id
int64 0
4.52k
| code
stringlengths 142
31.2k
| answer
stringclasses 7
values | prompt
stringlengths 1.64k
32.6k
| test_prompt
stringlengths 1.7k
32.7k
| token_length
int64 373
7.8k
| __index_level_0__
int64 0
4.5k
|
|---|---|---|---|---|---|---|
4,117
|
import java.util.ArrayList;
import java.util.Arrays;
import java.util.Scanner;
public class C {
public static void main(String[] args) {
//long t = System.currentTimeMillis();
new C().run();
//System.out.println(System.currentTimeMillis() - t);
}
private void run() {
Scanner sc = new Scanner(System.in);
int sx = sc.nextInt();
int sy = sc.nextInt();
int n = sc.nextInt();
int[] x = new int[n];
int[] y = new int[n];
for (int i = 0; i < n; i++) {
x[i] = sc.nextInt();
y[i] = sc.nextInt();
}
sc.close();
int[] w = new int[n * n];
int[] pMask = new int[n * n];
for (int i = 0; i < n; i++) {
for (int j = i; j < n; j++) {
int ind = i * n + j;
if (i == j) {
w[ind] = 2 * dist(sx, sy, x[i], y[i]);
pMask[ind] = 1 << i;
} else {
w[ind] = dist(sx, sy, x[i], y[i]) + dist(x[i], y[i], x[j], y[j]) + dist(x[j], y[j], sx, sy);
pMask[ind] = 1 << i | 1 << j;
}
}
}
int max = 1 << n;
int[] p = new int[max];
int[] dist = new int[max];
Arrays.fill(dist, Integer.MAX_VALUE / 2);
dist[0] = 0;
int[] available = new int[n * n];
for (int mask = 0; mask < max; mask++) {
int ac = 0;
for (int i = 0; i < n; i++) {
if (((mask >> i) & 1) == 0) {
available[ac++] = i;
}
}
int s = 0;
//for (int i = 0; i < ac; i++) {
for (int j = s; j < ac; j++) {
int a = available[s];
int b = available[j];
int ind = a * n + b;
int nextMask = mask | pMask[ind];
int newD = dist[mask] + w[ind];
if (newD < dist[nextMask]) {
dist[nextMask] = newD;
//p[nextMask] = a * n + b;
p[nextMask] = ind;
}
}
//}
}
System.out.println(dist[max - 1]);
ArrayList<Integer> steps = new ArrayList<Integer>();
int mask = max - 1;
while (mask > 0) {
int msk = p[mask];
steps.add(msk);
int a = msk / n;
int b = msk % n;
if (a == b) {
mask ^= 1 << a;
} else {
mask ^= 1 << a;
mask ^= 1 << b;
}
}
System.out.print(0);
for (int i = steps.size() - 1; i >= 0; i--) {
int msk = steps.get(i);
int a = msk / n;
int b = msk % n;
if (a == b) {
System.out.printf(" %d 0", a + 1);
} else {
System.out.printf(" %d %d 0", a + 1, b + 1);
}
}
System.out.println();
}
private int dist(int x1, int y1, int x2, int y2) {
return (x1 - x2) * (x1 - x2) + (y1 - y2) * (y1 - y2);
}
}
|
non-polynomial
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Determine the worst-case time complexity category of a given Java code based on input size n.
</TASK>
<CODE>
import java.util.ArrayList;
import java.util.Arrays;
import java.util.Scanner;
public class C {
public static void main(String[] args) {
//long t = System.currentTimeMillis();
new C().run();
//System.out.println(System.currentTimeMillis() - t);
}
private void run() {
Scanner sc = new Scanner(System.in);
int sx = sc.nextInt();
int sy = sc.nextInt();
int n = sc.nextInt();
int[] x = new int[n];
int[] y = new int[n];
for (int i = 0; i < n; i++) {
x[i] = sc.nextInt();
y[i] = sc.nextInt();
}
sc.close();
int[] w = new int[n * n];
int[] pMask = new int[n * n];
for (int i = 0; i < n; i++) {
for (int j = i; j < n; j++) {
int ind = i * n + j;
if (i == j) {
w[ind] = 2 * dist(sx, sy, x[i], y[i]);
pMask[ind] = 1 << i;
} else {
w[ind] = dist(sx, sy, x[i], y[i]) + dist(x[i], y[i], x[j], y[j]) + dist(x[j], y[j], sx, sy);
pMask[ind] = 1 << i | 1 << j;
}
}
}
int max = 1 << n;
int[] p = new int[max];
int[] dist = new int[max];
Arrays.fill(dist, Integer.MAX_VALUE / 2);
dist[0] = 0;
int[] available = new int[n * n];
for (int mask = 0; mask < max; mask++) {
int ac = 0;
for (int i = 0; i < n; i++) {
if (((mask >> i) & 1) == 0) {
available[ac++] = i;
}
}
int s = 0;
//for (int i = 0; i < ac; i++) {
for (int j = s; j < ac; j++) {
int a = available[s];
int b = available[j];
int ind = a * n + b;
int nextMask = mask | pMask[ind];
int newD = dist[mask] + w[ind];
if (newD < dist[nextMask]) {
dist[nextMask] = newD;
//p[nextMask] = a * n + b;
p[nextMask] = ind;
}
}
//}
}
System.out.println(dist[max - 1]);
ArrayList<Integer> steps = new ArrayList<Integer>();
int mask = max - 1;
while (mask > 0) {
int msk = p[mask];
steps.add(msk);
int a = msk / n;
int b = msk % n;
if (a == b) {
mask ^= 1 << a;
} else {
mask ^= 1 << a;
mask ^= 1 << b;
}
}
System.out.print(0);
for (int i = steps.size() - 1; i >= 0; i--) {
int msk = steps.get(i);
int a = msk / n;
int b = msk % n;
if (a == b) {
System.out.printf(" %d 0", a + 1);
} else {
System.out.printf(" %d %d 0", a + 1, b + 1);
}
}
System.out.println();
}
private int dist(int x1, int y1, int x2, int y2) {
return (x1 - x2) * (x1 - x2) + (y1 - y2) * (y1 - y2);
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(n): The time complexity increases proportionally to the input size n in a linear manner.
- O(n^2): The time complexity grows proportionally to the square of the input size.
- O(n^3): The time complexity scales proportionally to the cube of the input size.
- O(nlog(n)): The time complexity combines linear and logarithmic growth factors.
- non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially.
- O(log(n)): The time complexity increases logarithmically in relation to the input size.
- O(1): The time complexity is constant to the input size n.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Determine the worst-case time complexity category of a given Java code based on input size n.
</TASK>
<CODE>
import java.util.ArrayList;
import java.util.Arrays;
import java.util.Scanner;
public class C {
public static void main(String[] args) {
//long t = System.currentTimeMillis();
new C().run();
//System.out.println(System.currentTimeMillis() - t);
}
private void run() {
Scanner sc = new Scanner(System.in);
int sx = sc.nextInt();
int sy = sc.nextInt();
int n = sc.nextInt();
int[] x = new int[n];
int[] y = new int[n];
for (int i = 0; i < n; i++) {
x[i] = sc.nextInt();
y[i] = sc.nextInt();
}
sc.close();
int[] w = new int[n * n];
int[] pMask = new int[n * n];
for (int i = 0; i < n; i++) {
for (int j = i; j < n; j++) {
int ind = i * n + j;
if (i == j) {
w[ind] = 2 * dist(sx, sy, x[i], y[i]);
pMask[ind] = 1 << i;
} else {
w[ind] = dist(sx, sy, x[i], y[i]) + dist(x[i], y[i], x[j], y[j]) + dist(x[j], y[j], sx, sy);
pMask[ind] = 1 << i | 1 << j;
}
}
}
int max = 1 << n;
int[] p = new int[max];
int[] dist = new int[max];
Arrays.fill(dist, Integer.MAX_VALUE / 2);
dist[0] = 0;
int[] available = new int[n * n];
for (int mask = 0; mask < max; mask++) {
int ac = 0;
for (int i = 0; i < n; i++) {
if (((mask >> i) & 1) == 0) {
available[ac++] = i;
}
}
int s = 0;
//for (int i = 0; i < ac; i++) {
for (int j = s; j < ac; j++) {
int a = available[s];
int b = available[j];
int ind = a * n + b;
int nextMask = mask | pMask[ind];
int newD = dist[mask] + w[ind];
if (newD < dist[nextMask]) {
dist[nextMask] = newD;
//p[nextMask] = a * n + b;
p[nextMask] = ind;
}
}
//}
}
System.out.println(dist[max - 1]);
ArrayList<Integer> steps = new ArrayList<Integer>();
int mask = max - 1;
while (mask > 0) {
int msk = p[mask];
steps.add(msk);
int a = msk / n;
int b = msk % n;
if (a == b) {
mask ^= 1 << a;
} else {
mask ^= 1 << a;
mask ^= 1 << b;
}
}
System.out.print(0);
for (int i = steps.size() - 1; i >= 0; i--) {
int msk = steps.get(i);
int a = msk / n;
int b = msk % n;
if (a == b) {
System.out.printf(" %d 0", a + 1);
} else {
System.out.printf(" %d %d 0", a + 1, b + 1);
}
}
System.out.println();
}
private int dist(int x1, int y1, int x2, int y2) {
return (x1 - x2) * (x1 - x2) + (y1 - y2) * (y1 - y2);
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(nlog(n)): The time complexity combines linear and logarithmic growth factors.
- others: The time complexity does not fit any of the above categories or cannot be clearly classified.
- O(log(n)): The time complexity increases logarithmically in relation to the input size.
- O(n^3): The time complexity scales proportionally to the cube of the input size.
- O(n): The time complexity increases proportionally to the input size n in a linear manner.
- non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially.
- O(1): The time complexity is constant to the input size n.
- O(n^2): The time complexity grows proportionally to the square of the input size.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
| 1,214
| 4,106
|
55
|
import java .util.*;
import java .io.*;
public class Main{
public static void main(String[]YAHIA_MOSTAFA){
Scanner sc =new Scanner(System.in);
long n=sc.nextLong(),x=sc.nextLong(),y=sc.nextLong();
long xb,xw,yb,yw;
xw=x-1;yw=y-1;xb=n-x;yb=n-y;
if (x==n&&y==n){
System.out.println("Black");return;
}
long c1=0,c2=0;
long f =Math.max(xb,yb);
long h =Math.max(xw,yw);
//System.out.println(h+" "+f+" "+(h-f));
if (h<=f)
System.out.println("White");
else
System.out.println("Black");
}
}
|
O(1)
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n.
</TASK>
<CODE>
import java .util.*;
import java .io.*;
public class Main{
public static void main(String[]YAHIA_MOSTAFA){
Scanner sc =new Scanner(System.in);
long n=sc.nextLong(),x=sc.nextLong(),y=sc.nextLong();
long xb,xw,yb,yw;
xw=x-1;yw=y-1;xb=n-x;yb=n-y;
if (x==n&&y==n){
System.out.println("Black");return;
}
long c1=0,c2=0;
long f =Math.max(xb,yb);
long h =Math.max(xw,yw);
//System.out.println(h+" "+f+" "+(h-f));
if (h<=f)
System.out.println("White");
else
System.out.println("Black");
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(n): The execution time ascends in a one-to-one ratio with the input size n.
- O(log(n)): The execution time ascends in proportion to the logarithm of the input size n.
- O(1): The execution time is unaffected by the size of the input n.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- O(n^2): The execution time ascends in proportion to the square of the input size n.
- O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially.
- O(n^3): The execution time ascends in proportion to the cube of the input size n.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n.
