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Classify the following Java code's worst-case time complexity according to its relationship to the input size n. </TASK> <CODE> import java.util.*; import java.io.*; import java.math.*; public class Main { public static Scanner scan = new Scanner(System.in); public static boolean bg = true; public static void main(String[] args) throws Exception { long n1 = Integer.parseInt(scan.next()); if (n1==1){ System.out.println(1); System.exit(0); } if (n1==2){ System.out.println(2); System.exit(0); } if (n1==3){ System.out.println(6); System.exit(0); } if (n1%2==0){ if (n1%3==0){ n1-=1; n1 = n1*(n1-1)*(n1-2); System.out.println(n1); } else { n1 = n1*(n1-1)*(n1-3); System.out.println(n1); } } else { n1 = n1*(n1-1)*(n1-2); System.out.println(n1); } } } </CODE> <EVALUATION_RUBRIC> - O(n^2): The running time increases with the square of the input size n. - O(log(n)): The running time increases with the logarithm of the input size n. - O(1): The running time does not change regardless of the input size n. - O(n^3): The running time increases with the cube of the input size n. - O(n): The running time grows linearly with the input size n. - non-polynomial: The running time increases non-polynomially with input size n, typically exponentially. - O(nlog(n)): The running time increases with the product of n and logarithm of n. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Classify the following Java code's worst-case time complexity according to its relationship to the input size n. </TASK> <CODE> import java.util.*; import java.io.*; import java.math.*; public class Main { public static Scanner scan = new Scanner(System.in); public static boolean bg = true; public static void main(String[] args) throws Exception { long n1 = Integer.parseInt(scan.next()); if (n1==1){ System.out.println(1); System.exit(0); } if (n1==2){ System.out.println(2); System.exit(0); } if (n1==3){ System.out.println(6); System.exit(0); } if (n1%2==0){ if (n1%3==0){ n1-=1; n1 = n1*(n1-1)*(n1-2); System.out.println(n1); } else { n1 = n1*(n1-1)*(n1-3); System.out.println(n1); } } else { n1 = n1*(n1-1)*(n1-2); System.out.println(n1); } } } </CODE> <EVALUATION_RUBRIC> - O(n): The running time grows linearly with the input size n. - O(n^3): The running time increases with the cube of the input size n. - O(1): The running time does not change regardless of the input size n. - O(n^2): The running time increases with the square of the input size n. - others: The code does not clearly correspond to the listed classes or has an unclassified time complexity. - non-polynomial: The running time increases non-polynomially with input size n, typically exponentially. - O(nlog(n)): The running time increases with the product of n and logarithm of n. - O(log(n)): The running time increases with the logarithm of the input size n. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
573
2,735
2,756
import java.util.*; import java.io.*; public class LCMChallenge { public static void main(String[] args) { Scanner in = new Scanner(System.in); int n = in.nextInt(); if(n < 3) { System.out.println(n); } else if(n % 2 == 1) { System.out.println((long)n * (n - 1) * (n - 2)); } else { if(n % 3 != 0) { System.out.println((long)n * (n - 1) * (n - 3)); } else { System.out.println((long)(n - 1) * (n - 2) * (n - 3)); } } } }
O(1)
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Determine the worst-case time complexity category of a given Java code based on input size n. </TASK> <CODE> import java.util.*; import java.io.*; public class LCMChallenge { public static void main(String[] args) { Scanner in = new Scanner(System.in); int n = in.nextInt(); if(n < 3) { System.out.println(n); } else if(n % 2 == 1) { System.out.println((long)n * (n - 1) * (n - 2)); } else { if(n % 3 != 0) { System.out.println((long)n * (n - 1) * (n - 3)); } else { System.out.println((long)(n - 1) * (n - 2) * (n - 3)); } } } } </CODE> <EVALUATION_RUBRIC> - O(log(n)): The time complexity increases logarithmically in relation to the input size. - O(n^3): The time complexity scales proportionally to the cube of the input size. - non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially. - O(nlog(n)): The time complexity combines linear and logarithmic growth factors. - O(1): The time complexity is constant to the input size n. - O(n): The time complexity increases proportionally to the input size n in a linear manner. - O(n^2): The time complexity grows proportionally to the square of the input size. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n. </TASK> <CODE> import java.util.*; import java.io.*; public class LCMChallenge { public static void main(String[] args) { Scanner in = new Scanner(System.in); int n = in.nextInt(); if(n < 3) { System.out.println(n); } else if(n % 2 == 1) { System.out.println((long)n * (n - 1) * (n - 2)); } else { if(n % 3 != 0) { System.out.println((long)n * (n - 1) * (n - 3)); } else { System.out.println((long)(n - 1) * (n - 2) * (n - 3)); } } } } </CODE> <EVALUATION_RUBRIC> - O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially. - O(n): The execution time ascends in a one-to-one ratio with the input size n. - others: The time complexity does not fit to any of the given categories or is ambiguous. - O(n^2): The execution time ascends in proportion to the square of the input size n. - O(log(n)): The execution time ascends in proportion to the logarithm of the input size n. - O(n^3): The execution time ascends in proportion to the cube of the input size n. - O(1): The execution time is unaffected by the size of the input n. - non-polynomial: The running time increases non-polynomially with input size n, typically exponentially. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
513
2,750
1,614
import java.io.InputStreamReader; import java.io.IOException; import java.io.BufferedReader; import java.io.OutputStream; import java.io.PrintWriter; import java.util.StringTokenizer; import java.io.InputStream; /** * Built using CHelper plug-in * Actual solution is at the top * @author Sunits789 */ public class Main { public static void main(String[] args) { InputStream inputStream = System.in; OutputStream outputStream = System.out; InputReader in = new InputReader(inputStream); PrintWriter out = new PrintWriter(outputStream); TaskA solver = new TaskA(); solver.solve(1, in, out); out.close(); } } class TaskA { public void solve(int testNumber, InputReader in, PrintWriter out) { int n=in.nextInt(); int arr[]=new int[n]; in.getArray(arr); int arrc[]=new int[n]; for(int i=0;i<n;i++){ arrc[i]=arr[i]; } Library.sort(arrc); int c=0; for(int i=0;i<n;i++){ if(arrc[i]!=arr[i]){ c++; } } if(c>2){ out.println("NO"); } else{ out.println("YES"); } } } class InputReader{ private BufferedReader reader; private StringTokenizer tokenizer; public InputReader(InputStream stream){ reader = new BufferedReader(new InputStreamReader(stream)); tokenizer = null; } public String next(){ while (tokenizer == null||!tokenizer.hasMoreTokens()){ try{ tokenizer = new StringTokenizer(reader.readLine()); } catch (IOException e){ throw new RuntimeException(e); } } return tokenizer.nextToken(); } public int nextInt(){ return Integer.parseInt(next()); } public void getArray(int arr[]){ for(int i=0;i<arr.length;i++){ arr[i]=nextInt(); } } } class Library{ public static void sort(int n[]){ int len=n.length; int l1=len/2; int l2=len-l1; int n1[]=new int[l1]; int n2[]=new int[l2]; for(int i=0;i<l1;i++){ n1[i]=n[i]; } for(int i=0;i<l2;i++){ n2[i]=n[i+l1]; } if(l1!=0){ sort(n1); sort(n2); } int ind1=0; int ind2=0; int ind=0; for(int i=0;i<len&&ind1<l1&&ind2<l2;i++){ if(n1[ind1]<n2[ind2]){ n[i]=n1[ind1]; ind1++; } else{ n[i]=n2[ind2]; ind2++; } ind++; } if(ind1<l1){ for(int i=ind1;i<l1;i++){ n[ind]=n1[i]; ind++; } } if(ind2<l2){ for(int i=ind2;i<l2;i++){ n[ind]=n2[i]; ind++; } } } }
O(nlog(n))
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Classify the following Java code's worst-case time complexity according to its relationship to the input size n. </TASK> <CODE> import java.io.InputStreamReader; import java.io.IOException; import java.io.BufferedReader; import java.io.OutputStream; import java.io.PrintWriter; import java.util.StringTokenizer; import java.io.InputStream; /** * Built using CHelper plug-in * Actual solution is at the top * @author Sunits789 */ public class Main { public static void main(String[] args) { InputStream inputStream = System.in; OutputStream outputStream = System.out; InputReader in = new InputReader(inputStream); PrintWriter out = new PrintWriter(outputStream); TaskA solver = new TaskA(); solver.solve(1, in, out); out.close(); } } class TaskA { public void solve(int testNumber, InputReader in, PrintWriter out) { int n=in.nextInt(); int arr[]=new int[n]; in.getArray(arr); int arrc[]=new int[n]; for(int i=0;i<n;i++){ arrc[i]=arr[i]; } Library.sort(arrc); int c=0; for(int i=0;i<n;i++){ if(arrc[i]!=arr[i]){ c++; } } if(c>2){ out.println("NO"); } else{ out.println("YES"); } } } class InputReader{ private BufferedReader reader; private StringTokenizer tokenizer; public InputReader(InputStream stream){ reader = new BufferedReader(new InputStreamReader(stream)); tokenizer = null; } public String next(){ while (tokenizer == null||!tokenizer.hasMoreTokens()){ try{ tokenizer = new StringTokenizer(reader.readLine()); } catch (IOException e){ throw new RuntimeException(e); } } return tokenizer.nextToken(); } public int nextInt(){ return Integer.parseInt(next()); } public void getArray(int arr[]){ for(int i=0;i<arr.length;i++){ arr[i]=nextInt(); } } } class Library{ public static void sort(int n[]){ int len=n.length; int l1=len/2; int l2=len-l1; int n1[]=new int[l1]; int n2[]=new int[l2]; for(int i=0;i<l1;i++){ n1[i]=n[i]; } for(int i=0;i<l2;i++){ n2[i]=n[i+l1]; } if(l1!=0){ sort(n1); sort(n2); } int ind1=0; int ind2=0; int ind=0; for(int i=0;i<len&&ind1<l1&&ind2<l2;i++){ if(n1[ind1]<n2[ind2]){ n[i]=n1[ind1]; ind1++; } else{ n[i]=n2[ind2]; ind2++; } ind++; } if(ind1<l1){ for(int i=ind1;i<l1;i++){ n[ind]=n1[i]; ind++; } } if(ind2<l2){ for(int i=ind2;i<l2;i++){ n[ind]=n2[i]; ind++; } } } } </CODE> <EVALUATION_RUBRIC> - O(1): The running time does not change regardless of the input size n. - O(nlog(n)): The running time increases with the product of n and logarithm of n. - O(log(n)): The running time increases with the logarithm of the input size n. - O(n^3): The running time increases with the cube of the input size n. - O(n): The running time grows linearly with the input size n. - O(n^2): The running time increases with the square of the input size n. - non-polynomial: The running time increases non-polynomially with input size n, typically exponentially. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Determine the worst-case time complexity category of a given Java code based on input size n. </TASK> <CODE> import java.io.InputStreamReader; import java.io.IOException; import java.io.BufferedReader; import java.io.OutputStream; import java.io.PrintWriter; import java.util.StringTokenizer; import java.io.InputStream; /** * Built using CHelper plug-in * Actual solution is at the top * @author Sunits789 */ public class Main { public static void main(String[] args) { InputStream inputStream = System.in; OutputStream outputStream = System.out; InputReader in = new InputReader(inputStream); PrintWriter out = new PrintWriter(outputStream); TaskA solver = new TaskA(); solver.solve(1, in, out); out.close(); } } class TaskA { public void solve(int testNumber, InputReader in, PrintWriter out) { int n=in.nextInt(); int arr[]=new int[n]; in.getArray(arr); int arrc[]=new int[n]; for(int i=0;i<n;i++){ arrc[i]=arr[i]; } Library.sort(arrc); int c=0; for(int i=0;i<n;i++){ if(arrc[i]!=arr[i]){ c++; } } if(c>2){ out.println("NO"); } else{ out.println("YES"); } } } class InputReader{ private BufferedReader reader; private StringTokenizer tokenizer; public InputReader(InputStream stream){ reader = new BufferedReader(new InputStreamReader(stream)); tokenizer = null; } public String next(){ while (tokenizer == null||!tokenizer.hasMoreTokens()){ try{ tokenizer = new StringTokenizer(reader.readLine()); } catch (IOException e){ throw new RuntimeException(e); } } return tokenizer.nextToken(); } public int nextInt(){ return Integer.parseInt(next()); } public void getArray(int arr[]){ for(int i=0;i<arr.length;i++){ arr[i]=nextInt(); } } } class Library{ public static void sort(int n[]){ int len=n.length; int l1=len/2; int l2=len-l1; int n1[]=new int[l1]; int n2[]=new int[l2]; for(int i=0;i<l1;i++){ n1[i]=n[i]; } for(int i=0;i<l2;i++){ n2[i]=n[i+l1]; } if(l1!=0){ sort(n1); sort(n2); } int ind1=0; int ind2=0; int ind=0; for(int i=0;i<len&&ind1<l1&&ind2<l2;i++){ if(n1[ind1]<n2[ind2]){ n[i]=n1[ind1]; ind1++; } else{ n[i]=n2[ind2]; ind2++; } ind++; } if(ind1<l1){ for(int i=ind1;i<l1;i++){ n[ind]=n1[i]; ind++; } } if(ind2<l2){ for(int i=ind2;i<l2;i++){ n[ind]=n2[i]; ind++; } } } } </CODE> <EVALUATION_RUBRIC> - O(n^3): The time complexity scales proportionally to the cube of the input size. - O(n): The time complexity increases proportionally to the input size n in a linear manner. - non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially. - O(nlog(n)): The time complexity combines linear and logarithmic growth factors. - O(n^2): The time complexity grows proportionally to the square of the input size. - others: The time complexity does not fit any of the above categories or cannot be clearly classified. - O(log(n)): The time complexity increases logarithmically in relation to the input size. - O(1): The time complexity is constant to the input size n. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
1,019
1,611
2,254
import java.io.*; import java.util.*; public final class PythonIndentation { public static void main(String[] args) { new PythonIndentation(System.in, System.out); } static class Solver implements Runnable { static final int MOD = (int) 1e9 + 7; int n; char[] arr; long[][] dp; BufferedReader in; PrintWriter out; void solve() throws IOException { n = Integer.parseInt(in.readLine()); arr = new char[n]; dp = new long[n + 1][n + 1]; for (int i = 0; i < n; i++) arr[i] = in.readLine().charAt(0); for (int i = 0; i <= n; i++) Arrays.fill(dp[i], -1); dp[0][0] = 1; if (arr[0] == 's') out.println(find(1, 0)); else out.println(find(1, 1)); } long find(int curr, int backIndents) { if (backIndents < 0) return 0; if (curr == n) return 1; if (dp[curr][backIndents] != -1) return dp[curr][backIndents]; long ans; if (arr[curr] == 's') { if (arr[curr - 1] == 'f') ans = find(curr + 1, backIndents); else ans = CMath.mod(find(curr + 1, backIndents) + find(curr, backIndents - 1), MOD); } else { ans = find(curr + 1, backIndents + 1); if (arr[curr - 1] != 'f') ans = CMath.mod(ans + find(curr, backIndents - 1), MOD); } return dp[curr][backIndents] = ans; } public Solver(BufferedReader in, PrintWriter out) { this.in = in; this.out = out; } @Override public void run() { try { solve(); } catch (IOException e) { e.printStackTrace(); } } } static class CMath { static long mod(long number, long mod) { return number - (number / mod) * mod; } } private PythonIndentation(InputStream inputStream, OutputStream outputStream) { BufferedReader in = new BufferedReader(new InputStreamReader(inputStream)); PrintWriter out = new PrintWriter(outputStream); Thread thread = new Thread(null, new Solver(in, out), "PythonIndentation", 1 << 29); try { thread.start(); thread.join(); } catch (InterruptedException e) { e.printStackTrace(); } finally { try { in.close(); } catch (IOException e) { e.printStackTrace(); } out.flush(); out.close(); } } }
O(n^2)
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n. </TASK> <CODE> import java.io.*; import java.util.*; public final class PythonIndentation { public static void main(String[] args) { new PythonIndentation(System.in, System.out); } static class Solver implements Runnable { static final int MOD = (int) 1e9 + 7; int n; char[] arr; long[][] dp; BufferedReader in; PrintWriter out; void solve() throws IOException { n = Integer.parseInt(in.readLine()); arr = new char[n]; dp = new long[n + 1][n + 1]; for (int i = 0; i < n; i++) arr[i] = in.readLine().charAt(0); for (int i = 0; i <= n; i++) Arrays.fill(dp[i], -1); dp[0][0] = 1; if (arr[0] == 's') out.println(find(1, 0)); else out.println(find(1, 1)); } long find(int curr, int backIndents) { if (backIndents < 0) return 0; if (curr == n) return 1; if (dp[curr][backIndents] != -1) return dp[curr][backIndents]; long ans; if (arr[curr] == 's') { if (arr[curr - 1] == 'f') ans = find(curr + 1, backIndents); else ans = CMath.mod(find(curr + 1, backIndents) + find(curr, backIndents - 1), MOD); } else { ans = find(curr + 1, backIndents + 1); if (arr[curr - 1] != 'f') ans = CMath.mod(ans + find(curr, backIndents - 1), MOD); } return dp[curr][backIndents] = ans; } public Solver(BufferedReader in, PrintWriter out) { this.in = in; this.out = out; } @Override public void run() { try { solve(); } catch (IOException e) { e.printStackTrace(); } } } static class CMath { static long mod(long number, long mod) { return number - (number / mod) * mod; } } private PythonIndentation(InputStream inputStream, OutputStream outputStream) { BufferedReader in = new BufferedReader(new InputStreamReader(inputStream)); PrintWriter out = new PrintWriter(outputStream); Thread thread = new Thread(null, new Solver(in, out), "PythonIndentation", 1 << 29); try { thread.start(); thread.join(); } catch (InterruptedException e) { e.printStackTrace(); } finally { try { in.close(); } catch (IOException e) { e.printStackTrace(); } out.flush(); out.close(); } } } </CODE> <EVALUATION_RUBRIC> - O(1): The execution time is unaffected by the size of the input n. - O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially. - O(n): The execution time ascends in a one-to-one ratio with the input size n. - O(n^3): The execution time ascends in proportion to the cube of the input size n. - non-polynomial: The running time increases non-polynomially with input size n, typically exponentially. - O(n^2): The execution time ascends in proportion to the square of the input size n. - O(log(n)): The execution time ascends in proportion to the logarithm of the input size n. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Determine the worst-case time complexity category of a given Java code based on input size n. </TASK> <CODE> import java.io.*; import java.util.*; public final class PythonIndentation { public static void main(String[] args) { new PythonIndentation(System.in, System.out); } static class Solver implements Runnable { static final int MOD = (int) 1e9 + 7; int n; char[] arr; long[][] dp; BufferedReader in; PrintWriter out; void solve() throws IOException { n = Integer.parseInt(in.readLine()); arr = new char[n]; dp = new long[n + 1][n + 1]; for (int i = 0; i < n; i++) arr[i] = in.readLine().charAt(0); for (int i = 0; i <= n; i++) Arrays.fill(dp[i], -1); dp[0][0] = 1; if (arr[0] == 's') out.println(find(1, 0)); else out.println(find(1, 1)); } long find(int curr, int backIndents) { if (backIndents < 0) return 0; if (curr == n) return 1; if (dp[curr][backIndents] != -1) return dp[curr][backIndents]; long ans; if (arr[curr] == 's') { if (arr[curr - 1] == 'f') ans = find(curr + 1, backIndents); else ans = CMath.mod(find(curr + 1, backIndents) + find(curr, backIndents - 1), MOD); } else { ans = find(curr + 1, backIndents + 1); if (arr[curr - 1] != 'f') ans = CMath.mod(ans + find(curr, backIndents - 1), MOD); } return dp[curr][backIndents] = ans; } public Solver(BufferedReader in, PrintWriter out) { this.in = in; this.out = out; } @Override public void run() { try { solve(); } catch (IOException e) { e.printStackTrace(); } } } static class CMath { static long mod(long number, long mod) { return number - (number / mod) * mod; } } private PythonIndentation(InputStream inputStream, OutputStream outputStream) { BufferedReader in = new BufferedReader(new InputStreamReader(inputStream)); PrintWriter out = new PrintWriter(outputStream); Thread thread = new Thread(null, new Solver(in, out), "PythonIndentation", 1 << 29); try { thread.start(); thread.join(); } catch (InterruptedException e) { e.printStackTrace(); } finally { try { in.close(); } catch (IOException e) { e.printStackTrace(); } out.flush(); out.close(); } } } </CODE> <EVALUATION_RUBRIC> - others: The time complexity does not fit any of the above categories or cannot be clearly classified. - non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially. - O(nlog(n)): The time complexity combines linear and logarithmic growth factors. - O(n): The time complexity increases proportionally to the input size n in a linear manner. - O(n^2): The time complexity grows proportionally to the square of the input size. - O(log(n)): The time complexity increases logarithmically in relation to the input size. - O(1): The time complexity is constant to the input size n. - O(n^3): The time complexity scales proportionally to the cube of the input size. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
1,042
2,249
2,001
import java.io.*; import java.util.*; public class A4 { public BufferedReader input; public PrintWriter output; public StringTokenizer stoken = new StringTokenizer(""); public static void main(String[] args) throws IOException { new A4(); } A4() throws IOException { input = new BufferedReader(new InputStreamReader(System.in)); output = new PrintWriter(System.out); run(); input.close(); output.close(); } private void run() throws IOException { int n = Math.toIntExact(nextLong()); int m = Math.toIntExact(nextLong()); int[] coor = new int[n + 1]; int[] ss = new int[n + 1]; for (int i = 0; i < n; i++) { coor[i] = Math.toIntExact(nextLong()); } coor[n] = 1000000000; Arrays.sort(coor); for (int i = 0; i < m; i++) { long x1 = nextLong(); long x2 = nextLong(); nextLong(); if (x1 == 1 && x2 >= coor[0]) { int l = 0; int r = n + 1; while (r - l > 1) { int mi = (r + l) / 2; if (coor[mi] > x2) { r = mi; } else { l = mi; } } ss[l]++; } } long[] ans = new long[n + 1]; ans[n] = ss[n] + n; long min = ans[n]; for (int i = n - 1; i > -1; i--) { ans[i] = ans[i + 1] - 1 + ss[i]; if (ans[i] < min) { min = ans[i]; } } System.out.println(min); } private Long nextLong() throws NumberFormatException, IOException { return Long.parseLong(nextString()); } private String nextString() throws IOException { while (!stoken.hasMoreTokens()) { String st = input.readLine(); stoken = new StringTokenizer(st); } return stoken.nextToken(); } }
O(nlog(n))
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n. </TASK> <CODE> import java.io.*; import java.util.*; public class A4 { public BufferedReader input; public PrintWriter output; public StringTokenizer stoken = new StringTokenizer(""); public static void main(String[] args) throws IOException { new A4(); } A4() throws IOException { input = new BufferedReader(new InputStreamReader(System.in)); output = new PrintWriter(System.out); run(); input.close(); output.close(); } private void run() throws IOException { int n = Math.toIntExact(nextLong()); int m = Math.toIntExact(nextLong()); int[] coor = new int[n + 1]; int[] ss = new int[n + 1]; for (int i = 0; i < n; i++) { coor[i] = Math.toIntExact(nextLong()); } coor[n] = 1000000000; Arrays.sort(coor); for (int i = 0; i < m; i++) { long x1 = nextLong(); long x2 = nextLong(); nextLong(); if (x1 == 1 && x2 >= coor[0]) { int l = 0; int r = n + 1; while (r - l > 1) { int mi = (r + l) / 2; if (coor[mi] > x2) { r = mi; } else { l = mi; } } ss[l]++; } } long[] ans = new long[n + 1]; ans[n] = ss[n] + n; long min = ans[n]; for (int i = n - 1; i > -1; i--) { ans[i] = ans[i + 1] - 1 + ss[i]; if (ans[i] < min) { min = ans[i]; } } System.out.println(min); } private Long nextLong() throws NumberFormatException, IOException { return Long.parseLong(nextString()); } private String nextString() throws IOException { while (!stoken.hasMoreTokens()) { String st = input.readLine(); stoken = new StringTokenizer(st); } return stoken.nextToken(); } } </CODE> <EVALUATION_RUBRIC> - O(n^3): The execution time ascends in proportion to the cube of the input size n. - O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially. - O(1): The execution time is unaffected by the size of the input n. - O(n^2): The execution time ascends in proportion to the square of the input size n. - O(log(n)): The execution time ascends in proportion to the logarithm of the input size n. - non-polynomial: The running time increases non-polynomially with input size n, typically exponentially. - O(n): The execution time ascends in a one-to-one ratio with the input size n. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n. </TASK> <CODE> import java.io.*; import java.util.*; public class A4 { public BufferedReader input; public PrintWriter output; public StringTokenizer stoken = new StringTokenizer(""); public static void main(String[] args) throws IOException { new A4(); } A4() throws IOException { input = new BufferedReader(new InputStreamReader(System.in)); output = new PrintWriter(System.out); run(); input.close(); output.close(); } private void run() throws IOException { int n = Math.toIntExact(nextLong()); int m = Math.toIntExact(nextLong()); int[] coor = new int[n + 1]; int[] ss = new int[n + 1]; for (int i = 0; i < n; i++) { coor[i] = Math.toIntExact(nextLong()); } coor[n] = 1000000000; Arrays.sort(coor); for (int i = 0; i < m; i++) { long x1 = nextLong(); long x2 = nextLong(); nextLong(); if (x1 == 1 && x2 >= coor[0]) { int l = 0; int r = n + 1; while (r - l > 1) { int mi = (r + l) / 2; if (coor[mi] > x2) { r = mi; } else { l = mi; } } ss[l]++; } } long[] ans = new long[n + 1]; ans[n] = ss[n] + n; long min = ans[n]; for (int i = n - 1; i > -1; i--) { ans[i] = ans[i + 1] - 1 + ss[i]; if (ans[i] < min) { min = ans[i]; } } System.out.println(min); } private Long nextLong() throws NumberFormatException, IOException { return Long.parseLong(nextString()); } private String nextString() throws IOException { while (!stoken.hasMoreTokens()) { String st = input.readLine(); stoken = new StringTokenizer(st); } return stoken.nextToken(); } } </CODE> <EVALUATION_RUBRIC> - O(n^3): The execution time ascends in proportion to the cube of the input size n. - non-polynomial: The running time increases non-polynomially with input size n, typically exponentially. - O(n): The execution time ascends in a one-to-one ratio with the input size n. - O(1): The execution time is unaffected by the size of the input n. - O(log(n)): The execution time ascends in proportion to the logarithm of the input size n. - O(n^2): The execution time ascends in proportion to the square of the input size n. - O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially. - others: The time complexity does not fit to any of the given categories or is ambiguous. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
840
1,997
61
import java.io.*; import java.util.*; public class A { public static void main(String args[]) { FastScanner scn = new FastScanner(); int n = scn.nextInt(); int s = scn.nextInt(); if (s <= n) { System.out.println(1); } else if (s > n) { if(s%n == 0){ System.out.println(s/n); } else { System.out.println(s/n + 1); } } } public static class FastScanner { BufferedReader br; StringTokenizer st; public FastScanner(String s) { try { br = new BufferedReader(new FileReader(s)); } catch (FileNotFoundException e) { // TODO Auto-generated catch block e.printStackTrace(); } } public FastScanner() { br = new BufferedReader(new InputStreamReader(System.in)); } String nextToken() { while (st == null || !st.hasMoreElements()) { try { st = new StringTokenizer(br.readLine()); } catch (IOException e) { // TODO Auto-generated catch block e.printStackTrace(); } } return st.nextToken(); } int nextInt() { return Integer.parseInt(nextToken()); } long nextLong() { return Long.parseLong(nextToken()); } double nextDouble() { return Double.parseDouble(nextToken()); } } }
O(1)
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n. </TASK> <CODE> import java.io.*; import java.util.*; public class A { public static void main(String args[]) { FastScanner scn = new FastScanner(); int n = scn.nextInt(); int s = scn.nextInt(); if (s <= n) { System.out.println(1); } else if (s > n) { if(s%n == 0){ System.out.println(s/n); } else { System.out.println(s/n + 1); } } } public static class FastScanner { BufferedReader br; StringTokenizer st; public FastScanner(String s) { try { br = new BufferedReader(new FileReader(s)); } catch (FileNotFoundException e) { // TODO Auto-generated catch block e.printStackTrace(); } } public FastScanner() { br = new BufferedReader(new InputStreamReader(System.in)); } String nextToken() { while (st == null || !st.hasMoreElements()) { try { st = new StringTokenizer(br.readLine()); } catch (IOException e) { // TODO Auto-generated catch block e.printStackTrace(); } } return st.nextToken(); } int nextInt() { return Integer.parseInt(nextToken()); } long nextLong() { return Long.parseLong(nextToken()); } double nextDouble() { return Double.parseDouble(nextToken()); } } } </CODE> <EVALUATION_RUBRIC> - non-polynomial: The running time increases non-polynomially with input size n, typically exponentially. - O(n^3): The execution time ascends in proportion to the cube of the input size n. - O(n): The execution time ascends in a one-to-one ratio with the input size n. - O(n^2): The execution time ascends in proportion to the square of the input size n. - O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially. - O(1): The execution time is unaffected by the size of the input n. - O(log(n)): The execution time ascends in proportion to the logarithm of the input size n. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Classify the following Java code's worst-case time complexity according to its relationship to the input size n. </TASK> <CODE> import java.io.*; import java.util.*; public class A { public static void main(String args[]) { FastScanner scn = new FastScanner(); int n = scn.nextInt(); int s = scn.nextInt(); if (s <= n) { System.out.println(1); } else if (s > n) { if(s%n == 0){ System.out.println(s/n); } else { System.out.println(s/n + 1); } } } public static class FastScanner { BufferedReader br; StringTokenizer st; public FastScanner(String s) { try { br = new BufferedReader(new FileReader(s)); } catch (FileNotFoundException e) { // TODO Auto-generated catch block e.printStackTrace(); } } public FastScanner() { br = new BufferedReader(new InputStreamReader(System.in)); } String nextToken() { while (st == null || !st.hasMoreElements()) { try { st = new StringTokenizer(br.readLine()); } catch (IOException e) { // TODO Auto-generated catch block e.printStackTrace(); } } return st.nextToken(); } int nextInt() { return Integer.parseInt(nextToken()); } long nextLong() { return Long.parseLong(nextToken()); } double nextDouble() { return Double.parseDouble(nextToken()); } } } </CODE> <EVALUATION_RUBRIC> - O(n^3): The running time increases with the cube of the input size n. - O(n): The running time grows linearly with the input size n. - O(n^2): The running time increases with the square of the input size n. - O(nlog(n)): The running time increases with the product of n and logarithm of n. - O(1): The running time does not change regardless of the input size n. - non-polynomial: The running time increases non-polynomially with input size n, typically exponentially. - others: The code does not clearly correspond to the listed classes or has an unclassified time complexity. - O(log(n)): The running time increases with the logarithm of the input size n. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
641
61
2,225
import static java.lang.Integer.parseInt; import static java.lang.Long.parseLong; import static java.lang.System.exit; import java.io.BufferedReader; import java.io.IOException; import java.io.InputStreamReader; import java.io.PrintWriter; import java.util.StringTokenizer; public class G { static final int MOD = 1000000007; static int add(int a, int b) { int res = a + b; return res >= MOD ? res - MOD : res; } static int sub(int a, int b) { int res = a - b; return res < 0 ? res + MOD : res; } static int mul(int a, int b) { int res = (int) ((long) a * b % MOD); return res < 0 ? res + MOD : res; } static int pow(int a, int e) { if (e == 0) { return 1; } int r = a; for (int i = 30 - Integer.numberOfLeadingZeros(e); i >= 0; i--) { r = mul(r, r); if ((e & (1 << i)) != 0) { r = mul(r, a); } } return r; } static int inv(int a) { return pow(a, MOD - 2); } static void solve() throws Exception { String x = scanString(); // char xx[] = new char[700]; // fill(xx, '9'); // String x = new String(xx); int n = x.length(); int pows[][] = new int[10][n]; for (int i = 0; i < 10; i++) { pows[i][0] = 1; for (int j = 1; j < n; j++) { pows[i][j] = mul(pows[i][j - 1], i); } } int ru[] = new int[n + 1]; for (int i = 1; i <= n; i++) { ru[i] = add(1, mul(10, ru[i - 1])); } int facts[] = new int[n]; facts[0] = 1; for (int i = 1; i < n; i++) { facts[i] = mul(facts[i - 1], i); } int factsInv[] = new int[n]; factsInv[n - 1] = inv(facts[n - 1]); for (int i = n - 1; i > 0; i--) { factsInv[i - 1] = mul(factsInv[i], i); } int ans = 0; int off[] = new int[10]; for (int i = 0; i < n; i++) { int cd = x.charAt(i) - '0'; int l = n - i - 1; for (int d = 1; d < 10; d++) { for (int p = 0; p <= l; p++) { int mul = d < cd ? add(mul(d, ru[p + off[d]]), mul(cd - d, ru[p + off[d] + 1])) : mul(cd, ru[p + off[d]]); ans = add(ans, mul(mul, mul(mul(pows[d][l - p], pows[10 - d][p]), mul(facts[l], mul(factsInv[p], factsInv[l - p]))))); } } for (int d = 0; d <= cd; d++) { ++off[d]; } } for (int d = 1; d < 10; d++) { ans = add(ans, ru[off[d]]); } out.print(ans); } static int scanInt() throws IOException { return parseInt(scanString()); } static long scanLong() throws IOException { return parseLong(scanString()); } static String scanString() throws IOException { while (tok == null || !tok.hasMoreTokens()) { tok = new StringTokenizer(in.readLine()); } return tok.nextToken(); } static BufferedReader in; static PrintWriter out; static StringTokenizer tok; public static void main(String[] args) { try { in = new BufferedReader(new InputStreamReader(System.in)); out = new PrintWriter(System.out); solve(); in.close(); out.close(); } catch (Throwable e) { e.printStackTrace(); exit(1); } } }
O(n^2)
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n. </TASK> <CODE> import static java.lang.Integer.parseInt; import static java.lang.Long.parseLong; import static java.lang.System.exit; import java.io.BufferedReader; import java.io.IOException; import java.io.InputStreamReader; import java.io.PrintWriter; import java.util.StringTokenizer; public class G { static final int MOD = 1000000007; static int add(int a, int b) { int res = a + b; return res >= MOD ? res - MOD : res; } static int sub(int a, int b) { int res = a - b; return res < 0 ? res + MOD : res; } static int mul(int a, int b) { int res = (int) ((long) a * b % MOD); return res < 0 ? res + MOD : res; } static int pow(int a, int e) { if (e == 0) { return 1; } int r = a; for (int i = 30 - Integer.numberOfLeadingZeros(e); i >= 0; i--) { r = mul(r, r); if ((e & (1 << i)) != 0) { r = mul(r, a); } } return r; } static int inv(int a) { return pow(a, MOD - 2); } static void solve() throws Exception { String x = scanString(); // char xx[] = new char[700]; // fill(xx, '9'); // String x = new String(xx); int n = x.length(); int pows[][] = new int[10][n]; for (int i = 0; i < 10; i++) { pows[i][0] = 1; for (int j = 1; j < n; j++) { pows[i][j] = mul(pows[i][j - 1], i); } } int ru[] = new int[n + 1]; for (int i = 1; i <= n; i++) { ru[i] = add(1, mul(10, ru[i - 1])); } int facts[] = new int[n]; facts[0] = 1; for (int i = 1; i < n; i++) { facts[i] = mul(facts[i - 1], i); } int factsInv[] = new int[n]; factsInv[n - 1] = inv(facts[n - 1]); for (int i = n - 1; i > 0; i--) { factsInv[i - 1] = mul(factsInv[i], i); } int ans = 0; int off[] = new int[10]; for (int i = 0; i < n; i++) { int cd = x.charAt(i) - '0'; int l = n - i - 1; for (int d = 1; d < 10; d++) { for (int p = 0; p <= l; p++) { int mul = d < cd ? add(mul(d, ru[p + off[d]]), mul(cd - d, ru[p + off[d] + 1])) : mul(cd, ru[p + off[d]]); ans = add(ans, mul(mul, mul(mul(pows[d][l - p], pows[10 - d][p]), mul(facts[l], mul(factsInv[p], factsInv[l - p]))))); } } for (int d = 0; d <= cd; d++) { ++off[d]; } } for (int d = 1; d < 10; d++) { ans = add(ans, ru[off[d]]); } out.print(ans); } static int scanInt() throws IOException { return parseInt(scanString()); } static long scanLong() throws IOException { return parseLong(scanString()); } static String scanString() throws IOException { while (tok == null || !tok.hasMoreTokens()) { tok = new StringTokenizer(in.readLine()); } return tok.nextToken(); } static BufferedReader in; static PrintWriter out; static StringTokenizer tok; public static void main(String[] args) { try { in = new BufferedReader(new InputStreamReader(System.in)); out = new PrintWriter(System.out); solve(); in.close(); out.close(); } catch (Throwable e) { e.printStackTrace(); exit(1); } } } </CODE> <EVALUATION_RUBRIC> - non-polynomial: The running time increases non-polynomially with input size n, typically exponentially. - O(n^3): The execution time ascends in proportion to the cube of the input size n. - O(n): The execution time ascends in a one-to-one ratio with the input size n. - O(log(n)): The execution time ascends in proportion to the logarithm of the input size n. - O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially. - O(n^2): The execution time ascends in proportion to the square of the input size n. - O(1): The execution time is unaffected by the size of the input n. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Classify the following Java code's worst-case time complexity according to its relationship to the input size n. </TASK> <CODE> import static java.lang.Integer.parseInt; import static java.lang.Long.parseLong; import static java.lang.System.exit; import java.io.BufferedReader; import java.io.IOException; import java.io.InputStreamReader; import java.io.PrintWriter; import java.util.StringTokenizer; public class G { static final int MOD = 1000000007; static int add(int a, int b) { int res = a + b; return res >= MOD ? res - MOD : res; } static int sub(int a, int b) { int res = a - b; return res < 0 ? res + MOD : res; } static int mul(int a, int b) { int res = (int) ((long) a * b % MOD); return res < 0 ? res + MOD : res; } static int pow(int a, int e) { if (e == 0) { return 1; } int r = a; for (int i = 30 - Integer.numberOfLeadingZeros(e); i >= 0; i--) { r = mul(r, r); if ((e & (1 << i)) != 0) { r = mul(r, a); } } return r; } static int inv(int a) { return pow(a, MOD - 2); } static void solve() throws Exception { String x = scanString(); // char xx[] = new char[700]; // fill(xx, '9'); // String x = new String(xx); int n = x.length(); int pows[][] = new int[10][n]; for (int i = 0; i < 10; i++) { pows[i][0] = 1; for (int j = 1; j < n; j++) { pows[i][j] = mul(pows[i][j - 1], i); } } int ru[] = new int[n + 1]; for (int i = 1; i <= n; i++) { ru[i] = add(1, mul(10, ru[i - 1])); } int facts[] = new int[n]; facts[0] = 1; for (int i = 1; i < n; i++) { facts[i] = mul(facts[i - 1], i); } int factsInv[] = new int[n]; factsInv[n - 1] = inv(facts[n - 1]); for (int i = n - 1; i > 0; i--) { factsInv[i - 1] = mul(factsInv[i], i); } int ans = 0; int off[] = new int[10]; for (int i = 0; i < n; i++) { int cd = x.charAt(i) - '0'; int l = n - i - 1; for (int d = 1; d < 10; d++) { for (int p = 0; p <= l; p++) { int mul = d < cd ? add(mul(d, ru[p + off[d]]), mul(cd - d, ru[p + off[d] + 1])) : mul(cd, ru[p + off[d]]); ans = add(ans, mul(mul, mul(mul(pows[d][l - p], pows[10 - d][p]), mul(facts[l], mul(factsInv[p], factsInv[l - p]))))); } } for (int d = 0; d <= cd; d++) { ++off[d]; } } for (int d = 1; d < 10; d++) { ans = add(ans, ru[off[d]]); } out.print(ans); } static int scanInt() throws IOException { return parseInt(scanString()); } static long scanLong() throws IOException { return parseLong(scanString()); } static String scanString() throws IOException { while (tok == null || !tok.hasMoreTokens()) { tok = new StringTokenizer(in.readLine()); } return tok.nextToken(); } static BufferedReader in; static PrintWriter out; static StringTokenizer tok; public static void main(String[] args) { try { in = new BufferedReader(new InputStreamReader(System.in)); out = new PrintWriter(System.out); solve(); in.close(); out.close(); } catch (Throwable e) { e.printStackTrace(); exit(1); } } } </CODE> <EVALUATION_RUBRIC> - O(nlog(n)): The running time increases with the product of n and logarithm of n. - O(1): The running time does not change regardless of the input size n. - O(n^2): The running time increases with the square of the input size n. - O(log(n)): The running time increases with the logarithm of the input size n. - non-polynomial: The running time increases non-polynomially with input size n, typically exponentially. - others: The code does not clearly correspond to the listed classes or has an unclassified time complexity. - O(n): The running time grows linearly with the input size n. - O(n^3): The running time increases with the cube of the input size n. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
1,364
2,221
1,574
import java.io.*; import java.util.*; public class Solution { private StringTokenizer st; private BufferedReader in; private PrintWriter out; public void solve() throws IOException { int n = nextInt(); int[] a = new int[n]; for (int i = 0; i < n; ++i) { a[i] = nextInt(); } int[] b = a.clone(); Arrays.sort(b); int diff = 0; for (int i = 0; i < n; ++i) { if (a[i] != b[i]) { diff++; } } out.println(diff <= 2 ? "YES" : "NO"); } public void run() throws IOException { in = new BufferedReader(new InputStreamReader(System.in)); out = new PrintWriter(System.out); eat(""); solve(); out.close(); } void eat(String s) { st = new StringTokenizer(s); } String next() throws IOException { while (!st.hasMoreTokens()) { String line = in.readLine(); if (line == null) { return null; } eat(line); } return st.nextToken(); } int nextInt() throws IOException { return Integer.parseInt(next()); } long nextLong() throws IOException { return Long.parseLong(next()); } double nextDouble() throws IOException { return Double.parseDouble(next()); } public static void main(String[] args) throws IOException { Locale.setDefault(Locale.US); new Solution().run(); } }
O(nlog(n))
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n. </TASK> <CODE> import java.io.*; import java.util.*; public class Solution { private StringTokenizer st; private BufferedReader in; private PrintWriter out; public void solve() throws IOException { int n = nextInt(); int[] a = new int[n]; for (int i = 0; i < n; ++i) { a[i] = nextInt(); } int[] b = a.clone(); Arrays.sort(b); int diff = 0; for (int i = 0; i < n; ++i) { if (a[i] != b[i]) { diff++; } } out.println(diff <= 2 ? "YES" : "NO"); } public void run() throws IOException { in = new BufferedReader(new InputStreamReader(System.in)); out = new PrintWriter(System.out); eat(""); solve(); out.close(); } void eat(String s) { st = new StringTokenizer(s); } String next() throws IOException { while (!st.hasMoreTokens()) { String line = in.readLine(); if (line == null) { return null; } eat(line); } return st.nextToken(); } int nextInt() throws IOException { return Integer.parseInt(next()); } long nextLong() throws IOException { return Long.parseLong(next()); } double nextDouble() throws IOException { return Double.parseDouble(next()); } public static void main(String[] args) throws IOException { Locale.setDefault(Locale.US); new Solution().run(); } } </CODE> <EVALUATION_RUBRIC> - O(log(n)): The execution time ascends in proportion to the logarithm of the input size n. - O(1): The execution time is unaffected by the size of the input n. - non-polynomial: The running time increases non-polynomially with input size n, typically exponentially. - O(n^2): The execution time ascends in proportion to the square of the input size n. - O(n^3): The execution time ascends in proportion to the cube of the input size n. - O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially. - O(n): The execution time ascends in a one-to-one ratio with the input size n. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Classify the following Java code's worst-case time complexity according to its relationship to the input size n. </TASK> <CODE> import java.io.*; import java.util.*; public class Solution { private StringTokenizer st; private BufferedReader in; private PrintWriter out; public void solve() throws IOException { int n = nextInt(); int[] a = new int[n]; for (int i = 0; i < n; ++i) { a[i] = nextInt(); } int[] b = a.clone(); Arrays.sort(b); int diff = 0; for (int i = 0; i < n; ++i) { if (a[i] != b[i]) { diff++; } } out.println(diff <= 2 ? "YES" : "NO"); } public void run() throws IOException { in = new BufferedReader(new InputStreamReader(System.in)); out = new PrintWriter(System.out); eat(""); solve(); out.close(); } void eat(String s) { st = new StringTokenizer(s); } String next() throws IOException { while (!st.hasMoreTokens()) { String line = in.readLine(); if (line == null) { return null; } eat(line); } return st.nextToken(); } int nextInt() throws IOException { return Integer.parseInt(next()); } long nextLong() throws IOException { return Long.parseLong(next()); } double nextDouble() throws IOException { return Double.parseDouble(next()); } public static void main(String[] args) throws IOException { Locale.setDefault(Locale.US); new Solution().run(); } } </CODE> <EVALUATION_RUBRIC> - O(n^2): The running time increases with the square of the input size n. - O(1): The running time does not change regardless of the input size n. - O(n): The running time grows linearly with the input size n. - O(log(n)): The running time increases with the logarithm of the input size n. - O(n^3): The running time increases with the cube of the input size n. - O(nlog(n)): The running time increases with the product of n and logarithm of n. - non-polynomial: The running time increases non-polynomially with input size n, typically exponentially. - others: The code does not clearly correspond to the listed classes or has an unclassified time complexity. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
687
1,571
568
import java.util.Scanner; public class B_14 { @SuppressWarnings("resource") public static void main(String[] args) { Scanner input = new Scanner(System.in); int t = input.nextInt(); for(int test = 0; test < t; test++){ int n = input.nextInt(); if(n % 2 == 0){ if(Math.sqrt(n / 2) == (int)(Math.sqrt(n / 2))){ System.out.println("YES"); }else if(n % 4 == 0 && Math.sqrt(n / 4) == (int)(Math.sqrt(n / 4))){ System.out.println("YES"); }else{ System.out.println("NO"); } }else{ System.out.println("NO"); } } } }
O(n)
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Determine the worst-case time complexity category of a given Java code based on input size n. </TASK> <CODE> import java.util.Scanner; public class B_14 { @SuppressWarnings("resource") public static void main(String[] args) { Scanner input = new Scanner(System.in); int t = input.nextInt(); for(int test = 0; test < t; test++){ int n = input.nextInt(); if(n % 2 == 0){ if(Math.sqrt(n / 2) == (int)(Math.sqrt(n / 2))){ System.out.println("YES"); }else if(n % 4 == 0 && Math.sqrt(n / 4) == (int)(Math.sqrt(n / 4))){ System.out.println("YES"); }else{ System.out.println("NO"); } }else{ System.out.println("NO"); } } } } </CODE> <EVALUATION_RUBRIC> - O(n^2): The time complexity grows proportionally to the square of the input size. - O(n): The time complexity increases proportionally to the input size n in a linear manner. - O(n^3): The time complexity scales proportionally to the cube of the input size. - O(log(n)): The time complexity increases logarithmically in relation to the input size. - O(1): The time complexity is constant to the input size n. - O(nlog(n)): The time complexity combines linear and logarithmic growth factors. - non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Determine the worst-case time complexity category of a given Java code based on input size n. </TASK> <CODE> import java.util.Scanner; public class B_14 { @SuppressWarnings("resource") public static void main(String[] args) { Scanner input = new Scanner(System.in); int t = input.nextInt(); for(int test = 0; test < t; test++){ int n = input.nextInt(); if(n % 2 == 0){ if(Math.sqrt(n / 2) == (int)(Math.sqrt(n / 2))){ System.out.println("YES"); }else if(n % 4 == 0 && Math.sqrt(n / 4) == (int)(Math.sqrt(n / 4))){ System.out.println("YES"); }else{ System.out.println("NO"); } }else{ System.out.println("NO"); } } } } </CODE> <EVALUATION_RUBRIC> - O(nlog(n)): The time complexity combines linear and logarithmic growth factors. - O(n): The time complexity increases proportionally to the input size n in a linear manner. - O(n^3): The time complexity scales proportionally to the cube of the input size. - O(n^2): The time complexity grows proportionally to the square of the input size. - O(log(n)): The time complexity increases logarithmically in relation to the input size. - non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially. - O(1): The time complexity is constant to the input size n. - others: The time complexity does not fit any of the above categories or cannot be clearly classified. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
502
567
3,446
//package round23; import java.io.PrintWriter; import java.io.StringReader; import java.util.Arrays; import java.util.HashSet; import java.util.Scanner; public class A { private Scanner in; private PrintWriter out; // private String INPUT = add("a", 100); private String INPUT = ""; public void solve() { String str = in.next(); int n = str.length(); for(int k = n - 1;k >= 1;k--){ HashSet<String> set = new HashSet<String>(); for(int i = 0;i < str.length() - k + 1;i++){ if(!set.add(str.substring(i, i + k))){ out.println(k); return; } } } out.println(0); } public void run() throws Exception { in = INPUT.isEmpty() ? new Scanner(System.in) : new Scanner(new StringReader(INPUT)); out = new PrintWriter(System.out); solve(); out.flush(); } public static String add(String str, int k) { StringBuilder mul = new StringBuilder(str); StringBuilder ret = new StringBuilder(); for(int i = k;i > 0;i >>= 1){ if((i & 1) == 1)ret.append(mul); mul.append(mul); } return ret.toString(); } public static void main(String[] args) throws Exception { new A().run(); } private int ni() { return Integer.parseInt(in.next()); } private static void tr(Object... o) { System.out.println(o.length == 1 ? o[0] : Arrays.toString(o)); } }
O(n^3)
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Determine the worst-case time complexity category of a given Java code based on input size n. </TASK> <CODE> //package round23; import java.io.PrintWriter; import java.io.StringReader; import java.util.Arrays; import java.util.HashSet; import java.util.Scanner; public class A { private Scanner in; private PrintWriter out; // private String INPUT = add("a", 100); private String INPUT = ""; public void solve() { String str = in.next(); int n = str.length(); for(int k = n - 1;k >= 1;k--){ HashSet<String> set = new HashSet<String>(); for(int i = 0;i < str.length() - k + 1;i++){ if(!set.add(str.substring(i, i + k))){ out.println(k); return; } } } out.println(0); } public void run() throws Exception { in = INPUT.isEmpty() ? new Scanner(System.in) : new Scanner(new StringReader(INPUT)); out = new PrintWriter(System.out); solve(); out.flush(); } public static String add(String str, int k) { StringBuilder mul = new StringBuilder(str); StringBuilder ret = new StringBuilder(); for(int i = k;i > 0;i >>= 1){ if((i & 1) == 1)ret.append(mul); mul.append(mul); } return ret.toString(); } public static void main(String[] args) throws Exception { new A().run(); } private int ni() { return Integer.parseInt(in.next()); } private static void tr(Object... o) { System.out.println(o.length == 1 ? o[0] : Arrays.toString(o)); } } </CODE> <EVALUATION_RUBRIC> - O(n^2): The time complexity grows proportionally to the square of the input size. - O(1): The time complexity is constant to the input size n. - O(n^3): The time complexity scales proportionally to the cube of the input size. - non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially. - O(nlog(n)): The time complexity combines linear and logarithmic growth factors. - O(n): The time complexity increases proportionally to the input size n in a linear manner. - O(log(n)): The time complexity increases logarithmically in relation to the input size. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n. </TASK> <CODE> //package round23; import java.io.PrintWriter; import java.io.StringReader; import java.util.Arrays; import java.util.HashSet; import java.util.Scanner; public class A { private Scanner in; private PrintWriter out; // private String INPUT = add("a", 100); private String INPUT = ""; public void solve() { String str = in.next(); int n = str.length(); for(int k = n - 1;k >= 1;k--){ HashSet<String> set = new HashSet<String>(); for(int i = 0;i < str.length() - k + 1;i++){ if(!set.add(str.substring(i, i + k))){ out.println(k); return; } } } out.println(0); } public void run() throws Exception { in = INPUT.isEmpty() ? new Scanner(System.in) : new Scanner(new StringReader(INPUT)); out = new PrintWriter(System.out); solve(); out.flush(); } public static String add(String str, int k) { StringBuilder mul = new StringBuilder(str); StringBuilder ret = new StringBuilder(); for(int i = k;i > 0;i >>= 1){ if((i & 1) == 1)ret.append(mul); mul.append(mul); } return ret.toString(); } public static void main(String[] args) throws Exception { new A().run(); } private int ni() { return Integer.parseInt(in.next()); } private static void tr(Object... o) { System.out.println(o.length == 1 ? o[0] : Arrays.toString(o)); } } </CODE> <EVALUATION_RUBRIC> - O(1): The execution time is unaffected by the size of the input n. - O(n^3): The execution time ascends in proportion to the cube of the input size n. - O(log(n)): The execution time ascends in proportion to the logarithm of the input size n. - O(n): The execution time ascends in a one-to-one ratio with the input size n. - non-polynomial: The running time increases non-polynomially with input size n, typically exponentially. - others: The time complexity does not fit to any of the given categories or is ambiguous. - O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially. - O(n^2): The execution time ascends in proportion to the square of the input size n. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
686
3,440
1,818
import java.util.Arrays; import java.util.Scanner; /** * * @author Natasha */ public class Main{ public static void main(String[] args) { Scanner in = new Scanner(System.in); int produzeni = in.nextInt(); int devices = in.nextInt(); int stekovi = in.nextInt(); int [] filter = new int[produzeni]; for(int i = 0; i<produzeni; i++){ filter[i] = in.nextInt(); } Arrays.sort(filter); int filt_no = filter.length-1; if(devices<=stekovi) { System.out.println("0"); return; } int used = 0; while(devices>stekovi){ try{ stekovi+=filter[filt_no--]-1; } catch(Exception e){ System.out.println("-1"); return; } } System.out.println(filter.length - filt_no-1); } }
O(nlog(n))
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Determine the worst-case time complexity category of a given Java code based on input size n. </TASK> <CODE> import java.util.Arrays; import java.util.Scanner; /** * * @author Natasha */ public class Main{ public static void main(String[] args) { Scanner in = new Scanner(System.in); int produzeni = in.nextInt(); int devices = in.nextInt(); int stekovi = in.nextInt(); int [] filter = new int[produzeni]; for(int i = 0; i<produzeni; i++){ filter[i] = in.nextInt(); } Arrays.sort(filter); int filt_no = filter.length-1; if(devices<=stekovi) { System.out.println("0"); return; } int used = 0; while(devices>stekovi){ try{ stekovi+=filter[filt_no--]-1; } catch(Exception e){ System.out.println("-1"); return; } } System.out.println(filter.length - filt_no-1); } } </CODE> <EVALUATION_RUBRIC> - O(nlog(n)): The time complexity combines linear and logarithmic growth factors. - O(1): The time complexity is constant to the input size n. - non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially. - O(log(n)): The time complexity increases logarithmically in relation to the input size. - O(n): The time complexity increases proportionally to the input size n in a linear manner. - O(n^2): The time complexity grows proportionally to the square of the input size. - O(n^3): The time complexity scales proportionally to the cube of the input size. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Classify the following Java code's worst-case time complexity according to its relationship to the input size n. </TASK> <CODE> import java.util.Arrays; import java.util.Scanner; /** * * @author Natasha */ public class Main{ public static void main(String[] args) { Scanner in = new Scanner(System.in); int produzeni = in.nextInt(); int devices = in.nextInt(); int stekovi = in.nextInt(); int [] filter = new int[produzeni]; for(int i = 0; i<produzeni; i++){ filter[i] = in.nextInt(); } Arrays.sort(filter); int filt_no = filter.length-1; if(devices<=stekovi) { System.out.println("0"); return; } int used = 0; while(devices>stekovi){ try{ stekovi+=filter[filt_no--]-1; } catch(Exception e){ System.out.println("-1"); return; } } System.out.println(filter.length - filt_no-1); } } </CODE> <EVALUATION_RUBRIC> - O(n^2): The running time increases with the square of the input size n. - O(n): The running time grows linearly with the input size n. - others: The code does not clearly correspond to the listed classes or has an unclassified time complexity. - O(log(n)): The running time increases with the logarithm of the input size n. - O(1): The running time does not change regardless of the input size n. - non-polynomial: The running time increases non-polynomially with input size n, typically exponentially. - O(nlog(n)): The running time increases with the product of n and logarithm of n. - O(n^3): The running time increases with the cube of the input size n. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
540
1,814
3,910
import java.util.*; import java.io.*; public class uo{ public static void main(String[] args) throws IOException{ BufferedReader br = new BufferedReader(new InputStreamReader(System.in)); StringTokenizer st = new StringTokenizer(br.readLine()); int testcases = Integer.parseInt(st.nextToken()); for(int lmn=0;lmn<testcases;lmn++){ st = new StringTokenizer(br.readLine()); int n = Integer.parseInt(st.nextToken()); // int k = Integer.parseInt(st.nextToken()); // st = new StringTokenizer(br.readLine()); ArrayList<Integer> a = new ArrayList<>(); for(int lmn1 = 0;lmn1<n;lmn1++){ st = new StringTokenizer(br.readLine()); int a1 = Integer.parseInt(st.nextToken()); if(a.size()>0 && (a1==1)){ // a.add(a1); } else if(a.size()>0){ if(a.size()==1){ a.remove(0); } else{ int i = a.size()-1; while(a.size()>0 && i>=0 && a.get(i)+1 != a1){ a.remove(i); i--; } a.remove(a.size()-1); // System.out.println(a+" "+i); } } // while(a.size()>0 && a.get(a.size()-1)+1<a1){ // a.remove(a.size()-1); // } if(a.size()==0){ a.add(a1); } else{ a.add(a1); } if(a.size()==1){ System.out.println(a.get(0)); } else{ for(int i=0;i<a.size()-1;i++){ System.out.print(a.get(i)+"."); } System.out.println(a.get(a.size()-1)); } } } } }
O(n^3)
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Determine the worst-case time complexity category of a given Java code based on input size n. </TASK> <CODE> import java.util.*; import java.io.*; public class uo{ public static void main(String[] args) throws IOException{ BufferedReader br = new BufferedReader(new InputStreamReader(System.in)); StringTokenizer st = new StringTokenizer(br.readLine()); int testcases = Integer.parseInt(st.nextToken()); for(int lmn=0;lmn<testcases;lmn++){ st = new StringTokenizer(br.readLine()); int n = Integer.parseInt(st.nextToken()); // int k = Integer.parseInt(st.nextToken()); // st = new StringTokenizer(br.readLine()); ArrayList<Integer> a = new ArrayList<>(); for(int lmn1 = 0;lmn1<n;lmn1++){ st = new StringTokenizer(br.readLine()); int a1 = Integer.parseInt(st.nextToken()); if(a.size()>0 && (a1==1)){ // a.add(a1); } else if(a.size()>0){ if(a.size()==1){ a.remove(0); } else{ int i = a.size()-1; while(a.size()>0 && i>=0 && a.get(i)+1 != a1){ a.remove(i); i--; } a.remove(a.size()-1); // System.out.println(a+" "+i); } } // while(a.size()>0 && a.get(a.size()-1)+1<a1){ // a.remove(a.size()-1); // } if(a.size()==0){ a.add(a1); } else{ a.add(a1); } if(a.size()==1){ System.out.println(a.get(0)); } else{ for(int i=0;i<a.size()-1;i++){ System.out.print(a.get(i)+"."); } System.out.println(a.get(a.size()-1)); } } } } } </CODE> <EVALUATION_RUBRIC> - non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially. - O(n^3): The time complexity scales proportionally to the cube of the input size. - O(n^2): The time complexity grows proportionally to the square of the input size. - O(nlog(n)): The time complexity combines linear and logarithmic growth factors. - O(n): The time complexity increases proportionally to the input size n in a linear manner. - O(log(n)): The time complexity increases logarithmically in relation to the input size. - O(1): The time complexity is constant to the input size n. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n. </TASK> <CODE> import java.util.*; import java.io.*; public class uo{ public static void main(String[] args) throws IOException{ BufferedReader br = new BufferedReader(new InputStreamReader(System.in)); StringTokenizer st = new StringTokenizer(br.readLine()); int testcases = Integer.parseInt(st.nextToken()); for(int lmn=0;lmn<testcases;lmn++){ st = new StringTokenizer(br.readLine()); int n = Integer.parseInt(st.nextToken()); // int k = Integer.parseInt(st.nextToken()); // st = new StringTokenizer(br.readLine()); ArrayList<Integer> a = new ArrayList<>(); for(int lmn1 = 0;lmn1<n;lmn1++){ st = new StringTokenizer(br.readLine()); int a1 = Integer.parseInt(st.nextToken()); if(a.size()>0 && (a1==1)){ // a.add(a1); } else if(a.size()>0){ if(a.size()==1){ a.remove(0); } else{ int i = a.size()-1; while(a.size()>0 && i>=0 && a.get(i)+1 != a1){ a.remove(i); i--; } a.remove(a.size()-1); // System.out.println(a+" "+i); } } // while(a.size()>0 && a.get(a.size()-1)+1<a1){ // a.remove(a.size()-1); // } if(a.size()==0){ a.add(a1); } else{ a.add(a1); } if(a.size()==1){ System.out.println(a.get(0)); } else{ for(int i=0;i<a.size()-1;i++){ System.out.print(a.get(i)+"."); } System.out.println(a.get(a.size()-1)); } } } } } </CODE> <EVALUATION_RUBRIC> - O(1): The execution time is unaffected by the size of the input n. - O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially. - O(n^3): The execution time ascends in proportion to the cube of the input size n. - O(n): The execution time ascends in a one-to-one ratio with the input size n. - O(n^2): The execution time ascends in proportion to the square of the input size n. - O(log(n)): The execution time ascends in proportion to the logarithm of the input size n. - others: The time complexity does not fit to any of the given categories or is ambiguous. - non-polynomial: The running time increases non-polynomially with input size n, typically exponentially. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
740
3,900
3,195
import java.io.*; import java.util.*; public class Problem1 { /** * @param args */ public static void main(String[] args) { // TODO Auto-generated method stub Scanner sc = new Scanner(System.in); int n = sc.nextInt(); if (n < 0) { int first = n / 10; int second = (n / 100)*10 + (n % 10); if (first > second) System.out.println(first); else System.out.println(second); } else { System.out.println(n); } } }
O(1)
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Classify the following Java code's worst-case time complexity according to its relationship to the input size n. </TASK> <CODE> import java.io.*; import java.util.*; public class Problem1 { /** * @param args */ public static void main(String[] args) { // TODO Auto-generated method stub Scanner sc = new Scanner(System.in); int n = sc.nextInt(); if (n < 0) { int first = n / 10; int second = (n / 100)*10 + (n % 10); if (first > second) System.out.println(first); else System.out.println(second); } else { System.out.println(n); } } } </CODE> <EVALUATION_RUBRIC> - O(nlog(n)): The running time increases with the product of n and logarithm of n. - O(1): The running time does not change regardless of the input size n. - O(n^3): The running time increases with the cube of the input size n. - O(n): The running time grows linearly with the input size n. - O(n^2): The running time increases with the square of the input size n. - O(log(n)): The running time increases with the logarithm of the input size n. - non-polynomial: The running time increases non-polynomially with input size n, typically exponentially. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Classify the following Java code's worst-case time complexity according to its relationship to the input size n. </TASK> <CODE> import java.io.*; import java.util.*; public class Problem1 { /** * @param args */ public static void main(String[] args) { // TODO Auto-generated method stub Scanner sc = new Scanner(System.in); int n = sc.nextInt(); if (n < 0) { int first = n / 10; int second = (n / 100)*10 + (n % 10); if (first > second) System.out.println(first); else System.out.println(second); } else { System.out.println(n); } } } </CODE> <EVALUATION_RUBRIC> - O(log(n)): The running time increases with the logarithm of the input size n. - O(n^3): The running time increases with the cube of the input size n. - O(nlog(n)): The running time increases with the product of n and logarithm of n. - O(n^2): The running time increases with the square of the input size n. - O(1): The running time does not change regardless of the input size n. - O(n): The running time grows linearly with the input size n. - non-polynomial: The running time increases non-polynomially with input size n, typically exponentially. - others: The code does not clearly correspond to the listed classes or has an unclassified time complexity. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
470
3,189
2,763
import java.lang.*; import java.util.*; import java.io.*; public class Challenge { public static void main(String[] args) throws java.lang.Exception { InputStream inputStream = System.in; OutputStream outputStream = System.out; InputReader in = new InputReader(inputStream); PrintWriter out = new PrintWriter(outputStream); TaskA solver = new TaskA(); solver.solve(in, out); out.close(); } } class TaskA { public void solve(InputReader in, PrintWriter out) { int n = in.nextInt(); if (n == 1) { out.println("1"); } else if (n == 2) { out.println("2"); } else if (n == 3) { out.println("6"); } else if (n%2 > 0) { out.println(1L * n * (n-1) * (n-2)); } else if (n%3 == 0) { out.println(1L * (n-1) * (n-2) * (n-3)); } else { out.println(1L * n * (n-1) * (n-3)); } } } class InputReader { public BufferedReader reader; public StringTokenizer tokenizer; public InputReader(InputStream stream) { reader = new BufferedReader(new InputStreamReader(stream), 32768); tokenizer = null; } public String next() { while (tokenizer==null || !tokenizer.hasMoreTokens()) { try { tokenizer = new StringTokenizer(reader.readLine()); } catch (IOException e) { throw new RuntimeException(e); } } return tokenizer.nextToken(); } public int nextInt() { return Integer.parseInt(next()); } public long nextLong() { return Long.parseLong(next()); } }
O(1)
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n. </TASK> <CODE> import java.lang.*; import java.util.*; import java.io.*; public class Challenge { public static void main(String[] args) throws java.lang.Exception { InputStream inputStream = System.in; OutputStream outputStream = System.out; InputReader in = new InputReader(inputStream); PrintWriter out = new PrintWriter(outputStream); TaskA solver = new TaskA(); solver.solve(in, out); out.close(); } } class TaskA { public void solve(InputReader in, PrintWriter out) { int n = in.nextInt(); if (n == 1) { out.println("1"); } else if (n == 2) { out.println("2"); } else if (n == 3) { out.println("6"); } else if (n%2 > 0) { out.println(1L * n * (n-1) * (n-2)); } else if (n%3 == 0) { out.println(1L * (n-1) * (n-2) * (n-3)); } else { out.println(1L * n * (n-1) * (n-3)); } } } class InputReader { public BufferedReader reader; public StringTokenizer tokenizer; public InputReader(InputStream stream) { reader = new BufferedReader(new InputStreamReader(stream), 32768); tokenizer = null; } public String next() { while (tokenizer==null || !tokenizer.hasMoreTokens()) { try { tokenizer = new StringTokenizer(reader.readLine()); } catch (IOException e) { throw new RuntimeException(e); } } return tokenizer.nextToken(); } public int nextInt() { return Integer.parseInt(next()); } public long nextLong() { return Long.parseLong(next()); } } </CODE> <EVALUATION_RUBRIC> - O(n^3): The execution time ascends in proportion to the cube of the input size n. - O(n): The execution time ascends in a one-to-one ratio with the input size n. - O(n^2): The execution time ascends in proportion to the square of the input size n. - O(log(n)): The execution time ascends in proportion to the logarithm of the input size n. - O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially. - O(1): The execution time is unaffected by the size of the input n. - non-polynomial: The running time increases non-polynomially with input size n, typically exponentially. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Determine the worst-case time complexity category of a given Java code based on input size n. </TASK> <CODE> import java.lang.*; import java.util.*; import java.io.*; public class Challenge { public static void main(String[] args) throws java.lang.Exception { InputStream inputStream = System.in; OutputStream outputStream = System.out; InputReader in = new InputReader(inputStream); PrintWriter out = new PrintWriter(outputStream); TaskA solver = new TaskA(); solver.solve(in, out); out.close(); } } class TaskA { public void solve(InputReader in, PrintWriter out) { int n = in.nextInt(); if (n == 1) { out.println("1"); } else if (n == 2) { out.println("2"); } else if (n == 3) { out.println("6"); } else if (n%2 > 0) { out.println(1L * n * (n-1) * (n-2)); } else if (n%3 == 0) { out.println(1L * (n-1) * (n-2) * (n-3)); } else { out.println(1L * n * (n-1) * (n-3)); } } } class InputReader { public BufferedReader reader; public StringTokenizer tokenizer; public InputReader(InputStream stream) { reader = new BufferedReader(new InputStreamReader(stream), 32768); tokenizer = null; } public String next() { while (tokenizer==null || !tokenizer.hasMoreTokens()) { try { tokenizer = new StringTokenizer(reader.readLine()); } catch (IOException e) { throw new RuntimeException(e); } } return tokenizer.nextToken(); } public int nextInt() { return Integer.parseInt(next()); } public long nextLong() { return Long.parseLong(next()); } } </CODE> <EVALUATION_RUBRIC> - O(n^2): The time complexity grows proportionally to the square of the input size. - O(n): The time complexity increases proportionally to the input size n in a linear manner. - O(n^3): The time complexity scales proportionally to the cube of the input size. - O(nlog(n)): The time complexity combines linear and logarithmic growth factors. - O(1): The time complexity is constant to the input size n. - non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially. - others: The time complexity does not fit any of the above categories or cannot be clearly classified. - O(log(n)): The time complexity increases logarithmically in relation to the input size. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
753
2,757
286
import java.io.OutputStream; import java.io.IOException; import java.io.InputStream; import java.io.PrintWriter; import java.util.InputMismatchException; import java.io.IOException; import java.io.InputStream; /** * Built using CHelper plug-in * Actual solution is at the top * * @author Pradyumn */ public class Main { public static void main(String[] args) { InputStream inputStream = System.in; OutputStream outputStream = System.out; FastReader in = new FastReader(inputStream); PrintWriter out = new PrintWriter(outputStream); TaskB solver = new TaskB(); solver.solve(1, in, out); out.close(); } static class TaskB { FastReader in; PrintWriter out; int n; public void solve(int testNumber, FastReader in, PrintWriter out) { this.in = in; this.out = out; n = in.nextInt(); if (n % 4 != 0) { out.println("! -1"); return; } int low = 0; int high = n >> 1; int fSign = Integer.signum(BValue(low)); if (fSign == 0) { out.println("! " + (low + 1)); return; } while (high - low > 1) { int mid = (high + low) >> 1; int mSign = Integer.signum(BValue(mid)); if (mSign == 0) { out.println("! " + (mid + 1)); return; } if (mSign == -fSign) { high = mid; } else { low = mid; } } out.println("! -1"); } public int BValue(int index) { out.println("? " + (index + 1)); out.flush(); int f = in.nextInt(); out.println("? " + (index + 1 + (n >> 1))); out.flush(); int s = in.nextInt(); return f - s; } } static class FastReader { private InputStream stream; private byte[] buf = new byte[8192]; private int curChar; private int pnumChars; public FastReader(InputStream stream) { this.stream = stream; } private int pread() { if (pnumChars == -1) { throw new InputMismatchException(); } if (curChar >= pnumChars) { curChar = 0; try { pnumChars = stream.read(buf); } catch (IOException e) { throw new InputMismatchException(); } if (pnumChars <= 0) { return -1; } } return buf[curChar++]; } public int nextInt() { int c = pread(); while (isSpaceChar(c)) c = pread(); int sgn = 1; if (c == '-') { sgn = -1; c = pread(); } int res = 0; do { if (c == ',') { c = pread(); } if (c < '0' || c > '9') { throw new InputMismatchException(); } res *= 10; res += c - '0'; c = pread(); } while (!isSpaceChar(c)); return res * sgn; } private boolean isSpaceChar(int c) { return c == ' ' || c == '\n' || c == '\r' || c == '\t' || c == -1; } } }
O(log(n))
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Classify the following Java code's worst-case time complexity according to its relationship to the input size n. </TASK> <CODE> import java.io.OutputStream; import java.io.IOException; import java.io.InputStream; import java.io.PrintWriter; import java.util.InputMismatchException; import java.io.IOException; import java.io.InputStream; /** * Built using CHelper plug-in * Actual solution is at the top * * @author Pradyumn */ public class Main { public static void main(String[] args) { InputStream inputStream = System.in; OutputStream outputStream = System.out; FastReader in = new FastReader(inputStream); PrintWriter out = new PrintWriter(outputStream); TaskB solver = new TaskB(); solver.solve(1, in, out); out.close(); } static class TaskB { FastReader in; PrintWriter out; int n; public void solve(int testNumber, FastReader in, PrintWriter out) { this.in = in; this.out = out; n = in.nextInt(); if (n % 4 != 0) { out.println("! -1"); return; } int low = 0; int high = n >> 1; int fSign = Integer.signum(BValue(low)); if (fSign == 0) { out.println("! " + (low + 1)); return; } while (high - low > 1) { int mid = (high + low) >> 1; int mSign = Integer.signum(BValue(mid)); if (mSign == 0) { out.println("! " + (mid + 1)); return; } if (mSign == -fSign) { high = mid; } else { low = mid; } } out.println("! -1"); } public int BValue(int index) { out.println("? " + (index + 1)); out.flush(); int f = in.nextInt(); out.println("? " + (index + 1 + (n >> 1))); out.flush(); int s = in.nextInt(); return f - s; } } static class FastReader { private InputStream stream; private byte[] buf = new byte[8192]; private int curChar; private int pnumChars; public FastReader(InputStream stream) { this.stream = stream; } private int pread() { if (pnumChars == -1) { throw new InputMismatchException(); } if (curChar >= pnumChars) { curChar = 0; try { pnumChars = stream.read(buf); } catch (IOException e) { throw new InputMismatchException(); } if (pnumChars <= 0) { return -1; } } return buf[curChar++]; } public int nextInt() { int c = pread(); while (isSpaceChar(c)) c = pread(); int sgn = 1; if (c == '-') { sgn = -1; c = pread(); } int res = 0; do { if (c == ',') { c = pread(); } if (c < '0' || c > '9') { throw new InputMismatchException(); } res *= 10; res += c - '0'; c = pread(); } while (!isSpaceChar(c)); return res * sgn; } private boolean isSpaceChar(int c) { return c == ' ' || c == '\n' || c == '\r' || c == '\t' || c == -1; } } } </CODE> <EVALUATION_RUBRIC> - O(1): The running time does not change regardless of the input size n. - O(n): The running time grows linearly with the input size n. - O(nlog(n)): The running time increases with the product of n and logarithm of n. - O(n^3): The running time increases with the cube of the input size n. - O(n^2): The running time increases with the square of the input size n. - O(log(n)): The running time increases with the logarithm of the input size n. - non-polynomial: The running time increases non-polynomially with input size n, typically exponentially. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Classify the following Java code's worst-case time complexity according to its relationship to the input size n. </TASK> <CODE> import java.io.OutputStream; import java.io.IOException; import java.io.InputStream; import java.io.PrintWriter; import java.util.InputMismatchException; import java.io.IOException; import java.io.InputStream; /** * Built using CHelper plug-in * Actual solution is at the top * * @author Pradyumn */ public class Main { public static void main(String[] args) { InputStream inputStream = System.in; OutputStream outputStream = System.out; FastReader in = new FastReader(inputStream); PrintWriter out = new PrintWriter(outputStream); TaskB solver = new TaskB(); solver.solve(1, in, out); out.close(); } static class TaskB { FastReader in; PrintWriter out; int n; public void solve(int testNumber, FastReader in, PrintWriter out) { this.in = in; this.out = out; n = in.nextInt(); if (n % 4 != 0) { out.println("! -1"); return; } int low = 0; int high = n >> 1; int fSign = Integer.signum(BValue(low)); if (fSign == 0) { out.println("! " + (low + 1)); return; } while (high - low > 1) { int mid = (high + low) >> 1; int mSign = Integer.signum(BValue(mid)); if (mSign == 0) { out.println("! " + (mid + 1)); return; } if (mSign == -fSign) { high = mid; } else { low = mid; } } out.println("! -1"); } public int BValue(int index) { out.println("? " + (index + 1)); out.flush(); int f = in.nextInt(); out.println("? " + (index + 1 + (n >> 1))); out.flush(); int s = in.nextInt(); return f - s; } } static class FastReader { private InputStream stream; private byte[] buf = new byte[8192]; private int curChar; private int pnumChars; public FastReader(InputStream stream) { this.stream = stream; } private int pread() { if (pnumChars == -1) { throw new InputMismatchException(); } if (curChar >= pnumChars) { curChar = 0; try { pnumChars = stream.read(buf); } catch (IOException e) { throw new InputMismatchException(); } if (pnumChars <= 0) { return -1; } } return buf[curChar++]; } public int nextInt() { int c = pread(); while (isSpaceChar(c)) c = pread(); int sgn = 1; if (c == '-') { sgn = -1; c = pread(); } int res = 0; do { if (c == ',') { c = pread(); } if (c < '0' || c > '9') { throw new InputMismatchException(); } res *= 10; res += c - '0'; c = pread(); } while (!isSpaceChar(c)); return res * sgn; } private boolean isSpaceChar(int c) { return c == ' ' || c == '\n' || c == '\r' || c == '\t' || c == -1; } } } </CODE> <EVALUATION_RUBRIC> - O(n): The running time grows linearly with the input size n. - O(n^2): The running time increases with the square of the input size n. - others: The code does not clearly correspond to the listed classes or has an unclassified time complexity. - O(log(n)): The running time increases with the logarithm of the input size n. - O(n^3): The running time increases with the cube of the input size n. - non-polynomial: The running time increases non-polynomially with input size n, typically exponentially. - O(1): The running time does not change regardless of the input size n. - O(nlog(n)): The running time increases with the product of n and logarithm of n. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
1,119
286
4,322
import java.util.Scanner; public class Main { public static void main(String[] args) { Scanner in = new Scanner(System.in); int n = in.nextInt(); int m = in.nextInt(); boolean[][] graph = new boolean[n][n]; for(int i = 0; i < m; i++) { int from = in.nextInt() - 1; int to = in.nextInt() - 1; graph[from][to] = true; graph[to][from] = true; } int max = 1 << n; long[][] dp = new long[max][n]; for(int mask = 1; mask < max; mask++) { for(int i = 0; i < n; i++) { int countMask = Integer.bitCount(mask); boolean existSubSeti = (mask & (1 << i)) > 0; if(countMask == 1 && existSubSeti) { dp[mask][i] = 1; } else if(countMask > 1 && existSubSeti) { int mask1 = mask ^ (1 << i); for(int j = 0; j < n; j++) { if(graph[j][i] && i != firstMask(mask, n)) { dp[mask][i] += dp[mask1][j]; } } } } } long counter = 0; for(int mask = 1; mask < max; mask++) { for(int i = 0; i < n; i++) { if(Integer.bitCount(mask) >= 3 && graph[firstMask(mask, n)][i]) { counter += dp[mask][i]; } } } System.out.println(counter / 2); in.close(); } public static int firstMask(int mask, int n) { for(int i = 0; i < n; i++) { if((mask & (1 << i)) > 0) return i; } return -1; } }
non-polynomial
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Determine the worst-case time complexity category of a given Java code based on input size n. </TASK> <CODE> import java.util.Scanner; public class Main { public static void main(String[] args) { Scanner in = new Scanner(System.in); int n = in.nextInt(); int m = in.nextInt(); boolean[][] graph = new boolean[n][n]; for(int i = 0; i < m; i++) { int from = in.nextInt() - 1; int to = in.nextInt() - 1; graph[from][to] = true; graph[to][from] = true; } int max = 1 << n; long[][] dp = new long[max][n]; for(int mask = 1; mask < max; mask++) { for(int i = 0; i < n; i++) { int countMask = Integer.bitCount(mask); boolean existSubSeti = (mask & (1 << i)) > 0; if(countMask == 1 && existSubSeti) { dp[mask][i] = 1; } else if(countMask > 1 && existSubSeti) { int mask1 = mask ^ (1 << i); for(int j = 0; j < n; j++) { if(graph[j][i] && i != firstMask(mask, n)) { dp[mask][i] += dp[mask1][j]; } } } } } long counter = 0; for(int mask = 1; mask < max; mask++) { for(int i = 0; i < n; i++) { if(Integer.bitCount(mask) >= 3 && graph[firstMask(mask, n)][i]) { counter += dp[mask][i]; } } } System.out.println(counter / 2); in.close(); } public static int firstMask(int mask, int n) { for(int i = 0; i < n; i++) { if((mask & (1 << i)) > 0) return i; } return -1; } } </CODE> <EVALUATION_RUBRIC> - O(nlog(n)): The time complexity combines linear and logarithmic growth factors. - non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially. - O(n^3): The time complexity scales proportionally to the cube of the input size. - O(1): The time complexity is constant to the input size n. - O(log(n)): The time complexity increases logarithmically in relation to the input size. - O(n^2): The time complexity grows proportionally to the square of the input size. - O(n): The time complexity increases proportionally to the input size n in a linear manner. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Determine the worst-case time complexity category of a given Java code based on input size n. </TASK> <CODE> import java.util.Scanner; public class Main { public static void main(String[] args) { Scanner in = new Scanner(System.in); int n = in.nextInt(); int m = in.nextInt(); boolean[][] graph = new boolean[n][n]; for(int i = 0; i < m; i++) { int from = in.nextInt() - 1; int to = in.nextInt() - 1; graph[from][to] = true; graph[to][from] = true; } int max = 1 << n; long[][] dp = new long[max][n]; for(int mask = 1; mask < max; mask++) { for(int i = 0; i < n; i++) { int countMask = Integer.bitCount(mask); boolean existSubSeti = (mask & (1 << i)) > 0; if(countMask == 1 && existSubSeti) { dp[mask][i] = 1; } else if(countMask > 1 && existSubSeti) { int mask1 = mask ^ (1 << i); for(int j = 0; j < n; j++) { if(graph[j][i] && i != firstMask(mask, n)) { dp[mask][i] += dp[mask1][j]; } } } } } long counter = 0; for(int mask = 1; mask < max; mask++) { for(int i = 0; i < n; i++) { if(Integer.bitCount(mask) >= 3 && graph[firstMask(mask, n)][i]) { counter += dp[mask][i]; } } } System.out.println(counter / 2); in.close(); } public static int firstMask(int mask, int n) { for(int i = 0; i < n; i++) { if((mask & (1 << i)) > 0) return i; } return -1; } } </CODE> <EVALUATION_RUBRIC> - O(1): The time complexity is constant to the input size n. - non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially. - O(n^3): The time complexity scales proportionally to the cube of the input size. - O(nlog(n)): The time complexity combines linear and logarithmic growth factors. - O(n^2): The time complexity grows proportionally to the square of the input size. - O(log(n)): The time complexity increases logarithmically in relation to the input size. - others: The time complexity does not fit any of the above categories or cannot be clearly classified. - O(n): The time complexity increases proportionally to the input size n in a linear manner. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
780
4,311
1,139