</TASK>
<CODE>
import java .util.*;
import java .io.*;
public class Main{
public static void main(String[]YAHIA_MOSTAFA){
Scanner sc =new Scanner(System.in);
long n=sc.nextLong(),x=sc.nextLong(),y=sc.nextLong();
long xb,xw,yb,yw;
xw=x-1;yw=y-1;xb=n-x;yb=n-y;
if (x==n&&y==n){
System.out.println("Black");return;
}
long c1=0,c2=0;
long f =Math.max(xb,yb);
long h =Math.max(xw,yw);
//System.out.println(h+" "+f+" "+(h-f));
if (h<=f)
System.out.println("White");
else
System.out.println("Black");
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially.
- O(log(n)): The execution time ascends in proportion to the logarithm of the input size n.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- O(n^2): The execution time ascends in proportion to the square of the input size n.
- O(n^3): The execution time ascends in proportion to the cube of the input size n.
- others: The time complexity does not fit to any of the given categories or is ambiguous.
- O(n): The execution time ascends in a one-to-one ratio with the input size n.
- O(1): The execution time is unaffected by the size of the input n.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
| 534
| 55
|
3,158
|
import java.io.BufferedOutputStream;
import java.io.IOException;
import java.io.PrintWriter;
import java.util.Scanner;
public class Main implements Runnable {
PrintWriter out;
Scanner in;
public static void main(String[] args) throws IOException {
new Thread(new Main()).start();
}
public void run() {
try {
out = new PrintWriter(new BufferedOutputStream(System.out));
in = new Scanner(System.in);
solve();
out.close();
} catch (IOException e) {
throw new IllegalStateException(e);
}
}
public void solve() throws IOException {
int n = in.nextInt();
if (n >= 0) {
out.println(n);
} else {
String s = String.valueOf(n);
int l = s.length();
String s1 = s.substring(0, l - 2);
if (s.charAt(l - 1) > s.charAt(l - 2)) {
s1 += s.charAt(l - 2);
} else {
s1 += s.charAt(l - 1);
}
out.println(Integer.parseInt(s1));
}
}
}
|
O(1)
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n.
</TASK>
<CODE>
import java.io.BufferedOutputStream;
import java.io.IOException;
import java.io.PrintWriter;
import java.util.Scanner;
public class Main implements Runnable {
PrintWriter out;
Scanner in;
public static void main(String[] args) throws IOException {
new Thread(new Main()).start();
}
public void run() {
try {
out = new PrintWriter(new BufferedOutputStream(System.out));
in = new Scanner(System.in);
solve();
out.close();
} catch (IOException e) {
throw new IllegalStateException(e);
}
}
public void solve() throws IOException {
int n = in.nextInt();
if (n >= 0) {
out.println(n);
} else {
String s = String.valueOf(n);
int l = s.length();
String s1 = s.substring(0, l - 2);
if (s.charAt(l - 1) > s.charAt(l - 2)) {
s1 += s.charAt(l - 2);
} else {
s1 += s.charAt(l - 1);
}
out.println(Integer.parseInt(s1));
}
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(n^2): The execution time ascends in proportion to the square of the input size n.
- O(log(n)): The execution time ascends in proportion to the logarithm of the input size n.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- O(1): The execution time is unaffected by the size of the input n.
- O(n): The execution time ascends in a one-to-one ratio with the input size n.
- O(n^3): The execution time ascends in proportion to the cube of the input size n.
- O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Determine the worst-case time complexity category of a given Java code based on input size n.
</TASK>
<CODE>
import java.io.BufferedOutputStream;
import java.io.IOException;
import java.io.PrintWriter;
import java.util.Scanner;
public class Main implements Runnable {
PrintWriter out;
Scanner in;
public static void main(String[] args) throws IOException {
new Thread(new Main()).start();
}
public void run() {
try {
out = new PrintWriter(new BufferedOutputStream(System.out));
in = new Scanner(System.in);
solve();
out.close();
} catch (IOException e) {
throw new IllegalStateException(e);
}
}
public void solve() throws IOException {
int n = in.nextInt();
if (n >= 0) {
out.println(n);
} else {
String s = String.valueOf(n);
int l = s.length();
String s1 = s.substring(0, l - 2);
if (s.charAt(l - 1) > s.charAt(l - 2)) {
s1 += s.charAt(l - 2);
} else {
s1 += s.charAt(l - 1);
}
out.println(Integer.parseInt(s1));
}
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(1): The time complexity is constant to the input size n.
- O(n^2): The time complexity grows proportionally to the square of the input size.
- non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially.
- others: The time complexity does not fit any of the above categories or cannot be clearly classified.
- O(n^3): The time complexity scales proportionally to the cube of the input size.
- O(nlog(n)): The time complexity combines linear and logarithmic growth factors.
- O(n): The time complexity increases proportionally to the input size n in a linear manner.
- O(log(n)): The time complexity increases logarithmically in relation to the input size.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
| 584
| 3,152
|
2,764
|
import java.util.Scanner;
/**
* 2013.07.27 No.1 235A LCM Challenge
* 数论 n%2 == 0? n%3 == 0?
* @author Administrator *
*/
public class Main {
public static void main(String[] args) {
Scanner in = new Scanner(System.in);
int n = in.nextInt();
if (n < 3)
System.out.println(n);
else if (n % 2 != 0)
System.out.println((long)n * (n - 1) * (n - 2));
else if(n % 3 != 0)
System.out.println((long)n * (n - 1) * (n - 3));
else
System.out.println((long)(n - 1) * (n - 2) * (n - 3));
in.close();
}
}
|
O(1)
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Classify the following Java code's worst-case time complexity according to its relationship to the input size n.
</TASK>
<CODE>
import java.util.Scanner;
/**
* 2013.07.27 No.1 235A LCM Challenge
* 数论 n%2 == 0? n%3 == 0?
* @author Administrator *
*/
public class Main {
public static void main(String[] args) {
Scanner in = new Scanner(System.in);
int n = in.nextInt();
if (n < 3)
System.out.println(n);
else if (n % 2 != 0)
System.out.println((long)n * (n - 1) * (n - 2));
else if(n % 3 != 0)
System.out.println((long)n * (n - 1) * (n - 3));
else
System.out.println((long)(n - 1) * (n - 2) * (n - 3));
in.close();
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(n): The running time grows linearly with the input size n.
- O(nlog(n)): The running time increases with the product of n and logarithm of n.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- O(n^2): The running time increases with the square of the input size n.
- O(n^3): The running time increases with the cube of the input size n.
- O(1): The running time does not change regardless of the input size n.
- O(log(n)): The running time increases with the logarithm of the input size n.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Classify the following Java code's worst-case time complexity according to its relationship to the input size n.
</TASK>
<CODE>
import java.util.Scanner;
/**
* 2013.07.27 No.1 235A LCM Challenge
* 数论 n%2 == 0? n%3 == 0?
* @author Administrator *
*/
public class Main {
public static void main(String[] args) {
Scanner in = new Scanner(System.in);
int n = in.nextInt();
if (n < 3)
System.out.println(n);
else if (n % 2 != 0)
System.out.println((long)n * (n - 1) * (n - 2));
else if(n % 3 != 0)
System.out.println((long)n * (n - 1) * (n - 3));
else
System.out.println((long)(n - 1) * (n - 2) * (n - 3));
in.close();
}
}
</CODE>
<EVALUATION_RUBRIC>
- others: The code does not clearly correspond to the listed classes or has an unclassified time complexity.
- O(log(n)): The running time increases with the logarithm of the input size n.
- O(n^2): The running time increases with the square of the input size n.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- O(nlog(n)): The running time increases with the product of n and logarithm of n.
- O(n): The running time grows linearly with the input size n.
- O(1): The running time does not change regardless of the input size n.
- O(n^3): The running time increases with the cube of the input size n.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
| 534
| 2,758
|
4,076
|
import java.io.BufferedReader;
import java.io.IOException;
import java.io.InputStreamReader;
import java.io.PrintWriter;
import java.util.StringTokenizer;
public class Bag implements Runnable {
private void solve() throws IOException {
int xs = nextInt();
int ys = nextInt();
int n = nextInt();
int[] x = new int[n];
int[] y = new int[n];
for (int i = 0; i < n; ++i) {
x[i] = nextInt();
y[i] = nextInt();
}
int[][] pair = new int[n][n];
for (int i = 0; i < n; ++i)
for (int j = i + 1; j < n; ++j)
pair[i][j] = (x[i] - xs) * (x[i] - xs) + (y[i] - ys) * (y[i] - ys) + (x[j] - xs) * (x[j] - xs) + (y[j] - ys) * (y[j] - ys) + (x[j] - x[i]) * (x[j] - x[i]) + (y[j] - y[i]) * (y[j] - y[i]);
int[] single = new int[n];
for (int i = 0; i < n; ++i) {
single[i] = 2 * ((x[i] - xs) * (x[i] - xs) + (y[i] - ys) * (y[i] - ys));
}
int[] best = new int[1 << n];
int[] prev = new int[1 << n];
for (int set = 1; set < (1 << n); ++set) {
int i;
for (i = 0; i < n; ++i)
if ((set & (1 << i)) != 0)
break;
best[set] = best[set ^ (1 << i)] + single[i];
prev[set] = i + 1;
for (int j = i + 1; j < n; ++j)
if ((set & (1 << j)) != 0) {
int cur = best[set ^ (1 << i) ^ (1 << j)] + pair[i][j];
if (cur < best[set]) {
best[set] = cur;
prev[set] = (i + 1) * 100 + (j + 1);
}
}
}
writer.println(best[(1 << n) - 1]);
int now = (1 << n) - 1;
writer.print("0");
while (now > 0) {
int what = prev[now];
int wa = what % 100 - 1;
int wb = what / 100 - 1;
if (wa >= 0) {
writer.print(" ");
writer.print(wa + 1);
now ^= 1 << wa;
}
if (wb >= 0) {
writer.print(" ");
writer.print(wb + 1);
now ^= 1 << wb;
}
writer.print(" ");
writer.print("0");
}
writer.println();
}
public static void main(String[] args) {
new Bag().run();
}
BufferedReader reader;
StringTokenizer tokenizer;
PrintWriter writer;
public void run() {
try {
reader = new BufferedReader(new InputStreamReader(System.in));
tokenizer = null;
writer = new PrintWriter(System.out);
solve();
reader.close();
writer.close();
} catch (Exception e) {
e.printStackTrace();
System.exit(1);
}
}
int nextInt() throws IOException {
return Integer.parseInt(nextToken());
}
long nextLong() throws IOException {
return Long.parseLong(nextToken());
}
double nextDouble() throws IOException {
return Double.parseDouble(nextToken());
}
String nextToken() throws IOException {
while (tokenizer == null || !tokenizer.hasMoreTokens()) {
tokenizer = new StringTokenizer(reader.readLine());
}
return tokenizer.nextToken();
}
}
|
non-polynomial
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Classify the following Java code's worst-case time complexity according to its relationship to the input size n.