import java.io.IOException; import java.io.PrintWriter; import java.util.*; import java.io.*; public class Main { boolean[] b; int[] r; ArrayList<ArrayList<Integer>> q; public void dfs(int u, int p) { for (int i = 0; i < q.get(u).size(); i++) { int v = q.get(u).get(i); if (v != p) { r[v] = r[u] + 1; if (b[u]) { b[v] = b[u]; } dfs(v, u); } } } public void solve() throws IOException { long n = nextLong(); long s = nextLong(); long t = 0; if(s + 200 < n){ t = n - s - 200; } for(long i = s; i <= Math.min(s + 200,n); i++){ long p = 0; long u = i; while (u > 0){ p += u % 10; u /= 10; } if(i - p >= s){ t++; } } out.print(t); } BufferedReader br; StringTokenizer sc; PrintWriter out; public String nextToken() throws IOException { while (sc == null || !sc.hasMoreTokens()) { try { sc = new StringTokenizer(br.readLine()); } catch (Exception e) { return null; } } return sc.nextToken(); } public Integer nextInt() throws IOException { return Integer.parseInt(nextToken()); } public Long nextLong() throws IOException { return Long.parseLong(nextToken()); } public static void main(String[] args) throws IOException { try { Locale.setDefault(Locale.US); } catch (Exception e) { } new Main().run(); } public void run() { try { br = new BufferedReader(new InputStreamReader(System.in)); out = new PrintWriter(System.out); // br = new BufferedReader(new FileReader("lesson.in")); // out = new PrintWriter(new File("lesson.out")); solve(); out.close(); } catch (Exception e) { e.printStackTrace(); System.exit(1); } } }
O(log(n))
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Classify the following Java code's worst-case time complexity according to its relationship to the input size n. </TASK> <CODE> import java.io.IOException; import java.io.PrintWriter; import java.util.*; import java.io.*; public class Main { boolean[] b; int[] r; ArrayList<ArrayList<Integer>> q; public void dfs(int u, int p) { for (int i = 0; i < q.get(u).size(); i++) { int v = q.get(u).get(i); if (v != p) { r[v] = r[u] + 1; if (b[u]) { b[v] = b[u]; } dfs(v, u); } } } public void solve() throws IOException { long n = nextLong(); long s = nextLong(); long t = 0; if(s + 200 < n){ t = n - s - 200; } for(long i = s; i <= Math.min(s + 200,n); i++){ long p = 0; long u = i; while (u > 0){ p += u % 10; u /= 10; } if(i - p >= s){ t++; } } out.print(t); } BufferedReader br; StringTokenizer sc; PrintWriter out; public String nextToken() throws IOException { while (sc == null || !sc.hasMoreTokens()) { try { sc = new StringTokenizer(br.readLine()); } catch (Exception e) { return null; } } return sc.nextToken(); } public Integer nextInt() throws IOException { return Integer.parseInt(nextToken()); } public Long nextLong() throws IOException { return Long.parseLong(nextToken()); } public static void main(String[] args) throws IOException { try { Locale.setDefault(Locale.US); } catch (Exception e) { } new Main().run(); } public void run() { try { br = new BufferedReader(new InputStreamReader(System.in)); out = new PrintWriter(System.out); // br = new BufferedReader(new FileReader("lesson.in")); // out = new PrintWriter(new File("lesson.out")); solve(); out.close(); } catch (Exception e) { e.printStackTrace(); System.exit(1); } } } </CODE> <EVALUATION_RUBRIC> - O(nlog(n)): The running time increases with the product of n and logarithm of n. - O(1): The running time does not change regardless of the input size n. - O(n^2): The running time increases with the square of the input size n. - O(n^3): The running time increases with the cube of the input size n. - O(n): The running time grows linearly with the input size n. - non-polynomial: The running time increases non-polynomially with input size n, typically exponentially. - O(log(n)): The running time increases with the logarithm of the input size n. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Determine the worst-case time complexity category of a given Java code based on input size n. </TASK> <CODE> import java.io.IOException; import java.io.PrintWriter; import java.util.*; import java.io.*; public class Main { boolean[] b; int[] r; ArrayList<ArrayList<Integer>> q; public void dfs(int u, int p) { for (int i = 0; i < q.get(u).size(); i++) { int v = q.get(u).get(i); if (v != p) { r[v] = r[u] + 1; if (b[u]) { b[v] = b[u]; } dfs(v, u); } } } public void solve() throws IOException { long n = nextLong(); long s = nextLong(); long t = 0; if(s + 200 < n){ t = n - s - 200; } for(long i = s; i <= Math.min(s + 200,n); i++){ long p = 0; long u = i; while (u > 0){ p += u % 10; u /= 10; } if(i - p >= s){ t++; } } out.print(t); } BufferedReader br; StringTokenizer sc; PrintWriter out; public String nextToken() throws IOException { while (sc == null || !sc.hasMoreTokens()) { try { sc = new StringTokenizer(br.readLine()); } catch (Exception e) { return null; } } return sc.nextToken(); } public Integer nextInt() throws IOException { return Integer.parseInt(nextToken()); } public Long nextLong() throws IOException { return Long.parseLong(nextToken()); } public static void main(String[] args) throws IOException { try { Locale.setDefault(Locale.US); } catch (Exception e) { } new Main().run(); } public void run() { try { br = new BufferedReader(new InputStreamReader(System.in)); out = new PrintWriter(System.out); // br = new BufferedReader(new FileReader("lesson.in")); // out = new PrintWriter(new File("lesson.out")); solve(); out.close(); } catch (Exception e) { e.printStackTrace(); System.exit(1); } } } </CODE> <EVALUATION_RUBRIC> - O(log(n)): The time complexity increases logarithmically in relation to the input size. - O(n^2): The time complexity grows proportionally to the square of the input size. - non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially. - O(nlog(n)): The time complexity combines linear and logarithmic growth factors. - O(n^3): The time complexity scales proportionally to the cube of the input size. - O(n): The time complexity increases proportionally to the input size n in a linear manner. - others: The time complexity does not fit any of the above categories or cannot be clearly classified. - O(1): The time complexity is constant to the input size n. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
822
1,138
87
import java.io.*; import java.util.*; public class Main { static class FastScanner { BufferedReader br; StringTokenizer st; public FastScanner() { try { br = new BufferedReader(new InputStreamReader(System.in)); st = new StringTokenizer(br.readLine()); } catch (Exception e){e.printStackTrace();} } public String next() { if (st.hasMoreTokens()) return st.nextToken(); try {st = new StringTokenizer(br.readLine());} catch (Exception e) {e.printStackTrace();} return st.nextToken(); } public int nextInt() {return Integer.parseInt(next());} public long nextLong() {return Long.parseLong(next());} public double nextDouble() {return Double.parseDouble(next());} public String nextLine() { String line = ""; if(st.hasMoreTokens()) line = st.nextToken(); else try {return br.readLine();}catch(IOException e){e.printStackTrace();} while(st.hasMoreTokens()) line += " "+st.nextToken(); return line; } } public static void main(String[] args) { FastScanner sc = new FastScanner(); PrintWriter pw = new PrintWriter(System.out); int n = sc.nextInt(); int best = 1; int bestTime = Integer.MAX_VALUE; for(int i=0;i<n;i++) { int time; int a = sc.nextInt(); time = (a%n==0 || a%n<=i) ? a/n : (a+n)/n; if(time < bestTime) { best = i + 1; bestTime = time; } } pw.println(best); pw.close(); } }
O(n)
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n. </TASK> <CODE> import java.io.*; import java.util.*; public class Main { static class FastScanner { BufferedReader br; StringTokenizer st; public FastScanner() { try { br = new BufferedReader(new InputStreamReader(System.in)); st = new StringTokenizer(br.readLine()); } catch (Exception e){e.printStackTrace();} } public String next() { if (st.hasMoreTokens()) return st.nextToken(); try {st = new StringTokenizer(br.readLine());} catch (Exception e) {e.printStackTrace();} return st.nextToken(); } public int nextInt() {return Integer.parseInt(next());} public long nextLong() {return Long.parseLong(next());} public double nextDouble() {return Double.parseDouble(next());} public String nextLine() { String line = ""; if(st.hasMoreTokens()) line = st.nextToken(); else try {return br.readLine();}catch(IOException e){e.printStackTrace();} while(st.hasMoreTokens()) line += " "+st.nextToken(); return line; } } public static void main(String[] args) { FastScanner sc = new FastScanner(); PrintWriter pw = new PrintWriter(System.out); int n = sc.nextInt(); int best = 1; int bestTime = Integer.MAX_VALUE; for(int i=0;i<n;i++) { int time; int a = sc.nextInt(); time = (a%n==0 || a%n<=i) ? a/n : (a+n)/n; if(time < bestTime) { best = i + 1; bestTime = time; } } pw.println(best); pw.close(); } } </CODE> <EVALUATION_RUBRIC> - O(n^2): The execution time ascends in proportion to the square of the input size n. - O(1): The execution time is unaffected by the size of the input n. - O(n): The execution time ascends in a one-to-one ratio with the input size n. - non-polynomial: The running time increases non-polynomially with input size n, typically exponentially. - O(log(n)): The execution time ascends in proportion to the logarithm of the input size n. - O(n^3): The execution time ascends in proportion to the cube of the input size n. - O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Classify the following Java code's worst-case time complexity according to its relationship to the input size n. </TASK> <CODE> import java.io.*; import java.util.*; public class Main { static class FastScanner { BufferedReader br; StringTokenizer st; public FastScanner() { try { br = new BufferedReader(new InputStreamReader(System.in)); st = new StringTokenizer(br.readLine()); } catch (Exception e){e.printStackTrace();} } public String next() { if (st.hasMoreTokens()) return st.nextToken(); try {st = new StringTokenizer(br.readLine());} catch (Exception e) {e.printStackTrace();} return st.nextToken(); } public int nextInt() {return Integer.parseInt(next());} public long nextLong() {return Long.parseLong(next());} public double nextDouble() {return Double.parseDouble(next());} public String nextLine() { String line = ""; if(st.hasMoreTokens()) line = st.nextToken(); else try {return br.readLine();}catch(IOException e){e.printStackTrace();} while(st.hasMoreTokens()) line += " "+st.nextToken(); return line; } } public static void main(String[] args) { FastScanner sc = new FastScanner(); PrintWriter pw = new PrintWriter(System.out); int n = sc.nextInt(); int best = 1; int bestTime = Integer.MAX_VALUE; for(int i=0;i<n;i++) { int time; int a = sc.nextInt(); time = (a%n==0 || a%n<=i) ? a/n : (a+n)/n; if(time < bestTime) { best = i + 1; bestTime = time; } } pw.println(best); pw.close(); } } </CODE> <EVALUATION_RUBRIC> - O(1): The running time does not change regardless of the input size n. - non-polynomial: The running time increases non-polynomially with input size n, typically exponentially. - O(n^3): The running time increases with the cube of the input size n. - O(n^2): The running time increases with the square of the input size n. - O(log(n)): The running time increases with the logarithm of the input size n. - O(nlog(n)): The running time increases with the product of n and logarithm of n. - O(n): The running time grows linearly with the input size n. - others: The code does not clearly correspond to the listed classes or has an unclassified time complexity. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
694
87
1,817
import java.util.Scanner; import java.io.OutputStream; import java.io.IOException; import java.util.Arrays; import java.io.PrintWriter; import java.io.InputStream; /** * Built using CHelper plug-in * Actual solution is at the top */ public class Main { public static void main(String[] args) { InputStream inputStream = System.in; OutputStream outputStream = System.out; Scanner in = new Scanner(inputStream); PrintWriter out = new PrintWriter(outputStream); TaskA solver = new TaskA(); solver.solve(1, in, out); out.close(); } } class TaskA { public void solve(int testNumber, Scanner in, PrintWriter out) { int n = in.nextInt(); int m = in.nextInt(); int k = in.nextInt(); int[] fs = IOUtils.readIntArray(in, n); Arrays.sort(fs); int ptr = fs.length - 1; int res = 0; while (ptr >= 0 && k < m) { k += fs[ptr--] - 1; res++; } if (k < m) out.println(-1); else out.println(res); } } class IOUtils { public static int[] readIntArray(Scanner in, int size) { int[] array = new int[size]; for (int i = 0; i < size; i++) array[i] = in.nextInt(); return array; } }
O(nlog(n))
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Determine the worst-case time complexity category of a given Java code based on input size n. </TASK> <CODE> import java.util.Scanner; import java.io.OutputStream; import java.io.IOException; import java.util.Arrays; import java.io.PrintWriter; import java.io.InputStream; /** * Built using CHelper plug-in * Actual solution is at the top */ public class Main { public static void main(String[] args) { InputStream inputStream = System.in; OutputStream outputStream = System.out; Scanner in = new Scanner(inputStream); PrintWriter out = new PrintWriter(outputStream); TaskA solver = new TaskA(); solver.solve(1, in, out); out.close(); } } class TaskA { public void solve(int testNumber, Scanner in, PrintWriter out) { int n = in.nextInt(); int m = in.nextInt(); int k = in.nextInt(); int[] fs = IOUtils.readIntArray(in, n); Arrays.sort(fs); int ptr = fs.length - 1; int res = 0; while (ptr >= 0 && k < m) { k += fs[ptr--] - 1; res++; } if (k < m) out.println(-1); else out.println(res); } } class IOUtils { public static int[] readIntArray(Scanner in, int size) { int[] array = new int[size]; for (int i = 0; i < size; i++) array[i] = in.nextInt(); return array; } } </CODE> <EVALUATION_RUBRIC> - O(n): The time complexity increases proportionally to the input size n in a linear manner. - O(1): The time complexity is constant to the input size n. - O(log(n)): The time complexity increases logarithmically in relation to the input size. - O(nlog(n)): The time complexity combines linear and logarithmic growth factors. - O(n^2): The time complexity grows proportionally to the square of the input size. - O(n^3): The time complexity scales proportionally to the cube of the input size. - non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Determine the worst-case time complexity category of a given Java code based on input size n. </TASK> <CODE> import java.util.Scanner; import java.io.OutputStream; import java.io.IOException; import java.util.Arrays; import java.io.PrintWriter; import java.io.InputStream; /** * Built using CHelper plug-in * Actual solution is at the top */ public class Main { public static void main(String[] args) { InputStream inputStream = System.in; OutputStream outputStream = System.out; Scanner in = new Scanner(inputStream); PrintWriter out = new PrintWriter(outputStream); TaskA solver = new TaskA(); solver.solve(1, in, out); out.close(); } } class TaskA { public void solve(int testNumber, Scanner in, PrintWriter out) { int n = in.nextInt(); int m = in.nextInt(); int k = in.nextInt(); int[] fs = IOUtils.readIntArray(in, n); Arrays.sort(fs); int ptr = fs.length - 1; int res = 0; while (ptr >= 0 && k < m) { k += fs[ptr--] - 1; res++; } if (k < m) out.println(-1); else out.println(res); } } class IOUtils { public static int[] readIntArray(Scanner in, int size) { int[] array = new int[size]; for (int i = 0; i < size; i++) array[i] = in.nextInt(); return array; } } </CODE> <EVALUATION_RUBRIC> - others: The time complexity does not fit any of the above categories or cannot be clearly classified. - O(nlog(n)): The time complexity combines linear and logarithmic growth factors. - O(n^2): The time complexity grows proportionally to the square of the input size. - O(n^3): The time complexity scales proportionally to the cube of the input size. - O(n): The time complexity increases proportionally to the input size n in a linear manner. - O(1): The time complexity is constant to the input size n. - O(log(n)): The time complexity increases logarithmically in relation to the input size. - non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
636
1,813
901
import java.util.Scanner; public class BB { public static void main(String[] args) { Scanner sc=new Scanner(System.in); int n=sc.nextInt(); int k=sc.nextInt(); int a[]=new int[n+1]; boolean used[]=new boolean[100009]; for (int i = 1; i <=n; i++) { a[i]=sc.nextInt(); } int cnt=0; int id=0; for (int i = 1; i <=n; i++) { if(!used[a[i]]){ cnt++; used[a[i]]=true; } if(cnt==k){ id=i; break; } } boolean x[]=new boolean[100005]; int y=0; int id1=0; if(id==0){ System.out.println(-1+" "+-1); return; } for (int i =id; i >=1; i--) { if(!x[a[i]]){ y++; x[a[i]]=true; } if(y==k){ id1=i; break; } } System.out.println(id1+" "+id); } }
O(n)
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Classify the following Java code's worst-case time complexity according to its relationship to the input size n. </TASK> <CODE> import java.util.Scanner; public class BB { public static void main(String[] args) { Scanner sc=new Scanner(System.in); int n=sc.nextInt(); int k=sc.nextInt(); int a[]=new int[n+1]; boolean used[]=new boolean[100009]; for (int i = 1; i <=n; i++) { a[i]=sc.nextInt(); } int cnt=0; int id=0; for (int i = 1; i <=n; i++) { if(!used[a[i]]){ cnt++; used[a[i]]=true; } if(cnt==k){ id=i; break; } } boolean x[]=new boolean[100005]; int y=0; int id1=0; if(id==0){ System.out.println(-1+" "+-1); return; } for (int i =id; i >=1; i--) { if(!x[a[i]]){ y++; x[a[i]]=true; } if(y==k){ id1=i; break; } } System.out.println(id1+" "+id); } } </CODE> <EVALUATION_RUBRIC> - non-polynomial: The running time increases non-polynomially with input size n, typically exponentially. - O(log(n)): The running time increases with the logarithm of the input size n. - O(1): The running time does not change regardless of the input size n. - O(n^3): The running time increases with the cube of the input size n. - O(n^2): The running time increases with the square of the input size n. - O(nlog(n)): The running time increases with the product of n and logarithm of n. - O(n): The running time grows linearly with the input size n. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Classify the following Java code's worst-case time complexity according to its relationship to the input size n. </TASK> <CODE> import java.util.Scanner; public class BB { public static void main(String[] args) { Scanner sc=new Scanner(System.in); int n=sc.nextInt(); int k=sc.nextInt(); int a[]=new int[n+1]; boolean used[]=new boolean[100009]; for (int i = 1; i <=n; i++) { a[i]=sc.nextInt(); } int cnt=0; int id=0; for (int i = 1; i <=n; i++) { if(!used[a[i]]){ cnt++; used[a[i]]=true; } if(cnt==k){ id=i; break; } } boolean x[]=new boolean[100005]; int y=0; int id1=0; if(id==0){ System.out.println(-1+" "+-1); return; } for (int i =id; i >=1; i--) { if(!x[a[i]]){ y++; x[a[i]]=true; } if(y==k){ id1=i; break; } } System.out.println(id1+" "+id); } } </CODE> <EVALUATION_RUBRIC> - O(nlog(n)): The running time increases with the product of n and logarithm of n. - O(n^2): The running time increases with the square of the input size n. - O(1): The running time does not change regardless of the input size n. - O(log(n)): The running time increases with the logarithm of the input size n. - non-polynomial: The running time increases non-polynomially with input size n, typically exponentially. - others: The code does not clearly correspond to the listed classes or has an unclassified time complexity. - O(n^3): The running time increases with the cube of the input size n. - O(n): The running time grows linearly with the input size n. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
598
900
2,208
import com.sun.org.apache.regexp.internal.RE; import java.io.*; import java.nio.file.ClosedWatchServiceException; import java.nio.file.OpenOption; import java.security.SecureRandom; import java.util.*; public class Main { public static void main(String[] args) throws FileNotFoundException { ConsoleIO io = new ConsoleIO(new InputStreamReader(System.in), new PrintWriter(System.out)); //String test = "C-large"; //ConsoleIO io = new ConsoleIO(new FileReader("D:\\Dropbox\\code\\practice\\jb\\src\\" + test + ".in"), new PrintWriter(new File("D:\\Dropbox\\code\\practice\\jb\\src\\" + test + "-out.txt"))); new Main(io).solve(); io.close(); } ConsoleIO io; Main(ConsoleIO io) { this.io = io; } List<List<Integer>> gr = new ArrayList<>(); long MOD = 1_000_000_007; public void solve() { int n = io.ri(), r = io.ri(); double[] res = new double[n]; int[] xs = new int[n]; for(int i = 0;i<n;i++){ int x = io.ri(); xs[i] = x; double max = r; for(int j = 0;j<i;j++){ int dx = Math.abs(xs[j] - x); int dx2 = dx*dx; if(dx <= 2*r){ max = Math.max(max, Math.sqrt(4*r*r - dx2) + res[j]); } } res[i] = max; } StringBuilder sb = new StringBuilder(); for(int i = 0;i<res.length;i++){ if(i>0)sb.append(' '); sb.append(res[i]); } io.writeLine(sb.toString()); } } class ConsoleIO { BufferedReader br; PrintWriter out; public ConsoleIO(Reader reader, PrintWriter writer){br = new BufferedReader(reader);out = writer;} public void flush(){this.out.flush();} public void close(){this.out.close();} public void writeLine(String s) {this.out.println(s);} public void writeInt(int a) {this.out.print(a);this.out.print(' ');} public void writeWord(String s){ this.out.print(s); } public void writeIntArray(int[] a, int k, String separator) { StringBuilder sb = new StringBuilder(); for (int i = 0; i < k; i++) { if (i > 0) sb.append(separator); sb.append(a[i]); } this.writeLine(sb.toString()); } public int read(char[] buf, int len){try {return br.read(buf,0,len);}catch (Exception ex){ return -1; }} public String readLine() {try {return br.readLine();}catch (Exception ex){ return "";}} public long[] readLongArray() { String[]n=this.readLine().trim().split("\\s+");long[]r=new long[n.length]; for(int i=0;i<n.length;i++)r[i]=Long.parseLong(n[i]); return r; } public int[] readIntArray() { String[]n=this.readLine().trim().split("\\s+");int[]r=new int[n.length]; for(int i=0;i<n.length;i++)r[i]=Integer.parseInt(n[i]); return r; } public int[] readIntArray(int n) { int[] res = new int[n]; char[] all = this.readLine().toCharArray(); int cur = 0;boolean have = false; int k = 0; boolean neg = false; for(int i = 0;i<all.length;i++){ if(all[i]>='0' && all[i]<='9'){ cur = cur*10+all[i]-'0'; have = true; }else if(all[i]=='-') { neg = true; } else if(have){ res[k++] = neg?-cur:cur; cur = 0; have = false; neg = false; } } if(have)res[k++] = neg?-cur:cur; return res; } public int ri() { try { int r = 0; boolean start = false; boolean neg = false; while (true) { int c = br.read(); if (c >= '0' && c <= '9') { r = r * 10 + c - '0'; start = true; } else if (!start && c == '-') { start = true; neg = true; } else if (start || c == -1) return neg ? -r : r; } } catch (Exception ex) { return -1; } } public long readLong() { try { long r = 0; boolean start = false; boolean neg = false; while (true) { int c = br.read(); if (c >= '0' && c <= '9') { r = r * 10 + c - '0'; start = true; } else if (!start && c == '-') { start = true; neg = true; } else if (start || c == -1) return neg ? -r : r; } } catch (Exception ex) { return -1; } } public String readWord() { try { boolean start = false; StringBuilder sb = new StringBuilder(); while (true) { int c = br.read(); if (c!= ' ' && c!= '\r' && c!='\n' && c!='\t') { sb.append((char)c); start = true; } else if (start || c == -1) return sb.toString(); } } catch (Exception ex) { return ""; } } public char readSymbol() { try { while (true) { int c = br.read(); if (c != ' ' && c != '\r' && c != '\n' && c != '\t') { return (char) c; } } } catch (Exception ex) { return 0; } } //public char readChar(){try {return (char)br.read();}catch (Exception ex){ return 0; }} } class Pair { public Pair(int a, int b) {this.a = a;this.b = b;} public int a; public int b; } class PairLL { public PairLL(long a, long b) {this.a = a;this.b = b;} public long a; public long b; } class Triple { public Triple(int a, int b, int c) {this.a = a;this.b = b;this.c = c;} public int a; public int b; public int c; }
O(n^2)
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Determine the worst-case time complexity category of a given Java code based on input size n. </TASK> <CODE> import com.sun.org.apache.regexp.internal.RE; import java.io.*; import java.nio.file.ClosedWatchServiceException; import java.nio.file.OpenOption; import java.security.SecureRandom; import java.util.*; public class Main { public static void main(String[] args) throws FileNotFoundException { ConsoleIO io = new ConsoleIO(new InputStreamReader(System.in), new PrintWriter(System.out)); //String test = "C-large"; //ConsoleIO io = new ConsoleIO(new FileReader("D:\\Dropbox\\code\\practice\\jb\\src\\" + test + ".in"), new PrintWriter(new File("D:\\Dropbox\\code\\practice\\jb\\src\\" + test + "-out.txt"))); new Main(io).solve(); io.close(); } ConsoleIO io; Main(ConsoleIO io) { this.io = io; } List<List<Integer>> gr = new ArrayList<>(); long MOD = 1_000_000_007; public void solve() { int n = io.ri(), r = io.ri(); double[] res = new double[n]; int[] xs = new int[n]; for(int i = 0;i<n;i++){ int x = io.ri(); xs[i] = x; double max = r; for(int j = 0;j<i;j++){ int dx = Math.abs(xs[j] - x); int dx2 = dx*dx; if(dx <= 2*r){ max = Math.max(max, Math.sqrt(4*r*r - dx2) + res[j]); } } res[i] = max; } StringBuilder sb = new StringBuilder(); for(int i = 0;i<res.length;i++){ if(i>0)sb.append(' '); sb.append(res[i]); } io.writeLine(sb.toString()); } } class ConsoleIO { BufferedReader br; PrintWriter out; public ConsoleIO(Reader reader, PrintWriter writer){br = new BufferedReader(reader);out = writer;} public void flush(){this.out.flush();} public void close(){this.out.close();} public void writeLine(String s) {this.out.println(s);} public void writeInt(int a) {this.out.print(a);this.out.print(' ');} public void writeWord(String s){ this.out.print(s); } public void writeIntArray(int[] a, int k, String separator) { StringBuilder sb = new StringBuilder(); for (int i = 0; i < k; i++) { if (i > 0) sb.append(separator); sb.append(a[i]); } this.writeLine(sb.toString()); } public int read(char[] buf, int len){try {return br.read(buf,0,len);}catch (Exception ex){ return -1; }} public String readLine() {try {return br.readLine();}catch (Exception ex){ return "";}} public long[] readLongArray() { String[]n=this.readLine().trim().split("\\s+");long[]r=new long[n.length]; for(int i=0;i<n.length;i++)r[i]=Long.parseLong(n[i]); return r; } public int[] readIntArray() { String[]n=this.readLine().trim().split("\\s+");int[]r=new int[n.length]; for(int i=0;i<n.length;i++)r[i]=Integer.parseInt(n[i]); return r; } public int[] readIntArray(int n) { int[] res = new int[n]; char[] all = this.readLine().toCharArray(); int cur = 0;boolean have = false; int k = 0; boolean neg = false; for(int i = 0;i<all.length;i++){ if(all[i]>='0' && all[i]<='9'){ cur = cur*10+all[i]-'0'; have = true; }else if(all[i]=='-') { neg = true; } else if(have){ res[k++] = neg?-cur:cur; cur = 0; have = false; neg = false; } } if(have)res[k++] = neg?-cur:cur; return res; } public int ri() { try { int r = 0; boolean start = false; boolean neg = false; while (true) { int c = br.read(); if (c >= '0' && c <= '9') { r = r * 10 + c - '0'; start = true; } else if (!start && c == '-') { start = true; neg = true; } else if (start || c == -1) return neg ? -r : r; } } catch (Exception ex) { return -1; } } public long readLong() { try { long r = 0; boolean start = false; boolean neg = false; while (true) { int c = br.read(); if (c >= '0' && c <= '9') { r = r * 10 + c - '0'; start = true; } else if (!start && c == '-') { start = true; neg = true; } else if (start || c == -1) return neg ? -r : r; } } catch (Exception ex) { return -1; } } public String readWord() { try { boolean start = false; StringBuilder sb = new StringBuilder(); while (true) { int c = br.read(); if (c!= ' ' && c!= '\r' && c!='\n' && c!='\t') { sb.append((char)c); start = true; } else if (start || c == -1) return sb.toString(); } } catch (Exception ex) { return ""; } } public char readSymbol() { try { while (true) { int c = br.read(); if (c != ' ' && c != '\r' && c != '\n' && c != '\t') { return (char) c; } } } catch (Exception ex) { return 0; } } //public char readChar(){try {return (char)br.read();}catch (Exception ex){ return 0; }} } class Pair { public Pair(int a, int b) {this.a = a;this.b = b;} public int a; public int b; } class PairLL { public PairLL(long a, long b) {this.a = a;this.b = b;} public long a; public long b; } class Triple { public Triple(int a, int b, int c) {this.a = a;this.b = b;this.c = c;} public int a; public int b; public int c; } </CODE> <EVALUATION_RUBRIC> - non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially. - O(n^2): The time complexity grows proportionally to the square of the input size. - O(nlog(n)): The time complexity combines linear and logarithmic growth factors. - O(log(n)): The time complexity increases logarithmically in relation to the input size. - O(1): The time complexity is constant to the input size n. - O(n^3): The time complexity scales proportionally to the cube of the input size. - O(n): The time complexity increases proportionally to the input size n in a linear manner. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Determine the worst-case time complexity category of a given Java code based on input size n. </TASK> <CODE> import com.sun.org.apache.regexp.internal.RE; import java.io.*; import java.nio.file.ClosedWatchServiceException; import java.nio.file.OpenOption; import java.security.SecureRandom; import java.util.*; public class Main { public static void main(String[] args) throws FileNotFoundException { ConsoleIO io = new ConsoleIO(new InputStreamReader(System.in), new PrintWriter(System.out)); //String test = "C-large"; //ConsoleIO io = new ConsoleIO(new FileReader("D:\\Dropbox\\code\\practice\\jb\\src\\" + test + ".in"), new PrintWriter(new File("D:\\Dropbox\\code\\practice\\jb\\src\\" + test + "-out.txt"))); new Main(io).solve(); io.close(); } ConsoleIO io; Main(ConsoleIO io) { this.io = io; } List<List<Integer>> gr = new ArrayList<>(); long MOD = 1_000_000_007; public void solve() { int n = io.ri(), r = io.ri(); double[] res = new double[n]; int[] xs = new int[n]; for(int i = 0;i<n;i++){ int x = io.ri(); xs[i] = x; double max = r; for(int j = 0;j<i;j++){ int dx = Math.abs(xs[j] - x); int dx2 = dx*dx; if(dx <= 2*r){ max = Math.max(max, Math.sqrt(4*r*r - dx2) + res[j]); } } res[i] = max; } StringBuilder sb = new StringBuilder(); for(int i = 0;i<res.length;i++){ if(i>0)sb.append(' '); sb.append(res[i]); } io.writeLine(sb.toString()); } } class ConsoleIO { BufferedReader br; PrintWriter out; public ConsoleIO(Reader reader, PrintWriter writer){br = new BufferedReader(reader);out = writer;} public void flush(){this.out.flush();} public void close(){this.out.close();} public void writeLine(String s) {this.out.println(s);} public void writeInt(int a) {this.out.print(a);this.out.print(' ');} public void writeWord(String s){ this.out.print(s); } public void writeIntArray(int[] a, int k, String separator) { StringBuilder sb = new StringBuilder(); for (int i = 0; i < k; i++) { if (i > 0) sb.append(separator); sb.append(a[i]); } this.writeLine(sb.toString()); } public int read(char[] buf, int len){try {return br.read(buf,0,len);}catch (Exception ex){ return -1; }} public String readLine() {try {return br.readLine();}catch (Exception ex){ return "";}} public long[] readLongArray() { String[]n=this.readLine().trim().split("\\s+");long[]r=new long[n.length]; for(int i=0;i<n.length;i++)r[i]=Long.parseLong(n[i]); return r; } public int[] readIntArray() { String[]n=this.readLine().trim().split("\\s+");int[]r=new int[n.length]; for(int i=0;i<n.length;i++)r[i]=Integer.parseInt(n[i]); return r; } public int[] readIntArray(int n) { int[] res = new int[n]; char[] all = this.readLine().toCharArray(); int cur = 0;boolean have = false; int k = 0; boolean neg = false; for(int i = 0;i<all.length;i++){ if(all[i]>='0' && all[i]<='9'){ cur = cur*10+all[i]-'0'; have = true; }else if(all[i]=='-') { neg = true; } else if(have){ res[k++] = neg?-cur:cur; cur = 0; have = false; neg = false; } } if(have)res[k++] = neg?-cur:cur; return res; } public int ri() { try { int r = 0; boolean start = false; boolean neg = false; while (true) { int c = br.read(); if (c >= '0' && c <= '9') { r = r * 10 + c - '0'; start = true; } else if (!start && c == '-') { start = true; neg = true; } else if (start || c == -1) return neg ? -r : r; } } catch (Exception ex) { return -1; } } public long readLong() { try { long r = 0; boolean start = false; boolean neg = false; while (true) { int c = br.read(); if (c >= '0' && c <= '9') { r = r * 10 + c - '0'; start = true; } else if (!start && c == '-') { start = true; neg = true; } else if (start || c == -1) return neg ? -r : r; } } catch (Exception ex) { return -1; } } public String readWord() { try { boolean start = false; StringBuilder sb = new StringBuilder(); while (true) { int c = br.read(); if (c!= ' ' && c!= '\r' && c!='\n' && c!='\t') { sb.append((char)c); start = true; } else if (start || c == -1) return sb.toString(); } } catch (Exception ex) { return ""; } } public char readSymbol() { try { while (true) { int c = br.read(); if (c != ' ' && c != '\r' && c != '\n' && c != '\t') { return (char) c; } } } catch (Exception ex) { return 0; } } //public char readChar(){try {return (char)br.read();}catch (Exception ex){ return 0; }} } class Pair { public Pair(int a, int b) {this.a = a;this.b = b;} public int a; public int b; } class PairLL { public PairLL(long a, long b) {this.a = a;this.b = b;} public long a; public long b; } class Triple { public Triple(int a, int b, int c) {this.a = a;this.b = b;this.c = c;} public int a; public int b; public int c; } </CODE> <EVALUATION_RUBRIC> - O(log(n)): The time complexity increases logarithmically in relation to the input size. - O(n): The time complexity increases proportionally to the input size n in a linear manner. - O(nlog(n)): The time complexity combines linear and logarithmic growth factors. - O(1): The time complexity is constant to the input size n. - non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially. - O(n^2): The time complexity grows proportionally to the square of the input size. - O(n^3): The time complexity scales proportionally to the cube of the input size. - others: The time complexity does not fit any of the above categories or cannot be clearly classified. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
1,831
2,204
806
//package round17; import java.io.BufferedReader; import java.io.IOException; import java.io.InputStreamReader; import java.io.PrintWriter; import java.io.StreamTokenizer; public class A { static StreamTokenizer in = new StreamTokenizer(new BufferedReader(new InputStreamReader(System.in))); static int nextInt() throws IOException{ in.nextToken(); return (int)in.nval; } static PrintWriter out = new PrintWriter(System.out); static boolean prime(int n){ int j = 2; while (j*j <= n) if (n%j == 0) return false; else j++; return true; } public static void main(String[] args) throws IOException{ int n = nextInt(), k = nextInt(), a[] = new int[n]; int s = 0; for (int i=2; i<=n; i++) if (prime(i)) a[s++] = i; int m = 0; for (int i=2; i<s; i++) for (int j=i-1; j>0; j--) if (a[i] == a[j]+a[j-1]+1){ m++; break; } if (m >= k) out.println("YES"); else out.println("NO"); out.flush(); } }
O(n)
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Classify the following Java code's worst-case time complexity according to its relationship to the input size n. </TASK> <CODE> //package round17; import java.io.BufferedReader; import java.io.IOException; import java.io.InputStreamReader; import java.io.PrintWriter; import java.io.StreamTokenizer; public class A { static StreamTokenizer in = new StreamTokenizer(new BufferedReader(new InputStreamReader(System.in))); static int nextInt() throws IOException{ in.nextToken(); return (int)in.nval; } static PrintWriter out = new PrintWriter(System.out); static boolean prime(int n){ int j = 2; while (j*j <= n) if (n%j == 0) return false; else j++; return true; } public static void main(String[] args) throws IOException{ int n = nextInt(), k = nextInt(), a[] = new int[n]; int s = 0; for (int i=2; i<=n; i++) if (prime(i)) a[s++] = i; int m = 0; for (int i=2; i<s; i++) for (int j=i-1; j>0; j--) if (a[i] == a[j]+a[j-1]+1){ m++; break; } if (m >= k) out.println("YES"); else out.println("NO"); out.flush(); } } </CODE> <EVALUATION_RUBRIC> - O(n^3): The running time increases with the cube of the input size n. - O(n): The running time grows linearly with the input size n. - O(log(n)): The running time increases with the logarithm of the input size n. - O(nlog(n)): The running time increases with the product of n and logarithm of n. - O(n^2): The running time increases with the square of the input size n. - O(1): The running time does not change regardless of the input size n. - non-polynomial: The running time increases non-polynomially with input size n, typically exponentially. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Determine the worst-case time complexity category of a given Java code based on input size n. </TASK> <CODE> //package round17; import java.io.BufferedReader; import java.io.IOException; import java.io.InputStreamReader; import java.io.PrintWriter; import java.io.StreamTokenizer; public class A { static StreamTokenizer in = new StreamTokenizer(new BufferedReader(new InputStreamReader(System.in))); static int nextInt() throws IOException{ in.nextToken(); return (int)in.nval; } static PrintWriter out = new PrintWriter(System.out); static boolean prime(int n){ int j = 2; while (j*j <= n) if (n%j == 0) return false; else j++; return true; } public static void main(String[] args) throws IOException{ int n = nextInt(), k = nextInt(), a[] = new int[n]; int s = 0; for (int i=2; i<=n; i++) if (prime(i)) a[s++] = i; int m = 0; for (int i=2; i<s; i++) for (int j=i-1; j>0; j--) if (a[i] == a[j]+a[j-1]+1){ m++; break; } if (m >= k) out.println("YES"); else out.println("NO"); out.flush(); } } </CODE> <EVALUATION_RUBRIC> - non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially. - O(n): The time complexity increases proportionally to the input size n in a linear manner. - O(n^2): The time complexity grows proportionally to the square of the input size. - O(log(n)): The time complexity increases logarithmically in relation to the input size. - O(n^3): The time complexity scales proportionally to the cube of the input size. - others: The time complexity does not fit any of the above categories or cannot be clearly classified. - O(nlog(n)): The time complexity combines linear and logarithmic growth factors. - O(1): The time complexity is constant to the input size n. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
620
805
3,594
import java.io.*; import java.io.IOException; import java.util.Iterator; import java.util.LinkedList; import java.util.Queue; import java.util.Scanner; import java.util.Stack; import java.util.TreeSet; public class ViewAngle{ private static int V,level[][],count=-1,lev_dfs[],degree=0,no_vert_conn_comp=0; private static Stack <Integer>st=new Stack(); private static LinkedList<Integer > adj[]; private static boolean[][] Visite; private static boolean [] Visited; private static TreeSet<Integer> ts=new TreeSet(); // private static HashMap private static Queue<Pair> queue = new LinkedList<Pair>(); ViewAngle(int V){ V++; this.V=(V); adj=new LinkedList[V]; Visite=new boolean[100][100]; Visited=new boolean[V]; lev_dfs=new int[V]; for(int i=0;i<V;i++) adj[i]=new LinkedList<Integer>(); } static File inFile,outFile; static FileWriter fWriter; static PrintWriter pWriter; public static void main(String[] args) throws IOException { inFile=new File("input.txt"); outFile = new File ("output.txt"); fWriter = new FileWriter (outFile); pWriter = new PrintWriter (fWriter); Scanner sc = new Scanner (inFile); int n=sc.nextInt(); int m=sc.nextInt(); char c[][]=new char[n][m]; for(int i=0;i<n;i++){ for(int j=0;j<m;j++){ c[i][j]='.'; } } setup(n, m); int k=sc.nextInt(); for(int i=0;i<k;i++){ int x=sc.nextInt(); int y=sc.nextInt(); queue.add(new Pair(x-1, y-1)); c[x-1][y-1]='X'; level[x-1][y-1]=-1; Visite[x-1][y-1]=true; } BFS(c, n, m); pWriter.close(); sc.close(); } static void addEdge(int v,int w){ if(adj[v]==null){ adj[v]=new LinkedList(); } adj[v].add(w); } public static int BFS2(int startVert,int dest){ Visited=new boolean[V]; for(int i=1;i<V;i++){ lev_dfs[i]=-1; } Queue<Integer> q=new LinkedList<Integer>(); q.add(startVert); lev_dfs[startVert]=0; while(!q.isEmpty()){ int top=q.poll(); Iterator<Integer> i= adj[top].listIterator(); while(i.hasNext()){ int n=i.next(); if(!Visited[n]){ q.add(n); Visited[n]=true; lev_dfs[n]=lev_dfs[top]+1; if(n==dest){ q.clear(); return lev_dfs[n]; } } } } q.clear(); return -1; } public int getEd(){ return degree/2; } public void get(int from,int to){ int h=lev_dfs[from]-lev_dfs[to]; if(h<=0){ System.out.println(-1); }else{ System.out.println(h-1); } } public static void setup(int n,int m){ level=new int[n][m]; Visite=new boolean[n][m]; } private static boolean check(int x,int y,char c[][]){ if((x>=0 && y>=0) && (x<c.length && y<c[0].length) && c[x][y]=='.'){ return true; } return false; } public static int BFS(char[][] c,int n,int m) { //Visited[s]=true; // queue.add(new Pair(x,y)); int count=0; // level[x][y]=-1; while (!queue.isEmpty()) { Pair temp = queue.poll(); int x=temp.w; int y=temp.h; Visite[x][y]=true; if(check(x+1,y,c) && !Visite[x+1][y]){ level[x+1][y]=level[x][y]+1; queue.add(new Pair(x+1, y)); Visite[x+1][y]=true; } if(check(x-1,y,c) && !Visite[x-1][y]){ level[x-1][y]=level[x][y]+1; queue.add(new Pair(x-1, y)); Visite[x-1][y]=true; } if(check(x,y+1,c) && !Visite[x][y+1]){ level[x][y+1]=level[x][y]+1; queue.add(new Pair(x, y+1)); Visite[x][y+1]=true; } if(check(x,y-1,c) && !Visite[x][y-1]){ level[x][y-1]=level[x][y]+1; queue.add(new Pair(x, y-1)); Visite[x][y-1]=true; } } int prev_lev=-1,x=-1,y=-1; for(int i=0;i<n;i++){ for(int j=0;j<m;j++){ if(level[i][j]>=prev_lev){ prev_lev=level[i][j]; x=i;y=j; } //System.out.println(level[i][j]+" "); } //System.out.println(); } pWriter.println((x+1)+" "+(y+1)); return V; } private void getAns(int startVertex){ for(int i=0;i<adj[startVertex].size();i++){ int ch=adj[startVertex].get(i); for(int j=0;j<adj[ch].size();j++){ int ch2=adj[ch].get(j); if(adj[ch2].contains(startVertex)){ System.out.println(startVertex+" "+ch+" "+ch2); System.exit(0); } } } } public long dfs(int startVertex){ // getAns(startVertex); if(!Visited[startVertex]) { return dfsUtil(startVertex,Visited); //return getAns(); } return 0; } private long dfsUtil(int startVertex, boolean[] Visited) {//0-Blue 1-Pink //System.out.println(startVertex); int c=1; long cout=0; degree=0; Visited[startVertex]=true; // lev_dfs[startVertex]=1; st.push(startVertex); while(!st.isEmpty()){ int top=st.pop(); Iterator<Integer> i=adj[top].listIterator(); degree+=adj[top].size(); while(i.hasNext()){ // System.out.println(top+" "+adj[top].size()); int n=i.next(); // System.out.print(n+" "); if( !Visited[n]){ Visited[n]=true; st.push(n); // System.out.print(n+" "); lev_dfs[n]=top; } } // System.out.println("--------------------------------"); } for(int i=1;i<V;i++){ if(lev_dfs[i]!=0){ System.out.print(lev_dfs[i]+" "); } } return cout; // System.out.println("NO"); // return c; } } class Pair implements Comparable<Pair>{ int w; int h; Pair(int w,int h){ this.w=w; this.h=h; } @Override public int compareTo(Pair o) { // TODO Auto-generated method stub // Sort in increasing order if(w>o.w){ return 1; }else if(w<o.w){ return -1; }else{ if(h>o.h) return 1; else if(h<o.h) return -1; else return 0; } } }
O(n^3)
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Determine the worst-case time complexity category of a given Java code based on input size n. </TASK> <CODE> import java.io.*; import java.io.IOException; import java.util.Iterator; import java.util.LinkedList; import java.util.Queue; import java.util.Scanner; import java.util.Stack; import java.util.TreeSet; public class ViewAngle{ private static int V,level[][],count=-1,lev_dfs[],degree=0,no_vert_conn_comp=0; private static Stack <Integer>st=new Stack(); private static LinkedList<Integer > adj[]; private static boolean[][] Visite; private static boolean [] Visited; private static TreeSet<Integer> ts=new TreeSet(); // private static HashMap private static Queue<Pair> queue = new LinkedList<Pair>(); ViewAngle(int V){ V++; this.V=(V); adj=new LinkedList[V]; Visite=new boolean[100][100]; Visited=new boolean[V]; lev_dfs=new int[V]; for(int i=0;i<V;i++) adj[i]=new LinkedList<Integer>(); } static File inFile,outFile; static FileWriter fWriter; static PrintWriter pWriter; public static void main(String[] args) throws IOException { inFile=new File("input.txt"); outFile = new File ("output.txt"); fWriter = new FileWriter (outFile); pWriter = new PrintWriter (fWriter); Scanner sc = new Scanner (inFile); int n=sc.nextInt(); int m=sc.nextInt(); char c[][]=new char[n][m]; for(int i=0;i<n;i++){ for(int j=0;j<m;j++){ c[i][j]='.'; } } setup(n, m); int k=sc.nextInt(); for(int i=0;i<k;i++){ int x=sc.nextInt(); int y=sc.nextInt(); queue.add(new Pair(x-1, y-1)); c[x-1][y-1]='X'; level[x-1][y-1]=-1; Visite[x-1][y-1]=true; } BFS(c, n, m); pWriter.close(); sc.close(); } static void addEdge(int v,int w){ if(adj[v]==null){ adj[v]=new LinkedList(); } adj[v].add(w); } public static int BFS2(int startVert,int dest){ Visited=new boolean[V]; for(int i=1;i<V;i++){ lev_dfs[i]=-1; } Queue<Integer> q=new LinkedList<Integer>(); q.add(startVert); lev_dfs[startVert]=0; while(!q.isEmpty()){ int top=q.poll(); Iterator<Integer> i= adj[top].listIterator(); while(i.hasNext()){ int n=i.next(); if(!Visited[n]){ q.add(n); Visited[n]=true; lev_dfs[n]=lev_dfs[top]+1; if(n==dest){ q.clear(); return lev_dfs[n]; } } } } q.clear(); return -1; } public int getEd(){ return degree/2; } public void get(int from,int to){ int h=lev_dfs[from]-lev_dfs[to]; if(h<=0){ System.out.println(-1); }else{ System.out.println(h-1); } } public static void setup(int n,int m){ level=new int[n][m]; Visite=new boolean[n][m]; } private static boolean check(int x,int y,char c[][]){ if((x>=0 && y>=0) && (x<c.length && y<c[0].length) && c[x][y]=='.'){ return true; } return false; } public static int BFS(char[][] c,int n,int m) { //Visited[s]=true; // queue.add(new Pair(x,y)); int count=0; // level[x][y]=-1; while (!queue.isEmpty()) { Pair temp = queue.poll(); int x=temp.w; int y=temp.h; Visite[x][y]=true; if(check(x+1,y,c) && !Visite[x+1][y]){ level[x+1][y]=level[x][y]+1; queue.add(new Pair(x+1, y)); Visite[x+1][y]=true; } if(check(x-1,y,c) && !Visite[x-1][y]){ level[x-1][y]=level[x][y]+1; queue.add(new Pair(x-1, y)); Visite[x-1][y]=true; } if(check(x,y+1,c) && !Visite[x][y+1]){ level[x][y+1]=level[x][y]+1; queue.add(new Pair(x, y+1)); Visite[x][y+1]=true; } if(check(x,y-1,c) && !Visite[x][y-1]){ level[x][y-1]=level[x][y]+1; queue.add(new Pair(x, y-1)); Visite[x][y-1]=true; } } int prev_lev=-1,x=-1,y=-1; for(int i=0;i<n;i++){ for(int j=0;j<m;j++){ if(level[i][j]>=prev_lev){ prev_lev=level[i][j]; x=i;y=j; } //System.out.println(level[i][j]+" "); } //System.out.println(); } pWriter.println((x+1)+" "+(y+1)); return V; } private void getAns(int startVertex){ for(int i=0;i<adj[startVertex].size();i++){ int ch=adj[startVertex].get(i); for(int j=0;j<adj[ch].size();j++){ int ch2=adj[ch].get(j); if(adj[ch2].contains(startVertex)){ System.out.println(startVertex+" "+ch+" "+ch2); System.exit(0); } } } } public long dfs(int startVertex){ // getAns(startVertex); if(!Visited[startVertex]) { return dfsUtil(startVertex,Visited); //return getAns(); } return 0; } private long dfsUtil(int startVertex, boolean[] Visited) {//0-Blue 1-Pink //System.out.println(startVertex); int c=1; long cout=0; degree=0; Visited[startVertex]=true; // lev_dfs[startVertex]=1; st.push(startVertex); while(!st.isEmpty()){ int top=st.pop(); Iterator<Integer> i=adj[top].listIterator(); degree+=adj[top].size(); while(i.hasNext()){ // System.out.println(top+" "+adj[top].size()); int n=i.next(); // System.out.print(n+" "); if( !Visited[n]){ Visited[n]=true; st.push(n); // System.out.print(n+" "); lev_dfs[n]=top; } } // System.out.println("--------------------------------"); } for(int i=1;i<V;i++){ if(lev_dfs[i]!=0){ System.out.print(lev_dfs[i]+" "); } } return cout; // System.out.println("NO"); // return c; } } class Pair implements Comparable<Pair>{ int w; int h; Pair(int w,int h){ this.w=w; this.h=h; } @Override public int compareTo(Pair o) { // TODO Auto-generated method stub // Sort in increasing order if(w>o.w){ return 1; }else if(w<o.w){ return -1; }else{ if(h>o.h) return 1; else if(h<o.h) return -1; else return 0; } } } </CODE> <EVALUATION_RUBRIC> - O(log(n)): The time complexity increases logarithmically in relation to the input size. - O(n^3): The time complexity scales proportionally to the cube of the input size. - O(1): The time complexity is constant to the input size n. - O(nlog(n)): The time complexity combines linear and logarithmic growth factors. - non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially. - O(n): The time complexity increases proportionally to the input size n in a linear manner. - O(n^2): The time complexity grows proportionally to the square of the input size. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Determine the worst-case time complexity category of a given Java code based on input size n. </TASK> <CODE> import java.io.*; import java.io.IOException; import java.util.Iterator; import java.util.LinkedList; import java.util.Queue; import java.util.Scanner; import java.util.Stack; import java.util.TreeSet; public class ViewAngle{ private static int V,level[][],count=-1,lev_dfs[],degree=0,no_vert_conn_comp=0; private static Stack <Integer>st=new Stack(); private static LinkedList<Integer > adj[]; private static boolean[][] Visite; private static boolean [] Visited; private static TreeSet<Integer> ts=new TreeSet(); // private static HashMap private static Queue<Pair> queue = new LinkedList<Pair>(); ViewAngle(int V){ V++; this.V=(V); adj=new LinkedList[V]; Visite=new boolean[100][100]; Visited=new boolean[V]; lev_dfs=new int[V]; for(int i=0;i<V;i++) adj[i]=new LinkedList<Integer>(); } static File inFile,outFile; static FileWriter fWriter; static PrintWriter pWriter; public static void main(String[] args) throws IOException { inFile=new File("input.txt"); outFile = new File ("output.txt"); fWriter = new FileWriter (outFile); pWriter = new PrintWriter (fWriter); Scanner sc = new Scanner (inFile); int n=sc.nextInt(); int m=sc.nextInt(); char c[][]=new char[n][m]; for(int i=0;i<n;i++){ for(int j=0;j<m;j++){ c[i][j]='.'; } } setup(n, m); int k=sc.nextInt(); for(int i=0;i<k;i++){ int x=sc.nextInt(); int y=sc.nextInt(); queue.add(new Pair(x-1, y-1)); c[x-1][y-1]='X'; level[x-1][y-1]=-1; Visite[x-1][y-1]=true; } BFS(c, n, m); pWriter.close(); sc.close(); } static void addEdge(int v,int w){ if(adj[v]==null){ adj[v]=new LinkedList(); } adj[v].add(w); } public static int BFS2(int startVert,int dest){ Visited=new boolean[V]; for(int i=1;i<V;i++){ lev_dfs[i]=-1; } Queue<Integer> q=new LinkedList<Integer>(); q.add(startVert); lev_dfs[startVert]=0; while(!q.isEmpty()){ int top=q.poll(); Iterator<Integer> i= adj[top].listIterator(); while(i.hasNext()){ int n=i.next(); if(!Visited[n]){ q.add(n); Visited[n]=true; lev_dfs[n]=lev_dfs[top]+1; if(n==dest){ q.clear(); return lev_dfs[n]; } } } } q.clear(); return -1; } public int getEd(){ return degree/2; } public void get(int from,int to){ int h=lev_dfs[from]-lev_dfs[to]; if(h<=0){ System.out.println(-1); }else{ System.out.println(h-1); } } public static void setup(int n,int m){ level=new int[n][m]; Visite=new boolean[n][m]; } private static boolean check(int x,int y,char c[][]){ if((x>=0 && y>=0) && (x<c.length && y<c[0].length) && c[x][y]=='.'){ return true; } return false; } public static int BFS(char[][] c,int n,int m) { //Visited[s]=true; // queue.add(new Pair(x,y)); int count=0; // level[x][y]=-1; while (!queue.isEmpty()) { Pair temp = queue.poll(); int x=temp.w; int y=temp.h; Visite[x][y]=true; if(check(x+1,y,c) && !Visite[x+1][y]){ level[x+1][y]=level[x][y]+1; queue.add(new Pair(x+1, y)); Visite[x+1][y]=true; } if(check(x-1,y,c) && !Visite[x-1][y]){ level[x-1][y]=level[x][y]+1; queue.add(new Pair(x-1, y)); Visite[x-1][y]=true; } if(check(x,y+1,c) && !Visite[x][y+1]){ level[x][y+1]=level[x][y]+1; queue.add(new Pair(x, y+1)); Visite[x][y+1]=true; } if(check(x,y-1,c) && !Visite[x][y-1]){ level[x][y-1]=level[x][y]+1; queue.add(new Pair(x, y-1)); Visite[x][y-1]=true; } } int prev_lev=-1,x=-1,y=-1; for(int i=0;i<n;i++){ for(int j=0;j<m;j++){ if(level[i][j]>=prev_lev){ prev_lev=level[i][j]; x=i;y=j; } //System.out.println(level[i][j]+" "); } //System.out.println(); } pWriter.println((x+1)+" "+(y+1)); return V; } private void getAns(int startVertex){ for(int i=0;i<adj[startVertex].size();i++){ int ch=adj[startVertex].get(i); for(int j=0;j<adj[ch].size();j++){ int ch2=adj[ch].get(j); if(adj[ch2].contains(startVertex)){ System.out.println(startVertex+" "+ch+" "+ch2); System.exit(0); } } } } public long dfs(int startVertex){ // getAns(startVertex); if(!Visited[startVertex]) { return dfsUtil(startVertex,Visited); //return getAns(); } return 0; } private long dfsUtil(int startVertex, boolean[] Visited) {//0-Blue 1-Pink //System.out.println(startVertex); int c=1; long cout=0; degree=0; Visited[startVertex]=true; // lev_dfs[startVertex]=1; st.push(startVertex); while(!st.isEmpty()){ int top=st.pop(); Iterator<Integer> i=adj[top].listIterator(); degree+=adj[top].size(); while(i.hasNext()){ // System.out.println(top+" "+adj[top].size()); int n=i.next(); // System.out.print(n+" "); if( !Visited[n]){ Visited[n]=true; st.push(n); // System.out.print(n+" "); lev_dfs[n]=top; } } // System.out.println("--------------------------------"); } for(int i=1;i<V;i++){ if(lev_dfs[i]!=0){ System.out.print(lev_dfs[i]+" "); } } return cout; // System.out.println("NO"); // return c; } } class Pair implements Comparable<Pair>{ int w; int h; Pair(int w,int h){ this.w=w; this.h=h; } @Override public int compareTo(Pair o) { // TODO Auto-generated method stub // Sort in increasing order if(w>o.w){ return 1; }else if(w<o.w){ return -1; }else{ if(h>o.h) return 1; else if(h<o.h) return -1; else return 0; } } } </CODE> <EVALUATION_RUBRIC> - O(1): The time complexity is constant to the input size n. - O(log(n)): The time complexity increases logarithmically in relation to the input size. - O(n): The time complexity increases proportionally to the input size n in a linear manner. - O(nlog(n)): The time complexity combines linear and logarithmic growth factors. - O(n^3): The time complexity scales proportionally to the cube of the input size. - non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially. - O(n^2): The time complexity grows proportionally to the square of the input size. - others: The time complexity does not fit any of the above categories or cannot be clearly classified. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
2,186
3,586
3,611
import java.io.*; import java.util.*; public class MainF { public static void main(String[]args) throws IOException{ BufferedReader br = new BufferedReader(new FileReader(new File("input.txt"))); BufferedWriter bw = new BufferedWriter(new FileWriter(new File("output.txt"))); String S = br.readLine(); String[]J = S.split(" "); int N = Integer.parseInt(J[0]); int M = Integer.parseInt(J[1]); int K = Integer.parseInt(br.readLine()); int[]x = new int[K]; int[]y = new int[K]; S = br.readLine(); J = S.split(" "); for(int i = 0; i<2*K; i = i + 2){ x[i/2] = Integer.parseInt(J[i]); y[i/2] = Integer.parseInt(J[i+1]); } int ans = -1; int ansX = -1; int ansY = -1; for (int i = 1; i<=N; i++){ for (int j = 1; j<=M; j++){ int W = M + N; for (int k = 0; k<K; k++){ W = Math.min(W, Math.abs(i-x[k]) + Math.abs(j-y[k])); } if (W < ans)continue; ans = W; ansX = i; ansY = j; } } bw.write(Integer.toString(ansX)+" "+Integer.toString(ansY)); br.close(); bw.close(); } }
O(n^3)
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n. </TASK> <CODE> import java.io.*; import java.util.*; public class MainF { public static void main(String[]args) throws IOException{ BufferedReader br = new BufferedReader(new FileReader(new File("input.txt"))); BufferedWriter bw = new BufferedWriter(new FileWriter(new File("output.txt"))); String S = br.readLine(); String[]J = S.split(" "); int N = Integer.parseInt(J[0]); int M = Integer.parseInt(J[1]); int K = Integer.parseInt(br.readLine()); int[]x = new int[K]; int[]y = new int[K]; S = br.readLine(); J = S.split(" "); for(int i = 0; i<2*K; i = i + 2){ x[i/2] = Integer.parseInt(J[i]); y[i/2] = Integer.parseInt(J[i+1]); } int ans = -1; int ansX = -1; int ansY = -1; for (int i = 1; i<=N; i++){ for (int j = 1; j<=M; j++){ int W = M + N; for (int k = 0; k<K; k++){ W = Math.min(W, Math.abs(i-x[k]) + Math.abs(j-y[k])); } if (W < ans)continue; ans = W; ansX = i; ansY = j; } } bw.write(Integer.toString(ansX)+" "+Integer.toString(ansY)); br.close(); bw.close(); } } </CODE> <EVALUATION_RUBRIC> - O(n^2): The execution time ascends in proportion to the square of the input size n. - O(n^3): The execution time ascends in proportion to the cube of the input size n. - non-polynomial: The running time increases non-polynomially with input size n, typically exponentially. - O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially. - O(log(n)): The execution time ascends in proportion to the logarithm of the input size n. - O(1): The execution time is unaffected by the size of the input n. - O(n): The execution time ascends in a one-to-one ratio with the input size n. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n. </TASK> <CODE> import java.io.*; import java.util.*; public class MainF { public static void main(String[]args) throws IOException{ BufferedReader br = new BufferedReader(new FileReader(new File("input.txt"))); BufferedWriter bw = new BufferedWriter(new FileWriter(new File("output.txt"))); String S = br.readLine(); String[]J = S.split(" "); int N = Integer.parseInt(J[0]); int M = Integer.parseInt(J[1]); int K = Integer.parseInt(br.readLine()); int[]x = new int[K]; int[]y = new int[K]; S = br.readLine(); J = S.split(" "); for(int i = 0; i<2*K; i = i + 2){ x[i/2] = Integer.parseInt(J[i]); y[i/2] = Integer.parseInt(J[i+1]); } int ans = -1; int ansX = -1; int ansY = -1; for (int i = 1; i<=N; i++){ for (int j = 1; j<=M; j++){ int W = M + N; for (int k = 0; k<K; k++){ W = Math.min(W, Math.abs(i-x[k]) + Math.abs(j-y[k])); } if (W < ans)continue; ans = W; ansX = i; ansY = j; } } bw.write(Integer.toString(ansX)+" "+Integer.toString(ansY)); br.close(); bw.close(); } } </CODE> <EVALUATION_RUBRIC> - others: The time complexity does not fit to any of the given categories or is ambiguous. - O(n): The execution time ascends in a one-to-one ratio with the input size n. - O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially. - O(n^2): The execution time ascends in proportion to the square of the input size n. - non-polynomial: The running time increases non-polynomially with input size n, typically exponentially. - O(log(n)): The execution time ascends in proportion to the logarithm of the input size n. - O(n^3): The execution time ascends in proportion to the cube of the input size n. - O(1): The execution time is unaffected by the size of the input n. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
685
3,603
2,560
import java.util.*; import java.io.*; public class Main { static Scanner console; public static void main(String[] args) { console = new Scanner(System.in); int n = console.nextInt(); List<Integer> arr= new ArrayList<>(); for(int i = 0; i < n; i++) arr.add( console.nextInt()); Collections.sort(arr); List<Integer> groups = new ArrayList<>(); // System.out.println(arr); for(int i = 0; i < arr.size() - 1; i++) { int j = i+1; groups.add(arr.get(i)); // System.out.println(groups); while(j < arr.size()) { // System.out.println(j); if(arr.get(j) % arr.get(i) == 0) { arr.remove(j); } else { // groups.add(arr.get(j)); j++; } } } // System.out.println(arr); System.out.println(arr.size()); } }
O(n^2)
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n. </TASK> <CODE> import java.util.*; import java.io.*; public class Main { static Scanner console; public static void main(String[] args) { console = new Scanner(System.in); int n = console.nextInt(); List<Integer> arr= new ArrayList<>(); for(int i = 0; i < n; i++) arr.add( console.nextInt()); Collections.sort(arr); List<Integer> groups = new ArrayList<>(); // System.out.println(arr); for(int i = 0; i < arr.size() - 1; i++) { int j = i+1; groups.add(arr.get(i)); // System.out.println(groups); while(j < arr.size()) { // System.out.println(j); if(arr.get(j) % arr.get(i) == 0) { arr.remove(j); } else { // groups.add(arr.get(j)); j++; } } } // System.out.println(arr); System.out.println(arr.size()); } } </CODE> <EVALUATION_RUBRIC> - O(1): The execution time is unaffected by the size of the input n. - O(n): The execution time ascends in a one-to-one ratio with the input size n. - O(n^3): The execution time ascends in proportion to the cube of the input size n. - non-polynomial: The running time increases non-polynomially with input size n, typically exponentially. - O(log(n)): The execution time ascends in proportion to the logarithm of the input size n. - O(n^2): The execution time ascends in proportion to the square of the input size n. - O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Classify the following Java code's worst-case time complexity according to its relationship to the input size n. </TASK> <CODE> import java.util.*; import java.io.*; public class Main { static Scanner console; public static void main(String[] args) { console = new Scanner(System.in); int n = console.nextInt(); List<Integer> arr= new ArrayList<>(); for(int i = 0; i < n; i++) arr.add( console.nextInt()); Collections.sort(arr); List<Integer> groups = new ArrayList<>(); // System.out.println(arr); for(int i = 0; i < arr.size() - 1; i++) { int j = i+1; groups.add(arr.get(i)); // System.out.println(groups); while(j < arr.size()) { // System.out.println(j); if(arr.get(j) % arr.get(i) == 0) { arr.remove(j); } else { // groups.add(arr.get(j)); j++; } } } // System.out.println(arr); System.out.println(arr.size()); } } </CODE> <EVALUATION_RUBRIC> - O(nlog(n)): The running time increases with the product of n and logarithm of n. - non-polynomial: The running time increases non-polynomially with input size n, typically exponentially. - O(1): The running time does not change regardless of the input size n. - others: The code does not clearly correspond to the listed classes or has an unclassified time complexity. - O(n^2): The running time increases with the square of the input size n. - O(n^3): The running time increases with the cube of the input size n. - O(n): The running time grows linearly with the input size n. - O(log(n)): The running time increases with the logarithm of the input size n. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
568
2,554
3,203
import java.io.*; public class Main { public static void main(String[] args) throws Exception { int n = nextInt(); String nn = Integer.toString(n); if(n >= 0){ println(n); } else { println(Math.max(Integer.parseInt(nn.substring(0,nn.length() - 1)), Integer.parseInt(nn.substring(0, nn.length() - 2) + nn.charAt(nn.length() - 1)))); } } private static PrintWriter out = new PrintWriter(System.out); private static BufferedReader inB = new BufferedReader(new InputStreamReader(System.in)); private static StreamTokenizer in = new StreamTokenizer(inB); private static void exit(Object o) throws Exception { out.println(o); out.flush(); System.exit(0); } private static void println(Object o) throws Exception{ out.println(o); out.flush(); } private static void print(Object o) throws Exception{ out.print(o); out.flush(); } private static long nextLong() throws Exception { in.nextToken(); return (long)in.nval; } private static int nextInt() throws Exception { in.nextToken(); return (int)in.nval; } private static String nextString() throws Exception { in.nextToken(); return in.sval; } }
O(1)
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Classify the following Java code's worst-case time complexity according to its relationship to the input size n. </TASK> <CODE> import java.io.*; public class Main { public static void main(String[] args) throws Exception { int n = nextInt(); String nn = Integer.toString(n); if(n >= 0){ println(n); } else { println(Math.max(Integer.parseInt(nn.substring(0,nn.length() - 1)), Integer.parseInt(nn.substring(0, nn.length() - 2) + nn.charAt(nn.length() - 1)))); } } private static PrintWriter out = new PrintWriter(System.out); private static BufferedReader inB = new BufferedReader(new InputStreamReader(System.in)); private static StreamTokenizer in = new StreamTokenizer(inB); private static void exit(Object o) throws Exception { out.println(o); out.flush(); System.exit(0); } private static void println(Object o) throws Exception{ out.println(o); out.flush(); } private static void print(Object o) throws Exception{ out.print(o); out.flush(); } private static long nextLong() throws Exception { in.nextToken(); return (long)in.nval; } private static int nextInt() throws Exception { in.nextToken(); return (int)in.nval; } private static String nextString() throws Exception { in.nextToken(); return in.sval; } } </CODE> <EVALUATION_RUBRIC> - O(n^2): The running time increases with the square of the input size n. - O(log(n)): The running time increases with the logarithm of the input size n. - O(nlog(n)): The running time increases with the product of n and logarithm of n. - O(1): The running time does not change regardless of the input size n. - non-polynomial: The running time increases non-polynomially with input size n, typically exponentially. - O(n): The running time grows linearly with the input size n. - O(n^3): The running time increases with the cube of the input size n. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Determine the worst-case time complexity category of a given Java code based on input size n. </TASK> <CODE> import java.io.*; public class Main { public static void main(String[] args) throws Exception { int n = nextInt(); String nn = Integer.toString(n); if(n >= 0){ println(n); } else { println(Math.max(Integer.parseInt(nn.substring(0,nn.length() - 1)), Integer.parseInt(nn.substring(0, nn.length() - 2) + nn.charAt(nn.length() - 1)))); } } private static PrintWriter out = new PrintWriter(System.out); private static BufferedReader inB = new BufferedReader(new InputStreamReader(System.in)); private static StreamTokenizer in = new StreamTokenizer(inB); private static void exit(Object o) throws Exception { out.println(o); out.flush(); System.exit(0); } private static void println(Object o) throws Exception{ out.println(o); out.flush(); } private static void print(Object o) throws Exception{ out.print(o); out.flush(); } private static long nextLong() throws Exception { in.nextToken(); return (long)in.nval; } private static int nextInt() throws Exception { in.nextToken(); return (int)in.nval; } private static String nextString() throws Exception { in.nextToken(); return in.sval; } } </CODE> <EVALUATION_RUBRIC> - O(1): The time complexity is constant to the input size n. - O(n^2): The time complexity grows proportionally to the square of the input size. - others: The time complexity does not fit any of the above categories or cannot be clearly classified. - O(log(n)): The time complexity increases logarithmically in relation to the input size. - O(n): The time complexity increases proportionally to the input size n in a linear manner. - O(n^3): The time complexity scales proportionally to the cube of the input size. - O(nlog(n)): The time complexity combines linear and logarithmic growth factors. - non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
614
3,197
177
//Author: Patel Rag //Java version "1.8.0_211" import java.util.*; import java.io.*; public class Main { static class FastReader { BufferedReader br; StringTokenizer st; public FastReader(){ br = new BufferedReader(new InputStreamReader(System.in)); } String next() { while (st == null || !st.hasMoreElements()) { try { st = new StringTokenizer(br.readLine()); } catch (IOException e) { e.printStackTrace(); } } return st.nextToken(); } int nextInt() { return Integer.parseInt(next()); } long nextLong(){ return Long.parseLong(next()); } double nextDouble(){ return Double.parseDouble(next()); } float nextFloat() { return Float.parseFloat(next()); } boolean nextBoolean() { return Boolean.parseBoolean(next()); } String nextLine() { String str = ""; try { str = br.readLine(); } catch (IOException e) { e.printStackTrace(); } return str; } } static long modExp(long x, long n, long mod) //binary Modular exponentiation { long result = 1; while(n > 0) { if(n % 2 == 1) result = (result%mod * x%mod)%mod; x = (x%mod * x%mod)%mod; n=n/2; } return result; } static long gcd(long a, long b) { if(a==0) return b; return gcd(b%a,a); } public static void main(String[] args) throws IOException { FastReader fr = new FastReader(); int n = fr.nextInt(); int q = fr.nextInt(); long[] a = new long[n]; long[] k = new long[q]; for(int i = 0; i < n; i++) a[i] = fr.nextLong(); for(int i = 0; i < q; i++) k[i] = fr.nextLong(); long[] pre = new long[n]; pre[0] = a[0]; for(int i = 1; i < n; i++) pre[i] = pre[i-1] + a[i]; long pd = 0; for(int i = 0; i < q; i++) { int l = 0; int r = n - 1; while(r > l) { int mid = (l + r) >> 1; if(pre[mid] - pd < k[i]) { l = mid + 1; } else if(pre[mid] - pd > k[i]) { r = mid - 1; } else { l = r = mid; } } int ans = 0; if(pre[l] - pd <= k[i]) { ans = n - l - 1; } else { ans = n - l; } if(ans == 0) ans = n; pd = pd + k[i]; if(pd >= pre[n-1]) pd = 0; System.out.println(ans); } } } class pair { public int first; public int second; public pair(int first,int second) { this.first = first; this.second = second; } public pair(pair p) { this.first = p.first; this.second = p.second; } public int first() { return first; } public int second() { return second; } public void setFirst(int first) { this.first = first; } public void setSecond(int second) { this.second = second; } } class myComp implements Comparator<pair> { public int compare(pair a,pair b) { if(a.first != b.first) return (a.first - b.first); return (b.second - a.second); } } class BIT //Binary Indexed Tree aka Fenwick Tree { public long[] m_array; public BIT(long[] dat) { m_array = new long[dat.length + 1]; Arrays.fill(m_array,0); for(int i = 0; i < dat.length; i++) { m_array[i + 1] = dat[i]; } for(int i = 1; i < m_array.length; i++) { int j = i + (i & -i); if(j < m_array.length) { m_array[j] = m_array[j] + m_array[i]; } } } public final long prefix_query(int i) { long result = 0; for(++i; i > 0; i = i - (i & -i)) { result = result + m_array[i]; } return result; } public final long range_query(int fro, int to) { if(fro == 0) { return prefix_query(to); } else { return (prefix_query(to) - prefix_query(fro - 1)); } } public void update(int i, long add) { for(++i; i < m_array.length; i = i + (i & -i)) { m_array[i] = m_array[i] + add; } } }
O(nlog(n))
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Determine the worst-case time complexity category of a given Java code based on input size n. </TASK> <CODE> //Author: Patel Rag //Java version "1.8.0_211" import java.util.*; import java.io.*; public class Main { static class FastReader { BufferedReader br; StringTokenizer st; public FastReader(){ br = new BufferedReader(new InputStreamReader(System.in)); } String next() { while (st == null || !st.hasMoreElements()) { try { st = new StringTokenizer(br.readLine()); } catch (IOException e) { e.printStackTrace(); } } return st.nextToken(); } int nextInt() { return Integer.parseInt(next()); } long nextLong(){ return Long.parseLong(next()); } double nextDouble(){ return Double.parseDouble(next()); } float nextFloat() { return Float.parseFloat(next()); } boolean nextBoolean() { return Boolean.parseBoolean(next()); } String nextLine() { String str = ""; try { str = br.readLine(); } catch (IOException e) { e.printStackTrace(); } return str; } } static long modExp(long x, long n, long mod) //binary Modular exponentiation { long result = 1; while(n > 0) { if(n % 2 == 1) result = (result%mod * x%mod)%mod; x = (x%mod * x%mod)%mod; n=n/2; } return result; } static long gcd(long a, long b) { if(a==0) return b; return gcd(b%a,a); } public static void main(String[] args) throws IOException { FastReader fr = new FastReader(); int n = fr.nextInt(); int q = fr.nextInt(); long[] a = new long[n]; long[] k = new long[q]; for(int i = 0; i < n; i++) a[i] = fr.nextLong(); for(int i = 0; i < q; i++) k[i] = fr.nextLong(); long[] pre = new long[n]; pre[0] = a[0]; for(int i = 1; i < n; i++) pre[i] = pre[i-1] + a[i]; long pd = 0; for(int i = 0; i < q; i++) { int l = 0; int r = n - 1; while(r > l) { int mid = (l + r) >> 1; if(pre[mid] - pd < k[i]) { l = mid + 1; } else if(pre[mid] - pd > k[i]) { r = mid - 1; } else { l = r = mid; } } int ans = 0; if(pre[l] - pd <= k[i]) { ans = n - l - 1; } else { ans = n - l; } if(ans == 0) ans = n; pd = pd + k[i]; if(pd >= pre[n-1]) pd = 0; System.out.println(ans); } } } class pair { public int first; public int second; public pair(int first,int second) { this.first = first; this.second = second; } public pair(pair p) { this.first = p.first; this.second = p.second; } public int first() { return first; } public int second() { return second; } public void setFirst(int first) { this.first = first; } public void setSecond(int second) { this.second = second; } } class myComp implements Comparator<pair> { public int compare(pair a,pair b) { if(a.first != b.first) return (a.first - b.first); return (b.second - a.second); } } class BIT //Binary Indexed Tree aka Fenwick Tree { public long[] m_array; public BIT(long[] dat) { m_array = new long[dat.length + 1]; Arrays.fill(m_array,0); for(int i = 0; i < dat.length; i++) { m_array[i + 1] = dat[i]; } for(int i = 1; i < m_array.length; i++) { int j = i + (i & -i); if(j < m_array.length) { m_array[j] = m_array[j] + m_array[i]; } } } public final long prefix_query(int i) { long result = 0; for(++i; i > 0; i = i - (i & -i)) { result = result + m_array[i]; } return result; } public final long range_query(int fro, int to) { if(fro == 0) { return prefix_query(to); } else { return (prefix_query(to) - prefix_query(fro - 1)); } } public void update(int i, long add) { for(++i; i < m_array.length; i = i + (i & -i)) { m_array[i] = m_array[i] + add; } } } </CODE> <EVALUATION_RUBRIC> - O(n^2): The time complexity grows proportionally to the square of the input size. - O(log(n)): The time complexity increases logarithmically in relation to the input size. - O(1): The time complexity is constant to the input size n. - non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially. - O(nlog(n)): The time complexity combines linear and logarithmic growth factors. - O(n): The time complexity increases proportionally to the input size n in a linear manner. - O(n^3): The time complexity scales proportionally to the cube of the input size. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Classify the following Java code's worst-case time complexity according to its relationship to the input size n. </TASK> <CODE> //Author: Patel Rag //Java version "1.8.0_211" import java.util.*; import java.io.*; public class Main { static class FastReader { BufferedReader br; StringTokenizer st; public FastReader(){ br = new BufferedReader(new InputStreamReader(System.in)); } String next() { while (st == null || !st.hasMoreElements()) { try { st = new StringTokenizer(br.readLine()); } catch (IOException e) { e.printStackTrace(); } } return st.nextToken(); } int nextInt() { return Integer.parseInt(next()); } long nextLong(){ return Long.parseLong(next()); } double nextDouble(){ return Double.parseDouble(next()); } float nextFloat() { return Float.parseFloat(next()); } boolean nextBoolean() { return Boolean.parseBoolean(next()); } String nextLine() { String str = ""; try { str = br.readLine(); } catch (IOException e) { e.printStackTrace(); } return str; } } static long modExp(long x, long n, long mod) //binary Modular exponentiation { long result = 1; while(n > 0) { if(n % 2 == 1) result = (result%mod * x%mod)%mod; x = (x%mod * x%mod)%mod; n=n/2; } return result; } static long gcd(long a, long b) { if(a==0) return b; return gcd(b%a,a); } public static void main(String[] args) throws IOException { FastReader fr = new FastReader(); int n = fr.nextInt(); int q = fr.nextInt(); long[] a = new long[n]; long[] k = new long[q]; for(int i = 0; i < n; i++) a[i] = fr.nextLong(); for(int i = 0; i < q; i++) k[i] = fr.nextLong(); long[] pre = new long[n]; pre[0] = a[0]; for(int i = 1; i < n; i++) pre[i] = pre[i-1] + a[i]; long pd = 0; for(int i = 0; i < q; i++) { int l = 0; int r = n - 1; while(r > l) { int mid = (l + r) >> 1; if(pre[mid] - pd < k[i]) { l = mid + 1; } else if(pre[mid] - pd > k[i]) { r = mid - 1; } else { l = r = mid; } } int ans = 0; if(pre[l] - pd <= k[i]) { ans = n - l - 1; } else { ans = n - l; } if(ans == 0) ans = n; pd = pd + k[i]; if(pd >= pre[n-1]) pd = 0; System.out.println(ans); } } } class pair { public int first; public int second; public pair(int first,int second) { this.first = first; this.second = second; } public pair(pair p) { this.first = p.first; this.second = p.second; } public int first() { return first; } public int second() { return second; } public void setFirst(int first) { this.first = first; } public void setSecond(int second) { this.second = second; } } class myComp implements Comparator<pair> { public int compare(pair a,pair b) { if(a.first != b.first) return (a.first - b.first); return (b.second - a.second); } } class BIT //Binary Indexed Tree aka Fenwick Tree { public long[] m_array; public BIT(long[] dat) { m_array = new long[dat.length + 1]; Arrays.fill(m_array,0); for(int i = 0; i < dat.length; i++) { m_array[i + 1] = dat[i]; } for(int i = 1; i < m_array.length; i++) { int j = i + (i & -i); if(j < m_array.length) { m_array[j] = m_array[j] + m_array[i]; } } } public final long prefix_query(int i) { long result = 0; for(++i; i > 0; i = i - (i & -i)) { result = result + m_array[i]; } return result; } public final long range_query(int fro, int to) { if(fro == 0) { return prefix_query(to); } else { return (prefix_query(to) - prefix_query(fro - 1)); } } public void update(int i, long add) { for(++i; i < m_array.length; i = i + (i & -i)) { m_array[i] = m_array[i] + add; } } } </CODE> <EVALUATION_RUBRIC> - O(nlog(n)): The running time increases with the product of n and logarithm of n. - O(log(n)): The running time increases with the logarithm of the input size n. - O(1): The running time does not change regardless of the input size n. - O(n^2): The running time increases with the square of the input size n. - non-polynomial: The running time increases non-polynomially with input size n, typically exponentially. - O(n): The running time grows linearly with the input size n. - others: The code does not clearly correspond to the listed classes or has an unclassified time complexity. - O(n^3): The running time increases with the cube of the input size n. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
1,510
177
2,243
import java.io.*; import java.util.*; public class CC { public static void main(String[] args)throws Throwable { MyScanner sc=new MyScanner(); PrintWriter pw=new PrintWriter(System.out); n=sc.nextInt(); s=new char [n]; for(int i=0;i<n;i++) s[i]=sc.next().charAt(0); mem=new int [2*n+1][n+1]; for(int [] x : mem) Arrays.fill(x, -1); pw.println(dp(0, 0)); pw.flush(); pw.close(); } static int n; static char [] s; static int [][] mem; static int dp(int i,int j){ if(i==n) return j==0? 1 : 0; if(mem[i][j]!=-1) return mem[i][j]; int ans=0; if(s[i]=='f'){ ans+=dp(i+1, j+1); ans%=mod; }else{ ans+=dp(i+1, j); ans%=mod; if(j>0){ ans+=dp(i, j-1); ans%=mod; } } return mem[i][j]=ans; } static int mod=(int)(1e9+7); static class MyScanner { BufferedReader br; StringTokenizer st; public MyScanner() { br = new BufferedReader(new InputStreamReader(System.in)); } String next() {while (st == null || !st.hasMoreElements()) { try {st = new StringTokenizer(br.readLine());} catch (IOException e) {e.printStackTrace();}} return st.nextToken();} int nextInt() {return Integer.parseInt(next());} long nextLong() {return Long.parseLong(next());} double nextDouble() {return Double.parseDouble(next());} String nextLine(){String str = ""; try {str = br.readLine();} catch (IOException e) {e.printStackTrace();} return str;} } }
O(n^2)
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Classify the following Java code's worst-case time complexity according to its relationship to the input size n. </TASK> <CODE> import java.io.*; import java.util.*; public class CC { public static void main(String[] args)throws Throwable { MyScanner sc=new MyScanner(); PrintWriter pw=new PrintWriter(System.out); n=sc.nextInt(); s=new char [n]; for(int i=0;i<n;i++) s[i]=sc.next().charAt(0); mem=new int [2*n+1][n+1]; for(int [] x : mem) Arrays.fill(x, -1); pw.println(dp(0, 0)); pw.flush(); pw.close(); } static int n; static char [] s; static int [][] mem; static int dp(int i,int j){ if(i==n) return j==0? 1 : 0; if(mem[i][j]!=-1) return mem[i][j]; int ans=0; if(s[i]=='f'){ ans+=dp(i+1, j+1); ans%=mod; }else{ ans+=dp(i+1, j); ans%=mod; if(j>0){ ans+=dp(i, j-1); ans%=mod; } } return mem[i][j]=ans; } static int mod=(int)(1e9+7); static class MyScanner { BufferedReader br; StringTokenizer st; public MyScanner() { br = new BufferedReader(new InputStreamReader(System.in)); } String next() {while (st == null || !st.hasMoreElements()) { try {st = new StringTokenizer(br.readLine());} catch (IOException e) {e.printStackTrace();}} return st.nextToken();} int nextInt() {return Integer.parseInt(next());} long nextLong() {return Long.parseLong(next());} double nextDouble() {return Double.parseDouble(next());} String nextLine(){String str = ""; try {str = br.readLine();} catch (IOException e) {e.printStackTrace();} return str;} } } </CODE> <EVALUATION_RUBRIC> - O(1): The running time does not change regardless of the input size n. - O(nlog(n)): The running time increases with the product of n and logarithm of n. - O(n^3): The running time increases with the cube of the input size n. - non-polynomial: The running time increases non-polynomially with input size n, typically exponentially. - O(n): The running time grows linearly with the input size n. - O(log(n)): The running time increases with the logarithm of the input size n. - O(n^2): The running time increases with the square of the input size n. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Classify the following Java code's worst-case time complexity according to its relationship to the input size n. </TASK> <CODE> import java.io.*; import java.util.*; public class CC { public static void main(String[] args)throws Throwable { MyScanner sc=new MyScanner(); PrintWriter pw=new PrintWriter(System.out); n=sc.nextInt(); s=new char [n]; for(int i=0;i<n;i++) s[i]=sc.next().charAt(0); mem=new int [2*n+1][n+1]; for(int [] x : mem) Arrays.fill(x, -1); pw.println(dp(0, 0)); pw.flush(); pw.close(); } static int n; static char [] s; static int [][] mem; static int dp(int i,int j){ if(i==n) return j==0? 1 : 0; if(mem[i][j]!=-1) return mem[i][j]; int ans=0; if(s[i]=='f'){ ans+=dp(i+1, j+1); ans%=mod; }else{ ans+=dp(i+1, j); ans%=mod; if(j>0){ ans+=dp(i, j-1); ans%=mod; } } return mem[i][j]=ans; } static int mod=(int)(1e9+7); static class MyScanner { BufferedReader br; StringTokenizer st; public MyScanner() { br = new BufferedReader(new InputStreamReader(System.in)); } String next() {while (st == null || !st.hasMoreElements()) { try {st = new StringTokenizer(br.readLine());} catch (IOException e) {e.printStackTrace();}} return st.nextToken();} int nextInt() {return Integer.parseInt(next());} long nextLong() {return Long.parseLong(next());} double nextDouble() {return Double.parseDouble(next());} String nextLine(){String str = ""; try {str = br.readLine();} catch (IOException e) {e.printStackTrace();} return str;} } } </CODE> <EVALUATION_RUBRIC> - O(n^2): The running time increases with the square of the input size n. - O(1): The running time does not change regardless of the input size n. - others: The code does not clearly correspond to the listed classes or has an unclassified time complexity. - non-polynomial: The running time increases non-polynomially with input size n, typically exponentially. - O(nlog(n)): The running time increases with the product of n and logarithm of n. - O(log(n)): The running time increases with the logarithm of the input size n. - O(n): The running time grows linearly with the input size n. - O(n^3): The running time increases with the cube of the input size n. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
763
2,239
482