</TASK>
<CODE>
import java.io.BufferedReader;
import java.io.IOException;
import java.io.InputStreamReader;
import java.io.PrintWriter;
import java.util.StringTokenizer;
public class Bag implements Runnable {
private void solve() throws IOException {
int xs = nextInt();
int ys = nextInt();
int n = nextInt();
int[] x = new int[n];
int[] y = new int[n];
for (int i = 0; i < n; ++i) {
x[i] = nextInt();
y[i] = nextInt();
}
int[][] pair = new int[n][n];
for (int i = 0; i < n; ++i)
for (int j = i + 1; j < n; ++j)
pair[i][j] = (x[i] - xs) * (x[i] - xs) + (y[i] - ys) * (y[i] - ys) + (x[j] - xs) * (x[j] - xs) + (y[j] - ys) * (y[j] - ys) + (x[j] - x[i]) * (x[j] - x[i]) + (y[j] - y[i]) * (y[j] - y[i]);
int[] single = new int[n];
for (int i = 0; i < n; ++i) {
single[i] = 2 * ((x[i] - xs) * (x[i] - xs) + (y[i] - ys) * (y[i] - ys));
}
int[] best = new int[1 << n];
int[] prev = new int[1 << n];
for (int set = 1; set < (1 << n); ++set) {
int i;
for (i = 0; i < n; ++i)
if ((set & (1 << i)) != 0)
break;
best[set] = best[set ^ (1 << i)] + single[i];
prev[set] = i + 1;
for (int j = i + 1; j < n; ++j)
if ((set & (1 << j)) != 0) {
int cur = best[set ^ (1 << i) ^ (1 << j)] + pair[i][j];
if (cur < best[set]) {
best[set] = cur;
prev[set] = (i + 1) * 100 + (j + 1);
}
}
}
writer.println(best[(1 << n) - 1]);
int now = (1 << n) - 1;
writer.print("0");
while (now > 0) {
int what = prev[now];
int wa = what % 100 - 1;
int wb = what / 100 - 1;
if (wa >= 0) {
writer.print(" ");
writer.print(wa + 1);
now ^= 1 << wa;
}
if (wb >= 0) {
writer.print(" ");
writer.print(wb + 1);
now ^= 1 << wb;
}
writer.print(" ");
writer.print("0");
}
writer.println();
}
public static void main(String[] args) {
new Bag().run();
}
BufferedReader reader;
StringTokenizer tokenizer;
PrintWriter writer;
public void run() {
try {
reader = new BufferedReader(new InputStreamReader(System.in));
tokenizer = null;
writer = new PrintWriter(System.out);
solve();
reader.close();
writer.close();
} catch (Exception e) {
e.printStackTrace();
System.exit(1);
}
}
int nextInt() throws IOException {
return Integer.parseInt(nextToken());
}
long nextLong() throws IOException {
return Long.parseLong(nextToken());
}
double nextDouble() throws IOException {
return Double.parseDouble(nextToken());
}
String nextToken() throws IOException {
while (tokenizer == null || !tokenizer.hasMoreTokens()) {
tokenizer = new StringTokenizer(reader.readLine());
}
return tokenizer.nextToken();
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(1): The running time does not change regardless of the input size n.
- O(log(n)): The running time increases with the logarithm of the input size n.
- O(n): The running time grows linearly with the input size n.
- O(nlog(n)): The running time increases with the product of n and logarithm of n.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- O(n^3): The running time increases with the cube of the input size n.
- O(n^2): The running time increases with the square of the input size n.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Determine the worst-case time complexity category of a given Java code based on input size n.
</TASK>
<CODE>
import java.io.BufferedReader;
import java.io.IOException;
import java.io.InputStreamReader;
import java.io.PrintWriter;
import java.util.StringTokenizer;
public class Bag implements Runnable {
private void solve() throws IOException {
int xs = nextInt();
int ys = nextInt();
int n = nextInt();
int[] x = new int[n];
int[] y = new int[n];
for (int i = 0; i < n; ++i) {
x[i] = nextInt();
y[i] = nextInt();
}
int[][] pair = new int[n][n];
for (int i = 0; i < n; ++i)
for (int j = i + 1; j < n; ++j)
pair[i][j] = (x[i] - xs) * (x[i] - xs) + (y[i] - ys) * (y[i] - ys) + (x[j] - xs) * (x[j] - xs) + (y[j] - ys) * (y[j] - ys) + (x[j] - x[i]) * (x[j] - x[i]) + (y[j] - y[i]) * (y[j] - y[i]);
int[] single = new int[n];
for (int i = 0; i < n; ++i) {
single[i] = 2 * ((x[i] - xs) * (x[i] - xs) + (y[i] - ys) * (y[i] - ys));
}
int[] best = new int[1 << n];
int[] prev = new int[1 << n];
for (int set = 1; set < (1 << n); ++set) {
int i;
for (i = 0; i < n; ++i)
if ((set & (1 << i)) != 0)
break;
best[set] = best[set ^ (1 << i)] + single[i];
prev[set] = i + 1;
for (int j = i + 1; j < n; ++j)
if ((set & (1 << j)) != 0) {
int cur = best[set ^ (1 << i) ^ (1 << j)] + pair[i][j];
if (cur < best[set]) {
best[set] = cur;
prev[set] = (i + 1) * 100 + (j + 1);
}
}
}
writer.println(best[(1 << n) - 1]);
int now = (1 << n) - 1;
writer.print("0");
while (now > 0) {
int what = prev[now];
int wa = what % 100 - 1;
int wb = what / 100 - 1;
if (wa >= 0) {
writer.print(" ");
writer.print(wa + 1);
now ^= 1 << wa;
}
if (wb >= 0) {
writer.print(" ");
writer.print(wb + 1);
now ^= 1 << wb;
}
writer.print(" ");
writer.print("0");
}
writer.println();
}
public static void main(String[] args) {
new Bag().run();
}
BufferedReader reader;
StringTokenizer tokenizer;
PrintWriter writer;
public void run() {
try {
reader = new BufferedReader(new InputStreamReader(System.in));
tokenizer = null;
writer = new PrintWriter(System.out);
solve();
reader.close();
writer.close();
} catch (Exception e) {
e.printStackTrace();
System.exit(1);
}
}
int nextInt() throws IOException {
return Integer.parseInt(nextToken());
}
long nextLong() throws IOException {
return Long.parseLong(nextToken());
}
double nextDouble() throws IOException {
return Double.parseDouble(nextToken());
}
String nextToken() throws IOException {
while (tokenizer == null || !tokenizer.hasMoreTokens()) {
tokenizer = new StringTokenizer(reader.readLine());
}
return tokenizer.nextToken();
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(log(n)): The time complexity increases logarithmically in relation to the input size.
- O(n^3): The time complexity scales proportionally to the cube of the input size.
- O(n^2): The time complexity grows proportionally to the square of the input size.
- O(n): The time complexity increases proportionally to the input size n in a linear manner.
- O(1): The time complexity is constant to the input size n.
- non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially.
- O(nlog(n)): The time complexity combines linear and logarithmic growth factors.
- others: The time complexity does not fit any of the above categories or cannot be clearly classified.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
| 1,226
| 4,065
|
907
|
import java.io.BufferedReader;
import java.io.IOException;
import java.io.InputStreamReader;
import java.util.StringTokenizer;
public class B {
/**
* @param args
* @throws IOException
*/
public static void main(String[] args) throws IOException
{
BufferedReader br = new BufferedReader(new InputStreamReader(System.in));
// Scanner scan = new Scanner(System.in);
StringTokenizer st = new StringTokenizer(br.readLine());
int n = Integer.parseInt(st.nextToken());
int k = Integer.parseInt(st.nextToken());
st = new StringTokenizer(br.readLine());
int[] a = new int[n];
for(int i = 0 ; i <n;i++)
a[i] = Integer.parseInt(st.nextToken());
int l = 0, r = 0;
int[] t = new int[100001];
int kk = 0;
int min = 1 << 25 , ll =-1 , rr = -1;
while(r < n)
{
int x = a[r++];
t[x]++;
if(t[x] == 1)
kk++;
while(r < n && kk < k)
{
x = a[r++];
t[x]++;
if(t[x] == 1)
kk++;
}
while(kk == k && l < r)
{
x = a[l];
if(t[x] == 1)
break;
t[x]--;
l++;
}
if(kk == k)
{
int m = r-l+1;
if(m < min)
{
ll = l+1;
rr = r;
min = m;
}
}
}
System.out.println(ll +" "+rr);
}
}
|
O(n)
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Classify the following Java code's worst-case time complexity according to its relationship to the input size n.
</TASK>
<CODE>
import java.io.BufferedReader;
import java.io.IOException;
import java.io.InputStreamReader;
import java.util.StringTokenizer;
public class B {
/**
* @param args
* @throws IOException
*/
public static void main(String[] args) throws IOException
{
BufferedReader br = new BufferedReader(new InputStreamReader(System.in));
// Scanner scan = new Scanner(System.in);
StringTokenizer st = new StringTokenizer(br.readLine());
int n = Integer.parseInt(st.nextToken());
int k = Integer.parseInt(st.nextToken());
st = new StringTokenizer(br.readLine());
int[] a = new int[n];
for(int i = 0 ; i <n;i++)
a[i] = Integer.parseInt(st.nextToken());
int l = 0, r = 0;
int[] t = new int[100001];
int kk = 0;
int min = 1 << 25 , ll =-1 , rr = -1;
while(r < n)
{
int x = a[r++];
t[x]++;
if(t[x] == 1)
kk++;
while(r < n && kk < k)
{
x = a[r++];
t[x]++;
if(t[x] == 1)
kk++;
}
while(kk == k && l < r)
{
x = a[l];
if(t[x] == 1)
break;
t[x]--;
l++;
}
if(kk == k)
{
int m = r-l+1;
if(m < min)
{
ll = l+1;
rr = r;
min = m;
}
}
}
System.out.println(ll +" "+rr);
}
}
</CODE>
<EVALUATION_RUBRIC>
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- O(log(n)): The running time increases with the logarithm of the input size n.
- O(n^2): The running time increases with the square of the input size n.
- O(1): The running time does not change regardless of the input size n.
- O(n^3): The running time increases with the cube of the input size n.
- O(n): The running time grows linearly with the input size n.
- O(nlog(n)): The running time increases with the product of n and logarithm of n.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Classify the following Java code's worst-case time complexity according to its relationship to the input size n.
</TASK>
<CODE>
import java.io.BufferedReader;
import java.io.IOException;
import java.io.InputStreamReader;
import java.util.StringTokenizer;
public class B {
/**
* @param args
* @throws IOException
*/
public static void main(String[] args) throws IOException
{
BufferedReader br = new BufferedReader(new InputStreamReader(System.in));
// Scanner scan = new Scanner(System.in);
StringTokenizer st = new StringTokenizer(br.readLine());
int n = Integer.parseInt(st.nextToken());
int k = Integer.parseInt(st.nextToken());
st = new StringTokenizer(br.readLine());
int[] a = new int[n];
for(int i = 0 ; i <n;i++)
a[i] = Integer.parseInt(st.nextToken());
int l = 0, r = 0;
int[] t = new int[100001];
int kk = 0;
int min = 1 << 25 , ll =-1 , rr = -1;
while(r < n)
{
int x = a[r++];
t[x]++;
if(t[x] == 1)
kk++;
while(r < n && kk < k)
{
x = a[r++];
t[x]++;
if(t[x] == 1)
kk++;
}
while(kk == k && l < r)
{
x = a[l];
if(t[x] == 1)
break;
t[x]--;
l++;
}
if(kk == k)
{
int m = r-l+1;
if(m < min)
{
ll = l+1;
rr = r;
min = m;
}
}
}
System.out.println(ll +" "+rr);
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(1): The running time does not change regardless of the input size n.
- O(n): The running time grows linearly with the input size n.
- O(nlog(n)): The running time increases with the product of n and logarithm of n.
- O(n^2): The running time increases with the square of the input size n.
- O(log(n)): The running time increases with the logarithm of the input size n.
- O(n^3): The running time increases with the cube of the input size n.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- others: The code does not clearly correspond to the listed classes or has an unclassified time complexity.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
| 715
| 906
|
1,042
|
// package name;
import java.io.*;
import java.util.*;
public class Main {
public static void main(String[] args) throws IOException {
Scanner s = new Scanner(System.in);
long k = s.nextLong();
long dp[] = new long[13];
long x = 9; int i = 1;
long ansx = 0; int ansi = 0;
for(; i < 13; i++) {
dp[i] = dp[i - 1] + x * i;
x *= 10;
if(k <= dp[i]) {
ansx = x;
ansi = i;
break;
}
if(dp[i] > 1000000000000l) break;
}
if(ansi < 2) {
System.out.println(k);
return;
}
k -= dp[ansi - 1];
//System.out.println(k);
long st = (long)Math.pow(10, ansi - 1);
long div = (k / ansi);
if(k % ansi == 0) div--;
k -= div * ansi;
//System.out.println(k);
System.out.println(findKthDigit(st + div, k));
}
private static Long findKthDigit(long xx, long k) {
int z = (int) k;
ArrayList<Long> arr = new ArrayList();
while(xx > 0) {
arr.add(xx % 10);
xx /= 10;
}
return arr.get(arr.size() - z);
}
}
|
O(log(n))
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Determine the worst-case time complexity category of a given Java code based on input size n.
</TASK>
<CODE>
// package name;
import java.io.*;
import java.util.*;
public class Main {
public static void main(String[] args) throws IOException {
Scanner s = new Scanner(System.in);
long k = s.nextLong();
long dp[] = new long[13];
long x = 9; int i = 1;
long ansx = 0; int ansi = 0;
for(; i < 13; i++) {
dp[i] = dp[i - 1] + x * i;
x *= 10;
if(k <= dp[i]) {
ansx = x;
ansi = i;
break;
}
if(dp[i] > 1000000000000l) break;
}
if(ansi < 2) {
System.out.println(k);
return;
}
k -= dp[ansi - 1];
//System.out.println(k);
long st = (long)Math.pow(10, ansi - 1);
long div = (k / ansi);
if(k % ansi == 0) div--;
k -= div * ansi;
//System.out.println(k);
System.out.println(findKthDigit(st + div, k));
}
private static Long findKthDigit(long xx, long k) {
int z = (int) k;
ArrayList<Long> arr = new ArrayList();
while(xx > 0) {
arr.add(xx % 10);
xx /= 10;
}
return arr.get(arr.size() - z);
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(n): The time complexity increases proportionally to the input size n in a linear manner.
- O(n^2): The time complexity grows proportionally to the square of the input size.
- non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially.
- O(log(n)): The time complexity increases logarithmically in relation to the input size.
- O(n^3): The time complexity scales proportionally to the cube of the input size.
- O(1): The time complexity is constant to the input size n.
- O(nlog(n)): The time complexity combines linear and logarithmic growth factors.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Classify the following Java code's worst-case time complexity according to its relationship to the input size n.
</TASK>
<CODE>
// package name;
import java.io.*;
import java.util.*;
public class Main {
public static void main(String[] args) throws IOException {
Scanner s = new Scanner(System.in);
long k = s.nextLong();
long dp[] = new long[13];
long x = 9; int i = 1;
long ansx = 0; int ansi = 0;
for(; i < 13; i++) {
dp[i] = dp[i - 1] + x * i;
x *= 10;
if(k <= dp[i]) {
ansx = x;
ansi = i;
break;
}
if(dp[i] > 1000000000000l) break;
}
if(ansi < 2) {
System.out.println(k);
return;
}
k -= dp[ansi - 1];
//System.out.println(k);
long st = (long)Math.pow(10, ansi - 1);
long div = (k / ansi);
if(k % ansi == 0) div--;
k -= div * ansi;
//System.out.println(k);
System.out.println(findKthDigit(st + div, k));
}
private static Long findKthDigit(long xx, long k) {
int z = (int) k;
ArrayList<Long> arr = new ArrayList();
while(xx > 0) {
arr.add(xx % 10);
xx /= 10;
}
return arr.get(arr.size() - z);
}
}
</CODE>
<EVALUATION_RUBRIC>
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- O(log(n)): The running time increases with the logarithm of the input size n.
- O(n): The running time grows linearly with the input size n.
- O(1): The running time does not change regardless of the input size n.
- others: The code does not clearly correspond to the listed classes or has an unclassified time complexity.
- O(n^3): The running time increases with the cube of the input size n.
- O(n^2): The running time increases with the square of the input size n.
- O(nlog(n)): The running time increases with the product of n and logarithm of n.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
| 695
| 1,041
|
562
|
import java.io.*;
import java.util.*;
public class B {
public static BufferedReader br = new BufferedReader(new InputStreamReader(System.in));
public static PrintWriter out = new PrintWriter(new BufferedOutputStream(System.out));
public static void main(String[] args) throws IOException {
readInput();
out.close();
}
static boolean sq(long x) {
long l = 1;
long r = (int)Math.sqrt(1e16)+1;
while (l+1<r) {
long m = (l+r)>>1;
if (m * m > x) r = m;
else l = m;
}
return l*l == x;
}
static boolean solve(long x) {
if ((x&1)==1) return false;
if ((x & (x-1)) == 0) return true;
long num = 2;
while (num < x && x % num == 0) {
if (sq(x/num)) return true;
num*=2;
}
return false;
}
public static void readInput() throws IOException {
// br = new BufferedReader(new FileReader(".in"));
// out = new PrintWriter(new FileWriter(".out"));
int t = Integer.parseInt(br.readLine());
while (t-->0) {
int x = Integer.parseInt(br.readLine());
out.println(solve(x) ? "YES":"NO");
}
}
}
|
O(n)
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Classify the following Java code's worst-case time complexity according to its relationship to the input size n.
</TASK>
<CODE>
import java.io.*;
import java.util.*;
public class B {
public static BufferedReader br = new BufferedReader(new InputStreamReader(System.in));
public static PrintWriter out = new PrintWriter(new BufferedOutputStream(System.out));
public static void main(String[] args) throws IOException {
readInput();
out.close();
}
static boolean sq(long x) {
long l = 1;
long r = (int)Math.sqrt(1e16)+1;
while (l+1<r) {
long m = (l+r)>>1;
if (m * m > x) r = m;
else l = m;
}
return l*l == x;
}
static boolean solve(long x) {
if ((x&1)==1) return false;
if ((x & (x-1)) == 0) return true;
long num = 2;
while (num < x && x % num == 0) {
if (sq(x/num)) return true;
num*=2;
}
return false;
}
public static void readInput() throws IOException {
// br = new BufferedReader(new FileReader(".in"));
// out = new PrintWriter(new FileWriter(".out"));
int t = Integer.parseInt(br.readLine());
while (t-->0) {
int x = Integer.parseInt(br.readLine());
out.println(solve(x) ? "YES":"NO");
}
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(nlog(n)): The running time increases with the product of n and logarithm of n.
- O(1): The running time does not change regardless of the input size n.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- O(n^2): The running time increases with the square of the input size n.
- O(log(n)): The running time increases with the logarithm of the input size n.
- O(n^3): The running time increases with the cube of the input size n.
- O(n): The running time grows linearly with the input size n.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Determine the worst-case time complexity category of a given Java code based on input size n.
</TASK>
<CODE>
import java.io.*;
import java.util.*;
public class B {
public static BufferedReader br = new BufferedReader(new InputStreamReader(System.in));
public static PrintWriter out = new PrintWriter(new BufferedOutputStream(System.out));
public static void main(String[] args) throws IOException {
readInput();
out.close();
}
static boolean sq(long x) {
long l = 1;
long r = (int)Math.sqrt(1e16)+1;
while (l+1<r) {
long m = (l+r)>>1;
if (m * m > x) r = m;
else l = m;
}
return l*l == x;
}
static boolean solve(long x) {
if ((x&1)==1) return false;
if ((x & (x-1)) == 0) return true;
long num = 2;
while (num < x && x % num == 0) {
if (sq(x/num)) return true;
num*=2;
}
return false;
}
public static void readInput() throws IOException {
// br = new BufferedReader(new FileReader(".in"));
// out = new PrintWriter(new FileWriter(".out"));
int t = Integer.parseInt(br.readLine());
while (t-->0) {
int x = Integer.parseInt(br.readLine());
out.println(solve(x) ? "YES":"NO");
}
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(nlog(n)): The time complexity combines linear and logarithmic growth factors.
- O(1): The time complexity is constant to the input size n.
- O(log(n)): The time complexity increases logarithmically in relation to the input size.
- others: The time complexity does not fit any of the above categories or cannot be clearly classified.
- non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially.
- O(n^2): The time complexity grows proportionally to the square of the input size.
- O(n^3): The time complexity scales proportionally to the cube of the input size.
- O(n): The time complexity increases proportionally to the input size n in a linear manner.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
| 633
| 561
|
4,196
|
// by agus.mw
import java.util.*;
import java.io.*;
public class Main{
public static void main(String[] args) throws Exception {
new Main().doWork();
}
void doWork() throws Exception{
BufferedReader reader = new BufferedReader(new InputStreamReader(System.in));
BufferedWriter writer = new BufferedWriter(new OutputStreamWriter(System.out));
int ncase = Integer.valueOf(reader.readLine());
double[][] p = new double[ncase][];
for(int icase=0;icase<ncase;icase++){
p[icase] = toDoubleArray(reader.readLine());
}
double[] prob = new double[1<<ncase];
prob[0] = 1;
for(int x=0;x<(1<<ncase);x++){
double cp = prob[x];
int count = 0;
for(int i=0;i<ncase;i++){
if((x&(1<<i))!=0) continue;
count ++;
}
if(count == 1) continue;
double np = cp*2.0/(count)/(count-1);
for(int i=0;i<ncase;i++){
if((x&(1<<i))!=0) continue;
for(int j=i+1;j<ncase;j++){
if((x&(1<<j))!=0) continue;
prob[x^(1<<j)] += np*p[i][j];
prob[x^(1<<i)] += np*p[j][i];
}
}
}
String out = "";
for(int i=0;i<ncase;i++){
if(i>0) out += " ";
int index = ((1<<ncase)-1)^(1<<i);
out += String.format("%.6f",prob[index]);
}
out += "\r\n";
writer.write(out,0,out.length());
writer.flush();
writer.close();
reader.close();
}
String process(){
return "1";
}
double[] toDoubleArray(String line){
String[] p = line.split("[ ]+");
double[] out = new double[p.length];
for(int i=0;i<p.length;i++) out[i] = Double.valueOf(p[i]);
return out;
}
}
|
non-polynomial
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Classify the following Java code's worst-case time complexity according to its relationship to the input size n.
</TASK>
<CODE>
// by agus.mw
import java.util.*;
import java.io.*;
public class Main{
public static void main(String[] args) throws Exception {
new Main().doWork();
}
void doWork() throws Exception{
BufferedReader reader = new BufferedReader(new InputStreamReader(System.in));
BufferedWriter writer = new BufferedWriter(new OutputStreamWriter(System.out));
int ncase = Integer.valueOf(reader.readLine());
double[][] p = new double[ncase][];
for(int icase=0;icase<ncase;icase++){
p[icase] = toDoubleArray(reader.readLine());
}
double[] prob = new double[1<<ncase];
prob[0] = 1;
for(int x=0;x<(1<<ncase);x++){
double cp = prob[x];
int count = 0;
for(int i=0;i<ncase;i++){
if((x&(1<<i))!=0) continue;
count ++;
}
if(count == 1) continue;
double np = cp*2.0/(count)/(count-1);
for(int i=0;i<ncase;i++){
if((x&(1<<i))!=0) continue;
for(int j=i+1;j<ncase;j++){
if((x&(1<<j))!=0) continue;
prob[x^(1<<j)] += np*p[i][j];
prob[x^(1<<i)] += np*p[j][i];
}
}
}
String out = "";
for(int i=0;i<ncase;i++){
if(i>0) out += " ";
int index = ((1<<ncase)-1)^(1<<i);
out += String.format("%.6f",prob[index]);
}
out += "\r\n";
writer.write(out,0,out.length());
writer.flush();
writer.close();
reader.close();
}
String process(){
return "1";
}
double[] toDoubleArray(String line){
String[] p = line.split("[ ]+");
double[] out = new double[p.length];
for(int i=0;i<p.length;i++) out[i] = Double.valueOf(p[i]);
return out;
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(nlog(n)): The running time increases with the product of n and logarithm of n.