//package que_a; import java.io.*; import java.util.*; import java.math.*; public class utkarsh { InputStream is; PrintWriter out; long mod = (long) (1e9 + 7); boolean SHOW_TIME; void solve() { //Enter code here utkarsh //SHOW_TIME = true; int n = ni(); HashMap <String, Integer> mp = new HashMap<>(); mp.put("M", 0); mp.put("S", 1); mp.put("XS", 2); mp.put("XXS", 3); mp.put("XXXS", 4); mp.put("L", 5); mp.put("XL", 6); mp.put("XXL", 7); mp.put("XXXL", 8); int a[] = new int[10]; for(int i = 0; i < n; i++) { int j = mp.get(ns()); a[j]++; } for(int i = 0; i < n; i++) { int j = mp.get(ns()); a[j]--; } int ans = 0; for(int i = 0; i < 10; i++) { if(a[i] > 0) ans += a[i]; } out.println(ans); } //---------- I/O Template ---------- public static void main(String[] args) { new utkarsh().run(); } void run() { is = System.in; out = new PrintWriter(System.out); long start = System.currentTimeMillis(); solve(); long end = System.currentTimeMillis(); if(SHOW_TIME) out.println("\n" + (end - start) + " ms"); out.flush(); } byte input[] = new byte[1024]; int len = 0, ptr = 0; int readByte() { if(ptr >= len) { ptr = 0; try { len = is.read(input); } catch(IOException e) { throw new InputMismatchException(); } if(len <= 0) { return -1; } } return input[ptr++]; } boolean isSpaceChar(int c) { return !( c >= 33 && c <= 126 ); } int skip() { int b = readByte(); while(b != -1 && isSpaceChar(b)) { b = readByte(); } return b; } char nc() { return (char)skip(); } String ns() { int b = skip(); StringBuilder sb = new StringBuilder(); while(!isSpaceChar(b)) { sb.appendCodePoint(b); b = readByte(); } return sb.toString(); } String nLine() { int b = skip(); StringBuilder sb = new StringBuilder(); while( !(isSpaceChar(b) && b != ' ') ) { sb.appendCodePoint(b); b = readByte(); } return sb.toString(); } int ni() { int n = 0, b = readByte(); boolean minus = false; while(b != -1 && !( (b >= '0' && b <= '9') || b == '-')) { b = readByte(); } if(b == '-') { minus = true; b = readByte(); } if(b == -1) { return -1; } //no input while(b >= '0' && b <= '9') { n = n * 10 + (b - '0'); b = readByte(); } return minus ? -n : n; } long nl() { long n = 0L; int b = readByte(); boolean minus = false; while(b != -1 && !( (b >= '0' && b <= '9') || b == '-')) { b = readByte(); } if(b == '-') { minus = true; b = readByte(); } while(b >= '0' && b <= '9') { n = n * 10 + (b - '0'); b = readByte(); } return minus ? -n : n; } double nd() { return Double.parseDouble(ns()); } float nf() { return Float.parseFloat(ns()); } int[] na(int n) { int a[] = new int[n]; for(int i = 0; i < n; i++) { a[i] = ni(); } return a; } char[] ns(int n) { char c[] = new char[n]; int i, b = skip(); for(i = 0; i < n; i++) { if(isSpaceChar(b)) { break; } c[i] = (char)b; b = readByte(); } return i == n ? c : Arrays.copyOf(c,i); } }
O(n)
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Determine the worst-case time complexity category of a given Java code based on input size n. </TASK> <CODE> //package que_a; import java.io.*; import java.util.*; import java.math.*; public class utkarsh { InputStream is; PrintWriter out; long mod = (long) (1e9 + 7); boolean SHOW_TIME; void solve() { //Enter code here utkarsh //SHOW_TIME = true; int n = ni(); HashMap <String, Integer> mp = new HashMap<>(); mp.put("M", 0); mp.put("S", 1); mp.put("XS", 2); mp.put("XXS", 3); mp.put("XXXS", 4); mp.put("L", 5); mp.put("XL", 6); mp.put("XXL", 7); mp.put("XXXL", 8); int a[] = new int[10]; for(int i = 0; i < n; i++) { int j = mp.get(ns()); a[j]++; } for(int i = 0; i < n; i++) { int j = mp.get(ns()); a[j]--; } int ans = 0; for(int i = 0; i < 10; i++) { if(a[i] > 0) ans += a[i]; } out.println(ans); } //---------- I/O Template ---------- public static void main(String[] args) { new utkarsh().run(); } void run() { is = System.in; out = new PrintWriter(System.out); long start = System.currentTimeMillis(); solve(); long end = System.currentTimeMillis(); if(SHOW_TIME) out.println("\n" + (end - start) + " ms"); out.flush(); } byte input[] = new byte[1024]; int len = 0, ptr = 0; int readByte() { if(ptr >= len) { ptr = 0; try { len = is.read(input); } catch(IOException e) { throw new InputMismatchException(); } if(len <= 0) { return -1; } } return input[ptr++]; } boolean isSpaceChar(int c) { return !( c >= 33 && c <= 126 ); } int skip() { int b = readByte(); while(b != -1 && isSpaceChar(b)) { b = readByte(); } return b; } char nc() { return (char)skip(); } String ns() { int b = skip(); StringBuilder sb = new StringBuilder(); while(!isSpaceChar(b)) { sb.appendCodePoint(b); b = readByte(); } return sb.toString(); } String nLine() { int b = skip(); StringBuilder sb = new StringBuilder(); while( !(isSpaceChar(b) && b != ' ') ) { sb.appendCodePoint(b); b = readByte(); } return sb.toString(); } int ni() { int n = 0, b = readByte(); boolean minus = false; while(b != -1 && !( (b >= '0' && b <= '9') || b == '-')) { b = readByte(); } if(b == '-') { minus = true; b = readByte(); } if(b == -1) { return -1; } //no input while(b >= '0' && b <= '9') { n = n * 10 + (b - '0'); b = readByte(); } return minus ? -n : n; } long nl() { long n = 0L; int b = readByte(); boolean minus = false; while(b != -1 && !( (b >= '0' && b <= '9') || b == '-')) { b = readByte(); } if(b == '-') { minus = true; b = readByte(); } while(b >= '0' && b <= '9') { n = n * 10 + (b - '0'); b = readByte(); } return minus ? -n : n; } double nd() { return Double.parseDouble(ns()); } float nf() { return Float.parseFloat(ns()); } int[] na(int n) { int a[] = new int[n]; for(int i = 0; i < n; i++) { a[i] = ni(); } return a; } char[] ns(int n) { char c[] = new char[n]; int i, b = skip(); for(i = 0; i < n; i++) { if(isSpaceChar(b)) { break; } c[i] = (char)b; b = readByte(); } return i == n ? c : Arrays.copyOf(c,i); } } </CODE> <EVALUATION_RUBRIC> - O(1): The time complexity is constant to the input size n. - O(n^3): The time complexity scales proportionally to the cube of the input size. - O(n): The time complexity increases proportionally to the input size n in a linear manner. - O(n^2): The time complexity grows proportionally to the square of the input size. - O(log(n)): The time complexity increases logarithmically in relation to the input size. - non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially. - O(nlog(n)): The time complexity combines linear and logarithmic growth factors. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Determine the worst-case time complexity category of a given Java code based on input size n. </TASK> <CODE> //package que_a; import java.io.*; import java.util.*; import java.math.*; public class utkarsh { InputStream is; PrintWriter out; long mod = (long) (1e9 + 7); boolean SHOW_TIME; void solve() { //Enter code here utkarsh //SHOW_TIME = true; int n = ni(); HashMap <String, Integer> mp = new HashMap<>(); mp.put("M", 0); mp.put("S", 1); mp.put("XS", 2); mp.put("XXS", 3); mp.put("XXXS", 4); mp.put("L", 5); mp.put("XL", 6); mp.put("XXL", 7); mp.put("XXXL", 8); int a[] = new int[10]; for(int i = 0; i < n; i++) { int j = mp.get(ns()); a[j]++; } for(int i = 0; i < n; i++) { int j = mp.get(ns()); a[j]--; } int ans = 0; for(int i = 0; i < 10; i++) { if(a[i] > 0) ans += a[i]; } out.println(ans); } //---------- I/O Template ---------- public static void main(String[] args) { new utkarsh().run(); } void run() { is = System.in; out = new PrintWriter(System.out); long start = System.currentTimeMillis(); solve(); long end = System.currentTimeMillis(); if(SHOW_TIME) out.println("\n" + (end - start) + " ms"); out.flush(); } byte input[] = new byte[1024]; int len = 0, ptr = 0; int readByte() { if(ptr >= len) { ptr = 0; try { len = is.read(input); } catch(IOException e) { throw new InputMismatchException(); } if(len <= 0) { return -1; } } return input[ptr++]; } boolean isSpaceChar(int c) { return !( c >= 33 && c <= 126 ); } int skip() { int b = readByte(); while(b != -1 && isSpaceChar(b)) { b = readByte(); } return b; } char nc() { return (char)skip(); } String ns() { int b = skip(); StringBuilder sb = new StringBuilder(); while(!isSpaceChar(b)) { sb.appendCodePoint(b); b = readByte(); } return sb.toString(); } String nLine() { int b = skip(); StringBuilder sb = new StringBuilder(); while( !(isSpaceChar(b) && b != ' ') ) { sb.appendCodePoint(b); b = readByte(); } return sb.toString(); } int ni() { int n = 0, b = readByte(); boolean minus = false; while(b != -1 && !( (b >= '0' && b <= '9') || b == '-')) { b = readByte(); } if(b == '-') { minus = true; b = readByte(); } if(b == -1) { return -1; } //no input while(b >= '0' && b <= '9') { n = n * 10 + (b - '0'); b = readByte(); } return minus ? -n : n; } long nl() { long n = 0L; int b = readByte(); boolean minus = false; while(b != -1 && !( (b >= '0' && b <= '9') || b == '-')) { b = readByte(); } if(b == '-') { minus = true; b = readByte(); } while(b >= '0' && b <= '9') { n = n * 10 + (b - '0'); b = readByte(); } return minus ? -n : n; } double nd() { return Double.parseDouble(ns()); } float nf() { return Float.parseFloat(ns()); } int[] na(int n) { int a[] = new int[n]; for(int i = 0; i < n; i++) { a[i] = ni(); } return a; } char[] ns(int n) { char c[] = new char[n]; int i, b = skip(); for(i = 0; i < n; i++) { if(isSpaceChar(b)) { break; } c[i] = (char)b; b = readByte(); } return i == n ? c : Arrays.copyOf(c,i); } } </CODE> <EVALUATION_RUBRIC> - O(n): The time complexity increases proportionally to the input size n in a linear manner. - O(log(n)): The time complexity increases logarithmically in relation to the input size. - non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially. - O(n^2): The time complexity grows proportionally to the square of the input size. - others: The time complexity does not fit any of the above categories or cannot be clearly classified. - O(nlog(n)): The time complexity combines linear and logarithmic growth factors. - O(1): The time complexity is constant to the input size n. - O(n^3): The time complexity scales proportionally to the cube of the input size. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
1,413
481
1,470
import java.util.Scanner; public class D { static long max; public static long[] getOneRange(long min, long max,int bit) { long st=(min&(((1l<<63)-1)&~((1l<<(bit+1))-1)))|(1l<<bit); long end=st|((1l<<(bit+1))-1); long interSt=Math.max(st,min); long interEnd=Math.min(end, max); if(interSt>interEnd) return null; return new long[]{interSt,interEnd}; } public static long[] getZeroRange(long min, long max,int bit) { long st=min&(((1l<<63)-1)&~((1l<<(bit+1))-1)); long end=st|((1l<<bit)-1); long interSt=Math.max(st,min); long interEnd=Math.min(end, max); if(interSt>interEnd) return null; return new long[]{interSt,interEnd}; } public static void solve(int bitPosition, long min1, long max1, long min2, long max2, long curNum) { if (bitPosition == -1) { max = Math.max(max, curNum); return; } long[] firZeroRange = getZeroRange(min1, max1,bitPosition); long[] secZeroRange = getZeroRange(min2, max2,bitPosition); long[] firOneRange = getOneRange(min1, max1,bitPosition); long[] secOneRange = getOneRange(min2, max2,bitPosition); if ((firOneRange != null && secZeroRange != null) || (firZeroRange != null && secOneRange != null)) { long newNum = curNum | (1l << bitPosition); if (firOneRange != null && secZeroRange != null&& (firOneRange[1]-firOneRange[0]+1)==1l<<bitPosition&& (secZeroRange[1]-secZeroRange[0]+1)==1l<<bitPosition) { solve(bitPosition - 1, firOneRange[0], firOneRange[1], secZeroRange[0], secZeroRange[1], newNum); return; } if (firZeroRange != null && secOneRange != null&& (firZeroRange[1]-firZeroRange[0]+1)==1l<<bitPosition&& (secOneRange[1]-secOneRange[0]+1)==1l<<bitPosition) { solve(bitPosition - 1, firZeroRange[0], firZeroRange[1], secOneRange[0], secOneRange[1], newNum); return; } if (firOneRange != null && secZeroRange != null) { solve(bitPosition - 1, firOneRange[0], firOneRange[1], secZeroRange[0], secZeroRange[1], newNum); } if (firZeroRange != null && secOneRange != null) { solve(bitPosition - 1, firZeroRange[0], firZeroRange[1], secOneRange[0], secOneRange[1], newNum); } } else { solve(bitPosition - 1, min1, max1, min2, max2, curNum); } } public static void main(String[] args) { Scanner sc = new Scanner(System.in); long l = sc.nextLong(); long r = sc.nextLong(); max = 0; solve(62, l, r, l, r, 0); System.out.println(max); } }
O(log(n))
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Classify the following Java code's worst-case time complexity according to its relationship to the input size n. </TASK> <CODE> import java.util.Scanner; public class D { static long max; public static long[] getOneRange(long min, long max,int bit) { long st=(min&(((1l<<63)-1)&~((1l<<(bit+1))-1)))|(1l<<bit); long end=st|((1l<<(bit+1))-1); long interSt=Math.max(st,min); long interEnd=Math.min(end, max); if(interSt>interEnd) return null; return new long[]{interSt,interEnd}; } public static long[] getZeroRange(long min, long max,int bit) { long st=min&(((1l<<63)-1)&~((1l<<(bit+1))-1)); long end=st|((1l<<bit)-1); long interSt=Math.max(st,min); long interEnd=Math.min(end, max); if(interSt>interEnd) return null; return new long[]{interSt,interEnd}; } public static void solve(int bitPosition, long min1, long max1, long min2, long max2, long curNum) { if (bitPosition == -1) { max = Math.max(max, curNum); return; } long[] firZeroRange = getZeroRange(min1, max1,bitPosition); long[] secZeroRange = getZeroRange(min2, max2,bitPosition); long[] firOneRange = getOneRange(min1, max1,bitPosition); long[] secOneRange = getOneRange(min2, max2,bitPosition); if ((firOneRange != null && secZeroRange != null) || (firZeroRange != null && secOneRange != null)) { long newNum = curNum | (1l << bitPosition); if (firOneRange != null && secZeroRange != null&& (firOneRange[1]-firOneRange[0]+1)==1l<<bitPosition&& (secZeroRange[1]-secZeroRange[0]+1)==1l<<bitPosition) { solve(bitPosition - 1, firOneRange[0], firOneRange[1], secZeroRange[0], secZeroRange[1], newNum); return; } if (firZeroRange != null && secOneRange != null&& (firZeroRange[1]-firZeroRange[0]+1)==1l<<bitPosition&& (secOneRange[1]-secOneRange[0]+1)==1l<<bitPosition) { solve(bitPosition - 1, firZeroRange[0], firZeroRange[1], secOneRange[0], secOneRange[1], newNum); return; } if (firOneRange != null && secZeroRange != null) { solve(bitPosition - 1, firOneRange[0], firOneRange[1], secZeroRange[0], secZeroRange[1], newNum); } if (firZeroRange != null && secOneRange != null) { solve(bitPosition - 1, firZeroRange[0], firZeroRange[1], secOneRange[0], secOneRange[1], newNum); } } else { solve(bitPosition - 1, min1, max1, min2, max2, curNum); } } public static void main(String[] args) { Scanner sc = new Scanner(System.in); long l = sc.nextLong(); long r = sc.nextLong(); max = 0; solve(62, l, r, l, r, 0); System.out.println(max); } } </CODE> <EVALUATION_RUBRIC> - O(nlog(n)): The running time increases with the product of n and logarithm of n. - O(log(n)): The running time increases with the logarithm of the input size n. - O(1): The running time does not change regardless of the input size n. - O(n^3): The running time increases with the cube of the input size n. - non-polynomial: The running time increases non-polynomially with input size n, typically exponentially. - O(n): The running time grows linearly with the input size n. - O(n^2): The running time increases with the square of the input size n. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n. </TASK> <CODE> import java.util.Scanner; public class D { static long max; public static long[] getOneRange(long min, long max,int bit) { long st=(min&(((1l<<63)-1)&~((1l<<(bit+1))-1)))|(1l<<bit); long end=st|((1l<<(bit+1))-1); long interSt=Math.max(st,min); long interEnd=Math.min(end, max); if(interSt>interEnd) return null; return new long[]{interSt,interEnd}; } public static long[] getZeroRange(long min, long max,int bit) { long st=min&(((1l<<63)-1)&~((1l<<(bit+1))-1)); long end=st|((1l<<bit)-1); long interSt=Math.max(st,min); long interEnd=Math.min(end, max); if(interSt>interEnd) return null; return new long[]{interSt,interEnd}; } public static void solve(int bitPosition, long min1, long max1, long min2, long max2, long curNum) { if (bitPosition == -1) { max = Math.max(max, curNum); return; } long[] firZeroRange = getZeroRange(min1, max1,bitPosition); long[] secZeroRange = getZeroRange(min2, max2,bitPosition); long[] firOneRange = getOneRange(min1, max1,bitPosition); long[] secOneRange = getOneRange(min2, max2,bitPosition); if ((firOneRange != null && secZeroRange != null) || (firZeroRange != null && secOneRange != null)) { long newNum = curNum | (1l << bitPosition); if (firOneRange != null && secZeroRange != null&& (firOneRange[1]-firOneRange[0]+1)==1l<<bitPosition&& (secZeroRange[1]-secZeroRange[0]+1)==1l<<bitPosition) { solve(bitPosition - 1, firOneRange[0], firOneRange[1], secZeroRange[0], secZeroRange[1], newNum); return; } if (firZeroRange != null && secOneRange != null&& (firZeroRange[1]-firZeroRange[0]+1)==1l<<bitPosition&& (secOneRange[1]-secOneRange[0]+1)==1l<<bitPosition) { solve(bitPosition - 1, firZeroRange[0], firZeroRange[1], secOneRange[0], secOneRange[1], newNum); return; } if (firOneRange != null && secZeroRange != null) { solve(bitPosition - 1, firOneRange[0], firOneRange[1], secZeroRange[0], secZeroRange[1], newNum); } if (firZeroRange != null && secOneRange != null) { solve(bitPosition - 1, firZeroRange[0], firZeroRange[1], secOneRange[0], secOneRange[1], newNum); } } else { solve(bitPosition - 1, min1, max1, min2, max2, curNum); } } public static void main(String[] args) { Scanner sc = new Scanner(System.in); long l = sc.nextLong(); long r = sc.nextLong(); max = 0; solve(62, l, r, l, r, 0); System.out.println(max); } } </CODE> <EVALUATION_RUBRIC> - O(n^2): The execution time ascends in proportion to the square of the input size n. - O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially. - non-polynomial: The running time increases non-polynomially with input size n, typically exponentially. - O(n^3): The execution time ascends in proportion to the cube of the input size n. - O(log(n)): The execution time ascends in proportion to the logarithm of the input size n. - O(1): The execution time is unaffected by the size of the input n. - O(n): The execution time ascends in a one-to-one ratio with the input size n. - others: The time complexity does not fit to any of the given categories or is ambiguous. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
1,143
1,468
2,059
import java.io.*; import java.util.*; import java.math.*; public class TaskA { void Run() throws IOException { int n=ReadInt(); int[] arr=new int[n]; for(int i=0;i<n;++i) arr[i]=ReadInt(); Arrays.sort(arr); boolean one=true; for(int x : arr) if(x!=1) { one=false; break; } if(one) { for(int i=1;i<n;++i) output.print("1 "); output.print("2"); return; } int prev=1; for(int x : arr) if(x==prev) { output.print(prev); output.print(" "); } else { output.print(prev); output.print(" "); prev=x; } } public static void main(String[] args) throws IOException { boolean oj = System.getProperty("ONLINE_JUDGE") != null; Reader reader; reader=oj ? new InputStreamReader(System.in) : new FileReader("input.txt"); input=new BufferedReader(reader); Writer writer=new OutputStreamWriter(System.out); writer=new BufferedWriter(writer); output=new PrintWriter(writer); new TaskA().Run(); output.close(); } static int ReadInt() throws IOException { return Integer.parseInt(ReadString()); } static long ReadLong() throws IOException { return Long.parseLong(ReadString()); } static String ReadString() throws IOException { while(tokenizer==null || !tokenizer.hasMoreTokens()) tokenizer=new StringTokenizer(input.readLine()); return tokenizer.nextToken(); } static StringTokenizer tokenizer; static BufferedReader input; static PrintWriter output; }
O(nlog(n))
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Determine the worst-case time complexity category of a given Java code based on input size n. </TASK> <CODE> import java.io.*; import java.util.*; import java.math.*; public class TaskA { void Run() throws IOException { int n=ReadInt(); int[] arr=new int[n]; for(int i=0;i<n;++i) arr[i]=ReadInt(); Arrays.sort(arr); boolean one=true; for(int x : arr) if(x!=1) { one=false; break; } if(one) { for(int i=1;i<n;++i) output.print("1 "); output.print("2"); return; } int prev=1; for(int x : arr) if(x==prev) { output.print(prev); output.print(" "); } else { output.print(prev); output.print(" "); prev=x; } } public static void main(String[] args) throws IOException { boolean oj = System.getProperty("ONLINE_JUDGE") != null; Reader reader; reader=oj ? new InputStreamReader(System.in) : new FileReader("input.txt"); input=new BufferedReader(reader); Writer writer=new OutputStreamWriter(System.out); writer=new BufferedWriter(writer); output=new PrintWriter(writer); new TaskA().Run(); output.close(); } static int ReadInt() throws IOException { return Integer.parseInt(ReadString()); } static long ReadLong() throws IOException { return Long.parseLong(ReadString()); } static String ReadString() throws IOException { while(tokenizer==null || !tokenizer.hasMoreTokens()) tokenizer=new StringTokenizer(input.readLine()); return tokenizer.nextToken(); } static StringTokenizer tokenizer; static BufferedReader input; static PrintWriter output; } </CODE> <EVALUATION_RUBRIC> - non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially. - O(n^2): The time complexity grows proportionally to the square of the input size. - O(nlog(n)): The time complexity combines linear and logarithmic growth factors. - O(n): The time complexity increases proportionally to the input size n in a linear manner. - O(log(n)): The time complexity increases logarithmically in relation to the input size. - O(1): The time complexity is constant to the input size n. - O(n^3): The time complexity scales proportionally to the cube of the input size. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Determine the worst-case time complexity category of a given Java code based on input size n. </TASK> <CODE> import java.io.*; import java.util.*; import java.math.*; public class TaskA { void Run() throws IOException { int n=ReadInt(); int[] arr=new int[n]; for(int i=0;i<n;++i) arr[i]=ReadInt(); Arrays.sort(arr); boolean one=true; for(int x : arr) if(x!=1) { one=false; break; } if(one) { for(int i=1;i<n;++i) output.print("1 "); output.print("2"); return; } int prev=1; for(int x : arr) if(x==prev) { output.print(prev); output.print(" "); } else { output.print(prev); output.print(" "); prev=x; } } public static void main(String[] args) throws IOException { boolean oj = System.getProperty("ONLINE_JUDGE") != null; Reader reader; reader=oj ? new InputStreamReader(System.in) : new FileReader("input.txt"); input=new BufferedReader(reader); Writer writer=new OutputStreamWriter(System.out); writer=new BufferedWriter(writer); output=new PrintWriter(writer); new TaskA().Run(); output.close(); } static int ReadInt() throws IOException { return Integer.parseInt(ReadString()); } static long ReadLong() throws IOException { return Long.parseLong(ReadString()); } static String ReadString() throws IOException { while(tokenizer==null || !tokenizer.hasMoreTokens()) tokenizer=new StringTokenizer(input.readLine()); return tokenizer.nextToken(); } static StringTokenizer tokenizer; static BufferedReader input; static PrintWriter output; } </CODE> <EVALUATION_RUBRIC> - O(nlog(n)): The time complexity combines linear and logarithmic growth factors. - O(n): The time complexity increases proportionally to the input size n in a linear manner. - others: The time complexity does not fit any of the above categories or cannot be clearly classified. - O(log(n)): The time complexity increases logarithmically in relation to the input size. - O(n^2): The time complexity grows proportionally to the square of the input size. - O(n^3): The time complexity scales proportionally to the cube of the input size. - O(1): The time complexity is constant to the input size n. - non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
687
2,055
2,025
import java.io.InputStreamReader; import java.util.Arrays; import java.util.Scanner; public class A { /** * @param args */ public static void main(String[] args) { Scanner s = new Scanner(new InputStreamReader(System.in)); int n = s.nextInt(); int [] ar = new int[n]; for (int i = 0; i < n ; i++) { ar[i] = s.nextInt(); } if(ar.length == 1){ System.out.println("NO"); }else{ Arrays.sort(ar); int num = ar[0]; boolean flag = false; for (int i = 1; i < ar.length; i++) { if(ar[i]!= num){ System.out.println(ar[i]); flag = true; break; } } if(!flag) System.out.println("NO"); } } }
O(nlog(n))
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n. </TASK> <CODE> import java.io.InputStreamReader; import java.util.Arrays; import java.util.Scanner; public class A { /** * @param args */ public static void main(String[] args) { Scanner s = new Scanner(new InputStreamReader(System.in)); int n = s.nextInt(); int [] ar = new int[n]; for (int i = 0; i < n ; i++) { ar[i] = s.nextInt(); } if(ar.length == 1){ System.out.println("NO"); }else{ Arrays.sort(ar); int num = ar[0]; boolean flag = false; for (int i = 1; i < ar.length; i++) { if(ar[i]!= num){ System.out.println(ar[i]); flag = true; break; } } if(!flag) System.out.println("NO"); } } } </CODE> <EVALUATION_RUBRIC> - O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially. - O(n): The execution time ascends in a one-to-one ratio with the input size n. - O(n^3): The execution time ascends in proportion to the cube of the input size n. - O(n^2): The execution time ascends in proportion to the square of the input size n. - O(1): The execution time is unaffected by the size of the input n. - non-polynomial: The running time increases non-polynomially with input size n, typically exponentially. - O(log(n)): The execution time ascends in proportion to the logarithm of the input size n. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Classify the following Java code's worst-case time complexity according to its relationship to the input size n. </TASK> <CODE> import java.io.InputStreamReader; import java.util.Arrays; import java.util.Scanner; public class A { /** * @param args */ public static void main(String[] args) { Scanner s = new Scanner(new InputStreamReader(System.in)); int n = s.nextInt(); int [] ar = new int[n]; for (int i = 0; i < n ; i++) { ar[i] = s.nextInt(); } if(ar.length == 1){ System.out.println("NO"); }else{ Arrays.sort(ar); int num = ar[0]; boolean flag = false; for (int i = 1; i < ar.length; i++) { if(ar[i]!= num){ System.out.println(ar[i]); flag = true; break; } } if(!flag) System.out.println("NO"); } } } </CODE> <EVALUATION_RUBRIC> - O(n^2): The running time increases with the square of the input size n. - O(1): The running time does not change regardless of the input size n. - non-polynomial: The running time increases non-polynomially with input size n, typically exponentially. - O(log(n)): The running time increases with the logarithm of the input size n. - O(n): The running time grows linearly with the input size n. - O(nlog(n)): The running time increases with the product of n and logarithm of n. - O(n^3): The running time increases with the cube of the input size n. - others: The code does not clearly correspond to the listed classes or has an unclassified time complexity. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
546
2,021
883
import java.util.*; import java.math.*; public class Main { static final long MOD = 1000000007L; public static void main(String[] args) throws Exception { Scanner scan = new Scanner(System.in); int n = scan.nextInt(); int k = scan.nextInt(); int res = -1; int[] arr = new int[n]; for (int i = 0; i < arr.length; i++) { arr[i] = scan.nextInt(); } BitSet bits = new BitSet(); int count = 0; int end = -1; for (int i = 0; i < arr.length; i++) { if (!bits.get(arr[i])) { bits.set(arr[i]); count++; if (count == k) { end = i; break; } } } if (end == -1) { System.out.print("-1 -1"); return; } bits = new BitSet(); count = 0; int start = end; while (start >= 0) { if (!bits.get(arr[start])) { bits.set(arr[start]); count++; if (count == k) { break; } } start--; } System.out.println((start + 1) + " " + (end + 1)); } }
O(n)
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Classify the following Java code's worst-case time complexity according to its relationship to the input size n. </TASK> <CODE> import java.util.*; import java.math.*; public class Main { static final long MOD = 1000000007L; public static void main(String[] args) throws Exception { Scanner scan = new Scanner(System.in); int n = scan.nextInt(); int k = scan.nextInt(); int res = -1; int[] arr = new int[n]; for (int i = 0; i < arr.length; i++) { arr[i] = scan.nextInt(); } BitSet bits = new BitSet(); int count = 0; int end = -1; for (int i = 0; i < arr.length; i++) { if (!bits.get(arr[i])) { bits.set(arr[i]); count++; if (count == k) { end = i; break; } } } if (end == -1) { System.out.print("-1 -1"); return; } bits = new BitSet(); count = 0; int start = end; while (start >= 0) { if (!bits.get(arr[start])) { bits.set(arr[start]); count++; if (count == k) { break; } } start--; } System.out.println((start + 1) + " " + (end + 1)); } } </CODE> <EVALUATION_RUBRIC> - O(nlog(n)): The running time increases with the product of n and logarithm of n. - non-polynomial: The running time increases non-polynomially with input size n, typically exponentially. - O(n^3): The running time increases with the cube of the input size n. - O(n^2): The running time increases with the square of the input size n. - O(1): The running time does not change regardless of the input size n. - O(n): The running time grows linearly with the input size n. - O(log(n)): The running time increases with the logarithm of the input size n. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Determine the worst-case time complexity category of a given Java code based on input size n. </TASK> <CODE> import java.util.*; import java.math.*; public class Main { static final long MOD = 1000000007L; public static void main(String[] args) throws Exception { Scanner scan = new Scanner(System.in); int n = scan.nextInt(); int k = scan.nextInt(); int res = -1; int[] arr = new int[n]; for (int i = 0; i < arr.length; i++) { arr[i] = scan.nextInt(); } BitSet bits = new BitSet(); int count = 0; int end = -1; for (int i = 0; i < arr.length; i++) { if (!bits.get(arr[i])) { bits.set(arr[i]); count++; if (count == k) { end = i; break; } } } if (end == -1) { System.out.print("-1 -1"); return; } bits = new BitSet(); count = 0; int start = end; while (start >= 0) { if (!bits.get(arr[start])) { bits.set(arr[start]); count++; if (count == k) { break; } } start--; } System.out.println((start + 1) + " " + (end + 1)); } } </CODE> <EVALUATION_RUBRIC> - O(nlog(n)): The time complexity combines linear and logarithmic growth factors. - O(n): The time complexity increases proportionally to the input size n in a linear manner. - non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially. - others: The time complexity does not fit any of the above categories or cannot be clearly classified. - O(n^2): The time complexity grows proportionally to the square of the input size. - O(1): The time complexity is constant to the input size n. - O(n^3): The time complexity scales proportionally to the cube of the input size. - O(log(n)): The time complexity increases logarithmically in relation to the input size. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
631
882
3,419
import java.io.*; import java.math.*; import java.util.*; import java.util.Map.Entry; public class StringsProb { private void solve() throws IOException { String s = nextToken(); int res = 0; Map<String , Integer> m = new HashMap<String, Integer>(); for (int i = 0; i < s.length(); i++) for (int j = 0; j <= s.length(); j++) { if (i > j) continue; String a = s.substring(i , j); if (a.equals("")) continue; if (m.containsKey(a)) { m.put(a, m.get(a) + 1); } else m.put(a, 1); } for (Entry<String , Integer> e : m.entrySet()) { if (e.getValue() >= 2) res = Math.max(res, e.getKey().length()); } System.out.println(res); } public static void main(String[] args) { new StringsProb().run(); } BufferedReader reader; StringTokenizer tokenizer; PrintWriter writer; public void run() { try { reader = new BufferedReader(new InputStreamReader(System.in)); tokenizer = null; writer = new PrintWriter(System.out); solve(); reader.close(); writer.close(); } catch (Exception e) { e.printStackTrace(); System.exit(1); } } int[] readIntArray(int size) throws IOException { int[] res = new int[size]; for (int i = 0; i < size; i++) { res[i] = nextInt(); } return res; } long[] readLongArray(int size) throws IOException { long[] res = new long[size]; for (int i = 0; i < size; i++) { res[i] = nextLong(); } return res; } double[] readDoubleArray(int size) throws IOException { double[] res = new double[size]; for (int i = 0; i < size; i++) { res[i] = nextDouble(); } return res; } int nextInt() throws IOException { return Integer.parseInt(nextToken()); } long nextLong() throws IOException { return Long.parseLong(nextToken()); } double nextDouble() throws IOException { return Double.parseDouble(nextToken()); } BigInteger nextBigInteger() throws IOException { return new BigInteger(nextToken()); } String nextToken() throws IOException { while (tokenizer == null || !tokenizer.hasMoreTokens()) { tokenizer = new StringTokenizer(reader.readLine()); } return tokenizer.nextToken(); } }
O(n^3)
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Determine the worst-case time complexity category of a given Java code based on input size n. </TASK> <CODE> import java.io.*; import java.math.*; import java.util.*; import java.util.Map.Entry; public class StringsProb { private void solve() throws IOException { String s = nextToken(); int res = 0; Map<String , Integer> m = new HashMap<String, Integer>(); for (int i = 0; i < s.length(); i++) for (int j = 0; j <= s.length(); j++) { if (i > j) continue; String a = s.substring(i , j); if (a.equals("")) continue; if (m.containsKey(a)) { m.put(a, m.get(a) + 1); } else m.put(a, 1); } for (Entry<String , Integer> e : m.entrySet()) { if (e.getValue() >= 2) res = Math.max(res, e.getKey().length()); } System.out.println(res); } public static void main(String[] args) { new StringsProb().run(); } BufferedReader reader; StringTokenizer tokenizer; PrintWriter writer; public void run() { try { reader = new BufferedReader(new InputStreamReader(System.in)); tokenizer = null; writer = new PrintWriter(System.out); solve(); reader.close(); writer.close(); } catch (Exception e) { e.printStackTrace(); System.exit(1); } } int[] readIntArray(int size) throws IOException { int[] res = new int[size]; for (int i = 0; i < size; i++) { res[i] = nextInt(); } return res; } long[] readLongArray(int size) throws IOException { long[] res = new long[size]; for (int i = 0; i < size; i++) { res[i] = nextLong(); } return res; } double[] readDoubleArray(int size) throws IOException { double[] res = new double[size]; for (int i = 0; i < size; i++) { res[i] = nextDouble(); } return res; } int nextInt() throws IOException { return Integer.parseInt(nextToken()); } long nextLong() throws IOException { return Long.parseLong(nextToken()); } double nextDouble() throws IOException { return Double.parseDouble(nextToken()); } BigInteger nextBigInteger() throws IOException { return new BigInteger(nextToken()); } String nextToken() throws IOException { while (tokenizer == null || !tokenizer.hasMoreTokens()) { tokenizer = new StringTokenizer(reader.readLine()); } return tokenizer.nextToken(); } } </CODE> <EVALUATION_RUBRIC> - O(1): The time complexity is constant to the input size n. - O(n^3): The time complexity scales proportionally to the cube of the input size. - O(log(n)): The time complexity increases logarithmically in relation to the input size. - non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially. - O(nlog(n)): The time complexity combines linear and logarithmic growth factors. - O(n^2): The time complexity grows proportionally to the square of the input size. - O(n): The time complexity increases proportionally to the input size n in a linear manner. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Classify the following Java code's worst-case time complexity according to its relationship to the input size n. </TASK> <CODE> import java.io.*; import java.math.*; import java.util.*; import java.util.Map.Entry; public class StringsProb { private void solve() throws IOException { String s = nextToken(); int res = 0; Map<String , Integer> m = new HashMap<String, Integer>(); for (int i = 0; i < s.length(); i++) for (int j = 0; j <= s.length(); j++) { if (i > j) continue; String a = s.substring(i , j); if (a.equals("")) continue; if (m.containsKey(a)) { m.put(a, m.get(a) + 1); } else m.put(a, 1); } for (Entry<String , Integer> e : m.entrySet()) { if (e.getValue() >= 2) res = Math.max(res, e.getKey().length()); } System.out.println(res); } public static void main(String[] args) { new StringsProb().run(); } BufferedReader reader; StringTokenizer tokenizer; PrintWriter writer; public void run() { try { reader = new BufferedReader(new InputStreamReader(System.in)); tokenizer = null; writer = new PrintWriter(System.out); solve(); reader.close(); writer.close(); } catch (Exception e) { e.printStackTrace(); System.exit(1); } } int[] readIntArray(int size) throws IOException { int[] res = new int[size]; for (int i = 0; i < size; i++) { res[i] = nextInt(); } return res; } long[] readLongArray(int size) throws IOException { long[] res = new long[size]; for (int i = 0; i < size; i++) { res[i] = nextLong(); } return res; } double[] readDoubleArray(int size) throws IOException { double[] res = new double[size]; for (int i = 0; i < size; i++) { res[i] = nextDouble(); } return res; } int nextInt() throws IOException { return Integer.parseInt(nextToken()); } long nextLong() throws IOException { return Long.parseLong(nextToken()); } double nextDouble() throws IOException { return Double.parseDouble(nextToken()); } BigInteger nextBigInteger() throws IOException { return new BigInteger(nextToken()); } String nextToken() throws IOException { while (tokenizer == null || !tokenizer.hasMoreTokens()) { tokenizer = new StringTokenizer(reader.readLine()); } return tokenizer.nextToken(); } } </CODE> <EVALUATION_RUBRIC> - O(n): The running time grows linearly with the input size n. - O(n^3): The running time increases with the cube of the input size n. - O(n^2): The running time increases with the square of the input size n. - O(log(n)): The running time increases with the logarithm of the input size n. - others: The code does not clearly correspond to the listed classes or has an unclassified time complexity. - non-polynomial: The running time increases non-polynomially with input size n, typically exponentially. - O(nlog(n)): The running time increases with the product of n and logarithm of n. - O(1): The running time does not change regardless of the input size n. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
891
3,413
3,751
//package round429; import java.io.ByteArrayInputStream; import java.io.IOException; import java.io.InputStream; import java.io.PrintWriter; import java.util.Arrays; import java.util.InputMismatchException; public class C2 { InputStream is; PrintWriter out; String INPUT = ""; void solve() { int n = ni(); int[] a = na(n); for(int i = 0;i < n;i++){ int v = a[i]; for(int j = 2;j*j <= v;j++){ while(v % (j*j) == 0){ v /= j*j; } } a[i] = v; } Arrays.sort(a); int[] f = new int[n]; int p = 0; for(int i= 0;i < n;i++){ if(i > 0 && a[i] != a[i-1]){ p++; } f[p]++; } f = Arrays.copyOf(f, p+1); int mod = 1000000007; int[][] fif = enumFIF(1000, mod); long[] res = countSameNeighborsSequence(f, fif, mod); long ans = res[0]; for(int v : f){ ans = ans * fif[0][v] % mod; } out.println(ans); } public static int[][] enumFIF(int n, int mod) { int[] f = new int[n + 1]; int[] invf = new int[n + 1]; f[0] = 1; for (int i = 1; i <= n; i++) { f[i] = (int) ((long) f[i - 1] * i % mod); } long a = f[n]; long b = mod; long p = 1, q = 0; while (b > 0) { long c = a / b; long d; d = a; a = b; b = d % b; d = p; p = q; q = d - c * q; } invf[n] = (int) (p < 0 ? p + mod : p); for (int i = n - 1; i >= 0; i--) { invf[i] = (int) ((long) invf[i + 1] * (i + 1) % mod); } return new int[][] { f, invf }; } public static long[] countSameNeighborsSequence(int[] a, int[][] fif, int mod) { int n = a.length; int bef = a[0]; int aft = a[0]; long[] dp = new long[bef]; dp[bef-1] = 1; for(int u = 1;u < n;u++){ int v = a[u]; aft += v; long[][] ldp = new long[bef][aft]; for(int i = 0;i < dp.length;i++){ ldp[i][0] = dp[i]; } for(int i = 0;i < v;i++){ long[][] ndp = new long[bef][aft]; for(int j = 0;j < bef;j++){ for(int k = 0;j+k < aft;k++){ if(ldp[j][k] == 0)continue; // XX -> XCX if(j > 0){ ndp[j-1][k] += ldp[j][k] * j; ndp[j-1][k] %= mod; } // CC -> CCC if(k > 0){ ndp[j][k+1] += ldp[j][k] * k; ndp[j][k+1] %= mod; } // XC -> XCC // #XC = 2*(i-k) if(2*(i-k) > 0){ ndp[j][k+1] += ldp[j][k] * (2*(i-k)); ndp[j][k+1] %= mod; } // XY -> XCY // #XY = bef+i+1-#XC-#CC-#XX if(bef+i+1-j-k-2*(i-k) > 0){ ndp[j][k] += ldp[j][k] * (bef+i+1-j-k-2*(i-k)); ndp[j][k] %= mod; } } } ldp = ndp; } dp = new long[aft]; for(int j = 0;j < bef;j++){ for(int k = 0;j+k < aft;k++){ dp[j+k] += ldp[j][k]; if(dp[j+k] >= mod)dp[j+k] -= mod; } } for(int j = 0;j < aft;j++)dp[j] = dp[j] * fif[1][v] % mod; bef = aft; } return dp; } void run() throws Exception { is = oj ? System.in : new ByteArrayInputStream(INPUT.getBytes()); out = new PrintWriter(System.out); long s = System.currentTimeMillis(); solve(); out.flush(); tr(System.currentTimeMillis()-s+"ms"); } public static void main(String[] args) throws Exception { new C2().run(); } private byte[] inbuf = new byte[1024]; public int lenbuf = 0, ptrbuf = 0; private int readByte() { if(lenbuf == -1)throw new InputMismatchException(); if(ptrbuf >= lenbuf){ ptrbuf = 0; try { lenbuf = is.read(inbuf); } catch (IOException e) { throw new InputMismatchException(); } if(lenbuf <= 0)return -1; } return inbuf[ptrbuf++]; } private boolean isSpaceChar(int c) { return !(c >= 33 && c <= 126); } private int skip() { int b; while((b = readByte()) != -1 && isSpaceChar(b)); return b; } private double nd() { return Double.parseDouble(ns()); } private char nc() { return (char)skip(); } private String ns() { int b = skip(); StringBuilder sb = new StringBuilder(); while(!(isSpaceChar(b))){ // when nextLine, (isSpaceChar(b) && b != ' ') sb.appendCodePoint(b); b = readByte(); } return sb.toString(); } private char[] ns(int n) { char[] buf = new char[n]; int b = skip(), p = 0; while(p < n && !(isSpaceChar(b))){ buf[p++] = (char)b; b = readByte(); } return n == p ? buf : Arrays.copyOf(buf, p); } private char[][] nm(int n, int m) { char[][] map = new char[n][]; for(int i = 0;i < n;i++)map[i] = ns(m); return map; } private int[] na(int n) { int[] a = new int[n]; for(int i = 0;i < n;i++)a[i] = ni(); return a; } private int ni() { int num = 0, b; boolean minus = false; while((b = readByte()) != -1 && !((b >= '0' && b <= '9') || b == '-')); if(b == '-'){ minus = true; b = readByte(); } while(true){ if(b >= '0' && b <= '9'){ num = num * 10 + (b - '0'); }else{ return minus ? -num : num; } b = readByte(); } } private long nl() { long num = 0; int b; boolean minus = false; while((b = readByte()) != -1 && !((b >= '0' && b <= '9') || b == '-')); if(b == '-'){ minus = true; b = readByte(); } while(true){ if(b >= '0' && b <= '9'){ num = num * 10 + (b - '0'); }else{ return minus ? -num : num; } b = readByte(); } } private boolean oj = System.getProperty("ONLINE_JUDGE") != null; private void tr(Object... o) { if(!oj)System.out.println(Arrays.deepToString(o)); } }
O(n^3)
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n. </TASK> <CODE> //package round429; import java.io.ByteArrayInputStream; import java.io.IOException; import java.io.InputStream; import java.io.PrintWriter; import java.util.Arrays; import java.util.InputMismatchException; public class C2 { InputStream is; PrintWriter out; String INPUT = ""; void solve() { int n = ni(); int[] a = na(n); for(int i = 0;i < n;i++){ int v = a[i]; for(int j = 2;j*j <= v;j++){ while(v % (j*j) == 0){ v /= j*j; } } a[i] = v; } Arrays.sort(a); int[] f = new int[n]; int p = 0; for(int i= 0;i < n;i++){ if(i > 0 && a[i] != a[i-1]){ p++; } f[p]++; } f = Arrays.copyOf(f, p+1); int mod = 1000000007; int[][] fif = enumFIF(1000, mod); long[] res = countSameNeighborsSequence(f, fif, mod); long ans = res[0]; for(int v : f){ ans = ans * fif[0][v] % mod; } out.println(ans); } public static int[][] enumFIF(int n, int mod) { int[] f = new int[n + 1]; int[] invf = new int[n + 1]; f[0] = 1; for (int i = 1; i <= n; i++) { f[i] = (int) ((long) f[i - 1] * i % mod); } long a = f[n]; long b = mod; long p = 1, q = 0; while (b > 0) { long c = a / b; long d; d = a; a = b; b = d % b; d = p; p = q; q = d - c * q; } invf[n] = (int) (p < 0 ? p + mod : p); for (int i = n - 1; i >= 0; i--) { invf[i] = (int) ((long) invf[i + 1] * (i + 1) % mod); } return new int[][] { f, invf }; } public static long[] countSameNeighborsSequence(int[] a, int[][] fif, int mod) { int n = a.length; int bef = a[0]; int aft = a[0]; long[] dp = new long[bef]; dp[bef-1] = 1; for(int u = 1;u < n;u++){ int v = a[u]; aft += v; long[][] ldp = new long[bef][aft]; for(int i = 0;i < dp.length;i++){ ldp[i][0] = dp[i]; } for(int i = 0;i < v;i++){ long[][] ndp = new long[bef][aft]; for(int j = 0;j < bef;j++){ for(int k = 0;j+k < aft;k++){ if(ldp[j][k] == 0)continue; // XX -> XCX if(j > 0){ ndp[j-1][k] += ldp[j][k] * j; ndp[j-1][k] %= mod; } // CC -> CCC if(k > 0){ ndp[j][k+1] += ldp[j][k] * k; ndp[j][k+1] %= mod; } // XC -> XCC // #XC = 2*(i-k) if(2*(i-k) > 0){ ndp[j][k+1] += ldp[j][k] * (2*(i-k)); ndp[j][k+1] %= mod; } // XY -> XCY // #XY = bef+i+1-#XC-#CC-#XX if(bef+i+1-j-k-2*(i-k) > 0){ ndp[j][k] += ldp[j][k] * (bef+i+1-j-k-2*(i-k)); ndp[j][k] %= mod; } } } ldp = ndp; } dp = new long[aft]; for(int j = 0;j < bef;j++){ for(int k = 0;j+k < aft;k++){ dp[j+k] += ldp[j][k]; if(dp[j+k] >= mod)dp[j+k] -= mod; } } for(int j = 0;j < aft;j++)dp[j] = dp[j] * fif[1][v] % mod; bef = aft; } return dp; } void run() throws Exception { is = oj ? System.in : new ByteArrayInputStream(INPUT.getBytes()); out = new PrintWriter(System.out); long s = System.currentTimeMillis(); solve(); out.flush(); tr(System.currentTimeMillis()-s+"ms"); } public static void main(String[] args) throws Exception { new C2().run(); } private byte[] inbuf = new byte[1024]; public int lenbuf = 0, ptrbuf = 0; private int readByte() { if(lenbuf == -1)throw new InputMismatchException(); if(ptrbuf >= lenbuf){ ptrbuf = 0; try { lenbuf = is.read(inbuf); } catch (IOException e) { throw new InputMismatchException(); } if(lenbuf <= 0)return -1; } return inbuf[ptrbuf++]; } private boolean isSpaceChar(int c) { return !(c >= 33 && c <= 126); } private int skip() { int b; while((b = readByte()) != -1 && isSpaceChar(b)); return b; } private double nd() { return Double.parseDouble(ns()); } private char nc() { return (char)skip(); } private String ns() { int b = skip(); StringBuilder sb = new StringBuilder(); while(!(isSpaceChar(b))){ // when nextLine, (isSpaceChar(b) && b != ' ') sb.appendCodePoint(b); b = readByte(); } return sb.toString(); } private char[] ns(int n) { char[] buf = new char[n]; int b = skip(), p = 0; while(p < n && !(isSpaceChar(b))){ buf[p++] = (char)b; b = readByte(); } return n == p ? buf : Arrays.copyOf(buf, p); } private char[][] nm(int n, int m) { char[][] map = new char[n][]; for(int i = 0;i < n;i++)map[i] = ns(m); return map; } private int[] na(int n) { int[] a = new int[n]; for(int i = 0;i < n;i++)a[i] = ni(); return a; } private int ni() { int num = 0, b; boolean minus = false; while((b = readByte()) != -1 && !((b >= '0' && b <= '9') || b == '-')); if(b == '-'){ minus = true; b = readByte(); } while(true){ if(b >= '0' && b <= '9'){ num = num * 10 + (b - '0'); }else{ return minus ? -num : num; } b = readByte(); } } private long nl() { long num = 0; int b; boolean minus = false; while((b = readByte()) != -1 && !((b >= '0' && b <= '9') || b == '-')); if(b == '-'){ minus = true; b = readByte(); } while(true){ if(b >= '0' && b <= '9'){ num = num * 10 + (b - '0'); }else{ return minus ? -num : num; } b = readByte(); } } private boolean oj = System.getProperty("ONLINE_JUDGE") != null; private void tr(Object... o) { if(!oj)System.out.println(Arrays.deepToString(o)); } } </CODE> <EVALUATION_RUBRIC> - O(n): The execution time ascends in a one-to-one ratio with the input size n. - O(log(n)): The execution time ascends in proportion to the logarithm of the input size n. - non-polynomial: The running time increases non-polynomially with input size n, typically exponentially. - O(n^2): The execution time ascends in proportion to the square of the input size n. - O(n^3): The execution time ascends in proportion to the cube of the input size n. - O(1): The execution time is unaffected by the size of the input n. - O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n. </TASK> <CODE> //package round429; import java.io.ByteArrayInputStream; import java.io.IOException; import java.io.InputStream; import java.io.PrintWriter; import java.util.Arrays; import java.util.InputMismatchException; public class C2 { InputStream is; PrintWriter out; String INPUT = ""; void solve() { int n = ni(); int[] a = na(n); for(int i = 0;i < n;i++){ int v = a[i]; for(int j = 2;j*j <= v;j++){ while(v % (j*j) == 0){ v /= j*j; } } a[i] = v; } Arrays.sort(a); int[] f = new int[n]; int p = 0; for(int i= 0;i < n;i++){ if(i > 0 && a[i] != a[i-1]){ p++; } f[p]++; } f = Arrays.copyOf(f, p+1); int mod = 1000000007; int[][] fif = enumFIF(1000, mod); long[] res = countSameNeighborsSequence(f, fif, mod); long ans = res[0]; for(int v : f){ ans = ans * fif[0][v] % mod; } out.println(ans); } public static int[][] enumFIF(int n, int mod) { int[] f = new int[n + 1]; int[] invf = new int[n + 1]; f[0] = 1; for (int i = 1; i <= n; i++) { f[i] = (int) ((long) f[i - 1] * i % mod); } long a = f[n]; long b = mod; long p = 1, q = 0; while (b > 0) { long c = a / b; long d; d = a; a = b; b = d % b; d = p; p = q; q = d - c * q; } invf[n] = (int) (p < 0 ? p + mod : p); for (int i = n - 1; i >= 0; i--) { invf[i] = (int) ((long) invf[i + 1] * (i + 1) % mod); } return new int[][] { f, invf }; } public static long[] countSameNeighborsSequence(int[] a, int[][] fif, int mod) { int n = a.length; int bef = a[0]; int aft = a[0]; long[] dp = new long[bef]; dp[bef-1] = 1; for(int u = 1;u < n;u++){ int v = a[u]; aft += v; long[][] ldp = new long[bef][aft]; for(int i = 0;i < dp.length;i++){ ldp[i][0] = dp[i]; } for(int i = 0;i < v;i++){ long[][] ndp = new long[bef][aft]; for(int j = 0;j < bef;j++){ for(int k = 0;j+k < aft;k++){ if(ldp[j][k] == 0)continue; // XX -> XCX if(j > 0){ ndp[j-1][k] += ldp[j][k] * j; ndp[j-1][k] %= mod; } // CC -> CCC if(k > 0){ ndp[j][k+1] += ldp[j][k] * k; ndp[j][k+1] %= mod; } // XC -> XCC // #XC = 2*(i-k) if(2*(i-k) > 0){ ndp[j][k+1] += ldp[j][k] * (2*(i-k)); ndp[j][k+1] %= mod; } // XY -> XCY // #XY = bef+i+1-#XC-#CC-#XX if(bef+i+1-j-k-2*(i-k) > 0){ ndp[j][k] += ldp[j][k] * (bef+i+1-j-k-2*(i-k)); ndp[j][k] %= mod; } } } ldp = ndp; } dp = new long[aft]; for(int j = 0;j < bef;j++){ for(int k = 0;j+k < aft;k++){ dp[j+k] += ldp[j][k]; if(dp[j+k] >= mod)dp[j+k] -= mod; } } for(int j = 0;j < aft;j++)dp[j] = dp[j] * fif[1][v] % mod; bef = aft; } return dp; } void run() throws Exception { is = oj ? System.in : new ByteArrayInputStream(INPUT.getBytes()); out = new PrintWriter(System.out); long s = System.currentTimeMillis(); solve(); out.flush(); tr(System.currentTimeMillis()-s+"ms"); } public static void main(String[] args) throws Exception { new C2().run(); } private byte[] inbuf = new byte[1024]; public int lenbuf = 0, ptrbuf = 0; private int readByte() { if(lenbuf == -1)throw new InputMismatchException(); if(ptrbuf >= lenbuf){ ptrbuf = 0; try { lenbuf = is.read(inbuf); } catch (IOException e) { throw new InputMismatchException(); } if(lenbuf <= 0)return -1; } return inbuf[ptrbuf++]; } private boolean isSpaceChar(int c) { return !(c >= 33 && c <= 126); } private int skip() { int b; while((b = readByte()) != -1 && isSpaceChar(b)); return b; } private double nd() { return Double.parseDouble(ns()); } private char nc() { return (char)skip(); } private String ns() { int b = skip(); StringBuilder sb = new StringBuilder(); while(!(isSpaceChar(b))){ // when nextLine, (isSpaceChar(b) && b != ' ') sb.appendCodePoint(b); b = readByte(); } return sb.toString(); } private char[] ns(int n) { char[] buf = new char[n]; int b = skip(), p = 0; while(p < n && !(isSpaceChar(b))){ buf[p++] = (char)b; b = readByte(); } return n == p ? buf : Arrays.copyOf(buf, p); } private char[][] nm(int n, int m) { char[][] map = new char[n][]; for(int i = 0;i < n;i++)map[i] = ns(m); return map; } private int[] na(int n) { int[] a = new int[n]; for(int i = 0;i < n;i++)a[i] = ni(); return a; } private int ni() { int num = 0, b; boolean minus = false; while((b = readByte()) != -1 && !((b >= '0' && b <= '9') || b == '-')); if(b == '-'){ minus = true; b = readByte(); } while(true){ if(b >= '0' && b <= '9'){ num = num * 10 + (b - '0'); }else{ return minus ? -num : num; } b = readByte(); } } private long nl() { long num = 0; int b; boolean minus = false; while((b = readByte()) != -1 && !((b >= '0' && b <= '9') || b == '-')); if(b == '-'){ minus = true; b = readByte(); } while(true){ if(b >= '0' && b <= '9'){ num = num * 10 + (b - '0'); }else{ return minus ? -num : num; } b = readByte(); } } private boolean oj = System.getProperty("ONLINE_JUDGE") != null; private void tr(Object... o) { if(!oj)System.out.println(Arrays.deepToString(o)); } } </CODE> <EVALUATION_RUBRIC> - O(n^2): The execution time ascends in proportion to the square of the input size n. - O(log(n)): The execution time ascends in proportion to the logarithm of the input size n. - others: The time complexity does not fit to any of the given categories or is ambiguous. - non-polynomial: The running time increases non-polynomially with input size n, typically exponentially. - O(n): The execution time ascends in a one-to-one ratio with the input size n. - O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially. - O(1): The execution time is unaffected by the size of the input n. - O(n^3): The execution time ascends in proportion to the cube of the input size n. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
2,327
3,743
4,089
import java.io.*; import static java.lang.Math.*; import java.util.*; import java.util.function.*; import java.lang.*; public class Main { final static boolean debug = false; final static String fileName = ""; final static boolean useFiles = false; public static void main(String[] args) throws FileNotFoundException { long start; if (debug) start = System.nanoTime(); InputStream inputStream; OutputStream outputStream; if (useFiles) { inputStream = new FileInputStream(fileName + ".in"); outputStream = new FileOutputStream(fileName + ".out"); } else { inputStream = System.in; outputStream = System.out; } InputReader in = new InputReader(inputStream); PrintWriter out = new PrintWriter(outputStream); Task solver = new Task(in, out); solver.solve(); if(debug) out.println((System.nanoTime() - start) / 1e+9); out.close(); } } class Task { int[][] dist, pre; int[] x, y, d, prev; String[] leafDescription; String[] linerDescription; String[][] allDescriptions; int xs, ys, n; int dist(int i, int j) { return (x[i] - x[j]) * (x[i] - x[j]) + (y[i] - y[j]) * (y[i] - y[j]); } void go(int[] prev, String[] leafDescription, int[] d, int len, int add, String description){ for (int mask = 0; mask < d.length; mask++) { if ((mask & add) != add) continue; int newValue = d[mask & (~add)] + len; if (d[mask] > newValue){ d[mask] = newValue; leafDescription[mask] = description; prev[mask] = mask & (~add); } } } int rec(int mask) { if (d[mask] != -1) return d[mask]; int lowest = 0; for (; ((1 << lowest) & mask) == 0; lowest++) ; int newMask = mask & (~(1 << lowest)); d[mask] = rec(newMask) + dist[lowest][n]; prev[mask] = newMask; leafDescription[mask] = linerDescription[lowest]; for (int bit = lowest + 1; bit < n; bit++) { if (((1 << bit) & mask) > 0) { newMask = mask & (~(1 << bit)) & (~(1 << lowest)); int newValue = rec(newMask) + pre[bit][lowest]; if (newValue < d[mask]) { d[mask] = newValue; prev[mask] = newMask; leafDescription[mask] = allDescriptions[lowest][bit]; } } } return d[mask]; } public void solve() { final int inf = (int) 1e+9; xs = in.nextInt(); ys = in.nextInt(); n = in.nextInt(); x = new int[n + 1]; y = new int[n + 1]; for (int i = 0; i < n; i++) { x[i] = in.nextInt(); y[i] = in.nextInt(); } x[n] = xs; y[n] = ys; allDescriptions = new String[n][n]; for (int i = 0; i < n; i++){ for (int j = 0; j < n; j++){ allDescriptions[i][j] = (i + 1) + " " + (j + 1) + " "; } } linerDescription = new String[n]; for (int i = 0; i < n; i++){ linerDescription[i] = (i + 1) + " "; } dist = new int[n + 1][n + 1]; pre = new int[n + 1][n + 1]; for (int i = 0; i <= n; i++) { for (int j = 0; j <= n; j++) { dist[i][j] = 2 * dist(i, j); pre[i][j] = dist(i, n) + dist(i, j) + dist(j, n); } } d = new int[1 << n]; Arrays.fill(d, -1); d[0] = 0; prev = new int[1 << n]; leafDescription = new String[1 << n]; // Arrays.fill(d, inf); // prev[0] = 0; // d[0] = 0; // for (int i = 0; i < n; i++) { // int add = 1 << i; // int len = 2 * dist[n][i]; // String description = (i + 1) + " "; // // go(prev, leafDescription, d, len, add, description); // } // for (int i = 0; i < n; i++) { // for (int j = i + 1; j < n; j++) { // int add = (1 << i) | (1 << j); // int len = dist[n][i] + dist[i][j] + dist[n][j]; // String description = (i + 1) + " " + (j + 1) + " "; // // go(prev, leafDescription, d, len, add, description); // } // } // Debug.printObjects(out, d); // Debug.printObjects(out, prev); // Debug.printObjects(out, leafDescription); int result = rec((1 << n) - 1); String answer = ""; for (int curr = d.length - 1; prev[curr] != curr; curr = prev[curr] ){ answer += "0 " + leafDescription[curr]; } answer += "0"; out.println(result); out.println(answer); } private InputReader in; private PrintWriter out; Task(InputReader in, PrintWriter out) { this.in = in; this.out = out; } } class InputReader { public BufferedReader reader; public StringTokenizer tokenizer; public InputReader(InputStream stream) { reader = new BufferedReader(new InputStreamReader(stream), 32768); tokenizer = null; } public String next() { while (tokenizer == null || !tokenizer.hasMoreTokens()) { try { tokenizer = new StringTokenizer(reader.readLine()); } catch (IOException e) { throw new RuntimeException(e); } } return tokenizer.nextToken(); } public double nextDouble(){ return Double.parseDouble(next()); } public int nextInt() { return Integer.parseInt(next()); } public long nextLong(){ return Long.parseLong(next()); } public byte nextByte(){ return Byte.parseByte(next()); } }
non-polynomial
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Determine the worst-case time complexity category of a given Java code based on input size n. </TASK> <CODE> import java.io.*; import static java.lang.Math.*; import java.util.*; import java.util.function.*; import java.lang.*; public class Main { final static boolean debug = false; final static String fileName = ""; final static boolean useFiles = false; public static void main(String[] args) throws FileNotFoundException { long start; if (debug) start = System.nanoTime(); InputStream inputStream; OutputStream outputStream; if (useFiles) { inputStream = new FileInputStream(fileName + ".in"); outputStream = new FileOutputStream(fileName + ".out"); } else { inputStream = System.in; outputStream = System.out; } InputReader in = new InputReader(inputStream); PrintWriter out = new PrintWriter(outputStream); Task solver = new Task(in, out); solver.solve(); if(debug) out.println((System.nanoTime() - start) / 1e+9); out.close(); } } class Task { int[][] dist, pre; int[] x, y, d, prev; String[] leafDescription; String[] linerDescription; String[][] allDescriptions; int xs, ys, n; int dist(int i, int j) { return (x[i] - x[j]) * (x[i] - x[j]) + (y[i] - y[j]) * (y[i] - y[j]); } void go(int[] prev, String[] leafDescription, int[] d, int len, int add, String description){ for (int mask = 0; mask < d.length; mask++) { if ((mask & add) != add) continue; int newValue = d[mask & (~add)] + len; if (d[mask] > newValue){ d[mask] = newValue; leafDescription[mask] = description; prev[mask] = mask & (~add); } } } int rec(int mask) { if (d[mask] != -1) return d[mask]; int lowest = 0; for (; ((1 << lowest) & mask) == 0; lowest++) ; int newMask = mask & (~(1 << lowest)); d[mask] = rec(newMask) + dist[lowest][n]; prev[mask] = newMask; leafDescription[mask] = linerDescription[lowest]; for (int bit = lowest + 1; bit < n; bit++) { if (((1 << bit) & mask) > 0) { newMask = mask & (~(1 << bit)) & (~(1 << lowest)); int newValue = rec(newMask) + pre[bit][lowest]; if (newValue < d[mask]) { d[mask] = newValue; prev[mask] = newMask; leafDescription[mask] = allDescriptions[lowest][bit]; } } } return d[mask]; } public void solve() { final int inf = (int) 1e+9; xs = in.nextInt(); ys = in.nextInt(); n = in.nextInt(); x = new int[n + 1]; y = new int[n + 1]; for (int i = 0; i < n; i++) { x[i] = in.nextInt(); y[i] = in.nextInt(); } x[n] = xs; y[n] = ys; allDescriptions = new String[n][n]; for (int i = 0; i < n; i++){ for (int j = 0; j < n; j++){ allDescriptions[i][j] = (i + 1) + " " + (j + 1) + " "; } } linerDescription = new String[n]; for (int i = 0; i < n; i++){ linerDescription[i] = (i + 1) + " "; } dist = new int[n + 1][n + 1]; pre = new int[n + 1][n + 1]; for (int i = 0; i <= n; i++) { for (int j = 0; j <= n; j++) { dist[i][j] = 2 * dist(i, j); pre[i][j] = dist(i, n) + dist(i, j) + dist(j, n); } } d = new int[1 << n]; Arrays.fill(d, -1); d[0] = 0; prev = new int[1 << n]; leafDescription = new String[1 << n]; // Arrays.fill(d, inf); // prev[0] = 0; // d[0] = 0; // for (int i = 0; i < n; i++) { // int add = 1 << i; // int len = 2 * dist[n][i]; // String description = (i + 1) + " "; // // go(prev, leafDescription, d, len, add, description); // } // for (int i = 0; i < n; i++) { // for (int j = i + 1; j < n; j++) { // int add = (1 << i) | (1 << j); // int len = dist[n][i] + dist[i][j] + dist[n][j]; // String description = (i + 1) + " " + (j + 1) + " "; // // go(prev, leafDescription, d, len, add, description); // } // } // Debug.printObjects(out, d); // Debug.printObjects(out, prev); // Debug.printObjects(out, leafDescription); int result = rec((1 << n) - 1); String answer = ""; for (int curr = d.length - 1; prev[curr] != curr; curr = prev[curr] ){ answer += "0 " + leafDescription[curr]; } answer += "0"; out.println(result); out.println(answer); } private InputReader in; private PrintWriter out; Task(InputReader in, PrintWriter out) { this.in = in; this.out = out; } } class InputReader { public BufferedReader reader; public StringTokenizer tokenizer; public InputReader(InputStream stream) { reader = new BufferedReader(new InputStreamReader(stream), 32768); tokenizer = null; } public String next() { while (tokenizer == null || !tokenizer.hasMoreTokens()) { try { tokenizer = new StringTokenizer(reader.readLine()); } catch (IOException e) { throw new RuntimeException(e); } } return tokenizer.nextToken(); } public double nextDouble(){ return Double.parseDouble(next()); } public int nextInt() { return Integer.parseInt(next()); } public long nextLong(){ return Long.parseLong(next()); } public byte nextByte(){ return Byte.parseByte(next()); } } </CODE> <EVALUATION_RUBRIC> - O(n^3): The time complexity scales proportionally to the cube of the input size. - non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially. - O(n): The time complexity increases proportionally to the input size n in a linear manner. - O(nlog(n)): The time complexity combines linear and logarithmic growth factors. - O(log(n)): The time complexity increases logarithmically in relation to the input size. - O(1): The time complexity is constant to the input size n. - O(n^2): The time complexity grows proportionally to the square of the input size. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Determine the worst-case time complexity category of a given Java code based on input size n. </TASK> <CODE> import java.io.*; import static java.lang.Math.*; import java.util.*; import java.util.function.*; import java.lang.*; public class Main { final static boolean debug = false; final static String fileName = ""; final static boolean useFiles = false; public static void main(String[] args) throws FileNotFoundException { long start; if (debug) start = System.nanoTime(); InputStream inputStream; OutputStream outputStream; if (useFiles) { inputStream = new FileInputStream(fileName + ".in"); outputStream = new FileOutputStream(fileName + ".out"); } else { inputStream = System.in; outputStream = System.out; } InputReader in = new InputReader(inputStream); PrintWriter out = new PrintWriter(outputStream); Task solver = new Task(in, out); solver.solve(); if(debug) out.println((System.nanoTime() - start) / 1e+9); out.close(); } } class Task { int[][] dist, pre; int[] x, y, d, prev; String[] leafDescription; String[] linerDescription; String[][] allDescriptions; int xs, ys, n; int dist(int i, int j) { return (x[i] - x[j]) * (x[i] - x[j]) + (y[i] - y[j]) * (y[i] - y[j]); } void go(int[] prev, String[] leafDescription, int[] d, int len, int add, String description){ for (int mask = 0; mask < d.length; mask++) { if ((mask & add) != add) continue; int newValue = d[mask & (~add)] + len; if (d[mask] > newValue){ d[mask] = newValue; leafDescription[mask] = description; prev[mask] = mask & (~add); } } } int rec(int mask) { if (d[mask] != -1) return d[mask]; int lowest = 0; for (; ((1 << lowest) & mask) == 0; lowest++) ; int newMask = mask & (~(1 << lowest)); d[mask] = rec(newMask) + dist[lowest][n]; prev[mask] = newMask; leafDescription[mask] = linerDescription[lowest]; for (int bit = lowest + 1; bit < n; bit++) { if (((1 << bit) & mask) > 0) { newMask = mask & (~(1 << bit)) & (~(1 << lowest)); int newValue = rec(newMask) + pre[bit][lowest]; if (newValue < d[mask]) { d[mask] = newValue; prev[mask] = newMask; leafDescription[mask] = allDescriptions[lowest][bit]; } } } return d[mask]; } public void solve() { final int inf = (int) 1e+9; xs = in.nextInt(); ys = in.nextInt(); n = in.nextInt(); x = new int[n + 1]; y = new int[n + 1]; for (int i = 0; i < n; i++) { x[i] = in.nextInt(); y[i] = in.nextInt(); } x[n] = xs; y[n] = ys; allDescriptions = new String[n][n]; for (int i = 0; i < n; i++){ for (int j = 0; j < n; j++){ allDescriptions[i][j] = (i + 1) + " " + (j + 1) + " "; } } linerDescription = new String[n]; for (int i = 0; i < n; i++){ linerDescription[i] = (i + 1) + " "; } dist = new int[n + 1][n + 1]; pre = new int[n + 1][n + 1]; for (int i = 0; i <= n; i++) { for (int j = 0; j <= n; j++) { dist[i][j] = 2 * dist(i, j); pre[i][j] = dist(i, n) + dist(i, j) + dist(j, n); } } d = new int[1 << n]; Arrays.fill(d, -1); d[0] = 0; prev = new int[1 << n]; leafDescription = new String[1 << n]; // Arrays.fill(d, inf); // prev[0] = 0; // d[0] = 0; // for (int i = 0; i < n; i++) { // int add = 1 << i; // int len = 2 * dist[n][i]; // String description = (i + 1) + " "; // // go(prev, leafDescription, d, len, add, description); // } // for (int i = 0; i < n; i++) { // for (int j = i + 1; j < n; j++) { // int add = (1 << i) | (1 << j); // int len = dist[n][i] + dist[i][j] + dist[n][j]; // String description = (i + 1) + " " + (j + 1) + " "; // // go(prev, leafDescription, d, len, add, description); // } // } // Debug.printObjects(out, d); // Debug.printObjects(out, prev); // Debug.printObjects(out, leafDescription); int result = rec((1 << n) - 1); String answer = ""; for (int curr = d.length - 1; prev[curr] != curr; curr = prev[curr] ){ answer += "0 " + leafDescription[curr]; } answer += "0"; out.println(result); out.println(answer); } private InputReader in; private PrintWriter out; Task(InputReader in, PrintWriter out) { this.in = in; this.out = out; } } class InputReader { public BufferedReader reader; public StringTokenizer tokenizer; public InputReader(InputStream stream) { reader = new BufferedReader(new InputStreamReader(stream), 32768); tokenizer = null; } public String next() { while (tokenizer == null || !tokenizer.hasMoreTokens()) { try { tokenizer = new StringTokenizer(reader.readLine()); } catch (IOException e) { throw new RuntimeException(e); } } return tokenizer.nextToken(); } public double nextDouble(){ return Double.parseDouble(next()); } public int nextInt() { return Integer.parseInt(next()); } public long nextLong(){ return Long.parseLong(next()); } public byte nextByte(){ return Byte.parseByte(next()); } } </CODE> <EVALUATION_RUBRIC> - O(n): The time complexity increases proportionally to the input size n in a linear manner. - non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially. - O(1): The time complexity is constant to the input size n. - O(nlog(n)): The time complexity combines linear and logarithmic growth factors. - others: The time complexity does not fit any of the above categories or cannot be clearly classified. - O(n^2): The time complexity grows proportionally to the square of the input size. - O(log(n)): The time complexity increases logarithmically in relation to the input size. - O(n^3): The time complexity scales proportionally to the cube of the input size. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
1,824
4,078
4,475
import java.io.OutputStream; import java.io.IOException; import java.io.InputStream; import java.io.PrintWriter; import java.util.Arrays; import java.util.InputMismatchException; import java.io.IOException; import java.util.Collections; import java.util.ArrayList; import java.io.InputStream; /** * Built using CHelper plug-in * Actual solution is at the top * * @author beginner1010 */ public class Main { public static void main(String[] args) { InputStream inputStream = System.in; OutputStream outputStream = System.out; InputReader in = new InputReader(inputStream); PrintWriter out = new PrintWriter(outputStream); TaskE2 solver = new TaskE2(); solver.solve(1, in, out); out.close(); } static class TaskE2 { int[][] grid; int[][] val; int[][] dp; int rows; int two(int bit) { return 1 << bit; } boolean contain(int mask, int bit) { return (mask & two(bit)) > 0; } int rec(int col, int mask) { if (col == grid[0].length) return 0; if (dp[col][mask] != -1) return dp[col][mask]; int res = rec(col + 1, mask); for (int newMask = mask; newMask > 0; newMask = (mask & (newMask - 1))) { res = Math.max(res, rec(col + 1, mask ^ newMask) + val[col][newMask]); } dp[col][mask] = res; return res; } public void solve(int testNumber, InputReader in, PrintWriter out) { int T = in.nextInt(); for (int t = 0; t < T; t++) { int n = in.nextInt(); int m = in.nextInt(); rows = n; int[][] input = new int[n][m]; for (int i = 0; i < n; i++) { for (int j = 0; j < m; j++) { input[i][j] = in.nextInt(); } } ArrayList<Col> cols = new ArrayList<>(); for (int col = 0; col < m; col++) { int maxVal = 0; for (int row = 0; row < n; row++) { maxVal = Math.max(maxVal, input[row][col]); } cols.add(new Col(maxVal, col)); } Collections.sort(cols); m = Math.min(n, m); grid = new int[n][m]; for (int i = 0; i < m; i++) { int c = cols.get(i).colID; for (int row = 0; row < n; row++) { grid[row][i] = input[row][c]; } } val = new int[m][two(n)]; for (int c = 0; c < m; c++) { for (int mask = 0; mask < two(n); mask++) { val[c][mask] = 0; for (int offset = 0; offset < n; offset++) { int sum = 0; for (int bit = 0; bit < n; bit++) { if (contain(mask, bit) == true) sum += grid[(bit + offset) % n][c]; } val[c][mask] = Math.max(val[c][mask], sum); } } } dp = new int[m][two(n)]; for (int[] aux : dp) Arrays.fill(aux, -1); int ans = rec(0, two(n) - 1); out.println(ans); } } class Col implements Comparable<Col> { int maxVal; int colID; Col(int _maxVal, int _colID) { this.maxVal = _maxVal; this.colID = _colID; } public int compareTo(Col o) { if (o.maxVal != this.maxVal) return this.maxVal > o.maxVal ? -1 : 1; if (o.colID != this.colID) return this.colID < o.colID ? -1 : 1; return 0; } } } static class InputReader { private byte[] buf = new byte[1024]; private int curChar; private int numChars; private InputStream stream; public InputReader(InputStream stream) { this.stream = stream; } private boolean isWhitespace(int c) { return c == ' ' || c == '\n' || c == '\r' || c == '\t' || c == -1; } private int read() { if (numChars == -1) throw new InputMismatchException(); if (curChar >= numChars) { curChar = 0; try { numChars = stream.read(buf); } catch (IOException e) { throw new InputMismatchException(); } if (numChars <= 0) return -1; } return buf[curChar++]; } public int nextInt() { int c = read(); while (isWhitespace(c)) c = read(); int sgn = 1; if (c == '-') { sgn = -1; c = read(); } int res = 0; do { if (c < '0' || c > '9') throw new InputMismatchException(); res *= 10; res += c - '0'; c = read(); } while (!isWhitespace(c)); return res * sgn; } } }
non-polynomial
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Determine the worst-case time complexity category of a given Java code based on input size n. </TASK> <CODE> import java.io.OutputStream; import java.io.IOException; import java.io.InputStream; import java.io.PrintWriter; import java.util.Arrays; import java.util.InputMismatchException; import java.io.IOException; import java.util.Collections; import java.util.ArrayList; import java.io.InputStream; /** * Built using CHelper plug-in * Actual solution is at the top * * @author beginner1010 */ public class Main { public static void main(String[] args) { InputStream inputStream = System.in; OutputStream outputStream = System.out; InputReader in = new InputReader(inputStream); PrintWriter out = new PrintWriter(outputStream); TaskE2 solver = new TaskE2(); solver.solve(1, in, out); out.close(); } static class TaskE2 { int[][] grid; int[][] val; int[][] dp; int rows; int two(int bit) { return 1 << bit; } boolean contain(int mask, int bit) { return (mask & two(bit)) > 0; } int rec(int col, int mask) { if (col == grid[0].length) return 0; if (dp[col][mask] != -1) return dp[col][mask]; int res = rec(col + 1, mask); for (int newMask = mask; newMask > 0; newMask = (mask & (newMask - 1))) { res = Math.max(res, rec(col + 1, mask ^ newMask) + val[col][newMask]); } dp[col][mask] = res; return res; } public void solve(int testNumber, InputReader in, PrintWriter out) { int T = in.nextInt(); for (int t = 0; t < T; t++) { int n = in.nextInt(); int m = in.nextInt(); rows = n; int[][] input = new int[n][m]; for (int i = 0; i < n; i++) { for (int j = 0; j < m; j++) { input[i][j] = in.nextInt(); } } ArrayList<Col> cols = new ArrayList<>(); for (int col = 0; col < m; col++) { int maxVal = 0; for (int row = 0; row < n; row++) { maxVal = Math.max(maxVal, input[row][col]); } cols.add(new Col(maxVal, col)); } Collections.sort(cols); m = Math.min(n, m); grid = new int[n][m]; for (int i = 0; i < m; i++) { int c = cols.get(i).colID; for (int row = 0; row < n; row++) { grid[row][i] = input[row][c]; } } val = new int[m][two(n)]; for (int c = 0; c < m; c++) { for (int mask = 0; mask < two(n); mask++) { val[c][mask] = 0; for (int offset = 0; offset < n; offset++) { int sum = 0; for (int bit = 0; bit < n; bit++) { if (contain(mask, bit) == true) sum += grid[(bit + offset) % n][c]; } val[c][mask] = Math.max(val[c][mask], sum); } } } dp = new int[m][two(n)]; for (int[] aux : dp) Arrays.fill(aux, -1); int ans = rec(0, two(n) - 1); out.println(ans); } } class Col implements Comparable<Col> { int maxVal; int colID; Col(int _maxVal, int _colID) { this.maxVal = _maxVal; this.colID = _colID; } public int compareTo(Col o) { if (o.maxVal != this.maxVal) return this.maxVal > o.maxVal ? -1 : 1; if (o.colID != this.colID) return this.colID < o.colID ? -1 : 1; return 0; } } } static class InputReader { private byte[] buf = new byte[1024]; private int curChar; private int numChars; private InputStream stream; public InputReader(InputStream stream) { this.stream = stream; } private boolean isWhitespace(int c) { return c == ' ' || c == '\n' || c == '\r' || c == '\t' || c == -1; } private int read() { if (numChars == -1) throw new InputMismatchException(); if (curChar >= numChars) { curChar = 0; try { numChars = stream.read(buf); } catch (IOException e) { throw new InputMismatchException(); } if (numChars <= 0) return -1; } return buf[curChar++]; } public int nextInt() { int c = read(); while (isWhitespace(c)) c = read(); int sgn = 1; if (c == '-') { sgn = -1; c = read(); } int res = 0; do { if (c < '0' || c > '9') throw new InputMismatchException(); res *= 10; res += c - '0'; c = read(); } while (!isWhitespace(c)); return res * sgn; } } } </CODE> <EVALUATION_RUBRIC> - O(1): The time complexity is constant to the input size n. - O(nlog(n)): The time complexity combines linear and logarithmic growth factors. - non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially. - O(log(n)): The time complexity increases logarithmically in relation to the input size. - O(n): The time complexity increases proportionally to the input size n in a linear manner. - O(n^3): The time complexity scales proportionally to the cube of the input size. - O(n^2): The time complexity grows proportionally to the square of the input size. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Classify the following Java code's worst-case time complexity according to its relationship to the input size n. </TASK> <CODE> import java.io.OutputStream; import java.io.IOException; import java.io.InputStream; import java.io.PrintWriter; import java.util.Arrays; import java.util.InputMismatchException; import java.io.IOException; import java.util.Collections; import java.util.ArrayList; import java.io.InputStream; /** * Built using CHelper plug-in * Actual solution is at the top * * @author beginner1010 */ public class Main { public static void main(String[] args) { InputStream inputStream = System.in; OutputStream outputStream = System.out; InputReader in = new InputReader(inputStream); PrintWriter out = new PrintWriter(outputStream); TaskE2 solver = new TaskE2(); solver.solve(1, in, out); out.close(); } static class TaskE2 { int[][] grid; int[][] val; int[][] dp; int rows; int two(int bit) { return 1 << bit; } boolean contain(int mask, int bit) { return (mask & two(bit)) > 0; } int rec(int col, int mask) { if (col == grid[0].length) return 0; if (dp[col][mask] != -1) return dp[col][mask]; int res = rec(col + 1, mask); for (int newMask = mask; newMask > 0; newMask = (mask & (newMask - 1))) { res = Math.max(res, rec(col + 1, mask ^ newMask) + val[col][newMask]); } dp[col][mask] = res; return res; } public void solve(int testNumber, InputReader in, PrintWriter out) { int T = in.nextInt(); for (int t = 0; t < T; t++) { int n = in.nextInt(); int m = in.nextInt(); rows = n; int[][] input = new int[n][m]; for (int i = 0; i < n; i++) { for (int j = 0; j < m; j++) { input[i][j] = in.nextInt(); } } ArrayList<Col> cols = new ArrayList<>(); for (int col = 0; col < m; col++) { int maxVal = 0; for (int row = 0; row < n; row++) { maxVal = Math.max(maxVal, input[row][col]); } cols.add(new Col(maxVal, col)); } Collections.sort(cols); m = Math.min(n, m); grid = new int[n][m]; for (int i = 0; i < m; i++) { int c = cols.get(i).colID; for (int row = 0; row < n; row++) { grid[row][i] = input[row][c]; } } val = new int[m][two(n)]; for (int c = 0; c < m; c++) { for (int mask = 0; mask < two(n); mask++) { val[c][mask] = 0; for (int offset = 0; offset < n; offset++) { int sum = 0; for (int bit = 0; bit < n; bit++) { if (contain(mask, bit) == true) sum += grid[(bit + offset) % n][c]; } val[c][mask] = Math.max(val[c][mask], sum); } } } dp = new int[m][two(n)]; for (int[] aux : dp) Arrays.fill(aux, -1); int ans = rec(0, two(n) - 1); out.println(ans); } } class Col implements Comparable<Col> { int maxVal; int colID; Col(int _maxVal, int _colID) { this.maxVal = _maxVal; this.colID = _colID; } public int compareTo(Col o) { if (o.maxVal != this.maxVal) return this.maxVal > o.maxVal ? -1 : 1; if (o.colID != this.colID) return this.colID < o.colID ? -1 : 1; return 0; } } } static class InputReader { private byte[] buf = new byte[1024]; private int curChar; private int numChars; private InputStream stream; public InputReader(InputStream stream) { this.stream = stream; } private boolean isWhitespace(int c) { return c == ' ' || c == '\n' || c == '\r' || c == '\t' || c == -1; } private int read() { if (numChars == -1) throw new InputMismatchException(); if (curChar >= numChars) { curChar = 0; try { numChars = stream.read(buf); } catch (IOException e) { throw new InputMismatchException(); } if (numChars <= 0) return -1; } return buf[curChar++]; } public int nextInt() { int c = read(); while (isWhitespace(c)) c = read(); int sgn = 1; if (c == '-') { sgn = -1; c = read(); } int res = 0; do { if (c < '0' || c > '9') throw new InputMismatchException(); res *= 10; res += c - '0'; c = read(); } while (!isWhitespace(c)); return res * sgn; } } } </CODE> <EVALUATION_RUBRIC> - O(n^3): The running time increases with the cube of the input size n. - O(log(n)): The running time increases with the logarithm of the input size n. - non-polynomial: The running time increases non-polynomially with input size n, typically exponentially. - others: The code does not clearly correspond to the listed classes or has an unclassified time complexity. - O(nlog(n)): The running time increases with the product of n and logarithm of n. - O(n): The running time grows linearly with the input size n. - O(1): The running time does not change regardless of the input size n. - O(n^2): The running time increases with the square of the input size n. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
1,578
4,464
1,240
import java.io.BufferedReader; import java.io.BufferedWriter; import java.io.IOException; import java.io.InputStreamReader; import java.io.OutputStreamWriter; import java.io.PrintWriter; import java.math.BigInteger; import java.util.StringTokenizer; public class C { private static BufferedReader in; private static StringTokenizer st; private static PrintWriter out; public static void main(String[] args) throws NumberFormatException, IOException { in = new BufferedReader(new InputStreamReader(System.in)); st = new StringTokenizer(""); out = new PrintWriter(new BufferedWriter(new OutputStreamWriter(System.out))); int n = nextInt(); int m = nextInt(); int k = nextInt(); int mod = (int) (1e9+9); int correct = n - n / k; int carry = n % k; long ans; if(correct >= m){ ans = m; }else{ m -= correct; int block = n / k; BigInteger pow = BigInteger.valueOf(2).modPow(BigInteger.valueOf(m + 1), BigInteger.valueOf(mod)); ans = (pow.longValue() - 2 + mod) % mod; ans = (ans * (long) k) % mod; ans = (ans + (long)(block - m)* (long)(k-1) + carry) % mod; } System.out.println(ans); } static String next() throws IOException{ while(!st.hasMoreTokens()){ st = new StringTokenizer(in.readLine()); } return st.nextToken(); } static int nextInt() throws NumberFormatException, IOException{ return Integer.parseInt(next()); } static long nextLong() throws NumberFormatException, IOException{ return Long.parseLong(next()); } static double nextDouble() throws NumberFormatException, IOException{ return Double.parseDouble(next()); } }
O(log(n))
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n. </TASK> <CODE> import java.io.BufferedReader; import java.io.BufferedWriter; import java.io.IOException; import java.io.InputStreamReader; import java.io.OutputStreamWriter; import java.io.PrintWriter; import java.math.BigInteger; import java.util.StringTokenizer; public class C { private static BufferedReader in; private static StringTokenizer st; private static PrintWriter out; public static void main(String[] args) throws NumberFormatException, IOException { in = new BufferedReader(new InputStreamReader(System.in)); st = new StringTokenizer(""); out = new PrintWriter(new BufferedWriter(new OutputStreamWriter(System.out))); int n = nextInt(); int m = nextInt(); int k = nextInt(); int mod = (int) (1e9+9); int correct = n - n / k; int carry = n % k; long ans; if(correct >= m){ ans = m; }else{ m -= correct; int block = n / k; BigInteger pow = BigInteger.valueOf(2).modPow(BigInteger.valueOf(m + 1), BigInteger.valueOf(mod)); ans = (pow.longValue() - 2 + mod) % mod; ans = (ans * (long) k) % mod; ans = (ans + (long)(block - m)* (long)(k-1) + carry) % mod; } System.out.println(ans); } static String next() throws IOException{ while(!st.hasMoreTokens()){ st = new StringTokenizer(in.readLine()); } return st.nextToken(); } static int nextInt() throws NumberFormatException, IOException{ return Integer.parseInt(next()); } static long nextLong() throws NumberFormatException, IOException{ return Long.parseLong(next()); } static double nextDouble() throws NumberFormatException, IOException{ return Double.parseDouble(next()); } } </CODE> <EVALUATION_RUBRIC> - O(n^3): The execution time ascends in proportion to the cube of the input size n. - non-polynomial: The running time increases non-polynomially with input size n, typically exponentially. - O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially. - O(n^2): The execution time ascends in proportion to the square of the input size n. - O(n): The execution time ascends in a one-to-one ratio with the input size n. - O(1): The execution time is unaffected by the size of the input n. - O(log(n)): The execution time ascends in proportion to the logarithm of the input size n. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n. </TASK> <CODE> import java.io.BufferedReader; import java.io.BufferedWriter; import java.io.IOException; import java.io.InputStreamReader; import java.io.OutputStreamWriter; import java.io.PrintWriter; import java.math.BigInteger; import java.util.StringTokenizer; public class C { private static BufferedReader in; private static StringTokenizer st; private static PrintWriter out; public static void main(String[] args) throws NumberFormatException, IOException { in = new BufferedReader(new InputStreamReader(System.in)); st = new StringTokenizer(""); out = new PrintWriter(new BufferedWriter(new OutputStreamWriter(System.out))); int n = nextInt(); int m = nextInt(); int k = nextInt(); int mod = (int) (1e9+9); int correct = n - n / k; int carry = n % k; long ans; if(correct >= m){ ans = m; }else{ m -= correct; int block = n / k; BigInteger pow = BigInteger.valueOf(2).modPow(BigInteger.valueOf(m + 1), BigInteger.valueOf(mod)); ans = (pow.longValue() - 2 + mod) % mod; ans = (ans * (long) k) % mod; ans = (ans + (long)(block - m)* (long)(k-1) + carry) % mod; } System.out.println(ans); } static String next() throws IOException{ while(!st.hasMoreTokens()){ st = new StringTokenizer(in.readLine()); } return st.nextToken(); } static int nextInt() throws NumberFormatException, IOException{ return Integer.parseInt(next()); } static long nextLong() throws NumberFormatException, IOException{ return Long.parseLong(next()); } static double nextDouble() throws NumberFormatException, IOException{ return Double.parseDouble(next()); } } </CODE> <EVALUATION_RUBRIC> - O(n): The execution time ascends in a one-to-one ratio with the input size n. - O(n^2): The execution time ascends in proportion to the square of the input size n. - non-polynomial: The running time increases non-polynomially with input size n, typically exponentially. - O(n^3): The execution time ascends in proportion to the cube of the input size n. - O(log(n)): The execution time ascends in proportion to the logarithm of the input size n. - O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially. - others: The time complexity does not fit to any of the given categories or is ambiguous. - O(1): The execution time is unaffected by the size of the input n. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