- O(n^3): The running time increases with the cube of the input size n.
- O(log(n)): The running time increases with the logarithm of the input size n.
- O(n): The running time grows linearly with the input size n.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- O(1): The running time does not change regardless of the input size n.
- O(n^2): The running time increases with the square of the input size n.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n.
</TASK>
<CODE>
// by agus.mw
import java.util.*;
import java.io.*;
public class Main{
public static void main(String[] args) throws Exception {
new Main().doWork();
}
void doWork() throws Exception{
BufferedReader reader = new BufferedReader(new InputStreamReader(System.in));
BufferedWriter writer = new BufferedWriter(new OutputStreamWriter(System.out));
int ncase = Integer.valueOf(reader.readLine());
double[][] p = new double[ncase][];
for(int icase=0;icase<ncase;icase++){
p[icase] = toDoubleArray(reader.readLine());
}
double[] prob = new double[1<<ncase];
prob[0] = 1;
for(int x=0;x<(1<<ncase);x++){
double cp = prob[x];
int count = 0;
for(int i=0;i<ncase;i++){
if((x&(1<<i))!=0) continue;
count ++;
}
if(count == 1) continue;
double np = cp*2.0/(count)/(count-1);
for(int i=0;i<ncase;i++){
if((x&(1<<i))!=0) continue;
for(int j=i+1;j<ncase;j++){
if((x&(1<<j))!=0) continue;
prob[x^(1<<j)] += np*p[i][j];
prob[x^(1<<i)] += np*p[j][i];
}
}
}
String out = "";
for(int i=0;i<ncase;i++){
if(i>0) out += " ";
int index = ((1<<ncase)-1)^(1<<i);
out += String.format("%.6f",prob[index]);
}
out += "\r\n";
writer.write(out,0,out.length());
writer.flush();
writer.close();
reader.close();
}
String process(){
return "1";
}
double[] toDoubleArray(String line){
String[] p = line.split("[ ]+");
double[] out = new double[p.length];
for(int i=0;i<p.length;i++) out[i] = Double.valueOf(p[i]);
return out;
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(log(n)): The execution time ascends in proportion to the logarithm of the input size n.
- others: The time complexity does not fit to any of the given categories or is ambiguous.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially.
- O(n^2): The execution time ascends in proportion to the square of the input size n.
- O(1): The execution time is unaffected by the size of the input n.
- O(n): The execution time ascends in a one-to-one ratio with the input size n.
- O(n^3): The execution time ascends in proportion to the cube of the input size n.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
| 809
| 4,185
|
4,215
|
import java.io.BufferedReader;
import java.io.InputStreamReader;
import java.io.PrintWriter;
import java.util.Arrays;
import java.util.StringTokenizer;
/*
* To change this template, choose Tools | Templates
* and open the template in the editor.
*/
/**
*
* @author Trung Pham
*/
public class E {
public static double[] dp;
public static double[][] data;
public static int n;
public static void main(String[] args) {
Scanner in = new Scanner();
PrintWriter out = new PrintWriter(System.out);
n = in.nextInt();
data = new double[n][n];
for (int i = 0; i < n; i++) {
for (int j = 0; j < n; j++) {
data[i][j] = in.nextDouble();
}
}
dp = new double[1 << n];
Arrays.fill(dp, -1);
for (int i = 0; i < n; i++) {
int a = 1 << i;
out.print(cal(a) + " ");
}
out.close();
//System.out.print(builder.toString());
}
public static double cal(int mask) {
if (mask == (1 << n) - 1) {
// System.out.println(mask);
return 1;
}
if (dp[mask] != -1) {
return dp[mask];
}
double result = 0;
int c = 0;
for (int i = 0; i < n; i++) {
int a = 1 << i;
if ((a & mask) != 0) {
c++;
for (int j = 0; j < n; j++) {
int b = 1 << j;
if ((b & mask) == 0) {
result += (data[i][j] * cal(mask | b));
}
}
}
}
int nC2 = (c + 1) * c / 2;
dp[mask] = result / nC2;
return dp[mask];
}
static class Scanner {
BufferedReader br;
StringTokenizer st;
public Scanner() {
// System.setOut(new PrintStream(new BufferedOutputStream(System.out), true));
br = new BufferedReader(new InputStreamReader(System.in));
}
public String next() {
while (st == null || !st.hasMoreTokens()) {
try {
st = new StringTokenizer(br.readLine());
} catch (Exception e) {
throw new RuntimeException();
}
}
return st.nextToken();
}
public long nextLong() {
return Long.parseLong(next());
}
public int nextInt() {
return Integer.parseInt(next());
}
public double nextDouble() {
return Double.parseDouble(next());
}
public String nextLine() {
st = null;
try {
return br.readLine();
} catch (Exception e) {
throw new RuntimeException();
}
}
public boolean endLine() {
try {
String next = br.readLine();
while (next != null && next.trim().isEmpty()) {
next = br.readLine();
}
if (next == null) {
return true;
}
st = new StringTokenizer(next);
return st.hasMoreTokens();
} catch (Exception e) {
throw new RuntimeException();
}
}
}
}
|
non-polynomial
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Classify the following Java code's worst-case time complexity according to its relationship to the input size n.
</TASK>
<CODE>
import java.io.BufferedReader;
import java.io.InputStreamReader;
import java.io.PrintWriter;
import java.util.Arrays;
import java.util.StringTokenizer;
/*
* To change this template, choose Tools | Templates
* and open the template in the editor.
*/
/**
*
* @author Trung Pham
*/
public class E {
public static double[] dp;
public static double[][] data;
public static int n;
public static void main(String[] args) {
Scanner in = new Scanner();
PrintWriter out = new PrintWriter(System.out);
n = in.nextInt();
data = new double[n][n];
for (int i = 0; i < n; i++) {
for (int j = 0; j < n; j++) {
data[i][j] = in.nextDouble();
}
}
dp = new double[1 << n];
Arrays.fill(dp, -1);
for (int i = 0; i < n; i++) {
int a = 1 << i;
out.print(cal(a) + " ");
}
out.close();
//System.out.print(builder.toString());
}
public static double cal(int mask) {
if (mask == (1 << n) - 1) {
// System.out.println(mask);
return 1;
}
if (dp[mask] != -1) {
return dp[mask];
}
double result = 0;
int c = 0;
for (int i = 0; i < n; i++) {
int a = 1 << i;
if ((a & mask) != 0) {
c++;
for (int j = 0; j < n; j++) {
int b = 1 << j;
if ((b & mask) == 0) {
result += (data[i][j] * cal(mask | b));
}
}
}
}
int nC2 = (c + 1) * c / 2;
dp[mask] = result / nC2;
return dp[mask];
}
static class Scanner {
BufferedReader br;
StringTokenizer st;
public Scanner() {
// System.setOut(new PrintStream(new BufferedOutputStream(System.out), true));
br = new BufferedReader(new InputStreamReader(System.in));
}
public String next() {
while (st == null || !st.hasMoreTokens()) {
try {
st = new StringTokenizer(br.readLine());
} catch (Exception e) {
throw new RuntimeException();
}
}
return st.nextToken();
}
public long nextLong() {
return Long.parseLong(next());
}
public int nextInt() {
return Integer.parseInt(next());
}
public double nextDouble() {
return Double.parseDouble(next());
}
public String nextLine() {
st = null;
try {
return br.readLine();
} catch (Exception e) {
throw new RuntimeException();
}
}
public boolean endLine() {
try {
String next = br.readLine();
while (next != null && next.trim().isEmpty()) {
next = br.readLine();
}
if (next == null) {
return true;
}
st = new StringTokenizer(next);
return st.hasMoreTokens();
} catch (Exception e) {
throw new RuntimeException();
}
}
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(n^2): The running time increases with the square of the input size n.
- O(n^3): The running time increases with the cube of the input size n.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- O(n): The running time grows linearly with the input size n.
- O(nlog(n)): The running time increases with the product of n and logarithm of n.
- O(log(n)): The running time increases with the logarithm of the input size n.
- O(1): The running time does not change regardless of the input size n.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n.
</TASK>
<CODE>
import java.io.BufferedReader;
import java.io.InputStreamReader;
import java.io.PrintWriter;
import java.util.Arrays;
import java.util.StringTokenizer;
/*
* To change this template, choose Tools | Templates
* and open the template in the editor.
*/
/**
*
* @author Trung Pham
*/
public class E {
public static double[] dp;
public static double[][] data;
public static int n;
public static void main(String[] args) {
Scanner in = new Scanner();
PrintWriter out = new PrintWriter(System.out);
n = in.nextInt();
data = new double[n][n];
for (int i = 0; i < n; i++) {
for (int j = 0; j < n; j++) {
data[i][j] = in.nextDouble();
}
}
dp = new double[1 << n];
Arrays.fill(dp, -1);
for (int i = 0; i < n; i++) {
int a = 1 << i;
out.print(cal(a) + " ");
}
out.close();
//System.out.print(builder.toString());
}
public static double cal(int mask) {
if (mask == (1 << n) - 1) {
// System.out.println(mask);
return 1;
}
if (dp[mask] != -1) {
return dp[mask];
}
double result = 0;
int c = 0;
for (int i = 0; i < n; i++) {
int a = 1 << i;
if ((a & mask) != 0) {
c++;
for (int j = 0; j < n; j++) {
int b = 1 << j;
if ((b & mask) == 0) {
result += (data[i][j] * cal(mask | b));
}
}
}
}
int nC2 = (c + 1) * c / 2;
dp[mask] = result / nC2;
return dp[mask];
}
static class Scanner {
BufferedReader br;
StringTokenizer st;
public Scanner() {
// System.setOut(new PrintStream(new BufferedOutputStream(System.out), true));
br = new BufferedReader(new InputStreamReader(System.in));
}
public String next() {
while (st == null || !st.hasMoreTokens()) {
try {
st = new StringTokenizer(br.readLine());
} catch (Exception e) {
throw new RuntimeException();
}
}
return st.nextToken();
}
public long nextLong() {
return Long.parseLong(next());
}
public int nextInt() {
return Integer.parseInt(next());
}
public double nextDouble() {
return Double.parseDouble(next());
}
public String nextLine() {
st = null;
try {
return br.readLine();
} catch (Exception e) {
throw new RuntimeException();
}
}
public boolean endLine() {
try {
String next = br.readLine();
while (next != null && next.trim().isEmpty()) {
next = br.readLine();
}
if (next == null) {
return true;
}
st = new StringTokenizer(next);
return st.hasMoreTokens();
} catch (Exception e) {
throw new RuntimeException();
}
}
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(log(n)): The execution time ascends in proportion to the logarithm of the input size n.
- O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially.
- O(n^2): The execution time ascends in proportion to the square of the input size n.
- O(n): The execution time ascends in a one-to-one ratio with the input size n.
- O(1): The execution time is unaffected by the size of the input n.
- O(n^3): The execution time ascends in proportion to the cube of the input size n.
- others: The time complexity does not fit to any of the given categories or is ambiguous.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
| 1,046
| 4,204
|
3,397
|
/*
* To change this template, choose Tools | Templates
* and open the template in the editor.
*/
//package substring;
import java.util.*;
/**
*
* @author lav
*/
public class Main {
/**
* @param args the command line arguments
*/
public static void main(String[] args) {
Scanner scr = new Scanner(System.in);
// System.out.println("entet strig");
String str = scr.nextLine();
int len =0;
// System.out.println(str.substring(0, str.length()));
for(int i=0;i<(str.length()-1);i++)
{
for(int j=i+1;j<str.length();j++)
{
String sub = str.substring(i, j);
//int a=i+sub.indexOf(sub.charAt(0));
int ind = str.indexOf(sub, i+1);
if(ind!=-1 && sub.length()>len )
{
len = sub.length();
}
}
}
System.out.println(len);
// TODO code application logic here
}
}
|
O(n^3)
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Classify the following Java code's worst-case time complexity according to its relationship to the input size n.
</TASK>
<CODE>
/*
* To change this template, choose Tools | Templates
* and open the template in the editor.
*/
//package substring;
import java.util.*;
/**
*
* @author lav
*/
public class Main {
/**
* @param args the command line arguments
*/
public static void main(String[] args) {
Scanner scr = new Scanner(System.in);
// System.out.println("entet strig");
String str = scr.nextLine();
int len =0;
// System.out.println(str.substring(0, str.length()));
for(int i=0;i<(str.length()-1);i++)
{
for(int j=i+1;j<str.length();j++)
{
String sub = str.substring(i, j);
//int a=i+sub.indexOf(sub.charAt(0));
int ind = str.indexOf(sub, i+1);
if(ind!=-1 && sub.length()>len )
{
len = sub.length();
}
}
}
System.out.println(len);
// TODO code application logic here
}
}
</CODE>
<EVALUATION_RUBRIC>
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- O(n): The running time grows linearly with the input size n.
- O(1): The running time does not change regardless of the input size n.
- O(n^2): The running time increases with the square of the input size n.
- O(log(n)): The running time increases with the logarithm of the input size n.
- O(n^3): The running time increases with the cube of the input size n.
- O(nlog(n)): The running time increases with the product of n and logarithm of n.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Classify the following Java code's worst-case time complexity according to its relationship to the input size n.
</TASK>
<CODE>
/*
* To change this template, choose Tools | Templates
* and open the template in the editor.
*/
//package substring;
import java.util.*;
/**
*
* @author lav
*/
public class Main {
/**
* @param args the command line arguments
*/
public static void main(String[] args) {
Scanner scr = new Scanner(System.in);
// System.out.println("entet strig");
String str = scr.nextLine();
int len =0;
// System.out.println(str.substring(0, str.length()));
for(int i=0;i<(str.length()-1);i++)
{
for(int j=i+1;j<str.length();j++)
{
String sub = str.substring(i, j);
//int a=i+sub.indexOf(sub.charAt(0));
int ind = str.indexOf(sub, i+1);
if(ind!=-1 && sub.length()>len )
{
len = sub.length();
}
}
}
System.out.println(len);
// TODO code application logic here
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(1): The running time does not change regardless of the input size n.
- O(log(n)): The running time increases with the logarithm of the input size n.
- others: The code does not clearly correspond to the listed classes or has an unclassified time complexity.
- O(n): The running time grows linearly with the input size n.
- O(nlog(n)): The running time increases with the product of n and logarithm of n.
- O(n^2): The running time increases with the square of the input size n.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- O(n^3): The running time increases with the cube of the input size n.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
| 555
| 3,391
|
2,426
|
/*
* UMANG PANCHAL
* DAIICT
*/
import java.util.*;
import java.io.*;
import java.math.BigInteger;
public class Main
{
static LinkedList<Integer> adj[];
static ArrayList<Integer> adj1[];
static int[] color,visited1;
static boolean b[],visited[],possible;
static int level[];
static Map<Integer,HashSet<Integer>> s;
static int totalnodes,colored;
static int count[];
static long sum[];
static int nodes;
static double ans=0;
static long[] as=new long[10001];
static long c1=0,c2=0;
static int[] a,d,k;
static int max=100000000;
static long MOD = (long)1e9 + 7,sm=0,m=Long.MIN_VALUE;
static boolean[] prime=new boolean[1000005];
static int[] levl;
static int[] eat;
static int price[];
static int size[],res[],par[];
static int result=0;
// --------------------My Code Starts Here----------------------
public static void main(String[] args) throws IOException
{
in=new InputReader(System.in);
w=new PrintWriter(System.out);
int n=ni();
int[] a=na(n);
int ans=0;
for(int i=0;i<n;i++)
{
for(int j=i+1;j<n;j++)
{
if(a[j]<a[i])
ans++;
}
}
int m=ni();
ans=ans%2;
while(m-->0)
{
int l=ni(),r=ni();
int range=r-l+1;
range=range*(range-1)/2;
range=range%2;
ans=(ans+range)%2;
if(ans==1)
w.println("odd");
else
w.println("even");
}
w.close();
}
public static long nCrModp(long n, long r, long p)
{
long[] C=new long[(int)r+1];
C[0] = 1;
for (long i = 1; i <= n; i++)
{
for (long j = Math.min(i, r); j > 0; j--)
C[(int)j] = (C[(int)j] + C[(int)(j-1)])%p;
}
return C[(int)r];
}
public static long nCr(long n, long r)
{
long x=1;
for(long i=n;i>=n-r+1;i--)
x=((x)*(i));
for(long i=r;i>=1;i--)
x=((x)/(i));
return x%MOD;
}
public static long nCrModpDP(long n, long r, long p)
{
long[] C=new long[(int)r+1];
C[0] = 1;
for (long i = 1; i <= n; i++)
{
for (int j = (int)Math.min(i, r); j > 0; j--)
C[j] = (C[j] + C[j-1])%p;
}
return C[(int)r];
}
public static long nCrModpLucas(long n,long r, long p)
{
if (r==0)
return 1;
long ni = n%p, ri = r%p;
return (nCrModpLucas(n/p,r/p, p) * nCrModpDP(ni,ri, p)) % p;
}
public static void buildgraph(int n){
adj=new LinkedList[n+1];
visited=new boolean[n+1];
levl=new int[n+1];
par=new int[n+1];
for(int i=0;i<=n;i++){
adj[i]=new LinkedList<Integer>();
}
}
public static int getSum(long BITree[], int index)
{
int sum = 0;
while (index > 0)
{
sum += BITree[index];
index -= index & (-index);
}
return sum;
}
public static long[] updateBIT(long BITree[], int n, int index, int val)
{
while (index <= n)
{
BITree[index] += val;
index += index & (-index);
}
return BITree;
}
public static boolean isPrime(int n)
{
// Corner cases
if (n <= 1) return false;
if (n <= 3) return true;
// This is checked so that we can skip
// middle five numbers in below loop
if (n%2 == 0 || n%3 == 0)
return false;
for (int i=5; i*i<=n; i=i+6)
if (n%i == 0 || n%(i+2) == 0)
return false;
return true;
}
// --------------------My Code Ends Here------------------------
public static String ns()
{
return in.nextLine();
}
public static int ni()
{
return in.nextInt();
}
public static long nl()
{
return in.nextLong();
}
public static int[] na(int n)
{
a=new int[n];
for(int i=0;i<n;i++)
a[i]=ni();
return a;
}
public static void sieveOfEratosthenes()
{
int n=prime.length;
for(int i=0;i<n;i++)
prime[i] = true;
for(int p = 2; p*p <=n; p++)
{
if(prime[p] == true)
{
for(int i = p*2; i <n; i += p)
prime[i] = false;
}
}
}
public static boolean printDivisors(long n)
{
long ans=0;
for (int i=1; i<=Math.sqrt(n); i++)
{
if (n%i==0)
{
if (n/i == i)
ans++;
else
{
ans=ans+2;
}
}
if(ans>3)
break;
}
if(ans==3)
return true;
else
return false;
}
public static void dfs(int i)
{
visited[i]=true;
for(int j:adj[i])
{
if(!visited[j])
{
dfs(j);
nodes++;
}
}
}
public static String rev(String s)
{
StringBuilder sb=new StringBuilder(s);
sb.reverse();
return sb.toString();
}
static long lcm(long a, long b)
{
return a * (b / gcd(a, b));
}
static long gcd(long a, long b)
{
while (b > 0)
{
long temp = b;
b = a % b; // % is remainder
a = temp;
}
return a;
}
static InputReader in;
static PrintWriter w;
static class InputReader
{
private final InputStream stream;
private final byte[] buf = new byte[8192];
private int curChar, snumChars;
private SpaceCharFilter filter;
public InputReader(InputStream stream)
{
this.stream = stream;
}
public int snext()
{
if (snumChars == -1)
throw new InputMismatchException();
if (curChar >= snumChars)
{
curChar = 0;
try
{
snumChars = stream.read(buf);
}
catch (IOException e)
{
throw new InputMismatchException();
}
if (snumChars <= 0)
return -1;
}
return buf[curChar++];
}
public int nextInt()
{
int c = snext();
while (isSpaceChar(c))
{
c = snext();
}
int sgn = 1;
if (c == '-')
{
sgn = -1;
c = snext();
}
int res = 0;
do
{
if (c < '0' || c > '9')
throw new InputMismatchException();
res *= 10;
res += c - '0';
c = snext();
}
while (!isSpaceChar(c));
return res * sgn;
}
public long nextLong()
{
int c = snext();
while (isSpaceChar(c))
{
c = snext();
}
int sgn = 1;
if (c == '-')
{
sgn = -1;
c = snext();
}
long res = 0;
do
{
if (c < '0' || c > '9')
throw new InputMismatchException();
res *= 10;
res += c - '0';
c = snext();
}
while (!isSpaceChar(c));
return res * sgn;
}
public String readString()
{
int c = snext();
while (isSpaceChar(c))
{
c = snext();
}
StringBuilder res = new StringBuilder();
do
{
res.appendCodePoint(c);
c = snext();
}
while (!isSpaceChar(c));
return res.toString();
}
public String nextLine()
{
int c = snext();
while (isSpaceChar(c))
c = snext();
StringBuilder res = new StringBuilder();
do
{
res.appendCodePoint(c);
c = snext();
}
while (!isEndOfLine(c));
return res.toString();
}
public boolean isSpaceChar(int c)
{
if (filter != null)
return filter.isSpaceChar(c);
return c == ' ' || c == '\n' || c == '\r' || c == '\t' || c == -1;
}
private boolean isEndOfLine(int c)
{
return c == '\n' || c == '\r' || c == -1;
}
public interface SpaceCharFilter
{
public boolean isSpaceChar(int ch);
}
}
}
|
O(n^2)
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n.