730
1,239
1,378
import java.util.Scanner; public class Pipeline { public static void main(String[] args) { Scanner sc = new Scanner(System.in); long n = sc.nextLong(); long k = sc.nextLong(); sc.close(); if (k * (k - 1) / 2 + 1 < n) { System.out.println(-1); } else { long l = -1, r = k; while (r - l > 1) { long m = (r + l) / 2; if (cantidadPosible(k, m) >= n) { r = m; } else { l = m; } } System.out.println(r); } } private static long cantidadPosible(long k, long usadas) { return (k * (k - 1) / 2 + 1 - (k - usadas) * (k - usadas - 1) / 2); } }
O(log(n))
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n. </TASK> <CODE> import java.util.Scanner; public class Pipeline { public static void main(String[] args) { Scanner sc = new Scanner(System.in); long n = sc.nextLong(); long k = sc.nextLong(); sc.close(); if (k * (k - 1) / 2 + 1 < n) { System.out.println(-1); } else { long l = -1, r = k; while (r - l > 1) { long m = (r + l) / 2; if (cantidadPosible(k, m) >= n) { r = m; } else { l = m; } } System.out.println(r); } } private static long cantidadPosible(long k, long usadas) { return (k * (k - 1) / 2 + 1 - (k - usadas) * (k - usadas - 1) / 2); } } </CODE> <EVALUATION_RUBRIC> - O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially. - O(n): The execution time ascends in a one-to-one ratio with the input size n. - O(n^3): The execution time ascends in proportion to the cube of the input size n. - non-polynomial: The running time increases non-polynomially with input size n, typically exponentially. - O(1): The execution time is unaffected by the size of the input n. - O(n^2): The execution time ascends in proportion to the square of the input size n. - O(log(n)): The execution time ascends in proportion to the logarithm of the input size n. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Determine the worst-case time complexity category of a given Java code based on input size n. </TASK> <CODE> import java.util.Scanner; public class Pipeline { public static void main(String[] args) { Scanner sc = new Scanner(System.in); long n = sc.nextLong(); long k = sc.nextLong(); sc.close(); if (k * (k - 1) / 2 + 1 < n) { System.out.println(-1); } else { long l = -1, r = k; while (r - l > 1) { long m = (r + l) / 2; if (cantidadPosible(k, m) >= n) { r = m; } else { l = m; } } System.out.println(r); } } private static long cantidadPosible(long k, long usadas) { return (k * (k - 1) / 2 + 1 - (k - usadas) * (k - usadas - 1) / 2); } } </CODE> <EVALUATION_RUBRIC> - O(log(n)): The time complexity increases logarithmically in relation to the input size. - non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially. - O(n^2): The time complexity grows proportionally to the square of the input size. - O(n^3): The time complexity scales proportionally to the cube of the input size. - others: The time complexity does not fit any of the above categories or cannot be clearly classified. - O(1): The time complexity is constant to the input size n. - O(n): The time complexity increases proportionally to the input size n in a linear manner. - O(nlog(n)): The time complexity combines linear and logarithmic growth factors. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
567
1,376
4,463
import java.io.*; import java.util.*; public class Main{ static int[][]memo; static int n,m,in[][]; static int dp(int col,int maxRowMask) { if(col>=Math.min(n, m) || maxRowMask==((1<<n)-1))return 0; if(memo[col][maxRowMask]!=-1)return memo[col][maxRowMask]; int ans=0; int availableBits=maxRowMask^((1<<n)-1); //all masks that don't intersect with maxRowMask for(int colMask=availableBits;colMask!=0;colMask=(colMask-1)&availableBits) { ans=Math.max(ans, maxMask[col][colMask]+dp(col+1, maxRowMask|colMask)); } return memo[col][maxRowMask]=ans; } static int[][]sumOfMask; static int[][]maxMask; public static void main(String[] args) throws Exception{ pw=new PrintWriter(System.out); sc = new MScanner(System.in); int tc=sc.nextInt(); while(tc-->0) { n=sc.nextInt();m=sc.nextInt(); int[]maxInCol=new int[m]; in=new int[m][n+1]; for(int i=0;i<n;i++) { for(int j=0;j<m;j++) { in[j][i]=sc.nextInt(); maxInCol[j]=Math.max(maxInCol[j], in[j][i]); in[j][n]=j; } } Arrays.sort(in,(x,y)->maxInCol[y[n]]-maxInCol[x[n]]); memo=new int[n][1<<n]; sumOfMask=new int[n][1<<n]; maxMask=new int[n][1<<n]; for(int i=0;i<n;i++) { for(int msk=0;msk<memo[i].length;msk++) { memo[i][msk]=-1; if(i>=m)continue; for(int bit=0;bit<n;bit++) { if(((msk>>bit)&1)!=0) { sumOfMask[i][msk]+=in[i][bit]; } } } } for(int col=0;col<n;col++) { for(int msk=0;msk<(1<<n);msk++) { int curMask=msk; for(int cyclicShift=0;cyclicShift<n;cyclicShift++) { maxMask[col][msk]=Math.max(maxMask[col][msk], sumOfMask[col][curMask]); int lastBit=curMask&1; curMask>>=1; curMask|=(lastBit<<(n-1)); } } } pw.println(dp(0, 0)); } pw.flush(); } static PrintWriter pw; static MScanner sc; static class MScanner { StringTokenizer st; BufferedReader br; public MScanner(InputStream system) { br = new BufferedReader(new InputStreamReader(system)); } public MScanner(String file) throws Exception { br = new BufferedReader(new FileReader(file)); } public String next() throws IOException { while (st == null || !st.hasMoreTokens()) st = new StringTokenizer(br.readLine()); return st.nextToken(); } public int[] intArr(int n) throws IOException { int[]in=new int[n];for(int i=0;i<n;i++)in[i]=nextInt(); return in; } public long[] longArr(int n) throws IOException { long[]in=new long[n];for(int i=0;i<n;i++)in[i]=nextLong(); return in; } public int[] intSortedArr(int n) throws IOException { int[]in=new int[n];for(int i=0;i<n;i++)in[i]=nextInt(); shuffle(in); Arrays.sort(in); return in; } public long[] longSortedArr(int n) throws IOException { long[]in=new long[n];for(int i=0;i<n;i++)in[i]=nextLong(); shuffle(in); Arrays.sort(in); return in; } public Integer[] IntegerArr(int n) throws IOException { Integer[]in=new Integer[n];for(int i=0;i<n;i++)in[i]=nextInt(); return in; } public Long[] LongArr(int n) throws IOException { Long[]in=new Long[n];for(int i=0;i<n;i++)in[i]=nextLong(); return in; } public String nextLine() throws IOException { return br.readLine(); } public int nextInt() throws IOException { return Integer.parseInt(next()); } public double nextDouble() throws IOException { return Double.parseDouble(next()); } public char nextChar() throws IOException { return next().charAt(0); } public long nextLong() throws IOException { return Long.parseLong(next()); } public boolean ready() throws IOException { return br.ready(); } public void waitForInput() throws InterruptedException { Thread.sleep(3000); } } static void shuffle(int[]in) { for(int i=0;i<in.length;i++) { int idx=(int)(Math.random()*in.length); int tmp=in[i]; in[i]=in[idx]; in[idx]=tmp; } } static void shuffle(long[]in) { for(int i=0;i<in.length;i++) { int idx=(int)(Math.random()*in.length); long tmp=in[i]; in[i]=in[idx]; in[idx]=tmp; } } }
non-polynomial
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Determine the worst-case time complexity category of a given Java code based on input size n. </TASK> <CODE> import java.io.*; import java.util.*; public class Main{ static int[][]memo; static int n,m,in[][]; static int dp(int col,int maxRowMask) { if(col>=Math.min(n, m) || maxRowMask==((1<<n)-1))return 0; if(memo[col][maxRowMask]!=-1)return memo[col][maxRowMask]; int ans=0; int availableBits=maxRowMask^((1<<n)-1); //all masks that don't intersect with maxRowMask for(int colMask=availableBits;colMask!=0;colMask=(colMask-1)&availableBits) { ans=Math.max(ans, maxMask[col][colMask]+dp(col+1, maxRowMask|colMask)); } return memo[col][maxRowMask]=ans; } static int[][]sumOfMask; static int[][]maxMask; public static void main(String[] args) throws Exception{ pw=new PrintWriter(System.out); sc = new MScanner(System.in); int tc=sc.nextInt(); while(tc-->0) { n=sc.nextInt();m=sc.nextInt(); int[]maxInCol=new int[m]; in=new int[m][n+1]; for(int i=0;i<n;i++) { for(int j=0;j<m;j++) { in[j][i]=sc.nextInt(); maxInCol[j]=Math.max(maxInCol[j], in[j][i]); in[j][n]=j; } } Arrays.sort(in,(x,y)->maxInCol[y[n]]-maxInCol[x[n]]); memo=new int[n][1<<n]; sumOfMask=new int[n][1<<n]; maxMask=new int[n][1<<n]; for(int i=0;i<n;i++) { for(int msk=0;msk<memo[i].length;msk++) { memo[i][msk]=-1; if(i>=m)continue; for(int bit=0;bit<n;bit++) { if(((msk>>bit)&1)!=0) { sumOfMask[i][msk]+=in[i][bit]; } } } } for(int col=0;col<n;col++) { for(int msk=0;msk<(1<<n);msk++) { int curMask=msk; for(int cyclicShift=0;cyclicShift<n;cyclicShift++) { maxMask[col][msk]=Math.max(maxMask[col][msk], sumOfMask[col][curMask]); int lastBit=curMask&1; curMask>>=1; curMask|=(lastBit<<(n-1)); } } } pw.println(dp(0, 0)); } pw.flush(); } static PrintWriter pw; static MScanner sc; static class MScanner { StringTokenizer st; BufferedReader br; public MScanner(InputStream system) { br = new BufferedReader(new InputStreamReader(system)); } public MScanner(String file) throws Exception { br = new BufferedReader(new FileReader(file)); } public String next() throws IOException { while (st == null || !st.hasMoreTokens()) st = new StringTokenizer(br.readLine()); return st.nextToken(); } public int[] intArr(int n) throws IOException { int[]in=new int[n];for(int i=0;i<n;i++)in[i]=nextInt(); return in; } public long[] longArr(int n) throws IOException { long[]in=new long[n];for(int i=0;i<n;i++)in[i]=nextLong(); return in; } public int[] intSortedArr(int n) throws IOException { int[]in=new int[n];for(int i=0;i<n;i++)in[i]=nextInt(); shuffle(in); Arrays.sort(in); return in; } public long[] longSortedArr(int n) throws IOException { long[]in=new long[n];for(int i=0;i<n;i++)in[i]=nextLong(); shuffle(in); Arrays.sort(in); return in; } public Integer[] IntegerArr(int n) throws IOException { Integer[]in=new Integer[n];for(int i=0;i<n;i++)in[i]=nextInt(); return in; } public Long[] LongArr(int n) throws IOException { Long[]in=new Long[n];for(int i=0;i<n;i++)in[i]=nextLong(); return in; } public String nextLine() throws IOException { return br.readLine(); } public int nextInt() throws IOException { return Integer.parseInt(next()); } public double nextDouble() throws IOException { return Double.parseDouble(next()); } public char nextChar() throws IOException { return next().charAt(0); } public long nextLong() throws IOException { return Long.parseLong(next()); } public boolean ready() throws IOException { return br.ready(); } public void waitForInput() throws InterruptedException { Thread.sleep(3000); } } static void shuffle(int[]in) { for(int i=0;i<in.length;i++) { int idx=(int)(Math.random()*in.length); int tmp=in[i]; in[i]=in[idx]; in[idx]=tmp; } } static void shuffle(long[]in) { for(int i=0;i<in.length;i++) { int idx=(int)(Math.random()*in.length); long tmp=in[i]; in[i]=in[idx]; in[idx]=tmp; } } } </CODE> <EVALUATION_RUBRIC> - non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially. - O(1): The time complexity is constant to the input size n. - O(nlog(n)): The time complexity combines linear and logarithmic growth factors. - O(n): The time complexity increases proportionally to the input size n in a linear manner. - O(log(n)): The time complexity increases logarithmically in relation to the input size. - O(n^2): The time complexity grows proportionally to the square of the input size. - O(n^3): The time complexity scales proportionally to the cube of the input size. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n. </TASK> <CODE> import java.io.*; import java.util.*; public class Main{ static int[][]memo; static int n,m,in[][]; static int dp(int col,int maxRowMask) { if(col>=Math.min(n, m) || maxRowMask==((1<<n)-1))return 0; if(memo[col][maxRowMask]!=-1)return memo[col][maxRowMask]; int ans=0; int availableBits=maxRowMask^((1<<n)-1); //all masks that don't intersect with maxRowMask for(int colMask=availableBits;colMask!=0;colMask=(colMask-1)&availableBits) { ans=Math.max(ans, maxMask[col][colMask]+dp(col+1, maxRowMask|colMask)); } return memo[col][maxRowMask]=ans; } static int[][]sumOfMask; static int[][]maxMask; public static void main(String[] args) throws Exception{ pw=new PrintWriter(System.out); sc = new MScanner(System.in); int tc=sc.nextInt(); while(tc-->0) { n=sc.nextInt();m=sc.nextInt(); int[]maxInCol=new int[m]; in=new int[m][n+1]; for(int i=0;i<n;i++) { for(int j=0;j<m;j++) { in[j][i]=sc.nextInt(); maxInCol[j]=Math.max(maxInCol[j], in[j][i]); in[j][n]=j; } } Arrays.sort(in,(x,y)->maxInCol[y[n]]-maxInCol[x[n]]); memo=new int[n][1<<n]; sumOfMask=new int[n][1<<n]; maxMask=new int[n][1<<n]; for(int i=0;i<n;i++) { for(int msk=0;msk<memo[i].length;msk++) { memo[i][msk]=-1; if(i>=m)continue; for(int bit=0;bit<n;bit++) { if(((msk>>bit)&1)!=0) { sumOfMask[i][msk]+=in[i][bit]; } } } } for(int col=0;col<n;col++) { for(int msk=0;msk<(1<<n);msk++) { int curMask=msk; for(int cyclicShift=0;cyclicShift<n;cyclicShift++) { maxMask[col][msk]=Math.max(maxMask[col][msk], sumOfMask[col][curMask]); int lastBit=curMask&1; curMask>>=1; curMask|=(lastBit<<(n-1)); } } } pw.println(dp(0, 0)); } pw.flush(); } static PrintWriter pw; static MScanner sc; static class MScanner { StringTokenizer st; BufferedReader br; public MScanner(InputStream system) { br = new BufferedReader(new InputStreamReader(system)); } public MScanner(String file) throws Exception { br = new BufferedReader(new FileReader(file)); } public String next() throws IOException { while (st == null || !st.hasMoreTokens()) st = new StringTokenizer(br.readLine()); return st.nextToken(); } public int[] intArr(int n) throws IOException { int[]in=new int[n];for(int i=0;i<n;i++)in[i]=nextInt(); return in; } public long[] longArr(int n) throws IOException { long[]in=new long[n];for(int i=0;i<n;i++)in[i]=nextLong(); return in; } public int[] intSortedArr(int n) throws IOException { int[]in=new int[n];for(int i=0;i<n;i++)in[i]=nextInt(); shuffle(in); Arrays.sort(in); return in; } public long[] longSortedArr(int n) throws IOException { long[]in=new long[n];for(int i=0;i<n;i++)in[i]=nextLong(); shuffle(in); Arrays.sort(in); return in; } public Integer[] IntegerArr(int n) throws IOException { Integer[]in=new Integer[n];for(int i=0;i<n;i++)in[i]=nextInt(); return in; } public Long[] LongArr(int n) throws IOException { Long[]in=new Long[n];for(int i=0;i<n;i++)in[i]=nextLong(); return in; } public String nextLine() throws IOException { return br.readLine(); } public int nextInt() throws IOException { return Integer.parseInt(next()); } public double nextDouble() throws IOException { return Double.parseDouble(next()); } public char nextChar() throws IOException { return next().charAt(0); } public long nextLong() throws IOException { return Long.parseLong(next()); } public boolean ready() throws IOException { return br.ready(); } public void waitForInput() throws InterruptedException { Thread.sleep(3000); } } static void shuffle(int[]in) { for(int i=0;i<in.length;i++) { int idx=(int)(Math.random()*in.length); int tmp=in[i]; in[i]=in[idx]; in[idx]=tmp; } } static void shuffle(long[]in) { for(int i=0;i<in.length;i++) { int idx=(int)(Math.random()*in.length); long tmp=in[i]; in[i]=in[idx]; in[idx]=tmp; } } } </CODE> <EVALUATION_RUBRIC> - others: The time complexity does not fit to any of the given categories or is ambiguous. - non-polynomial: The running time increases non-polynomially with input size n, typically exponentially. - O(n): The execution time ascends in a one-to-one ratio with the input size n. - O(1): The execution time is unaffected by the size of the input n. - O(n^2): The execution time ascends in proportion to the square of the input size n. - O(log(n)): The execution time ascends in proportion to the logarithm of the input size n. - O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially. - O(n^3): The execution time ascends in proportion to the cube of the input size n. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
1,587
4,452
3,855
import java.io.*; import java.util.*; public class tank { static final FastScanner fs = new FastScanner(); static PrintWriter out = new PrintWriter(System.out); public static void main(String[] args) { int t = fs.nextInt(); while(t-->0) { run_case(); } out.close(); } static void run_case() { int n = fs.nextInt(), prevLen = 1, one = 1; int[] arr = fs.readArray(n); int[] len = new int[1001]; StringBuilder[] prev = new StringBuilder[1001]; len[1] = 1; out.println(1); for (int i = 0; i < 1001; i++) { prev[i] = new StringBuilder(); } prev[1].append("1"); for (int i = 1; i < n; i++) { if(arr[i] == 1) { prev[prevLen + 1] = new StringBuilder(prev[prevLen]); prev[prevLen + 1].append(".1"); out.println(prev[prevLen + 1]); prevLen++; len[prevLen] = 1; }else { for (int j = 1000; j > 0; j--) { if(len[j] == arr[i] - 1 && j <= prevLen) { char[] tmp = prev[j].toString().toCharArray(); if(fn(tmp)) { prev[j] = new StringBuilder("" + (len[j] + 1)); }else { prev[j] = new StringBuilder(); int ub = fn2(tmp); for (int k = 0; k <= ub; k++) { prev[j].append(tmp[k]); } prev[j].append(len[j] + 1); } out.println(prev[j]); len[j] = len[j] + 1; prevLen = j; break; } if(j == 1) { prev[j] = new StringBuilder("" + (one + 1)); out.println(prev[j]); len[j] = one + 1; prevLen = j; one++; } } } } } static boolean fn(char[] arr) { for(char c: arr) { if(c == '.') return false; } return true; } static int fn2(char[] arr) { int ret = 0; for (int i = 0; i < arr.length; i++) { if(arr[i] == '.') ret = i; } return ret; } static class FastScanner { BufferedReader br=new BufferedReader(new InputStreamReader(System.in)); StringTokenizer st=new StringTokenizer(""); String next() { while (!st.hasMoreTokens()) try { st=new StringTokenizer(br.readLine()); } catch (IOException e) { e.printStackTrace(); } return st.nextToken(); } String nextLine(){ try { return br.readLine(); } catch (IOException e) { e.printStackTrace(); } return ""; } int nextInt() { return Integer.parseInt(next()); } int[] readArray(int n) { int[] a=new int[n]; for (int i=0; i<n; i++) a[i]=nextInt(); return a; } long nextLong() { return Long.parseLong(next()); } double nextDouble() { return Double.parseDouble(next()); } } }
O(n^3)
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Determine the worst-case time complexity category of a given Java code based on input size n. </TASK> <CODE> import java.io.*; import java.util.*; public class tank { static final FastScanner fs = new FastScanner(); static PrintWriter out = new PrintWriter(System.out); public static void main(String[] args) { int t = fs.nextInt(); while(t-->0) { run_case(); } out.close(); } static void run_case() { int n = fs.nextInt(), prevLen = 1, one = 1; int[] arr = fs.readArray(n); int[] len = new int[1001]; StringBuilder[] prev = new StringBuilder[1001]; len[1] = 1; out.println(1); for (int i = 0; i < 1001; i++) { prev[i] = new StringBuilder(); } prev[1].append("1"); for (int i = 1; i < n; i++) { if(arr[i] == 1) { prev[prevLen + 1] = new StringBuilder(prev[prevLen]); prev[prevLen + 1].append(".1"); out.println(prev[prevLen + 1]); prevLen++; len[prevLen] = 1; }else { for (int j = 1000; j > 0; j--) { if(len[j] == arr[i] - 1 && j <= prevLen) { char[] tmp = prev[j].toString().toCharArray(); if(fn(tmp)) { prev[j] = new StringBuilder("" + (len[j] + 1)); }else { prev[j] = new StringBuilder(); int ub = fn2(tmp); for (int k = 0; k <= ub; k++) { prev[j].append(tmp[k]); } prev[j].append(len[j] + 1); } out.println(prev[j]); len[j] = len[j] + 1; prevLen = j; break; } if(j == 1) { prev[j] = new StringBuilder("" + (one + 1)); out.println(prev[j]); len[j] = one + 1; prevLen = j; one++; } } } } } static boolean fn(char[] arr) { for(char c: arr) { if(c == '.') return false; } return true; } static int fn2(char[] arr) { int ret = 0; for (int i = 0; i < arr.length; i++) { if(arr[i] == '.') ret = i; } return ret; } static class FastScanner { BufferedReader br=new BufferedReader(new InputStreamReader(System.in)); StringTokenizer st=new StringTokenizer(""); String next() { while (!st.hasMoreTokens()) try { st=new StringTokenizer(br.readLine()); } catch (IOException e) { e.printStackTrace(); } return st.nextToken(); } String nextLine(){ try { return br.readLine(); } catch (IOException e) { e.printStackTrace(); } return ""; } int nextInt() { return Integer.parseInt(next()); } int[] readArray(int n) { int[] a=new int[n]; for (int i=0; i<n; i++) a[i]=nextInt(); return a; } long nextLong() { return Long.parseLong(next()); } double nextDouble() { return Double.parseDouble(next()); } } } </CODE> <EVALUATION_RUBRIC> - O(n^3): The time complexity scales proportionally to the cube of the input size. - O(log(n)): The time complexity increases logarithmically in relation to the input size. - O(n): The time complexity increases proportionally to the input size n in a linear manner. - O(1): The time complexity is constant to the input size n. - O(n^2): The time complexity grows proportionally to the square of the input size. - non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially. - O(nlog(n)): The time complexity combines linear and logarithmic growth factors. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Classify the following Java code's worst-case time complexity according to its relationship to the input size n. </TASK> <CODE> import java.io.*; import java.util.*; public class tank { static final FastScanner fs = new FastScanner(); static PrintWriter out = new PrintWriter(System.out); public static void main(String[] args) { int t = fs.nextInt(); while(t-->0) { run_case(); } out.close(); } static void run_case() { int n = fs.nextInt(), prevLen = 1, one = 1; int[] arr = fs.readArray(n); int[] len = new int[1001]; StringBuilder[] prev = new StringBuilder[1001]; len[1] = 1; out.println(1); for (int i = 0; i < 1001; i++) { prev[i] = new StringBuilder(); } prev[1].append("1"); for (int i = 1; i < n; i++) { if(arr[i] == 1) { prev[prevLen + 1] = new StringBuilder(prev[prevLen]); prev[prevLen + 1].append(".1"); out.println(prev[prevLen + 1]); prevLen++; len[prevLen] = 1; }else { for (int j = 1000; j > 0; j--) { if(len[j] == arr[i] - 1 && j <= prevLen) { char[] tmp = prev[j].toString().toCharArray(); if(fn(tmp)) { prev[j] = new StringBuilder("" + (len[j] + 1)); }else { prev[j] = new StringBuilder(); int ub = fn2(tmp); for (int k = 0; k <= ub; k++) { prev[j].append(tmp[k]); } prev[j].append(len[j] + 1); } out.println(prev[j]); len[j] = len[j] + 1; prevLen = j; break; } if(j == 1) { prev[j] = new StringBuilder("" + (one + 1)); out.println(prev[j]); len[j] = one + 1; prevLen = j; one++; } } } } } static boolean fn(char[] arr) { for(char c: arr) { if(c == '.') return false; } return true; } static int fn2(char[] arr) { int ret = 0; for (int i = 0; i < arr.length; i++) { if(arr[i] == '.') ret = i; } return ret; } static class FastScanner { BufferedReader br=new BufferedReader(new InputStreamReader(System.in)); StringTokenizer st=new StringTokenizer(""); String next() { while (!st.hasMoreTokens()) try { st=new StringTokenizer(br.readLine()); } catch (IOException e) { e.printStackTrace(); } return st.nextToken(); } String nextLine(){ try { return br.readLine(); } catch (IOException e) { e.printStackTrace(); } return ""; } int nextInt() { return Integer.parseInt(next()); } int[] readArray(int n) { int[] a=new int[n]; for (int i=0; i<n; i++) a[i]=nextInt(); return a; } long nextLong() { return Long.parseLong(next()); } double nextDouble() { return Double.parseDouble(next()); } } } </CODE> <EVALUATION_RUBRIC> - O(nlog(n)): The running time increases with the product of n and logarithm of n. - non-polynomial: The running time increases non-polynomially with input size n, typically exponentially. - O(1): The running time does not change regardless of the input size n. - others: The code does not clearly correspond to the listed classes or has an unclassified time complexity. - O(n^3): The running time increases with the cube of the input size n. - O(n^2): The running time increases with the square of the input size n. - O(n): The running time grows linearly with the input size n. - O(log(n)): The running time increases with the logarithm of the input size n. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
1,089
3,845
2,656
import java.io.*; import java.lang.reflect.Array; import java.math.*; import java.util.*; public class icpc { public static void main(String[] args) throws IOException { Reader in = new Reader(); // BufferedReader in = new BufferedReader(new InputStreamReader(System.in)); int n = in.nextInt(); boolean[] A = new boolean[n]; int count = 0; int[] B = new int[n]; for (int i=0;i<n;i++) B[i] = in.nextInt(); Arrays.sort(B); for (int i=0;i<n;i++) { if (!A[i]) { int gcd = B[i]; for (int j=0;j<n;j++) { if(!A[j]) { gcd = gcd(B[j], gcd); if(gcd == B[i]) { A[j] = true; } else { gcd = B[i]; } } } count++; A[i] = true; } } System.out.println(count); } public static int gcd(int a, int b) { if (b == 0) return a; return gcd(b, a % b); } } class DSU { int[] parent; int[] size; //Pass number of total nodes as parameter to the constructor DSU(int n) { this.parent = new int[n]; this.size = new int[n]; Arrays.fill(parent, -1); } public void makeSet(int v) { parent[v] = v; size[v] = 1; } public int findSet(int v) { if (v == parent[v]) return v; return parent[v] = findSet(parent[v]); } public void unionSets(int a, int b) { a = findSet(a); b = findSet(b); if (a != b) { if (size[a] < size[b]) { int temp = a; a = b; b = temp; } parent[b] = a; size[a] += size[b]; } } } class FastFourierTransform { private void fft(double[] a, double[] b, boolean invert) { int count = a.length; for (int i = 1, j = 0; i < count; i++) { int bit = count >> 1; for (; j >= bit; bit >>= 1) j -= bit; j += bit; if (i < j) { double temp = a[i]; a[i] = a[j]; a[j] = temp; temp = b[i]; b[i] = b[j]; b[j] = temp; } } for (int len = 2; len <= count; len <<= 1) { int halfLen = len >> 1; double angle = 2 * Math.PI / len; if (invert) angle = -angle; double wLenA = Math.cos(angle); double wLenB = Math.sin(angle); for (int i = 0; i < count; i += len) { double wA = 1; double wB = 0; for (int j = 0; j < halfLen; j++) { double uA = a[i + j]; double uB = b[i + j]; double vA = a[i + j + halfLen] * wA - b[i + j + halfLen] * wB; double vB = a[i + j + halfLen] * wB + b[i + j + halfLen] * wA; a[i + j] = uA + vA; b[i + j] = uB + vB; a[i + j + halfLen] = uA - vA; b[i + j + halfLen] = uB - vB; double nextWA = wA * wLenA - wB * wLenB; wB = wA * wLenB + wB * wLenA; wA = nextWA; } } } if (invert) { for (int i = 0; i < count; i++) { a[i] /= count; b[i] /= count; } } } public long[] multiply(long[] a, long[] b) { int resultSize = Integer.highestOneBit(Math.max(a.length, b.length) - 1) << 2; resultSize = Math.max(resultSize, 1); double[] aReal = new double[resultSize]; double[] aImaginary = new double[resultSize]; double[] bReal = new double[resultSize]; double[] bImaginary = new double[resultSize]; for (int i = 0; i < a.length; i++) aReal[i] = a[i]; for (int i = 0; i < b.length; i++) bReal[i] = b[i]; fft(aReal, aImaginary, false); fft(bReal, bImaginary, false); for (int i = 0; i < resultSize; i++) { double real = aReal[i] * bReal[i] - aImaginary[i] * bImaginary[i]; aImaginary[i] = aImaginary[i] * bReal[i] + bImaginary[i] * aReal[i]; aReal[i] = real; } fft(aReal, aImaginary, true); long[] result = new long[resultSize]; for (int i = 0; i < resultSize; i++) result[i] = Math.round(aReal[i]); return result; } } class NumberTheory { public boolean isPrime(long n) { if(n < 2) return false; for(long x = 2;x * x <= n;x++) { if(n % x == 0) return false; } return true; } public ArrayList<Long> primeFactorisation(long n) { ArrayList<Long> f = new ArrayList<>(); for(long x=2;x * x <= n;x++) { while(n % x == 0) { f.add(x); n /= x; } } if(n > 1) f.add(n); return f; } public int[] sieveOfEratosthenes(int n) { //Returns an array with the smallest prime factor for each number and primes marked as 0 int[] sieve = new int[n + 1]; for(int x=2;x * x <= n;x++) { if(sieve[x] != 0) continue; for(int u=x*x;u<=n;u+=x) { if(sieve[u] == 0) { sieve[u] = x; } } } return sieve; } public long gcd(long a, long b) { if(b == 0) return a; return gcd(b, a % b); } public long phi(long n) { double result = n; for(long p=2;p*p<=n;p++) { if(n % p == 0) { while (n % p == 0) n /= p; result *= (1.0 - (1.0 / (double)p)); } } if(n > 1) result *= (1.0 - (1.0 / (double)n)); return (long)result; } public Name extendedEuclid(long a, long b) { if(b == 0) return new Name(a, 1, 0); Name n1 = extendedEuclid(b, a % b); Name n2 = new Name(n1.d, n1.y, n1.x - (long)Math.floor((double)a / b) * n1.y); return n2; } public long modularExponentiation(long a, long b, long n) { long d = 1L; String bString = Long.toBinaryString(b); for(int i=0;i<bString.length();i++) { d = (d * d) % n; if(bString.charAt(i) == '1') d = (d * a) % n; } return d; } } class Name { long d; long x; long y; public Name(long d, long x, long y) { this.d = d; this.x = x; this.y = y; } } class SuffixArray { int ALPHABET_SZ = 256, N; int[] T, lcp, sa, sa2, rank, tmp, c; public SuffixArray(String str) { this(toIntArray(str)); } private static int[] toIntArray(String s) { int[] text = new int[s.length()]; for (int i = 0; i < s.length(); i++) text[i] = s.charAt(i); return text; } public SuffixArray(int[] text) { T = text; N = text.length; sa = new int[N]; sa2 = new int[N]; rank = new int[N]; c = new int[Math.max(ALPHABET_SZ, N)]; construct(); kasai(); } private void construct() { int i, p, r; for (i = 0; i < N; ++i) c[rank[i] = T[i]]++; for (i = 1; i < ALPHABET_SZ; ++i) c[i] += c[i - 1]; for (i = N - 1; i >= 0; --i) sa[--c[T[i]]] = i; for (p = 1; p < N; p <<= 1) { for (r = 0, i = N - p; i < N; ++i) sa2[r++] = i; for (i = 0; i < N; ++i) if (sa[i] >= p) sa2[r++] = sa[i] - p; Arrays.fill(c, 0, ALPHABET_SZ, 0); for (i = 0; i < N; ++i) c[rank[i]]++; for (i = 1; i < ALPHABET_SZ; ++i) c[i] += c[i - 1]; for (i = N - 1; i >= 0; --i) sa[--c[rank[sa2[i]]]] = sa2[i]; for (sa2[sa[0]] = r = 0, i = 1; i < N; ++i) { if (!(rank[sa[i - 1]] == rank[sa[i]] && sa[i - 1] + p < N && sa[i] + p < N && rank[sa[i - 1] + p] == rank[sa[i] + p])) r++; sa2[sa[i]] = r; } tmp = rank; rank = sa2; sa2 = tmp; if (r == N - 1) break; ALPHABET_SZ = r + 1; } } private void kasai() { lcp = new int[N]; int[] inv = new int[N]; for (int i = 0; i < N; i++) inv[sa[i]] = i; for (int i = 0, len = 0; i < N; i++) { if (inv[i] > 0) { int k = sa[inv[i] - 1]; while ((i + len < N) && (k + len < N) && T[i + len] == T[k + len]) len++; lcp[inv[i] - 1] = len; if (len > 0) len--; } } } } class ZAlgorithm { public int[] calculateZ(char input[]) { int Z[] = new int[input.length]; int left = 0; int right = 0; for(int k = 1; k < input.length; k++) { if(k > right) { left = right = k; while(right < input.length && input[right] == input[right - left]) { right++; } Z[k] = right - left; right--; } else { //we are operating inside box int k1 = k - left; //if value does not stretches till right bound then just copy it. if(Z[k1] < right - k + 1) { Z[k] = Z[k1]; } else { //otherwise try to see if there are more matches. left = k; while(right < input.length && input[right] == input[right - left]) { right++; } Z[k] = right - left; right--; } } } return Z; } public ArrayList<Integer> matchPattern(char text[], char pattern[]) { char newString[] = new char[text.length + pattern.length + 1]; int i = 0; for(char ch : pattern) { newString[i] = ch; i++; } newString[i] = '$'; i++; for(char ch : text) { newString[i] = ch; i++; } ArrayList<Integer> result = new ArrayList<>(); int Z[] = calculateZ(newString); for(i = 0; i < Z.length ; i++) { if(Z[i] == pattern.length) { result.add(i - pattern.length - 1); } } return result; } } class KMPAlgorithm { public int[] computeTemporalArray(char[] pattern) { int[] lps = new int[pattern.length]; int index = 0; for(int i=1;i<pattern.length;) { if(pattern[i] == pattern[index]) { lps[i] = index + 1; index++; i++; } else { if(index != 0) { index = lps[index - 1]; } else { lps[i] = 0; i++; } } } return lps; } public ArrayList<Integer> KMPMatcher(char[] text, char[] pattern) { int[] lps = computeTemporalArray(pattern); int j = 0; int i = 0; int n = text.length; int m = pattern.length; ArrayList<Integer> indices = new ArrayList<>(); while(i < n) { if(pattern[j] == text[i]) { i++; j++; } if(j == m) { indices.add(i - j); j = lps[j - 1]; } else if(i < n && pattern[j] != text[i]) { if(j != 0) j = lps[j - 1]; else i = i + 1; } } return indices; } } class Hashing { public long[] computePowers(long p, int n, long m) { long[] powers = new long[n]; powers[0] = 1; for(int i=1;i<n;i++) { powers[i] = (powers[i - 1] * p) % m; } return powers; } public long computeHash(String s) { long p = 31; long m = 1_000_000_009; long hashValue = 0L; long[] powers = computePowers(p, s.length(), m); for(int i=0;i<s.length();i++) { char ch = s.charAt(i); hashValue = (hashValue + (ch - 'a' + 1) * powers[i]) % m; } return hashValue; } } class BasicFunctions { public long min(long[] A) { long min = Long.MAX_VALUE; for(int i=0;i<A.length;i++) { min = Math.min(min, A[i]); } return min; } public long max(long[] A) { long max = Long.MAX_VALUE; for(int i=0;i<A.length;i++) { max = Math.max(max, A[i]); } return max; } } class MergeSortInt { // Merges two subarrays of arr[]. // First subarray is arr[l..m] // Second subarray is arr[m+1..r] void merge(int arr[], int l, int m, int r) { // Find sizes of two subarrays to be merged int n1 = m - l + 1; int n2 = r - m; /* Create temp arrays */ int L[] = new int[n1]; int R[] = new int[n2]; /*Copy data to temp arrays*/ for (int i = 0; i < n1; ++i) L[i] = arr[l + i]; for (int j = 0; j < n2; ++j) R[j] = arr[m + 1 + j]; /* Merge the temp arrays */ // Initial indexes of first and second subarrays int i = 0, j = 0; // Initial index of merged subarry array int k = l; while (i < n1 && j < n2) { if (L[i] <= R[j]) { arr[k] = L[i]; i++; } else { arr[k] = R[j]; j++; } k++; } /* Copy remaining elements of L[] if any */ while (i < n1) { arr[k] = L[i]; i++; k++; } /* Copy remaining elements of R[] if any */ while (j < n2) { arr[k] = R[j]; j++; k++; } } // Main function that sorts arr[l..r] using // merge() void sort(int arr[], int l, int r) { if (l < r) { // Find the middle point int m = (l + r) / 2; // Sort first and second halves sort(arr, l, m); sort(arr, m + 1, r); // Merge the sorted halves merge(arr, l, m, r); } } } class MergeSortLong { // Merges two subarrays of arr[]. // First subarray is arr[l..m] // Second subarray is arr[m+1..r] void merge(long arr[], int l, int m, int r) { // Find sizes of two subarrays to be merged int n1 = m - l + 1; int n2 = r - m; /* Create temp arrays */ long L[] = new long[n1]; long R[] = new long[n2]; /*Copy data to temp arrays*/ for (int i = 0; i < n1; ++i) L[i] = arr[l + i]; for (int j = 0; j < n2; ++j) R[j] = arr[m + 1 + j]; /* Merge the temp arrays */ // Initial indexes of first and second subarrays int i = 0, j = 0; // Initial index of merged subarry array int k = l; while (i < n1 && j < n2) { if (L[i] <= R[j]) { arr[k] = L[i]; i++; } else { arr[k] = R[j]; j++; } k++; } /* Copy remaining elements of L[] if any */ while (i < n1) { arr[k] = L[i]; i++; k++; } /* Copy remaining elements of R[] if any */ while (j < n2) { arr[k] = R[j]; j++; k++; } } // Main function that sorts arr[l..r] using // merge() void sort(long arr[], int l, int r) { if (l < r) { // Find the middle point int m = (l + r) / 2; // Sort first and second halves sort(arr, l, m); sort(arr, m + 1, r); // Merge the sorted halves merge(arr, l, m, r); } } } class Node { String s; Node(String s) { this.s = s; } @Override public boolean equals(Object ob) { if(ob == null) return false; if(!(ob instanceof Node)) return false; if(ob == this) return true; Node obj = (Node)ob; if(this.s.equals(obj.s)) return true; return false; } @Override public int hashCode() { return (int)this.s.length(); } } class Reader { final private int BUFFER_SIZE = 1 << 16; private DataInputStream din; private byte[] buffer; private int bufferPointer, bytesRead; public Reader() { din = new DataInputStream(System.in); buffer = new byte[BUFFER_SIZE]; bufferPointer = bytesRead = 0; } public Reader(String file_name) throws IOException { din = new DataInputStream(new FileInputStream(file_name)); buffer = new byte[BUFFER_SIZE]; bufferPointer = bytesRead = 0; } public String readLine() throws IOException { byte[] buf = new byte[64]; // line length int cnt = 0, c; while ((c = read()) != -1) { if (c == '\n') break; buf[cnt++] = (byte) c; } return new String(buf, 0, cnt); } public int nextInt() throws IOException { int ret = 0; byte c = read(); while (c <= ' ') c = read(); boolean neg = (c == '-'); if (neg) c = read(); do { ret = ret * 10 + c - '0'; } while ((c = read()) >= '0' && c <= '9'); if (neg) return -ret; return ret; } public long nextLong() throws IOException { long ret = 0; byte c = read(); while (c <= ' ') c = read(); boolean neg = (c == '-'); if (neg) c = read(); do { ret = ret * 10 + c - '0'; } while ((c = read()) >= '0' && c <= '9'); if (neg) return -ret; return ret; } public double nextDouble() throws IOException { double ret = 0, div = 1; byte c = read(); while (c <= ' ') c = read(); boolean neg = (c == '-'); if (neg) c = read(); do { ret = ret * 10 + c - '0'; } while ((c = read()) >= '0' && c <= '9'); if (c == '.') { while ((c = read()) >= '0' && c <= '9') { ret += (c - '0') / (div *= 10); } } if (neg) return -ret; return ret; } private void fillBuffer() throws IOException { bytesRead = din.read(buffer, bufferPointer = 0, BUFFER_SIZE); if (bytesRead == -1) buffer[0] = -1; } private byte read() throws IOException { if (bufferPointer == bytesRead) fillBuffer(); return buffer[bufferPointer++]; } public void close() throws IOException { if (din == null) return; din.close(); } } class FenwickTree { public void update(long[] fenwickTree,long delta,int index) { index += 1; while(index < fenwickTree.length) { fenwickTree[index] += delta; index = index + (index & (-index)); } } public long prefixSum(long[] fenwickTree,int index) { long sum = 0L; index += 1; while(index > 0) { sum += fenwickTree[index]; index -= (index & (-index)); } return sum; } } class SegmentTree { public int nextPowerOfTwo(int num) { if(num == 0) return 1; if(num > 0 && (num & (num - 1)) == 0) return num; while((num &(num - 1)) > 0) { num = num & (num - 1); } return num << 1; } public int[] createSegmentTree(int[] input) { int np2 = nextPowerOfTwo(input.length); int[] segmentTree = new int[np2 * 2 - 1]; for(int i=0;i<segmentTree.length;i++) segmentTree[i] = Integer.MIN_VALUE; constructSegmentTree(segmentTree,input,0,input.length-1,0); return segmentTree; } private void constructSegmentTree(int[] segmentTree,int[] input,int low,int high,int pos) { if(low == high) { segmentTree[pos] = input[low]; return; } int mid = (low + high)/ 2; constructSegmentTree(segmentTree,input,low,mid,2*pos + 1); constructSegmentTree(segmentTree,input,mid+1,high,2*pos + 2); segmentTree[pos] = Math.max(segmentTree[2*pos + 1],segmentTree[2*pos + 2]); } public int rangeMinimumQuery(int []segmentTree,int qlow,int qhigh,int len) { return rangeMinimumQuery(segmentTree,0,len-1,qlow,qhigh,0); } private int rangeMinimumQuery(int segmentTree[],int low,int high,int qlow,int qhigh,int pos) { if(qlow <= low && qhigh >= high){ return segmentTree[pos]; } if(qlow > high || qhigh < low){ return Integer.MIN_VALUE; } int mid = (low+high)/2; return Math.max(rangeMinimumQuery(segmentTree, low, mid, qlow, qhigh, 2 * pos + 1), rangeMinimumQuery(segmentTree, mid + 1, high, qlow, qhigh, 2 * pos + 2)); } } class Trie { private class TrieNode { Map<Character, TrieNode> children; boolean endOfWord; public TrieNode() { children = new HashMap<>(); endOfWord = false; } } private final TrieNode root; public Trie() { root = new TrieNode(); } public void insert(String word) { TrieNode current = root; for (int i = 0; i < word.length(); i++) { char ch = word.charAt(i); TrieNode node = current.children.get(ch); if (node == null) { node = new TrieNode(); current.children.put(ch, node); } current = node; } current.endOfWord = true; } public boolean search(String word) { TrieNode current = root; for (int i = 0; i < word.length(); i++) { char ch = word.charAt(i); TrieNode node = current.children.get(ch); if (node == null) { return false; } current = node; } return current.endOfWord; } public void delete(String word) { delete(root, word, 0); } private boolean delete(TrieNode current, String word, int index) { if (index == word.length()) { if (!current.endOfWord) { return false; } current.endOfWord = false; return current.children.size() == 0; } char ch = word.charAt(index); TrieNode node = current.children.get(ch); if (node == null) { return false; } boolean shouldDeleteCurrentNode = delete(node, word, index + 1); if (shouldDeleteCurrentNode) { current.children.remove(ch); return current.children.size() == 0; } return false; } } class SegmentTreeLazy { public int nextPowerOfTwo(int num) { if(num == 0) return 1; if(num > 0 && (num & (num - 1)) == 0) return num; while((num &(num - 1)) > 0) { num = num & (num - 1); } return num << 1; } public int[] createSegmentTree(int input[]) { int nextPowOfTwo = nextPowerOfTwo(input.length); int segmentTree[] = new int[nextPowOfTwo*2 -1]; for(int i=0; i < segmentTree.length; i++){ segmentTree[i] = Integer.MAX_VALUE; } constructMinSegmentTree(segmentTree, input, 0, input.length - 1, 0); return segmentTree; } private void constructMinSegmentTree(int segmentTree[], int input[], int low, int high,int pos) { if(low == high) { segmentTree[pos] = input[low]; return; } int mid = (low + high)/2; constructMinSegmentTree(segmentTree, input, low, mid, 2 * pos + 1); constructMinSegmentTree(segmentTree, input, mid + 1, high, 2 * pos + 2); segmentTree[pos] = Math.min(segmentTree[2*pos+1], segmentTree[2*pos+2]); } public void updateSegmentTreeRangeLazy(int input[], int segmentTree[], int lazy[], int startRange, int endRange, int delta) { updateSegmentTreeRangeLazy(segmentTree, lazy, startRange, endRange, delta, 0, input.length - 1, 0); } private void updateSegmentTreeRangeLazy(int segmentTree[], int lazy[], int startRange, int endRange, int delta, int low, int high, int pos) { if(low > high) { return; } if (lazy[pos] != 0) { segmentTree[pos] += lazy[pos]; if (low != high) { lazy[2 * pos + 1] += lazy[pos]; lazy[2 * pos + 2] += lazy[pos]; } lazy[pos] = 0; } if(startRange > high || endRange < low) { return; } if(startRange <= low && endRange >= high) { segmentTree[pos] += delta; if(low != high) { lazy[2*pos + 1] += delta; lazy[2*pos + 2] += delta; } return; } int mid = (low + high)/2; updateSegmentTreeRangeLazy(segmentTree, lazy, startRange, endRange, delta, low, mid, 2*pos+1); updateSegmentTreeRangeLazy(segmentTree, lazy, startRange, endRange, delta, mid+1, high, 2*pos+2); segmentTree[pos] = Math.min(segmentTree[2*pos + 1], segmentTree[2*pos + 2]); } public int rangeMinimumQueryLazy(int segmentTree[], int lazy[], int qlow, int qhigh, int len) { return rangeMinimumQueryLazy(segmentTree, lazy, qlow, qhigh, 0, len - 1, 0); } private int rangeMinimumQueryLazy(int segmentTree[], int lazy[], int qlow, int qhigh, int low, int high, int pos) { if(low > high) { return Integer.MAX_VALUE; } if (lazy[pos] != 0) { segmentTree[pos] += lazy[pos]; if (low != high) { lazy[2 * pos + 1] += lazy[pos]; lazy[2 * pos + 2] += lazy[pos]; } lazy[pos] = 0; } if(qlow > high || qhigh < low) { return Integer.MAX_VALUE; } if(qlow <= low && qhigh >= high) { return segmentTree[pos]; } int mid = (low+high)/2; return Math.min(rangeMinimumQueryLazy(segmentTree, lazy, qlow, qhigh, low, mid, 2 * pos + 1), rangeMinimumQueryLazy(segmentTree, lazy, qlow, qhigh, mid + 1, high, 2 * pos + 2)); } }
O(n^2)
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n. </TASK> <CODE> import java.io.*; import java.lang.reflect.Array; import java.math.*; import java.util.*; public class icpc { public static void main(String[] args) throws IOException { Reader in = new Reader(); // BufferedReader in = new BufferedReader(new InputStreamReader(System.in)); int n = in.nextInt(); boolean[] A = new boolean[n]; int count = 0; int[] B = new int[n]; for (int i=0;i<n;i++) B[i] = in.nextInt(); Arrays.sort(B); for (int i=0;i<n;i++) { if (!A[i]) { int gcd = B[i]; for (int j=0;j<n;j++) { if(!A[j]) { gcd = gcd(B[j], gcd); if(gcd == B[i]) { A[j] = true; } else { gcd = B[i]; } } } count++; A[i] = true; } } System.out.println(count); } public static int gcd(int a, int b) { if (b == 0) return a; return gcd(b, a % b); } } class DSU { int[] parent; int[] size; //Pass number of total nodes as parameter to the constructor DSU(int n) { this.parent = new int[n]; this.size = new int[n]; Arrays.fill(parent, -1); } public void makeSet(int v) { parent[v] = v; size[v] = 1; } public int findSet(int v) { if (v == parent[v]) return v; return parent[v] = findSet(parent[v]); } public void unionSets(int a, int b) { a = findSet(a); b = findSet(b); if (a != b) { if (size[a] < size[b]) { int temp = a; a = b; b = temp; } parent[b] = a; size[a] += size[b]; } } } class FastFourierTransform { private void fft(double[] a, double[] b, boolean invert) { int count = a.length; for (int i = 1, j = 0; i < count; i++) { int bit = count >> 1; for (; j >= bit; bit >>= 1) j -= bit; j += bit; if (i < j) { double temp = a[i]; a[i] = a[j]; a[j] = temp; temp = b[i]; b[i] = b[j]; b[j] = temp; } } for (int len = 2; len <= count; len <<= 1) { int halfLen = len >> 1; double angle = 2 * Math.PI / len; if (invert) angle = -angle; double wLenA = Math.cos(angle); double wLenB = Math.sin(angle); for (int i = 0; i < count; i += len) { double wA = 1; double wB = 0; for (int j = 0; j < halfLen; j++) { double uA = a[i + j]; double uB = b[i + j]; double vA = a[i + j + halfLen] * wA - b[i + j + halfLen] * wB; double vB = a[i + j + halfLen] * wB + b[i + j + halfLen] * wA; a[i + j] = uA + vA; b[i + j] = uB + vB; a[i + j + halfLen] = uA - vA; b[i + j + halfLen] = uB - vB; double nextWA = wA * wLenA - wB * wLenB; wB = wA * wLenB + wB * wLenA; wA = nextWA; } } } if (invert) { for (int i = 0; i < count; i++) { a[i] /= count; b[i] /= count; } } } public long[] multiply(long[] a, long[] b) { int resultSize = Integer.highestOneBit(Math.max(a.length, b.length) - 1) << 2; resultSize = Math.max(resultSize, 1); double[] aReal = new double[resultSize]; double[] aImaginary = new double[resultSize]; double[] bReal = new double[resultSize]; double[] bImaginary = new double[resultSize]; for (int i = 0; i < a.length; i++) aReal[i] = a[i]; for (int i = 0; i < b.length; i++) bReal[i] = b[i]; fft(aReal, aImaginary, false); fft(bReal, bImaginary, false); for (int i = 0; i < resultSize; i++) { double real = aReal[i] * bReal[i] - aImaginary[i] * bImaginary[i]; aImaginary[i] = aImaginary[i] * bReal[i] + bImaginary[i] * aReal[i]; aReal[i] = real; } fft(aReal, aImaginary, true); long[] result = new long[resultSize]; for (int i = 0; i < resultSize; i++) result[i] = Math.round(aReal[i]); return result; } } class NumberTheory { public boolean isPrime(long n) { if(n < 2) return false; for(long x = 2;x * x <= n;x++) { if(n % x == 0) return false; } return true; } public ArrayList<Long> primeFactorisation(long n) { ArrayList<Long> f = new ArrayList<>(); for(long x=2;x * x <= n;x++) { while(n % x == 0) { f.add(x); n /= x; } } if(n > 1) f.add(n); return f; } public int[] sieveOfEratosthenes(int n) { //Returns an array with the smallest prime factor for each number and primes marked as 0 int[] sieve = new int[n + 1]; for(int x=2;x * x <= n;x++) { if(sieve[x] != 0) continue; for(int u=x*x;u<=n;u+=x) { if(sieve[u] == 0) { sieve[u] = x; } } } return sieve; } public long gcd(long a, long b) { if(b == 0) return a; return gcd(b, a % b); } public long phi(long n) { double result = n; for(long p=2;p*p<=n;p++) { if(n % p == 0) { while (n % p == 0) n /= p; result *= (1.0 - (1.0 / (double)p)); } } if(n > 1) result *= (1.0 - (1.0 / (double)n)); return (long)result; } public Name extendedEuclid(long a, long b) { if(b == 0) return new Name(a, 1, 0); Name n1 = extendedEuclid(b, a % b); Name n2 = new Name(n1.d, n1.y, n1.x - (long)Math.floor((double)a / b) * n1.y); return n2; } public long modularExponentiation(long a, long b, long n) { long d = 1L; String bString = Long.toBinaryString(b); for(int i=0;i<bString.length();i++) { d = (d * d) % n; if(bString.charAt(i) == '1') d = (d * a) % n; } return d; } } class Name { long d; long x; long y; public Name(long d, long x, long y) { this.d = d; this.x = x; this.y = y; } } class SuffixArray { int ALPHABET_SZ = 256, N; int[] T, lcp, sa, sa2, rank, tmp, c; public SuffixArray(String str) { this(toIntArray(str)); } private static int[] toIntArray(String s) { int[] text = new int[s.length()]; for (int i = 0; i < s.length(); i++) text[i] = s.charAt(i); return text; } public SuffixArray(int[] text) { T = text; N = text.length; sa = new int[N]; sa2 = new int[N]; rank = new int[N]; c = new int[Math.max(ALPHABET_SZ, N)]; construct(); kasai(); } private void construct() { int i, p, r; for (i = 0; i < N; ++i) c[rank[i] = T[i]]++; for (i = 1; i < ALPHABET_SZ; ++i) c[i] += c[i - 1]; for (i = N - 1; i >= 0; --i) sa[--c[T[i]]] = i; for (p = 1; p < N; p <<= 1) { for (r = 0, i = N - p; i < N; ++i) sa2[r++] = i; for (i = 0; i < N; ++i) if (sa[i] >= p) sa2[r++] = sa[i] - p; Arrays.fill(c, 0, ALPHABET_SZ, 0); for (i = 0; i < N; ++i) c[rank[i]]++; for (i = 1; i < ALPHABET_SZ; ++i) c[i] += c[i - 1]; for (i = N - 1; i >= 0; --i) sa[--c[rank[sa2[i]]]] = sa2[i]; for (sa2[sa[0]] = r = 0, i = 1; i < N; ++i) { if (!(rank[sa[i - 1]] == rank[sa[i]] && sa[i - 1] + p < N && sa[i] + p < N && rank[sa[i - 1] + p] == rank[sa[i] + p])) r++; sa2[sa[i]] = r; } tmp = rank; rank = sa2; sa2 = tmp; if (r == N - 1) break; ALPHABET_SZ = r + 1; } } private void kasai() { lcp = new int[N]; int[] inv = new int[N]; for (int i = 0; i < N; i++) inv[sa[i]] = i; for (int i = 0, len = 0; i < N; i++) { if (inv[i] > 0) { int k = sa[inv[i] - 1]; while ((i + len < N) && (k + len < N) && T[i + len] == T[k + len]) len++; lcp[inv[i] - 1] = len; if (len > 0) len--; } } } } class ZAlgorithm { public int[] calculateZ(char input[]) { int Z[] = new int[input.length]; int left = 0; int right = 0; for(int k = 1; k < input.length; k++) { if(k > right) { left = right = k; while(right < input.length && input[right] == input[right - left]) { right++; } Z[k] = right - left; right--; } else { //we are operating inside box int k1 = k - left; //if value does not stretches till right bound then just copy it. if(Z[k1] < right - k + 1) { Z[k] = Z[k1]; } else { //otherwise try to see if there are more matches. left = k; while(right < input.length && input[right] == input[right - left]) { right++; } Z[k] = right - left; right--; } } } return Z; } public ArrayList<Integer> matchPattern(char text[], char pattern[]) { char newString[] = new char[text.length + pattern.length + 1]; int i = 0; for(char ch : pattern) { newString[i] = ch; i++; } newString[i] = '$'; i++; for(char ch : text) { newString[i] = ch; i++; } ArrayList<Integer> result = new ArrayList<>(); int Z[] = calculateZ(newString); for(i = 0; i < Z.length ; i++) { if(Z[i] == pattern.length) { result.add(i - pattern.length - 1); } } return result; } } class KMPAlgorithm { public int[] computeTemporalArray(char[] pattern) { int[] lps = new int[pattern.length]; int index = 0; for(int i=1;i<pattern.length;) { if(pattern[i] == pattern[index]) { lps[i] = index + 1; index++; i++; } else { if(index != 0) { index = lps[index - 1]; } else { lps[i] = 0; i++; } } } return lps; } public ArrayList<Integer> KMPMatcher(char[] text, char[] pattern) { int[] lps = computeTemporalArray(pattern); int j = 0; int i = 0; int n = text.length; int m = pattern.length; ArrayList<Integer> indices = new ArrayList<>(); while(i < n) { if(pattern[j] == text[i]) { i++; j++; } if(j == m) { indices.add(i - j); j = lps[j - 1]; } else if(i < n && pattern[j] != text[i]) { if(j != 0) j = lps[j - 1]; else i = i + 1; } } return indices; } } class Hashing { public long[] computePowers(long p, int n, long m) { long[] powers = new long[n]; powers[0] = 1; for(int i=1;i<n;i++) { powers[i] = (powers[i - 1] * p) % m; } return powers; } public long computeHash(String s) { long p = 31; long m = 1_000_000_009; long hashValue = 0L; long[] powers = computePowers(p, s.length(), m); for(int i=0;i<s.length();i++) { char ch = s.charAt(i); hashValue = (hashValue + (ch - 'a' + 1) * powers[i]) % m; } return hashValue; } } class BasicFunctions { public long min(long[] A) { long min = Long.MAX_VALUE; for(int i=0;i<A.length;i++) { min = Math.min(min, A[i]); } return min; } public long max(long[] A) { long max = Long.MAX_VALUE; for(int i=0;i<A.length;i++) { max = Math.max(max, A[i]); } return max; } } class MergeSortInt { // Merges two subarrays of arr[]. // First subarray is arr[l..m] // Second subarray is arr[m+1..r] void merge(int arr[], int l, int m, int r) { // Find sizes of two subarrays to be merged int n1 = m - l + 1; int n2 = r - m; /* Create temp arrays */ int L[] = new int[n1]; int R[] = new int[n2]; /*Copy data to temp arrays*/ for (int i = 0; i < n1; ++i) L[i] = arr[l + i]; for (int j = 0; j < n2; ++j) R[j] = arr[m + 1 + j]; /* Merge the temp arrays */ // Initial indexes of first and second subarrays int i = 0, j = 0; // Initial index of merged subarry array int k = l; while (i < n1 && j < n2) { if (L[i] <= R[j]) { arr[k] = L[i]; i++; } else { arr[k] = R[j]; j++; } k++; } /* Copy remaining elements of L[] if any */ while (i < n1) { arr[k] = L[i]; i++; k++; } /* Copy remaining elements of R[] if any */ while (j < n2) { arr[k] = R[j]; j++; k++; } } // Main function that sorts arr[l..r] using // merge() void sort(int arr[], int l, int r) { if (l < r) { // Find the middle point int m = (l + r) / 2; // Sort first and second halves sort(arr, l, m); sort(arr, m + 1, r); // Merge the sorted halves merge(arr, l, m, r); } } } class MergeSortLong { // Merges two subarrays of arr[]. // First subarray is arr[l..m] // Second subarray is arr[m+1..r] void merge(long arr[], int l, int m, int r) { // Find sizes of two subarrays to be merged int n1 = m - l + 1; int n2 = r - m; /* Create temp arrays */ long L[] = new long[n1]; long R[] = new long[n2]; /*Copy data to temp arrays*/ for (int i = 0; i < n1; ++i) L[i] = arr[l + i]; for (int j = 0; j < n2; ++j) R[j] = arr[m + 1 + j]; /* Merge the temp arrays */ // Initial indexes of first and second subarrays int i = 0, j = 0; // Initial index of merged subarry array int k = l; while (i < n1 && j < n2) { if (L[i] <= R[j]) { arr[k] = L[i]; i++; } else { arr[k] = R[j]; j++; } k++; } /* Copy remaining elements of L[] if any */ while (i < n1) { arr[k] = L[i]; i++; k++; } /* Copy remaining elements of R[] if any */ while (j < n2) { arr[k] = R[j]; j++; k++; } } // Main function that sorts arr[l..r] using // merge() void sort(long arr[], int l, int r) { if (l < r) { // Find the middle point int m = (l + r) / 2; // Sort first and second halves sort(arr, l, m); sort(arr, m + 1, r); // Merge the sorted halves merge(arr, l, m, r); } } } class Node { String s; Node(String s) { this.s = s; } @Override public boolean equals(Object ob) { if(ob == null) return false; if(!(ob instanceof Node)) return false; if(ob == this) return true; Node obj = (Node)ob; if(this.s.equals(obj.s)) return true; return false; } @Override public int hashCode() { return (int)this.s.length(); } } class Reader { final private int BUFFER_SIZE = 1 << 16; private DataInputStream din; private byte[] buffer; private int bufferPointer, bytesRead; public Reader() { din = new DataInputStream(System.in); buffer = new byte[BUFFER_SIZE]; bufferPointer = bytesRead = 0; } public Reader(String file_name) throws IOException { din = new DataInputStream(new FileInputStream(file_name)); buffer = new byte[BUFFER_SIZE]; bufferPointer = bytesRead = 0; } public String readLine() throws IOException { byte[] buf = new byte[64]; // line length int cnt = 0, c; while ((c = read()) != -1) { if (c == '\n') break; buf[cnt++] = (byte) c; } return new String(buf, 0, cnt); } public int nextInt() throws IOException { int ret = 0; byte c = read(); while (c <= ' ') c = read(); boolean neg = (c == '-'); if (neg) c = read(); do { ret = ret * 10 + c - '0'; } while ((c = read()) >= '0' && c <= '9'); if (neg) return -ret; return ret; } public long nextLong() throws IOException { long ret = 0; byte c = read(); while (c <= ' ') c = read(); boolean neg = (c == '-'); if (neg) c = read(); do { ret = ret * 10 + c - '0'; } while ((c = read()) >= '0' && c <= '9'); if (neg) return -ret; return ret; } public double nextDouble() throws IOException { double ret = 0, div = 1; byte c = read(); while (c <= ' ') c = read(); boolean neg = (c == '-'); if (neg) c = read(); do { ret = ret * 10 + c - '0'; } while ((c = read()) >= '0' && c <= '9'); if (c == '.') { while ((c = read()) >= '0' && c <= '9') { ret += (c - '0') / (div *= 10); } } if (neg) return -ret; return ret; } private void fillBuffer() throws IOException { bytesRead = din.read(buffer, bufferPointer = 0, BUFFER_SIZE); if (bytesRead == -1) buffer[0] = -1; } private byte read() throws IOException { if (bufferPointer == bytesRead) fillBuffer(); return buffer[bufferPointer++]; } public void close() throws IOException { if (din == null) return; din.close(); } } class FenwickTree { public void update(long[] fenwickTree,long delta,int index) { index += 1; while(index < fenwickTree.length) { fenwickTree[index] += delta; index = index + (index & (-index)); } } public long prefixSum(long[] fenwickTree,int index) { long sum = 0L; index += 1; while(index > 0) { sum += fenwickTree[index]; index -= (index & (-index)); } return sum; } } class SegmentTree { public int nextPowerOfTwo(int num) { if(num == 0) return 1; if(num > 0 && (num & (num - 1)) == 0) return num; while((num &(num - 1)) > 0) { num = num & (num - 1); } return num << 1; } public int[] createSegmentTree(int[] input) { int np2 = nextPowerOfTwo(input.length); int[] segmentTree = new int[np2 * 2 - 1]; for(int i=0;i<segmentTree.length;i++) segmentTree[i] = Integer.MIN_VALUE; constructSegmentTree(segmentTree,input,0,input.length-1,0); return segmentTree; } private void constructSegmentTree(int[] segmentTree,int[] input,int low,int high,int pos) { if(low == high) { segmentTree[pos] = input[low]; return; } int mid = (low + high)/ 2; constructSegmentTree(segmentTree,input,low,mid,2*pos + 1); constructSegmentTree(segmentTree,input,mid+1,high,2*pos + 2); segmentTree[pos] = Math.max(segmentTree[2*pos + 1],segmentTree[2*pos + 2]); } public int rangeMinimumQuery(int []segmentTree,int qlow,int qhigh,int len) { return rangeMinimumQuery(segmentTree,0,len-1,qlow,qhigh,0); } private int rangeMinimumQuery(int segmentTree[],int low,int high,int qlow,int qhigh,int pos) { if(qlow <= low && qhigh >= high){ return segmentTree[pos]; } if(qlow > high || qhigh < low){ return Integer.MIN_VALUE; } int mid = (low+high)/2; return Math.max(rangeMinimumQuery(segmentTree, low, mid, qlow, qhigh, 2 * pos + 1), rangeMinimumQuery(segmentTree, mid + 1, high, qlow, qhigh, 2 * pos + 2)); } } class Trie { private class TrieNode { Map<Character, TrieNode> children; boolean endOfWord; public TrieNode() { children = new HashMap<>(); endOfWord = false; } } private final TrieNode root; public Trie() { root = new TrieNode(); } public void insert(String word) { TrieNode current = root; for (int i = 0; i < word.length(); i++) { char ch = word.charAt(i); TrieNode node = current.children.get(ch); if (node == null) { node = new TrieNode(); current.children.put(ch, node); } current = node; } current.endOfWord = true; } public boolean search(String word) { TrieNode current = root; for (int i = 0; i < word.length(); i++) { char ch = word.charAt(i); TrieNode node = current.children.get(ch); if (node == null) { return false; } current = node; } return current.endOfWord; } public void delete(String word) { delete(root, word, 0); } private boolean delete(TrieNode current, String word, int index) { if (index == word.length()) { if (!current.endOfWord) { return false; } current.endOfWord = false; return current.children.size() == 0; } char ch = word.charAt(index); TrieNode node = current.children.get(ch); if (node == null) { return false; } boolean shouldDeleteCurrentNode = delete(node, word, index + 1); if (shouldDeleteCurrentNode) { current.children.remove(ch); return current.children.size() == 0; } return false; } } class SegmentTreeLazy { public int nextPowerOfTwo(int num) { if(num == 0) return 1; if(num > 0 && (num & (num - 1)) == 0) return num; while((num &(num - 1)) > 0) { num = num & (num - 1); } return num << 1; } public int[] createSegmentTree(int input[]) { int nextPowOfTwo = nextPowerOfTwo(input.length); int segmentTree[] = new int[nextPowOfTwo*2 -1]; for(int i=0; i < segmentTree.length; i++){ segmentTree[i] = Integer.MAX_VALUE; } constructMinSegmentTree(segmentTree, input, 0, input.length - 1, 0); return segmentTree; } private void constructMinSegmentTree(int segmentTree[], int input[], int low, int high,int pos) { if(low == high) { segmentTree[pos] = input[low]; return; } int mid = (low + high)/2; constructMinSegmentTree(segmentTree, input, low, mid, 2 * pos + 1); constructMinSegmentTree(segmentTree, input, mid + 1, high, 2 * pos + 2); segmentTree[pos] = Math.min(segmentTree[2*pos+1], segmentTree[2*pos+2]); } public void updateSegmentTreeRangeLazy(int input[], int segmentTree[], int lazy[], int startRange, int endRange, int delta) { updateSegmentTreeRangeLazy(segmentTree, lazy, startRange, endRange, delta, 0, input.length - 1, 0); } private void updateSegmentTreeRangeLazy(int segmentTree[], int lazy[], int startRange, int endRange, int delta, int low, int high, int pos) { if(low > high) { return; } if (lazy[pos] != 0) { segmentTree[pos] += lazy[pos]; if (low != high) { lazy[2 * pos + 1] += lazy[pos]; lazy[2 * pos + 2] += lazy[pos]; } lazy[pos] = 0; } if(startRange > high || endRange < low) { return; } if(startRange <= low && endRange >= high) { segmentTree[pos] += delta; if(low != high) { lazy[2*pos + 1] += delta; lazy[2*pos + 2] += delta; } return; } int mid = (low + high)/2; updateSegmentTreeRangeLazy(segmentTree, lazy, startRange, endRange, delta, low, mid, 2*pos+1); updateSegmentTreeRangeLazy(segmentTree, lazy, startRange, endRange, delta, mid+1, high, 2*pos+2); segmentTree[pos] = Math.min(segmentTree[2*pos + 1], segmentTree[2*pos + 2]); } public int rangeMinimumQueryLazy(int segmentTree[], int lazy[], int qlow, int qhigh, int len) { return rangeMinimumQueryLazy(segmentTree, lazy, qlow, qhigh, 0, len - 1, 0); } private int rangeMinimumQueryLazy(int segmentTree[], int lazy[], int qlow, int qhigh, int low, int high, int pos) { if(low > high) { return Integer.MAX_VALUE; } if (lazy[pos] != 0) { segmentTree[pos] += lazy[pos]; if (low != high) { lazy[2 * pos + 1] += lazy[pos]; lazy[2 * pos + 2] += lazy[pos]; } lazy[pos] = 0; } if(qlow > high || qhigh < low) { return Integer.MAX_VALUE; } if(qlow <= low && qhigh >= high) { return segmentTree[pos]; } int mid = (low+high)/2; return Math.min(rangeMinimumQueryLazy(segmentTree, lazy, qlow, qhigh, low, mid, 2 * pos + 1), rangeMinimumQueryLazy(segmentTree, lazy, qlow, qhigh, mid + 1, high, 2 * pos + 2)); } } </CODE> <EVALUATION_RUBRIC> - O(n^2): The execution time ascends in proportion to the square of the input size n. - O(log(n)): The execution time ascends in proportion to the logarithm of the input size n. - O(1): The execution time is unaffected by the size of the input n. - O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially. - O(n): The execution time ascends in a one-to-one ratio with the input size n. - O(n^3): The execution time ascends in proportion to the cube of the input size n. - non-polynomial: The running time increases non-polynomially with input size n, typically exponentially. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Classify the following Java code's worst-case time complexity according to its relationship to the input size n. </TASK> <CODE> import java.io.*; import java.lang.reflect.Array; import java.math.*; import java.util.*; public class icpc { public static void main(String[] args) throws IOException { Reader in = new Reader(); // BufferedReader in = new BufferedReader(new InputStreamReader(System.in)); int n = in.nextInt(); boolean[] A = new boolean[n]; int count = 0; int[] B = new int[n]; for (int i=0;i<n;i++) B[i] = in.nextInt(); Arrays.sort(B); for (int i=0;i<n;i++) { if (!A[i]) { int gcd = B[i]; for (int j=0;j<n;j++) { if(!A[j]) { gcd = gcd(B[j], gcd); if(gcd == B[i]) { A[j] = true; } else { gcd = B[i]; } } } count++; A[i] = true; } } System.out.println(count); } public static int gcd(int a, int b) { if (b == 0) return a; return gcd(b, a % b); } } class DSU { int[] parent; int[] size; //Pass number of total nodes as parameter to the constructor DSU(int n) { this.parent = new int[n]; this.size = new int[n]; Arrays.fill(parent, -1); } public void makeSet(int v) { parent[v] = v; size[v] = 1; } public int findSet(int v) { if (v == parent[v]) return v; return parent[v] = findSet(parent[v]); } public void unionSets(int a, int b) { a = findSet(a); b = findSet(b); if (a != b) { if (size[a] < size[b]) { int temp = a; a = b; b = temp; } parent[b] = a; size[a] += size[b]; } } } class FastFourierTransform { private void fft(double[] a, double[] b, boolean invert) { int count = a.length; for (int i = 1, j = 0; i < count; i++) { int bit = count >> 1; for (; j >= bit; bit >>= 1) j -= bit; j += bit; if (i < j) { double temp = a[i]; a[i] = a[j]; a[j] = temp; temp = b[i]; b[i] = b[j]; b[j] = temp; } } for (int len = 2; len <= count; len <<= 1) { int halfLen = len >> 1; double angle = 2 * Math.PI / len; if (invert) angle = -angle; double wLenA = Math.cos(angle); double wLenB = Math.sin(angle); for (int i = 0; i < count; i += len) { double wA = 1; double wB = 0; for (int j = 0; j < halfLen; j++) { double uA = a[i + j]; double uB = b[i + j]; double vA = a[i + j + halfLen] * wA - b[i + j + halfLen] * wB; double vB = a[i + j + halfLen] * wB + b[i + j + halfLen] * wA; a[i + j] = uA + vA; b[i + j] = uB + vB; a[i + j + halfLen] = uA - vA; b[i + j + halfLen] = uB - vB; double nextWA = wA * wLenA - wB * wLenB; wB = wA * wLenB + wB * wLenA; wA = nextWA; } } } if (invert) { for (int i = 0; i < count; i++) { a[i] /= count; b[i] /= count; } } } public long[] multiply(long[] a, long[] b) { int resultSize = Integer.highestOneBit(Math.max(a.length, b.length) - 1) << 2; resultSize = Math.max(resultSize, 1); double[] aReal = new double[resultSize]; double[] aImaginary = new double[resultSize]; double[] bReal = new double[resultSize]; double[] bImaginary = new double[resultSize]; for (int i = 0; i < a.length; i++) aReal[i] = a[i]; for (int i = 0; i < b.length; i++) bReal[i] = b[i]; fft(aReal, aImaginary, false); fft(bReal, bImaginary, false); for (int i = 0; i < resultSize; i++) { double real = aReal[i] * bReal[i] - aImaginary[i] * bImaginary[i]; aImaginary[i] = aImaginary[i] * bReal[i] + bImaginary[i] * aReal[i]; aReal[i] = real; } fft(aReal, aImaginary, true); long[] result = new long[resultSize]; for (int i = 0; i < resultSize; i++) result[i] = Math.round(aReal[i]); return result; } } class NumberTheory { public boolean isPrime(long n) { if(n < 2) return false; for(long x = 2;x * x <= n;x++) { if(n % x == 0) return false; } return true; } public ArrayList<Long> primeFactorisation(long n) { ArrayList<Long> f = new ArrayList<>(); for(long x=2;x * x <= n;x++) { while(n % x == 0) { f.add(x); n /= x; } } if(n > 1) f.add(n); return f; } public int[] sieveOfEratosthenes(int n) { //Returns an array with the smallest prime factor for each number and primes marked as 0 int[] sieve = new int[n + 1]; for(int x=2;x * x <= n;x++) { if(sieve[x] != 0) continue; for(int u=x*x;u<=n;u+=x) { if(sieve[u] == 0) { sieve[u] = x; } } } return sieve; } public long gcd(long a, long b) { if(b == 0) return a; return gcd(b, a % b); } public long phi(long n) { double result = n; for(long p=2;p*p<=n;p++) { if(n % p == 0) { while (n % p == 0) n /= p; result *= (1.0 - (1.0 / (double)p)); } } if(n > 1) result *= (1.0 - (1.0 / (double)n)); return (long)result; } public Name extendedEuclid(long a, long b) { if(b == 0) return new Name(a, 1, 0); Name n1 = extendedEuclid(b, a % b); Name n2 = new Name(n1.d, n1.y, n1.x - (long)Math.floor((double)a / b) * n1.y); return n2; } public long modularExponentiation(long a, long b, long n) { long d = 1L; String bString = Long.toBinaryString(b); for(int i=0;i<bString.length();i++) { d = (d * d) % n; if(bString.charAt(i) == '1') d = (d * a) % n; } return d; } } class Name { long d; long x; long y; public Name(long d, long x, long y) { this.d = d; this.x = x; this.y = y; } } class SuffixArray { int ALPHABET_SZ = 256, N; int[] T, lcp, sa, sa2, rank, tmp, c; public SuffixArray(String str) { this(toIntArray(str)); } private static int[] toIntArray(String s) { int[] text = new int[s.length()]; for (int i = 0; i < s.length(); i++) text[i] = s.charAt(i); return text; } public SuffixArray(int[] text) { T = text; N = text.length; sa = new int[N]; sa2 = new int[N]; rank = new int[N]; c = new int[Math.max(ALPHABET_SZ, N)]; construct(); kasai(); } private void construct() { int i, p, r; for (i = 0; i < N; ++i) c[rank[i] = T[i]]++; for (i = 1; i < ALPHABET_SZ; ++i) c[i] += c[i - 1]; for (i = N - 1; i >= 0; --i) sa[--c[T[i]]] = i; for (p = 1; p < N; p <<= 1) { for (r = 0, i = N - p; i < N; ++i) sa2[r++] = i; for (i = 0; i < N; ++i) if (sa[i] >= p) sa2[r++] = sa[i] - p; Arrays.fill(c, 0, ALPHABET_SZ, 0); for (i = 0; i < N; ++i) c[rank[i]]++; for (i = 1; i < ALPHABET_SZ; ++i) c[i] += c[i - 1]; for (i = N - 1; i >= 0; --i) sa[--c[rank[sa2[i]]]] = sa2[i]; for (sa2[sa[0]] = r = 0, i = 1; i < N; ++i) { if (!(rank[sa[i - 1]] == rank[sa[i]] && sa[i - 1] + p < N && sa[i] + p < N && rank[sa[i - 1] + p] == rank[sa[i] + p])) r++; sa2[sa[i]] = r; } tmp = rank; rank = sa2; sa2 = tmp; if (r == N - 1) break; ALPHABET_SZ = r + 1; } } private void kasai() { lcp = new int[N]; int[] inv = new int[N]; for (int i = 0; i < N; i++) inv[sa[i]] = i; for (int i = 0, len = 0; i < N; i++) { if (inv[i] > 0) { int k = sa[inv[i] - 1]; while ((i + len < N) && (k + len < N) && T[i + len] == T[k + len]) len++; lcp[inv[i] - 1] = len; if (len > 0) len--; } } } } class ZAlgorithm { public int[] calculateZ(char input[]) { int Z[] = new int[input.length]; int left = 0; int right = 0; for(int k = 1; k < input.length; k++) { if(k > right) { left = right = k; while(right < input.length && input[right] == input[right - left]) { right++; } Z[k] = right - left; right--; } else { //we are operating inside box int k1 = k - left; //if value does not stretches till right bound then just copy it. if(Z[k1] < right - k + 1) { Z[k] = Z[k1]; } else { //otherwise try to see if there are more matches. left = k; while(right < input.length && input[right] == input[right - left]) { right++; } Z[k] = right - left; right--; } } } return Z; } public ArrayList<Integer> matchPattern(char text[], char pattern[]) { char newString[] = new char[text.length + pattern.length + 1]; int i = 0; for(char ch : pattern) { newString[i] = ch; i++; } newString[i] = '$'; i++; for(char ch : text) { newString[i] = ch; i++; } ArrayList<Integer> result = new ArrayList<>(); int Z[] = calculateZ(newString); for(i = 0; i < Z.length ; i++) { if(Z[i] == pattern.length) { result.add(i - pattern.length - 1); } } return result; } } class KMPAlgorithm { public int[] computeTemporalArray(char[] pattern) { int[] lps = new int[pattern.length]; int index = 0; for(int i=1;i<pattern.length;) { if(pattern[i] == pattern[index]) { lps[i] = index + 1; index++; i++; } else { if(index != 0) { index = lps[index - 1]; } else { lps[i] = 0; i++; } } } return lps; } public ArrayList<Integer> KMPMatcher(char[] text, char[] pattern) { int[] lps = computeTemporalArray(pattern); int j = 0; int i = 0; int n = text.length; int m = pattern.length; ArrayList<Integer> indices = new ArrayList<>(); while(i < n) { if(pattern[j] == text[i]) { i++; j++; } if(j == m) { indices.add(i - j); j = lps[j - 1]; } else if(i < n && pattern[j] != text[i]) { if(j != 0) j = lps[j - 1]; else i = i + 1; } } return indices; } } class Hashing { public long[] computePowers(long p, int n, long m) { long[] powers = new long[n]; powers[0] = 1; for(int i=1;i<n;i++) { powers[i] = (powers[i - 1] * p) % m; } return powers; } public long computeHash(String s) { long p = 31; long m = 1_000_000_009; long hashValue = 0L; long[] powers = computePowers(p, s.length(), m); for(int i=0;i<s.length();i++) { char ch = s.charAt(i); hashValue = (hashValue + (ch - 'a' + 1) * powers[i]) % m; } return hashValue; } } class BasicFunctions { public long min(long[] A) { long min = Long.MAX_VALUE; for(int i=0;i<A.length;i++) { min = Math.min(min, A[i]); } return min; } public long max(long[] A) { long max = Long.MAX_VALUE; for(int i=0;i<A.length;i++) { max = Math.max(max, A[i]); } return max; } } class MergeSortInt { // Merges two subarrays of arr[]. // First subarray is arr[l..m] // Second subarray is arr[m+1..r] void merge(int arr[], int l, int m, int r) { // Find sizes of two subarrays to be merged int n1 = m - l + 1; int n2 = r - m; /* Create temp arrays */ int L[] = new int[n1]; int R[] = new int[n2]; /*Copy data to temp arrays*/ for (int i = 0; i < n1; ++i) L[i] = arr[l + i]; for (int j = 0; j < n2; ++j) R[j] = arr[m + 1 + j]; /* Merge the temp arrays */ // Initial indexes of first and second subarrays int i = 0, j = 0; // Initial index of merged subarry array int k = l; while (i < n1 && j < n2) { if (L[i] <= R[j]) { arr[k] = L[i]; i++; } else { arr[k] = R[j]; j++; } k++; } /* Copy remaining elements of L[] if any */ while (i < n1) { arr[k] = L[i]; i++; k++; } /* Copy remaining elements of R[] if any */ while (j < n2) { arr[k] = R[j]; j++; k++; } } // Main function that sorts arr[l..r] using // merge() void sort(int arr[], int l, int r) { if (l < r) { // Find the middle point int m = (l + r) / 2; // Sort first and second halves sort(arr, l, m); sort(arr, m + 1, r); // Merge the sorted halves merge(arr, l, m, r); } } } class MergeSortLong { // Merges two subarrays of arr[]. // First subarray is arr[l..m] // Second subarray is arr[m+1..r] void merge(long arr[], int l, int m, int r) { // Find sizes of two subarrays to be merged int n1 = m - l + 1; int n2 = r - m; /* Create temp arrays */ long L[] = new long[n1]; long R[] = new long[n2]; /*Copy data to temp arrays*/ for (int i = 0; i < n1; ++i) L[i] = arr[l + i]; for (int j = 0; j < n2; ++j) R[j] = arr[m + 1 + j]; /* Merge the temp arrays */ // Initial indexes of first and second subarrays int i = 0, j = 0; // Initial index of merged subarry array int k = l; while (i < n1 && j < n2) { if (L[i] <= R[j]) { arr[k] = L[i]; i++; } else { arr[k] = R[j]; j++; } k++; } /* Copy remaining elements of L[] if any */ while (i < n1) { arr[k] = L[i]; i++; k++; } /* Copy remaining elements of R[] if any */ while (j < n2) { arr[k] = R[j]; j++; k++; } } // Main function that sorts arr[l..r] using // merge() void sort(long arr[], int l, int r) { if (l < r) { // Find the middle point int m = (l + r) / 2; // Sort first and second halves sort(arr, l, m); sort(arr, m + 1, r); // Merge the sorted halves merge(arr, l, m, r); } } } class Node { String s; Node(String s) { this.s = s; } @Override public boolean equals(Object ob) { if(ob == null) return false; if(!(ob instanceof Node)) return false; if(ob == this) return true; Node obj = (Node)ob; if(this.s.equals(obj.s)) return true; return false; } @Override public int hashCode() { return (int)this.s.length(); } } class Reader { final private int BUFFER_SIZE = 1 << 16; private DataInputStream din; private byte[] buffer; private int bufferPointer, bytesRead; public Reader() { din = new DataInputStream(System.in); buffer = new byte[BUFFER_SIZE]; bufferPointer = bytesRead = 0; } public Reader(String file_name) throws IOException { din = new DataInputStream(new FileInputStream(file_name)); buffer = new byte[BUFFER_SIZE]; bufferPointer = bytesRead = 0; } public String readLine() throws IOException { byte[] buf = new byte[64]; // line length int cnt = 0, c; while ((c = read()) != -1) { if (c == '\n') break; buf[cnt++] = (byte) c; } return new String(buf, 0, cnt); } public int nextInt() throws IOException { int ret = 0; byte c = read(); while (c <= ' ') c = read(); boolean neg = (c == '-'); if (neg) c = read(); do { ret = ret * 10 + c - '0'; } while ((c = read()) >= '0' && c <= '9'); if (neg) return -ret; return ret; } public long nextLong() throws IOException { long ret = 0; byte c = read(); while (c <= ' ') c = read(); boolean neg = (c == '-'); if (neg) c = read(); do { ret = ret * 10 + c - '0'; } while ((c = read()) >= '0' && c <= '9'); if (neg) return -ret; return ret; } public double nextDouble() throws IOException { double ret = 0, div = 1; byte c = read(); while (c <= ' ') c = read(); boolean neg = (c == '-'); if (neg) c = read(); do { ret = ret * 10 + c - '0'; } while ((c = read()) >= '0' && c <= '9'); if (c == '.') { while ((c = read()) >= '0' && c <= '9') { ret += (c - '0') / (div *= 10); } } if (neg) return -ret; return ret; } private void fillBuffer() throws IOException { bytesRead = din.read(buffer, bufferPointer = 0, BUFFER_SIZE); if (bytesRead == -1) buffer[0] = -1; } private byte read() throws IOException { if (bufferPointer == bytesRead) fillBuffer(); return buffer[bufferPointer++]; } public void close() throws IOException { if (din == null) return; din.close(); } } class FenwickTree { public void update(long[] fenwickTree,long delta,int index) { index += 1; while(index < fenwickTree.length) { fenwickTree[index] += delta; index = index + (index & (-index)); } } public long prefixSum(long[] fenwickTree,int index) { long sum = 0L; index += 1; while(index > 0) { sum += fenwickTree[index]; index -= (index & (-index)); } return sum; } } class SegmentTree { public int nextPowerOfTwo(int num) { if(num == 0) return 1; if(num > 0 && (num & (num - 1)) == 0) return num; while((num &(num - 1)) > 0) { num = num & (num - 1); } return num << 1; } public int[] createSegmentTree(int[] input) { int np2 = nextPowerOfTwo(input.length); int[] segmentTree = new int[np2 * 2 - 1]; for(int i=0;i<segmentTree.length;i++) segmentTree[i] = Integer.MIN_VALUE; constructSegmentTree(segmentTree,input,0,input.length-1,0); return segmentTree; } private void constructSegmentTree(int[] segmentTree,int[] input,int low,int high,int pos) { if(low == high) { segmentTree[pos] = input[low]; return; } int mid = (low + high)/ 2; constructSegmentTree(segmentTree,input,low,mid,2*pos + 1); constructSegmentTree(segmentTree,input,mid+1,high,2*pos + 2); segmentTree[pos] = Math.max(segmentTree[2*pos + 1],segmentTree[2*pos + 2]); } public int rangeMinimumQuery(int []segmentTree,int qlow,int qhigh,int len) { return rangeMinimumQuery(segmentTree,0,len-1,qlow,qhigh,0); } private int rangeMinimumQuery(int segmentTree[],int low,int high,int qlow,int qhigh,int pos) { if(qlow <= low && qhigh >= high){ return segmentTree[pos]; } if(qlow > high || qhigh < low){ return Integer.MIN_VALUE; } int mid = (low+high)/2; return Math.max(rangeMinimumQuery(segmentTree, low, mid, qlow, qhigh, 2 * pos + 1), rangeMinimumQuery(segmentTree, mid + 1, high, qlow, qhigh, 2 * pos + 2)); } } class Trie { private class TrieNode { Map<Character, TrieNode> children; boolean endOfWord; public TrieNode() { children = new HashMap<>(); endOfWord = false; } } private final TrieNode root; public Trie() { root = new TrieNode(); } public void insert(String word) { TrieNode current = root; for (int i = 0; i < word.length(); i++) { char ch = word.charAt(i); TrieNode node = current.children.get(ch); if (node == null) { node = new TrieNode(); current.children.put(ch, node); } current = node; } current.endOfWord = true; } public boolean search(String word) { TrieNode current = root; for (int i = 0; i < word.length(); i++) { char ch = word.charAt(i); TrieNode node = current.children.get(ch); if (node == null) { return false; } current = node; } return current.endOfWord; } public void delete(String word) { delete(root, word, 0); } private boolean delete(TrieNode current, String word, int index) { if (index == word.length()) { if (!current.endOfWord) { return false; } current.endOfWord = false; return current.children.size() == 0; } char ch = word.charAt(index); TrieNode node = current.children.get(ch); if (node == null) { return false; } boolean shouldDeleteCurrentNode = delete(node, word, index + 1); if (shouldDeleteCurrentNode) { current.children.remove(ch); return current.children.size() == 0; } return false; } } class SegmentTreeLazy { public int nextPowerOfTwo(int num) { if(num == 0) return 1; if(num > 0 && (num & (num - 1)) == 0) return num; while((num &(num - 1)) > 0) { num = num & (num - 1); } return num << 1; } public int[] createSegmentTree(int input[]) { int nextPowOfTwo = nextPowerOfTwo(input.length); int segmentTree[] = new int[nextPowOfTwo*2 -1]; for(int i=0; i < segmentTree.length; i++){ segmentTree[i] = Integer.MAX_VALUE; } constructMinSegmentTree(segmentTree, input, 0, input.length - 1, 0); return segmentTree; } private void constructMinSegmentTree(int segmentTree[], int input[], int low, int high,int pos) { if(low == high) { segmentTree[pos] = input[low]; return; } int mid = (low + high)/2; constructMinSegmentTree(segmentTree, input, low, mid, 2 * pos + 1); constructMinSegmentTree(segmentTree, input, mid + 1, high, 2 * pos + 2); segmentTree[pos] = Math.min(segmentTree[2*pos+1], segmentTree[2*pos+2]); } public void updateSegmentTreeRangeLazy(int input[], int segmentTree[], int lazy[], int startRange, int endRange, int delta) { updateSegmentTreeRangeLazy(segmentTree, lazy, startRange, endRange, delta, 0, input.length - 1, 0); } private void updateSegmentTreeRangeLazy(int segmentTree[], int lazy[], int startRange, int endRange, int delta, int low, int high, int pos) { if(low > high) { return; } if (lazy[pos] != 0) { segmentTree[pos] += lazy[pos]; if (low != high) { lazy[2 * pos + 1] += lazy[pos]; lazy[2 * pos + 2] += lazy[pos]; } lazy[pos] = 0; } if(startRange > high || endRange < low) { return; } if(startRange <= low && endRange >= high) { segmentTree[pos] += delta; if(low != high) { lazy[2*pos + 1] += delta; lazy[2*pos + 2] += delta; } return; } int mid = (low + high)/2; updateSegmentTreeRangeLazy(segmentTree, lazy, startRange, endRange, delta, low, mid, 2*pos+1); updateSegmentTreeRangeLazy(segmentTree, lazy, startRange, endRange, delta, mid+1, high, 2*pos+2); segmentTree[pos] = Math.min(segmentTree[2*pos + 1], segmentTree[2*pos + 2]); } public int rangeMinimumQueryLazy(int segmentTree[], int lazy[], int qlow, int qhigh, int len) { return rangeMinimumQueryLazy(segmentTree, lazy, qlow, qhigh, 0, len - 1, 0); } private int rangeMinimumQueryLazy(int segmentTree[], int lazy[], int qlow, int qhigh, int low, int high, int pos) { if(low > high) { return Integer.MAX_VALUE; } if (lazy[pos] != 0) { segmentTree[pos] += lazy[pos]; if (low != high) { lazy[2 * pos + 1] += lazy[pos]; lazy[2 * pos + 2] += lazy[pos]; } lazy[pos] = 0; } if(qlow > high || qhigh < low) { return Integer.MAX_VALUE; } if(qlow <= low && qhigh >= high) { return segmentTree[pos]; } int mid = (low+high)/2; return Math.min(rangeMinimumQueryLazy(segmentTree, lazy, qlow, qhigh, low, mid, 2 * pos + 1), rangeMinimumQueryLazy(segmentTree, lazy, qlow, qhigh, mid + 1, high, 2 * pos + 2)); } } </CODE> <EVALUATION_RUBRIC> - O(nlog(n)): The running time increases with the product of n and logarithm of n. - others: The code does not clearly correspond to the listed classes or has an unclassified time complexity. - O(log(n)): The running time increases with the logarithm of the input size n. - O(n^3): The running time increases with the cube of the input size n. - non-polynomial: The running time increases non-polynomially with input size n, typically exponentially. - O(n^2): The running time increases with the square of the input size n. - O(1): The running time does not change regardless of the input size n. - O(n): The running time grows linearly with the input size n. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
7,801
2,650
3,879
import java.io.ByteArrayInputStream; import java.io.IOException; import java.io.InputStream; import java.io.PrintWriter; import java.util.Arrays; import java.util.InputMismatchException; import java.util.Stack; public class C { private static PrintWriter out = new PrintWriter(System.out); public static void solve() { In in = new In(); int tests = in.ni(); while (tests-- > 0) { int n = in.ni(); int[] a = in.nia(n); Stack<Integer> st = new Stack<>(); StringBuilder sb = new StringBuilder(); for (int num : a) { // System.out.println("Checking " + num); if (st.isEmpty()) { st.push(num); sb.append(num); } else { // increment current level if (num == st.peek() + 1) { st.pop(); st.push(num); while (sb.length() > 0 && sb.charAt(sb.length() - 1) != '.') { sb.deleteCharAt(sb.length() - 1); } sb.append(num); } // expand current level by 1 else if (num == 1) { st.push(num); sb.append("."); sb.append(num); } // increment higher level else { // search which higher level is the previous of the current number while (!st.isEmpty() && st.peek() + 1 != num) { st.pop(); while (sb.length() > 0 && sb.charAt(sb.length() - 1) != '.') { sb.deleteCharAt(sb.length() - 1); } if (sb.length() > 0) sb.deleteCharAt(sb.length() - 1); } // System.out.println(" " + st.toString() + " " + sb.toString()); if (!st.isEmpty() && st.peek() + 1 == num) { st.pop(); st.add(num); while (sb.length() > 0 && sb.charAt(sb.length() - 1) != '.') { sb.deleteCharAt(sb.length() - 1); } sb.append(num); } } } // System.out.println(">>" + st.toString()); out.println(sb); } } } public static void main(String[] args) throws IOException { // long start = System.nanoTime(); solve(); // System.out.println("Elapsed: " + (System.nanoTime() - start) / 1000000 + // "ns"); out.flush(); } @SuppressWarnings("unused") private static class In { final private static int BUFFER_SIZE = 1024; private byte[] buf; private InputStream is; private int buflen; private int bufptr; public In() { is = System.in; buf = new byte[BUFFER_SIZE]; buflen = bufptr = 0; } public In(String input) { is = new ByteArrayInputStream(input.getBytes()); buf = new byte[BUFFER_SIZE]; buflen = bufptr = 0; } public int readByte() { if (bufptr >= buflen) { try { buflen = is.read(buf); } catch (IOException ioe) { throw new InputMismatchException(); } bufptr = 0; } if (buflen <= 0) return -1; return buf[bufptr++]; } public boolean isSpaceChar(int c) { return !(c >= 33 && c <= 126); } public int skip() { int b; while ((b = readByte()) != -1 && isSpaceChar(b)) ; return b; } /* Next character */ public char nc() { return (char) skip(); } /* Next double */ public double nd() { return Double.parseDouble(ns()); } /* Next string */ public String ns() { final StringBuilder sb = new StringBuilder(); int b = skip(); while (!isSpaceChar(b)) { sb.appendCodePoint(b); b = readByte(); } return sb.toString(); } /* Next integer */ public int ni() { boolean minus = false; int num = 0; int b; while ((b = readByte()) != -1 && !((b >= '0' && b <= '9') || b == '-')) ; if (b == '-') { minus = true; b = readByte(); } while (b >= '0' && b <= '9') { num = num * 10 + (b - '0'); b = readByte(); } return minus ? -num : num; } /* Next long */ public long nl() { boolean minus = false; long num = 0; int b; while ((b = readByte()) != -1 && !((b >= '0' && b <= '9') || b == '-')) ; if (b == '-') { minus = true; b = readByte(); } while (b >= '0' && b <= '9') { num = num * 10 + (b - '0'); b = readByte(); } return minus ? -num : num; } /* Next integer 1D array */ public int[] nia(int n) { final int[] arr = new int[n]; for (int i = 0; i < n; i++) arr[i] = ni(); return arr; } /* Next long 1D array */ public long[] nla(int n) { final long[] arr = new long[n]; for (int i = 0; i < n; i++) arr[i] = nl(); return arr; } /* Next string 1D array */ public String[] nsa(int n) { final String[] arr = new String[n]; for (int i = 0; i < n; i++) arr[i] = ns(); return arr; } /* Next char 1D array */ public char[] nca(int n) { final char[] arr = new char[n]; for (int i = 0; i < n; i++) arr[i] = nc(); return arr; } /* Next double 1D array */ public double[] nda(int n) { final double[] arr = new double[n]; for (int i = 0; i < n; i++) arr[i] = nc(); return arr; } /* Next integer matrix */ public int[][] nim(int n, int m) { final int[][] arr = new int[n][m]; for (int i = 0; i < n; i++) for (int j = 0; j < m; j++) arr[i][j] = ni(); return arr; } /* Next long matrix */ public long[][] nlm(int n, int m) { final long[][] arr = new long[n][m]; for (int i = 0; i < n; i++) for (int j = 0; j < m; j++) arr[i][j] = nl(); return arr; } /* Next string matrix */ public String[][] nsm(int n, int m) { final String[][] arr = new String[n][m]; for (int i = 0; i < n; i++) for (int j = 0; j < m; j++) arr[i][j] = ns(); return arr; } /* Next char matrix */ public char[][] ncm(int n, int m) { final char[][] arr = new char[n][m]; for (int i = 0; i < n; i++) for (int j = 0; j < m; j++) arr[i][j] = nc(); return arr; } /* Next double matrix */ public double[][] ndm(int n, int m) { final double[][] arr = new double[n][m]; for (int i = 0; i < n; i++) for (int j = 0; j < m; j++) arr[i][j] = nd(); return arr; } public static void log(Object... o) { System.out.println(Arrays.deepToString(o)); } } }
O(n^3)
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n. </TASK> <CODE> import java.io.ByteArrayInputStream; import java.io.IOException; import java.io.InputStream; import java.io.PrintWriter; import java.util.Arrays; import java.util.InputMismatchException; import java.util.Stack; public class C { private static PrintWriter out = new PrintWriter(System.out); public static void solve() { In in = new In(); int tests = in.ni(); while (tests-- > 0) { int n = in.ni(); int[] a = in.nia(n); Stack<Integer> st = new Stack<>(); StringBuilder sb = new StringBuilder(); for (int num : a) { // System.out.println("Checking " + num); if (st.isEmpty()) { st.push(num); sb.append(num); } else { // increment current level if (num == st.peek() + 1) { st.pop(); st.push(num); while (sb.length() > 0 && sb.charAt(sb.length() - 1) != '.') { sb.deleteCharAt(sb.length() - 1); } sb.append(num); } // expand current level by 1 else if (num == 1) { st.push(num); sb.append("."); sb.append(num); } // increment higher level else { // search which higher level is the previous of the current number while (!st.isEmpty() && st.peek() + 1 != num) { st.pop(); while (sb.length() > 0 && sb.charAt(sb.length() - 1) != '.') { sb.deleteCharAt(sb.length() - 1); } if (sb.length() > 0) sb.deleteCharAt(sb.length() - 1); } // System.out.println(" " + st.toString() + " " + sb.toString()); if (!st.isEmpty() && st.peek() + 1 == num) { st.pop(); st.add(num); while (sb.length() > 0 && sb.charAt(sb.length() - 1) != '.') { sb.deleteCharAt(sb.length() - 1); } sb.append(num); } } } // System.out.println(">>" + st.toString()); out.println(sb); } } } public static void main(String[] args) throws IOException { // long start = System.nanoTime(); solve(); // System.out.println("Elapsed: " + (System.nanoTime() - start) / 1000000 + // "ns"); out.flush(); } @SuppressWarnings("unused") private static class In { final private static int BUFFER_SIZE = 1024; private byte[] buf; private InputStream is; private int buflen; private int bufptr; public In() { is = System.in; buf = new byte[BUFFER_SIZE]; buflen = bufptr = 0; } public In(String input) { is = new ByteArrayInputStream(input.getBytes()); buf = new byte[BUFFER_SIZE]; buflen = bufptr = 0; } public int readByte() { if (bufptr >= buflen) { try { buflen = is.read(buf); } catch (IOException ioe) { throw new InputMismatchException(); } bufptr = 0; } if (buflen <= 0) return -1; return buf[bufptr++]; } public boolean isSpaceChar(int c) { return !(c >= 33 && c <= 126); } public int skip() { int b; while ((b = readByte()) != -1 && isSpaceChar(b)) ; return b; } /* Next character */ public char nc() { return (char) skip(); } /* Next double */ public double nd() { return Double.parseDouble(ns()); } /* Next string */ public String ns() { final StringBuilder sb = new StringBuilder(); int b = skip(); while (!isSpaceChar(b)) { sb.appendCodePoint(b); b = readByte(); } return sb.toString(); } /* Next integer */ public int ni() { boolean minus = false; int num = 0; int b; while ((b = readByte()) != -1 && !((b >= '0' && b <= '9') || b == '-')) ; if (b == '-') { minus = true; b = readByte(); } while (b >= '0' && b <= '9') { num = num * 10 + (b - '0'); b = readByte(); } return minus ? -num : num; } /* Next long */ public long nl() { boolean minus = false; long num = 0; int b; while ((b = readByte()) != -1 && !((b >= '0' && b <= '9') || b == '-')) ; if (b == '-') { minus = true; b = readByte(); } while (b >= '0' && b <= '9') { num = num * 10 + (b - '0'); b = readByte(); } return minus ? -num : num; } /* Next integer 1D array */ public int[] nia(int n) { final int[] arr = new int[n]; for (int i = 0; i < n; i++) arr[i] = ni(); return arr; } /* Next long 1D array */ public long[] nla(int n) { final long[] arr = new long[n]; for (int i = 0; i < n; i++) arr[i] = nl(); return arr; } /* Next string 1D array */ public String[] nsa(int n) { final String[] arr = new String[n]; for (int i = 0; i < n; i++) arr[i] = ns(); return arr; } /* Next char 1D array */ public char[] nca(int n) { final char[] arr = new char[n]; for (int i = 0; i < n; i++) arr[i] = nc(); return arr; } /* Next double 1D array */ public double[] nda(int n) { final double[] arr = new double[n]; for (int i = 0; i < n; i++) arr[i] = nc(); return arr; } /* Next integer matrix */ public int[][] nim(int n, int m) { final int[][] arr = new int[n][m]; for (int i = 0; i < n; i++) for (int j = 0; j < m; j++) arr[i][j] = ni(); return arr; } /* Next long matrix */ public long[][] nlm(int n, int m) { final long[][] arr = new long[n][m]; for (int i = 0; i < n; i++) for (int j = 0; j < m; j++) arr[i][j] = nl(); return arr; } /* Next string matrix */ public String[][] nsm(int n, int m) { final String[][] arr = new String[n][m]; for (int i = 0; i < n; i++) for (int j = 0; j < m; j++) arr[i][j] = ns(); return arr; } /* Next char matrix */ public char[][] ncm(int n, int m) { final char[][] arr = new char[n][m]; for (int i = 0; i < n; i++) for (int j = 0; j < m; j++) arr[i][j] = nc(); return arr; } /* Next double matrix */ public double[][] ndm(int n, int m) { final double[][] arr = new double[n][m]; for (int i = 0; i < n; i++) for (int j = 0; j < m; j++) arr[i][j] = nd(); return arr; } public static void log(Object... o) { System.out.println(Arrays.deepToString(o)); } } } </CODE> <EVALUATION_RUBRIC> - O(n^2): The execution time ascends in proportion to the square of the input size n. - O(n^3): The execution time ascends in proportion to the cube of the input size n. - O(n): The execution time ascends in a one-to-one ratio with the input size n. - O(log(n)): The execution time ascends in proportion to the logarithm of the input size n. - non-polynomial: The running time increases non-polynomially with input size n, typically exponentially. - O(1): The execution time is unaffected by the size of the input n. - O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Classify the following Java code's worst-case time complexity according to its relationship to the input size n. </TASK> <CODE> import java.io.ByteArrayInputStream; import java.io.IOException; import java.io.InputStream; import java.io.PrintWriter; import java.util.Arrays; import java.util.InputMismatchException; import java.util.Stack; public class C { private static PrintWriter out = new PrintWriter(System.out); public static void solve() { In in = new In(); int tests = in.ni(); while (tests-- > 0) { int n = in.ni(); int[] a = in.nia(n); Stack<Integer> st = new Stack<>(); StringBuilder sb = new StringBuilder(); for (int num : a) { // System.out.println("Checking " + num); if (st.isEmpty()) { st.push(num); sb.append(num); } else { // increment current level if (num == st.peek() + 1) { st.pop(); st.push(num); while (sb.length() > 0 && sb.charAt(sb.length() - 1) != '.') { sb.deleteCharAt(sb.length() - 1); } sb.append(num); } // expand current level by 1 else if (num == 1) { st.push(num); sb.append("."); sb.append(num); } // increment higher level else { // search which higher level is the previous of the current number while (!st.isEmpty() && st.peek() + 1 != num) { st.pop(); while (sb.length() > 0 && sb.charAt(sb.length() - 1) != '.') { sb.deleteCharAt(sb.length() - 1); } if (sb.length() > 0) sb.deleteCharAt(sb.length() - 1); } // System.out.println(" " + st.toString() + " " + sb.toString()); if (!st.isEmpty() && st.peek() + 1 == num) { st.pop(); st.add(num); while (sb.length() > 0 && sb.charAt(sb.length() - 1) != '.') { sb.deleteCharAt(sb.length() - 1); } sb.append(num); } } } // System.out.println(">>" + st.toString()); out.println(sb); } } } public static void main(String[] args) throws IOException { // long start = System.nanoTime(); solve(); // System.out.println("Elapsed: " + (System.nanoTime() - start) / 1000000 + // "ns"); out.flush(); } @SuppressWarnings("unused") private static class In { final private static int BUFFER_SIZE = 1024; private byte[] buf; private InputStream is; private int buflen; private int bufptr; public In() { is = System.in; buf = new byte[BUFFER_SIZE]; buflen = bufptr = 0; } public In(String input) { is = new ByteArrayInputStream(input.getBytes()); buf = new byte[BUFFER_SIZE]; buflen = bufptr = 0; } public int readByte() { if (bufptr >= buflen) { try { buflen = is.read(buf); } catch (IOException ioe) { throw new InputMismatchException(); } bufptr = 0; } if (buflen <= 0) return -1; return buf[bufptr++]; } public boolean isSpaceChar(int c) { return !(c >= 33 && c <= 126); } public int skip() { int b; while ((b = readByte()) != -1 && isSpaceChar(b)) ; return b; } /* Next character */ public char nc() { return (char) skip(); } /* Next double */ public double nd() { return Double.parseDouble(ns()); } /* Next string */ public String ns() { final StringBuilder sb = new StringBuilder(); int b = skip(); while (!isSpaceChar(b)) { sb.appendCodePoint(b); b = readByte(); } return sb.toString(); } /* Next integer */ public int ni() { boolean minus = false; int num = 0; int b; while ((b = readByte()) != -1 && !((b >= '0' && b <= '9') || b == '-')) ; if (b == '-') { minus = true; b = readByte(); } while (b >= '0' && b <= '9') { num = num * 10 + (b - '0'); b = readByte(); } return minus ? -num : num; } /* Next long */ public long nl() { boolean minus = false; long num = 0; int b; while ((b = readByte()) != -1 && !((b >= '0' && b <= '9') || b == '-')) ; if (b == '-') { minus = true; b = readByte(); } while (b >= '0' && b <= '9') { num = num * 10 + (b - '0'); b = readByte(); } return minus ? -num : num; } /* Next integer 1D array */ public int[] nia(int n) { final int[] arr = new int[n]; for (int i = 0; i < n; i++) arr[i] = ni(); return arr; } /* Next long 1D array */ public long[] nla(int n) { final long[] arr = new long[n]; for (int i = 0; i < n; i++) arr[i] = nl(); return arr; } /* Next string 1D array */ public String[] nsa(int n) { final String[] arr = new String[n]; for (int i = 0; i < n; i++) arr[i] = ns(); return arr; } /* Next char 1D array */ public char[] nca(int n) { final char[] arr = new char[n]; for (int i = 0; i < n; i++) arr[i] = nc(); return arr; } /* Next double 1D array */ public double[] nda(int n) { final double[] arr = new double[n]; for (int i = 0; i < n; i++) arr[i] = nc(); return arr; } /* Next integer matrix */ public int[][] nim(int n, int m) { final int[][] arr = new int[n][m]; for (int i = 0; i < n; i++) for (int j = 0; j < m; j++) arr[i][j] = ni(); return arr; } /* Next long matrix */ public long[][] nlm(int n, int m) { final long[][] arr = new long[n][m]; for (int i = 0; i < n; i++) for (int j = 0; j < m; j++) arr[i][j] = nl(); return arr; } /* Next string matrix */ public String[][] nsm(int n, int m) { final String[][] arr = new String[n][m]; for (int i = 0; i < n; i++) for (int j = 0; j < m; j++) arr[i][j] = ns(); return arr; } /* Next char matrix */ public char[][] ncm(int n, int m) { final char[][] arr = new char[n][m]; for (int i = 0; i < n; i++) for (int j = 0; j < m; j++) arr[i][j] = nc(); return arr; } /* Next double matrix */ public double[][] ndm(int n, int m) { final double[][] arr = new double[n][m]; for (int i = 0; i < n; i++) for (int j = 0; j < m; j++) arr[i][j] = nd(); return arr; } public static void log(Object... o) { System.out.println(Arrays.deepToString(o)); } } } </CODE> <EVALUATION_RUBRIC> - O(log(n)): The running time increases with the logarithm of the input size n. - others: The code does not clearly correspond to the listed classes or has an unclassified time complexity. - O(n): The running time grows linearly with the input size n. - O(n^3): The running time increases with the cube of the input size n. - non-polynomial: The running time increases non-polynomially with input size n, typically exponentially. - O(nlog(n)): The running time increases with the product of n and logarithm of n. - O(n^2): The running time increases with the square of the input size n. - O(1): The running time does not change regardless of the input size n. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
2,264
3,869
2,612
// package cf1209; import java.io.ByteArrayInputStream; import java.io.IOException; import java.io.InputStream; import java.io.PrintWriter; import java.math.BigInteger; import java.util.Arrays; import java.util.Comparator; import java.util.InputMismatchException; import java.util.Random; public class CFA { private static final String INPUT = "8\n" + "7 6 5 4 3 2 2 3\n"; private static final int MOD = 1_000_000_007; private PrintWriter out; private FastScanner sc; public static void main(String[] args) { new CFA().run(); } public void run() { sc = new FastScanner(oj ? System.in : new ByteArrayInputStream(INPUT.getBytes())); out = new PrintWriter(System.out); long s = System.currentTimeMillis(); solve(); out.flush(); tr(System.currentTimeMillis() - s + "ms"); } static class Color { int nr; boolean used; public Color(int nr) { this.nr = nr; } } private void solve() { int n = sc.nextInt(); Color[] a = new Color[n]; for (int i = 0; i < n; i++) { a[i] = new Color(sc.nextInt()); } Arrays.sort(a, Comparator.comparingInt(c -> c.nr)); int ans = 0; for (int i = 0; i < n; i++) { if (a[i].used) continue; ans++; for (int j = i+1; j < n; j++) { if (a[j].nr % a[i].nr == 0) { a[j].used = true; } } } out.println(ans); } //******************************************************************************************** //******************************************************************************************** //******************************************************************************************** static class SolutionFailedException extends Exception { int code; public SolutionFailedException(int code) { this.code = code; } } int [] sort(int [] a) { final int SHIFT = 16, MASK = (1 << SHIFT) - 1, SIZE = (1 << SHIFT) + 1; int n = a.length, ta [] = new int [n], ai [] = new int [SIZE]; for (int i = 0; i < n; ai[(a[i] & MASK) + 1]++, i++); for (int i = 1; i < SIZE; ai[i] += ai[i - 1], i++); for (int i = 0; i < n; ta[ai[a[i] & MASK]++] = a[i], i++); int [] t = a; a = ta; ta = t; ai = new int [SIZE]; for (int i = 0; i < n; ai[(a[i] >> SHIFT) + 1]++, i++); for (int i = 1; i < SIZE; ai[i] += ai[i - 1], i++); for (int i = 0; i < n; ta[ai[a[i] >> SHIFT]++] = a[i], i++); return ta; } private static void shuffle(int[] array) { Random random = new Random(); for (int i = array.length - 1; i > 0; i--) { int index = random.nextInt(i + 1); int temp = array[index]; array[index] = array[i]; array[i] = temp; } } /** * If searched element doesn't exist, returns index of first element which is bigger than searched value.<br> * If searched element is bigger than any array element function returns first index after last element.<br> * If searched element is lower than any array element function returns index of first element.<br> * If there are many values equals searched value function returns first occurrence.<br> */ private static int lowerBound(long[] arr, long key) { int lo = 0; int hi = arr.length - 1; while (lo < hi) { int mid = (lo + hi) / 2; if (key <= arr[mid]) { hi = mid - 1; } else { lo = mid + 1; } } return arr[lo] < key ? lo + 1 : lo; } /** * Returns index of first element which is grater than searched value. * If searched element is bigger than any array element, returns first index after last element. */ private static int upperBound(long[] arr, long key) { int lo = 0; int hi = arr.length - 1; while (lo < hi) { int mid = (lo + hi) / 2; if (key >= arr[mid]) { lo = mid + 1; } else { hi = mid; } } return arr[lo] <= key ? lo + 1 : lo; } private static int ceil(double d) { int ret = (int) d; return ret == d ? ret : ret + 1; } private static int round(double d) { return (int) (d + 0.5); } private static int gcd(int a, int b) { BigInteger b1 = BigInteger.valueOf(a); BigInteger b2 = BigInteger.valueOf(b); BigInteger gcd = b1.gcd(b2); return gcd.intValue(); } private static long gcd(long a, long b) { BigInteger b1 = BigInteger.valueOf(a); BigInteger b2 = BigInteger.valueOf(b); BigInteger gcd = b1.gcd(b2); return gcd.longValue(); } private int[] readIntArray(int n) { int[] res = new int[n]; for (int i = 0; i < n; i++) { res[i] = sc.nextInt(); } return res; } private long[] readLongArray(int n) { long[] res = new long[n]; for (int i = 0; i < n; i++) { res[i] = sc.nextLong(); } return res; } @SuppressWarnings("unused") static class FastScanner { private InputStream stream; private byte[] buf = new byte[1024]; private int curChar; private int numChars; FastScanner(InputStream stream) { this.stream = stream; } int read() { if (numChars == -1) throw new InputMismatchException(); if (curChar >= numChars) { curChar = 0; try { numChars = stream.read(buf); } catch (IOException e) { throw new InputMismatchException(); } if (numChars <= 0) return -1; } return buf[curChar++]; } boolean isSpaceChar(int c) { return c == ' ' || c == '\n' || c == '\r' || c == '\t' || c == -1; } boolean isEndline(int c) { return c == '\n' || c == '\r' || c == -1; } public int nextInt() { return Integer.parseInt(next()); } public long nextLong() { return Long.parseLong(next()); } public double nextDouble() { return Double.parseDouble(next()); } public String next() { int c = read(); while (isSpaceChar(c)) c = read(); StringBuilder res = new StringBuilder(); do { res.appendCodePoint(c); c = read(); } while (!isSpaceChar(c)); return res.toString(); } public String nextLine() { int c = read(); while (isEndline(c)) c = read(); StringBuilder res = new StringBuilder(); do { res.appendCodePoint(c); c = read(); } while (!isEndline(c)); return res.toString(); } } private boolean oj = System.getProperty("ONLINE_JUDGE") != null; private void tr(Object... o) { if (!oj) System.out.println(Arrays.deepToString(o)); } }
O(n^2)
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Determine the worst-case time complexity category of a given Java code based on input size n. </TASK> <CODE> // package cf1209; import java.io.ByteArrayInputStream; import java.io.IOException; import java.io.InputStream; import java.io.PrintWriter; import java.math.BigInteger; import java.util.Arrays; import java.util.Comparator; import java.util.InputMismatchException; import java.util.Random; public class CFA { private static final String INPUT = "8\n" + "7 6 5 4 3 2 2 3\n"; private static final int MOD = 1_000_000_007; private PrintWriter out; private FastScanner sc; public static void main(String[] args) { new CFA().run(); } public void run() { sc = new FastScanner(oj ? System.in : new ByteArrayInputStream(INPUT.getBytes())); out = new PrintWriter(System.out); long s = System.currentTimeMillis(); solve(); out.flush(); tr(System.currentTimeMillis() - s + "ms"); } static class Color { int nr; boolean used; public Color(int nr) { this.nr = nr; } } private void solve() { int n = sc.nextInt(); Color[] a = new Color[n]; for (int i = 0; i < n; i++) { a[i] = new Color(sc.nextInt()); } Arrays.sort(a, Comparator.comparingInt(c -> c.nr)); int ans = 0; for (int i = 0; i < n; i++) { if (a[i].used) continue; ans++; for (int j = i+1; j < n; j++) { if (a[j].nr % a[i].nr == 0) { a[j].used = true; } } } out.println(ans); } //******************************************************************************************** //******************************************************************************************** //******************************************************************************************** static class SolutionFailedException extends Exception { int code; public SolutionFailedException(int code) { this.code = code; } } int [] sort(int [] a) { final int SHIFT = 16, MASK = (1 << SHIFT) - 1, SIZE = (1 << SHIFT) + 1; int n = a.length, ta [] = new int [n], ai [] = new int [SIZE]; for (int i = 0; i < n; ai[(a[i] & MASK) + 1]++, i++); for (int i = 1; i < SIZE; ai[i] += ai[i - 1], i++); for (int i = 0; i < n; ta[ai[a[i] & MASK]++] = a[i], i++); int [] t = a; a = ta; ta = t; ai = new int [SIZE]; for (int i = 0; i < n; ai[(a[i] >> SHIFT) + 1]++, i++); for (int i = 1; i < SIZE; ai[i] += ai[i - 1], i++); for (int i = 0; i < n; ta[ai[a[i] >> SHIFT]++] = a[i], i++); return ta; } private static void shuffle(int[] array) { Random random = new Random(); for (int i = array.length - 1; i > 0; i--) { int index = random.nextInt(i + 1); int temp = array[index]; array[index] = array[i]; array[i] = temp; } } /** * If searched element doesn't exist, returns index of first element which is bigger than searched value.<br> * If searched element is bigger than any array element function returns first index after last element.<br> * If searched element is lower than any array element function returns index of first element.<br> * If there are many values equals searched value function returns first occurrence.<br> */ private static int lowerBound(long[] arr, long key) { int lo = 0; int hi = arr.length - 1; while (lo < hi) { int mid = (lo + hi) / 2; if (key <= arr[mid]) { hi = mid - 1; } else { lo = mid + 1; } } return arr[lo] < key ? lo + 1 : lo; } /** * Returns index of first element which is grater than searched value. * If searched element is bigger than any array element, returns first index after last element. */ private static int upperBound(long[] arr, long key) { int lo = 0; int hi = arr.length - 1; while (lo < hi) { int mid = (lo + hi) / 2; if (key >= arr[mid]) { lo = mid + 1; } else { hi = mid; } } return arr[lo] <= key ? lo + 1 : lo; } private static int ceil(double d) { int ret = (int) d; return ret == d ? ret : ret + 1; } private static int round(double d) { return (int) (d + 0.5); } private static int gcd(int a, int b) { BigInteger b1 = BigInteger.valueOf(a); BigInteger b2 = BigInteger.valueOf(b); BigInteger gcd = b1.gcd(b2); return gcd.intValue(); } private static long gcd(long a, long b) { BigInteger b1 = BigInteger.valueOf(a); BigInteger b2 = BigInteger.valueOf(b); BigInteger gcd = b1.gcd(b2); return gcd.longValue(); } private int[] readIntArray(int n) { int[] res = new int[n]; for (int i = 0; i < n; i++) { res[i] = sc.nextInt(); } return res; } private long[] readLongArray(int n) { long[] res = new long[n]; for (int i = 0; i < n; i++) { res[i] = sc.nextLong(); } return res; } @SuppressWarnings("unused") static class FastScanner { private InputStream stream; private byte[] buf = new byte[1024]; private int curChar; private int numChars; FastScanner(InputStream stream) { this.stream = stream; } int read() { if (numChars == -1) throw new InputMismatchException(); if (curChar >= numChars) { curChar = 0; try { numChars = stream.read(buf); } catch (IOException e) { throw new InputMismatchException(); } if (numChars <= 0) return -1; } return buf[curChar++]; } boolean isSpaceChar(int c) { return c == ' ' || c == '\n' || c == '\r' || c == '\t' || c == -1; } boolean isEndline(int c) { return c == '\n' || c == '\r' || c == -1; } public int nextInt() { return Integer.parseInt(next()); } public long nextLong() { return Long.parseLong(next()); } public double nextDouble() { return Double.parseDouble(next()); } public String next() { int c = read(); while (isSpaceChar(c)) c = read(); StringBuilder res = new StringBuilder(); do { res.appendCodePoint(c); c = read(); } while (!isSpaceChar(c)); return res.toString(); } public String nextLine() { int c = read(); while (isEndline(c)) c = read(); StringBuilder res = new StringBuilder(); do { res.appendCodePoint(c); c = read(); } while (!isEndline(c)); return res.toString(); } } private boolean oj = System.getProperty("ONLINE_JUDGE") != null; private void tr(Object... o) { if (!oj) System.out.println(Arrays.deepToString(o)); } } </CODE> <EVALUATION_RUBRIC> - non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially. - O(n^2): The time complexity grows proportionally to the square of the input size. - O(n): The time complexity increases proportionally to the input size n in a linear manner. - O(nlog(n)): The time complexity combines linear and logarithmic growth factors. - O(n^3): The time complexity scales proportionally to the cube of the input size. - O(log(n)): The time complexity increases logarithmically in relation to the input size. - O(1): The time complexity is constant to the input size n. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Determine the worst-case time complexity category of a given Java code based on input size n. </TASK> <CODE> // package cf1209; import java.io.ByteArrayInputStream; import java.io.IOException; import java.io.InputStream; import java.io.PrintWriter; import java.math.BigInteger; import java.util.Arrays; import java.util.Comparator; import java.util.InputMismatchException; import java.util.Random; public class CFA { private static final String INPUT = "8\n" + "7 6 5 4 3 2 2 3\n"; private static final int MOD = 1_000_000_007; private PrintWriter out; private FastScanner sc; public static void main(String[] args) { new CFA().run(); } public void run() { sc = new FastScanner(oj ? System.in : new ByteArrayInputStream(INPUT.getBytes())); out = new PrintWriter(System.out); long s = System.currentTimeMillis(); solve(); out.flush(); tr(System.currentTimeMillis() - s + "ms"); } static class Color { int nr; boolean used; public Color(int nr) { this.nr = nr; } } private void solve() { int n = sc.nextInt(); Color[] a = new Color[n]; for (int i = 0; i < n; i++) { a[i] = new Color(sc.nextInt()); } Arrays.sort(a, Comparator.comparingInt(c -> c.nr)); int ans = 0; for (int i = 0; i < n; i++) { if (a[i].used) continue; ans++; for (int j = i+1; j < n; j++) { if (a[j].nr % a[i].nr == 0) { a[j].used = true; } } } out.println(ans); } //******************************************************************************************** //******************************************************************************************** //******************************************************************************************** static class SolutionFailedException extends Exception { int code; public SolutionFailedException(int code) { this.code = code; } } int [] sort(int [] a) { final int SHIFT = 16, MASK = (1 << SHIFT) - 1, SIZE = (1 << SHIFT) + 1; int n = a.length, ta [] = new int [n], ai [] = new int [SIZE]; for (int i = 0; i < n; ai[(a[i] & MASK) + 1]++, i++); for (int i = 1; i < SIZE; ai[i] += ai[i - 1], i++); for (int i = 0; i < n; ta[ai[a[i] & MASK]++] = a[i], i++); int [] t = a; a = ta; ta = t; ai = new int [SIZE]; for (int i = 0; i < n; ai[(a[i] >> SHIFT) + 1]++, i++); for (int i = 1; i < SIZE; ai[i] += ai[i - 1], i++); for (int i = 0; i < n; ta[ai[a[i] >> SHIFT]++] = a[i], i++); return ta; } private static void shuffle(int[] array) { Random random = new Random(); for (int i = array.length - 1; i > 0; i--) { int index = random.nextInt(i + 1); int temp = array[index]; array[index] = array[i]; array[i] = temp; } } /** * If searched element doesn't exist, returns index of first element which is bigger than searched value.<br> * If searched element is bigger than any array element function returns first index after last element.<br> * If searched element is lower than any array element function returns index of first element.<br> * If there are many values equals searched value function returns first occurrence.<br> */ private static int lowerBound(long[] arr, long key) { int lo = 0; int hi = arr.length - 1; while (lo < hi) { int mid = (lo + hi) / 2; if (key <= arr[mid]) { hi = mid - 1; } else { lo = mid + 1; } } return arr[lo] < key ? lo + 1 : lo; } /** * Returns index of first element which is grater than searched value. * If searched element is bigger than any array element, returns first index after last element. */ private static int upperBound(long[] arr, long key) { int lo = 0; int hi = arr.length - 1; while (lo < hi) { int mid = (lo + hi) / 2; if (key >= arr[mid]) { lo = mid + 1; } else { hi = mid; } } return arr[lo] <= key ? lo + 1 : lo; } private static int ceil(double d) { int ret = (int) d; return ret == d ? ret : ret + 1; } private static int round(double d) { return (int) (d + 0.5); } private static int gcd(int a, int b) { BigInteger b1 = BigInteger.valueOf(a); BigInteger b2 = BigInteger.valueOf(b); BigInteger gcd = b1.gcd(b2); return gcd.intValue(); } private static long gcd(long a, long b) { BigInteger b1 = BigInteger.valueOf(a); BigInteger b2 = BigInteger.valueOf(b); BigInteger gcd = b1.gcd(b2); return gcd.longValue(); } private int[] readIntArray(int n) { int[] res = new int[n]; for (int i = 0; i < n; i++) { res[i] = sc.nextInt(); } return res; } private long[] readLongArray(int n) { long[] res = new long[n]; for (int i = 0; i < n; i++) { res[i] = sc.nextLong(); } return res; } @SuppressWarnings("unused") static class FastScanner { private InputStream stream; private byte[] buf = new byte[1024]; private int curChar; private int numChars; FastScanner(InputStream stream) { this.stream = stream; } int read() { if (numChars == -1) throw new InputMismatchException(); if (curChar >= numChars) { curChar = 0; try { numChars = stream.read(buf); } catch (IOException e) { throw new InputMismatchException(); } if (numChars <= 0) return -1; } return buf[curChar++]; } boolean isSpaceChar(int c) { return c == ' ' || c == '\n' || c == '\r' || c == '\t' || c == -1; } boolean isEndline(int c) { return c == '\n' || c == '\r' || c == -1; } public int nextInt() { return Integer.parseInt(next()); } public long nextLong() { return Long.parseLong(next()); } public double nextDouble() { return Double.parseDouble(next()); } public String next() { int c = read(); while (isSpaceChar(c)) c = read(); StringBuilder res = new StringBuilder(); do { res.appendCodePoint(c); c = read(); } while (!isSpaceChar(c)); return res.toString(); } public String nextLine() { int c = read(); while (isEndline(c)) c = read(); StringBuilder res = new StringBuilder(); do { res.appendCodePoint(c); c = read(); } while (!isEndline(c)); return res.toString(); } } private boolean oj = System.getProperty("ONLINE_JUDGE") != null; private void tr(Object... o) { if (!oj) System.out.println(Arrays.deepToString(o)); } } </CODE> <EVALUATION_RUBRIC> - O(n): The time complexity increases proportionally to the input size n in a linear manner. - others: The time complexity does not fit any of the above categories or cannot be clearly classified. - non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially. - O(nlog(n)): The time complexity combines linear and logarithmic growth factors. - O(n^3): The time complexity scales proportionally to the cube of the input size. - O(1): The time complexity is constant to the input size n. - O(n^2): The time complexity grows proportionally to the square of the input size. - O(log(n)): The time complexity increases logarithmically in relation to the input size. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
2,104
2,606
415
import java.util.*; import java.io.*; public class Main { BufferedReader in; StringTokenizer str = null; PrintWriter out; private String next() throws Exception{ while (str == null || !str.hasMoreElements()) str = new StringTokenizer(in.readLine()); return str.nextToken(); } private int nextInt() throws Exception{ return Integer.parseInt(next()); } private long nextLong() throws Exception{ return Long.parseLong(next()); } private double nextDouble() throws Exception{ return Double.parseDouble(next()); } Map<Integer, Integer> map; int []p, rank; public void run() throws Exception{ in = new BufferedReader(new InputStreamReader(System.in)); out = new PrintWriter(System.out); map = new HashMap<Integer, Integer>(); int n = nextInt(); int x = nextInt(), y = nextInt(); int []a = new int[n]; p = new int[n]; for(int i = 1; i < n; ++i) p[i] = i; rank = new int[n]; for(int i = 0; i < n; ++i) { a[i] = nextInt(); map.put(a[i], i); } int mask[] = new int[n]; for(int i = 0; i < n; ++i) { if (map.containsKey(x - a[i])) { union(map.get(x - a[i]), i); mask[i] |= 1; } if (map.containsKey(y - a[i])) { union(map.get(y - a[i]), i); mask[i] |= 2; } } int []b = new int[n]; Arrays.fill(b, 3); for(int i = 0; i < n; ++i) b[find(i)] &= mask[i]; for(int i = 0; i < n; ++i) { if (b[i] == 0) { out.println("NO"); out.close(); return; } } out.println("YES"); for(int i = 0; i < n; ++i) { out.print((b[find(i)] & 1) == 1 ? 0 : 1); if (i != n - 1) out.print(" "); } out.println(); out.close(); } private int find(int x) { if (x != p[x]) return p[x] = find(p[x]); return x; } private void union(int a, int b) { a = find(a); b = find(b); if (rank[a] < rank[b]) { int tmp = a; a = b; b = tmp; } p[b] = a; if (rank[a] == rank[b]) ++rank[a]; } public static void main(String[] args) throws Exception{ new Main().run(); } }
O(n)
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Classify the following Java code's worst-case time complexity according to its relationship to the input size n. </TASK> <CODE> import java.util.*; import java.io.*; public class Main { BufferedReader in; StringTokenizer str = null; PrintWriter out; private String next() throws Exception{ while (str == null || !str.hasMoreElements()) str = new StringTokenizer(in.readLine()); return str.nextToken(); } private int nextInt() throws Exception{ return Integer.parseInt(next()); } private long nextLong() throws Exception{ return Long.parseLong(next()); } private double nextDouble() throws Exception{ return Double.parseDouble(next()); } Map<Integer, Integer> map; int []p, rank; public void run() throws Exception{ in = new BufferedReader(new InputStreamReader(System.in)); out = new PrintWriter(System.out); map = new HashMap<Integer, Integer>(); int n = nextInt(); int x = nextInt(), y = nextInt(); int []a = new int[n]; p = new int[n]; for(int i = 1; i < n; ++i) p[i] = i; rank = new int[n]; for(int i = 0; i < n; ++i) { a[i] = nextInt(); map.put(a[i], i); } int mask[] = new int[n]; for(int i = 0; i < n; ++i) { if (map.containsKey(x - a[i])) { union(map.get(x - a[i]), i); mask[i] |= 1; } if (map.containsKey(y - a[i])) { union(map.get(y - a[i]), i); mask[i] |= 2; } } int []b = new int[n]; Arrays.fill(b, 3); for(int i = 0; i < n; ++i) b[find(i)] &= mask[i]; for(int i = 0; i < n; ++i) { if (b[i] == 0) { out.println("NO"); out.close(); return; } } out.println("YES"); for(int i = 0; i < n; ++i) { out.print((b[find(i)] & 1) == 1 ? 0 : 1); if (i != n - 1) out.print(" "); } out.println(); out.close(); } private int find(int x) { if (x != p[x]) return p[x] = find(p[x]); return x; } private void union(int a, int b) { a = find(a); b = find(b); if (rank[a] < rank[b]) { int tmp = a; a = b; b = tmp; } p[b] = a; if (rank[a] == rank[b]) ++rank[a]; } public static void main(String[] args) throws Exception{ new Main().run(); } } </CODE> <EVALUATION_RUBRIC> - O(log(n)): The running time increases with the logarithm of the input size n. - O(nlog(n)): The running time increases with the product of n and logarithm of n. - non-polynomial: The running time increases non-polynomially with input size n, typically exponentially. - O(n^3): The running time increases with the cube of the input size n. - O(1): The running time does not change regardless of the input size n. - O(n^2): The running time increases with the square of the input size n. - O(n): The running time grows linearly with the input size n. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Classify the following Java code's worst-case time complexity according to its relationship to the input size n. </TASK> <CODE> import java.util.*; import java.io.*; public class Main { BufferedReader in; StringTokenizer str = null; PrintWriter out; private String next() throws Exception{ while (str == null || !str.hasMoreElements()) str = new StringTokenizer(in.readLine()); return str.nextToken(); } private int nextInt() throws Exception{ return Integer.parseInt(next()); } private long nextLong() throws Exception{ return Long.parseLong(next()); } private double nextDouble() throws Exception{ return Double.parseDouble(next()); } Map<Integer, Integer> map; int []p, rank; public void run() throws Exception{ in = new BufferedReader(new InputStreamReader(System.in)); out = new PrintWriter(System.out); map = new HashMap<Integer, Integer>(); int n = nextInt(); int x = nextInt(), y = nextInt(); int []a = new int[n]; p = new int[n]; for(int i = 1; i < n; ++i) p[i] = i; rank = new int[n]; for(int i = 0; i < n; ++i) { a[i] = nextInt(); map.put(a[i], i); } int mask[] = new int[n]; for(int i = 0; i < n; ++i) { if (map.containsKey(x - a[i])) { union(map.get(x - a[i]), i); mask[i] |= 1; } if (map.containsKey(y - a[i])) { union(map.get(y - a[i]), i); mask[i] |= 2; } } int []b = new int[n]; Arrays.fill(b, 3); for(int i = 0; i < n; ++i) b[find(i)] &= mask[i]; for(int i = 0; i < n; ++i) { if (b[i] == 0) { out.println("NO"); out.close(); return; } } out.println("YES"); for(int i = 0; i < n; ++i) { out.print((b[find(i)] & 1) == 1 ? 0 : 1); if (i != n - 1) out.print(" "); } out.println(); out.close(); } private int find(int x) { if (x != p[x]) return p[x] = find(p[x]); return x; } private void union(int a, int b) { a = find(a); b = find(b); if (rank[a] < rank[b]) { int tmp = a; a = b; b = tmp; } p[b] = a; if (rank[a] == rank[b]) ++rank[a]; } public static void main(String[] args) throws Exception{ new Main().run(); } } </CODE> <EVALUATION_RUBRIC> - O(n): The running time grows linearly with the input size n. - O(n^2): The running time increases with the square of the input size n. - O(nlog(n)): The running time increases with the product of n and logarithm of n. - others: The code does not clearly correspond to the listed classes or has an unclassified time complexity. - O(n^3): The running time increases with the cube of the input size n. - O(1): The running time does not change regardless of the input size n. - non-polynomial: The running time increases non-polynomially with input size n, typically exponentially. - O(log(n)): The running time increases with the logarithm of the input size n. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
974
414
943
import java.io.*; import java.util.*; public class Main { public static void main(String[] args) { Scanner scan = new Scanner(System.in); long n = scan.nextLong(); long k = scan.nextLong(); long D = 9 + 4 * (2 * k + 2 * n); long y = (- 3 + (long)Math.sqrt(D)) / 2; System.out.println(n - y); } }
O(log(n))
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Classify the following Java code's worst-case time complexity according to its relationship to the input size n. </TASK> <CODE> import java.io.*; import java.util.*; public class Main { public static void main(String[] args) { Scanner scan = new Scanner(System.in); long n = scan.nextLong(); long k = scan.nextLong(); long D = 9 + 4 * (2 * k + 2 * n); long y = (- 3 + (long)Math.sqrt(D)) / 2; System.out.println(n - y); } } </CODE> <EVALUATION_RUBRIC> - O(n): The running time grows linearly with the input size n. - non-polynomial: The running time increases non-polynomially with input size n, typically exponentially. - O(n^2): The running time increases with the square of the input size n. - O(log(n)): The running time increases with the logarithm of the input size n. - O(nlog(n)): The running time increases with the product of n and logarithm of n. - O(1): The running time does not change regardless of the input size n. - O(n^3): The running time increases with the cube of the input size n. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Determine the worst-case time complexity category of a given Java code based on input size n. </TASK> <CODE> import java.io.*; import java.util.*; public class Main { public static void main(String[] args) { Scanner scan = new Scanner(System.in); long n = scan.nextLong(); long k = scan.nextLong(); long D = 9 + 4 * (2 * k + 2 * n); long y = (- 3 + (long)Math.sqrt(D)) / 2; System.out.println(n - y); } } </CODE> <EVALUATION_RUBRIC> - non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially. - O(n^2): The time complexity grows proportionally to the square of the input size. - O(n^3): The time complexity scales proportionally to the cube of the input size. - others: The time complexity does not fit any of the above categories or cannot be clearly classified. - O(n): The time complexity increases proportionally to the input size n in a linear manner. - O(1): The time complexity is constant to the input size n. - O(log(n)): The time complexity increases logarithmically in relation to the input size. - O(nlog(n)): The time complexity combines linear and logarithmic growth factors. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
428
942
2,876
import java.io.BufferedReader; import java.io.IOException; import java.io.InputStreamReader; import java.io.PrintWriter; import java.util.StringTokenizer; public class A { FastScanner in; PrintWriter out; public void run() { try { in = new FastScanner(new InputStreamReader(System.in)); out = new PrintWriter(System.out); solve(); out.close(); } catch (IOException e) { e.printStackTrace(); } } public void solve() throws IOException { long l = new Long(in.next()); long r = new Long(in.next()); if (r - l < 2 || (r - l == 2 && l % 2 != 0)) { out.println("-1"); } else { if (l % 2 != 0) { l++; } out.println(l); out.println(l+1); out.println(l+2); } } class FastScanner { BufferedReader br; StringTokenizer st; FastScanner(InputStreamReader in) { br = new BufferedReader(in); } String nextLine() { String str = null; try { str = br.readLine(); } catch (IOException e) { e.printStackTrace(); } return str; } String next() { while (st == null || !st.hasMoreTokens()) { try { st = new StringTokenizer(br.readLine()); } catch (IOException e) { e.printStackTrace(); } } return st.nextToken(); } int nextInt() { return Integer.parseInt(next()); } } public static void main(String[] arg) { A o = new A(); o.run(); } }
O(1)
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Classify the following Java code's worst-case time complexity according to its relationship to the input size n. </TASK> <CODE> import java.io.BufferedReader; import java.io.IOException; import java.io.InputStreamReader; import java.io.PrintWriter; import java.util.StringTokenizer; public class A { FastScanner in; PrintWriter out; public void run() { try { in = new FastScanner(new InputStreamReader(System.in)); out = new PrintWriter(System.out); solve(); out.close(); } catch (IOException e) { e.printStackTrace(); } } public void solve() throws IOException { long l = new Long(in.next()); long r = new Long(in.next()); if (r - l < 2 || (r - l == 2 && l % 2 != 0)) { out.println("-1"); } else { if (l % 2 != 0) { l++; } out.println(l); out.println(l+1); out.println(l+2); } } class FastScanner { BufferedReader br; StringTokenizer st; FastScanner(InputStreamReader in) { br = new BufferedReader(in); } String nextLine() { String str = null; try { str = br.readLine(); } catch (IOException e) { e.printStackTrace(); } return str; } String next() { while (st == null || !st.hasMoreTokens()) { try { st = new StringTokenizer(br.readLine()); } catch (IOException e) { e.printStackTrace(); } } return st.nextToken(); } int nextInt() { return Integer.parseInt(next()); } } public static void main(String[] arg) { A o = new A(); o.run(); } } </CODE> <EVALUATION_RUBRIC> - O(n^2): The running time increases with the square of the input size n. - non-polynomial: The running time increases non-polynomially with input size n, typically exponentially. - O(log(n)): The running time increases with the logarithm of the input size n. - O(nlog(n)): The running time increases with the product of n and logarithm of n. - O(1): The running time does not change regardless of the input size n. - O(n): The running time grows linearly with the input size n. - O(n^3): The running time increases with the cube of the input size n. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n. </TASK> <CODE> import java.io.BufferedReader; import java.io.IOException; import java.io.InputStreamReader; import java.io.PrintWriter; import java.util.StringTokenizer; public class A { FastScanner in; PrintWriter out; public void run() { try { in = new FastScanner(new InputStreamReader(System.in)); out = new PrintWriter(System.out); solve(); out.close(); } catch (IOException e) { e.printStackTrace(); } } public void solve() throws IOException { long l = new Long(in.next()); long r = new Long(in.next()); if (r - l < 2 || (r - l == 2 && l % 2 != 0)) { out.println("-1"); } else { if (l % 2 != 0) { l++; } out.println(l); out.println(l+1); out.println(l+2); } } class FastScanner { BufferedReader br; StringTokenizer st; FastScanner(InputStreamReader in) { br = new BufferedReader(in); } String nextLine() { String str = null; try { str = br.readLine(); } catch (IOException e) { e.printStackTrace(); } return str; } String next() { while (st == null || !st.hasMoreTokens()) { try { st = new StringTokenizer(br.readLine()); } catch (IOException e) { e.printStackTrace(); } } return st.nextToken(); } int nextInt() { return Integer.parseInt(next()); } } public static void main(String[] arg) { A o = new A(); o.run(); } } </CODE> <EVALUATION_RUBRIC> - O(log(n)): The execution time ascends in proportion to the logarithm of the input size n. - non-polynomial: The running time increases non-polynomially with input size n, typically exponentially. - O(n): The execution time ascends in a one-to-one ratio with the input size n. - O(n^3): The execution time ascends in proportion to the cube of the input size n. - O(1): The execution time is unaffected by the size of the input n. - O(n^2): The execution time ascends in proportion to the square of the input size n. - others: The time complexity does not fit to any of the given categories or is ambiguous. - O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
688
2,870
3,788
//package Codeforces.Round718Div1_2; import java.io.*; import java.util.*; public class D { static boolean isValid(int n, int m, int i, int j){ return 0<=i && i<n && 0<=j && j<m; } public static void main(String[] args) throws IOException { Soumit sc = new Soumit(); int n = sc.nextInt(); int m = sc.nextInt(); int k = sc.nextInt(); StringBuilder sb = new StringBuilder(); if(k%2==1){ for(int i=0;i<n;i++){ for(int j=0;j<m;j++){ sb.append("-1 "); } sb.append("\n"); } System.out.println(sb); System.exit(0); } k/=2; long[][] horizontaledge = new long[n][m-1]; long[][] verticaledge = new long[n-1][m]; for(int i=0;i<n;i++) horizontaledge[i] = sc.nextLongArray(m-1); for(int i=0;i<n-1;i++) verticaledge[i] = sc.nextLongArray(m); long[][][] dp = new long[11][n][m]; for(int i=0;i<n;i++){ for(int j=0;j<m;j++){ dp[0][i][j] = 0; } } for(int i=1;i<=k;i++){ for(int j1=0;j1<n;j1++){ for(int j2=0;j2<m;j2++){ long min = Long.MAX_VALUE/2000; //for up if(isValid(n, m, j1-1, j2)){ min = Math.min(dp[i-1][j1-1][j2]+verticaledge[j1-1][j2], min); } //for down if(isValid(n, m, j1+1, j2)){ min = Math.min(min, dp[i-1][j1+1][j2]+verticaledge[j1][j2]); } //for left if(isValid(n, m, j1, j2-1)){ min = Math.min(min, dp[i-1][j1][j2-1]+horizontaledge[j1][j2-1]); } //for right if(isValid(n, m, j1, j2+1)){ min = Math.min(min, dp[i-1][j1][j2+1]+horizontaledge[j1][j2]); } dp[i][j1][j2] = min; } } } for(int i=0;i<n;i++){ for(int j=0;j<m;j++){ sb.append(dp[k][i][j]*2).append(" "); } sb.append("\n"); } System.out.println(sb); sc.close(); } static class Soumit { final private int BUFFER_SIZE = 1 << 18; final private DataInputStream din; final private byte[] buffer; private PrintWriter pw; private int bufferPointer, bytesRead; StringTokenizer st; public Soumit() { din = new DataInputStream(System.in); buffer = new byte[BUFFER_SIZE]; bufferPointer = bytesRead = 0; } public Soumit(String file_name) throws IOException { din = new DataInputStream(new FileInputStream(file_name)); buffer = new byte[BUFFER_SIZE]; bufferPointer = bytesRead = 0; } public void streamOutput(String file) throws IOException { FileWriter fw = new FileWriter(file); BufferedWriter bw = new BufferedWriter(fw); pw = new PrintWriter(bw); } public void println(String a) { pw.println(a); } public void print(String a) { pw.print(a); } public String readLine() throws IOException { byte[] buf = new byte[3000064]; // line length int cnt = 0, c; while ((c = read()) != -1) { if (c == '\n') break; buf[cnt++] = (byte) c; } return new String(buf, 0, cnt); } String next() { while (st == null || !st.hasMoreElements()) { try { st = new StringTokenizer(readLine()); } catch (IOException e) { e.printStackTrace(); } } return st.nextToken(); } public void sort(int[] arr) { ArrayList<Integer> arlist = new ArrayList<>(); for (int i : arr) arlist.add(i); Collections.sort(arlist); for (int i = 0; i < arr.length; i++) arr[i] = arlist.get(i); } public void sort(long[] arr) { ArrayList<Long> arlist = new ArrayList<>(); for (long i : arr) arlist.add(i); Collections.sort(arlist); for (int i = 0; i < arr.length; i++) arr[i] = arlist.get(i); } public int[] nextIntArray(int n) throws IOException { int[] arr = new int[n]; for (int i = 0; i < n; i++) { arr[i] = nextInt(); } return arr; } public long[] nextLongArray(int n) throws IOException { long[] arr = new long[n]; for (int i = 0; i < n; i++) { arr[i] = nextLong(); } return arr; } public double[] nextDoubleArray(int n) throws IOException { double[] arr = new double[n]; for (int i = 0; i < n; i++) { arr[i] = nextDouble(); } return arr; } public int nextInt() throws IOException { int ret = 0; byte c = read(); while (c <= ' ') c = read(); boolean neg = (c == '-'); if (neg) c = read(); do { ret = ret * 10 + c - '0'; } while ((c = read()) >= '0' && c <= '9'); if (neg) return -ret; return ret; } public long nextLong() throws IOException { long ret = 0; byte c = read(); while (c <= ' ') c = read(); boolean neg = (c == '-'); if (neg) c = read(); do { ret = ret * 10 + c - '0'; } while ((c = read()) >= '0' && c <= '9'); if (neg) return -ret; return ret; } public double nextDouble() throws IOException { double ret = 0, div = 1; byte c = read(); while (c <= ' ') c = read(); boolean neg = (c == '-'); if (neg) c = read(); do { ret = ret * 10 + c - '0'; } while ((c = read()) >= '0' && c <= '9'); if (c == '.') { while ((c = read()) >= '0' && c <= '9') { ret += (c - '0') / (div *= 10); } } if (neg) return -ret; return ret; } private void fillBuffer() throws IOException { bytesRead = din.read(buffer, bufferPointer = 0, BUFFER_SIZE); if (bytesRead == -1) buffer[0] = -1; } private byte read() throws IOException { if (bufferPointer == bytesRead) fillBuffer(); return buffer[bufferPointer++]; } public void close() throws IOException { /*if (din == null) return;*/ if (din != null) din.close(); if (pw != null) pw.close(); } } }
O(n^3)
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Determine the worst-case time complexity category of a given Java code based on input size n. </TASK> <CODE> //package Codeforces.Round718Div1_2; import java.io.*; import java.util.*; public class D { static boolean isValid(int n, int m, int i, int j){ return 0<=i && i<n && 0<=j && j<m; } public static void main(String[] args) throws IOException { Soumit sc = new Soumit(); int n = sc.nextInt(); int m = sc.nextInt(); int k = sc.nextInt(); StringBuilder sb = new StringBuilder(); if(k%2==1){ for(int i=0;i<n;i++){ for(int j=0;j<m;j++){ sb.append("-1 "); } sb.append("\n"); } System.out.println(sb); System.exit(0); } k/=2; long[][] horizontaledge = new long[n][m-1]; long[][] verticaledge = new long[n-1][m]; for(int i=0;i<n;i++) horizontaledge[i] = sc.nextLongArray(m-1); for(int i=0;i<n-1;i++) verticaledge[i] = sc.nextLongArray(m); long[][][] dp = new long[11][n][m]; for(int i=0;i<n;i++){ for(int j=0;j<m;j++){ dp[0][i][j] = 0; } } for(int i=1;i<=k;i++){ for(int j1=0;j1<n;j1++){ for(int j2=0;j2<m;j2++){ long min = Long.MAX_VALUE/2000; //for up if(isValid(n, m, j1-1, j2)){ min = Math.min(dp[i-1][j1-1][j2]+verticaledge[j1-1][j2], min); } //for down if(isValid(n, m, j1+1, j2)){ min = Math.min(min, dp[i-1][j1+1][j2]+verticaledge[j1][j2]); } //for left if(isValid(n, m, j1, j2-1)){ min = Math.min(min, dp[i-1][j1][j2-1]+horizontaledge[j1][j2-1]); } //for right if(isValid(n, m, j1, j2+1)){ min = Math.min(min, dp[i-1][j1][j2+1]+horizontaledge[j1][j2]); } dp[i][j1][j2] = min; } } } for(int i=0;i<n;i++){ for(int j=0;j<m;j++){ sb.append(dp[k][i][j]*2).append(" "); } sb.append("\n"); } System.out.println(sb); sc.close(); } static class Soumit { final private int BUFFER_SIZE = 1 << 18; final private DataInputStream din; final private byte[] buffer; private PrintWriter pw; private int bufferPointer, bytesRead; StringTokenizer st; public Soumit() { din = new DataInputStream(System.in); buffer = new byte[BUFFER_SIZE]; bufferPointer = bytesRead = 0; } public Soumit(String file_name) throws IOException { din = new DataInputStream(new FileInputStream(file_name)); buffer = new byte[BUFFER_SIZE]; bufferPointer = bytesRead = 0; } public void streamOutput(String file) throws IOException { FileWriter fw = new FileWriter(file); BufferedWriter bw = new BufferedWriter(fw); pw = new PrintWriter(bw); } public void println(String a) { pw.println(a); } public void print(String a) { pw.print(a); } public String readLine() throws IOException { byte[] buf = new byte[3000064]; // line length int cnt = 0, c; while ((c = read()) != -1) { if (c == '\n') break; buf[cnt++] = (byte) c; } return new String(buf, 0, cnt); } String next() { while (st == null || !st.hasMoreElements()) { try { st = new StringTokenizer(readLine()); } catch (IOException e) { e.printStackTrace(); } } return st.nextToken(); } public void sort(int[] arr) { ArrayList<Integer> arlist = new ArrayList<>(); for (int i : arr) arlist.add(i); Collections.sort(arlist); for (int i = 0; i < arr.length; i++) arr[i] = arlist.get(i); } public void sort(long[] arr) { ArrayList<Long> arlist = new ArrayList<>(); for (long i : arr) arlist.add(i); Collections.sort(arlist); for (int i = 0; i < arr.length; i++) arr[i] = arlist.get(i); } public int[] nextIntArray(int n) throws IOException { int[] arr = new int[n]; for (int i = 0; i < n; i++) { arr[i] = nextInt(); } return arr; } public long[] nextLongArray(int n) throws IOException { long[] arr = new long[n]; for (int i = 0; i < n; i++) { arr[i] = nextLong(); } return arr; } public double[] nextDoubleArray(int n) throws IOException { double[] arr = new double[n]; for (int i = 0; i < n; i++) { arr[i] = nextDouble(); } return arr; } public int nextInt() throws IOException { int ret = 0; byte c = read(); while (c <= ' ') c = read(); boolean neg = (c == '-'); if (neg) c = read(); do { ret = ret * 10 + c - '0'; } while ((c = read()) >= '0' && c <= '9'); if (neg) return -ret; return ret; } public long nextLong() throws IOException { long ret = 0; byte c = read(); while (c <= ' ') c = read(); boolean neg = (c == '-'); if (neg) c = read(); do { ret = ret * 10 + c - '0'; } while ((c = read()) >= '0' && c <= '9'); if (neg) return -ret; return ret; } public double nextDouble() throws IOException { double ret = 0, div = 1; byte c = read(); while (c <= ' ') c = read(); boolean neg = (c == '-'); if (neg) c = read(); do { ret = ret * 10 + c - '0'; } while ((c = read()) >= '0' && c <= '9'); if (c == '.') { while ((c = read()) >= '0' && c <= '9') { ret += (c - '0') / (div *= 10); } } if (neg) return -ret; return ret; } private void fillBuffer() throws IOException { bytesRead = din.read(buffer, bufferPointer = 0, BUFFER_SIZE); if (bytesRead == -1) buffer[0] = -1; } private byte read() throws IOException { if (bufferPointer == bytesRead) fillBuffer(); return buffer[bufferPointer++]; } public void close() throws IOException { /*if (din == null) return;*/ if (din != null) din.close(); if (pw != null) pw.close(); } } } </CODE> <EVALUATION_RUBRIC> - O(log(n)): The time complexity increases logarithmically in relation to the input size. - O(1): The time complexity is constant to the input size n. - O(nlog(n)): The time complexity combines linear and logarithmic growth factors. - non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially. - O(n^3): The time complexity scales proportionally to the cube of the input size. - O(n): The time complexity increases proportionally to the input size n in a linear manner. - O(n^2): The time complexity grows proportionally to the square of the input size. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n. </TASK> <CODE> //package Codeforces.Round718Div1_2; import java.io.*; import java.util.*; public class D { static boolean isValid(int n, int m, int i, int j){ return 0<=i && i<n && 0<=j && j<m; } public static void main(String[] args) throws IOException { Soumit sc = new Soumit(); int n = sc.nextInt(); int m = sc.nextInt(); int k = sc.nextInt(); StringBuilder sb = new StringBuilder(); if(k%2==1){ for(int i=0;i<n;i++){ for(int j=0;j<m;j++){ sb.append("-1 "); } sb.append("\n"); } System.out.println(sb); System.exit(0); } k/=2; long[][] horizontaledge = new long[n][m-1]; long[][] verticaledge = new long[n-1][m]; for(int i=0;i<n;i++) horizontaledge[i] = sc.nextLongArray(m-1); for(int i=0;i<n-1;i++) verticaledge[i] = sc.nextLongArray(m); long[][][] dp = new long[11][n][m]; for(int i=0;i<n;i++){ for(int j=0;j<m;j++){ dp[0][i][j] = 0; } } for(int i=1;i<=k;i++){ for(int j1=0;j1<n;j1++){ for(int j2=0;j2<m;j2++){ long min = Long.MAX_VALUE/2000; //for up if(isValid(n, m, j1-1, j2)){ min = Math.min(dp[i-1][j1-1][j2]+verticaledge[j1-1][j2], min); } //for down if(isValid(n, m, j1+1, j2)){ min = Math.min(min, dp[i-1][j1+1][j2]+verticaledge[j1][j2]); } //for left if(isValid(n, m, j1, j2-1)){ min = Math.min(min, dp[i-1][j1][j2-1]+horizontaledge[j1][j2-1]); } //for right if(isValid(n, m, j1, j2+1)){ min = Math.min(min, dp[i-1][j1][j2+1]+horizontaledge[j1][j2]); } dp[i][j1][j2] = min; } } } for(int i=0;i<n;i++){ for(int j=0;j<m;j++){ sb.append(dp[k][i][j]*2).append(" "); } sb.append("\n"); } System.out.println(sb); sc.close(); } static class Soumit { final private int BUFFER_SIZE = 1 << 18; final private DataInputStream din; final private byte[] buffer; private PrintWriter pw; private int bufferPointer, bytesRead; StringTokenizer st; public Soumit() { din = new DataInputStream(System.in); buffer = new byte[BUFFER_SIZE]; bufferPointer = bytesRead = 0; } public Soumit(String file_name) throws IOException { din = new DataInputStream(new FileInputStream(file_name)); buffer = new byte[BUFFER_SIZE]; bufferPointer = bytesRead = 0; } public void streamOutput(String file) throws IOException { FileWriter fw = new FileWriter(file); BufferedWriter bw = new BufferedWriter(fw); pw = new PrintWriter(bw); } public void println(String a) { pw.println(a); } public void print(String a) { pw.print(a); } public String readLine() throws IOException { byte[] buf = new byte[3000064]; // line length int cnt = 0, c; while ((c = read()) != -1) { if (c == '\n') break; buf[cnt++] = (byte) c; } return new String(buf, 0, cnt); } String next() { while (st == null || !st.hasMoreElements()) { try { st = new StringTokenizer(readLine()); } catch (IOException e) { e.printStackTrace(); } } return st.nextToken(); } public void sort(int[] arr) { ArrayList<Integer> arlist = new ArrayList<>(); for (int i : arr) arlist.add(i); Collections.sort(arlist); for (int i = 0; i < arr.length; i++) arr[i] = arlist.get(i); } public void sort(long[] arr) { ArrayList<Long> arlist = new ArrayList<>(); for (long i : arr) arlist.add(i); Collections.sort(arlist); for (int i = 0; i < arr.length; i++) arr[i] = arlist.get(i); } public int[] nextIntArray(int n) throws IOException { int[] arr = new int[n]; for (int i = 0; i < n; i++) { arr[i] = nextInt(); } return arr; } public long[] nextLongArray(int n) throws IOException { long[] arr = new long[n]; for (int i = 0; i < n; i++) { arr[i] = nextLong(); } return arr; } public double[] nextDoubleArray(int n) throws IOException { double[] arr = new double[n]; for (int i = 0; i < n; i++) { arr[i] = nextDouble(); } return arr; } public int nextInt() throws IOException { int ret = 0; byte c = read(); while (c <= ' ') c = read(); boolean neg = (c == '-'); if (neg) c = read(); do { ret = ret * 10 + c - '0'; } while ((c = read()) >= '0' && c <= '9'); if (neg) return -ret; return ret; } public long nextLong() throws IOException { long ret = 0; byte c = read(); while (c <= ' ') c = read(); boolean neg = (c == '-'); if (neg) c = read(); do { ret = ret * 10 + c - '0'; } while ((c = read()) >= '0' && c <= '9'); if (neg) return -ret; return ret; } public double nextDouble() throws IOException { double ret = 0, div = 1; byte c = read(); while (c <= ' ') c = read(); boolean neg = (c == '-'); if (neg) c = read(); do { ret = ret * 10 + c - '0'; } while ((c = read()) >= '0' && c <= '9'); if (c == '.') { while ((c = read()) >= '0' && c <= '9') { ret += (c - '0') / (div *= 10); } } if (neg) return -ret; return ret; } private void fillBuffer() throws IOException { bytesRead = din.read(buffer, bufferPointer = 0, BUFFER_SIZE); if (bytesRead == -1) buffer[0] = -1; } private byte read() throws IOException { if (bufferPointer == bytesRead) fillBuffer(); return buffer[bufferPointer++]; } public void close() throws IOException { /*if (din == null) return;*/ if (din != null) din.close(); if (pw != null) pw.close(); } } } </CODE> <EVALUATION_RUBRIC> - O(n^3): The execution time ascends in proportion to the cube of the input size n. - others: The time complexity does not fit to any of the given categories or is ambiguous. - O(n): The execution time ascends in a one-to-one ratio with the input size n. - O(1): The execution time is unaffected by the size of the input n. - non-polynomial: The running time increases non-polynomially with input size n, typically exponentially. - O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially. - O(n^2): The execution time ascends in proportion to the square of the input size n. - O(log(n)): The execution time ascends in proportion to the logarithm of the input size n. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
2,089
3,780
1,848
import java.util.*; import java.util.Map.Entry; import java.io.*; import java.lang.reflect.Array; import java.math.*; import java.security.SecureRandom; public class WCS { public static class Vector implements Comparable <Vector> { long x, y; int position; Vector first, second; boolean toReverse; public Vector(long xx, long yy, int p) { x = xx; y = yy; position = p; first = null; second = null; toReverse = false; } public Vector negate() { Vector vv = new Vector(-x, -y, position); vv.first = first; vv.second = second; vv.toReverse = !toReverse; return vv; } public Vector add(Vector v) { Vector sum = new Vector(this.x + v.x, this.y + v.y, position); sum.first = this; sum.second = v; return sum; } public Vector subtract(Vector v) { return this.add(v.negate()); } public double euclideanNorm() { return Math.sqrt(x * x + y * y); } @Override public int compareTo(Vector v) { double thisa = Math.atan2(this.y, this.x); double va = Math.atan2(v.y, v.x); if(thisa < 0) thisa += 2 * Math.PI; if(va < 0) va += 2 * Math.PI; if(thisa < va) return -1; if(thisa > va) return 1; return Integer.compare(this.position, v.position); } @Override public String toString() { return x + " " + y; } } public static void dfs(Vector curr, int[] ans) { if(curr.first == null) { ans[curr.position] = curr.toReverse ? -1 : 1; return; } curr.first.toReverse ^= curr.toReverse; curr.second.toReverse ^= curr.toReverse; dfs(curr.first, ans); dfs(curr.second, ans); } public static boolean ok(Vector v1, Vector v2) { return v1.add(v2).euclideanNorm() <= Math.max(v1.euclideanNorm(), v2.euclideanNorm()); } public static void stop(long k) { long time = System.currentTimeMillis(); while(System.currentTimeMillis() - time < k); } public static void main(String[] args) throws IOException { int n = in.nextInt(); TreeSet <Vector> vectors = new TreeSet <> (); for(int i = 0; i < n; i ++) { Vector v = new Vector(in.nextLong(), in.nextLong(), i); vectors.add(v); } while(vectors.size() > 2) { //System.out.println(vectors); //stop(500); TreeSet <Vector> support = new TreeSet <> (); while(vectors.size() > 0) { Vector curr = vectors.pollFirst(); Vector next1 = vectors.higher(curr); Vector next2 = vectors.lower(curr.negate()); Vector next3 = vectors.higher(curr.negate()); Vector next4 = vectors.lower(curr); //System.out.println("CURR: " + curr + "\n" + next1 + "\n" + next2); if(next1 != null) { if(ok(curr, next1)) { support.add(curr.add(next1)); vectors.remove(next1); continue; } } if(next1 != null) { if(ok(curr, next1.negate())) { support.add(curr.subtract(next1)); vectors.remove(next1); continue; } } if(next2 != null) { if(ok(curr, next2)) { support.add(curr.add(next2)); vectors.remove(next2); continue; } } if(next2 != null) { if(ok(curr, next2.negate())) { support.add(curr.subtract(next2)); vectors.remove(next2); continue; } } if(next3 != null) { if(ok(curr, next3)) { support.add(curr.add(next3)); vectors.remove(next3); continue; } } if(next3 != null) { if(ok(curr, next3.negate())) { support.add(curr.subtract(next3)); vectors.remove(next3); continue; } } if(next4 != null) { if(ok(curr, next4)) { support.add(curr.add(next4)); vectors.remove(next4); continue; } } if(next4 != null) { if(ok(curr, next4.negate())) { support.add(curr.subtract(next4)); vectors.remove(next4); continue; } } support.add(curr); } vectors = support; } if(vectors.size() == 2) { Vector curr = vectors.pollFirst(); Vector next = vectors.pollFirst(); Vector add = curr.add(next); Vector sub = curr.subtract(next); if(sub.euclideanNorm() <= add.euclideanNorm()) vectors.add(sub); else vectors.add(add); } //System.out.println(vectors.first().euclideanNorm()); StringBuilder buffer = new StringBuilder(); int[] ans = new int[n]; dfs(vectors.pollFirst(), ans); for(int i = 0; i < n; i ++) buffer.append(ans[i] + " "); System.out.println(buffer); } static class FastReader { BufferedReader br; StringTokenizer st; public FastReader() { br = new BufferedReader(new InputStreamReader(System.in)); } String next() { while (st == null || !st.hasMoreElements()) { try { st = new StringTokenizer(br.readLine()); } catch (IOException e) { e.printStackTrace(); } } return st.nextToken(); } BigInteger nextBigInteger() { return new BigInteger(in.next()); } int nextInt() { return Integer.parseInt(next()); } char nextChar() { return in.next().charAt(0); } long nextLong() { return Long.parseLong(next()); } double nextDouble() { return Double.parseDouble(next()); } String nextLine() { String str = ""; try { str = br.readLine(); } catch (IOException e) { e.printStackTrace(); } return str; } } static FastReader in = new FastReader(); static OutputStream out = new BufferedOutputStream(System.out); public static byte[] toByte(Object o) { return String.valueOf(o).getBytes(); } public static void sop(Object o) { System.out.print(o); } }
O(nlog(n))
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Determine the worst-case time complexity category of a given Java code based on input size n. </TASK> <CODE> import java.util.*; import java.util.Map.Entry; import java.io.*; import java.lang.reflect.Array; import java.math.*; import java.security.SecureRandom; public class WCS { public static class Vector implements Comparable <Vector> { long x, y; int position; Vector first, second; boolean toReverse; public Vector(long xx, long yy, int p) { x = xx; y = yy; position = p; first = null; second = null; toReverse = false; } public Vector negate() { Vector vv = new Vector(-x, -y, position); vv.first = first; vv.second = second; vv.toReverse = !toReverse; return vv; } public Vector add(Vector v) { Vector sum = new Vector(this.x + v.x, this.y + v.y, position); sum.first = this; sum.second = v; return sum; } public Vector subtract(Vector v) { return this.add(v.negate()); } public double euclideanNorm() { return Math.sqrt(x * x + y * y); } @Override public int compareTo(Vector v) { double thisa = Math.atan2(this.y, this.x); double va = Math.atan2(v.y, v.x); if(thisa < 0) thisa += 2 * Math.PI; if(va < 0) va += 2 * Math.PI; if(thisa < va) return -1; if(thisa > va) return 1; return Integer.compare(this.position, v.position); } @Override public String toString() { return x + " " + y; } } public static void dfs(Vector curr, int[] ans) { if(curr.first == null) { ans[curr.position] = curr.toReverse ? -1 : 1; return; } curr.first.toReverse ^= curr.toReverse; curr.second.toReverse ^= curr.toReverse; dfs(curr.first, ans); dfs(curr.second, ans); } public static boolean ok(Vector v1, Vector v2) { return v1.add(v2).euclideanNorm() <= Math.max(v1.euclideanNorm(), v2.euclideanNorm()); } public static void stop(long k) { long time = System.currentTimeMillis(); while(System.currentTimeMillis() - time < k); } public static void main(String[] args) throws IOException { int n = in.nextInt(); TreeSet <Vector> vectors = new TreeSet <> (); for(int i = 0; i < n; i ++) { Vector v = new Vector(in.nextLong(), in.nextLong(), i); vectors.add(v); } while(vectors.size() > 2) { //System.out.println(vectors); //stop(500); TreeSet <Vector> support = new TreeSet <> (); while(vectors.size() > 0) { Vector curr = vectors.pollFirst(); Vector next1 = vectors.higher(curr); Vector next2 = vectors.lower(curr.negate()); Vector next3 = vectors.higher(curr.negate()); Vector next4 = vectors.lower(curr); //System.out.println("CURR: " + curr + "\n" + next1 + "\n" + next2); if(next1 != null) { if(ok(curr, next1)) { support.add(curr.add(next1)); vectors.remove(next1); continue; } } if(next1 != null) { if(ok(curr, next1.negate())) { support.add(curr.subtract(next1)); vectors.remove(next1); continue; } } if(next2 != null) { if(ok(curr, next2)) { support.add(curr.add(next2)); vectors.remove(next2); continue; } } if(next2 != null) { if(ok(curr, next2.negate())) { support.add(curr.subtract(next2)); vectors.remove(next2); continue; } } if(next3 != null) { if(ok(curr, next3)) { support.add(curr.add(next3)); vectors.remove(next3); continue; } } if(next3 != null) { if(ok(curr, next3.negate())) { support.add(curr.subtract(next3)); vectors.remove(next3); continue; } } if(next4 != null) { if(ok(curr, next4)) { support.add(curr.add(next4)); vectors.remove(next4); continue; } } if(next4 != null) { if(ok(curr, next4.negate())) { support.add(curr.subtract(next4)); vectors.remove(next4); continue; } } support.add(curr); } vectors = support; } if(vectors.size() == 2) { Vector curr = vectors.pollFirst(); Vector next = vectors.pollFirst(); Vector add = curr.add(next); Vector sub = curr.subtract(next); if(sub.euclideanNorm() <= add.euclideanNorm()) vectors.add(sub); else vectors.add(add); } //System.out.println(vectors.first().euclideanNorm()); StringBuilder buffer = new StringBuilder(); int[] ans = new int[n]; dfs(vectors.pollFirst(), ans); for(int i = 0; i < n; i ++) buffer.append(ans[i] + " "); System.out.println(buffer); } static class FastReader { BufferedReader br; StringTokenizer st; public FastReader() { br = new BufferedReader(new InputStreamReader(System.in)); } String next() { while (st == null || !st.hasMoreElements()) { try { st = new StringTokenizer(br.readLine()); } catch (IOException e) { e.printStackTrace(); } } return st.nextToken(); } BigInteger nextBigInteger() { return new BigInteger(in.next()); } int nextInt() { return Integer.parseInt(next()); } char nextChar() { return in.next().charAt(0); } long nextLong() { return Long.parseLong(next()); } double nextDouble() { return Double.parseDouble(next()); } String nextLine() { String str = ""; try { str = br.readLine(); } catch (IOException e) { e.printStackTrace(); } return str; } } static FastReader in = new FastReader(); static OutputStream out = new BufferedOutputStream(System.out); public static byte[] toByte(Object o) { return String.valueOf(o).getBytes(); } public static void sop(Object o) { System.out.print(o); } } </CODE> <EVALUATION_RUBRIC> - O(nlog(n)): The time complexity combines linear and logarithmic growth factors. - non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially. - O(n): The time complexity increases proportionally to the input size n in a linear manner. - O(n^3): The time complexity scales proportionally to the cube of the input size. - O(1): The time complexity is constant to the input size n. - O(n^2): The time complexity grows proportionally to the square of the input size. - O(log(n)): The time complexity increases logarithmically in relation to the input size. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n. </TASK> <CODE> import java.util.*; import java.util.Map.Entry; import java.io.*; import java.lang.reflect.Array; import java.math.*; import java.security.SecureRandom; public class WCS { public static class Vector implements Comparable <Vector> { long x, y; int position; Vector first, second; boolean toReverse; public Vector(long xx, long yy, int p) { x = xx; y = yy; position = p; first = null; second = null; toReverse = false; } public Vector negate() { Vector vv = new Vector(-x, -y, position); vv.first = first; vv.second = second; vv.toReverse = !toReverse; return vv; } public Vector add(Vector v) { Vector sum = new Vector(this.x + v.x, this.y + v.y, position); sum.first = this; sum.second = v; return sum; } public Vector subtract(Vector v) { return this.add(v.negate()); } public double euclideanNorm() { return Math.sqrt(x * x + y * y); } @Override public int compareTo(Vector v) { double thisa = Math.atan2(this.y, this.x); double va = Math.atan2(v.y, v.x); if(thisa < 0) thisa += 2 * Math.PI; if(va < 0) va += 2 * Math.PI; if(thisa < va) return -1; if(thisa > va) return 1; return Integer.compare(this.position, v.position); } @Override public String toString() { return x + " " + y; } } public static void dfs(Vector curr, int[] ans) { if(curr.first == null) { ans[curr.position] = curr.toReverse ? -1 : 1; return; } curr.first.toReverse ^= curr.toReverse; curr.second.toReverse ^= curr.toReverse; dfs(curr.first, ans); dfs(curr.second, ans); } public static boolean ok(Vector v1, Vector v2) { return v1.add(v2).euclideanNorm() <= Math.max(v1.euclideanNorm(), v2.euclideanNorm()); } public static void stop(long k) { long time = System.currentTimeMillis(); while(System.currentTimeMillis() - time < k); } public static void main(String[] args) throws IOException { int n = in.nextInt(); TreeSet <Vector> vectors = new TreeSet <> (); for(int i = 0; i < n; i ++) { Vector v = new Vector(in.nextLong(), in.nextLong(), i); vectors.add(v); } while(vectors.size() > 2) { //System.out.println(vectors); //stop(500); TreeSet <Vector> support = new TreeSet <> (); while(vectors.size() > 0) { Vector curr = vectors.pollFirst(); Vector next1 = vectors.higher(curr); Vector next2 = vectors.lower(curr.negate()); Vector next3 = vectors.higher(curr.negate()); Vector next4 = vectors.lower(curr); //System.out.println("CURR: " + curr + "\n" + next1 + "\n" + next2); if(next1 != null) { if(ok(curr, next1)) { support.add(curr.add(next1)); vectors.remove(next1); continue; } } if(next1 != null) { if(ok(curr, next1.negate())) { support.add(curr.subtract(next1)); vectors.remove(next1); continue; } } if(next2 != null) { if(ok(curr, next2)) { support.add(curr.add(next2)); vectors.remove(next2); continue; } } if(next2 != null) { if(ok(curr, next2.negate())) { support.add(curr.subtract(next2)); vectors.remove(next2); continue; } } if(next3 != null) { if(ok(curr, next3)) { support.add(curr.add(next3)); vectors.remove(next3); continue; } } if(next3 != null) { if(ok(curr, next3.negate())) { support.add(curr.subtract(next3)); vectors.remove(next3); continue; } } if(next4 != null) { if(ok(curr, next4)) { support.add(curr.add(next4)); vectors.remove(next4); continue; } } if(next4 != null) { if(ok(curr, next4.negate())) { support.add(curr.subtract(next4)); vectors.remove(next4); continue; } } support.add(curr); } vectors = support; } if(vectors.size() == 2) { Vector curr = vectors.pollFirst(); Vector next = vectors.pollFirst(); Vector add = curr.add(next); Vector sub = curr.subtract(next); if(sub.euclideanNorm() <= add.euclideanNorm()) vectors.add(sub); else vectors.add(add); } //System.out.println(vectors.first().euclideanNorm()); StringBuilder buffer = new StringBuilder(); int[] ans = new int[n]; dfs(vectors.pollFirst(), ans); for(int i = 0; i < n; i ++) buffer.append(ans[i] + " "); System.out.println(buffer); } static class FastReader { BufferedReader br; StringTokenizer st; public FastReader() { br = new BufferedReader(new InputStreamReader(System.in)); } String next() { while (st == null || !st.hasMoreElements()) { try { st = new StringTokenizer(br.readLine()); } catch (IOException e) { e.printStackTrace(); } } return st.nextToken(); } BigInteger nextBigInteger() { return new BigInteger(in.next()); } int nextInt() { return Integer.parseInt(next()); } char nextChar() { return in.next().charAt(0); } long nextLong() { return Long.parseLong(next()); } double nextDouble() { return Double.parseDouble(next()); } String nextLine() { String str = ""; try { str = br.readLine(); } catch (IOException e) { e.printStackTrace(); } return str; } } static FastReader in = new FastReader(); static OutputStream out = new BufferedOutputStream(System.out); public static byte[] toByte(Object o) { return String.valueOf(o).getBytes(); } public static void sop(Object o) { System.out.print(o); } } </CODE> <EVALUATION_RUBRIC> - non-polynomial: The running time increases non-polynomially with input size n, typically exponentially. - O(n^2): The execution time ascends in proportion to the square of the input size n. - others: The time complexity does not fit to any of the given categories or is ambiguous. - O(n): The execution time ascends in a one-to-one ratio with the input size n. - O(1): The execution time is unaffected by the size of the input n. - O(n^3): The execution time ascends in proportion to the cube of the input size n. - O(log(n)): The execution time ascends in proportion to the logarithm of the input size n. - O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
1,869
1,844
2,976
import java.io.*; import java.util.*; public class Main { public static long func(long a, long b) { if (a < b) return func(b, a); if (b < 2) return a; long q = a / b; long r = a - q * b; return q + func(b, r); } public static void main(String[] args) throws IOException { BufferedReader br = new BufferedReader(new InputStreamReader(System.in)); String[] ss = br.readLine().split(" +"); long a = Long.parseLong(ss[0]); long b = Long.parseLong(ss[1]); System.out.println(func(a, b)); } }
O(1)
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Determine the worst-case time complexity category of a given Java code based on input size n. </TASK> <CODE> import java.io.*; import java.util.*; public class Main { public static long func(long a, long b) { if (a < b) return func(b, a); if (b < 2) return a; long q = a / b; long r = a - q * b; return q + func(b, r); } public static void main(String[] args) throws IOException { BufferedReader br = new BufferedReader(new InputStreamReader(System.in)); String[] ss = br.readLine().split(" +"); long a = Long.parseLong(ss[0]); long b = Long.parseLong(ss[1]); System.out.println(func(a, b)); } } </CODE> <EVALUATION_RUBRIC> - O(1): The time complexity is constant to the input size n. - O(n): The time complexity increases proportionally to the input size n in a linear manner. - O(nlog(n)): The time complexity combines linear and logarithmic growth factors. - O(log(n)): The time complexity increases logarithmically in relation to the input size. - non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially. - O(n^3): The time complexity scales proportionally to the cube of the input size. - O(n^2): The time complexity grows proportionally to the square of the input size. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Determine the worst-case time complexity category of a given Java code based on input size n. </TASK> <CODE> import java.io.*; import java.util.*; public class Main { public static long func(long a, long b) { if (a < b) return func(b, a); if (b < 2) return a; long q = a / b; long r = a - q * b; return q + func(b, r); } public static void main(String[] args) throws IOException { BufferedReader br = new BufferedReader(new InputStreamReader(System.in)); String[] ss = br.readLine().split(" +"); long a = Long.parseLong(ss[0]); long b = Long.parseLong(ss[1]); System.out.println(func(a, b)); } } </CODE> <EVALUATION_RUBRIC> - O(n^2): The time complexity grows proportionally to the square of the input size. - O(1): The time complexity is constant to the input size n. - non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially. - O(nlog(n)): The time complexity combines linear and logarithmic growth factors. - O(n): The time complexity increases proportionally to the input size n in a linear manner. - others: The time complexity does not fit any of the above categories or cannot be clearly classified. - O(n^3): The time complexity scales proportionally to the cube of the input size. - O(log(n)): The time complexity increases logarithmically in relation to the input size. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
482
2,970
3,088