</TASK>
<CODE>
/*
* UMANG PANCHAL
* DAIICT
*/
import java.util.*;
import java.io.*;
import java.math.BigInteger;
public class Main
{
static LinkedList<Integer> adj[];
static ArrayList<Integer> adj1[];
static int[] color,visited1;
static boolean b[],visited[],possible;
static int level[];
static Map<Integer,HashSet<Integer>> s;
static int totalnodes,colored;
static int count[];
static long sum[];
static int nodes;
static double ans=0;
static long[] as=new long[10001];
static long c1=0,c2=0;
static int[] a,d,k;
static int max=100000000;
static long MOD = (long)1e9 + 7,sm=0,m=Long.MIN_VALUE;
static boolean[] prime=new boolean[1000005];
static int[] levl;
static int[] eat;
static int price[];
static int size[],res[],par[];
static int result=0;
// --------------------My Code Starts Here----------------------
public static void main(String[] args) throws IOException
{
in=new InputReader(System.in);
w=new PrintWriter(System.out);
int n=ni();
int[] a=na(n);
int ans=0;
for(int i=0;i<n;i++)
{
for(int j=i+1;j<n;j++)
{
if(a[j]<a[i])
ans++;
}
}
int m=ni();
ans=ans%2;
while(m-->0)
{
int l=ni(),r=ni();
int range=r-l+1;
range=range*(range-1)/2;
range=range%2;
ans=(ans+range)%2;
if(ans==1)
w.println("odd");
else
w.println("even");
}
w.close();
}
public static long nCrModp(long n, long r, long p)
{
long[] C=new long[(int)r+1];
C[0] = 1;
for (long i = 1; i <= n; i++)
{
for (long j = Math.min(i, r); j > 0; j--)
C[(int)j] = (C[(int)j] + C[(int)(j-1)])%p;
}
return C[(int)r];
}
public static long nCr(long n, long r)
{
long x=1;
for(long i=n;i>=n-r+1;i--)
x=((x)*(i));
for(long i=r;i>=1;i--)
x=((x)/(i));
return x%MOD;
}
public static long nCrModpDP(long n, long r, long p)
{
long[] C=new long[(int)r+1];
C[0] = 1;
for (long i = 1; i <= n; i++)
{
for (int j = (int)Math.min(i, r); j > 0; j--)
C[j] = (C[j] + C[j-1])%p;
}
return C[(int)r];
}
public static long nCrModpLucas(long n,long r, long p)
{
if (r==0)
return 1;
long ni = n%p, ri = r%p;
return (nCrModpLucas(n/p,r/p, p) * nCrModpDP(ni,ri, p)) % p;
}
public static void buildgraph(int n){
adj=new LinkedList[n+1];
visited=new boolean[n+1];
levl=new int[n+1];
par=new int[n+1];
for(int i=0;i<=n;i++){
adj[i]=new LinkedList<Integer>();
}
}
public static int getSum(long BITree[], int index)
{
int sum = 0;
while (index > 0)
{
sum += BITree[index];
index -= index & (-index);
}
return sum;
}
public static long[] updateBIT(long BITree[], int n, int index, int val)
{
while (index <= n)
{
BITree[index] += val;
index += index & (-index);
}
return BITree;
}
public static boolean isPrime(int n)
{
// Corner cases
if (n <= 1) return false;
if (n <= 3) return true;
// This is checked so that we can skip
// middle five numbers in below loop
if (n%2 == 0 || n%3 == 0)
return false;
for (int i=5; i*i<=n; i=i+6)
if (n%i == 0 || n%(i+2) == 0)
return false;
return true;
}
// --------------------My Code Ends Here------------------------
public static String ns()
{
return in.nextLine();
}
public static int ni()
{
return in.nextInt();
}
public static long nl()
{
return in.nextLong();
}
public static int[] na(int n)
{
a=new int[n];
for(int i=0;i<n;i++)
a[i]=ni();
return a;
}
public static void sieveOfEratosthenes()
{
int n=prime.length;
for(int i=0;i<n;i++)
prime[i] = true;
for(int p = 2; p*p <=n; p++)
{
if(prime[p] == true)
{
for(int i = p*2; i <n; i += p)
prime[i] = false;
}
}
}
public static boolean printDivisors(long n)
{
long ans=0;
for (int i=1; i<=Math.sqrt(n); i++)
{
if (n%i==0)
{
if (n/i == i)
ans++;
else
{
ans=ans+2;
}
}
if(ans>3)
break;
}
if(ans==3)
return true;
else
return false;
}
public static void dfs(int i)
{
visited[i]=true;
for(int j:adj[i])
{
if(!visited[j])
{
dfs(j);
nodes++;
}
}
}
public static String rev(String s)
{
StringBuilder sb=new StringBuilder(s);
sb.reverse();
return sb.toString();
}
static long lcm(long a, long b)
{
return a * (b / gcd(a, b));
}
static long gcd(long a, long b)
{
while (b > 0)
{
long temp = b;
b = a % b; // % is remainder
a = temp;
}
return a;
}
static InputReader in;
static PrintWriter w;
static class InputReader
{
private final InputStream stream;
private final byte[] buf = new byte[8192];
private int curChar, snumChars;
private SpaceCharFilter filter;
public InputReader(InputStream stream)
{
this.stream = stream;
}
public int snext()
{
if (snumChars == -1)
throw new InputMismatchException();
if (curChar >= snumChars)
{
curChar = 0;
try
{
snumChars = stream.read(buf);
}
catch (IOException e)
{
throw new InputMismatchException();
}
if (snumChars <= 0)
return -1;
}
return buf[curChar++];
}
public int nextInt()
{
int c = snext();
while (isSpaceChar(c))
{
c = snext();
}
int sgn = 1;
if (c == '-')
{
sgn = -1;
c = snext();
}
int res = 0;
do
{
if (c < '0' || c > '9')
throw new InputMismatchException();
res *= 10;
res += c - '0';
c = snext();
}
while (!isSpaceChar(c));
return res * sgn;
}
public long nextLong()
{
int c = snext();
while (isSpaceChar(c))
{
c = snext();
}
int sgn = 1;
if (c == '-')
{
sgn = -1;
c = snext();
}
long res = 0;
do
{
if (c < '0' || c > '9')
throw new InputMismatchException();
res *= 10;
res += c - '0';
c = snext();
}
while (!isSpaceChar(c));
return res * sgn;
}
public String readString()
{
int c = snext();
while (isSpaceChar(c))
{
c = snext();
}
StringBuilder res = new StringBuilder();
do
{
res.appendCodePoint(c);
c = snext();
}
while (!isSpaceChar(c));
return res.toString();
}
public String nextLine()
{
int c = snext();
while (isSpaceChar(c))
c = snext();
StringBuilder res = new StringBuilder();
do
{
res.appendCodePoint(c);
c = snext();
}
while (!isEndOfLine(c));
return res.toString();
}
public boolean isSpaceChar(int c)
{
if (filter != null)
return filter.isSpaceChar(c);
return c == ' ' || c == '\n' || c == '\r' || c == '\t' || c == -1;
}
private boolean isEndOfLine(int c)
{
return c == '\n' || c == '\r' || c == -1;
}
public interface SpaceCharFilter
{
public boolean isSpaceChar(int ch);
}
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(n^2): The execution time ascends in proportion to the square of the input size n.
- O(n^3): The execution time ascends in proportion to the cube of the input size n.
- O(log(n)): The execution time ascends in proportion to the logarithm of the input size n.
- O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially.
- O(n): The execution time ascends in a one-to-one ratio with the input size n.
- O(1): The execution time is unaffected by the size of the input n.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n.
</TASK>
<CODE>
/*
* UMANG PANCHAL
* DAIICT
*/
import java.util.*;
import java.io.*;
import java.math.BigInteger;
public class Main
{
static LinkedList<Integer> adj[];
static ArrayList<Integer> adj1[];
static int[] color,visited1;
static boolean b[],visited[],possible;
static int level[];
static Map<Integer,HashSet<Integer>> s;
static int totalnodes,colored;
static int count[];
static long sum[];
static int nodes;
static double ans=0;
static long[] as=new long[10001];
static long c1=0,c2=0;
static int[] a,d,k;
static int max=100000000;
static long MOD = (long)1e9 + 7,sm=0,m=Long.MIN_VALUE;
static boolean[] prime=new boolean[1000005];
static int[] levl;
static int[] eat;
static int price[];
static int size[],res[],par[];
static int result=0;
// --------------------My Code Starts Here----------------------
public static void main(String[] args) throws IOException
{
in=new InputReader(System.in);
w=new PrintWriter(System.out);
int n=ni();
int[] a=na(n);
int ans=0;
for(int i=0;i<n;i++)
{
for(int j=i+1;j<n;j++)
{
if(a[j]<a[i])
ans++;
}
}
int m=ni();
ans=ans%2;
while(m-->0)
{
int l=ni(),r=ni();
int range=r-l+1;
range=range*(range-1)/2;
range=range%2;
ans=(ans+range)%2;
if(ans==1)
w.println("odd");
else
w.println("even");
}
w.close();
}
public static long nCrModp(long n, long r, long p)
{
long[] C=new long[(int)r+1];
C[0] = 1;
for (long i = 1; i <= n; i++)
{
for (long j = Math.min(i, r); j > 0; j--)
C[(int)j] = (C[(int)j] + C[(int)(j-1)])%p;
}
return C[(int)r];
}
public static long nCr(long n, long r)
{
long x=1;
for(long i=n;i>=n-r+1;i--)
x=((x)*(i));
for(long i=r;i>=1;i--)
x=((x)/(i));
return x%MOD;
}
public static long nCrModpDP(long n, long r, long p)
{
long[] C=new long[(int)r+1];
C[0] = 1;
for (long i = 1; i <= n; i++)
{
for (int j = (int)Math.min(i, r); j > 0; j--)
C[j] = (C[j] + C[j-1])%p;
}
return C[(int)r];
}
public static long nCrModpLucas(long n,long r, long p)
{
if (r==0)
return 1;
long ni = n%p, ri = r%p;
return (nCrModpLucas(n/p,r/p, p) * nCrModpDP(ni,ri, p)) % p;
}
public static void buildgraph(int n){
adj=new LinkedList[n+1];
visited=new boolean[n+1];
levl=new int[n+1];
par=new int[n+1];
for(int i=0;i<=n;i++){
adj[i]=new LinkedList<Integer>();
}
}
public static int getSum(long BITree[], int index)
{
int sum = 0;
while (index > 0)
{
sum += BITree[index];
index -= index & (-index);
}
return sum;
}
public static long[] updateBIT(long BITree[], int n, int index, int val)
{
while (index <= n)
{
BITree[index] += val;
index += index & (-index);
}
return BITree;
}
public static boolean isPrime(int n)
{
// Corner cases
if (n <= 1) return false;
if (n <= 3) return true;
// This is checked so that we can skip
// middle five numbers in below loop
if (n%2 == 0 || n%3 == 0)
return false;
for (int i=5; i*i<=n; i=i+6)
if (n%i == 0 || n%(i+2) == 0)
return false;
return true;
}
// --------------------My Code Ends Here------------------------
public static String ns()
{
return in.nextLine();
}
public static int ni()
{
return in.nextInt();
}
public static long nl()
{
return in.nextLong();
}
public static int[] na(int n)
{
a=new int[n];
for(int i=0;i<n;i++)
a[i]=ni();
return a;
}
public static void sieveOfEratosthenes()
{
int n=prime.length;
for(int i=0;i<n;i++)
prime[i] = true;
for(int p = 2; p*p <=n; p++)
{
if(prime[p] == true)
{
for(int i = p*2; i <n; i += p)
prime[i] = false;
}
}
}
public static boolean printDivisors(long n)
{
long ans=0;
for (int i=1; i<=Math.sqrt(n); i++)
{
if (n%i==0)
{
if (n/i == i)
ans++;
else
{
ans=ans+2;
}
}
if(ans>3)
break;
}
if(ans==3)
return true;
else
return false;
}
public static void dfs(int i)
{
visited[i]=true;
for(int j:adj[i])
{
if(!visited[j])
{
dfs(j);
nodes++;
}
}
}
public static String rev(String s)
{
StringBuilder sb=new StringBuilder(s);
sb.reverse();
return sb.toString();
}
static long lcm(long a, long b)
{
return a * (b / gcd(a, b));
}
static long gcd(long a, long b)
{
while (b > 0)
{
long temp = b;
b = a % b; // % is remainder
a = temp;
}
return a;
}
static InputReader in;
static PrintWriter w;
static class InputReader
{
private final InputStream stream;
private final byte[] buf = new byte[8192];
private int curChar, snumChars;
private SpaceCharFilter filter;
public InputReader(InputStream stream)
{
this.stream = stream;
}
public int snext()
{
if (snumChars == -1)
throw new InputMismatchException();
if (curChar >= snumChars)
{
curChar = 0;
try
{
snumChars = stream.read(buf);
}
catch (IOException e)
{
throw new InputMismatchException();
}
if (snumChars <= 0)
return -1;
}
return buf[curChar++];
}
public int nextInt()
{
int c = snext();
while (isSpaceChar(c))
{
c = snext();
}
int sgn = 1;
if (c == '-')
{
sgn = -1;
c = snext();
}
int res = 0;
do
{
if (c < '0' || c > '9')
throw new InputMismatchException();
res *= 10;
res += c - '0';
c = snext();
}
while (!isSpaceChar(c));
return res * sgn;
}
public long nextLong()
{
int c = snext();
while (isSpaceChar(c))
{
c = snext();
}
int sgn = 1;
if (c == '-')
{
sgn = -1;
c = snext();
}
long res = 0;
do
{
if (c < '0' || c > '9')
throw new InputMismatchException();
res *= 10;
res += c - '0';
c = snext();
}
while (!isSpaceChar(c));
return res * sgn;
}
public String readString()
{
int c = snext();
while (isSpaceChar(c))
{
c = snext();
}
StringBuilder res = new StringBuilder();
do
{
res.appendCodePoint(c);
c = snext();
}
while (!isSpaceChar(c));
return res.toString();
}
public String nextLine()
{
int c = snext();
while (isSpaceChar(c))
c = snext();
StringBuilder res = new StringBuilder();
do
{
res.appendCodePoint(c);
c = snext();
}
while (!isEndOfLine(c));
return res.toString();
}
public boolean isSpaceChar(int c)
{
if (filter != null)
return filter.isSpaceChar(c);
return c == ' ' || c == '\n' || c == '\r' || c == '\t' || c == -1;
}
private boolean isEndOfLine(int c)
{
return c == '\n' || c == '\r' || c == -1;
}
public interface SpaceCharFilter
{
public boolean isSpaceChar(int ch);
}
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(n): The execution time ascends in a one-to-one ratio with the input size n.