import java.awt.Point; import java.io.*; import java.math.BigInteger; import java.util.*; import static java.lang.Math.*; public class ProblemA_72 { final boolean ONLINE_JUDGE = System.getProperty("ONLINE_JUDGE")!=null; BufferedReader in; PrintWriter out; StringTokenizer tok = new StringTokenizer(""); void init() throws FileNotFoundException{ if (ONLINE_JUDGE){ in = new BufferedReader(new InputStreamReader(System.in)); out = new PrintWriter(System.out); }else{ in = new BufferedReader(new FileReader("input.txt")); out = new PrintWriter("output.txt"); } } String readString() throws IOException{ while(!tok.hasMoreTokens()){ tok = new StringTokenizer(in.readLine()); } return tok.nextToken(); } int readInt() throws IOException{ return Integer.parseInt(readString()); } public static void main(String[] args){ new ProblemA_72().run(); } public void run(){ try{ long t1 = System.currentTimeMillis(); init(); solve(); out.close(); long t2 = System.currentTimeMillis(); System.err.println("Time = "+(t2-t1)); }catch (Exception e){ e.printStackTrace(System.err); System.exit(-1); } } void solve() throws IOException{ int n = readInt(); out.print((n + n/2)); } static class MyAlgo{ long gcd(long a, long b){ if (a == 0) return b; return gcd(b % a, a); } long lcm(long a, long b){ return a / gcd(a, b)*b; } long[] gcdPlus(long a, long b){ long[] d = new long[3]; if (a == 0){ d[0] = b; d[1] = 0; d[2] = 1; }else{ d = gcdPlus(b % a, a); long r = d[1]; d[1] = d[2] - b/a*d[1]; d[2] = r; } return d; } long binpow(long a, int n){ if (n == 0) return 1; if ((n & 1) == 0){ long b = binpow(a, n/2); return b*b; }else return binpow(a, n-1)*a; } long binpowmod(long a, int n, int m){ if (n == 0) return 1; if ((n & 1) == 0){ long b = binpow(a, n/2); return (b*b) % m; }else return binpow(a, n-1)*a % m; } long f(long n, int x, int k){ //Кол-во десятичных чисел (включая 0), содержащих в себе цифры от 0 до k-1 if (n == 0) return 1; long b = binpow(10, x - 1); long c = n / b; return (c < k? c: k)*binpow(k, x - 1) + (c < k? 1: 0)*f(n % b, x - 1, k); } long fib(int n){ if (n == 0) return 0; if ((n & 1) == 0){ long f1 = fib(n/2 - 1); long f2 = fib(n/2 + 1); return f2*f2 - f1*f1; }else{ long f1 = fib(n/2); long f2 = fib(n/2 + 1); return f1*f1 + f2*f2; } } BigInteger BigFib(int n){ if (n == 0) return BigInteger.ZERO; if ((n & 1) == 0){ BigInteger f1 = BigFib(n/2 - 1); f1 = f1.multiply(f1); BigInteger f2 = BigFib(n/2 + 1); f2 = f2.multiply(f2); return f2.subtract(f1); }else{ BigInteger f1 = BigFib(n/2); f1 = f1.multiply(f1); BigInteger f2 = BigFib(n/2 + 1); f2 = f2.multiply(f2); return f2.add(f1); } } boolean IsProbablyPrime(long n){ if (n == 1) return false; if ((n & 1) == 0) return false; for (int j = 3; j < sqrt(n) + 1; j += 2){ if (n % j == 0) return false; } return true; } int[] Sieve(int n){ boolean[] b = new boolean[n+1]; Arrays.fill(b, true); b[0] = false; b[1] = false; long nLong = n; int j=0; for (int i = 1; i <= n; i++) { if (b[i]){ j++; if (((long)i)*i <= nLong) { for (int k = i*i; k <= n; k += i) { b[k] = false; } } } } int[] p = new int[j]; Arrays.fill(p, 0); j=0; for (int i = 2; i <= n; i++) { if (b[i]){ p[j]=i; j++; } } return p; } public class Permutation { int[] a; int n; public Permutation(int n){ this.n=n; a=new int[n]; for (int i=0; i<n; i++){ a[i]=i; } } public boolean nextPermutation(){ //Пишется с do{}while(nextPermutation(a)); int i=n-1; for (i=n-2; i>=0; i--){ if (a[i]<a[i+1]){ break; } } if (i==-1){ return false; } int jMin=i+1; for (int j=n-1; j>i; j--){ if (a[i]<a[j]&&a[j]<a[jMin]){ jMin=j; } } swap(i, jMin); for (int j=1; j<=(n-i)/2; j++){ swap(i+j, n-j); } return true; } public int get(int i){ return a[i]; } void swap(int i, int j){ int r=a[i]; a[i]=a[j]; a[j]=r; } } public class Fraction implements Comparable<Fraction>, Cloneable{ public final Fraction FRACTION_ZERO = new Fraction(); public final Fraction FRACTION_ONE = new Fraction(1); public long numerator = 0; public long denominator = 1; public Fraction(){ numerator = 0; denominator = 1; } public Fraction(long numerator){ this.numerator = numerator; denominator = 1; } public Fraction(long numerator, long denominator){ this.numerator = numerator; this.denominator = denominator; Cancellation(); } public Fraction(double numerator, double denominator, int accuracy){ this.numerator = (long)(numerator*pow(10,accuracy)); this.denominator = (long)(denominator*pow(10,accuracy)); Cancellation(); } public Fraction(String s){ if (s.charAt(0) == '-'){ denominator = -1; s = s.substring(1); } if (s.indexOf("/") != -1){ denominator *= Integer.parseInt(s.substring(s.indexOf("/") + 1)); } if (s.indexOf(" ") != -1){ numerator = Integer.parseInt(s.substring(0, s.indexOf(" "))) * abs(denominator) + Integer.parseInt(s.substring(s.indexOf(" ") + 1, s.indexOf("/"))); }else{ if (s.indexOf("/") != -1){ numerator = Integer.parseInt(s.substring(0, s.indexOf("/"))); }else{ numerator = Integer.parseInt(s)*abs(denominator); } } this.Cancellation(); } void Cancellation(){ long g = gcd(abs(numerator), abs(denominator)); numerator /= g; denominator /= g; if (denominator < 0){ numerator *= -1; denominator *= -1; } } public String toString(){ String s = ""; if (numerator == 0){ return "0"; } if (numerator < 0){ s += "-"; } if (abs(numerator) >= denominator){ s += Long.toString(abs(numerator) / denominator) + " "; } if (abs(numerator) % denominator != 0){ s += Long.toString(abs(numerator) % denominator); }else{ s = s.substring(0, s.length()-1); } if (denominator != 1){ s += "/" + Long.toString(denominator); } return s; } public Fraction add(Fraction f){ Fraction fResult = new Fraction(); fResult.denominator = lcm(denominator, f.denominator); fResult.numerator = numerator * fResult.denominator / denominator + f.numerator * fResult.denominator / f.denominator; fResult.Cancellation(); return fResult; } public Fraction subtract(Fraction f){ Fraction fResult = new Fraction(); fResult.denominator = lcm(denominator, f.denominator); fResult.numerator = numerator * fResult.denominator / denominator - f.numerator * fResult.denominator / f.denominator; fResult.Cancellation(); return fResult; } public Fraction multiply(Fraction f){ Fraction fResult = new Fraction(); fResult.numerator = numerator * f.numerator; fResult.denominator = denominator * f.denominator; fResult.Cancellation(); return fResult; } public Fraction divide(Fraction f){ Fraction fResult = new Fraction(); fResult.numerator = numerator * f.denominator; fResult.denominator = denominator * f.numerator; fResult.Cancellation(); return fResult; } @Override public int compareTo(Fraction f){ long g = gcd(denominator, f.denominator); long res = numerator * (f.denominator / g) - f.numerator * (denominator / g); if (res < 0){ return -1; } if (res > 0){ return 1; } return 0; } public Fraction clone(){ Fraction fResult = new Fraction(numerator, denominator); return fResult; } public Fraction floor(){ Fraction fResult = this.clone(); fResult.numerator = (fResult.numerator / fResult.denominator) * fResult.denominator; return fResult; } public Fraction ceil(){ Fraction fResult = this.clone(); fResult.numerator = (fResult.numerator/fResult.denominator + 1) * fResult.denominator; return fResult; } public Fraction binpow(int n){ if (n==0) return FRACTION_ONE; if ((n&1)==0){ Fraction f=this.binpow(n/2); return f.multiply(f); }else return binpow(n-1).multiply(this); } } class FenwickTree_1{ //One-dimensional array int n; long[] t; public FenwickTree_1(int n){ this.n = n; t = new long[n]; } public long sum(int xl, int xr){ return sum(xr) - sum(xl); } public long sum(int x){ long result = 0; for (int i = x; i >= 0; i = (i & (i + 1)) - 1){ result += t[i]; } return result; } public void update(int x, long delta){ for (int i = x; i < n; i = (i | (i + 1))){ t[i] += delta; } } } class FenwickTree_2{ //Two-dimensional array int n, m; long[][] t; public FenwickTree_2(int n, int m){ this.n = n; this.m = m; t = new long[n][m]; } public long sum(int xl, int yl, int xr, int yr){ return sum(xr, yr) - sum(xl - 1, yr) - sum(xr, yl - 1) + sum(xl - 1, yl - 1); } public long sum(int x, int y){ long result = 0; for (int i = x; i >= 0; i = (i & (i + 1)) - 1){ for (int j = y; j >= 0; j = (j & (j + 1)) - 1){ result+=t[i][j]; } } return result; } public void update(int x, int y, long delta){ for (int i = x; i < n; i = (i | (i + 1))){ for (int j = y; j < m; j = (j | (j + 1))){ t[i][j] += delta; } } } } class FenwickTree_3{ //Three-dimensional array int n, m, l; long[][][] t; public FenwickTree_3(int n, int m, int l){ this.n = n; this.m = m; this.l = l; t = new long[n][m][l]; } public long sum(int xl, int yl, int zl, int xr, int yr, int zr){ return sum(xr, yr, zr) - sum(xl - 1, yr, zr) + sum(xl - 1, yr, zl - 1) - sum(xr, yr, zl - 1) - sum(xr, yl - 1, zr) + sum(xl - 1, yl - 1, zr) - sum(xl - 1, yl - 1, zl - 1) + sum(xr, yl - 1, zl - 1); } public long sum(int x, int y, int z){ long result = 0; for (int i = x; i >= 0; i = (i & (i + 1)) - 1){ for (int j = y; j >= 0; j = (j & (j + 1)) - 1){ for (int k = z; k >= 0; k = (k & (k + 1)) - 1){ result += t[i][j][k]; } } } return result; } public void update(int x, int y, int z, long delta){ for (int i = x; i < n; i = (i | (i + 1))){ for (int j = y; j < n; j = (j | (j + 1))){ for (int k = z; k < n; k = (k | (k + 1))){ t[i][j][k] += delta; } } } } } } }
O(1)
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Determine the worst-case time complexity category of a given Java code based on input size n. </TASK> <CODE> import java.awt.Point; import java.io.*; import java.math.BigInteger; import java.util.*; import static java.lang.Math.*; public class ProblemA_72 { final boolean ONLINE_JUDGE = System.getProperty("ONLINE_JUDGE")!=null; BufferedReader in; PrintWriter out; StringTokenizer tok = new StringTokenizer(""); void init() throws FileNotFoundException{ if (ONLINE_JUDGE){ in = new BufferedReader(new InputStreamReader(System.in)); out = new PrintWriter(System.out); }else{ in = new BufferedReader(new FileReader("input.txt")); out = new PrintWriter("output.txt"); } } String readString() throws IOException{ while(!tok.hasMoreTokens()){ tok = new StringTokenizer(in.readLine()); } return tok.nextToken(); } int readInt() throws IOException{ return Integer.parseInt(readString()); } public static void main(String[] args){ new ProblemA_72().run(); } public void run(){ try{ long t1 = System.currentTimeMillis(); init(); solve(); out.close(); long t2 = System.currentTimeMillis(); System.err.println("Time = "+(t2-t1)); }catch (Exception e){ e.printStackTrace(System.err); System.exit(-1); } } void solve() throws IOException{ int n = readInt(); out.print((n + n/2)); } static class MyAlgo{ long gcd(long a, long b){ if (a == 0) return b; return gcd(b % a, a); } long lcm(long a, long b){ return a / gcd(a, b)*b; } long[] gcdPlus(long a, long b){ long[] d = new long[3]; if (a == 0){ d[0] = b; d[1] = 0; d[2] = 1; }else{ d = gcdPlus(b % a, a); long r = d[1]; d[1] = d[2] - b/a*d[1]; d[2] = r; } return d; } long binpow(long a, int n){ if (n == 0) return 1; if ((n & 1) == 0){ long b = binpow(a, n/2); return b*b; }else return binpow(a, n-1)*a; } long binpowmod(long a, int n, int m){ if (n == 0) return 1; if ((n & 1) == 0){ long b = binpow(a, n/2); return (b*b) % m; }else return binpow(a, n-1)*a % m; } long f(long n, int x, int k){ //Кол-во десятичных чисел (включая 0), содержащих в себе цифры от 0 до k-1 if (n == 0) return 1; long b = binpow(10, x - 1); long c = n / b; return (c < k? c: k)*binpow(k, x - 1) + (c < k? 1: 0)*f(n % b, x - 1, k); } long fib(int n){ if (n == 0) return 0; if ((n & 1) == 0){ long f1 = fib(n/2 - 1); long f2 = fib(n/2 + 1); return f2*f2 - f1*f1; }else{ long f1 = fib(n/2); long f2 = fib(n/2 + 1); return f1*f1 + f2*f2; } } BigInteger BigFib(int n){ if (n == 0) return BigInteger.ZERO; if ((n & 1) == 0){ BigInteger f1 = BigFib(n/2 - 1); f1 = f1.multiply(f1); BigInteger f2 = BigFib(n/2 + 1); f2 = f2.multiply(f2); return f2.subtract(f1); }else{ BigInteger f1 = BigFib(n/2); f1 = f1.multiply(f1); BigInteger f2 = BigFib(n/2 + 1); f2 = f2.multiply(f2); return f2.add(f1); } } boolean IsProbablyPrime(long n){ if (n == 1) return false; if ((n & 1) == 0) return false; for (int j = 3; j < sqrt(n) + 1; j += 2){ if (n % j == 0) return false; } return true; } int[] Sieve(int n){ boolean[] b = new boolean[n+1]; Arrays.fill(b, true); b[0] = false; b[1] = false; long nLong = n; int j=0; for (int i = 1; i <= n; i++) { if (b[i]){ j++; if (((long)i)*i <= nLong) { for (int k = i*i; k <= n; k += i) { b[k] = false; } } } } int[] p = new int[j]; Arrays.fill(p, 0); j=0; for (int i = 2; i <= n; i++) { if (b[i]){ p[j]=i; j++; } } return p; } public class Permutation { int[] a; int n; public Permutation(int n){ this.n=n; a=new int[n]; for (int i=0; i<n; i++){ a[i]=i; } } public boolean nextPermutation(){ //Пишется с do{}while(nextPermutation(a)); int i=n-1; for (i=n-2; i>=0; i--){ if (a[i]<a[i+1]){ break; } } if (i==-1){ return false; } int jMin=i+1; for (int j=n-1; j>i; j--){ if (a[i]<a[j]&&a[j]<a[jMin]){ jMin=j; } } swap(i, jMin); for (int j=1; j<=(n-i)/2; j++){ swap(i+j, n-j); } return true; } public int get(int i){ return a[i]; } void swap(int i, int j){ int r=a[i]; a[i]=a[j]; a[j]=r; } } public class Fraction implements Comparable<Fraction>, Cloneable{ public final Fraction FRACTION_ZERO = new Fraction(); public final Fraction FRACTION_ONE = new Fraction(1); public long numerator = 0; public long denominator = 1; public Fraction(){ numerator = 0; denominator = 1; } public Fraction(long numerator){ this.numerator = numerator; denominator = 1; } public Fraction(long numerator, long denominator){ this.numerator = numerator; this.denominator = denominator; Cancellation(); } public Fraction(double numerator, double denominator, int accuracy){ this.numerator = (long)(numerator*pow(10,accuracy)); this.denominator = (long)(denominator*pow(10,accuracy)); Cancellation(); } public Fraction(String s){ if (s.charAt(0) == '-'){ denominator = -1; s = s.substring(1); } if (s.indexOf("/") != -1){ denominator *= Integer.parseInt(s.substring(s.indexOf("/") + 1)); } if (s.indexOf(" ") != -1){ numerator = Integer.parseInt(s.substring(0, s.indexOf(" "))) * abs(denominator) + Integer.parseInt(s.substring(s.indexOf(" ") + 1, s.indexOf("/"))); }else{ if (s.indexOf("/") != -1){ numerator = Integer.parseInt(s.substring(0, s.indexOf("/"))); }else{ numerator = Integer.parseInt(s)*abs(denominator); } } this.Cancellation(); } void Cancellation(){ long g = gcd(abs(numerator), abs(denominator)); numerator /= g; denominator /= g; if (denominator < 0){ numerator *= -1; denominator *= -1; } } public String toString(){ String s = ""; if (numerator == 0){ return "0"; } if (numerator < 0){ s += "-"; } if (abs(numerator) >= denominator){ s += Long.toString(abs(numerator) / denominator) + " "; } if (abs(numerator) % denominator != 0){ s += Long.toString(abs(numerator) % denominator); }else{ s = s.substring(0, s.length()-1); } if (denominator != 1){ s += "/" + Long.toString(denominator); } return s; } public Fraction add(Fraction f){ Fraction fResult = new Fraction(); fResult.denominator = lcm(denominator, f.denominator); fResult.numerator = numerator * fResult.denominator / denominator + f.numerator * fResult.denominator / f.denominator; fResult.Cancellation(); return fResult; } public Fraction subtract(Fraction f){ Fraction fResult = new Fraction(); fResult.denominator = lcm(denominator, f.denominator); fResult.numerator = numerator * fResult.denominator / denominator - f.numerator * fResult.denominator / f.denominator; fResult.Cancellation(); return fResult; } public Fraction multiply(Fraction f){ Fraction fResult = new Fraction(); fResult.numerator = numerator * f.numerator; fResult.denominator = denominator * f.denominator; fResult.Cancellation(); return fResult; } public Fraction divide(Fraction f){ Fraction fResult = new Fraction(); fResult.numerator = numerator * f.denominator; fResult.denominator = denominator * f.numerator; fResult.Cancellation(); return fResult; } @Override public int compareTo(Fraction f){ long g = gcd(denominator, f.denominator); long res = numerator * (f.denominator / g) - f.numerator * (denominator / g); if (res < 0){ return -1; } if (res > 0){ return 1; } return 0; } public Fraction clone(){ Fraction fResult = new Fraction(numerator, denominator); return fResult; } public Fraction floor(){ Fraction fResult = this.clone(); fResult.numerator = (fResult.numerator / fResult.denominator) * fResult.denominator; return fResult; } public Fraction ceil(){ Fraction fResult = this.clone(); fResult.numerator = (fResult.numerator/fResult.denominator + 1) * fResult.denominator; return fResult; } public Fraction binpow(int n){ if (n==0) return FRACTION_ONE; if ((n&1)==0){ Fraction f=this.binpow(n/2); return f.multiply(f); }else return binpow(n-1).multiply(this); } } class FenwickTree_1{ //One-dimensional array int n; long[] t; public FenwickTree_1(int n){ this.n = n; t = new long[n]; } public long sum(int xl, int xr){ return sum(xr) - sum(xl); } public long sum(int x){ long result = 0; for (int i = x; i >= 0; i = (i & (i + 1)) - 1){ result += t[i]; } return result; } public void update(int x, long delta){ for (int i = x; i < n; i = (i | (i + 1))){ t[i] += delta; } } } class FenwickTree_2{ //Two-dimensional array int n, m; long[][] t; public FenwickTree_2(int n, int m){ this.n = n; this.m = m; t = new long[n][m]; } public long sum(int xl, int yl, int xr, int yr){ return sum(xr, yr) - sum(xl - 1, yr) - sum(xr, yl - 1) + sum(xl - 1, yl - 1); } public long sum(int x, int y){ long result = 0; for (int i = x; i >= 0; i = (i & (i + 1)) - 1){ for (int j = y; j >= 0; j = (j & (j + 1)) - 1){ result+=t[i][j]; } } return result; } public void update(int x, int y, long delta){ for (int i = x; i < n; i = (i | (i + 1))){ for (int j = y; j < m; j = (j | (j + 1))){ t[i][j] += delta; } } } } class FenwickTree_3{ //Three-dimensional array int n, m, l; long[][][] t; public FenwickTree_3(int n, int m, int l){ this.n = n; this.m = m; this.l = l; t = new long[n][m][l]; } public long sum(int xl, int yl, int zl, int xr, int yr, int zr){ return sum(xr, yr, zr) - sum(xl - 1, yr, zr) + sum(xl - 1, yr, zl - 1) - sum(xr, yr, zl - 1) - sum(xr, yl - 1, zr) + sum(xl - 1, yl - 1, zr) - sum(xl - 1, yl - 1, zl - 1) + sum(xr, yl - 1, zl - 1); } public long sum(int x, int y, int z){ long result = 0; for (int i = x; i >= 0; i = (i & (i + 1)) - 1){ for (int j = y; j >= 0; j = (j & (j + 1)) - 1){ for (int k = z; k >= 0; k = (k & (k + 1)) - 1){ result += t[i][j][k]; } } } return result; } public void update(int x, int y, int z, long delta){ for (int i = x; i < n; i = (i | (i + 1))){ for (int j = y; j < n; j = (j | (j + 1))){ for (int k = z; k < n; k = (k | (k + 1))){ t[i][j][k] += delta; } } } } } } } </CODE> <EVALUATION_RUBRIC> - non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially. - O(log(n)): The time complexity increases logarithmically in relation to the input size. - O(n): The time complexity increases proportionally to the input size n in a linear manner. - O(1): The time complexity is constant to the input size n. - O(n^3): The time complexity scales proportionally to the cube of the input size. - O(nlog(n)): The time complexity combines linear and logarithmic growth factors. - O(n^2): The time complexity grows proportionally to the square of the input size. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n. </TASK> <CODE> import java.awt.Point; import java.io.*; import java.math.BigInteger; import java.util.*; import static java.lang.Math.*; public class ProblemA_72 { final boolean ONLINE_JUDGE = System.getProperty("ONLINE_JUDGE")!=null; BufferedReader in; PrintWriter out; StringTokenizer tok = new StringTokenizer(""); void init() throws FileNotFoundException{ if (ONLINE_JUDGE){ in = new BufferedReader(new InputStreamReader(System.in)); out = new PrintWriter(System.out); }else{ in = new BufferedReader(new FileReader("input.txt")); out = new PrintWriter("output.txt"); } } String readString() throws IOException{ while(!tok.hasMoreTokens()){ tok = new StringTokenizer(in.readLine()); } return tok.nextToken(); } int readInt() throws IOException{ return Integer.parseInt(readString()); } public static void main(String[] args){ new ProblemA_72().run(); } public void run(){ try{ long t1 = System.currentTimeMillis(); init(); solve(); out.close(); long t2 = System.currentTimeMillis(); System.err.println("Time = "+(t2-t1)); }catch (Exception e){ e.printStackTrace(System.err); System.exit(-1); } } void solve() throws IOException{ int n = readInt(); out.print((n + n/2)); } static class MyAlgo{ long gcd(long a, long b){ if (a == 0) return b; return gcd(b % a, a); } long lcm(long a, long b){ return a / gcd(a, b)*b; } long[] gcdPlus(long a, long b){ long[] d = new long[3]; if (a == 0){ d[0] = b; d[1] = 0; d[2] = 1; }else{ d = gcdPlus(b % a, a); long r = d[1]; d[1] = d[2] - b/a*d[1]; d[2] = r; } return d; } long binpow(long a, int n){ if (n == 0) return 1; if ((n & 1) == 0){ long b = binpow(a, n/2); return b*b; }else return binpow(a, n-1)*a; } long binpowmod(long a, int n, int m){ if (n == 0) return 1; if ((n & 1) == 0){ long b = binpow(a, n/2); return (b*b) % m; }else return binpow(a, n-1)*a % m; } long f(long n, int x, int k){ //Кол-во десятичных чисел (включая 0), содержащих в себе цифры от 0 до k-1 if (n == 0) return 1; long b = binpow(10, x - 1); long c = n / b; return (c < k? c: k)*binpow(k, x - 1) + (c < k? 1: 0)*f(n % b, x - 1, k); } long fib(int n){ if (n == 0) return 0; if ((n & 1) == 0){ long f1 = fib(n/2 - 1); long f2 = fib(n/2 + 1); return f2*f2 - f1*f1; }else{ long f1 = fib(n/2); long f2 = fib(n/2 + 1); return f1*f1 + f2*f2; } } BigInteger BigFib(int n){ if (n == 0) return BigInteger.ZERO; if ((n & 1) == 0){ BigInteger f1 = BigFib(n/2 - 1); f1 = f1.multiply(f1); BigInteger f2 = BigFib(n/2 + 1); f2 = f2.multiply(f2); return f2.subtract(f1); }else{ BigInteger f1 = BigFib(n/2); f1 = f1.multiply(f1); BigInteger f2 = BigFib(n/2 + 1); f2 = f2.multiply(f2); return f2.add(f1); } } boolean IsProbablyPrime(long n){ if (n == 1) return false; if ((n & 1) == 0) return false; for (int j = 3; j < sqrt(n) + 1; j += 2){ if (n % j == 0) return false; } return true; } int[] Sieve(int n){ boolean[] b = new boolean[n+1]; Arrays.fill(b, true); b[0] = false; b[1] = false; long nLong = n; int j=0; for (int i = 1; i <= n; i++) { if (b[i]){ j++; if (((long)i)*i <= nLong) { for (int k = i*i; k <= n; k += i) { b[k] = false; } } } } int[] p = new int[j]; Arrays.fill(p, 0); j=0; for (int i = 2; i <= n; i++) { if (b[i]){ p[j]=i; j++; } } return p; } public class Permutation { int[] a; int n; public Permutation(int n){ this.n=n; a=new int[n]; for (int i=0; i<n; i++){ a[i]=i; } } public boolean nextPermutation(){ //Пишется с do{}while(nextPermutation(a)); int i=n-1; for (i=n-2; i>=0; i--){ if (a[i]<a[i+1]){ break; } } if (i==-1){ return false; } int jMin=i+1; for (int j=n-1; j>i; j--){ if (a[i]<a[j]&&a[j]<a[jMin]){ jMin=j; } } swap(i, jMin); for (int j=1; j<=(n-i)/2; j++){ swap(i+j, n-j); } return true; } public int get(int i){ return a[i]; } void swap(int i, int j){ int r=a[i]; a[i]=a[j]; a[j]=r; } } public class Fraction implements Comparable<Fraction>, Cloneable{ public final Fraction FRACTION_ZERO = new Fraction(); public final Fraction FRACTION_ONE = new Fraction(1); public long numerator = 0; public long denominator = 1; public Fraction(){ numerator = 0; denominator = 1; } public Fraction(long numerator){ this.numerator = numerator; denominator = 1; } public Fraction(long numerator, long denominator){ this.numerator = numerator; this.denominator = denominator; Cancellation(); } public Fraction(double numerator, double denominator, int accuracy){ this.numerator = (long)(numerator*pow(10,accuracy)); this.denominator = (long)(denominator*pow(10,accuracy)); Cancellation(); } public Fraction(String s){ if (s.charAt(0) == '-'){ denominator = -1; s = s.substring(1); } if (s.indexOf("/") != -1){ denominator *= Integer.parseInt(s.substring(s.indexOf("/") + 1)); } if (s.indexOf(" ") != -1){ numerator = Integer.parseInt(s.substring(0, s.indexOf(" "))) * abs(denominator) + Integer.parseInt(s.substring(s.indexOf(" ") + 1, s.indexOf("/"))); }else{ if (s.indexOf("/") != -1){ numerator = Integer.parseInt(s.substring(0, s.indexOf("/"))); }else{ numerator = Integer.parseInt(s)*abs(denominator); } } this.Cancellation(); } void Cancellation(){ long g = gcd(abs(numerator), abs(denominator)); numerator /= g; denominator /= g; if (denominator < 0){ numerator *= -1; denominator *= -1; } } public String toString(){ String s = ""; if (numerator == 0){ return "0"; } if (numerator < 0){ s += "-"; } if (abs(numerator) >= denominator){ s += Long.toString(abs(numerator) / denominator) + " "; } if (abs(numerator) % denominator != 0){ s += Long.toString(abs(numerator) % denominator); }else{ s = s.substring(0, s.length()-1); } if (denominator != 1){ s += "/" + Long.toString(denominator); } return s; } public Fraction add(Fraction f){ Fraction fResult = new Fraction(); fResult.denominator = lcm(denominator, f.denominator); fResult.numerator = numerator * fResult.denominator / denominator + f.numerator * fResult.denominator / f.denominator; fResult.Cancellation(); return fResult; } public Fraction subtract(Fraction f){ Fraction fResult = new Fraction(); fResult.denominator = lcm(denominator, f.denominator); fResult.numerator = numerator * fResult.denominator / denominator - f.numerator * fResult.denominator / f.denominator; fResult.Cancellation(); return fResult; } public Fraction multiply(Fraction f){ Fraction fResult = new Fraction(); fResult.numerator = numerator * f.numerator; fResult.denominator = denominator * f.denominator; fResult.Cancellation(); return fResult; } public Fraction divide(Fraction f){ Fraction fResult = new Fraction(); fResult.numerator = numerator * f.denominator; fResult.denominator = denominator * f.numerator; fResult.Cancellation(); return fResult; } @Override public int compareTo(Fraction f){ long g = gcd(denominator, f.denominator); long res = numerator * (f.denominator / g) - f.numerator * (denominator / g); if (res < 0){ return -1; } if (res > 0){ return 1; } return 0; } public Fraction clone(){ Fraction fResult = new Fraction(numerator, denominator); return fResult; } public Fraction floor(){ Fraction fResult = this.clone(); fResult.numerator = (fResult.numerator / fResult.denominator) * fResult.denominator; return fResult; } public Fraction ceil(){ Fraction fResult = this.clone(); fResult.numerator = (fResult.numerator/fResult.denominator + 1) * fResult.denominator; return fResult; } public Fraction binpow(int n){ if (n==0) return FRACTION_ONE; if ((n&1)==0){ Fraction f=this.binpow(n/2); return f.multiply(f); }else return binpow(n-1).multiply(this); } } class FenwickTree_1{ //One-dimensional array int n; long[] t; public FenwickTree_1(int n){ this.n = n; t = new long[n]; } public long sum(int xl, int xr){ return sum(xr) - sum(xl); } public long sum(int x){ long result = 0; for (int i = x; i >= 0; i = (i & (i + 1)) - 1){ result += t[i]; } return result; } public void update(int x, long delta){ for (int i = x; i < n; i = (i | (i + 1))){ t[i] += delta; } } } class FenwickTree_2{ //Two-dimensional array int n, m; long[][] t; public FenwickTree_2(int n, int m){ this.n = n; this.m = m; t = new long[n][m]; } public long sum(int xl, int yl, int xr, int yr){ return sum(xr, yr) - sum(xl - 1, yr) - sum(xr, yl - 1) + sum(xl - 1, yl - 1); } public long sum(int x, int y){ long result = 0; for (int i = x; i >= 0; i = (i & (i + 1)) - 1){ for (int j = y; j >= 0; j = (j & (j + 1)) - 1){ result+=t[i][j]; } } return result; } public void update(int x, int y, long delta){ for (int i = x; i < n; i = (i | (i + 1))){ for (int j = y; j < m; j = (j | (j + 1))){ t[i][j] += delta; } } } } class FenwickTree_3{ //Three-dimensional array int n, m, l; long[][][] t; public FenwickTree_3(int n, int m, int l){ this.n = n; this.m = m; this.l = l; t = new long[n][m][l]; } public long sum(int xl, int yl, int zl, int xr, int yr, int zr){ return sum(xr, yr, zr) - sum(xl - 1, yr, zr) + sum(xl - 1, yr, zl - 1) - sum(xr, yr, zl - 1) - sum(xr, yl - 1, zr) + sum(xl - 1, yl - 1, zr) - sum(xl - 1, yl - 1, zl - 1) + sum(xr, yl - 1, zl - 1); } public long sum(int x, int y, int z){ long result = 0; for (int i = x; i >= 0; i = (i & (i + 1)) - 1){ for (int j = y; j >= 0; j = (j & (j + 1)) - 1){ for (int k = z; k >= 0; k = (k & (k + 1)) - 1){ result += t[i][j][k]; } } } return result; } public void update(int x, int y, int z, long delta){ for (int i = x; i < n; i = (i | (i + 1))){ for (int j = y; j < n; j = (j | (j + 1))){ for (int k = z; k < n; k = (k | (k + 1))){ t[i][j][k] += delta; } } } } } } } </CODE> <EVALUATION_RUBRIC> - O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially. - O(log(n)): The execution time ascends in proportion to the logarithm of the input size n. - O(1): The execution time is unaffected by the size of the input n. - others: The time complexity does not fit to any of the given categories or is ambiguous. - O(n^2): The execution time ascends in proportion to the square of the input size n. - O(n): The execution time ascends in a one-to-one ratio with the input size n. - non-polynomial: The running time increases non-polynomially with input size n, typically exponentially. - O(n^3): The execution time ascends in proportion to the cube of the input size n. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
3,878
3,082
3,761
import java.util.*; import java.io.*; public class D { public static int dir[][]={{-1,0},{1,0},{0,-1},{0,1}}; public static void main(String[] args) { // Scanner sc=new Scanner(System.in); FastScanner sc = new FastScanner(); FastOutput out = new FastOutput(System.out); int n=sc.nextInt(); int m=sc.nextInt(); int k=sc.nextInt(); int ans[][][]=new int[n][m][11]; int arr[][]=new int[n*m][4]; for(int i=0;i<n;i++){ for(int j=0;j<m-1;j++){ int x=sc.nextInt(); arr[i*m+j][3]=x; arr[i*m+j+1][2]=x; } } for(int i=0;i<n-1;i++){ for(int j=0;j<m;j++){ int x=sc.nextInt(); arr[i*m+j][1]=x; arr[(i+1)*m+j][0]=x; } } if(k%2==1){ for(int i=0;i<n;i++){ StringBuilder sb=new StringBuilder(""); for(int j=0;j<m;j++){ ans[i][j][10]=-1; sb.append(ans[i][j][10]+" "); } out.println(sb.toString()); } }else{ for(int ceng=1;ceng<=k/2;ceng++){ for(int i=0;i<n;i++){ for(int j=0;j<m;j++){ ans[i][j][ceng]=Integer.MAX_VALUE/3; for(int dr=0;dr<4;dr++){ int nx=i+dir[dr][0]; int ny=j+dir[dr][1]; if(nx<n&&ny<m&&nx>=0&&ny>=0){ ans[i][j][ceng]=Math.min(ans[i][j][ceng], ans[nx][ny][ceng-1]+arr[i*m+j][dr]); } } } } } for(int i=0;i<n;i++){ StringBuilder sb=new StringBuilder(""); for(int j=0;j<m;j++){ sb.append(ans[i][j][k/2]*2+" "); } out.println(sb.toString()); } } out.close(); } static class FastScanner { BufferedReader br=new BufferedReader(new InputStreamReader(System.in)); StringTokenizer st=new StringTokenizer(""); String next() { while (!st.hasMoreTokens()) try { st=new StringTokenizer(br.readLine()); } catch (IOException e) { e.printStackTrace(); } return st.nextToken(); } int nextInt() { return Integer.parseInt(next()); } int[] readIntArray(int n) { int[] a=new int[n]; for (int i=0; i<n; i++) a[i]=nextInt(); return a; } long[] readLongArray(int n) { long[] a=new long[n]; for (int i=0; i<n; i++) a[i]=nextLong(); return a; } long nextLong() { return Long.parseLong(next()); } } static class FastOutput implements AutoCloseable, Closeable, Appendable { private static final int THRESHOLD = 1 << 13; private final Writer os; private StringBuilder cache = new StringBuilder(THRESHOLD * 2); public FastOutput append(CharSequence csq) { cache.append(csq); return this; } public FastOutput append(CharSequence csq, int start, int end) { cache.append(csq, start, end); return this; } private void afterWrite() { if (cache.length() < THRESHOLD) { return; } flush(); } public FastOutput(Writer os) { this.os = os; } public FastOutput(OutputStream os) { this(new OutputStreamWriter(os)); } public FastOutput append(char c) { cache.append(c); afterWrite(); return this; } public FastOutput append(int c) { cache.append(c); afterWrite(); return this; } public FastOutput append(String c) { cache.append(c); afterWrite(); return this; } public FastOutput println(String c) { return append(c).println(); } public FastOutput println() { return append(System.lineSeparator()); } public FastOutput flush() { try { os.append(cache); os.flush(); cache.setLength(0); } catch (IOException e) { throw new UncheckedIOException(e); } return this; } public void close() { flush(); try { os.close(); } catch (IOException e) { throw new UncheckedIOException(e); } } public String toString() { return cache.toString(); } } }
O(n^3)
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Classify the following Java code's worst-case time complexity according to its relationship to the input size n. </TASK> <CODE> import java.util.*; import java.io.*; public class D { public static int dir[][]={{-1,0},{1,0},{0,-1},{0,1}}; public static void main(String[] args) { // Scanner sc=new Scanner(System.in); FastScanner sc = new FastScanner(); FastOutput out = new FastOutput(System.out); int n=sc.nextInt(); int m=sc.nextInt(); int k=sc.nextInt(); int ans[][][]=new int[n][m][11]; int arr[][]=new int[n*m][4]; for(int i=0;i<n;i++){ for(int j=0;j<m-1;j++){ int x=sc.nextInt(); arr[i*m+j][3]=x; arr[i*m+j+1][2]=x; } } for(int i=0;i<n-1;i++){ for(int j=0;j<m;j++){ int x=sc.nextInt(); arr[i*m+j][1]=x; arr[(i+1)*m+j][0]=x; } } if(k%2==1){ for(int i=0;i<n;i++){ StringBuilder sb=new StringBuilder(""); for(int j=0;j<m;j++){ ans[i][j][10]=-1; sb.append(ans[i][j][10]+" "); } out.println(sb.toString()); } }else{ for(int ceng=1;ceng<=k/2;ceng++){ for(int i=0;i<n;i++){ for(int j=0;j<m;j++){ ans[i][j][ceng]=Integer.MAX_VALUE/3; for(int dr=0;dr<4;dr++){ int nx=i+dir[dr][0]; int ny=j+dir[dr][1]; if(nx<n&&ny<m&&nx>=0&&ny>=0){ ans[i][j][ceng]=Math.min(ans[i][j][ceng], ans[nx][ny][ceng-1]+arr[i*m+j][dr]); } } } } } for(int i=0;i<n;i++){ StringBuilder sb=new StringBuilder(""); for(int j=0;j<m;j++){ sb.append(ans[i][j][k/2]*2+" "); } out.println(sb.toString()); } } out.close(); } static class FastScanner { BufferedReader br=new BufferedReader(new InputStreamReader(System.in)); StringTokenizer st=new StringTokenizer(""); String next() { while (!st.hasMoreTokens()) try { st=new StringTokenizer(br.readLine()); } catch (IOException e) { e.printStackTrace(); } return st.nextToken(); } int nextInt() { return Integer.parseInt(next()); } int[] readIntArray(int n) { int[] a=new int[n]; for (int i=0; i<n; i++) a[i]=nextInt(); return a; } long[] readLongArray(int n) { long[] a=new long[n]; for (int i=0; i<n; i++) a[i]=nextLong(); return a; } long nextLong() { return Long.parseLong(next()); } } static class FastOutput implements AutoCloseable, Closeable, Appendable { private static final int THRESHOLD = 1 << 13; private final Writer os; private StringBuilder cache = new StringBuilder(THRESHOLD * 2); public FastOutput append(CharSequence csq) { cache.append(csq); return this; } public FastOutput append(CharSequence csq, int start, int end) { cache.append(csq, start, end); return this; } private void afterWrite() { if (cache.length() < THRESHOLD) { return; } flush(); } public FastOutput(Writer os) { this.os = os; } public FastOutput(OutputStream os) { this(new OutputStreamWriter(os)); } public FastOutput append(char c) { cache.append(c); afterWrite(); return this; } public FastOutput append(int c) { cache.append(c); afterWrite(); return this; } public FastOutput append(String c) { cache.append(c); afterWrite(); return this; } public FastOutput println(String c) { return append(c).println(); } public FastOutput println() { return append(System.lineSeparator()); } public FastOutput flush() { try { os.append(cache); os.flush(); cache.setLength(0); } catch (IOException e) { throw new UncheckedIOException(e); } return this; } public void close() { flush(); try { os.close(); } catch (IOException e) { throw new UncheckedIOException(e); } } public String toString() { return cache.toString(); } } } </CODE> <EVALUATION_RUBRIC> - O(nlog(n)): The running time increases with the product of n and logarithm of n. - O(n^2): The running time increases with the square of the input size n. - O(n): The running time grows linearly with the input size n. - O(1): The running time does not change regardless of the input size n. - O(n^3): The running time increases with the cube of the input size n. - non-polynomial: The running time increases non-polynomially with input size n, typically exponentially. - O(log(n)): The running time increases with the logarithm of the input size n. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Classify the following Java code's worst-case time complexity according to its relationship to the input size n. </TASK> <CODE> import java.util.*; import java.io.*; public class D { public static int dir[][]={{-1,0},{1,0},{0,-1},{0,1}}; public static void main(String[] args) { // Scanner sc=new Scanner(System.in); FastScanner sc = new FastScanner(); FastOutput out = new FastOutput(System.out); int n=sc.nextInt(); int m=sc.nextInt(); int k=sc.nextInt(); int ans[][][]=new int[n][m][11]; int arr[][]=new int[n*m][4]; for(int i=0;i<n;i++){ for(int j=0;j<m-1;j++){ int x=sc.nextInt(); arr[i*m+j][3]=x; arr[i*m+j+1][2]=x; } } for(int i=0;i<n-1;i++){ for(int j=0;j<m;j++){ int x=sc.nextInt(); arr[i*m+j][1]=x; arr[(i+1)*m+j][0]=x; } } if(k%2==1){ for(int i=0;i<n;i++){ StringBuilder sb=new StringBuilder(""); for(int j=0;j<m;j++){ ans[i][j][10]=-1; sb.append(ans[i][j][10]+" "); } out.println(sb.toString()); } }else{ for(int ceng=1;ceng<=k/2;ceng++){ for(int i=0;i<n;i++){ for(int j=0;j<m;j++){ ans[i][j][ceng]=Integer.MAX_VALUE/3; for(int dr=0;dr<4;dr++){ int nx=i+dir[dr][0]; int ny=j+dir[dr][1]; if(nx<n&&ny<m&&nx>=0&&ny>=0){ ans[i][j][ceng]=Math.min(ans[i][j][ceng], ans[nx][ny][ceng-1]+arr[i*m+j][dr]); } } } } } for(int i=0;i<n;i++){ StringBuilder sb=new StringBuilder(""); for(int j=0;j<m;j++){ sb.append(ans[i][j][k/2]*2+" "); } out.println(sb.toString()); } } out.close(); } static class FastScanner { BufferedReader br=new BufferedReader(new InputStreamReader(System.in)); StringTokenizer st=new StringTokenizer(""); String next() { while (!st.hasMoreTokens()) try { st=new StringTokenizer(br.readLine()); } catch (IOException e) { e.printStackTrace(); } return st.nextToken(); } int nextInt() { return Integer.parseInt(next()); } int[] readIntArray(int n) { int[] a=new int[n]; for (int i=0; i<n; i++) a[i]=nextInt(); return a; } long[] readLongArray(int n) { long[] a=new long[n]; for (int i=0; i<n; i++) a[i]=nextLong(); return a; } long nextLong() { return Long.parseLong(next()); } } static class FastOutput implements AutoCloseable, Closeable, Appendable { private static final int THRESHOLD = 1 << 13; private final Writer os; private StringBuilder cache = new StringBuilder(THRESHOLD * 2); public FastOutput append(CharSequence csq) { cache.append(csq); return this; } public FastOutput append(CharSequence csq, int start, int end) { cache.append(csq, start, end); return this; } private void afterWrite() { if (cache.length() < THRESHOLD) { return; } flush(); } public FastOutput(Writer os) { this.os = os; } public FastOutput(OutputStream os) { this(new OutputStreamWriter(os)); } public FastOutput append(char c) { cache.append(c); afterWrite(); return this; } public FastOutput append(int c) { cache.append(c); afterWrite(); return this; } public FastOutput append(String c) { cache.append(c); afterWrite(); return this; } public FastOutput println(String c) { return append(c).println(); } public FastOutput println() { return append(System.lineSeparator()); } public FastOutput flush() { try { os.append(cache); os.flush(); cache.setLength(0); } catch (IOException e) { throw new UncheckedIOException(e); } return this; } public void close() { flush(); try { os.close(); } catch (IOException e) { throw new UncheckedIOException(e); } } public String toString() { return cache.toString(); } } } </CODE> <EVALUATION_RUBRIC> - O(n): The running time grows linearly with the input size n. - O(log(n)): The running time increases with the logarithm of the input size n. - O(nlog(n)): The running time increases with the product of n and logarithm of n. - non-polynomial: The running time increases non-polynomially with input size n, typically exponentially. - O(1): The running time does not change regardless of the input size n. - O(n^3): The running time increases with the cube of the input size n. - O(n^2): The running time increases with the square of the input size n. - others: The code does not clearly correspond to the listed classes or has an unclassified time complexity. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
1,443
3,753
3,353
import java.util.Scanner; public class prob1 { public static void main(String[] args) { Scanner input = new Scanner(System.in); String s = input.next(); int n = s.length(); int i = n-1; CharSequence temp; for(i = n-1; i > 0; i--) for(int j = 0 ; j <= n-i; j++) { temp = s.subSequence(j, i+j); if( s.substring(j+1, n).contains(temp) || s.substring(0, j+i-1).contains(temp)) { System.out.println(i); return; } } System.out.println(0); } }
O(n^3)
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n. </TASK> <CODE> import java.util.Scanner; public class prob1 { public static void main(String[] args) { Scanner input = new Scanner(System.in); String s = input.next(); int n = s.length(); int i = n-1; CharSequence temp; for(i = n-1; i > 0; i--) for(int j = 0 ; j <= n-i; j++) { temp = s.subSequence(j, i+j); if( s.substring(j+1, n).contains(temp) || s.substring(0, j+i-1).contains(temp)) { System.out.println(i); return; } } System.out.println(0); } } </CODE> <EVALUATION_RUBRIC> - O(n^2): The execution time ascends in proportion to the square of the input size n. - O(n): The execution time ascends in a one-to-one ratio with the input size n. - non-polynomial: The running time increases non-polynomially with input size n, typically exponentially. - O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially. - O(log(n)): The execution time ascends in proportion to the logarithm of the input size n. - O(1): The execution time is unaffected by the size of the input n. - O(n^3): The execution time ascends in proportion to the cube of the input size n. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n. </TASK> <CODE> import java.util.Scanner; public class prob1 { public static void main(String[] args) { Scanner input = new Scanner(System.in); String s = input.next(); int n = s.length(); int i = n-1; CharSequence temp; for(i = n-1; i > 0; i--) for(int j = 0 ; j <= n-i; j++) { temp = s.subSequence(j, i+j); if( s.substring(j+1, n).contains(temp) || s.substring(0, j+i-1).contains(temp)) { System.out.println(i); return; } } System.out.println(0); } } </CODE> <EVALUATION_RUBRIC> - O(n): The execution time ascends in a one-to-one ratio with the input size n. - others: The time complexity does not fit to any of the given categories or is ambiguous. - O(n^3): The execution time ascends in proportion to the cube of the input size n. - O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially. - O(log(n)): The execution time ascends in proportion to the logarithm of the input size n. - O(1): The execution time is unaffected by the size of the input n. - O(n^2): The execution time ascends in proportion to the square of the input size n. - non-polynomial: The running time increases non-polynomially with input size n, typically exponentially. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
507
3,347
3,442
import java.util.*; import java.io.*; import java.math.*; public class Main { public static Scanner scan = new Scanner(System.in); public static boolean bg = true; public static void main(String[] args) throws Exception { String k1 = scan.next(); HashSet<String> met = new HashSet(); String ans = ""; for (int i=1;i<=k1.length()-1;i++){ for (int j=0;j+i<=k1.length();j++){ String cur = k1.substring(j, j+i); if (!met.contains(cur)){ met.add(cur); } else { if (cur.length()>ans.length())ans=cur; } } } System.out.println(ans.length()); } }
O(n^3)
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n. </TASK> <CODE> import java.util.*; import java.io.*; import java.math.*; public class Main { public static Scanner scan = new Scanner(System.in); public static boolean bg = true; public static void main(String[] args) throws Exception { String k1 = scan.next(); HashSet<String> met = new HashSet(); String ans = ""; for (int i=1;i<=k1.length()-1;i++){ for (int j=0;j+i<=k1.length();j++){ String cur = k1.substring(j, j+i); if (!met.contains(cur)){ met.add(cur); } else { if (cur.length()>ans.length())ans=cur; } } } System.out.println(ans.length()); } } </CODE> <EVALUATION_RUBRIC> - O(1): The execution time is unaffected by the size of the input n. - O(log(n)): The execution time ascends in proportion to the logarithm of the input size n. - O(n): The execution time ascends in a one-to-one ratio with the input size n. - non-polynomial: The running time increases non-polynomially with input size n, typically exponentially. - O(n^3): The execution time ascends in proportion to the cube of the input size n. - O(n^2): The execution time ascends in proportion to the square of the input size n. - O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Classify the following Java code's worst-case time complexity according to its relationship to the input size n. </TASK> <CODE> import java.util.*; import java.io.*; import java.math.*; public class Main { public static Scanner scan = new Scanner(System.in); public static boolean bg = true; public static void main(String[] args) throws Exception { String k1 = scan.next(); HashSet<String> met = new HashSet(); String ans = ""; for (int i=1;i<=k1.length()-1;i++){ for (int j=0;j+i<=k1.length();j++){ String cur = k1.substring(j, j+i); if (!met.contains(cur)){ met.add(cur); } else { if (cur.length()>ans.length())ans=cur; } } } System.out.println(ans.length()); } } </CODE> <EVALUATION_RUBRIC> - others: The code does not clearly correspond to the listed classes or has an unclassified time complexity. - O(1): The running time does not change regardless of the input size n. - O(nlog(n)): The running time increases with the product of n and logarithm of n. - O(n): The running time grows linearly with the input size n. - O(n^2): The running time increases with the square of the input size n. - non-polynomial: The running time increases non-polynomially with input size n, typically exponentially. - O(log(n)): The running time increases with the logarithm of the input size n. - O(n^3): The running time increases with the cube of the input size n. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
511
3,436
1,913
import java.io.*; import java.util.*; import java.math.*; public class Main { BufferedReader br=new BufferedReader(new InputStreamReader(System.in)); StringTokenizer tokenizer=null; public static void main(String[] args) throws IOException { new Main().execute(); } void debug(Object...os) { System.out.println(Arrays.deepToString(os)); } int ni() throws IOException { return Integer.parseInt(ns()); } long nl() throws IOException { return Long.parseLong(ns()); } double nd() throws IOException { return Double.parseDouble(ns()); } String ns() throws IOException { while (tokenizer == null || !tokenizer.hasMoreTokens()) tokenizer = new StringTokenizer(br.readLine()); return tokenizer.nextToken(); } String nline() throws IOException { tokenizer=null; return br.readLine(); } //Main Code starts Here int totalCases, testNum; int sum; int n; int arr[]; void execute() throws IOException { totalCases = 1; for(testNum = 1; testNum <= totalCases; testNum++) { if(!input()) break; solve(); } } void solve() throws IOException { Arrays.sort(arr); int count = 0; int ans = 0; for(int i = n-1;i>=0;i--) { count+= arr[i]; if(count>sum-count) { ans = n-i; break; } } System.out.println(ans); } boolean input() throws IOException { n = ni(); sum = 0; arr = new int[n]; for(int i = 0;i<n;i++) { arr[i] = ni(); sum = sum+arr[i]; } return true; } }
O(nlog(n))
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n. </TASK> <CODE> import java.io.*; import java.util.*; import java.math.*; public class Main { BufferedReader br=new BufferedReader(new InputStreamReader(System.in)); StringTokenizer tokenizer=null; public static void main(String[] args) throws IOException { new Main().execute(); } void debug(Object...os) { System.out.println(Arrays.deepToString(os)); } int ni() throws IOException { return Integer.parseInt(ns()); } long nl() throws IOException { return Long.parseLong(ns()); } double nd() throws IOException { return Double.parseDouble(ns()); } String ns() throws IOException { while (tokenizer == null || !tokenizer.hasMoreTokens()) tokenizer = new StringTokenizer(br.readLine()); return tokenizer.nextToken(); } String nline() throws IOException { tokenizer=null; return br.readLine(); } //Main Code starts Here int totalCases, testNum; int sum; int n; int arr[]; void execute() throws IOException { totalCases = 1; for(testNum = 1; testNum <= totalCases; testNum++) { if(!input()) break; solve(); } } void solve() throws IOException { Arrays.sort(arr); int count = 0; int ans = 0; for(int i = n-1;i>=0;i--) { count+= arr[i]; if(count>sum-count) { ans = n-i; break; } } System.out.println(ans); } boolean input() throws IOException { n = ni(); sum = 0; arr = new int[n]; for(int i = 0;i<n;i++) { arr[i] = ni(); sum = sum+arr[i]; } return true; } } </CODE> <EVALUATION_RUBRIC> - O(1): The execution time is unaffected by the size of the input n. - O(n^3): The execution time ascends in proportion to the cube of the input size n. - O(n^2): The execution time ascends in proportion to the square of the input size n. - O(log(n)): The execution time ascends in proportion to the logarithm of the input size n. - O(n): The execution time ascends in a one-to-one ratio with the input size n. - non-polynomial: The running time increases non-polynomially with input size n, typically exponentially. - O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n. </TASK> <CODE> import java.io.*; import java.util.*; import java.math.*; public class Main { BufferedReader br=new BufferedReader(new InputStreamReader(System.in)); StringTokenizer tokenizer=null; public static void main(String[] args) throws IOException { new Main().execute(); } void debug(Object...os) { System.out.println(Arrays.deepToString(os)); } int ni() throws IOException { return Integer.parseInt(ns()); } long nl() throws IOException { return Long.parseLong(ns()); } double nd() throws IOException { return Double.parseDouble(ns()); } String ns() throws IOException { while (tokenizer == null || !tokenizer.hasMoreTokens()) tokenizer = new StringTokenizer(br.readLine()); return tokenizer.nextToken(); } String nline() throws IOException { tokenizer=null; return br.readLine(); } //Main Code starts Here int totalCases, testNum; int sum; int n; int arr[]; void execute() throws IOException { totalCases = 1; for(testNum = 1; testNum <= totalCases; testNum++) { if(!input()) break; solve(); } } void solve() throws IOException { Arrays.sort(arr); int count = 0; int ans = 0; for(int i = n-1;i>=0;i--) { count+= arr[i]; if(count>sum-count) { ans = n-i; break; } } System.out.println(ans); } boolean input() throws IOException { n = ni(); sum = 0; arr = new int[n]; for(int i = 0;i<n;i++) { arr[i] = ni(); sum = sum+arr[i]; } return true; } } </CODE> <EVALUATION_RUBRIC> - O(log(n)): The execution time ascends in proportion to the logarithm of the input size n. - non-polynomial: The running time increases non-polynomially with input size n, typically exponentially. - O(n^2): The execution time ascends in proportion to the square of the input size n. - O(n): The execution time ascends in a one-to-one ratio with the input size n. - O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially. - O(n^3): The execution time ascends in proportion to the cube of the input size n. - O(1): The execution time is unaffected by the size of the input n. - others: The time complexity does not fit to any of the given categories or is ambiguous. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
762
1,909
1,978
import java.io.*; import java.util.*; import java.math.*; public class Teams { BufferedReader in; PrintWriter out; StringTokenizer st; Random rnd; class Pair implements Comparable<Pair> { int a, b; public Pair(int a, int b) { this.a = a; this.b = b; } public int compareTo(Pair p) { if(a != p.a) { return -(a - p.a); } return (b - p.b); } } void solve() throws IOException { int n = nextInt(), k = nextInt(); Pair[] ps = new Pair[n]; for(int i = 0; i < n; i++) ps[i] = new Pair(nextInt(), nextInt()); Arrays.sort(ps); int curPlace = 1, res = 0; int[] places = new int[n]; for(int i = 0; i < n; i++) { if(i - 1 >= 0 && ps[i].compareTo(ps[i - 1]) != 0) ++curPlace; places[i] = curPlace; } for(int i = 0; i < n; i++) { if(places[i] == places[k - 1]) ++res; } out.println(res); } public static void main(String[] args) { new Teams().run(); } public void run() { try { final String className = this.getClass().getName().toLowerCase(); try { in = new BufferedReader(new FileReader(className + ".in")); out = new PrintWriter(new FileWriter(className + ".out")); } catch (FileNotFoundException e) { in = new BufferedReader(new InputStreamReader(System.in)); out = new PrintWriter(System.out); } rnd = new Random(); solve(); out.close(); } catch (IOException e) { e.printStackTrace(); System.exit(42); } } String nextToken() throws IOException { while (st == null || !st.hasMoreTokens()) { String line = in.readLine(); if (line == null) return null; st = new StringTokenizer(line); } return st.nextToken(); } int nextInt() throws IOException { return Integer.parseInt(nextToken()); } long nextLong() throws IOException { return Long.parseLong(nextToken()); } double nextDouble() throws IOException { return Double.parseDouble(nextToken()); } }
O(nlog(n))
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Determine the worst-case time complexity category of a given Java code based on input size n. </TASK> <CODE> import java.io.*; import java.util.*; import java.math.*; public class Teams { BufferedReader in; PrintWriter out; StringTokenizer st; Random rnd; class Pair implements Comparable<Pair> { int a, b; public Pair(int a, int b) { this.a = a; this.b = b; } public int compareTo(Pair p) { if(a != p.a) { return -(a - p.a); } return (b - p.b); } } void solve() throws IOException { int n = nextInt(), k = nextInt(); Pair[] ps = new Pair[n]; for(int i = 0; i < n; i++) ps[i] = new Pair(nextInt(), nextInt()); Arrays.sort(ps); int curPlace = 1, res = 0; int[] places = new int[n]; for(int i = 0; i < n; i++) { if(i - 1 >= 0 && ps[i].compareTo(ps[i - 1]) != 0) ++curPlace; places[i] = curPlace; } for(int i = 0; i < n; i++) { if(places[i] == places[k - 1]) ++res; } out.println(res); } public static void main(String[] args) { new Teams().run(); } public void run() { try { final String className = this.getClass().getName().toLowerCase(); try { in = new BufferedReader(new FileReader(className + ".in")); out = new PrintWriter(new FileWriter(className + ".out")); } catch (FileNotFoundException e) { in = new BufferedReader(new InputStreamReader(System.in)); out = new PrintWriter(System.out); } rnd = new Random(); solve(); out.close(); } catch (IOException e) { e.printStackTrace(); System.exit(42); } } String nextToken() throws IOException { while (st == null || !st.hasMoreTokens()) { String line = in.readLine(); if (line == null) return null; st = new StringTokenizer(line); } return st.nextToken(); } int nextInt() throws IOException { return Integer.parseInt(nextToken()); } long nextLong() throws IOException { return Long.parseLong(nextToken()); } double nextDouble() throws IOException { return Double.parseDouble(nextToken()); } } </CODE> <EVALUATION_RUBRIC> - O(n^2): The time complexity grows proportionally to the square of the input size. - O(1): The time complexity is constant to the input size n. - O(nlog(n)): The time complexity combines linear and logarithmic growth factors. - O(n): The time complexity increases proportionally to the input size n in a linear manner. - O(n^3): The time complexity scales proportionally to the cube of the input size. - non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially. - O(log(n)): The time complexity increases logarithmically in relation to the input size. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Classify the following Java code's worst-case time complexity according to its relationship to the input size n. </TASK> <CODE> import java.io.*; import java.util.*; import java.math.*; public class Teams { BufferedReader in; PrintWriter out; StringTokenizer st; Random rnd; class Pair implements Comparable<Pair> { int a, b; public Pair(int a, int b) { this.a = a; this.b = b; } public int compareTo(Pair p) { if(a != p.a) { return -(a - p.a); } return (b - p.b); } } void solve() throws IOException { int n = nextInt(), k = nextInt(); Pair[] ps = new Pair[n]; for(int i = 0; i < n; i++) ps[i] = new Pair(nextInt(), nextInt()); Arrays.sort(ps); int curPlace = 1, res = 0; int[] places = new int[n]; for(int i = 0; i < n; i++) { if(i - 1 >= 0 && ps[i].compareTo(ps[i - 1]) != 0) ++curPlace; places[i] = curPlace; } for(int i = 0; i < n; i++) { if(places[i] == places[k - 1]) ++res; } out.println(res); } public static void main(String[] args) { new Teams().run(); } public void run() { try { final String className = this.getClass().getName().toLowerCase(); try { in = new BufferedReader(new FileReader(className + ".in")); out = new PrintWriter(new FileWriter(className + ".out")); } catch (FileNotFoundException e) { in = new BufferedReader(new InputStreamReader(System.in)); out = new PrintWriter(System.out); } rnd = new Random(); solve(); out.close(); } catch (IOException e) { e.printStackTrace(); System.exit(42); } } String nextToken() throws IOException { while (st == null || !st.hasMoreTokens()) { String line = in.readLine(); if (line == null) return null; st = new StringTokenizer(line); } return st.nextToken(); } int nextInt() throws IOException { return Integer.parseInt(nextToken()); } long nextLong() throws IOException { return Long.parseLong(nextToken()); } double nextDouble() throws IOException { return Double.parseDouble(nextToken()); } } </CODE> <EVALUATION_RUBRIC> - others: The code does not clearly correspond to the listed classes or has an unclassified time complexity. - O(n^2): The running time increases with the square of the input size n. - O(log(n)): The running time increases with the logarithm of the input size n. - O(1): The running time does not change regardless of the input size n. - O(nlog(n)): The running time increases with the product of n and logarithm of n. - non-polynomial: The running time increases non-polynomially with input size n, typically exponentially. - O(n^3): The running time increases with the cube of the input size n. - O(n): The running time grows linearly with the input size n. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
864
1,974
67
import java.util.*; import java.io.*; public class Waw{ public static void main(String[] args) throws Exception { Scanner sc = new Scanner(System.in); int n = sc.nextInt(); long[] a = new long[n]; for(int i=0;i<n;i++) a[i] = sc.nextLong(); long[] p = new long[n]; p[n-1] = a[n-1]; for(int i=n-2;i>=0;i--){ if(a[i]<p[i+1]) p[i] = p[i+1]-1; else p[i] = a[i]; } long max = p[0]; long res = p[0] - a[0]; for(int i=1;i<n;i++){ if(max < p[i]) max = p[i]; res += max - a[i]; } System.out.println(res); } }
O(n)
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Determine the worst-case time complexity category of a given Java code based on input size n. </TASK> <CODE> import java.util.*; import java.io.*; public class Waw{ public static void main(String[] args) throws Exception { Scanner sc = new Scanner(System.in); int n = sc.nextInt(); long[] a = new long[n]; for(int i=0;i<n;i++) a[i] = sc.nextLong(); long[] p = new long[n]; p[n-1] = a[n-1]; for(int i=n-2;i>=0;i--){ if(a[i]<p[i+1]) p[i] = p[i+1]-1; else p[i] = a[i]; } long max = p[0]; long res = p[0] - a[0]; for(int i=1;i<n;i++){ if(max < p[i]) max = p[i]; res += max - a[i]; } System.out.println(res); } } </CODE> <EVALUATION_RUBRIC> - O(n): The time complexity increases proportionally to the input size n in a linear manner. - O(n^3): The time complexity scales proportionally to the cube of the input size. - O(log(n)): The time complexity increases logarithmically in relation to the input size. - non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially. - O(1): The time complexity is constant to the input size n. - O(nlog(n)): The time complexity combines linear and logarithmic growth factors. - O(n^2): The time complexity grows proportionally to the square of the input size. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Classify the following Java code's worst-case time complexity according to its relationship to the input size n. </TASK> <CODE> import java.util.*; import java.io.*; public class Waw{ public static void main(String[] args) throws Exception { Scanner sc = new Scanner(System.in); int n = sc.nextInt(); long[] a = new long[n]; for(int i=0;i<n;i++) a[i] = sc.nextLong(); long[] p = new long[n]; p[n-1] = a[n-1]; for(int i=n-2;i>=0;i--){ if(a[i]<p[i+1]) p[i] = p[i+1]-1; else p[i] = a[i]; } long max = p[0]; long res = p[0] - a[0]; for(int i=1;i<n;i++){ if(max < p[i]) max = p[i]; res += max - a[i]; } System.out.println(res); } } </CODE> <EVALUATION_RUBRIC> - non-polynomial: The running time increases non-polynomially with input size n, typically exponentially. - O(n^2): The running time increases with the square of the input size n. - others: The code does not clearly correspond to the listed classes or has an unclassified time complexity. - O(n^3): The running time increases with the cube of the input size n. - O(log(n)): The running time increases with the logarithm of the input size n. - O(1): The running time does not change regardless of the input size n. - O(nlog(n)): The running time increases with the product of n and logarithm of n. - O(n): The running time grows linearly with the input size n. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
525
67
3,412
import java.util.Scanner; public class GivenString { public static void main(String[] args) { Scanner input = new Scanner(System.in); String s = input.nextLine(); int max = 0; for(int i = 0; i < s.length(); i++) { for(int j = i + 1; j <= s.length(); j++) { String tmp = s.substring(i, j); int match = 0; for(int k = 0; k + tmp.length() <= s.length(); k++) { if(tmp.equals(s.substring(k, k + tmp.length()))) { match++; } } if(match >= 2) { max = Math.max(max, tmp.length()); } } } System.out.println(max); System.exit(0); } }
O(n^3)
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n. </TASK> <CODE> import java.util.Scanner; public class GivenString { public static void main(String[] args) { Scanner input = new Scanner(System.in); String s = input.nextLine(); int max = 0; for(int i = 0; i < s.length(); i++) { for(int j = i + 1; j <= s.length(); j++) { String tmp = s.substring(i, j); int match = 0; for(int k = 0; k + tmp.length() <= s.length(); k++) { if(tmp.equals(s.substring(k, k + tmp.length()))) { match++; } } if(match >= 2) { max = Math.max(max, tmp.length()); } } } System.out.println(max); System.exit(0); } } </CODE> <EVALUATION_RUBRIC> - O(n^2): The execution time ascends in proportion to the square of the input size n. - O(log(n)): The execution time ascends in proportion to the logarithm of the input size n. - O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially. - O(1): The execution time is unaffected by the size of the input n. - non-polynomial: The running time increases non-polynomially with input size n, typically exponentially. - O(n): The execution time ascends in a one-to-one ratio with the input size n. - O(n^3): The execution time ascends in proportion to the cube of the input size n. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Determine the worst-case time complexity category of a given Java code based on input size n. </TASK> <CODE> import java.util.Scanner; public class GivenString { public static void main(String[] args) { Scanner input = new Scanner(System.in); String s = input.nextLine(); int max = 0; for(int i = 0; i < s.length(); i++) { for(int j = i + 1; j <= s.length(); j++) { String tmp = s.substring(i, j); int match = 0; for(int k = 0; k + tmp.length() <= s.length(); k++) { if(tmp.equals(s.substring(k, k + tmp.length()))) { match++; } } if(match >= 2) { max = Math.max(max, tmp.length()); } } } System.out.println(max); System.exit(0); } } </CODE> <EVALUATION_RUBRIC> - O(n^2): The time complexity grows proportionally to the square of the input size. - O(n): The time complexity increases proportionally to the input size n in a linear manner. - non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially. - O(nlog(n)): The time complexity combines linear and logarithmic growth factors. - O(log(n)): The time complexity increases logarithmically in relation to the input size. - O(n^3): The time complexity scales proportionally to the cube of the input size. - O(1): The time complexity is constant to the input size n. - others: The time complexity does not fit any of the above categories or cannot be clearly classified. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
529
3,406
3,538
import java.io.*; import java.util.*; public class G{ public static void main(String[] args) { InputStream inputStream = System.in; OutputStream outputStream = System.out; InputReader in = new InputReader(inputStream); PrintWriter out = new PrintWriter(outputStream); TaskE solver = new TaskE(); solver.solve(1, in, out); out.flush();out.close(); } static class TaskE { class MinCostMaxFlow{ ArrayList<Edge> al[]; Edge ja[][]; int d[]; // shortest distances int N , S , T , maxFlow ; int minCost; final int gmax = Integer.MAX_VALUE / 100; int edges = 0; class Edge{ int u , flow, rid, cost; Edge(int a, int b, int c, int d){u = a; flow = b; cost = c; rid = d;} } void addEdge(int u , int v , int flow , int cost){ int lu = al[u].size(), lv = al[v].size(); al[u].add(new Edge(v, flow, cost, lv)); al[v].add(new Edge(u, 0, -cost, lu)); } void convertToArray(){ ja = new Edge[N][]; for(int i = 0; i < N; i++){ int sz = al[i].size(); ja[i] = new Edge[sz]; for(int j = 0; j < sz; j++){ ja[i][j] = al[i].get(j); } al[i].clear(); } } MinCostMaxFlow(int n , int source , int sink){ N = n; S = source; T = sink; maxFlow = 0; minCost = 0; al = new ArrayList[N]; d = new int[N]; for(int i = 0; i < N; i++){ al[i] = new ArrayList<>(); } } boolean BellmanFord(boolean check){ d[0] = 0; for(int i = 0; i < N - 1; i++){ for(int j = 0; j < N; j++){ for(Edge e : ja[j]){ if(e.flow == 0)continue; // not to consider reverse edges d[e.u] = Math.min(d[e.u] , d[j] + e.cost); } } } if(check){// check for negative cycles for(int j = 0; j < N; j++){ for(Edge e : ja[j]){ if(e.flow == 0)continue; if(d[j] + e.cost < d[e.u]) return false; } } }return true; } int node[]; // present node int visit[]; // 0 -> not added 1 -> not removed 2 -> removed int prv[], prve[]; // previous node for augmentation int dist[]; // min dist boolean simple(){ node = new int[N]; visit = new int[N]; prv = new int[N]; prve = new int[N]; dist = new int[N]; Arrays.fill(dist , gmax); node[0] = S; dist[0] = 0; int front = 1, back = 0; while(front != back){ int u = node[back++]; int distu = dist[u]; if(back == N)back = 0; visit[u] = 2; for(int i = 0; i < ja[u].length; i++){ Edge e = ja[u][i]; if(e.flow == 0)continue; int cdist = distu + e.cost; // no need of reduced cost if(cdist < dist[e.u]){ if(visit[e.u] == 0){ node[front] = e.u; if(++front == N)front = 0; }else if(visit[e.u] == 2){ if(--back == -1)back += N; node[back] = e.u; } visit[e.u] = 1; prve[e.u] = i; prv[e.u] = u; dist[e.u] = cdist; } } } return visit[T] != 0; } class pair{ int F; int S; pair(int a, int b){F = a; S = b;} } boolean dijkstra(){ visit = new int[N]; prv = new int[N]; prve = new int[N]; dist = new int[N]; Arrays.fill(dist, gmax); PriorityQueue<pair> pq = new PriorityQueue<>((A, B) -> Double.compare(A.S , B.S)); pq.add(new pair(S , 0)); dist[0] = 0; o : while(!pq.isEmpty()){ pair p = pq.poll(); while(dist[p.F] < p.S){ if(pq.isEmpty()) break o; // had a better val p = pq.poll(); } visit[p.F] = 2; for(int i = 0; i < ja[p.F].length; i++){ Edge e = ja[p.F][i]; if(e.flow == 0)continue; // important int cdist = p.S + (e.cost + d[p.F] - d[e.u]); // reduced cost if(cdist < dist[e.u]){ if(visit[e.u] == 2) return false; pq.add(new pair(e.u , cdist)); dist[e.u] = cdist; prv[e.u] = p.F; prve[e.u] = i; visit[e.u] = 1; } } } return visit[T] != 0; } int augment(){ int p = T; int min = gmax; while(p != 0){ int pp = prv[p], pe = prve[p]; int val = ja[pp][pe].flow; min = Math.min(min , val); p = pp; } p = T; while(p != 0){ int pp = prv[p], pe = prve[p]; ja[pp][pe].flow -= min; ja[p][ja[pp][pe].rid].flow += min; p = pp; } maxFlow += min; return min; } // if(dist[T] >= 0)return true; // non contributing flow boolean calSimple(){ // uncomment to check for negative cycles /* boolean possible = BellmanFord(true); if(!possible) return false; */ while(simple()){ /*if(dist[T] >= 0)return true;*/ minCost += dist[T] * augment(); } return true; } void updPotential(){ for(int i = 0; i < N; i++){ if(visit[i] != 0){ d[i] += dist[i] - dist[S]; } } } boolean calWithPotential(){ // set true to check for negative cycles // boolean possible = BellmanFord(false); // if(!possible) return false; while(dijkstra()){ int min = dist[T] + d[T] - d[S]; // getting back the original cost /*if(dist[T] >= 0)return true;*/ minCost += min * augment(); updPotential(); } return true; } } int n , m, k, c, d, a[], f[]; public void solve(int testNumber, InputReader in, PrintWriter out) { n = in.nextInt(); m = in.nextInt(); k = in.nextInt(); c = in.nextInt(); d= in.nextInt(); // S + n int maxl = n + k, T = n * maxl + 1; MinCostMaxFlow ans = new MinCostMaxFlow(T + 1, 0, T); a = new int[k + 1]; f = new int[n + 1]; for(int i = 1; i <= k; i++){ a[i] = in.nextInt(); f[a[i]]++; } for(int i = 1; i <= n; i++){ if(f[i] == 0)continue; ans.addEdge(0 , i , f[i], 0); } for(int i = 2; i <= n; i++){ for(int l = 0; l < maxl - 1; l++){ ans.addEdge(l * n + i , (l + 1) * n + i, k, c); } } for(int i = 1; i <= m; i++){ int a = in.nextInt(), b = in.nextInt(); for(int l = 0; l < maxl - 1; l++){ for(int p = 1; p <= k; p++){ if(a != 1) ans.addEdge(n * l + a, n * (l + 1) + b, 1, d * (2 * p - 1) + c); if(b != 1) ans.addEdge(n * l + b, n * (l + 1) + a, 1, d * (2 * p - 1) + c); } } } for(int l = 1; l < maxl; l++){ ans.addEdge(l * n + 1, T, k, 0); } ans.convertToArray(); ans.calWithPotential(); // ans.calSimple(); if(ans.maxFlow != k){ out.println("BUG"); }else{ out.println((int)ans.minCost); } } } static class InputReader { BufferedReader br; StringTokenizer st; public InputReader(InputStream stream) { br = new BufferedReader(new InputStreamReader(stream)); st = null; } String next() { while (st == null || !st.hasMoreTokens()) { String s = null; try { s = br.readLine(); } catch (IOException e) { e.printStackTrace(); } if (s == null) return null; st = new StringTokenizer(s); } return st.nextToken(); } boolean hasMoreTokens() { while (st == null || !st.hasMoreTokens()) { String s = null; try { s = br.readLine(); } catch (IOException e) { e.printStackTrace(); } if (s == null) return false; st = new StringTokenizer(s); } return true; } public int nextInt() { return Integer.parseInt(next()); } public long nextLong() { return Long.parseLong(next()); } public double nextDouble() { return Double.parseDouble(next()); } } }
O(n^3)
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Determine the worst-case time complexity category of a given Java code based on input size n. </TASK> <CODE> import java.io.*; import java.util.*; public class G{ public static void main(String[] args) { InputStream inputStream = System.in; OutputStream outputStream = System.out; InputReader in = new InputReader(inputStream); PrintWriter out = new PrintWriter(outputStream); TaskE solver = new TaskE(); solver.solve(1, in, out); out.flush();out.close(); } static class TaskE { class MinCostMaxFlow{ ArrayList<Edge> al[]; Edge ja[][]; int d[]; // shortest distances int N , S , T , maxFlow ; int minCost; final int gmax = Integer.MAX_VALUE / 100; int edges = 0; class Edge{ int u , flow, rid, cost; Edge(int a, int b, int c, int d){u = a; flow = b; cost = c; rid = d;} } void addEdge(int u , int v , int flow , int cost){ int lu = al[u].size(), lv = al[v].size(); al[u].add(new Edge(v, flow, cost, lv)); al[v].add(new Edge(u, 0, -cost, lu)); } void convertToArray(){ ja = new Edge[N][]; for(int i = 0; i < N; i++){ int sz = al[i].size(); ja[i] = new Edge[sz]; for(int j = 0; j < sz; j++){ ja[i][j] = al[i].get(j); } al[i].clear(); } } MinCostMaxFlow(int n , int source , int sink){ N = n; S = source; T = sink; maxFlow = 0; minCost = 0; al = new ArrayList[N]; d = new int[N]; for(int i = 0; i < N; i++){ al[i] = new ArrayList<>(); } } boolean BellmanFord(boolean check){ d[0] = 0; for(int i = 0; i < N - 1; i++){ for(int j = 0; j < N; j++){ for(Edge e : ja[j]){ if(e.flow == 0)continue; // not to consider reverse edges d[e.u] = Math.min(d[e.u] , d[j] + e.cost); } } } if(check){// check for negative cycles for(int j = 0; j < N; j++){ for(Edge e : ja[j]){ if(e.flow == 0)continue; if(d[j] + e.cost < d[e.u]) return false; } } }return true; } int node[]; // present node int visit[]; // 0 -> not added 1 -> not removed 2 -> removed int prv[], prve[]; // previous node for augmentation int dist[]; // min dist boolean simple(){ node = new int[N]; visit = new int[N]; prv = new int[N]; prve = new int[N]; dist = new int[N]; Arrays.fill(dist , gmax); node[0] = S; dist[0] = 0; int front = 1, back = 0; while(front != back){ int u = node[back++]; int distu = dist[u]; if(back == N)back = 0; visit[u] = 2; for(int i = 0; i < ja[u].length; i++){ Edge e = ja[u][i]; if(e.flow == 0)continue; int cdist = distu + e.cost; // no need of reduced cost if(cdist < dist[e.u]){ if(visit[e.u] == 0){ node[front] = e.u; if(++front == N)front = 0; }else if(visit[e.u] == 2){ if(--back == -1)back += N; node[back] = e.u; } visit[e.u] = 1; prve[e.u] = i; prv[e.u] = u; dist[e.u] = cdist; } } } return visit[T] != 0; } class pair{ int F; int S; pair(int a, int b){F = a; S = b;} } boolean dijkstra(){ visit = new int[N]; prv = new int[N]; prve = new int[N]; dist = new int[N]; Arrays.fill(dist, gmax); PriorityQueue<pair> pq = new PriorityQueue<>((A, B) -> Double.compare(A.S , B.S)); pq.add(new pair(S , 0)); dist[0] = 0; o : while(!pq.isEmpty()){ pair p = pq.poll(); while(dist[p.F] < p.S){ if(pq.isEmpty()) break o; // had a better val p = pq.poll(); } visit[p.F] = 2; for(int i = 0; i < ja[p.F].length; i++){ Edge e = ja[p.F][i]; if(e.flow == 0)continue; // important int cdist = p.S + (e.cost + d[p.F] - d[e.u]); // reduced cost if(cdist < dist[e.u]){ if(visit[e.u] == 2) return false; pq.add(new pair(e.u , cdist)); dist[e.u] = cdist; prv[e.u] = p.F; prve[e.u] = i; visit[e.u] = 1; } } } return visit[T] != 0; } int augment(){ int p = T; int min = gmax; while(p != 0){ int pp = prv[p], pe = prve[p]; int val = ja[pp][pe].flow; min = Math.min(min , val); p = pp; } p = T; while(p != 0){ int pp = prv[p], pe = prve[p]; ja[pp][pe].flow -= min; ja[p][ja[pp][pe].rid].flow += min; p = pp; } maxFlow += min; return min; } // if(dist[T] >= 0)return true; // non contributing flow boolean calSimple(){ // uncomment to check for negative cycles /* boolean possible = BellmanFord(true); if(!possible) return false; */ while(simple()){ /*if(dist[T] >= 0)return true;*/ minCost += dist[T] * augment(); } return true; } void updPotential(){ for(int i = 0; i < N; i++){ if(visit[i] != 0){ d[i] += dist[i] - dist[S]; } } } boolean calWithPotential(){ // set true to check for negative cycles // boolean possible = BellmanFord(false); // if(!possible) return false; while(dijkstra()){ int min = dist[T] + d[T] - d[S]; // getting back the original cost /*if(dist[T] >= 0)return true;*/ minCost += min * augment(); updPotential(); } return true; } } int n , m, k, c, d, a[], f[]; public void solve(int testNumber, InputReader in, PrintWriter out) { n = in.nextInt(); m = in.nextInt(); k = in.nextInt(); c = in.nextInt(); d= in.nextInt(); // S + n int maxl = n + k, T = n * maxl + 1; MinCostMaxFlow ans = new MinCostMaxFlow(T + 1, 0, T); a = new int[k + 1]; f = new int[n + 1]; for(int i = 1; i <= k; i++){ a[i] = in.nextInt(); f[a[i]]++; } for(int i = 1; i <= n; i++){ if(f[i] == 0)continue; ans.addEdge(0 , i , f[i], 0); } for(int i = 2; i <= n; i++){ for(int l = 0; l < maxl - 1; l++){ ans.addEdge(l * n + i , (l + 1) * n + i, k, c); } } for(int i = 1; i <= m; i++){ int a = in.nextInt(), b = in.nextInt(); for(int l = 0; l < maxl - 1; l++){ for(int p = 1; p <= k; p++){ if(a != 1) ans.addEdge(n * l + a, n * (l + 1) + b, 1, d * (2 * p - 1) + c); if(b != 1) ans.addEdge(n * l + b, n * (l + 1) + a, 1, d * (2 * p - 1) + c); } } } for(int l = 1; l < maxl; l++){ ans.addEdge(l * n + 1, T, k, 0); } ans.convertToArray(); ans.calWithPotential(); // ans.calSimple(); if(ans.maxFlow != k){ out.println("BUG"); }else{ out.println((int)ans.minCost); } } } static class InputReader { BufferedReader br; StringTokenizer st; public InputReader(InputStream stream) { br = new BufferedReader(new InputStreamReader(stream)); st = null; } String next() { while (st == null || !st.hasMoreTokens()) { String s = null; try { s = br.readLine(); } catch (IOException e) { e.printStackTrace(); } if (s == null) return null; st = new StringTokenizer(s); } return st.nextToken(); } boolean hasMoreTokens() { while (st == null || !st.hasMoreTokens()) { String s = null; try { s = br.readLine(); } catch (IOException e) { e.printStackTrace(); } if (s == null) return false; st = new StringTokenizer(s); } return true; } public int nextInt() { return Integer.parseInt(next()); } public long nextLong() { return Long.parseLong(next()); } public double nextDouble() { return Double.parseDouble(next()); } } } </CODE> <EVALUATION_RUBRIC> - non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially. - O(1): The time complexity is constant to the input size n. - O(n^3): The time complexity scales proportionally to the cube of the input size. - O(log(n)): The time complexity increases logarithmically in relation to the input size. - O(n): The time complexity increases proportionally to the input size n in a linear manner. - O(nlog(n)): The time complexity combines linear and logarithmic growth factors. - O(n^2): The time complexity grows proportionally to the square of the input size. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Determine the worst-case time complexity category of a given Java code based on input size n. </TASK> <CODE> import java.io.*; import java.util.*; public class G{ public static void main(String[] args) { InputStream inputStream = System.in; OutputStream outputStream = System.out; InputReader in = new InputReader(inputStream); PrintWriter out = new PrintWriter(outputStream); TaskE solver = new TaskE(); solver.solve(1, in, out); out.flush();out.close(); } static class TaskE { class MinCostMaxFlow{ ArrayList<Edge> al[]; Edge ja[][]; int d[]; // shortest distances int N , S , T , maxFlow ; int minCost; final int gmax = Integer.MAX_VALUE / 100; int edges = 0; class Edge{ int u , flow, rid, cost; Edge(int a, int b, int c, int d){u = a; flow = b; cost = c; rid = d;} } void addEdge(int u , int v , int flow , int cost){ int lu = al[u].size(), lv = al[v].size(); al[u].add(new Edge(v, flow, cost, lv)); al[v].add(new Edge(u, 0, -cost, lu)); } void convertToArray(){ ja = new Edge[N][]; for(int i = 0; i < N; i++){ int sz = al[i].size(); ja[i] = new Edge[sz]; for(int j = 0; j < sz; j++){ ja[i][j] = al[i].get(j); } al[i].clear(); } } MinCostMaxFlow(int n , int source , int sink){ N = n; S = source; T = sink; maxFlow = 0; minCost = 0; al = new ArrayList[N]; d = new int[N]; for(int i = 0; i < N; i++){ al[i] = new ArrayList<>(); } } boolean BellmanFord(boolean check){ d[0] = 0; for(int i = 0; i < N - 1; i++){ for(int j = 0; j < N; j++){ for(Edge e : ja[j]){ if(e.flow == 0)continue; // not to consider reverse edges d[e.u] = Math.min(d[e.u] , d[j] + e.cost); } } } if(check){// check for negative cycles for(int j = 0; j < N; j++){ for(Edge e : ja[j]){ if(e.flow == 0)continue; if(d[j] + e.cost < d[e.u]) return false; } } }return true; } int node[]; // present node int visit[]; // 0 -> not added 1 -> not removed 2 -> removed int prv[], prve[]; // previous node for augmentation int dist[]; // min dist boolean simple(){ node = new int[N]; visit = new int[N]; prv = new int[N]; prve = new int[N]; dist = new int[N]; Arrays.fill(dist , gmax); node[0] = S; dist[0] = 0; int front = 1, back = 0; while(front != back){ int u = node[back++]; int distu = dist[u]; if(back == N)back = 0; visit[u] = 2; for(int i = 0; i < ja[u].length; i++){ Edge e = ja[u][i]; if(e.flow == 0)continue; int cdist = distu + e.cost; // no need of reduced cost if(cdist < dist[e.u]){ if(visit[e.u] == 0){ node[front] = e.u; if(++front == N)front = 0; }else if(visit[e.u] == 2){ if(--back == -1)back += N; node[back] = e.u; } visit[e.u] = 1; prve[e.u] = i; prv[e.u] = u; dist[e.u] = cdist; } } } return visit[T] != 0; } class pair{ int F; int S; pair(int a, int b){F = a; S = b;} } boolean dijkstra(){ visit = new int[N]; prv = new int[N]; prve = new int[N]; dist = new int[N]; Arrays.fill(dist, gmax); PriorityQueue<pair> pq = new PriorityQueue<>((A, B) -> Double.compare(A.S , B.S)); pq.add(new pair(S , 0)); dist[0] = 0; o : while(!pq.isEmpty()){ pair p = pq.poll(); while(dist[p.F] < p.S){ if(pq.isEmpty()) break o; // had a better val p = pq.poll(); } visit[p.F] = 2; for(int i = 0; i < ja[p.F].length; i++){ Edge e = ja[p.F][i]; if(e.flow == 0)continue; // important int cdist = p.S + (e.cost + d[p.F] - d[e.u]); // reduced cost if(cdist < dist[e.u]){ if(visit[e.u] == 2) return false; pq.add(new pair(e.u , cdist)); dist[e.u] = cdist; prv[e.u] = p.F; prve[e.u] = i; visit[e.u] = 1; } } } return visit[T] != 0; } int augment(){ int p = T; int min = gmax; while(p != 0){ int pp = prv[p], pe = prve[p]; int val = ja[pp][pe].flow; min = Math.min(min , val); p = pp; } p = T; while(p != 0){ int pp = prv[p], pe = prve[p]; ja[pp][pe].flow -= min; ja[p][ja[pp][pe].rid].flow += min; p = pp; } maxFlow += min; return min; } // if(dist[T] >= 0)return true; // non contributing flow boolean calSimple(){ // uncomment to check for negative cycles /* boolean possible = BellmanFord(true); if(!possible) return false; */ while(simple()){ /*if(dist[T] >= 0)return true;*/ minCost += dist[T] * augment(); } return true; } void updPotential(){ for(int i = 0; i < N; i++){ if(visit[i] != 0){ d[i] += dist[i] - dist[S]; } } } boolean calWithPotential(){ // set true to check for negative cycles // boolean possible = BellmanFord(false); // if(!possible) return false; while(dijkstra()){ int min = dist[T] + d[T] - d[S]; // getting back the original cost /*if(dist[T] >= 0)return true;*/ minCost += min * augment(); updPotential(); } return true; } } int n , m, k, c, d, a[], f[]; public void solve(int testNumber, InputReader in, PrintWriter out) { n = in.nextInt(); m = in.nextInt(); k = in.nextInt(); c = in.nextInt(); d= in.nextInt(); // S + n int maxl = n + k, T = n * maxl + 1; MinCostMaxFlow ans = new MinCostMaxFlow(T + 1, 0, T); a = new int[k + 1]; f = new int[n + 1]; for(int i = 1; i <= k; i++){ a[i] = in.nextInt(); f[a[i]]++; } for(int i = 1; i <= n; i++){ if(f[i] == 0)continue; ans.addEdge(0 , i , f[i], 0); } for(int i = 2; i <= n; i++){ for(int l = 0; l < maxl - 1; l++){ ans.addEdge(l * n + i , (l + 1) * n + i, k, c); } } for(int i = 1; i <= m; i++){ int a = in.nextInt(), b = in.nextInt(); for(int l = 0; l < maxl - 1; l++){ for(int p = 1; p <= k; p++){ if(a != 1) ans.addEdge(n * l + a, n * (l + 1) + b, 1, d * (2 * p - 1) + c); if(b != 1) ans.addEdge(n * l + b, n * (l + 1) + a, 1, d * (2 * p - 1) + c); } } } for(int l = 1; l < maxl; l++){ ans.addEdge(l * n + 1, T, k, 0); } ans.convertToArray(); ans.calWithPotential(); // ans.calSimple(); if(ans.maxFlow != k){ out.println("BUG"); }else{ out.println((int)ans.minCost); } } } static class InputReader { BufferedReader br; StringTokenizer st; public InputReader(InputStream stream) { br = new BufferedReader(new InputStreamReader(stream)); st = null; } String next() { while (st == null || !st.hasMoreTokens()) { String s = null; try { s = br.readLine(); } catch (IOException e) { e.printStackTrace(); } if (s == null) return null; st = new StringTokenizer(s); } return st.nextToken(); } boolean hasMoreTokens() { while (st == null || !st.hasMoreTokens()) { String s = null; try { s = br.readLine(); } catch (IOException e) { e.printStackTrace(); } if (s == null) return false; st = new StringTokenizer(s); } return true; } public int nextInt() { return Integer.parseInt(next()); } public long nextLong() { return Long.parseLong(next()); } public double nextDouble() { return Double.parseDouble(next()); } } } </CODE> <EVALUATION_RUBRIC> - O(n^3): The time complexity scales proportionally to the cube of the input size. - others: The time complexity does not fit any of the above categories or cannot be clearly classified. - O(nlog(n)): The time complexity combines linear and logarithmic growth factors. - O(n): The time complexity increases proportionally to the input size n in a linear manner. - O(log(n)): The time complexity increases logarithmically in relation to the input size. - O(n^2): The time complexity grows proportionally to the square of the input size. - non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially. - O(1): The time complexity is constant to the input size n. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
2,706
3,531
1,549
import java.util.Arrays; import java.util.HashSet; import java.util.Scanner; /* * To change this template, choose Tools | Templates * and open the template in the editor. */ /** * * @author NAO93 */ public class a { public static void main(String[] args) { Scanner in = new Scanner(System.in); int n = in.nextInt(); long k = in.nextLong(); Long []a = new Long[n]; for (int i = 0; i<n; i++) a[i] = in.nextLong(); HashSet<Long> hash = new HashSet<Long>(); Arrays.sort(a); for (int i = 0; i<n; i++) if (!hash.contains(a[i])){ hash.add(a[i] * k); } System.out.println(hash.size()); } }
O(nlog(n))
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n. </TASK> <CODE> import java.util.Arrays; import java.util.HashSet; import java.util.Scanner; /* * To change this template, choose Tools | Templates * and open the template in the editor. */ /** * * @author NAO93 */ public class a { public static void main(String[] args) { Scanner in = new Scanner(System.in); int n = in.nextInt(); long k = in.nextLong(); Long []a = new Long[n]; for (int i = 0; i<n; i++) a[i] = in.nextLong(); HashSet<Long> hash = new HashSet<Long>(); Arrays.sort(a); for (int i = 0; i<n; i++) if (!hash.contains(a[i])){ hash.add(a[i] * k); } System.out.println(hash.size()); } } </CODE> <EVALUATION_RUBRIC> - O(log(n)): The execution time ascends in proportion to the logarithm of the input size n. - O(1): The execution time is unaffected by the size of the input n. - O(n^3): The execution time ascends in proportion to the cube of the input size n. - O(n): The execution time ascends in a one-to-one ratio with the input size n. - O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially. - O(n^2): The execution time ascends in proportion to the square of the input size n. - non-polynomial: The running time increases non-polynomially with input size n, typically exponentially. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Classify the following Java code's worst-case time complexity according to its relationship to the input size n. </TASK> <CODE> import java.util.Arrays; import java.util.HashSet; import java.util.Scanner; /* * To change this template, choose Tools | Templates * and open the template in the editor. */ /** * * @author NAO93 */ public class a { public static void main(String[] args) { Scanner in = new Scanner(System.in); int n = in.nextInt(); long k = in.nextLong(); Long []a = new Long[n]; for (int i = 0; i<n; i++) a[i] = in.nextLong(); HashSet<Long> hash = new HashSet<Long>(); Arrays.sort(a); for (int i = 0; i<n; i++) if (!hash.contains(a[i])){ hash.add(a[i] * k); } System.out.println(hash.size()); } } </CODE> <EVALUATION_RUBRIC> - O(n^3): The running time increases with the cube of the input size n. - O(nlog(n)): The running time increases with the product of n and logarithm of n. - O(log(n)): The running time increases with the logarithm of the input size n. - O(1): The running time does not change regardless of the input size n. - non-polynomial: The running time increases non-polynomially with input size n, typically exponentially. - O(n): The running time grows linearly with the input size n. - O(n^2): The running time increases with the square of the input size n. - others: The code does not clearly correspond to the listed classes or has an unclassified time complexity. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
536
1,547
768
import java.io.BufferedReader; import java.io.BufferedWriter; import java.io.IOException; import java.io.InputStreamReader; import java.io.OutputStreamWriter; import java.io.PrintWriter; import java.util.Arrays; import java.util.StringTokenizer; public class C { static StringTokenizer st; static BufferedReader br; static PrintWriter pw; public static void main(String[] args) throws IOException { br = new BufferedReader(new InputStreamReader(System.in)); pw = new PrintWriter(new BufferedWriter(new OutputStreamWriter(System.out))); int n = nextInt(); char[]a = next().toCharArray(); int[]cnt = new int[256]; for (int i = 0; i < n; i++) { cnt[a[i]]++; } int alldiff = 0; for (int i = 0; i < 256; i++) { if (cnt[i] > 0) alldiff++; } Arrays.fill(cnt, 0); int diff = 0, right = -1, ans = n+5; for (int i = 0; i < n; i++) { if (right < i) { cnt[a[i]]++; diff = 1; right = i; } while (right < n-1 && diff < alldiff) { right++; cnt[a[right]]++; if (cnt[a[right]]==1) diff++; } if (diff==alldiff && right-i+1 < ans) { ans = right-i+1; } cnt[a[i]]--; if (cnt[a[i]]==0) diff--; } System.out.println(ans); pw.close(); } private static int nextInt() throws IOException { return Integer.parseInt(next()); } private static long nextLong() throws IOException { return Long.parseLong(next()); } private static double nextDouble() throws IOException { return Double.parseDouble(next()); } private static String next() throws IOException { while (st==null || !st.hasMoreTokens()) st = new StringTokenizer(br.readLine()); return st.nextToken(); } }
O(n)
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Classify the following Java code's worst-case time complexity according to its relationship to the input size n. </TASK> <CODE> import java.io.BufferedReader; import java.io.BufferedWriter; import java.io.IOException; import java.io.InputStreamReader; import java.io.OutputStreamWriter; import java.io.PrintWriter; import java.util.Arrays; import java.util.StringTokenizer; public class C { static StringTokenizer st; static BufferedReader br; static PrintWriter pw; public static void main(String[] args) throws IOException { br = new BufferedReader(new InputStreamReader(System.in)); pw = new PrintWriter(new BufferedWriter(new OutputStreamWriter(System.out))); int n = nextInt(); char[]a = next().toCharArray(); int[]cnt = new int[256]; for (int i = 0; i < n; i++) { cnt[a[i]]++; } int alldiff = 0; for (int i = 0; i < 256; i++) { if (cnt[i] > 0) alldiff++; } Arrays.fill(cnt, 0); int diff = 0, right = -1, ans = n+5; for (int i = 0; i < n; i++) { if (right < i) { cnt[a[i]]++; diff = 1; right = i; } while (right < n-1 && diff < alldiff) { right++; cnt[a[right]]++; if (cnt[a[right]]==1) diff++; } if (diff==alldiff && right-i+1 < ans) { ans = right-i+1; } cnt[a[i]]--; if (cnt[a[i]]==0) diff--; } System.out.println(ans); pw.close(); } private static int nextInt() throws IOException { return Integer.parseInt(next()); } private static long nextLong() throws IOException { return Long.parseLong(next()); } private static double nextDouble() throws IOException { return Double.parseDouble(next()); } private static String next() throws IOException { while (st==null || !st.hasMoreTokens()) st = new StringTokenizer(br.readLine()); return st.nextToken(); } } </CODE> <EVALUATION_RUBRIC> - O(n^2): The running time increases with the square of the input size n. - O(n): The running time grows linearly with the input size n. - non-polynomial: The running time increases non-polynomially with input size n, typically exponentially. - O(n^3): The running time increases with the cube of the input size n. - O(nlog(n)): The running time increases with the product of n and logarithm of n. - O(1): The running time does not change regardless of the input size n. - O(log(n)): The running time increases with the logarithm of the input size n. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n. </TASK> <CODE> import java.io.BufferedReader; import java.io.BufferedWriter; import java.io.IOException; import java.io.InputStreamReader; import java.io.OutputStreamWriter; import java.io.PrintWriter; import java.util.Arrays; import java.util.StringTokenizer; public class C { static StringTokenizer st; static BufferedReader br; static PrintWriter pw; public static void main(String[] args) throws IOException { br = new BufferedReader(new InputStreamReader(System.in)); pw = new PrintWriter(new BufferedWriter(new OutputStreamWriter(System.out))); int n = nextInt(); char[]a = next().toCharArray(); int[]cnt = new int[256]; for (int i = 0; i < n; i++) { cnt[a[i]]++; } int alldiff = 0; for (int i = 0; i < 256; i++) { if (cnt[i] > 0) alldiff++; } Arrays.fill(cnt, 0); int diff = 0, right = -1, ans = n+5; for (int i = 0; i < n; i++) { if (right < i) { cnt[a[i]]++; diff = 1; right = i; } while (right < n-1 && diff < alldiff) { right++; cnt[a[right]]++; if (cnt[a[right]]==1) diff++; } if (diff==alldiff && right-i+1 < ans) { ans = right-i+1; } cnt[a[i]]--; if (cnt[a[i]]==0) diff--; } System.out.println(ans); pw.close(); } private static int nextInt() throws IOException { return Integer.parseInt(next()); } private static long nextLong() throws IOException { return Long.parseLong(next()); } private static double nextDouble() throws IOException { return Double.parseDouble(next()); } private static String next() throws IOException { while (st==null || !st.hasMoreTokens()) st = new StringTokenizer(br.readLine()); return st.nextToken(); } } </CODE> <EVALUATION_RUBRIC> - O(1): The execution time is unaffected by the size of the input n. - non-polynomial: The running time increases non-polynomially with input size n, typically exponentially. - others: The time complexity does not fit to any of the given categories or is ambiguous. - O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially. - O(log(n)): The execution time ascends in proportion to the logarithm of the input size n. - O(n^3): The execution time ascends in proportion to the cube of the input size n. - O(n^2): The execution time ascends in proportion to the square of the input size n. - O(n): The execution time ascends in a one-to-one ratio with the input size n. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
786
767
302
import java.util.*; import javax.lang.model.util.ElementScanner6; import java.io.*; public class Main { public static void main(String[] args) { InputStream inputStream = System.in; OutputStream outputStream = System.out; InputReader inp = new InputReader(inputStream); PrintWriter out = new PrintWriter(outputStream); Solver solver = new Solver(); solver.solve(inp, out); out.close(); } static class Solver { class pair implements Comparable<pair>{ int i; long dist; public pair(int i,long dist) { this.i=i; this.dist=dist; } public int compareTo(pair p) { return Long.compare(this.dist,p.dist); } } class Node implements Comparable < Node > { int i; int cnt; Node(int i, int cnt) { this.i = i; this.cnt = cnt; } public int compareTo(Node n) { if (this.cnt == n.cnt) { return Integer.compare(this.i, n.i); } return Integer.compare(this.cnt, n.cnt); } } public boolean done(int[] sp, int[] par) { int root; root = findSet(sp[0], par); for (int i = 1; i < sp.length; i++) { if (root != findSet(sp[i], par)) return false; } return true; } public int findSet(int i, int[] par) { int x = i; boolean flag = false; while (par[i] >= 0) { flag = true; i = par[i]; } if (flag) par[x] = i; return i; } public void unionSet(int i, int j, int[] par) { int x = findSet(i, par); int y = findSet(j, par); if (x < y) { par[y] = x; } else { par[x] = y; } } public long pow(long a, long b, long MOD) { if (b == 0) { return 1; } if (b == 1) { return a; } long val = pow(a, b / 2, MOD); if (b % 2 == 0) { return val * val % MOD; } else { return val * (val * a % MOD) % MOD; } } public boolean isPrime(int n) { for(int i=2;i<n;i++) { if(n%i==0) { return false; } } return true; } public void minPrimeFactor(int n, int[] s) { boolean prime[] = new boolean[n + 1]; Arrays.fill(prime, true); s[1] = 1; s[2] = 2; for (int i = 4; i <= n; i += 2) { prime[i] = false; s[i] = 2; } for (int i = 3; i <= n; i += 2) { if (prime[i]) { s[i] = i; for (int j = 2 * i; j <= n; j += i) { prime[j] = false; s[j] = i; } } } } public void findAllPrime(int n, ArrayList < Node > al, int s[]) { int curr = s[n]; int cnt = 1; while (n > 1) { n /= s[n]; if (curr == s[n]) { cnt++; continue; } Node n1 = new Node(curr, cnt); al.add(n1); curr = s[n]; cnt = 1; } } public int binarySearch(int n, int k) { int left = 1; int right = 100000000 + 5; int ans = 0; while (left <= right) { int mid = (left + right) / 2; if (n / mid >= k) { left = mid + 1; ans = mid; } else { right = mid - 1; } } return ans; } public boolean checkPallindrom(String s) { char ch[] = s.toCharArray(); for (int i = 0; i < s.length() / 2; i++) { if (ch[i] != ch[s.length() - 1 - i]) return false; } return true; } public void remove(ArrayList < Integer > [] al, int x) { for (int i = 0; i < al.length; i++) { for (int j = 0; j < al[i].size(); j++) { if (al[i].get(j) == x) al[i].remove(j); } } } public long gcd(long a, long b) { if (a == 0) return b; return gcd(b % a, a); } public void printDivisors(long n, ArrayList < Long > al) { // Note that this loop runs till square root for (long i = 1; i <= Math.sqrt(n); i++) { if (n % i == 0) { // If divisors are equal, print only one if (n / i == i) { al.add(i); } else // Otherwise print both { al.add(i); al.add(n / i); } } } } public static long constructSegment(long seg[], long arr[], int low, int high, int pos) { if (low == high) { seg[pos] = arr[low]; return seg[pos]; } int mid = (low + high) / 2; long t1 = constructSegment(seg, arr, low, mid, (2 * pos) + 1); long t2 = constructSegment(seg, arr, mid + 1, high, (2 * pos) + 2); seg[pos] = t1 + t2; return seg[pos]; } public static long querySegment(long seg[], int low, int high, int qlow, int qhigh, int pos) { if (qlow <= low && qhigh >= high) { return seg[pos]; } else if (qlow > high || qhigh < low) { return 0; } else { long ans = 0; int mid = (low + high) / 2; ans += querySegment(seg, low, mid, qlow, qhigh, (2 * pos) + 1); ans += querySegment(seg, mid + 1, high, qlow, qhigh, (2 * pos) + 2); return ans; } } public static int lcs(char[] X, char[] Y, int m, int n) { if (m == 0 || n == 0) return 0; if (X[m - 1] == Y[n - 1]) return 1 + lcs(X, Y, m - 1, n - 1); else return Integer.max(lcs(X, Y, m, n - 1), lcs(X, Y, m - 1, n)); } public static long recursion(long start, long end, long cnt[], int a, int b) { long min = 0; long count = 0; int ans1 = -1; int ans2 = -1; int l = 0; int r = cnt.length - 1; while (l <= r) { int mid = (l + r) / 2; if (cnt[mid] >= start) { ans1 = mid; r = mid - 1; } else { l = mid + 1; } } l = 0; r = cnt.length - 1; while (l <= r) { int mid = (l + r) / 2; if (cnt[mid] <= end) { ans2 = mid; l = mid + 1; } else { r = mid - 1; } } if (ans1 == -1 || ans2 == -1 || ans2 < ans1) { // System.out.println("min1 "+min); min = a; return a; } else { min = b * (end - start + 1) * (ans2 - ans1 + 1); } if (start == end) { // System.out.println("min "+min); return min; } long mid = (end + start) / 2; min = Long.min(min, recursion(start, mid, cnt, a, b) + recursion(mid + 1, end, cnt, a, b)); // System.out.println("min "+min); return min; } public int dfs_util(ArrayList < Integer > [] al, boolean vis[], int x, int[] s, int lvl[]) { vis[x] = true; int cnt = 1; for (int i = 0; i < al[x].size(); i++) { if (!vis[al[x].get(i)]) { lvl[al[x].get(i)] = lvl[x] + 1; cnt += dfs_util(al, vis, al[x].get(i), s, lvl); } } s[x] = cnt; return s[x]; } public void dfs(ArrayList[] al, int[] s, int[] lvl) { boolean vis[] = new boolean[al.length]; for (int i = 0; i < al.length; i++) { if (!vis[i]) { lvl[i] = 1; dfs_util(al, vis, i, s, lvl); } } } public int[] computeLps(String s) { int ans[] =new int[s.length()]; char ch[] = s.toCharArray(); int n = s.length(); int i=1; int len=0; ans[0]=0; while(i<n) { if(ch[i]==ch[len]) { len++; ans[i]=len; i++; } else { if(len!=0) { len=ans[len-1]; } else { ans[i]=len; i++; } } } return ans; } private void solve(InputReader inp, PrintWriter out1) { int n = inp.nextInt(); int m = inp.nextInt(); long k = inp.nextLong(); long arr[] = new long[n]; for(int i=0;i<n;i++) { arr[i] = inp.nextLong(); } long ans=0; for(int i=0;i<m;i++) { long sum=0; for(int j=i;j<n;j++) { if(j%m==i) { if(sum<0) { sum=0; } sum-=k; } sum+=arr[j]; ans=Math.max(ans,sum); } } System.out.println(ans); } } static class InputReader { BufferedReader reader; StringTokenizer tokenizer; InputReader(InputStream stream) { reader = new BufferedReader(new InputStreamReader(stream), 32768); tokenizer = null; } String next() { while (tokenizer == null || !tokenizer.hasMoreTokens()) { try { tokenizer = new StringTokenizer(reader.readLine()); } catch (IOException e) { throw new RuntimeException(e); } } return tokenizer.nextToken(); } public int nextInt() { return Integer.parseInt(next()); } public long nextLong() { return Long.parseLong(next()); } } } class ele implements Comparable < ele > { int value; int i; boolean flag; public ele(int value, int i) { this.value = value; this.i = i; this.flag = false; } public int compareTo(ele e) { return Integer.compare(this.value, e.value); } }
O(n^2)
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Determine the worst-case time complexity category of a given Java code based on input size n. </TASK> <CODE> import java.util.*; import javax.lang.model.util.ElementScanner6; import java.io.*; public class Main { public static void main(String[] args) { InputStream inputStream = System.in; OutputStream outputStream = System.out; InputReader inp = new InputReader(inputStream); PrintWriter out = new PrintWriter(outputStream); Solver solver = new Solver(); solver.solve(inp, out); out.close(); } static class Solver { class pair implements Comparable<pair>{ int i; long dist; public pair(int i,long dist) { this.i=i; this.dist=dist; } public int compareTo(pair p) { return Long.compare(this.dist,p.dist); } } class Node implements Comparable < Node > { int i; int cnt; Node(int i, int cnt) { this.i = i; this.cnt = cnt; } public int compareTo(Node n) { if (this.cnt == n.cnt) { return Integer.compare(this.i, n.i); } return Integer.compare(this.cnt, n.cnt); } } public boolean done(int[] sp, int[] par) { int root; root = findSet(sp[0], par); for (int i = 1; i < sp.length; i++) { if (root != findSet(sp[i], par)) return false; } return true; } public int findSet(int i, int[] par) { int x = i; boolean flag = false; while (par[i] >= 0) { flag = true; i = par[i]; } if (flag) par[x] = i; return i; } public void unionSet(int i, int j, int[] par) { int x = findSet(i, par); int y = findSet(j, par); if (x < y) { par[y] = x; } else { par[x] = y; } } public long pow(long a, long b, long MOD) { if (b == 0) { return 1; } if (b == 1) { return a; } long val = pow(a, b / 2, MOD); if (b % 2 == 0) { return val * val % MOD; } else { return val * (val * a % MOD) % MOD; } } public boolean isPrime(int n) { for(int i=2;i<n;i++) { if(n%i==0) { return false; } } return true; } public void minPrimeFactor(int n, int[] s) { boolean prime[] = new boolean[n + 1]; Arrays.fill(prime, true); s[1] = 1; s[2] = 2; for (int i = 4; i <= n; i += 2) { prime[i] = false; s[i] = 2; } for (int i = 3; i <= n; i += 2) { if (prime[i]) { s[i] = i; for (int j = 2 * i; j <= n; j += i) { prime[j] = false; s[j] = i; } } } } public void findAllPrime(int n, ArrayList < Node > al, int s[]) { int curr = s[n]; int cnt = 1; while (n > 1) { n /= s[n]; if (curr == s[n]) { cnt++; continue; } Node n1 = new Node(curr, cnt); al.add(n1); curr = s[n]; cnt = 1; } } public int binarySearch(int n, int k) { int left = 1; int right = 100000000 + 5; int ans = 0; while (left <= right) { int mid = (left + right) / 2; if (n / mid >= k) { left = mid + 1; ans = mid; } else { right = mid - 1; } } return ans; } public boolean checkPallindrom(String s) { char ch[] = s.toCharArray(); for (int i = 0; i < s.length() / 2; i++) { if (ch[i] != ch[s.length() - 1 - i]) return false; } return true; } public void remove(ArrayList < Integer > [] al, int x) { for (int i = 0; i < al.length; i++) { for (int j = 0; j < al[i].size(); j++) { if (al[i].get(j) == x) al[i].remove(j); } } } public long gcd(long a, long b) { if (a == 0) return b; return gcd(b % a, a); } public void printDivisors(long n, ArrayList < Long > al) { // Note that this loop runs till square root for (long i = 1; i <= Math.sqrt(n); i++) { if (n % i == 0) { // If divisors are equal, print only one if (n / i == i) { al.add(i); } else // Otherwise print both { al.add(i); al.add(n / i); } } } } public static long constructSegment(long seg[], long arr[], int low, int high, int pos) { if (low == high) { seg[pos] = arr[low]; return seg[pos]; } int mid = (low + high) / 2; long t1 = constructSegment(seg, arr, low, mid, (2 * pos) + 1); long t2 = constructSegment(seg, arr, mid + 1, high, (2 * pos) + 2); seg[pos] = t1 + t2; return seg[pos]; } public static long querySegment(long seg[], int low, int high, int qlow, int qhigh, int pos) { if (qlow <= low && qhigh >= high) { return seg[pos]; } else if (qlow > high || qhigh < low) { return 0; } else { long ans = 0; int mid = (low + high) / 2; ans += querySegment(seg, low, mid, qlow, qhigh, (2 * pos) + 1); ans += querySegment(seg, mid + 1, high, qlow, qhigh, (2 * pos) + 2); return ans; } } public static int lcs(char[] X, char[] Y, int m, int n) { if (m == 0 || n == 0) return 0; if (X[m - 1] == Y[n - 1]) return 1 + lcs(X, Y, m - 1, n - 1); else return Integer.max(lcs(X, Y, m, n - 1), lcs(X, Y, m - 1, n)); } public static long recursion(long start, long end, long cnt[], int a, int b) { long min = 0; long count = 0; int ans1 = -1; int ans2 = -1; int l = 0; int r = cnt.length - 1; while (l <= r) { int mid = (l + r) / 2; if (cnt[mid] >= start) { ans1 = mid; r = mid - 1; } else { l = mid + 1; } } l = 0; r = cnt.length - 1; while (l <= r) { int mid = (l + r) / 2; if (cnt[mid] <= end) { ans2 = mid; l = mid + 1; } else { r = mid - 1; } } if (ans1 == -1 || ans2 == -1 || ans2 < ans1) { // System.out.println("min1 "+min); min = a; return a; } else { min = b * (end - start + 1) * (ans2 - ans1 + 1); } if (start == end) { // System.out.println("min "+min); return min; } long mid = (end + start) / 2; min = Long.min(min, recursion(start, mid, cnt, a, b) + recursion(mid + 1, end, cnt, a, b)); // System.out.println("min "+min); return min; } public int dfs_util(ArrayList < Integer > [] al, boolean vis[], int x, int[] s, int lvl[]) { vis[x] = true; int cnt = 1; for (int i = 0; i < al[x].size(); i++) { if (!vis[al[x].get(i)]) { lvl[al[x].get(i)] = lvl[x] + 1; cnt += dfs_util(al, vis, al[x].get(i), s, lvl); } } s[x] = cnt; return s[x]; } public void dfs(ArrayList[] al, int[] s, int[] lvl) { boolean vis[] = new boolean[al.length]; for (int i = 0; i < al.length; i++) { if (!vis[i]) { lvl[i] = 1; dfs_util(al, vis, i, s, lvl); } } } public int[] computeLps(String s) { int ans[] =new int[s.length()]; char ch[] = s.toCharArray(); int n = s.length(); int i=1; int len=0; ans[0]=0; while(i<n) { if(ch[i]==ch[len]) { len++; ans[i]=len; i++; } else { if(len!=0) { len=ans[len-1]; } else { ans[i]=len; i++; } } } return ans; } private void solve(InputReader inp, PrintWriter out1) { int n = inp.nextInt(); int m = inp.nextInt(); long k = inp.nextLong(); long arr[] = new long[n]; for(int i=0;i<n;i++) { arr[i] = inp.nextLong(); } long ans=0; for(int i=0;i<m;i++) { long sum=0; for(int j=i;j<n;j++) { if(j%m==i) { if(sum<0) { sum=0; } sum-=k; } sum+=arr[j]; ans=Math.max(ans,sum); } } System.out.println(ans); } } static class InputReader { BufferedReader reader; StringTokenizer tokenizer; InputReader(InputStream stream) { reader = new BufferedReader(new InputStreamReader(stream), 32768); tokenizer = null; } String next() { while (tokenizer == null || !tokenizer.hasMoreTokens()) { try { tokenizer = new StringTokenizer(reader.readLine()); } catch (IOException e) { throw new RuntimeException(e); } } return tokenizer.nextToken(); } public int nextInt() { return Integer.parseInt(next()); } public long nextLong() { return Long.parseLong(next()); } } } class ele implements Comparable < ele > { int value; int i; boolean flag; public ele(int value, int i) { this.value = value; this.i = i; this.flag = false; } public int compareTo(ele e) { return Integer.compare(this.value, e.value); } } </CODE> <EVALUATION_RUBRIC> - O(n^2): The time complexity grows proportionally to the square of the input size. - O(1): The time complexity is constant to the input size n. - non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially. - O(log(n)): The time complexity increases logarithmically in relation to the input size. - O(nlog(n)): The time complexity combines linear and logarithmic growth factors. - O(n^3): The time complexity scales proportionally to the cube of the input size. - O(n): The time complexity increases proportionally to the input size n in a linear manner. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Determine the worst-case time complexity category of a given Java code based on input size n. </TASK> <CODE> import java.util.*; import javax.lang.model.util.ElementScanner6; import java.io.*; public class Main { public static void main(String[] args) { InputStream inputStream = System.in; OutputStream outputStream = System.out; InputReader inp = new InputReader(inputStream); PrintWriter out = new PrintWriter(outputStream); Solver solver = new Solver(); solver.solve(inp, out); out.close(); } static class Solver { class pair implements Comparable<pair>{ int i; long dist; public pair(int i,long dist) { this.i=i; this.dist=dist; } public int compareTo(pair p) { return Long.compare(this.dist,p.dist); } } class Node implements Comparable < Node > { int i; int cnt; Node(int i, int cnt) { this.i = i; this.cnt = cnt; } public int compareTo(Node n) { if (this.cnt == n.cnt) { return Integer.compare(this.i, n.i); } return Integer.compare(this.cnt, n.cnt); } } public boolean done(int[] sp, int[] par) { int root; root = findSet(sp[0], par); for (int i = 1; i < sp.length; i++) { if (root != findSet(sp[i], par)) return false; } return true; } public int findSet(int i, int[] par) { int x = i; boolean flag = false; while (par[i] >= 0) { flag = true; i = par[i]; } if (flag) par[x] = i; return i; } public void unionSet(int i, int j, int[] par) { int x = findSet(i, par); int y = findSet(j, par); if (x < y) { par[y] = x; } else { par[x] = y; } } public long pow(long a, long b, long MOD) { if (b == 0) { return 1; } if (b == 1) { return a; } long val = pow(a, b / 2, MOD); if (b % 2 == 0) { return val * val % MOD; } else { return val * (val * a % MOD) % MOD; } } public boolean isPrime(int n) { for(int i=2;i<n;i++) { if(n%i==0) { return false; } } return true; } public void minPrimeFactor(int n, int[] s) { boolean prime[] = new boolean[n + 1]; Arrays.fill(prime, true); s[1] = 1; s[2] = 2; for (int i = 4; i <= n; i += 2) { prime[i] = false; s[i] = 2; } for (int i = 3; i <= n; i += 2) { if (prime[i]) { s[i] = i; for (int j = 2 * i; j <= n; j += i) { prime[j] = false; s[j] = i; } } } } public void findAllPrime(int n, ArrayList < Node > al, int s[]) { int curr = s[n]; int cnt = 1; while (n > 1) { n /= s[n]; if (curr == s[n]) { cnt++; continue; } Node n1 = new Node(curr, cnt); al.add(n1); curr = s[n]; cnt = 1; } } public int binarySearch(int n, int k) { int left = 1; int right = 100000000 + 5; int ans = 0; while (left <= right) { int mid = (left + right) / 2; if (n / mid >= k) { left = mid + 1; ans = mid; } else { right = mid - 1; } } return ans; } public boolean checkPallindrom(String s) { char ch[] = s.toCharArray(); for (int i = 0; i < s.length() / 2; i++) { if (ch[i] != ch[s.length() - 1 - i]) return false; } return true; } public void remove(ArrayList < Integer > [] al, int x) { for (int i = 0; i < al.length; i++) { for (int j = 0; j < al[i].size(); j++) { if (al[i].get(j) == x) al[i].remove(j); } } } public long gcd(long a, long b) { if (a == 0) return b; return gcd(b % a, a); } public void printDivisors(long n, ArrayList < Long > al) { // Note that this loop runs till square root for (long i = 1; i <= Math.sqrt(n); i++) { if (n % i == 0) { // If divisors are equal, print only one if (n / i == i) { al.add(i); } else // Otherwise print both { al.add(i); al.add(n / i); } } } } public static long constructSegment(long seg[], long arr[], int low, int high, int pos) { if (low == high) { seg[pos] = arr[low]; return seg[pos]; } int mid = (low + high) / 2; long t1 = constructSegment(seg, arr, low, mid, (2 * pos) + 1); long t2 = constructSegment(seg, arr, mid + 1, high, (2 * pos) + 2); seg[pos] = t1 + t2; return seg[pos]; } public static long querySegment(long seg[], int low, int high, int qlow, int qhigh, int pos) { if (qlow <= low && qhigh >= high) { return seg[pos]; } else if (qlow > high || qhigh < low) { return 0; } else { long ans = 0; int mid = (low + high) / 2; ans += querySegment(seg, low, mid, qlow, qhigh, (2 * pos) + 1); ans += querySegment(seg, mid + 1, high, qlow, qhigh, (2 * pos) + 2); return ans; } } public static int lcs(char[] X, char[] Y, int m, int n) { if (m == 0 || n == 0) return 0; if (X[m - 1] == Y[n - 1]) return 1 + lcs(X, Y, m - 1, n - 1); else return Integer.max(lcs(X, Y, m, n - 1), lcs(X, Y, m - 1, n)); } public static long recursion(long start, long end, long cnt[], int a, int b) { long min = 0; long count = 0; int ans1 = -1; int ans2 = -1; int l = 0; int r = cnt.length - 1; while (l <= r) { int mid = (l + r) / 2; if (cnt[mid] >= start) { ans1 = mid; r = mid - 1; } else { l = mid + 1; } } l = 0; r = cnt.length - 1; while (l <= r) { int mid = (l + r) / 2; if (cnt[mid] <= end) { ans2 = mid; l = mid + 1; } else { r = mid - 1; } } if (ans1 == -1 || ans2 == -1 || ans2 < ans1) { // System.out.println("min1 "+min); min = a; return a; } else { min = b * (end - start + 1) * (ans2 - ans1 + 1); } if (start == end) { // System.out.println("min "+min); return min; } long mid = (end + start) / 2; min = Long.min(min, recursion(start, mid, cnt, a, b) + recursion(mid + 1, end, cnt, a, b)); // System.out.println("min "+min); return min; } public int dfs_util(ArrayList < Integer > [] al, boolean vis[], int x, int[] s, int lvl[]) { vis[x] = true; int cnt = 1; for (int i = 0; i < al[x].size(); i++) { if (!vis[al[x].get(i)]) { lvl[al[x].get(i)] = lvl[x] + 1; cnt += dfs_util(al, vis, al[x].get(i), s, lvl); } } s[x] = cnt; return s[x]; } public void dfs(ArrayList[] al, int[] s, int[] lvl) { boolean vis[] = new boolean[al.length]; for (int i = 0; i < al.length; i++) { if (!vis[i]) { lvl[i] = 1; dfs_util(al, vis, i, s, lvl); } } } public int[] computeLps(String s) { int ans[] =new int[s.length()]; char ch[] = s.toCharArray(); int n = s.length(); int i=1; int len=0; ans[0]=0; while(i<n) { if(ch[i]==ch[len]) { len++; ans[i]=len; i++; } else { if(len!=0) { len=ans[len-1]; } else { ans[i]=len; i++; } } } return ans; } private void solve(InputReader inp, PrintWriter out1) { int n = inp.nextInt(); int m = inp.nextInt(); long k = inp.nextLong(); long arr[] = new long[n]; for(int i=0;i<n;i++) { arr[i] = inp.nextLong(); } long ans=0; for(int i=0;i<m;i++) { long sum=0; for(int j=i;j<n;j++) { if(j%m==i) { if(sum<0) { sum=0; } sum-=k; } sum+=arr[j]; ans=Math.max(ans,sum); } } System.out.println(ans); } } static class InputReader { BufferedReader reader; StringTokenizer tokenizer; InputReader(InputStream stream) { reader = new BufferedReader(new InputStreamReader(stream), 32768); tokenizer = null; } String next() { while (tokenizer == null || !tokenizer.hasMoreTokens()) { try { tokenizer = new StringTokenizer(reader.readLine()); } catch (IOException e) { throw new RuntimeException(e); } } return tokenizer.nextToken(); } public int nextInt() { return Integer.parseInt(next()); } public long nextLong() { return Long.parseLong(next()); } } } class ele implements Comparable < ele > { int value; int i; boolean flag; public ele(int value, int i) { this.value = value; this.i = i; this.flag = false; } public int compareTo(ele e) { return Integer.compare(this.value, e.value); } } </CODE> <EVALUATION_RUBRIC> - others: The time complexity does not fit any of the above categories or cannot be clearly classified. - O(n^2): The time complexity grows proportionally to the square of the input size. - O(1): The time complexity is constant to the input size n. - non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially. - O(n^3): The time complexity scales proportionally to the cube of the input size. - O(nlog(n)): The time complexity combines linear and logarithmic growth factors. - O(log(n)): The time complexity increases logarithmically in relation to the input size. - O(n): The time complexity increases proportionally to the input size n in a linear manner. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
3,107
302
4,498
import java.util.*; import java.io.*; public class Main { public static void main(String args[]) {new Main().run();} FastReader in = new FastReader(); PrintWriter out = new PrintWriter(System.out); void run(){ out.println(work()); out.flush(); } long mod=1000000007; long gcd(long a,long b) { return b==0?a:gcd(b,a%b); } long work() { int n=in.nextInt(); int m=in.nextInt(); String str=in.next(); long[] dp=new long[1<<m]; long[][] cnt=new long[m][m]; for(int i=1;i<n;i++) { int n1=str.charAt(i-1)-'a'; int n2=str.charAt(i)-'a'; cnt[n1][n2]++; cnt[n2][n1]++; } for(int i=1;i<1<<m;i++) { dp[i]=9999999999L; long v=0; for(int j=0;j<m;j++) { if((i&(1<<j))>0) {//第j个字母 for(int k=0;k<m;k++) { if((i&(1<<k))==0) { v+=cnt[j][k]; } } } } for(int j=0;j<m;j++) { if((i&(1<<j))>0) { dp[i]=Math.min(dp[i], dp[i-(1<<j)]+v); } } } return dp[(1<<m)-1]; } } class FastReader { BufferedReader br; StringTokenizer st; public FastReader() { br=new BufferedReader(new InputStreamReader(System.in)); } public String next() { if(st==null || !st.hasMoreElements()) { try { st = new StringTokenizer(br.readLine()); } catch (IOException e) { e.printStackTrace(); } } return st.nextToken(); } public int nextInt() { return Integer.parseInt(next()); } public long nextLong() { return Long.parseLong(next()); } }
non-polynomial
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Determine the worst-case time complexity category of a given Java code based on input size n. </TASK> <CODE> import java.util.*; import java.io.*; public class Main { public static void main(String args[]) {new Main().run();} FastReader in = new FastReader(); PrintWriter out = new PrintWriter(System.out); void run(){ out.println(work()); out.flush(); } long mod=1000000007; long gcd(long a,long b) { return b==0?a:gcd(b,a%b); } long work() { int n=in.nextInt(); int m=in.nextInt(); String str=in.next(); long[] dp=new long[1<<m]; long[][] cnt=new long[m][m]; for(int i=1;i<n;i++) { int n1=str.charAt(i-1)-'a'; int n2=str.charAt(i)-'a'; cnt[n1][n2]++; cnt[n2][n1]++; } for(int i=1;i<1<<m;i++) { dp[i]=9999999999L; long v=0; for(int j=0;j<m;j++) { if((i&(1<<j))>0) {//第j个字母 for(int k=0;k<m;k++) { if((i&(1<<k))==0) { v+=cnt[j][k]; } } } } for(int j=0;j<m;j++) { if((i&(1<<j))>0) { dp[i]=Math.min(dp[i], dp[i-(1<<j)]+v); } } } return dp[(1<<m)-1]; } } class FastReader { BufferedReader br; StringTokenizer st; public FastReader() { br=new BufferedReader(new InputStreamReader(System.in)); } public String next() { if(st==null || !st.hasMoreElements()) { try { st = new StringTokenizer(br.readLine()); } catch (IOException e) { e.printStackTrace(); } } return st.nextToken(); } public int nextInt() { return Integer.parseInt(next()); } public long nextLong() { return Long.parseLong(next()); } } </CODE> <EVALUATION_RUBRIC> - O(n^2): The time complexity grows proportionally to the square of the input size. - O(n): The time complexity increases proportionally to the input size n in a linear manner. - O(log(n)): The time complexity increases logarithmically in relation to the input size. - O(n^3): The time complexity scales proportionally to the cube of the input size. - non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially. - O(nlog(n)): The time complexity combines linear and logarithmic growth factors. - O(1): The time complexity is constant to the input size n. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Determine the worst-case time complexity category of a given Java code based on input size n. </TASK> <CODE> import java.util.*; import java.io.*; public class Main { public static void main(String args[]) {new Main().run();} FastReader in = new FastReader(); PrintWriter out = new PrintWriter(System.out); void run(){ out.println(work()); out.flush(); } long mod=1000000007; long gcd(long a,long b) { return b==0?a:gcd(b,a%b); } long work() { int n=in.nextInt(); int m=in.nextInt(); String str=in.next(); long[] dp=new long[1<<m]; long[][] cnt=new long[m][m]; for(int i=1;i<n;i++) { int n1=str.charAt(i-1)-'a'; int n2=str.charAt(i)-'a'; cnt[n1][n2]++; cnt[n2][n1]++; } for(int i=1;i<1<<m;i++) { dp[i]=9999999999L; long v=0; for(int j=0;j<m;j++) { if((i&(1<<j))>0) {//第j个字母 for(int k=0;k<m;k++) { if((i&(1<<k))==0) { v+=cnt[j][k]; } } } } for(int j=0;j<m;j++) { if((i&(1<<j))>0) { dp[i]=Math.min(dp[i], dp[i-(1<<j)]+v); } } } return dp[(1<<m)-1]; } } class FastReader { BufferedReader br; StringTokenizer st; public FastReader() { br=new BufferedReader(new InputStreamReader(System.in)); } public String next() { if(st==null || !st.hasMoreElements()) { try { st = new StringTokenizer(br.readLine()); } catch (IOException e) { e.printStackTrace(); } } return st.nextToken(); } public int nextInt() { return Integer.parseInt(next()); } public long nextLong() { return Long.parseLong(next()); } } </CODE> <EVALUATION_RUBRIC> - non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially. - O(n^2): The time complexity grows proportionally to the square of the input size. - others: The time complexity does not fit any of the above categories or cannot be clearly classified. - O(nlog(n)): The time complexity combines linear and logarithmic growth factors. - O(1): The time complexity is constant to the input size n. - O(log(n)): The time complexity increases logarithmically in relation to the input size. - O(n^3): The time complexity scales proportionally to the cube of the input size. - O(n): The time complexity increases proportionally to the input size n in a linear manner. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
814
4,487
2,330
import java.io.OutputStream; import java.io.IOException; import java.io.InputStream; import java.io.OutputStream; import java.io.PrintWriter; import java.io.BufferedWriter; import java.io.Writer; import java.io.OutputStreamWriter; import java.util.InputMismatchException; import java.io.IOException; import java.io.InputStream; /** * Built using CHelper plug-in * Actual solution is at the top */ public class Main { public static void main(String[] args) { InputStream inputStream = System.in; OutputStream outputStream = System.out; InputReader in = new InputReader(inputStream); OutputWriter out = new OutputWriter(outputStream); TaskC solver = new TaskC(); solver.solve(1, in, out); out.close(); } static class TaskC { public void solve(int testNumber, InputReader in, OutputWriter out) { int n = in.readInt(); boolean[] isF = new boolean[n]; for (int i = 0; i < n; i++) { isF[i] = in.readCharacter() == 'f'; } int[][] mem = new int[n + 1][n + 1]; mem[n][0] = 1; for (int idx = n - 1; idx >= 0; idx--) { for (int indentLevel = 0; indentLevel < n; indentLevel++) { mem[idx + 1][indentLevel + 1] += mem[idx + 1][indentLevel]; mem[idx + 1][indentLevel + 1] %= MiscUtils.MOD7; int res = isF[idx] ? mem[idx + 1][indentLevel + 1] - mem[idx + 1][indentLevel] : mem[idx + 1][indentLevel]; mem[idx][indentLevel] = (res + MiscUtils.MOD7) % MiscUtils.MOD7; } } out.printLine(mem[0][0]); } } static class InputReader { private InputStream stream; private byte[] buf = new byte[1024]; private int curChar; private int numChars; private InputReader.SpaceCharFilter filter; public InputReader(InputStream stream) { this.stream = stream; } public int read() { if (numChars == -1) { throw new InputMismatchException(); } if (curChar >= numChars) { curChar = 0; try { numChars = stream.read(buf); } catch (IOException e) { throw new InputMismatchException(); } if (numChars <= 0) { return -1; } } return buf[curChar++]; } public int readInt() { int c = read(); while (isSpaceChar(c)) { c = read(); } int sgn = 1; if (c == '-') { sgn = -1; c = read(); } int res = 0; do { if (c < '0' || c > '9') { throw new InputMismatchException(); } res *= 10; res += c - '0'; c = read(); } while (!isSpaceChar(c)); return res * sgn; } public boolean isSpaceChar(int c) { if (filter != null) { return filter.isSpaceChar(c); } return isWhitespace(c); } public static boolean isWhitespace(int c) { return c == ' ' || c == '\n' || c == '\r' || c == '\t' || c == -1; } public char readCharacter() { int c = read(); while (isSpaceChar(c)) { c = read(); } return (char) c; } public interface SpaceCharFilter { public boolean isSpaceChar(int ch); } } static class MiscUtils { public static final int MOD7 = (int) (1e9 + 7); } static class OutputWriter { private final PrintWriter writer; public OutputWriter(OutputStream outputStream) { writer = new PrintWriter(new BufferedWriter(new OutputStreamWriter(outputStream))); } public OutputWriter(Writer writer) { this.writer = new PrintWriter(writer); } public void close() { writer.close(); } public void printLine(int i) { writer.println(i); } } }
O(n^2)
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n. </TASK> <CODE> import java.io.OutputStream; import java.io.IOException; import java.io.InputStream; import java.io.OutputStream; import java.io.PrintWriter; import java.io.BufferedWriter; import java.io.Writer; import java.io.OutputStreamWriter; import java.util.InputMismatchException; import java.io.IOException; import java.io.InputStream; /** * Built using CHelper plug-in * Actual solution is at the top */ public class Main { public static void main(String[] args) { InputStream inputStream = System.in; OutputStream outputStream = System.out; InputReader in = new InputReader(inputStream); OutputWriter out = new OutputWriter(outputStream); TaskC solver = new TaskC(); solver.solve(1, in, out); out.close(); } static class TaskC { public void solve(int testNumber, InputReader in, OutputWriter out) { int n = in.readInt(); boolean[] isF = new boolean[n]; for (int i = 0; i < n; i++) { isF[i] = in.readCharacter() == 'f'; } int[][] mem = new int[n + 1][n + 1]; mem[n][0] = 1; for (int idx = n - 1; idx >= 0; idx--) { for (int indentLevel = 0; indentLevel < n; indentLevel++) { mem[idx + 1][indentLevel + 1] += mem[idx + 1][indentLevel]; mem[idx + 1][indentLevel + 1] %= MiscUtils.MOD7; int res = isF[idx] ? mem[idx + 1][indentLevel + 1] - mem[idx + 1][indentLevel] : mem[idx + 1][indentLevel]; mem[idx][indentLevel] = (res + MiscUtils.MOD7) % MiscUtils.MOD7; } } out.printLine(mem[0][0]); } } static class InputReader { private InputStream stream; private byte[] buf = new byte[1024]; private int curChar; private int numChars; private InputReader.SpaceCharFilter filter; public InputReader(InputStream stream) { this.stream = stream; } public int read() { if (numChars == -1) { throw new InputMismatchException(); } if (curChar >= numChars) { curChar = 0; try { numChars = stream.read(buf); } catch (IOException e) { throw new InputMismatchException(); } if (numChars <= 0) { return -1; } } return buf[curChar++]; } public int readInt() { int c = read(); while (isSpaceChar(c)) { c = read(); } int sgn = 1; if (c == '-') { sgn = -1; c = read(); } int res = 0; do { if (c < '0' || c > '9') { throw new InputMismatchException(); } res *= 10; res += c - '0'; c = read(); } while (!isSpaceChar(c)); return res * sgn; } public boolean isSpaceChar(int c) { if (filter != null) { return filter.isSpaceChar(c); } return isWhitespace(c); } public static boolean isWhitespace(int c) { return c == ' ' || c == '\n' || c == '\r' || c == '\t' || c == -1; } public char readCharacter() { int c = read(); while (isSpaceChar(c)) { c = read(); } return (char) c; } public interface SpaceCharFilter { public boolean isSpaceChar(int ch); } } static class MiscUtils { public static final int MOD7 = (int) (1e9 + 7); } static class OutputWriter { private final PrintWriter writer; public OutputWriter(OutputStream outputStream) { writer = new PrintWriter(new BufferedWriter(new OutputStreamWriter(outputStream))); } public OutputWriter(Writer writer) { this.writer = new PrintWriter(writer); } public void close() { writer.close(); } public void printLine(int i) { writer.println(i); } } } </CODE> <EVALUATION_RUBRIC> - O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially. - O(n): The execution time ascends in a one-to-one ratio with the input size n. - O(n^2): The execution time ascends in proportion to the square of the input size n. - non-polynomial: The running time increases non-polynomially with input size n, typically exponentially. - O(log(n)): The execution time ascends in proportion to the logarithm of the input size n. - O(n^3): The execution time ascends in proportion to the cube of the input size n. - O(1): The execution time is unaffected by the size of the input n. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n. </TASK> <CODE> import java.io.OutputStream; import java.io.IOException; import java.io.InputStream; import java.io.OutputStream; import java.io.PrintWriter; import java.io.BufferedWriter; import java.io.Writer; import java.io.OutputStreamWriter; import java.util.InputMismatchException; import java.io.IOException; import java.io.InputStream; /** * Built using CHelper plug-in * Actual solution is at the top */ public class Main { public static void main(String[] args) { InputStream inputStream = System.in; OutputStream outputStream = System.out; InputReader in = new InputReader(inputStream); OutputWriter out = new OutputWriter(outputStream); TaskC solver = new TaskC(); solver.solve(1, in, out); out.close(); } static class TaskC { public void solve(int testNumber, InputReader in, OutputWriter out) { int n = in.readInt(); boolean[] isF = new boolean[n]; for (int i = 0; i < n; i++) { isF[i] = in.readCharacter() == 'f'; } int[][] mem = new int[n + 1][n + 1]; mem[n][0] = 1; for (int idx = n - 1; idx >= 0; idx--) { for (int indentLevel = 0; indentLevel < n; indentLevel++) { mem[idx + 1][indentLevel + 1] += mem[idx + 1][indentLevel]; mem[idx + 1][indentLevel + 1] %= MiscUtils.MOD7; int res = isF[idx] ? mem[idx + 1][indentLevel + 1] - mem[idx + 1][indentLevel] : mem[idx + 1][indentLevel]; mem[idx][indentLevel] = (res + MiscUtils.MOD7) % MiscUtils.MOD7; } } out.printLine(mem[0][0]); } } static class InputReader { private InputStream stream; private byte[] buf = new byte[1024]; private int curChar; private int numChars; private InputReader.SpaceCharFilter filter; public InputReader(InputStream stream) { this.stream = stream; } public int read() { if (numChars == -1) { throw new InputMismatchException(); } if (curChar >= numChars) { curChar = 0; try { numChars = stream.read(buf); } catch (IOException e) { throw new InputMismatchException(); } if (numChars <= 0) { return -1; } } return buf[curChar++]; } public int readInt() { int c = read(); while (isSpaceChar(c)) { c = read(); } int sgn = 1; if (c == '-') { sgn = -1; c = read(); } int res = 0; do { if (c < '0' || c > '9') { throw new InputMismatchException(); } res *= 10; res += c - '0'; c = read(); } while (!isSpaceChar(c)); return res * sgn; } public boolean isSpaceChar(int c) { if (filter != null) { return filter.isSpaceChar(c); } return isWhitespace(c); } public static boolean isWhitespace(int c) { return c == ' ' || c == '\n' || c == '\r' || c == '\t' || c == -1; } public char readCharacter() { int c = read(); while (isSpaceChar(c)) { c = read(); } return (char) c; } public interface SpaceCharFilter { public boolean isSpaceChar(int ch); } } static class MiscUtils { public static final int MOD7 = (int) (1e9 + 7); } static class OutputWriter { private final PrintWriter writer; public OutputWriter(OutputStream outputStream) { writer = new PrintWriter(new BufferedWriter(new OutputStreamWriter(outputStream))); } public OutputWriter(Writer writer) { this.writer = new PrintWriter(writer); } public void close() { writer.close(); } public void printLine(int i) { writer.println(i); } } } </CODE> <EVALUATION_RUBRIC> - O(n^2): The execution time ascends in proportion to the square of the input size n. - non-polynomial: The running time increases non-polynomially with input size n, typically exponentially. - O(1): The execution time is unaffected by the size of the input n. - others: The time complexity does not fit to any of the given categories or is ambiguous. - O(n): The execution time ascends in a one-to-one ratio with the input size n. - O(n^3): The execution time ascends in proportion to the cube of the input size n. - O(log(n)): The execution time ascends in proportion to the logarithm of the input size n. - O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
1,302
2,325
3,486
import java.io.*; import java.util.*; public class CF1515E{ public static void main(String[] args) { Scanner sc = new Scanner(System.in); int n = sc.nextInt(); int md = sc.nextInt(); int k = (n + 1) / 2; int[][] dp = new int[k + 1][n + 1]; dp[0][0] = 1; for (int h = 1; h <= k; h++) for (int l = h; l <= n - h + 1; l++) dp[h][l] = (int) ((dp[h][l - 1] * 2L + dp[h - 1][l - 1]) * h % md); int ans = 0; for (int h = 1; h <= k; h++) ans = (ans + dp[h][n - h + 1]) % md; System.out.println(ans); } }
O(n^3)
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Determine the worst-case time complexity category of a given Java code based on input size n. </TASK> <CODE> import java.io.*; import java.util.*; public class CF1515E{ public static void main(String[] args) { Scanner sc = new Scanner(System.in); int n = sc.nextInt(); int md = sc.nextInt(); int k = (n + 1) / 2; int[][] dp = new int[k + 1][n + 1]; dp[0][0] = 1; for (int h = 1; h <= k; h++) for (int l = h; l <= n - h + 1; l++) dp[h][l] = (int) ((dp[h][l - 1] * 2L + dp[h - 1][l - 1]) * h % md); int ans = 0; for (int h = 1; h <= k; h++) ans = (ans + dp[h][n - h + 1]) % md; System.out.println(ans); } } </CODE> <EVALUATION_RUBRIC> - O(log(n)): The time complexity increases logarithmically in relation to the input size. - O(1): The time complexity is constant to the input size n. - O(n^3): The time complexity scales proportionally to the cube of the input size. - O(n^2): The time complexity grows proportionally to the square of the input size. - O(n): The time complexity increases proportionally to the input size n in a linear manner. - O(nlog(n)): The time complexity combines linear and logarithmic growth factors. - non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n. </TASK> <CODE> import java.io.*; import java.util.*; public class CF1515E{ public static void main(String[] args) { Scanner sc = new Scanner(System.in); int n = sc.nextInt(); int md = sc.nextInt(); int k = (n + 1) / 2; int[][] dp = new int[k + 1][n + 1]; dp[0][0] = 1; for (int h = 1; h <= k; h++) for (int l = h; l <= n - h + 1; l++) dp[h][l] = (int) ((dp[h][l - 1] * 2L + dp[h - 1][l - 1]) * h % md); int ans = 0; for (int h = 1; h <= k; h++) ans = (ans + dp[h][n - h + 1]) % md; System.out.println(ans); } } </CODE> <EVALUATION_RUBRIC> - O(n^3): The execution time ascends in proportion to the cube of the input size n. - O(n^2): The execution time ascends in proportion to the square of the input size n. - O(log(n)): The execution time ascends in proportion to the logarithm of the input size n. - others: The time complexity does not fit to any of the given categories or is ambiguous. - O(1): The execution time is unaffected by the size of the input n. - O(n): The execution time ascends in a one-to-one ratio with the input size n. - O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially. - non-polynomial: The running time increases non-polynomially with input size n, typically exponentially. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
543
3,480
1,932
import java.util.Arrays; import java.util.Scanner; public class Round111ProbA { public static void main(String[] args) { Scanner in = new Scanner(System.in); int n = in.nextInt(); int[]a = new int[n]; int s =0; for(int i =0 ; i < n;i++) { a[i] = in.nextInt(); s += a[i]; } Arrays.sort(a); int x =0; int c =0; for(int i =n-1 ; i >-1;i-- ) { x +=a[i]; s -= a[i]; c++; if(x > s)break; } System.out.println(c); } }
O(nlog(n))
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Classify the following Java code's worst-case time complexity according to its relationship to the input size n. </TASK> <CODE> import java.util.Arrays; import java.util.Scanner; public class Round111ProbA { public static void main(String[] args) { Scanner in = new Scanner(System.in); int n = in.nextInt(); int[]a = new int[n]; int s =0; for(int i =0 ; i < n;i++) { a[i] = in.nextInt(); s += a[i]; } Arrays.sort(a); int x =0; int c =0; for(int i =n-1 ; i >-1;i-- ) { x +=a[i]; s -= a[i]; c++; if(x > s)break; } System.out.println(c); } } </CODE> <EVALUATION_RUBRIC> - O(log(n)): The running time increases with the logarithm of the input size n. - non-polynomial: The running time increases non-polynomially with input size n, typically exponentially. - O(nlog(n)): The running time increases with the product of n and logarithm of n. - O(1): The running time does not change regardless of the input size n. - O(n): The running time grows linearly with the input size n. - O(n^2): The running time increases with the square of the input size n. - O(n^3): The running time increases with the cube of the input size n. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n. </TASK> <CODE> import java.util.Arrays; import java.util.Scanner; public class Round111ProbA { public static void main(String[] args) { Scanner in = new Scanner(System.in); int n = in.nextInt(); int[]a = new int[n]; int s =0; for(int i =0 ; i < n;i++) { a[i] = in.nextInt(); s += a[i]; } Arrays.sort(a); int x =0; int c =0; for(int i =n-1 ; i >-1;i-- ) { x +=a[i]; s -= a[i]; c++; if(x > s)break; } System.out.println(c); } } </CODE> <EVALUATION_RUBRIC> - O(n^2): The execution time ascends in proportion to the square of the input size n. - O(n): The execution time ascends in a one-to-one ratio with the input size n. - non-polynomial: The running time increases non-polynomially with input size n, typically exponentially. - O(1): The execution time is unaffected by the size of the input n. - O(n^3): The execution time ascends in proportion to the cube of the input size n. - O(log(n)): The execution time ascends in proportion to the logarithm of the input size n. - O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially. - others: The time complexity does not fit to any of the given categories or is ambiguous. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
494
1,928
1,167
import java.io.IOException; import java.io.InputStream; import java.io.PrintWriter; import java.util.InputMismatchException; import java.util.*; public class ed817Q3 { public static void main(String[] args){ InputReader in = new InputReader(System.in); PrintWriter out = new PrintWriter(System.out); int t = 1; for(int zxz=0;zxz<t;zxz++){ // my code starts here long n = in.nextLong(); long s = in.nextLong(); long start=0,end=n; long ans=n+1; while(start<=end){ long mid = start+(end-start)/2; if(mid-digitSum(mid)>=s){ ans = mid; end = mid-1; } else{ start=mid+1; } } System.out.println(n-ans+1); // my code ends here } } static int digitSum(long n){ int sum=0; while(n>0){ sum+=n%10; n=n/10; } return sum; } static class InputReader { private InputStream stream; private byte[] buf = new byte[8192]; private int curChar, snumChars; private SpaceCharFilter filter; public InputReader(InputStream stream) { this.stream = stream; } public int snext() { if (snumChars == -1) throw new InputMismatchException(); if (curChar >= snumChars) { curChar = 0; try { snumChars = stream.read(buf); } catch (IOException e) { throw new InputMismatchException(); } if (snumChars <= 0) return -1; } return buf[curChar++]; } public int nextInt() { int c = snext(); while (isSpaceChar(c)) c = snext(); int sgn = 1; if (c == '-') { sgn = -1; c = snext(); } int res = 0; do { if (c < '0' || c > '9') throw new InputMismatchException(); res *= 10; res += c - '0'; c = snext(); } while (!isSpaceChar(c)); return res * sgn; } public long nextLong() { int c = snext(); while (isSpaceChar(c)) c = snext(); int sgn = 1; if (c == '-') { sgn = -1; c = snext(); } long res = 0; do { if (c < '0' || c > '9') throw new InputMismatchException(); res *= 10; res += c - '0'; c = snext(); } while (!isSpaceChar(c)); return res * sgn; } public int[] nextIntArray(int n) { int a[] = new int[n]; for (int i = 0; i < n; i++) a[i] = nextInt(); return a; } public String readString() { int c = snext(); while (isSpaceChar(c)) c = snext(); StringBuilder res = new StringBuilder(); do { res.appendCodePoint(c); c = snext(); } while (!isSpaceChar(c)); return res.toString(); } public boolean isSpaceChar(int c) { if (filter != null) return filter.isSpaceChar(c); return c == ' ' || c == '\n' || c == '\r' || c == '\t' || c == -1; } public interface SpaceCharFilter { public boolean isSpaceChar(int ch); } } }
O(log(n))
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Classify the following Java code's worst-case time complexity according to its relationship to the input size n. </TASK> <CODE> import java.io.IOException; import java.io.InputStream; import java.io.PrintWriter; import java.util.InputMismatchException; import java.util.*; public class ed817Q3 { public static void main(String[] args){ InputReader in = new InputReader(System.in); PrintWriter out = new PrintWriter(System.out); int t = 1; for(int zxz=0;zxz<t;zxz++){ // my code starts here long n = in.nextLong(); long s = in.nextLong(); long start=0,end=n; long ans=n+1; while(start<=end){ long mid = start+(end-start)/2; if(mid-digitSum(mid)>=s){ ans = mid; end = mid-1; } else{ start=mid+1; } } System.out.println(n-ans+1); // my code ends here } } static int digitSum(long n){ int sum=0; while(n>0){ sum+=n%10; n=n/10; } return sum; } static class InputReader { private InputStream stream; private byte[] buf = new byte[8192]; private int curChar, snumChars; private SpaceCharFilter filter; public InputReader(InputStream stream) { this.stream = stream; } public int snext() { if (snumChars == -1) throw new InputMismatchException(); if (curChar >= snumChars) { curChar = 0; try { snumChars = stream.read(buf); } catch (IOException e) { throw new InputMismatchException(); } if (snumChars <= 0) return -1; } return buf[curChar++]; } public int nextInt() { int c = snext(); while (isSpaceChar(c)) c = snext(); int sgn = 1; if (c == '-') { sgn = -1; c = snext(); } int res = 0; do { if (c < '0' || c > '9') throw new InputMismatchException(); res *= 10; res += c - '0'; c = snext(); } while (!isSpaceChar(c)); return res * sgn; } public long nextLong() { int c = snext(); while (isSpaceChar(c)) c = snext(); int sgn = 1; if (c == '-') { sgn = -1; c = snext(); } long res = 0; do { if (c < '0' || c > '9') throw new InputMismatchException(); res *= 10; res += c - '0'; c = snext(); } while (!isSpaceChar(c)); return res * sgn; } public int[] nextIntArray(int n) { int a[] = new int[n]; for (int i = 0; i < n; i++) a[i] = nextInt(); return a; } public String readString() { int c = snext(); while (isSpaceChar(c)) c = snext(); StringBuilder res = new StringBuilder(); do { res.appendCodePoint(c); c = snext(); } while (!isSpaceChar(c)); return res.toString(); } public boolean isSpaceChar(int c) { if (filter != null) return filter.isSpaceChar(c); return c == ' ' || c == '\n' || c == '\r' || c == '\t' || c == -1; } public interface SpaceCharFilter { public boolean isSpaceChar(int ch); } } } </CODE> <EVALUATION_RUBRIC> - O(nlog(n)): The running time increases with the product of n and logarithm of n. - O(n^2): The running time increases with the square of the input size n. - non-polynomial: The running time increases non-polynomially with input size n, typically exponentially. - O(n): The running time grows linearly with the input size n. - O(n^3): The running time increases with the cube of the input size n. - O(1): The running time does not change regardless of the input size n. - O(log(n)): The running time increases with the logarithm of the input size n. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n. </TASK> <CODE> import java.io.IOException; import java.io.InputStream; import java.io.PrintWriter; import java.util.InputMismatchException; import java.util.*; public class ed817Q3 { public static void main(String[] args){ InputReader in = new InputReader(System.in); PrintWriter out = new PrintWriter(System.out); int t = 1; for(int zxz=0;zxz<t;zxz++){ // my code starts here long n = in.nextLong(); long s = in.nextLong(); long start=0,end=n; long ans=n+1; while(start<=end){ long mid = start+(end-start)/2; if(mid-digitSum(mid)>=s){ ans = mid; end = mid-1; } else{ start=mid+1; } } System.out.println(n-ans+1); // my code ends here } } static int digitSum(long n){ int sum=0; while(n>0){ sum+=n%10; n=n/10; } return sum; } static class InputReader { private InputStream stream; private byte[] buf = new byte[8192]; private int curChar, snumChars; private SpaceCharFilter filter; public InputReader(InputStream stream) { this.stream = stream; } public int snext() { if (snumChars == -1) throw new InputMismatchException(); if (curChar >= snumChars) { curChar = 0; try { snumChars = stream.read(buf); } catch (IOException e) { throw new InputMismatchException(); } if (snumChars <= 0) return -1; } return buf[curChar++]; } public int nextInt() { int c = snext(); while (isSpaceChar(c)) c = snext(); int sgn = 1; if (c == '-') { sgn = -1; c = snext(); } int res = 0; do { if (c < '0' || c > '9') throw new InputMismatchException(); res *= 10; res += c - '0'; c = snext(); } while (!isSpaceChar(c)); return res * sgn; } public long nextLong() { int c = snext(); while (isSpaceChar(c)) c = snext(); int sgn = 1; if (c == '-') { sgn = -1; c = snext(); } long res = 0; do { if (c < '0' || c > '9') throw new InputMismatchException(); res *= 10; res += c - '0'; c = snext(); } while (!isSpaceChar(c)); return res * sgn; } public int[] nextIntArray(int n) { int a[] = new int[n]; for (int i = 0; i < n; i++) a[i] = nextInt(); return a; } public String readString() { int c = snext(); while (isSpaceChar(c)) c = snext(); StringBuilder res = new StringBuilder(); do { res.appendCodePoint(c); c = snext(); } while (!isSpaceChar(c)); return res.toString(); } public boolean isSpaceChar(int c) { if (filter != null) return filter.isSpaceChar(c); return c == ' ' || c == '\n' || c == '\r' || c == '\t' || c == -1; } public interface SpaceCharFilter { public boolean isSpaceChar(int ch); } } } </CODE> <EVALUATION_RUBRIC> - others: The time complexity does not fit to any of the given categories or is ambiguous. - O(log(n)): The execution time ascends in proportion to the logarithm of the input size n. - O(1): The execution time is unaffected by the size of the input n. - O(n): The execution time ascends in a one-to-one ratio with the input size n. - O(n^2): The execution time ascends in proportion to the square of the input size n. - O(n^3): The execution time ascends in proportion to the cube of the input size n. - O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially. - non-polynomial: The running time increases non-polynomially with input size n, typically exponentially. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
1,191
1,166
1,757
import java.io.BufferedReader; import java.io.IOException; import java.io.InputStreamReader; import java.util.Arrays; import java.util.StringTokenizer; /** * Date 22.11.2011 * Time 17:49:45 * Author Woodey * $ */ public class A15 { final double eps = 10e-9; class Pair implements Comparable<Pair>{ int x; int length; Pair(int x, int length) { this.x = x; this.length = length; } public int compareTo(Pair p) { return x - p.x; } } private void Solution() throws IOException { int n = nextInt(), t = nextInt(), ans = 2; Pair[] pairs = new Pair[n]; for (int i = 0; i < n; i ++) { int x = nextInt(), length = nextInt(); pairs[i] = new Pair(x, length); } Arrays.sort(pairs); for (int i = 0; i < n-1; i ++) { double place = pairs[i+1].x - pairs[i].x - (double) pairs[i+1].length/2 - (double) pairs[i].length/2; if (place > t) ans += 2; else if ((int) (place+eps) == t) ans ++; } System.out.println(ans); } public static void main(String[] args) { new A15().run(); } BufferedReader in; StringTokenizer tokenizer; public void run() { try { in = new BufferedReader(new InputStreamReader(System.in)); tokenizer = null; Solution(); in.close(); } catch (Exception e) { e.printStackTrace(); System.exit(1); } } int nextInt() throws IOException { return Integer.parseInt(nextToken()); } String nextToken() throws IOException { while (tokenizer == null || !tokenizer.hasMoreTokens()) tokenizer = new StringTokenizer(in.readLine()); return tokenizer.nextToken(); } }
O(nlog(n))
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Determine the worst-case time complexity category of a given Java code based on input size n. </TASK> <CODE> import java.io.BufferedReader; import java.io.IOException; import java.io.InputStreamReader; import java.util.Arrays; import java.util.StringTokenizer; /** * Date 22.11.2011 * Time 17:49:45 * Author Woodey * $ */ public class A15 { final double eps = 10e-9; class Pair implements Comparable<Pair>{ int x; int length; Pair(int x, int length) { this.x = x; this.length = length; } public int compareTo(Pair p) { return x - p.x; } } private void Solution() throws IOException { int n = nextInt(), t = nextInt(), ans = 2; Pair[] pairs = new Pair[n]; for (int i = 0; i < n; i ++) { int x = nextInt(), length = nextInt(); pairs[i] = new Pair(x, length); } Arrays.sort(pairs); for (int i = 0; i < n-1; i ++) { double place = pairs[i+1].x - pairs[i].x - (double) pairs[i+1].length/2 - (double) pairs[i].length/2; if (place > t) ans += 2; else if ((int) (place+eps) == t) ans ++; } System.out.println(ans); } public static void main(String[] args) { new A15().run(); } BufferedReader in; StringTokenizer tokenizer; public void run() { try { in = new BufferedReader(new InputStreamReader(System.in)); tokenizer = null; Solution(); in.close(); } catch (Exception e) { e.printStackTrace(); System.exit(1); } } int nextInt() throws IOException { return Integer.parseInt(nextToken()); } String nextToken() throws IOException { while (tokenizer == null || !tokenizer.hasMoreTokens()) tokenizer = new StringTokenizer(in.readLine()); return tokenizer.nextToken(); } } </CODE> <EVALUATION_RUBRIC> - O(n^3): The time complexity scales proportionally to the cube of the input size. - O(nlog(n)): The time complexity combines linear and logarithmic growth factors. - O(1): The time complexity is constant to the input size n. - O(log(n)): The time complexity increases logarithmically in relation to the input size. - O(n^2): The time complexity grows proportionally to the square of the input size. - O(n): The time complexity increases proportionally to the input size n in a linear manner. - non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n. </TASK> <CODE> import java.io.BufferedReader; import java.io.IOException; import java.io.InputStreamReader; import java.util.Arrays; import java.util.StringTokenizer; /** * Date 22.11.2011 * Time 17:49:45 * Author Woodey * $ */ public class A15 { final double eps = 10e-9; class Pair implements Comparable<Pair>{ int x; int length; Pair(int x, int length) { this.x = x; this.length = length; } public int compareTo(Pair p) { return x - p.x; } } private void Solution() throws IOException { int n = nextInt(), t = nextInt(), ans = 2; Pair[] pairs = new Pair[n]; for (int i = 0; i < n; i ++) { int x = nextInt(), length = nextInt(); pairs[i] = new Pair(x, length); } Arrays.sort(pairs); for (int i = 0; i < n-1; i ++) { double place = pairs[i+1].x - pairs[i].x - (double) pairs[i+1].length/2 - (double) pairs[i].length/2; if (place > t) ans += 2; else if ((int) (place+eps) == t) ans ++; } System.out.println(ans); } public static void main(String[] args) { new A15().run(); } BufferedReader in; StringTokenizer tokenizer; public void run() { try { in = new BufferedReader(new InputStreamReader(System.in)); tokenizer = null; Solution(); in.close(); } catch (Exception e) { e.printStackTrace(); System.exit(1); } } int nextInt() throws IOException { return Integer.parseInt(nextToken()); } String nextToken() throws IOException { while (tokenizer == null || !tokenizer.hasMoreTokens()) tokenizer = new StringTokenizer(in.readLine()); return tokenizer.nextToken(); } } </CODE> <EVALUATION_RUBRIC> - others: The time complexity does not fit to any of the given categories or is ambiguous. - O(n^3): The execution time ascends in proportion to the cube of the input size n. - O(log(n)): The execution time ascends in proportion to the logarithm of the input size n. - non-polynomial: The running time increases non-polynomially with input size n, typically exponentially. - O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially. - O(n^2): The execution time ascends in proportion to the square of the input size n. - O(n): The execution time ascends in a one-to-one ratio with the input size n. - O(1): The execution time is unaffected by the size of the input n. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
788
1,753
1,722
import java.util.Arrays; import java.util.Scanner; public class CottageVillage { public static void main(String[] args){ Scanner scan = new Scanner(System.in); while(scan.hasNext()){ int counter = 0; int numbCottages = scan.nextInt(); int t = scan.nextInt(); House[] cottages = new House[numbCottages]; for(int i =0; i<numbCottages; i++){ int centre = scan.nextInt(); int length = scan.nextInt(); double beginning = centre - ((double)length)/2; double end = centre + ((double)length)/2; cottages[i]= new House(beginning, end); } Arrays.sort(cottages); //check righthand side of first cottage /* if(cottages[0].end + t < cottages[1].beginning) counter++; //check lefthand side of last cottage if(cottages[numbCottages-1].beginning -t > cottages[numbCottages-2].end) counter++; */ for(int i =0; i<numbCottages-1; i++){ if(cottages[i].end + t <= cottages[i+1].beginning){ counter++; // System.out.println(counter + "left hand"); } if (cottages[i+1].beginning - t >= cottages[i].end){ counter++; // System.out.println(counter + "right hand"); } if (Math.abs((cottages[i].end + t - cottages[i+1].beginning)) < 1e-8){ counter--; } } System.out.println(counter+2); } } static class House implements Comparable<House>{ double beginning; double end; House(double _beginning, double _end){ beginning = _beginning; end = _end; } @Override public int compareTo(House house) { // if(this.beginning<house.beginning){ // return -1; // } // else if(this.beginning==house.beginning){ // return 0; // } // else{ // return 1; // } return Double.valueOf(beginning).compareTo(house.beginning); } } }
O(nlog(n))
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n. </TASK> <CODE> import java.util.Arrays; import java.util.Scanner; public class CottageVillage { public static void main(String[] args){ Scanner scan = new Scanner(System.in); while(scan.hasNext()){ int counter = 0; int numbCottages = scan.nextInt(); int t = scan.nextInt(); House[] cottages = new House[numbCottages]; for(int i =0; i<numbCottages; i++){ int centre = scan.nextInt(); int length = scan.nextInt(); double beginning = centre - ((double)length)/2; double end = centre + ((double)length)/2; cottages[i]= new House(beginning, end); } Arrays.sort(cottages); //check righthand side of first cottage /* if(cottages[0].end + t < cottages[1].beginning) counter++; //check lefthand side of last cottage if(cottages[numbCottages-1].beginning -t > cottages[numbCottages-2].end) counter++; */ for(int i =0; i<numbCottages-1; i++){ if(cottages[i].end + t <= cottages[i+1].beginning){ counter++; // System.out.println(counter + "left hand"); } if (cottages[i+1].beginning - t >= cottages[i].end){ counter++; // System.out.println(counter + "right hand"); } if (Math.abs((cottages[i].end + t - cottages[i+1].beginning)) < 1e-8){ counter--; } } System.out.println(counter+2); } } static class House implements Comparable<House>{ double beginning; double end; House(double _beginning, double _end){ beginning = _beginning; end = _end; } @Override public int compareTo(House house) { // if(this.beginning<house.beginning){ // return -1; // } // else if(this.beginning==house.beginning){ // return 0; // } // else{ // return 1; // } return Double.valueOf(beginning).compareTo(house.beginning); } } } </CODE> <EVALUATION_RUBRIC> - O(n^2): The execution time ascends in proportion to the square of the input size n. - non-polynomial: The running time increases non-polynomially with input size n, typically exponentially. - O(1): The execution time is unaffected by the size of the input n. - O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially. - O(log(n)): The execution time ascends in proportion to the logarithm of the input size n. - O(n): The execution time ascends in a one-to-one ratio with the input size n. - O(n^3): The execution time ascends in proportion to the cube of the input size n. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Determine the worst-case time complexity category of a given Java code based on input size n. </TASK> <CODE> import java.util.Arrays; import java.util.Scanner; public class CottageVillage { public static void main(String[] args){ Scanner scan = new Scanner(System.in); while(scan.hasNext()){ int counter = 0; int numbCottages = scan.nextInt(); int t = scan.nextInt(); House[] cottages = new House[numbCottages]; for(int i =0; i<numbCottages; i++){ int centre = scan.nextInt(); int length = scan.nextInt(); double beginning = centre - ((double)length)/2; double end = centre + ((double)length)/2; cottages[i]= new House(beginning, end); } Arrays.sort(cottages); //check righthand side of first cottage /* if(cottages[0].end + t < cottages[1].beginning) counter++; //check lefthand side of last cottage if(cottages[numbCottages-1].beginning -t > cottages[numbCottages-2].end) counter++; */ for(int i =0; i<numbCottages-1; i++){ if(cottages[i].end + t <= cottages[i+1].beginning){ counter++; // System.out.println(counter + "left hand"); } if (cottages[i+1].beginning - t >= cottages[i].end){ counter++; // System.out.println(counter + "right hand"); } if (Math.abs((cottages[i].end + t - cottages[i+1].beginning)) < 1e-8){ counter--; } } System.out.println(counter+2); } } static class House implements Comparable<House>{ double beginning; double end; House(double _beginning, double _end){ beginning = _beginning; end = _end; } @Override public int compareTo(House house) { // if(this.beginning<house.beginning){ // return -1; // } // else if(this.beginning==house.beginning){ // return 0; // } // else{ // return 1; // } return Double.valueOf(beginning).compareTo(house.beginning); } } } </CODE> <EVALUATION_RUBRIC> - non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially. - O(n^2): The time complexity grows proportionally to the square of the input size. - O(n^3): The time complexity scales proportionally to the cube of the input size. - O(n): The time complexity increases proportionally to the input size n in a linear manner. - O(1): The time complexity is constant to the input size n. - O(log(n)): The time complexity increases logarithmically in relation to the input size. - O(nlog(n)): The time complexity combines linear and logarithmic growth factors. - others: The time complexity does not fit any of the above categories or cannot be clearly classified. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
890
1,718
2,680
import java.util.*; public class code_1 { public static void main(String[] args) { Scanner in=new Scanner(System.in); int n=in.nextInt(); int a[]=new int[n]; for(int i=0;i<n;i++) a[i]=in.nextInt(); Arrays.sort(a); for(int i=0;i<n-1;i++) { if(a[i]!=-1) { for(int j=i+1;j<n;j++) { if(a[j]%a[i]==0) a[j]=-1; } } } int count=0; for(int i=0;i<n;i++) { if(a[i]!=-1) count++; } System.out.println(count); } }
O(n^2)
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Determine the worst-case time complexity category of a given Java code based on input size n. </TASK> <CODE> import java.util.*; public class code_1 { public static void main(String[] args) { Scanner in=new Scanner(System.in); int n=in.nextInt(); int a[]=new int[n]; for(int i=0;i<n;i++) a[i]=in.nextInt(); Arrays.sort(a); for(int i=0;i<n-1;i++) { if(a[i]!=-1) { for(int j=i+1;j<n;j++) { if(a[j]%a[i]==0) a[j]=-1; } } } int count=0; for(int i=0;i<n;i++) { if(a[i]!=-1) count++; } System.out.println(count); } } </CODE> <EVALUATION_RUBRIC> - O(nlog(n)): The time complexity combines linear and logarithmic growth factors. - O(n^3): The time complexity scales proportionally to the cube of the input size. - O(n^2): The time complexity grows proportionally to the square of the input size. - O(1): The time complexity is constant to the input size n. - O(n): The time complexity increases proportionally to the input size n in a linear manner. - non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially. - O(log(n)): The time complexity increases logarithmically in relation to the input size. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n. </TASK> <CODE> import java.util.*; public class code_1 { public static void main(String[] args) { Scanner in=new Scanner(System.in); int n=in.nextInt(); int a[]=new int[n]; for(int i=0;i<n;i++) a[i]=in.nextInt(); Arrays.sort(a); for(int i=0;i<n-1;i++) { if(a[i]!=-1) { for(int j=i+1;j<n;j++) { if(a[j]%a[i]==0) a[j]=-1; } } } int count=0; for(int i=0;i<n;i++) { if(a[i]!=-1) count++; } System.out.println(count); } } </CODE> <EVALUATION_RUBRIC> - O(n^3): The execution time ascends in proportion to the cube of the input size n. - O(1): The execution time is unaffected by the size of the input n. - O(n^2): The execution time ascends in proportion to the square of the input size n. - non-polynomial: The running time increases non-polynomially with input size n, typically exponentially. - O(n): The execution time ascends in a one-to-one ratio with the input size n. - others: The time complexity does not fit to any of the given categories or is ambiguous. - O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially. - O(log(n)): The execution time ascends in proportion to the logarithm of the input size n. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
505
2,674
4,467
import java.util.*; import java.io.*; public class E { public static void main(String[] args) throws Exception { BufferedReader br = new BufferedReader(new InputStreamReader(System.in)); ArrayList<Integer>[][] nexts = new ArrayList[13][]; ArrayList<Integer>[] bs = new ArrayList[13]; int[][] index = new int[13][]; int[][] eqcl = new int[13][]; for(int n = 1; n <= 12; n++) { eqcl[n] = new int[(1 << n)]; bs[n] = new ArrayList<Integer>(); index[n] = new int[(1 << n)]; int ind = 0; for(int mask = 0; mask < (1 << n); mask++) { boolean add = true; for(int k = 0; k < n; k++) { if(rot(mask, k, n) < mask) add = false; } if(add) { bs[n].add(mask); index[n][mask] = ind; ind++; } } nexts[n] = new ArrayList[bs[n].size()]; for(int i = 0; i < bs[n].size(); i++) { int mask = bs[n].get(i); for(int k = 0; k < n; k++) { eqcl[n][rot(mask, k, n)] = mask; } nexts[n][i] = new ArrayList<>(); for(int y = 0; y < (1 << n); y++) { if((mask & y) == 0) { nexts[n][i].add(y); } } } } int T = Integer.parseInt(br.readLine()); BufferedWriter bw = new BufferedWriter(new OutputStreamWriter(System.out)); for(int test = 0; test < T; test++) { StringTokenizer st = new StringTokenizer(br.readLine()); int n = Integer.parseInt(st.nextToken()); int m = Integer.parseInt(st.nextToken()); int[][] arrt = new int[m][n]; for(int i = 0; i < n; i++) { st = new StringTokenizer(br.readLine()); for(int j = 0; j < m; j++) { arrt[j][i] = Integer.parseInt(st.nextToken()); } } Column[] cols = new Column[m]; for(int j = 0; j < m; j++) { cols[j] = new Column(arrt[j]); } Arrays.sort(cols, Collections.reverseOrder()); m = Integer.min(n, m); int[][] arr = new int[n][m]; for(int i = 0; i < n; i++) { for(int j = 0; j < m; j++) { arr[i][j] = cols[j].arr[i]; } } int[][] max = new int[m][bs[n].size()]; for(int c = 0; c < m; c++) { for(int mask = 0; mask < (1 << n); mask++) { int curr = 0; for(int i = 0; i < n; i++) { if((mask & (1 << i)) > 0) curr += arr[i][c]; } int cl = eqcl[n][mask]; max[c][index[n][cl]] = Integer.max(max[c][index[n][cl]], curr); } } int[][] dp = new int[m+1][bs[n].size()]; for(int c = 0; c < m; c++) { for(int i = 0; i < bs[n].size(); i++) { int mask = bs[n].get(i); for(int next: nexts[n][i]) { int cl = eqcl[n][next]; int dl = eqcl[n][mask | next]; if(dp[c][i] + max[c][index[n][cl]] > dp[c+1][index[n][dl]]) { dp[c+1][index[n][dl]] = dp[c][i] + max[c][index[n][cl]]; } } } } bw.write(dp[m][bs[n].size() - 1]+"\n"); } bw.flush(); } static int rot(int x, int k, int n) { int a = x << k; int b = x >> (n - k); return (a + b) & ((1 << n) - 1); } static class Column implements Comparable<Column>{ int[] arr; int max; public Column(int[] arr) { this.arr = arr; max = 0; for(int k: arr) { max = Integer.max(max, k); } } @Override public int compareTo(Column col) { return max - col.max; } } }
non-polynomial
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Determine the worst-case time complexity category of a given Java code based on input size n. </TASK> <CODE> import java.util.*; import java.io.*; public class E { public static void main(String[] args) throws Exception { BufferedReader br = new BufferedReader(new InputStreamReader(System.in)); ArrayList<Integer>[][] nexts = new ArrayList[13][]; ArrayList<Integer>[] bs = new ArrayList[13]; int[][] index = new int[13][]; int[][] eqcl = new int[13][]; for(int n = 1; n <= 12; n++) { eqcl[n] = new int[(1 << n)]; bs[n] = new ArrayList<Integer>(); index[n] = new int[(1 << n)]; int ind = 0; for(int mask = 0; mask < (1 << n); mask++) { boolean add = true; for(int k = 0; k < n; k++) { if(rot(mask, k, n) < mask) add = false; } if(add) { bs[n].add(mask); index[n][mask] = ind; ind++; } } nexts[n] = new ArrayList[bs[n].size()]; for(int i = 0; i < bs[n].size(); i++) { int mask = bs[n].get(i); for(int k = 0; k < n; k++) { eqcl[n][rot(mask, k, n)] = mask; } nexts[n][i] = new ArrayList<>(); for(int y = 0; y < (1 << n); y++) { if((mask & y) == 0) { nexts[n][i].add(y); } } } } int T = Integer.parseInt(br.readLine()); BufferedWriter bw = new BufferedWriter(new OutputStreamWriter(System.out)); for(int test = 0; test < T; test++) { StringTokenizer st = new StringTokenizer(br.readLine()); int n = Integer.parseInt(st.nextToken()); int m = Integer.parseInt(st.nextToken()); int[][] arrt = new int[m][n]; for(int i = 0; i < n; i++) { st = new StringTokenizer(br.readLine()); for(int j = 0; j < m; j++) { arrt[j][i] = Integer.parseInt(st.nextToken()); } } Column[] cols = new Column[m]; for(int j = 0; j < m; j++) { cols[j] = new Column(arrt[j]); } Arrays.sort(cols, Collections.reverseOrder()); m = Integer.min(n, m); int[][] arr = new int[n][m]; for(int i = 0; i < n; i++) { for(int j = 0; j < m; j++) { arr[i][j] = cols[j].arr[i]; } } int[][] max = new int[m][bs[n].size()]; for(int c = 0; c < m; c++) { for(int mask = 0; mask < (1 << n); mask++) { int curr = 0; for(int i = 0; i < n; i++) { if((mask & (1 << i)) > 0) curr += arr[i][c]; } int cl = eqcl[n][mask]; max[c][index[n][cl]] = Integer.max(max[c][index[n][cl]], curr); } } int[][] dp = new int[m+1][bs[n].size()]; for(int c = 0; c < m; c++) { for(int i = 0; i < bs[n].size(); i++) { int mask = bs[n].get(i); for(int next: nexts[n][i]) { int cl = eqcl[n][next]; int dl = eqcl[n][mask | next]; if(dp[c][i] + max[c][index[n][cl]] > dp[c+1][index[n][dl]]) { dp[c+1][index[n][dl]] = dp[c][i] + max[c][index[n][cl]]; } } } } bw.write(dp[m][bs[n].size() - 1]+"\n"); } bw.flush(); } static int rot(int x, int k, int n) { int a = x << k; int b = x >> (n - k); return (a + b) & ((1 << n) - 1); } static class Column implements Comparable<Column>{ int[] arr; int max; public Column(int[] arr) { this.arr = arr; max = 0; for(int k: arr) { max = Integer.max(max, k); } } @Override public int compareTo(Column col) { return max - col.max; } } } </CODE> <EVALUATION_RUBRIC> - O(nlog(n)): The time complexity combines linear and logarithmic growth factors. - non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially. - O(log(n)): The time complexity increases logarithmically in relation to the input size. - O(n^3): The time complexity scales proportionally to the cube of the input size. - O(n): The time complexity increases proportionally to the input size n in a linear manner. - O(n^2): The time complexity grows proportionally to the square of the input size. - O(1): The time complexity is constant to the input size n. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Classify the following Java code's worst-case time complexity according to its relationship to the input size n. </TASK> <CODE> import java.util.*; import java.io.*; public class E { public static void main(String[] args) throws Exception { BufferedReader br = new BufferedReader(new InputStreamReader(System.in)); ArrayList<Integer>[][] nexts = new ArrayList[13][]; ArrayList<Integer>[] bs = new ArrayList[13]; int[][] index = new int[13][]; int[][] eqcl = new int[13][]; for(int n = 1; n <= 12; n++) { eqcl[n] = new int[(1 << n)]; bs[n] = new ArrayList<Integer>(); index[n] = new int[(1 << n)]; int ind = 0; for(int mask = 0; mask < (1 << n); mask++) { boolean add = true; for(int k = 0; k < n; k++) { if(rot(mask, k, n) < mask) add = false; } if(add) { bs[n].add(mask); index[n][mask] = ind; ind++; } } nexts[n] = new ArrayList[bs[n].size()]; for(int i = 0; i < bs[n].size(); i++) { int mask = bs[n].get(i); for(int k = 0; k < n; k++) { eqcl[n][rot(mask, k, n)] = mask; } nexts[n][i] = new ArrayList<>(); for(int y = 0; y < (1 << n); y++) { if((mask & y) == 0) { nexts[n][i].add(y); } } } } int T = Integer.parseInt(br.readLine()); BufferedWriter bw = new BufferedWriter(new OutputStreamWriter(System.out)); for(int test = 0; test < T; test++) { StringTokenizer st = new StringTokenizer(br.readLine()); int n = Integer.parseInt(st.nextToken()); int m = Integer.parseInt(st.nextToken()); int[][] arrt = new int[m][n]; for(int i = 0; i < n; i++) { st = new StringTokenizer(br.readLine()); for(int j = 0; j < m; j++) { arrt[j][i] = Integer.parseInt(st.nextToken()); } } Column[] cols = new Column[m]; for(int j = 0; j < m; j++) { cols[j] = new Column(arrt[j]); } Arrays.sort(cols, Collections.reverseOrder()); m = Integer.min(n, m); int[][] arr = new int[n][m]; for(int i = 0; i < n; i++) { for(int j = 0; j < m; j++) { arr[i][j] = cols[j].arr[i]; } } int[][] max = new int[m][bs[n].size()]; for(int c = 0; c < m; c++) { for(int mask = 0; mask < (1 << n); mask++) { int curr = 0; for(int i = 0; i < n; i++) { if((mask & (1 << i)) > 0) curr += arr[i][c]; } int cl = eqcl[n][mask]; max[c][index[n][cl]] = Integer.max(max[c][index[n][cl]], curr); } } int[][] dp = new int[m+1][bs[n].size()]; for(int c = 0; c < m; c++) { for(int i = 0; i < bs[n].size(); i++) { int mask = bs[n].get(i); for(int next: nexts[n][i]) { int cl = eqcl[n][next]; int dl = eqcl[n][mask | next]; if(dp[c][i] + max[c][index[n][cl]] > dp[c+1][index[n][dl]]) { dp[c+1][index[n][dl]] = dp[c][i] + max[c][index[n][cl]]; } } } } bw.write(dp[m][bs[n].size() - 1]+"\n"); } bw.flush(); } static int rot(int x, int k, int n) { int a = x << k; int b = x >> (n - k); return (a + b) & ((1 << n) - 1); } static class Column implements Comparable<Column>{ int[] arr; int max; public Column(int[] arr) { this.arr = arr; max = 0; for(int k: arr) { max = Integer.max(max, k); } } @Override public int compareTo(Column col) { return max - col.max; } } } </CODE> <EVALUATION_RUBRIC> - O(n): The running time grows linearly with the input size n. - O(nlog(n)): The running time increases with the product of n and logarithm of n. - others: The code does not clearly correspond to the listed classes or has an unclassified time complexity. - non-polynomial: The running time increases non-polynomially with input size n, typically exponentially. - O(n^3): The running time increases with the cube of the input size n. - O(1): The running time does not change regardless of the input size n. - O(log(n)): The running time increases with the logarithm of the input size n. - O(n^2): The running time increases with the square of the input size n. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
1,411
4,456
3,817
// Author : RegalBeast import java.io.*; import java.util.*; public class Main { static final FastReader FR = new FastReader(); static final PrintWriter PW = new PrintWriter(new OutputStreamWriter(System.out)); public static void main(String[] args) { StringBuilder solution = new StringBuilder(); int rows = FR.nextInt(); int cols = FR.nextInt(); int moves = FR.nextInt(); int[][] horizontalEdgeWeights = new int[rows][cols-1]; for (int r = 0; r < rows; r++) { for (int c = 0; c < cols - 1; c++) { horizontalEdgeWeights[r][c] = FR.nextInt(); } } int[][] verticalEdgeWeights = new int[rows-1][cols]; for (int r = 0; r < rows - 1; r++) { for (int c = 0; c < cols; c++) { verticalEdgeWeights[r][c] = FR.nextInt(); } } int[][] result = getResult(rows, cols, moves, horizontalEdgeWeights, verticalEdgeWeights); for (int r = 0; r < rows; r++) { for (int c = 0; c < cols; c++) { solution.append(result[r][c] + " "); } solution.append("\n"); } PW.print(solution.toString()); PW.close(); } static int[][] getResult(int rows, int cols, int moves, int[][] horizontalEdgeWeights, int[][] verticalEdgeWeights) { int[][] result = new int[rows][cols]; if ((moves & 1) == 1) { for (int r = 0; r < rows; r++) { for (int c = 0; c < cols; c++) { result[r][c] = -1; } } return result; } int mid = moves >> 1; int[][][] minForDistance = new int[rows][cols][mid+1]; for (int r = 0; r < rows; r++) { for (int c = 0; c < cols; c++) { for (int m = 1; m <= mid; m++) { minForDistance[r][c][m] = Integer.MAX_VALUE; } } } for (int m = 1; m <= mid; m++) { for (int r = 0; r < rows; r++) { for (int c = 0; c < cols; c++) { int minBoredom = minForDistance[r][c][m]; if (r > 0) { int candidateBoredom = minForDistance[r-1][c][m-1] + verticalEdgeWeights[r-1][c]; minBoredom = Math.min(minBoredom, candidateBoredom); } if (c > 0) { int candidateBoredom = minForDistance[r][c-1][m-1] + horizontalEdgeWeights[r][c-1]; minBoredom = Math.min(minBoredom, candidateBoredom); } if (r + 1 < rows) { int candidateBoredom = minForDistance[r+1][c][m-1] + verticalEdgeWeights[r][c]; minBoredom = Math.min(minBoredom, candidateBoredom); } if (c + 1 < cols) { int candidateBoredom = minForDistance[r][c+1][m-1] + horizontalEdgeWeights[r][c]; minBoredom = Math.min(minBoredom, candidateBoredom); } minForDistance[r][c][m] = minBoredom; } } } for (int r = 0; r < rows; r++) { for (int c = 0; c < cols; c++) { result[r][c] = minForDistance[r][c][mid] << 1; } } return result; } static class FastReader { BufferedReader br; StringTokenizer st; public FastReader() { br = new BufferedReader(new InputStreamReader(System.in)); } String next() { while (st == null || !st.hasMoreElements()) { try { st = new StringTokenizer(br.readLine()); } catch (IOException e) { e.printStackTrace(); } } return st.nextToken(); } int nextInt() { return Integer.parseInt(next()); } long nextLong() { return Long.parseLong(next()); } double nextDouble() { return Double.parseDouble(next()); } String nextLine() { String str = ""; try { str = br.readLine(); } catch (IOException e) { e.printStackTrace(); } return str; } } }
O(n^3)
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Determine the worst-case time complexity category of a given Java code based on input size n. </TASK> <CODE> // Author : RegalBeast import java.io.*; import java.util.*; public class Main { static final FastReader FR = new FastReader(); static final PrintWriter PW = new PrintWriter(new OutputStreamWriter(System.out)); public static void main(String[] args) { StringBuilder solution = new StringBuilder(); int rows = FR.nextInt(); int cols = FR.nextInt(); int moves = FR.nextInt(); int[][] horizontalEdgeWeights = new int[rows][cols-1]; for (int r = 0; r < rows; r++) { for (int c = 0; c < cols - 1; c++) { horizontalEdgeWeights[r][c] = FR.nextInt(); } } int[][] verticalEdgeWeights = new int[rows-1][cols]; for (int r = 0; r < rows - 1; r++) { for (int c = 0; c < cols; c++) { verticalEdgeWeights[r][c] = FR.nextInt(); } } int[][] result = getResult(rows, cols, moves, horizontalEdgeWeights, verticalEdgeWeights); for (int r = 0; r < rows; r++) { for (int c = 0; c < cols; c++) { solution.append(result[r][c] + " "); } solution.append("\n"); } PW.print(solution.toString()); PW.close(); } static int[][] getResult(int rows, int cols, int moves, int[][] horizontalEdgeWeights, int[][] verticalEdgeWeights) { int[][] result = new int[rows][cols]; if ((moves & 1) == 1) { for (int r = 0; r < rows; r++) { for (int c = 0; c < cols; c++) { result[r][c] = -1; } } return result; } int mid = moves >> 1; int[][][] minForDistance = new int[rows][cols][mid+1]; for (int r = 0; r < rows; r++) { for (int c = 0; c < cols; c++) { for (int m = 1; m <= mid; m++) { minForDistance[r][c][m] = Integer.MAX_VALUE; } } } for (int m = 1; m <= mid; m++) { for (int r = 0; r < rows; r++) { for (int c = 0; c < cols; c++) { int minBoredom = minForDistance[r][c][m]; if (r > 0) { int candidateBoredom = minForDistance[r-1][c][m-1] + verticalEdgeWeights[r-1][c]; minBoredom = Math.min(minBoredom, candidateBoredom); } if (c > 0) { int candidateBoredom = minForDistance[r][c-1][m-1] + horizontalEdgeWeights[r][c-1]; minBoredom = Math.min(minBoredom, candidateBoredom); } if (r + 1 < rows) { int candidateBoredom = minForDistance[r+1][c][m-1] + verticalEdgeWeights[r][c]; minBoredom = Math.min(minBoredom, candidateBoredom); } if (c + 1 < cols) { int candidateBoredom = minForDistance[r][c+1][m-1] + horizontalEdgeWeights[r][c]; minBoredom = Math.min(minBoredom, candidateBoredom); } minForDistance[r][c][m] = minBoredom; } } } for (int r = 0; r < rows; r++) { for (int c = 0; c < cols; c++) { result[r][c] = minForDistance[r][c][mid] << 1; } } return result; } static class FastReader { BufferedReader br; StringTokenizer st; public FastReader() { br = new BufferedReader(new InputStreamReader(System.in)); } String next() { while (st == null || !st.hasMoreElements()) { try { st = new StringTokenizer(br.readLine()); } catch (IOException e) { e.printStackTrace(); } } return st.nextToken(); } int nextInt() { return Integer.parseInt(next()); } long nextLong() { return Long.parseLong(next()); } double nextDouble() { return Double.parseDouble(next()); } String nextLine() { String str = ""; try { str = br.readLine(); } catch (IOException e) { e.printStackTrace(); } return str; } } } </CODE> <EVALUATION_RUBRIC> - O(n^3): The time complexity scales proportionally to the cube of the input size. - O(1): The time complexity is constant to the input size n. - O(nlog(n)): The time complexity combines linear and logarithmic growth factors. - O(n^2): The time complexity grows proportionally to the square of the input size. - O(n): The time complexity increases proportionally to the input size n in a linear manner. - O(log(n)): The time complexity increases logarithmically in relation to the input size. - non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n. </TASK> <CODE> // Author : RegalBeast import java.io.*; import java.util.*; public class Main { static final FastReader FR = new FastReader(); static final PrintWriter PW = new PrintWriter(new OutputStreamWriter(System.out)); public static void main(String[] args) { StringBuilder solution = new StringBuilder(); int rows = FR.nextInt(); int cols = FR.nextInt(); int moves = FR.nextInt(); int[][] horizontalEdgeWeights = new int[rows][cols-1]; for (int r = 0; r < rows; r++) { for (int c = 0; c < cols - 1; c++) { horizontalEdgeWeights[r][c] = FR.nextInt(); } } int[][] verticalEdgeWeights = new int[rows-1][cols]; for (int r = 0; r < rows - 1; r++) { for (int c = 0; c < cols; c++) { verticalEdgeWeights[r][c] = FR.nextInt(); } } int[][] result = getResult(rows, cols, moves, horizontalEdgeWeights, verticalEdgeWeights); for (int r = 0; r < rows; r++) { for (int c = 0; c < cols; c++) { solution.append(result[r][c] + " "); } solution.append("\n"); } PW.print(solution.toString()); PW.close(); } static int[][] getResult(int rows, int cols, int moves, int[][] horizontalEdgeWeights, int[][] verticalEdgeWeights) { int[][] result = new int[rows][cols]; if ((moves & 1) == 1) { for (int r = 0; r < rows; r++) { for (int c = 0; c < cols; c++) { result[r][c] = -1; } } return result; } int mid = moves >> 1; int[][][] minForDistance = new int[rows][cols][mid+1]; for (int r = 0; r < rows; r++) { for (int c = 0; c < cols; c++) { for (int m = 1; m <= mid; m++) { minForDistance[r][c][m] = Integer.MAX_VALUE; } } } for (int m = 1; m <= mid; m++) { for (int r = 0; r < rows; r++) { for (int c = 0; c < cols; c++) { int minBoredom = minForDistance[r][c][m]; if (r > 0) { int candidateBoredom = minForDistance[r-1][c][m-1] + verticalEdgeWeights[r-1][c]; minBoredom = Math.min(minBoredom, candidateBoredom); } if (c > 0) { int candidateBoredom = minForDistance[r][c-1][m-1] + horizontalEdgeWeights[r][c-1]; minBoredom = Math.min(minBoredom, candidateBoredom); } if (r + 1 < rows) { int candidateBoredom = minForDistance[r+1][c][m-1] + verticalEdgeWeights[r][c]; minBoredom = Math.min(minBoredom, candidateBoredom); } if (c + 1 < cols) { int candidateBoredom = minForDistance[r][c+1][m-1] + horizontalEdgeWeights[r][c]; minBoredom = Math.min(minBoredom, candidateBoredom); } minForDistance[r][c][m] = minBoredom; } } } for (int r = 0; r < rows; r++) { for (int c = 0; c < cols; c++) { result[r][c] = minForDistance[r][c][mid] << 1; } } return result; } static class FastReader { BufferedReader br; StringTokenizer st; public FastReader() { br = new BufferedReader(new InputStreamReader(System.in)); } String next() { while (st == null || !st.hasMoreElements()) { try { st = new StringTokenizer(br.readLine()); } catch (IOException e) { e.printStackTrace(); } } return st.nextToken(); } int nextInt() { return Integer.parseInt(next()); } long nextLong() { return Long.parseLong(next()); } double nextDouble() { return Double.parseDouble(next()); } String nextLine() { String str = ""; try { str = br.readLine(); } catch (IOException e) { e.printStackTrace(); } return str; } } } </CODE> <EVALUATION_RUBRIC> - others: The time complexity does not fit to any of the given categories or is ambiguous. - O(1): The execution time is unaffected by the size of the input n. - O(log(n)): The execution time ascends in proportion to the logarithm of the input size n. - non-polynomial: The running time increases non-polynomially with input size n, typically exponentially. - O(n^3): The execution time ascends in proportion to the cube of the input size n. - O(n^2): The execution time ascends in proportion to the square of the input size n. - O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially. - O(n): The execution time ascends in a one-to-one ratio with the input size n. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
1,389
3,807
2,632
import java.util.*; public final class paint_and_numers { public static void main(String[] args) { Scanner in = new Scanner(System.in); int n = in.nextInt(); int[] a = new int[n]; for(int i=0;i<n;i++) a[i] = in.nextInt(); Arrays.sort(a); int count = 0; boolean[] c = new boolean[n]; for(int i=0;i<n;i++) { if(c[i]==false) { c[i]=true; count++; for(int j=i+1;j<n;j++) { if(a[j]%a[i]==0) { c[j] = true; } } } } System.out.println(count); } }
O(n^2)
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n. </TASK> <CODE> import java.util.*; public final class paint_and_numers { public static void main(String[] args) { Scanner in = new Scanner(System.in); int n = in.nextInt(); int[] a = new int[n]; for(int i=0;i<n;i++) a[i] = in.nextInt(); Arrays.sort(a); int count = 0; boolean[] c = new boolean[n]; for(int i=0;i<n;i++) { if(c[i]==false) { c[i]=true; count++; for(int j=i+1;j<n;j++) { if(a[j]%a[i]==0) { c[j] = true; } } } } System.out.println(count); } } </CODE> <EVALUATION_RUBRIC> - O(n^2): The execution time ascends in proportion to the square of the input size n. - non-polynomial: The running time increases non-polynomially with input size n, typically exponentially. - O(log(n)): The execution time ascends in proportion to the logarithm of the input size n. - O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially. - O(n): The execution time ascends in a one-to-one ratio with the input size n. - O(n^3): The execution time ascends in proportion to the cube of the input size n. - O(1): The execution time is unaffected by the size of the input n. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Determine the worst-case time complexity category of a given Java code based on input size n. </TASK> <CODE> import java.util.*; public final class paint_and_numers { public static void main(String[] args) { Scanner in = new Scanner(System.in); int n = in.nextInt(); int[] a = new int[n]; for(int i=0;i<n;i++) a[i] = in.nextInt(); Arrays.sort(a); int count = 0; boolean[] c = new boolean[n]; for(int i=0;i<n;i++) { if(c[i]==false) { c[i]=true; count++; for(int j=i+1;j<n;j++) { if(a[j]%a[i]==0) { c[j] = true; } } } } System.out.println(count); } } </CODE> <EVALUATION_RUBRIC> - others: The time complexity does not fit any of the above categories or cannot be clearly classified. - non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially. - O(log(n)): The time complexity increases logarithmically in relation to the input size. - O(n^2): The time complexity grows proportionally to the square of the input size. - O(n^3): The time complexity scales proportionally to the cube of the input size. - O(n): The time complexity increases proportionally to the input size n in a linear manner. - O(1): The time complexity is constant to the input size n. - O(nlog(n)): The time complexity combines linear and logarithmic growth factors. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
511
2,626
3,720
// https://codeforces.com/contest/1497/submission/110250082 import java.io.*; import java.util.*; public class CF1497E2 extends PrintWriter { CF1497E2() { super(System.out); } static class Scanner { Scanner(InputStream in) { this.in = in; } InputStream in; byte[] bb = new byte[1 << 15]; int i, n; byte getc() { if (i == n) { i = n = 0; try { n = in.read(bb); } catch (IOException e) {} } return i < n ? bb[i++] : 0; } int nextInt() { byte c = 0; while (c <= ' ') c = getc(); int a = 0; while (c > ' ') { a = a * 10 + c - '0'; c = getc(); } return a; } } Scanner sc = new Scanner(System.in); public static void main(String[] $) { CF1497E2 o = new CF1497E2(); o.main(); o.flush(); } static final int A = 10000000, K = 20; int[] cc = new int[A + 1]; { for (int a = 1; a <= A; a++) cc[a] = a; for (int a = 2; a <= A / a; a++) { int s = a * a; for (int b = s; b <= A; b += s) while (cc[b] % s == 0) cc[b] /= s; } } void main() { int[] pp = new int[A + 1]; Arrays.fill(pp, -1); int t = sc.nextInt(); while (t-- > 0) { int n = sc.nextInt(); int k = sc.nextInt(); int[] aa = new int[n]; for (int i = 0; i < n; i++) aa[i] = cc[sc.nextInt()]; int[] mp = new int[k + 1]; int[] ip = new int[k + 1]; for (int i = 0; i < n; i++) { int a = aa[i]; for (int h = k; h >= 0; h--) { if (pp[a] >= ip[h]) { mp[h]++; ip[h] = i; } if (h > 0 && (mp[h - 1] < mp[h] || mp[h - 1] == mp[h] && ip[h - 1] > ip[h])) { mp[h] = mp[h - 1]; ip[h] = ip[h - 1]; } } pp[a] = i; } println(mp[k] + 1); for (int i = 0; i < n; i++) { int a = aa[i]; pp[a] = -1; } } } }
O(n^3)
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Classify the following Java code's worst-case time complexity according to its relationship to the input size n. </TASK> <CODE> // https://codeforces.com/contest/1497/submission/110250082 import java.io.*; import java.util.*; public class CF1497E2 extends PrintWriter { CF1497E2() { super(System.out); } static class Scanner { Scanner(InputStream in) { this.in = in; } InputStream in; byte[] bb = new byte[1 << 15]; int i, n; byte getc() { if (i == n) { i = n = 0; try { n = in.read(bb); } catch (IOException e) {} } return i < n ? bb[i++] : 0; } int nextInt() { byte c = 0; while (c <= ' ') c = getc(); int a = 0; while (c > ' ') { a = a * 10 + c - '0'; c = getc(); } return a; } } Scanner sc = new Scanner(System.in); public static void main(String[] $) { CF1497E2 o = new CF1497E2(); o.main(); o.flush(); } static final int A = 10000000, K = 20; int[] cc = new int[A + 1]; { for (int a = 1; a <= A; a++) cc[a] = a; for (int a = 2; a <= A / a; a++) { int s = a * a; for (int b = s; b <= A; b += s) while (cc[b] % s == 0) cc[b] /= s; } } void main() { int[] pp = new int[A + 1]; Arrays.fill(pp, -1); int t = sc.nextInt(); while (t-- > 0) { int n = sc.nextInt(); int k = sc.nextInt(); int[] aa = new int[n]; for (int i = 0; i < n; i++) aa[i] = cc[sc.nextInt()]; int[] mp = new int[k + 1]; int[] ip = new int[k + 1]; for (int i = 0; i < n; i++) { int a = aa[i]; for (int h = k; h >= 0; h--) { if (pp[a] >= ip[h]) { mp[h]++; ip[h] = i; } if (h > 0 && (mp[h - 1] < mp[h] || mp[h - 1] == mp[h] && ip[h - 1] > ip[h])) { mp[h] = mp[h - 1]; ip[h] = ip[h - 1]; } } pp[a] = i; } println(mp[k] + 1); for (int i = 0; i < n; i++) { int a = aa[i]; pp[a] = -1; } } } } </CODE> <EVALUATION_RUBRIC> - O(1): The running time does not change regardless of the input size n. - O(n^2): The running time increases with the square of the input size n. - O(n^3): The running time increases with the cube of the input size n. - O(log(n)): The running time increases with the logarithm of the input size n. - non-polynomial: The running time increases non-polynomially with input size n, typically exponentially. - O(n): The running time grows linearly with the input size n. - O(nlog(n)): The running time increases with the product of n and logarithm of n. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Determine the worst-case time complexity category of a given Java code based on input size n. </TASK> <CODE> // https://codeforces.com/contest/1497/submission/110250082 import java.io.*; import java.util.*; public class CF1497E2 extends PrintWriter { CF1497E2() { super(System.out); } static class Scanner { Scanner(InputStream in) { this.in = in; } InputStream in; byte[] bb = new byte[1 << 15]; int i, n; byte getc() { if (i == n) { i = n = 0; try { n = in.read(bb); } catch (IOException e) {} } return i < n ? bb[i++] : 0; } int nextInt() { byte c = 0; while (c <= ' ') c = getc(); int a = 0; while (c > ' ') { a = a * 10 + c - '0'; c = getc(); } return a; } } Scanner sc = new Scanner(System.in); public static void main(String[] $) { CF1497E2 o = new CF1497E2(); o.main(); o.flush(); } static final int A = 10000000, K = 20; int[] cc = new int[A + 1]; { for (int a = 1; a <= A; a++) cc[a] = a; for (int a = 2; a <= A / a; a++) { int s = a * a; for (int b = s; b <= A; b += s) while (cc[b] % s == 0) cc[b] /= s; } } void main() { int[] pp = new int[A + 1]; Arrays.fill(pp, -1); int t = sc.nextInt(); while (t-- > 0) { int n = sc.nextInt(); int k = sc.nextInt(); int[] aa = new int[n]; for (int i = 0; i < n; i++) aa[i] = cc[sc.nextInt()]; int[] mp = new int[k + 1]; int[] ip = new int[k + 1]; for (int i = 0; i < n; i++) { int a = aa[i]; for (int h = k; h >= 0; h--) { if (pp[a] >= ip[h]) { mp[h]++; ip[h] = i; } if (h > 0 && (mp[h - 1] < mp[h] || mp[h - 1] == mp[h] && ip[h - 1] > ip[h])) { mp[h] = mp[h - 1]; ip[h] = ip[h - 1]; } } pp[a] = i; } println(mp[k] + 1); for (int i = 0; i < n; i++) { int a = aa[i]; pp[a] = -1; } } } } </CODE> <EVALUATION_RUBRIC> - O(1): The time complexity is constant to the input size n. - non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially. - O(n^2): The time complexity grows proportionally to the square of the input size. - O(log(n)): The time complexity increases logarithmically in relation to the input size. - O(n^3): The time complexity scales proportionally to the cube of the input size. - O(nlog(n)): The time complexity combines linear and logarithmic growth factors. - others: The time complexity does not fit any of the above categories or cannot be clearly classified. - O(n): The time complexity increases proportionally to the input size n in a linear manner. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
1,026
3,712
3,396
import java.io.BufferedReader; import java.io.IOException; import java.io.InputStreamReader; import java.util.ArrayList; import java.util.Arrays; import java.util.HashSet; import java.util.Scanner; public class Main20 { static ArrayList<Integer> primes = new ArrayList<Integer>(); static boolean[] prime = new boolean[1001]; public static void gen(){ Arrays.fill(prime, true); prime[0] = prime[1] = false; for (int i = 2; i < 1001; i++) { if (prime[i]){ primes.add(i); for (int j = i*2; j < 1001; j+=i) prime[j] = false; } } } public static boolean isVowel(char c){ Character r = Character.toLowerCase(c); return (r == 'e' || r == 'a' || r == 'i' || r == 'o' || r == 'u'|| r == 'y'); } public static void main(String[] args) throws IOException { Scanner s = new Scanner(new InputStreamReader(System.in)); String str = s.next(); int x; int max= 0; for (int i = 0; i < str.length()-1; i++) { for (int j = i+1; j < str.length(); j++) { x = str.indexOf(str.substring(i,j),i+1) ; if (x != -1){ if (j-i > max) max = j-i; } } } System.out.println(max); } }
O(n^3)
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n. </TASK> <CODE> import java.io.BufferedReader; import java.io.IOException; import java.io.InputStreamReader; import java.util.ArrayList; import java.util.Arrays; import java.util.HashSet; import java.util.Scanner; public class Main20 { static ArrayList<Integer> primes = new ArrayList<Integer>(); static boolean[] prime = new boolean[1001]; public static void gen(){ Arrays.fill(prime, true); prime[0] = prime[1] = false; for (int i = 2; i < 1001; i++) { if (prime[i]){ primes.add(i); for (int j = i*2; j < 1001; j+=i) prime[j] = false; } } } public static boolean isVowel(char c){ Character r = Character.toLowerCase(c); return (r == 'e' || r == 'a' || r == 'i' || r == 'o' || r == 'u'|| r == 'y'); } public static void main(String[] args) throws IOException { Scanner s = new Scanner(new InputStreamReader(System.in)); String str = s.next(); int x; int max= 0; for (int i = 0; i < str.length()-1; i++) { for (int j = i+1; j < str.length(); j++) { x = str.indexOf(str.substring(i,j),i+1) ; if (x != -1){ if (j-i > max) max = j-i; } } } System.out.println(max); } } </CODE> <EVALUATION_RUBRIC> - O(log(n)): The execution time ascends in proportion to the logarithm of the input size n. - O(1): The execution time is unaffected by the size of the input n. - O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially. - O(n^2): The execution time ascends in proportion to the square of the input size n. - O(n): The execution time ascends in a one-to-one ratio with the input size n. - O(n^3): The execution time ascends in proportion to the cube of the input size n. - non-polynomial: The running time increases non-polynomially with input size n, typically exponentially. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Classify the following Java code's worst-case time complexity according to its relationship to the input size n. </TASK> <CODE> import java.io.BufferedReader; import java.io.IOException; import java.io.InputStreamReader; import java.util.ArrayList; import java.util.Arrays; import java.util.HashSet; import java.util.Scanner; public class Main20 { static ArrayList<Integer> primes = new ArrayList<Integer>(); static boolean[] prime = new boolean[1001]; public static void gen(){ Arrays.fill(prime, true); prime[0] = prime[1] = false; for (int i = 2; i < 1001; i++) { if (prime[i]){ primes.add(i); for (int j = i*2; j < 1001; j+=i) prime[j] = false; } } } public static boolean isVowel(char c){ Character r = Character.toLowerCase(c); return (r == 'e' || r == 'a' || r == 'i' || r == 'o' || r == 'u'|| r == 'y'); } public static void main(String[] args) throws IOException { Scanner s = new Scanner(new InputStreamReader(System.in)); String str = s.next(); int x; int max= 0; for (int i = 0; i < str.length()-1; i++) { for (int j = i+1; j < str.length(); j++) { x = str.indexOf(str.substring(i,j),i+1) ; if (x != -1){ if (j-i > max) max = j-i; } } } System.out.println(max); } } </CODE> <EVALUATION_RUBRIC> - O(log(n)): The running time increases with the logarithm of the input size n. - O(nlog(n)): The running time increases with the product of n and logarithm of n. - O(1): The running time does not change regardless of the input size n. - O(n^3): The running time increases with the cube of the input size n. - O(n^2): The running time increases with the square of the input size n. - others: The code does not clearly correspond to the listed classes or has an unclassified time complexity. - non-polynomial: The running time increases non-polynomially with input size n, typically exponentially. - O(n): The running time grows linearly with the input size n. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
701
3,390
1,857
import java.util.Scanner; import java.util.Vector; public class Main { public static void main(String[] args) { Scanner sc = new Scanner(System.in); int n = sc.nextInt(); int m = sc.nextInt(); int a[] = new int[n]; int b[] = new int[n]; for (int i = 0; i < n; i++) a[i] = sc.nextInt(); for (int i = 0; i < n; i++) b[i] = sc.nextInt(); int c[] = new int[2 * n]; c[0] = a[0]; for (int i = 1; i < n; i++) { c[i * 2] = a[i]; c[i * 2 - 1] = b[i]; if (a[i] == 1 || b[i] == 1) { System.out.print(-1); System.exit(0); } } c[2 * n - 1] = b[0]; if (a[0] == 1 || b[0] == 1) { System.out.print(-1); System.exit(0); } System.out.println(bin_search(c, m)); } private static double bin_search(int[] c, int m) { double start = 0; double end = Integer.MAX_VALUE; double mid; while (start + 0.0000001 < end) { mid = (start + end) / 2; if (test(mid, m, c)) end = mid; else start = mid; } return end; } private static boolean test(double fuel, int m, int[] c) { for (int i = 0; i < c.length; i++) { fuel -= (m + fuel) / c[i]; if (fuel < 0) { return false; } } return true; } }
O(nlog(n))
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n. </TASK> <CODE> import java.util.Scanner; import java.util.Vector; public class Main { public static void main(String[] args) { Scanner sc = new Scanner(System.in); int n = sc.nextInt(); int m = sc.nextInt(); int a[] = new int[n]; int b[] = new int[n]; for (int i = 0; i < n; i++) a[i] = sc.nextInt(); for (int i = 0; i < n; i++) b[i] = sc.nextInt(); int c[] = new int[2 * n]; c[0] = a[0]; for (int i = 1; i < n; i++) { c[i * 2] = a[i]; c[i * 2 - 1] = b[i]; if (a[i] == 1 || b[i] == 1) { System.out.print(-1); System.exit(0); } } c[2 * n - 1] = b[0]; if (a[0] == 1 || b[0] == 1) { System.out.print(-1); System.exit(0); } System.out.println(bin_search(c, m)); } private static double bin_search(int[] c, int m) { double start = 0; double end = Integer.MAX_VALUE; double mid; while (start + 0.0000001 < end) { mid = (start + end) / 2; if (test(mid, m, c)) end = mid; else start = mid; } return end; } private static boolean test(double fuel, int m, int[] c) { for (int i = 0; i < c.length; i++) { fuel -= (m + fuel) / c[i]; if (fuel < 0) { return false; } } return true; } } </CODE> <EVALUATION_RUBRIC> - O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially. - O(1): The execution time is unaffected by the size of the input n. - non-polynomial: The running time increases non-polynomially with input size n, typically exponentially. - O(log(n)): The execution time ascends in proportion to the logarithm of the input size n. - O(n^2): The execution time ascends in proportion to the square of the input size n. - O(n^3): The execution time ascends in proportion to the cube of the input size n. - O(n): The execution time ascends in a one-to-one ratio with the input size n. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Classify the following Java code's worst-case time complexity according to its relationship to the input size n. </TASK> <CODE> import java.util.Scanner; import java.util.Vector; public class Main { public static void main(String[] args) { Scanner sc = new Scanner(System.in); int n = sc.nextInt(); int m = sc.nextInt(); int a[] = new int[n]; int b[] = new int[n]; for (int i = 0; i < n; i++) a[i] = sc.nextInt(); for (int i = 0; i < n; i++) b[i] = sc.nextInt(); int c[] = new int[2 * n]; c[0] = a[0]; for (int i = 1; i < n; i++) { c[i * 2] = a[i]; c[i * 2 - 1] = b[i]; if (a[i] == 1 || b[i] == 1) { System.out.print(-1); System.exit(0); } } c[2 * n - 1] = b[0]; if (a[0] == 1 || b[0] == 1) { System.out.print(-1); System.exit(0); } System.out.println(bin_search(c, m)); } private static double bin_search(int[] c, int m) { double start = 0; double end = Integer.MAX_VALUE; double mid; while (start + 0.0000001 < end) { mid = (start + end) / 2; if (test(mid, m, c)) end = mid; else start = mid; } return end; } private static boolean test(double fuel, int m, int[] c) { for (int i = 0; i < c.length; i++) { fuel -= (m + fuel) / c[i]; if (fuel < 0) { return false; } } return true; } } </CODE> <EVALUATION_RUBRIC> - O(nlog(n)): The running time increases with the product of n and logarithm of n. - O(n^3): The running time increases with the cube of the input size n. - O(1): The running time does not change regardless of the input size n. - non-polynomial: The running time increases non-polynomially with input size n, typically exponentially. - O(n^2): The running time increases with the square of the input size n. - others: The code does not clearly correspond to the listed classes or has an unclassified time complexity. - O(log(n)): The running time increases with the logarithm of the input size n. - O(n): The running time grows linearly with the input size n. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
781
1,853
3,098
import java.io.*; import java.util.*; public class Main { StreamTokenizer in; PrintWriter out; public static void main(String[] args) throws Exception { new Main().run(); } public void run() throws Exception { in = new StreamTokenizer (new BufferedReader(new InputStreamReader(System.in))); out = new PrintWriter(new OutputStreamWriter(System.out)); solve(); out.flush(); } int nextInt() throws Exception { in.nextToken(); return (int) in.nval; } public void solve() throws Exception { int n=nextInt(); long ans=0; for (int i=0;i<n;i+=2) ans+=3; out.println(ans); } }
O(1)
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n. </TASK> <CODE> import java.io.*; import java.util.*; public class Main { StreamTokenizer in; PrintWriter out; public static void main(String[] args) throws Exception { new Main().run(); } public void run() throws Exception { in = new StreamTokenizer (new BufferedReader(new InputStreamReader(System.in))); out = new PrintWriter(new OutputStreamWriter(System.out)); solve(); out.flush(); } int nextInt() throws Exception { in.nextToken(); return (int) in.nval; } public void solve() throws Exception { int n=nextInt(); long ans=0; for (int i=0;i<n;i+=2) ans+=3; out.println(ans); } } </CODE> <EVALUATION_RUBRIC> - O(n^3): The execution time ascends in proportion to the cube of the input size n. - O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially. - non-polynomial: The running time increases non-polynomially with input size n, typically exponentially. - O(log(n)): The execution time ascends in proportion to the logarithm of the input size n. - O(1): The execution time is unaffected by the size of the input n. - O(n^2): The execution time ascends in proportion to the square of the input size n. - O(n): The execution time ascends in a one-to-one ratio with the input size n. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Determine the worst-case time complexity category of a given Java code based on input size n. </TASK> <CODE> import java.io.*; import java.util.*; public class Main { StreamTokenizer in; PrintWriter out; public static void main(String[] args) throws Exception { new Main().run(); } public void run() throws Exception { in = new StreamTokenizer (new BufferedReader(new InputStreamReader(System.in))); out = new PrintWriter(new OutputStreamWriter(System.out)); solve(); out.flush(); } int nextInt() throws Exception { in.nextToken(); return (int) in.nval; } public void solve() throws Exception { int n=nextInt(); long ans=0; for (int i=0;i<n;i+=2) ans+=3; out.println(ans); } } </CODE> <EVALUATION_RUBRIC> - O(n): The time complexity increases proportionally to the input size n in a linear manner. - O(1): The time complexity is constant to the input size n. - non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially. - O(n^2): The time complexity grows proportionally to the square of the input size. - O(log(n)): The time complexity increases logarithmically in relation to the input size. - others: The time complexity does not fit any of the above categories or cannot be clearly classified. - O(nlog(n)): The time complexity combines linear and logarithmic growth factors. - O(n^3): The time complexity scales proportionally to the cube of the input size. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
504
3,092
1,559
import static java.lang.Math.*; import java.io.*; import java.util.*; public class Template { BufferedReader in; PrintWriter out; StringTokenizer st; String next() { while (st==null || !st.hasMoreTokens()) { try { st = new StringTokenizer(in.readLine()); } catch (Exception e) {} } return st.nextToken(); } int nextInt() { return Integer.parseInt(next()); } long nextLong() { return Long.parseLong(next()); } double nextDouble() { return Double.parseDouble(next()); } class Point implements Comparable<Point> { int x, y; public Point(int x, int y) { this.x=x; this.y=y; } public int compareTo(Point o) { return x-o.x; } public String toString() { return x + " " + y; } } public void run() throws Exception { in = new BufferedReader(new InputStreamReader(System.in)); out = new PrintWriter(System.out); Long start = System.currentTimeMillis(); int n = nextInt(); long k = nextLong(); long[] a = new long[n]; TreeMap<Long, Integer> st = new TreeMap<Long, Integer>(); for (int i=0; i<n; i++) { a[i] = nextLong(); st.put(a[i], 1); } Arrays.sort(a); for (int i=0; i<n; i++) { if (a[i] % k == 0) { long x = a[i] / k; if (st.containsKey(x)) { int y = st.get(x); st.remove(a[i]); st.put(a[i], y + 1); } } } int ans = 0; for (int i=0; i<n; i++) { //System.err.println(a[n-i-1] + " " + st.get(a[n-i-1])); ans+=(st.get(a[n-i-1]) + 1) / 2; if (a[n-i-1] % k == 0) { long x = a[n-i-1] / k; if (st.containsKey(x)) { //System.err.println(x); st.remove(x); st.put(x, 0); } } } out.println(ans); Long end = System.currentTimeMillis(); out.close(); } public static void main(String[] args) throws Exception { new Template().run(); } }
O(nlog(n))
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n. </TASK> <CODE> import static java.lang.Math.*; import java.io.*; import java.util.*; public class Template { BufferedReader in; PrintWriter out; StringTokenizer st; String next() { while (st==null || !st.hasMoreTokens()) { try { st = new StringTokenizer(in.readLine()); } catch (Exception e) {} } return st.nextToken(); } int nextInt() { return Integer.parseInt(next()); } long nextLong() { return Long.parseLong(next()); } double nextDouble() { return Double.parseDouble(next()); } class Point implements Comparable<Point> { int x, y; public Point(int x, int y) { this.x=x; this.y=y; } public int compareTo(Point o) { return x-o.x; } public String toString() { return x + " " + y; } } public void run() throws Exception { in = new BufferedReader(new InputStreamReader(System.in)); out = new PrintWriter(System.out); Long start = System.currentTimeMillis(); int n = nextInt(); long k = nextLong(); long[] a = new long[n]; TreeMap<Long, Integer> st = new TreeMap<Long, Integer>(); for (int i=0; i<n; i++) { a[i] = nextLong(); st.put(a[i], 1); } Arrays.sort(a); for (int i=0; i<n; i++) { if (a[i] % k == 0) { long x = a[i] / k; if (st.containsKey(x)) { int y = st.get(x); st.remove(a[i]); st.put(a[i], y + 1); } } } int ans = 0; for (int i=0; i<n; i++) { //System.err.println(a[n-i-1] + " " + st.get(a[n-i-1])); ans+=(st.get(a[n-i-1]) + 1) / 2; if (a[n-i-1] % k == 0) { long x = a[n-i-1] / k; if (st.containsKey(x)) { //System.err.println(x); st.remove(x); st.put(x, 0); } } } out.println(ans); Long end = System.currentTimeMillis(); out.close(); } public static void main(String[] args) throws Exception { new Template().run(); } } </CODE> <EVALUATION_RUBRIC> - O(n^3): The execution time ascends in proportion to the cube of the input size n. - O(n^2): The execution time ascends in proportion to the square of the input size n. - non-polynomial: The running time increases non-polynomially with input size n, typically exponentially. - O(1): The execution time is unaffected by the size of the input n. - O(log(n)): The execution time ascends in proportion to the logarithm of the input size n. - O(n): The execution time ascends in a one-to-one ratio with the input size n. - O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Classify the following Java code's worst-case time complexity according to its relationship to the input size n. </TASK> <CODE> import static java.lang.Math.*; import java.io.*; import java.util.*; public class Template { BufferedReader in; PrintWriter out; StringTokenizer st; String next() { while (st==null || !st.hasMoreTokens()) { try { st = new StringTokenizer(in.readLine()); } catch (Exception e) {} } return st.nextToken(); } int nextInt() { return Integer.parseInt(next()); } long nextLong() { return Long.parseLong(next()); } double nextDouble() { return Double.parseDouble(next()); } class Point implements Comparable<Point> { int x, y; public Point(int x, int y) { this.x=x; this.y=y; } public int compareTo(Point o) { return x-o.x; } public String toString() { return x + " " + y; } } public void run() throws Exception { in = new BufferedReader(new InputStreamReader(System.in)); out = new PrintWriter(System.out); Long start = System.currentTimeMillis(); int n = nextInt(); long k = nextLong(); long[] a = new long[n]; TreeMap<Long, Integer> st = new TreeMap<Long, Integer>(); for (int i=0; i<n; i++) { a[i] = nextLong(); st.put(a[i], 1); } Arrays.sort(a); for (int i=0; i<n; i++) { if (a[i] % k == 0) { long x = a[i] / k; if (st.containsKey(x)) { int y = st.get(x); st.remove(a[i]); st.put(a[i], y + 1); } } } int ans = 0; for (int i=0; i<n; i++) { //System.err.println(a[n-i-1] + " " + st.get(a[n-i-1])); ans+=(st.get(a[n-i-1]) + 1) / 2; if (a[n-i-1] % k == 0) { long x = a[n-i-1] / k; if (st.containsKey(x)) { //System.err.println(x); st.remove(x); st.put(x, 0); } } } out.println(ans); Long end = System.currentTimeMillis(); out.close(); } public static void main(String[] args) throws Exception { new Template().run(); } } </CODE> <EVALUATION_RUBRIC> - O(nlog(n)): The running time increases with the product of n and logarithm of n. - others: The code does not clearly correspond to the listed classes or has an unclassified time complexity. - O(n^2): The running time increases with the square of the input size n. - O(log(n)): The running time increases with the logarithm of the input size n. - O(1): The running time does not change regardless of the input size n. - O(n): The running time grows linearly with the input size n. - non-polynomial: The running time increases non-polynomially with input size n, typically exponentially. - O(n^3): The running time increases with the cube of the input size n. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
936
1,557
3,279
import java.util.*; public class A { public static void main(String[] args) { Scanner sc = new Scanner(System.in); int n = sc.nextInt(); System.out.println("0 0 " + n); } }
O(1)
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Determine the worst-case time complexity category of a given Java code based on input size n. </TASK> <CODE> import java.util.*; public class A { public static void main(String[] args) { Scanner sc = new Scanner(System.in); int n = sc.nextInt(); System.out.println("0 0 " + n); } } </CODE> <EVALUATION_RUBRIC> - O(n): The time complexity increases proportionally to the input size n in a linear manner. - O(n^2): The time complexity grows proportionally to the square of the input size. - O(log(n)): The time complexity increases logarithmically in relation to the input size. - O(1): The time complexity is constant to the input size n. - O(n^3): The time complexity scales proportionally to the cube of the input size. - O(nlog(n)): The time complexity combines linear and logarithmic growth factors. - non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n. </TASK> <CODE> import java.util.*; public class A { public static void main(String[] args) { Scanner sc = new Scanner(System.in); int n = sc.nextInt(); System.out.println("0 0 " + n); } } </CODE> <EVALUATION_RUBRIC> - O(n^3): The execution time ascends in proportion to the cube of the input size n. - O(n): The execution time ascends in a one-to-one ratio with the input size n. - O(log(n)): The execution time ascends in proportion to the logarithm of the input size n. - non-polynomial: The running time increases non-polynomially with input size n, typically exponentially. - O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially. - others: The time complexity does not fit to any of the given categories or is ambiguous. - O(n^2): The execution time ascends in proportion to the square of the input size n. - O(1): The execution time is unaffected by the size of the input n. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
378
3,273
4,267
import java.io.InputStream; import java.io.OutputStream; import java.io.IOException; import java.util.ArrayList; import java.io.InputStream; import java.io.BufferedWriter; import java.io.Writer; import java.io.OutputStreamWriter; import java.io.IOException; import java.util.InputMismatchException; import java.io.PrintWriter; import java.util.Arrays; import java.io.OutputStream; /** * Built using CHelper plug-in * Actual solution is at the top * * @author Alex */ public class Main { public static void main(String[] args) { InputStream inputStream = System.in; OutputStream outputStream = System.out; InputReader in = new InputReader(inputStream); OutputWriter out = new OutputWriter(outputStream); TaskB solver = new TaskB(); solver.solve(1, in, out); out.close(); } static class TaskB { double special(int[] loyalties, int[] levels, int playerlevelsum) { int poss = 1 << loyalties.length; double res = 0; for(int pos = 0; pos < poss; pos++) { double occurs = 1; int happy = 0; int badlevelssum = 0; for(int i = 0; i < loyalties.length; i++) { if(((pos >> i) & 1) == 1) { //happy senator happy++; occurs *= (double) loyalties[i] / 100; } else { //unhappy senator badlevelssum += levels[i]; occurs *= (double) (100 - loyalties[i]) / 100; } } double winprob = (happy <= levels.length / 2) ? (double) playerlevelsum / (playerlevelsum + badlevelssum) : 1; res += occurs * winprob; } return res; } public void solve(int testNumber, InputReader in, OutputWriter out) { int senators = in.readInt(); // n, [1, 8] int sweets = in.readInt(); // k, [1, 8] int playerlevelsum = in.readInt(); // A, [1, 9999] int[] levels = new int[senators]; // [1, 9999] int[] loyalties = new int[senators]; // [0, 100] divisible by 10 IOUtils.readIntArrays(in, levels, loyalties); ArrayList<ArrayList<Integer>> possibilities = new ArrayList<>(Arrays.asList(new ArrayList<>())); for(int senator = 0; senator < senators; senator++) { ArrayList<ArrayList<Integer>> newpossibilities = new ArrayList<>(); for(ArrayList<Integer> al : possibilities) { int sumsofar = 0; for(int val : al) sumsofar += val; int minadd = senator == senators - 1 ? sweets - sumsofar : 0; for(int moar = minadd; moar <= sweets - sumsofar; moar++) { ArrayList<Integer> copy = new ArrayList<>(al); copy.add(moar); newpossibilities.add(copy); } } possibilities = newpossibilities; } double res = 0; for(ArrayList<Integer> al : possibilities) { int[] newloyalties = new int[senators]; for(int i = 0; i < senators; i++) newloyalties[i] = Math.min(100, loyalties[i] + 10 * al.get(i)); double special = special(newloyalties, levels, playerlevelsum); double tot = special; res = Math.max(res, tot); } out.printLine(res); } } static class InputReader { private InputStream stream; private byte[] buf = new byte[1024]; private int curChar; private int numChars; private SpaceCharFilter filter; public InputReader(InputStream stream) { this.stream = stream; } public int read() { if(numChars == -1) throw new InputMismatchException(); if(curChar >= numChars) { curChar = 0; try { numChars = stream.read(buf); } catch(IOException e) { throw new InputMismatchException(); } if(numChars <= 0) return -1; } return buf[curChar++]; } public int readInt() { int c = read(); while(isSpaceChar(c)) c = read(); int sgn = 1; if(c == '-') { sgn = -1; c = read(); } int res = 0; do { if(c < '0' || c > '9') throw new InputMismatchException(); res *= 10; res += c - '0'; c = read(); } while(!isSpaceChar(c)); return res * sgn; } public boolean isSpaceChar(int c) { if(filter != null) return filter.isSpaceChar(c); return isWhitespace(c); } public static boolean isWhitespace(int c) { return c == ' ' || c == '\n' || c == '\r' || c == '\t' || c == -1; } public interface SpaceCharFilter { public boolean isSpaceChar(int ch); } } static class OutputWriter { private final PrintWriter writer; public OutputWriter(OutputStream outputStream) { writer = new PrintWriter(new BufferedWriter(new OutputStreamWriter(outputStream))); } public OutputWriter(Writer writer) { this.writer = new PrintWriter(writer); } public void print(Object... objects) { for(int i = 0; i < objects.length; i++) { if(i != 0) writer.print(' '); writer.print(objects[i]); } } public void printLine(Object... objects) { print(objects); writer.println(); } public void close() { writer.close(); } } static class IOUtils { public static void readIntArrays(InputReader in, int[]... arrays) { for(int i = 0; i < arrays[0].length; i++) { for(int j = 0; j < arrays.length; j++) arrays[j][i] = in.readInt(); } } } }
non-polynomial
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Classify the following Java code's worst-case time complexity according to its relationship to the input size n. </TASK> <CODE> import java.io.InputStream; import java.io.OutputStream; import java.io.IOException; import java.util.ArrayList; import java.io.InputStream; import java.io.BufferedWriter; import java.io.Writer; import java.io.OutputStreamWriter; import java.io.IOException; import java.util.InputMismatchException; import java.io.PrintWriter; import java.util.Arrays; import java.io.OutputStream; /** * Built using CHelper plug-in * Actual solution is at the top * * @author Alex */ public class Main { public static void main(String[] args) { InputStream inputStream = System.in; OutputStream outputStream = System.out; InputReader in = new InputReader(inputStream); OutputWriter out = new OutputWriter(outputStream); TaskB solver = new TaskB(); solver.solve(1, in, out); out.close(); } static class TaskB { double special(int[] loyalties, int[] levels, int playerlevelsum) { int poss = 1 << loyalties.length; double res = 0; for(int pos = 0; pos < poss; pos++) { double occurs = 1; int happy = 0; int badlevelssum = 0; for(int i = 0; i < loyalties.length; i++) { if(((pos >> i) & 1) == 1) { //happy senator happy++; occurs *= (double) loyalties[i] / 100; } else { //unhappy senator badlevelssum += levels[i]; occurs *= (double) (100 - loyalties[i]) / 100; } } double winprob = (happy <= levels.length / 2) ? (double) playerlevelsum / (playerlevelsum + badlevelssum) : 1; res += occurs * winprob; } return res; } public void solve(int testNumber, InputReader in, OutputWriter out) { int senators = in.readInt(); // n, [1, 8] int sweets = in.readInt(); // k, [1, 8] int playerlevelsum = in.readInt(); // A, [1, 9999] int[] levels = new int[senators]; // [1, 9999] int[] loyalties = new int[senators]; // [0, 100] divisible by 10 IOUtils.readIntArrays(in, levels, loyalties); ArrayList<ArrayList<Integer>> possibilities = new ArrayList<>(Arrays.asList(new ArrayList<>())); for(int senator = 0; senator < senators; senator++) { ArrayList<ArrayList<Integer>> newpossibilities = new ArrayList<>(); for(ArrayList<Integer> al : possibilities) { int sumsofar = 0; for(int val : al) sumsofar += val; int minadd = senator == senators - 1 ? sweets - sumsofar : 0; for(int moar = minadd; moar <= sweets - sumsofar; moar++) { ArrayList<Integer> copy = new ArrayList<>(al); copy.add(moar); newpossibilities.add(copy); } } possibilities = newpossibilities; } double res = 0; for(ArrayList<Integer> al : possibilities) { int[] newloyalties = new int[senators]; for(int i = 0; i < senators; i++) newloyalties[i] = Math.min(100, loyalties[i] + 10 * al.get(i)); double special = special(newloyalties, levels, playerlevelsum); double tot = special; res = Math.max(res, tot); } out.printLine(res); } } static class InputReader { private InputStream stream; private byte[] buf = new byte[1024]; private int curChar; private int numChars; private SpaceCharFilter filter; public InputReader(InputStream stream) { this.stream = stream; } public int read() { if(numChars == -1) throw new InputMismatchException(); if(curChar >= numChars) { curChar = 0; try { numChars = stream.read(buf); } catch(IOException e) { throw new InputMismatchException(); } if(numChars <= 0) return -1; } return buf[curChar++]; } public int readInt() { int c = read(); while(isSpaceChar(c)) c = read(); int sgn = 1; if(c == '-') { sgn = -1; c = read(); } int res = 0; do { if(c < '0' || c > '9') throw new InputMismatchException(); res *= 10; res += c - '0'; c = read(); } while(!isSpaceChar(c)); return res * sgn; } public boolean isSpaceChar(int c) { if(filter != null) return filter.isSpaceChar(c); return isWhitespace(c); } public static boolean isWhitespace(int c) { return c == ' ' || c == '\n' || c == '\r' || c == '\t' || c == -1; } public interface SpaceCharFilter { public boolean isSpaceChar(int ch); } } static class OutputWriter { private final PrintWriter writer; public OutputWriter(OutputStream outputStream) { writer = new PrintWriter(new BufferedWriter(new OutputStreamWriter(outputStream))); } public OutputWriter(Writer writer) { this.writer = new PrintWriter(writer); } public void print(Object... objects) { for(int i = 0; i < objects.length; i++) { if(i != 0) writer.print(' '); writer.print(objects[i]); } } public void printLine(Object... objects) { print(objects); writer.println(); } public void close() { writer.close(); } } static class IOUtils { public static void readIntArrays(InputReader in, int[]... arrays) { for(int i = 0; i < arrays[0].length; i++) { for(int j = 0; j < arrays.length; j++) arrays[j][i] = in.readInt(); } } } } </CODE> <EVALUATION_RUBRIC> - O(log(n)): The running time increases with the logarithm of the input size n. - O(nlog(n)): The running time increases with the product of n and logarithm of n. - O(n^3): The running time increases with the cube of the input size n. - O(n): The running time grows linearly with the input size n. - O(n^2): The running time increases with the square of the input size n. - O(1): The running time does not change regardless of the input size n. - non-polynomial: The running time increases non-polynomially with input size n, typically exponentially. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Classify the following Java code's worst-case time complexity according to its relationship to the input size n. </TASK> <CODE> import java.io.InputStream; import java.io.OutputStream; import java.io.IOException; import java.util.ArrayList; import java.io.InputStream; import java.io.BufferedWriter; import java.io.Writer; import java.io.OutputStreamWriter; import java.io.IOException; import java.util.InputMismatchException; import java.io.PrintWriter; import java.util.Arrays; import java.io.OutputStream; /** * Built using CHelper plug-in * Actual solution is at the top * * @author Alex */ public class Main { public static void main(String[] args) { InputStream inputStream = System.in; OutputStream outputStream = System.out; InputReader in = new InputReader(inputStream); OutputWriter out = new OutputWriter(outputStream); TaskB solver = new TaskB(); solver.solve(1, in, out); out.close(); } static class TaskB { double special(int[] loyalties, int[] levels, int playerlevelsum) { int poss = 1 << loyalties.length; double res = 0; for(int pos = 0; pos < poss; pos++) { double occurs = 1; int happy = 0; int badlevelssum = 0; for(int i = 0; i < loyalties.length; i++) { if(((pos >> i) & 1) == 1) { //happy senator happy++; occurs *= (double) loyalties[i] / 100; } else { //unhappy senator badlevelssum += levels[i]; occurs *= (double) (100 - loyalties[i]) / 100; } } double winprob = (happy <= levels.length / 2) ? (double) playerlevelsum / (playerlevelsum + badlevelssum) : 1; res += occurs * winprob; } return res; } public void solve(int testNumber, InputReader in, OutputWriter out) { int senators = in.readInt(); // n, [1, 8] int sweets = in.readInt(); // k, [1, 8] int playerlevelsum = in.readInt(); // A, [1, 9999] int[] levels = new int[senators]; // [1, 9999] int[] loyalties = new int[senators]; // [0, 100] divisible by 10 IOUtils.readIntArrays(in, levels, loyalties); ArrayList<ArrayList<Integer>> possibilities = new ArrayList<>(Arrays.asList(new ArrayList<>())); for(int senator = 0; senator < senators; senator++) { ArrayList<ArrayList<Integer>> newpossibilities = new ArrayList<>(); for(ArrayList<Integer> al : possibilities) { int sumsofar = 0; for(int val : al) sumsofar += val; int minadd = senator == senators - 1 ? sweets - sumsofar : 0; for(int moar = minadd; moar <= sweets - sumsofar; moar++) { ArrayList<Integer> copy = new ArrayList<>(al); copy.add(moar); newpossibilities.add(copy); } } possibilities = newpossibilities; } double res = 0; for(ArrayList<Integer> al : possibilities) { int[] newloyalties = new int[senators]; for(int i = 0; i < senators; i++) newloyalties[i] = Math.min(100, loyalties[i] + 10 * al.get(i)); double special = special(newloyalties, levels, playerlevelsum); double tot = special; res = Math.max(res, tot); } out.printLine(res); } } static class InputReader { private InputStream stream; private byte[] buf = new byte[1024]; private int curChar; private int numChars; private SpaceCharFilter filter; public InputReader(InputStream stream) { this.stream = stream; } public int read() { if(numChars == -1) throw new InputMismatchException(); if(curChar >= numChars) { curChar = 0; try { numChars = stream.read(buf); } catch(IOException e) { throw new InputMismatchException(); } if(numChars <= 0) return -1; } return buf[curChar++]; } public int readInt() { int c = read(); while(isSpaceChar(c)) c = read(); int sgn = 1; if(c == '-') { sgn = -1; c = read(); } int res = 0; do { if(c < '0' || c > '9') throw new InputMismatchException(); res *= 10; res += c - '0'; c = read(); } while(!isSpaceChar(c)); return res * sgn; } public boolean isSpaceChar(int c) { if(filter != null) return filter.isSpaceChar(c); return isWhitespace(c); } public static boolean isWhitespace(int c) { return c == ' ' || c == '\n' || c == '\r' || c == '\t' || c == -1; } public interface SpaceCharFilter { public boolean isSpaceChar(int ch); } } static class OutputWriter { private final PrintWriter writer; public OutputWriter(OutputStream outputStream) { writer = new PrintWriter(new BufferedWriter(new OutputStreamWriter(outputStream))); } public OutputWriter(Writer writer) { this.writer = new PrintWriter(writer); } public void print(Object... objects) { for(int i = 0; i < objects.length; i++) { if(i != 0) writer.print(' '); writer.print(objects[i]); } } public void printLine(Object... objects) { print(objects); writer.println(); } public void close() { writer.close(); } } static class IOUtils { public static void readIntArrays(InputReader in, int[]... arrays) { for(int i = 0; i < arrays[0].length; i++) { for(int j = 0; j < arrays.length; j++) arrays[j][i] = in.readInt(); } } } } </CODE> <EVALUATION_RUBRIC> - others: The code does not clearly correspond to the listed classes or has an unclassified time complexity. - non-polynomial: The running time increases non-polynomially with input size n, typically exponentially. - O(n^2): The running time increases with the square of the input size n. - O(log(n)): The running time increases with the logarithm of the input size n. - O(n): The running time grows linearly with the input size n. - O(n^3): The running time increases with the cube of the input size n. - O(1): The running time does not change regardless of the input size n. - O(nlog(n)): The running time increases with the product of n and logarithm of n. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
1,705
4,256
2,267
import java.io.OutputStream; import java.io.IOException; import java.io.InputStream; import java.io.PrintWriter; import java.util.Arrays; import java.io.IOException; import java.io.InputStreamReader; import java.io.File; import java.io.FileNotFoundException; import java.util.StringTokenizer; import java.io.BufferedReader; import java.io.FileReader; import java.io.InputStream; /** * Built using CHelper plug-in * Actual solution is at the top * * @author ShekharN */ public class Main { public static void main(String[] args) { InputStream inputStream = System.in; OutputStream outputStream = System.out; FastScanner in = new FastScanner(inputStream); PrintWriter out = new PrintWriter(outputStream); TaskC solver = new TaskC(); solver.solve(1, in, out); out.close(); } static class TaskC { private final int MOD = (int) (1e9 + 7); public void solve(int testNumber, FastScanner in, PrintWriter out) { int n = in.nextInt(); String[] arr = new String[n]; for (int i = 0; i < n; i++) { arr[i] = in.nextString(); } int[] dp = new int[n]; Arrays.parallelSetAll(dp, i -> 0); dp[0] = 1; int cnt = 0; for (int i = 0; i < n; i++) { if (arr[i].equals("f")) { cnt++; continue; } calc(dp, n, cnt); cnt = 0; } int sum = 0; for (int i = 0; i < n; i++) { sum += dp[i]; sum %= MOD; } out.println(sum); } private void calc(int[] dp, int n, int cnt) { for (int i = n - 1; i >= 0; i--) { if (i != n - 1) dp[i] += dp[i + 1]; dp[i] %= MOD; } //int[] tmp = new int[n]; int prev = dp[0]; for (int i = 0, y = 0; i < MathUtil.gcdInt(n, cnt); i++) { //tmp[(i+cnt)%n] = dp[i]; y = i; prev = dp[i]; do { int nextId = (y + cnt) % n; int tmp = dp[nextId]; dp[nextId] = prev; prev = tmp; y = nextId; } while (y != i); } //Arrays.parallelSetAll(dp,i->tmp[i]); } } static class FastScanner { private BufferedReader br; private StringTokenizer st; public FastScanner(File f) { try { br = new BufferedReader(new FileReader(f)); } catch (FileNotFoundException e) { e.printStackTrace(); } } public FastScanner(InputStream f) { br = new BufferedReader(new InputStreamReader(f)); } public String nextString() { while (st == null || !st.hasMoreTokens()) { String s = null; try { s = br.readLine(); } catch (IOException e) { e.printStackTrace(); } if (s == null) return null; st = new StringTokenizer(s); } return st.nextToken(); } public int nextInt() { return Integer.parseInt(nextString()); } } static class MathUtil { public static int gcdInt(int a, int b) { if (b == 0) return a; return gcdInt(b, a % b); } } }
O(n^2)
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Determine the worst-case time complexity category of a given Java code based on input size n. </TASK> <CODE> import java.io.OutputStream; import java.io.IOException; import java.io.InputStream; import java.io.PrintWriter; import java.util.Arrays; import java.io.IOException; import java.io.InputStreamReader; import java.io.File; import java.io.FileNotFoundException; import java.util.StringTokenizer; import java.io.BufferedReader; import java.io.FileReader; import java.io.InputStream; /** * Built using CHelper plug-in * Actual solution is at the top * * @author ShekharN */ public class Main { public static void main(String[] args) { InputStream inputStream = System.in; OutputStream outputStream = System.out; FastScanner in = new FastScanner(inputStream); PrintWriter out = new PrintWriter(outputStream); TaskC solver = new TaskC(); solver.solve(1, in, out); out.close(); } static class TaskC { private final int MOD = (int) (1e9 + 7); public void solve(int testNumber, FastScanner in, PrintWriter out) { int n = in.nextInt(); String[] arr = new String[n]; for (int i = 0; i < n; i++) { arr[i] = in.nextString(); } int[] dp = new int[n]; Arrays.parallelSetAll(dp, i -> 0); dp[0] = 1; int cnt = 0; for (int i = 0; i < n; i++) { if (arr[i].equals("f")) { cnt++; continue; } calc(dp, n, cnt); cnt = 0; } int sum = 0; for (int i = 0; i < n; i++) { sum += dp[i]; sum %= MOD; } out.println(sum); } private void calc(int[] dp, int n, int cnt) { for (int i = n - 1; i >= 0; i--) { if (i != n - 1) dp[i] += dp[i + 1]; dp[i] %= MOD; } //int[] tmp = new int[n]; int prev = dp[0]; for (int i = 0, y = 0; i < MathUtil.gcdInt(n, cnt); i++) { //tmp[(i+cnt)%n] = dp[i]; y = i; prev = dp[i]; do { int nextId = (y + cnt) % n; int tmp = dp[nextId]; dp[nextId] = prev; prev = tmp; y = nextId; } while (y != i); } //Arrays.parallelSetAll(dp,i->tmp[i]); } } static class FastScanner { private BufferedReader br; private StringTokenizer st; public FastScanner(File f) { try { br = new BufferedReader(new FileReader(f)); } catch (FileNotFoundException e) { e.printStackTrace(); } } public FastScanner(InputStream f) { br = new BufferedReader(new InputStreamReader(f)); } public String nextString() { while (st == null || !st.hasMoreTokens()) { String s = null; try { s = br.readLine(); } catch (IOException e) { e.printStackTrace(); } if (s == null) return null; st = new StringTokenizer(s); } return st.nextToken(); } public int nextInt() { return Integer.parseInt(nextString()); } } static class MathUtil { public static int gcdInt(int a, int b) { if (b == 0) return a; return gcdInt(b, a % b); } } } </CODE> <EVALUATION_RUBRIC> - O(nlog(n)): The time complexity combines linear and logarithmic growth factors. - O(1): The time complexity is constant to the input size n. - O(n): The time complexity increases proportionally to the input size n in a linear manner. - O(n^2): The time complexity grows proportionally to the square of the input size. - O(log(n)): The time complexity increases logarithmically in relation to the input size. - O(n^3): The time complexity scales proportionally to the cube of the input size. - non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Classify the following Java code's worst-case time complexity according to its relationship to the input size n. </TASK> <CODE> import java.io.OutputStream; import java.io.IOException; import java.io.InputStream; import java.io.PrintWriter; import java.util.Arrays; import java.io.IOException; import java.io.InputStreamReader; import java.io.File; import java.io.FileNotFoundException; import java.util.StringTokenizer; import java.io.BufferedReader; import java.io.FileReader; import java.io.InputStream; /** * Built using CHelper plug-in * Actual solution is at the top * * @author ShekharN */ public class Main { public static void main(String[] args) { InputStream inputStream = System.in; OutputStream outputStream = System.out; FastScanner in = new FastScanner(inputStream); PrintWriter out = new PrintWriter(outputStream); TaskC solver = new TaskC(); solver.solve(1, in, out); out.close(); } static class TaskC { private final int MOD = (int) (1e9 + 7); public void solve(int testNumber, FastScanner in, PrintWriter out) { int n = in.nextInt(); String[] arr = new String[n]; for (int i = 0; i < n; i++) { arr[i] = in.nextString(); } int[] dp = new int[n]; Arrays.parallelSetAll(dp, i -> 0); dp[0] = 1; int cnt = 0; for (int i = 0; i < n; i++) { if (arr[i].equals("f")) { cnt++; continue; } calc(dp, n, cnt); cnt = 0; } int sum = 0; for (int i = 0; i < n; i++) { sum += dp[i]; sum %= MOD; } out.println(sum); } private void calc(int[] dp, int n, int cnt) { for (int i = n - 1; i >= 0; i--) { if (i != n - 1) dp[i] += dp[i + 1]; dp[i] %= MOD; } //int[] tmp = new int[n]; int prev = dp[0]; for (int i = 0, y = 0; i < MathUtil.gcdInt(n, cnt); i++) { //tmp[(i+cnt)%n] = dp[i]; y = i; prev = dp[i]; do { int nextId = (y + cnt) % n; int tmp = dp[nextId]; dp[nextId] = prev; prev = tmp; y = nextId; } while (y != i); } //Arrays.parallelSetAll(dp,i->tmp[i]); } } static class FastScanner { private BufferedReader br; private StringTokenizer st; public FastScanner(File f) { try { br = new BufferedReader(new FileReader(f)); } catch (FileNotFoundException e) { e.printStackTrace(); } } public FastScanner(InputStream f) { br = new BufferedReader(new InputStreamReader(f)); } public String nextString() { while (st == null || !st.hasMoreTokens()) { String s = null; try { s = br.readLine(); } catch (IOException e) { e.printStackTrace(); } if (s == null) return null; st = new StringTokenizer(s); } return st.nextToken(); } public int nextInt() { return Integer.parseInt(nextString()); } } static class MathUtil { public static int gcdInt(int a, int b) { if (b == 0) return a; return gcdInt(b, a % b); } } } </CODE> <EVALUATION_RUBRIC> - O(n^3): The running time increases with the cube of the input size n. - O(n^2): The running time increases with the square of the input size n. - O(log(n)): The running time increases with the logarithm of the input size n. - O(nlog(n)): The running time increases with the product of n and logarithm of n. - O(1): The running time does not change regardless of the input size n. - non-polynomial: The running time increases non-polynomially with input size n, typically exponentially. - others: The code does not clearly correspond to the listed classes or has an unclassified time complexity. - O(n): The running time grows linearly with the input size n. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
1,120
2,262
4,244
import java.io.*; import java.util.*; public class TaskE { static int[][] transpose(int[][] a, int n, int m) { int[][] t = new int[m][n]; for (int i = 0; i < n; i++) { for (int j = 0; j < m; j++) { t[j][i] = a[i][j]; } } return t; } public static void main(String[] args) { FastReader in = new FastReader(System.in); // FastReader in = new FastReader(new FileInputStream("input.txt")); PrintWriter out = new PrintWriter(System.out); // PrintWriter out = new PrintWriter(new FileOutputStream("output.txt")); int t = in.nextInt(); while (t-- > 0) { int n = in.nextInt(); int m = in.nextInt(); int[][] a = new int[n + 1][m]; for (int i = 0; i < n; i++) { for (int j = 0; j < m; j++) { a[i][j] = in.nextInt(); a[n][j] = Math.max(a[n][j], a[i][j]); } } a = transpose(a, n, m); Arrays.sort(a, new Comparator<int[]>() { @Override public int compare(int[] o1, int[] o2) { int max1 = 0; for (int i = 0; i < o1.length; i++) { max1 = Math.max(max1, o1[i]); } int max2 = 0; for (int i = 0; i < o2.length; i++) { max2 = Math.max(max2, o2[i]); } return max2 - max1; } }); a = transpose(a, m, n); int[] dp = new int[1 << n]; for (int i = 0; i < Math.min(n, m); i++) { int[] best = new int[1 << n]; for (int j = 1; j < (1 << n); j++) { for (int k = 0; k < n; k++) { int sum = 0; for (int l = 0; l < n; l++) { if ((j & (1 << l)) != 0) sum += a[(l + k) % n][i]; } best[j] = Math.max(best[j], sum); } } int[] dp1 = dp.clone(); for (int j = 0; j < (1 << n); j++) { for (int k = j; k > 0; k = (k - 1) & j) { dp[j] = Math.max(dp[j], dp1[k ^ j] + best[k]); } } } out.println(dp[(1 << n) - 1]); } out.close(); } static class FastReader { BufferedReader br; StringTokenizer st; FastReader(InputStream is) { br = new BufferedReader(new InputStreamReader(is)); } Integer nextInt() { return Integer.parseInt(next()); } Long nextLong() { return Long.parseLong(next()); } Double nextDouble() { return Double.parseDouble(next()); } String next() { while (st == null || !st.hasMoreTokens()) { st = new StringTokenizer(nextLine()); } return st.nextToken(); } String nextLine() { String s = ""; try { s = br.readLine(); } catch (IOException e) { e.printStackTrace(); } return s; } } }
non-polynomial
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Determine the worst-case time complexity category of a given Java code based on input size n. </TASK> <CODE> import java.io.*; import java.util.*; public class TaskE { static int[][] transpose(int[][] a, int n, int m) { int[][] t = new int[m][n]; for (int i = 0; i < n; i++) { for (int j = 0; j < m; j++) { t[j][i] = a[i][j]; } } return t; } public static void main(String[] args) { FastReader in = new FastReader(System.in); // FastReader in = new FastReader(new FileInputStream("input.txt")); PrintWriter out = new PrintWriter(System.out); // PrintWriter out = new PrintWriter(new FileOutputStream("output.txt")); int t = in.nextInt(); while (t-- > 0) { int n = in.nextInt(); int m = in.nextInt(); int[][] a = new int[n + 1][m]; for (int i = 0; i < n; i++) { for (int j = 0; j < m; j++) { a[i][j] = in.nextInt(); a[n][j] = Math.max(a[n][j], a[i][j]); } } a = transpose(a, n, m); Arrays.sort(a, new Comparator<int[]>() { @Override public int compare(int[] o1, int[] o2) { int max1 = 0; for (int i = 0; i < o1.length; i++) { max1 = Math.max(max1, o1[i]); } int max2 = 0; for (int i = 0; i < o2.length; i++) { max2 = Math.max(max2, o2[i]); } return max2 - max1; } }); a = transpose(a, m, n); int[] dp = new int[1 << n]; for (int i = 0; i < Math.min(n, m); i++) { int[] best = new int[1 << n]; for (int j = 1; j < (1 << n); j++) { for (int k = 0; k < n; k++) { int sum = 0; for (int l = 0; l < n; l++) { if ((j & (1 << l)) != 0) sum += a[(l + k) % n][i]; } best[j] = Math.max(best[j], sum); } } int[] dp1 = dp.clone(); for (int j = 0; j < (1 << n); j++) { for (int k = j; k > 0; k = (k - 1) & j) { dp[j] = Math.max(dp[j], dp1[k ^ j] + best[k]); } } } out.println(dp[(1 << n) - 1]); } out.close(); } static class FastReader { BufferedReader br; StringTokenizer st; FastReader(InputStream is) { br = new BufferedReader(new InputStreamReader(is)); } Integer nextInt() { return Integer.parseInt(next()); } Long nextLong() { return Long.parseLong(next()); } Double nextDouble() { return Double.parseDouble(next()); } String next() { while (st == null || !st.hasMoreTokens()) { st = new StringTokenizer(nextLine()); } return st.nextToken(); } String nextLine() { String s = ""; try { s = br.readLine(); } catch (IOException e) { e.printStackTrace(); } return s; } } } </CODE> <EVALUATION_RUBRIC> - O(nlog(n)): The time complexity combines linear and logarithmic growth factors. - non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially. - O(log(n)): The time complexity increases logarithmically in relation to the input size. - O(n^3): The time complexity scales proportionally to the cube of the input size. - O(n): The time complexity increases proportionally to the input size n in a linear manner. - O(1): The time complexity is constant to the input size n. - O(n^2): The time complexity grows proportionally to the square of the input size. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Classify the following Java code's worst-case time complexity according to its relationship to the input size n. </TASK> <CODE> import java.io.*; import java.util.*; public class TaskE { static int[][] transpose(int[][] a, int n, int m) { int[][] t = new int[m][n]; for (int i = 0; i < n; i++) { for (int j = 0; j < m; j++) { t[j][i] = a[i][j]; } } return t; } public static void main(String[] args) { FastReader in = new FastReader(System.in); // FastReader in = new FastReader(new FileInputStream("input.txt")); PrintWriter out = new PrintWriter(System.out); // PrintWriter out = new PrintWriter(new FileOutputStream("output.txt")); int t = in.nextInt(); while (t-- > 0) { int n = in.nextInt(); int m = in.nextInt(); int[][] a = new int[n + 1][m]; for (int i = 0; i < n; i++) { for (int j = 0; j < m; j++) { a[i][j] = in.nextInt(); a[n][j] = Math.max(a[n][j], a[i][j]); } } a = transpose(a, n, m); Arrays.sort(a, new Comparator<int[]>() { @Override public int compare(int[] o1, int[] o2) { int max1 = 0; for (int i = 0; i < o1.length; i++) { max1 = Math.max(max1, o1[i]); } int max2 = 0; for (int i = 0; i < o2.length; i++) { max2 = Math.max(max2, o2[i]); } return max2 - max1; } }); a = transpose(a, m, n); int[] dp = new int[1 << n]; for (int i = 0; i < Math.min(n, m); i++) { int[] best = new int[1 << n]; for (int j = 1; j < (1 << n); j++) { for (int k = 0; k < n; k++) { int sum = 0; for (int l = 0; l < n; l++) { if ((j & (1 << l)) != 0) sum += a[(l + k) % n][i]; } best[j] = Math.max(best[j], sum); } } int[] dp1 = dp.clone(); for (int j = 0; j < (1 << n); j++) { for (int k = j; k > 0; k = (k - 1) & j) { dp[j] = Math.max(dp[j], dp1[k ^ j] + best[k]); } } } out.println(dp[(1 << n) - 1]); } out.close(); } static class FastReader { BufferedReader br; StringTokenizer st; FastReader(InputStream is) { br = new BufferedReader(new InputStreamReader(is)); } Integer nextInt() { return Integer.parseInt(next()); } Long nextLong() { return Long.parseLong(next()); } Double nextDouble() { return Double.parseDouble(next()); } String next() { while (st == null || !st.hasMoreTokens()) { st = new StringTokenizer(nextLine()); } return st.nextToken(); } String nextLine() { String s = ""; try { s = br.readLine(); } catch (IOException e) { e.printStackTrace(); } return s; } } } </CODE> <EVALUATION_RUBRIC> - O(log(n)): The running time increases with the logarithm of the input size n. - O(nlog(n)): The running time increases with the product of n and logarithm of n. - others: The code does not clearly correspond to the listed classes or has an unclassified time complexity. - O(n): The running time grows linearly with the input size n. - O(1): The running time does not change regardless of the input size n. - O(n^2): The running time increases with the square of the input size n. - O(n^3): The running time increases with the cube of the input size n. - non-polynomial: The running time increases non-polynomially with input size n, typically exponentially. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
1,136
4,233
390
import java.util.*; import java.math.*; import java.io.*; import static java.lang.Math.*; import static java.util.Arrays.*; import static java.util.Collections.*; public class Main{ // ArrayList<Integer> lis = new ArrayList<Integer>(); // ArrayList<String> lis = new ArrayList<String>(); // PriorityQueue<P> que = new PriorityQueue<P>(); // PriorityQueue<Integer> que = new PriorityQueue<Integer>(); // Stack<Integer> que = new Stack<Integer>(); //HashMap<Long,Long> map = new HashMap<Long,Long>(); // static long sum=0; // 1000000007 (10^9+7) static int mod = 1000000007; //static int mod = 1000000009,r=0; ArrayList<Integer> l[]= new ArrayList[n]; // static int dx[]={1,-1,0,0}; // static int dy[]={0,0,1,-1}; // static int dx[]={1,-1,0,0,1,1,-1,-1}; // static int dy[]={0,0,1,-1,1,-1,1,-1}; //static Set<Integer> set = new HashSet<Integer>();p static ArrayList<Integer> cd[]; static int K=0; public static void main(String[] args) throws Exception, IOException{ //String line=""; throws Exception, IOException //(line=br.readLine())!=null //Scanner sc =new Scanner(System.in); // !!caution!! int long // Reader sc = new Reader(System.in); //,a=sc.nextInt(),b=sc.nextInt(); // int n=sc.nextInt(),p[]=new int[n],q[]=new int[n]; //int n=sc.nextInt(),a[]=new int[n],b[]=new int[n]; // int n=sc.nextInt(),m=sc.nextInt(),a=sc.nextInt(),b=sc.nextInt(); // int r=1<<28; int n=sc.nextInt();//,k=sc.nextInt(); int a=sc.nextInt(),b=sc.nextInt(),d[]=new int[n]; HashMap<Integer,Integer> map = new HashMap<Integer,Integer>(); ArrayList<Integer> A = new ArrayList<Integer>(); for (int i = 0; i < n ; i++) { d[i]=sc.nextInt(); map.put(d[i],i ); } int c=1; if( a>b ){c--; int x=a; a=b; b=x;} int r[]=new int[n]; if(a==b){ for (int i = 0; i < n; i++) { if(d[i]>a || !map.containsKey(a-d[i]) ){System.out.println("NO"); return;} } System.out.println("YES"); for (int i = 0; i < n; i++) {System.out.print("1 ");} System.out.println(); return; } sort(d); for (int j = 0; j < n; j++) { int i=n-j-1; int id=map.get(d[i]),idd=-1; if( id<0)continue; // db(id,d[i]); if( d[i]<=a ){ if( map.containsKey(a-d[i]) && 0<=(idd=map.get(a-d[i])) ){ r[id]=r[idd]=(c+1)%2; map.put(a-d[i], -1); } else if( map.containsKey(b-d[i]) && 0<=(idd=map.get(b-d[i])) ){ r[id]=r[idd]=c; map.put(b-d[i], -1); } else{ System.out.println("NO"); return; } } else{ if( map.containsKey(b-d[i]) && 0<=(idd=map.get(b-d[i])) ){ r[id]=r[idd]=c; map.put(b-d[i], -1); } else{ System.out.println("NO"); return; } } map.put(d[i], -1); } System.out.println("YES"); for (int j = 0; j < n; j++) { System.out.print(r[j]+" "); } System.out.println(); } static class P implements Comparable<P>{ // implements Comparable<Pair> int id; long d; ; P(int id,long d){ this.id=id; this.d=d; } public int compareTo(P x){ return (-x.d+d)>=0?1:-1 ; // ascend long // return -x.d+d ; // ascend // return x.d-d ; //descend } } static void db(Object... os){ System.err.println(Arrays.deepToString(os)); } } class Reader { private BufferedReader x; private StringTokenizer st; public Reader(InputStream in) { x = new BufferedReader(new InputStreamReader(in)); st = null; } public String nextString() throws IOException { while( st==null || !st.hasMoreTokens() ) st = new StringTokenizer(x.readLine()); return st.nextToken(); } public int nextInt() throws IOException { return Integer.parseInt(nextString()); } public long nextLong() throws IOException { return Long.parseLong(nextString()); } public double nextDouble() throws IOException { return Double.parseDouble(nextString()); } }
O(n)
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Determine the worst-case time complexity category of a given Java code based on input size n. </TASK> <CODE> import java.util.*; import java.math.*; import java.io.*; import static java.lang.Math.*; import static java.util.Arrays.*; import static java.util.Collections.*; public class Main{ // ArrayList<Integer> lis = new ArrayList<Integer>(); // ArrayList<String> lis = new ArrayList<String>(); // PriorityQueue<P> que = new PriorityQueue<P>(); // PriorityQueue<Integer> que = new PriorityQueue<Integer>(); // Stack<Integer> que = new Stack<Integer>(); //HashMap<Long,Long> map = new HashMap<Long,Long>(); // static long sum=0; // 1000000007 (10^9+7) static int mod = 1000000007; //static int mod = 1000000009,r=0; ArrayList<Integer> l[]= new ArrayList[n]; // static int dx[]={1,-1,0,0}; // static int dy[]={0,0,1,-1}; // static int dx[]={1,-1,0,0,1,1,-1,-1}; // static int dy[]={0,0,1,-1,1,-1,1,-1}; //static Set<Integer> set = new HashSet<Integer>();p static ArrayList<Integer> cd[]; static int K=0; public static void main(String[] args) throws Exception, IOException{ //String line=""; throws Exception, IOException //(line=br.readLine())!=null //Scanner sc =new Scanner(System.in); // !!caution!! int long // Reader sc = new Reader(System.in); //,a=sc.nextInt(),b=sc.nextInt(); // int n=sc.nextInt(),p[]=new int[n],q[]=new int[n]; //int n=sc.nextInt(),a[]=new int[n],b[]=new int[n]; // int n=sc.nextInt(),m=sc.nextInt(),a=sc.nextInt(),b=sc.nextInt(); // int r=1<<28; int n=sc.nextInt();//,k=sc.nextInt(); int a=sc.nextInt(),b=sc.nextInt(),d[]=new int[n]; HashMap<Integer,Integer> map = new HashMap<Integer,Integer>(); ArrayList<Integer> A = new ArrayList<Integer>(); for (int i = 0; i < n ; i++) { d[i]=sc.nextInt(); map.put(d[i],i ); } int c=1; if( a>b ){c--; int x=a; a=b; b=x;} int r[]=new int[n]; if(a==b){ for (int i = 0; i < n; i++) { if(d[i]>a || !map.containsKey(a-d[i]) ){System.out.println("NO"); return;} } System.out.println("YES"); for (int i = 0; i < n; i++) {System.out.print("1 ");} System.out.println(); return; } sort(d); for (int j = 0; j < n; j++) { int i=n-j-1; int id=map.get(d[i]),idd=-1; if( id<0)continue; // db(id,d[i]); if( d[i]<=a ){ if( map.containsKey(a-d[i]) && 0<=(idd=map.get(a-d[i])) ){ r[id]=r[idd]=(c+1)%2; map.put(a-d[i], -1); } else if( map.containsKey(b-d[i]) && 0<=(idd=map.get(b-d[i])) ){ r[id]=r[idd]=c; map.put(b-d[i], -1); } else{ System.out.println("NO"); return; } } else{ if( map.containsKey(b-d[i]) && 0<=(idd=map.get(b-d[i])) ){ r[id]=r[idd]=c; map.put(b-d[i], -1); } else{ System.out.println("NO"); return; } } map.put(d[i], -1); } System.out.println("YES"); for (int j = 0; j < n; j++) { System.out.print(r[j]+" "); } System.out.println(); } static class P implements Comparable<P>{ // implements Comparable<Pair> int id; long d; ; P(int id,long d){ this.id=id; this.d=d; } public int compareTo(P x){ return (-x.d+d)>=0?1:-1 ; // ascend long // return -x.d+d ; // ascend // return x.d-d ; //descend } } static void db(Object... os){ System.err.println(Arrays.deepToString(os)); } } class Reader { private BufferedReader x; private StringTokenizer st; public Reader(InputStream in) { x = new BufferedReader(new InputStreamReader(in)); st = null; } public String nextString() throws IOException { while( st==null || !st.hasMoreTokens() ) st = new StringTokenizer(x.readLine()); return st.nextToken(); } public int nextInt() throws IOException { return Integer.parseInt(nextString()); } public long nextLong() throws IOException { return Long.parseLong(nextString()); } public double nextDouble() throws IOException { return Double.parseDouble(nextString()); } } </CODE> <EVALUATION_RUBRIC> - non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially. - O(n^3): The time complexity scales proportionally to the cube of the input size. - O(n^2): The time complexity grows proportionally to the square of the input size. - O(nlog(n)): The time complexity combines linear and logarithmic growth factors. - O(log(n)): The time complexity increases logarithmically in relation to the input size. - O(1): The time complexity is constant to the input size n. - O(n): The time complexity increases proportionally to the input size n in a linear manner. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Determine the worst-case time complexity category of a given Java code based on input size n. </TASK> <CODE> import java.util.*; import java.math.*; import java.io.*; import static java.lang.Math.*; import static java.util.Arrays.*; import static java.util.Collections.*; public class Main{ // ArrayList<Integer> lis = new ArrayList<Integer>(); // ArrayList<String> lis = new ArrayList<String>(); // PriorityQueue<P> que = new PriorityQueue<P>(); // PriorityQueue<Integer> que = new PriorityQueue<Integer>(); // Stack<Integer> que = new Stack<Integer>(); //HashMap<Long,Long> map = new HashMap<Long,Long>(); // static long sum=0; // 1000000007 (10^9+7) static int mod = 1000000007; //static int mod = 1000000009,r=0; ArrayList<Integer> l[]= new ArrayList[n]; // static int dx[]={1,-1,0,0}; // static int dy[]={0,0,1,-1}; // static int dx[]={1,-1,0,0,1,1,-1,-1}; // static int dy[]={0,0,1,-1,1,-1,1,-1}; //static Set<Integer> set = new HashSet<Integer>();p static ArrayList<Integer> cd[]; static int K=0; public static void main(String[] args) throws Exception, IOException{ //String line=""; throws Exception, IOException //(line=br.readLine())!=null //Scanner sc =new Scanner(System.in); // !!caution!! int long // Reader sc = new Reader(System.in); //,a=sc.nextInt(),b=sc.nextInt(); // int n=sc.nextInt(),p[]=new int[n],q[]=new int[n]; //int n=sc.nextInt(),a[]=new int[n],b[]=new int[n]; // int n=sc.nextInt(),m=sc.nextInt(),a=sc.nextInt(),b=sc.nextInt(); // int r=1<<28; int n=sc.nextInt();//,k=sc.nextInt(); int a=sc.nextInt(),b=sc.nextInt(),d[]=new int[n]; HashMap<Integer,Integer> map = new HashMap<Integer,Integer>(); ArrayList<Integer> A = new ArrayList<Integer>(); for (int i = 0; i < n ; i++) { d[i]=sc.nextInt(); map.put(d[i],i ); } int c=1; if( a>b ){c--; int x=a; a=b; b=x;} int r[]=new int[n]; if(a==b){ for (int i = 0; i < n; i++) { if(d[i]>a || !map.containsKey(a-d[i]) ){System.out.println("NO"); return;} } System.out.println("YES"); for (int i = 0; i < n; i++) {System.out.print("1 ");} System.out.println(); return; } sort(d); for (int j = 0; j < n; j++) { int i=n-j-1; int id=map.get(d[i]),idd=-1; if( id<0)continue; // db(id,d[i]); if( d[i]<=a ){ if( map.containsKey(a-d[i]) && 0<=(idd=map.get(a-d[i])) ){ r[id]=r[idd]=(c+1)%2; map.put(a-d[i], -1); } else if( map.containsKey(b-d[i]) && 0<=(idd=map.get(b-d[i])) ){ r[id]=r[idd]=c; map.put(b-d[i], -1); } else{ System.out.println("NO"); return; } } else{ if( map.containsKey(b-d[i]) && 0<=(idd=map.get(b-d[i])) ){ r[id]=r[idd]=c; map.put(b-d[i], -1); } else{ System.out.println("NO"); return; } } map.put(d[i], -1); } System.out.println("YES"); for (int j = 0; j < n; j++) { System.out.print(r[j]+" "); } System.out.println(); } static class P implements Comparable<P>{ // implements Comparable<Pair> int id; long d; ; P(int id,long d){ this.id=id; this.d=d; } public int compareTo(P x){ return (-x.d+d)>=0?1:-1 ; // ascend long // return -x.d+d ; // ascend // return x.d-d ; //descend } } static void db(Object... os){ System.err.println(Arrays.deepToString(os)); } } class Reader { private BufferedReader x; private StringTokenizer st; public Reader(InputStream in) { x = new BufferedReader(new InputStreamReader(in)); st = null; } public String nextString() throws IOException { while( st==null || !st.hasMoreTokens() ) st = new StringTokenizer(x.readLine()); return st.nextToken(); } public int nextInt() throws IOException { return Integer.parseInt(nextString()); } public long nextLong() throws IOException { return Long.parseLong(nextString()); } public double nextDouble() throws IOException { return Double.parseDouble(nextString()); } } </CODE> <EVALUATION_RUBRIC> - O(nlog(n)): The time complexity combines linear and logarithmic growth factors. - non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially. - others: The time complexity does not fit any of the above categories or cannot be clearly classified. - O(log(n)): The time complexity increases logarithmically in relation to the input size. - O(n): The time complexity increases proportionally to the input size n in a linear manner. - O(n^3): The time complexity scales proportionally to the cube of the input size. - O(n^2): The time complexity grows proportionally to the square of the input size. - O(1): The time complexity is constant to the input size n. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
1,511
389