- O(n^3): The execution time ascends in proportion to the cube of the input size n.
- O(log(n)): The execution time ascends in proportion to the logarithm of the input size n.
- O(1): The execution time is unaffected by the size of the input n.
- O(n^2): The execution time ascends in proportion to the square of the input size n.
- O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- others: The time complexity does not fit to any of the given categories or is ambiguous.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
| 2,590
| 2,421
|
1,788
|
import java.io.PrintWriter;
import java.util.Arrays;
import java.util.Scanner;
public class Sockets {
public static void main(String[] args) {
Scanner in = new Scanner(System.in);
PrintWriter out = new PrintWriter(System.out);
int n = in.nextInt(), m = in.nextInt(), socket = in.nextInt();
int[] filters = new int[n];
for (int i = 0; i < n; i++ ) {
filters[i] = in.nextInt();
}
Arrays.sort(filters);
int result = 0, index = n - 1;
while ( m > socket && index >= 0) {
socket += filters[index] - 1;
result += 1;
index -= 1;
}
out.println(m > socket ? -1 : result);
out.close();
}
}
|
O(nlog(n))
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Determine the worst-case time complexity category of a given Java code based on input size n.
</TASK>
<CODE>
import java.io.PrintWriter;
import java.util.Arrays;
import java.util.Scanner;
public class Sockets {
public static void main(String[] args) {
Scanner in = new Scanner(System.in);
PrintWriter out = new PrintWriter(System.out);
int n = in.nextInt(), m = in.nextInt(), socket = in.nextInt();
int[] filters = new int[n];
for (int i = 0; i < n; i++ ) {
filters[i] = in.nextInt();
}
Arrays.sort(filters);
int result = 0, index = n - 1;
while ( m > socket && index >= 0) {
socket += filters[index] - 1;
result += 1;
index -= 1;
}
out.println(m > socket ? -1 : result);
out.close();
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(n^2): The time complexity grows proportionally to the square of the input size.
- O(nlog(n)): The time complexity combines linear and logarithmic growth factors.
- O(log(n)): The time complexity increases logarithmically in relation to the input size.
- O(1): The time complexity is constant to the input size n.
- O(n^3): The time complexity scales proportionally to the cube of the input size.
- O(n): The time complexity increases proportionally to the input size n in a linear manner.
- non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Determine the worst-case time complexity category of a given Java code based on input size n.
</TASK>
<CODE>
import java.io.PrintWriter;
import java.util.Arrays;
import java.util.Scanner;
public class Sockets {
public static void main(String[] args) {
Scanner in = new Scanner(System.in);
PrintWriter out = new PrintWriter(System.out);
int n = in.nextInt(), m = in.nextInt(), socket = in.nextInt();
int[] filters = new int[n];
for (int i = 0; i < n; i++ ) {
filters[i] = in.nextInt();
}
Arrays.sort(filters);
int result = 0, index = n - 1;
while ( m > socket && index >= 0) {
socket += filters[index] - 1;
result += 1;
index -= 1;
}
out.println(m > socket ? -1 : result);
out.close();
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(n^2): The time complexity grows proportionally to the square of the input size.
- O(log(n)): The time complexity increases logarithmically in relation to the input size.
- non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially.
- others: The time complexity does not fit any of the above categories or cannot be clearly classified.
- O(1): The time complexity is constant to the input size n.
- O(n^3): The time complexity scales proportionally to the cube of the input size.
- O(nlog(n)): The time complexity combines linear and logarithmic growth factors.
- O(n): The time complexity increases proportionally to the input size n in a linear manner.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
| 505
| 1,784
|
3,606
|
import java.io.BufferedReader;
import java.io.File;
import java.io.FileReader;
import java.io.IOException;
import java.io.InputStream;
import java.io.InputStreamReader;
import java.io.PrintWriter;
import java.util.LinkedList;
import java.util.Queue;
import java.util.StringTokenizer;
//import java.util.Scanner;
public class Codes {
public static void main(String[] args) throws IOException {
InputReader input = new InputReader(new FileReader(("input.txt")));
int n = input.nextInt();
int m = input.nextInt();
int k = input.nextInt();
boolean[][] visited = new boolean[n][m];
Queue<Point> bfs = new LinkedList<Point>();
for (int i = 0; i < k; i++) {
int x = input.nextInt();
int y = input.nextInt();
visited[x - 1][y - 1] = true;
bfs.add(new Point(x - 1, y - 1));
}
Point last = bfs.peek();
while(!bfs.isEmpty()) {
Point current = bfs.poll();
int curX = current.x;
int curY = current.y;
//the upper tree
if(curX - 1 >= 0) {
if(!visited[curX - 1][curY]) {
bfs.add(new Point(curX - 1,curY));
visited[curX - 1][curY] = true;
}
}
//the tree to the right
if(curY + 1 < m) {
if(!visited[curX][curY + 1]) {
bfs.add(new Point(curX ,curY + 1));
visited[curX][curY + 1] = true;
}
}
//the lower tree
if(curX + 1 < n) {
if(!visited[curX + 1][curY]) {
bfs.add(new Point(curX + 1,curY));
visited[curX + 1][curY] = true;
}
}
//the point to the left
if(curY - 1 >= 0) {
if(!visited[curX][curY - 1]) {
bfs.add(new Point(curX ,curY - 1));
visited[curX][curY - 1] = true;
}
}
if(bfs.peek()!= null)
last = bfs.peek();
}
PrintWriter out = new PrintWriter(new File("output.txt"));
out.println((last.x + 1) + " " + (last.y + 1));
out.close();
//System.out.println((last.x + 1) + " " + (last.y + 1));
}
static class Point {
int x;
int y;
public Point(int x2, int y2) {
x = x2;
y = y2;
}
}
/**
* This reader class is NOT Mine.
**/
static class InputReader {
private BufferedReader reader;
private StringTokenizer tokenizer;
public InputReader(InputStream stream) {
reader = new BufferedReader(new InputStreamReader(stream));
tokenizer = null;
}
public InputReader(FileReader stream) {
reader = new BufferedReader(stream);
tokenizer = null;
}
public String nextLine() {
try {
return reader.readLine();
} catch (IOException e) {
// TODO Auto-generated catch block
e.printStackTrace();
return null;
}
}
public String next() {
while (tokenizer == null || !tokenizer.hasMoreTokens()) {
try {
tokenizer = new StringTokenizer(reader.readLine());
} catch (IOException e) {
throw new RuntimeException(e);
}
}
return tokenizer.nextToken();
}
public int nextInt() {
return Integer.parseInt(next());
}
public long nextLong() {
return Long.parseLong(next());
}
public double nextDouble() {
return Double.parseDouble(next());
}
}
}
|
O(n^3)
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n.
</TASK>
<CODE>
import java.io.BufferedReader;
import java.io.File;
import java.io.FileReader;
import java.io.IOException;
import java.io.InputStream;
import java.io.InputStreamReader;
import java.io.PrintWriter;
import java.util.LinkedList;
import java.util.Queue;
import java.util.StringTokenizer;
//import java.util.Scanner;
public class Codes {
public static void main(String[] args) throws IOException {
InputReader input = new InputReader(new FileReader(("input.txt")));
int n = input.nextInt();
int m = input.nextInt();
int k = input.nextInt();
boolean[][] visited = new boolean[n][m];
Queue<Point> bfs = new LinkedList<Point>();
for (int i = 0; i < k; i++) {
int x = input.nextInt();
int y = input.nextInt();
visited[x - 1][y - 1] = true;
bfs.add(new Point(x - 1, y - 1));
}
Point last = bfs.peek();
while(!bfs.isEmpty()) {
Point current = bfs.poll();
int curX = current.x;
int curY = current.y;
//the upper tree
if(curX - 1 >= 0) {
if(!visited[curX - 1][curY]) {
bfs.add(new Point(curX - 1,curY));
visited[curX - 1][curY] = true;
}
}
//the tree to the right
if(curY + 1 < m) {
if(!visited[curX][curY + 1]) {
bfs.add(new Point(curX ,curY + 1));
visited[curX][curY + 1] = true;
}
}
//the lower tree
if(curX + 1 < n) {
if(!visited[curX + 1][curY]) {
bfs.add(new Point(curX + 1,curY));
visited[curX + 1][curY] = true;
}
}
//the point to the left
if(curY - 1 >= 0) {
if(!visited[curX][curY - 1]) {
bfs.add(new Point(curX ,curY - 1));
visited[curX][curY - 1] = true;
}
}
if(bfs.peek()!= null)
last = bfs.peek();
}
PrintWriter out = new PrintWriter(new File("output.txt"));
out.println((last.x + 1) + " " + (last.y + 1));
out.close();
//System.out.println((last.x + 1) + " " + (last.y + 1));
}
static class Point {
int x;
int y;
public Point(int x2, int y2) {
x = x2;
y = y2;
}
}
/**
* This reader class is NOT Mine.
**/
static class InputReader {
private BufferedReader reader;
private StringTokenizer tokenizer;
public InputReader(InputStream stream) {
reader = new BufferedReader(new InputStreamReader(stream));
tokenizer = null;
}
public InputReader(FileReader stream) {
reader = new BufferedReader(stream);
tokenizer = null;
}
public String nextLine() {
try {
return reader.readLine();
} catch (IOException e) {
// TODO Auto-generated catch block
e.printStackTrace();
return null;
}
}
public String next() {
while (tokenizer == null || !tokenizer.hasMoreTokens()) {
try {
tokenizer = new StringTokenizer(reader.readLine());
} catch (IOException e) {
throw new RuntimeException(e);
}
}
return tokenizer.nextToken();
}
public int nextInt() {
return Integer.parseInt(next());
}
public long nextLong() {
return Long.parseLong(next());
}
public double nextDouble() {
return Double.parseDouble(next());
}
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(n^2): The execution time ascends in proportion to the square of the input size n.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- O(1): The execution time is unaffected by the size of the input n.
- O(log(n)): The execution time ascends in proportion to the logarithm of the input size n.
- O(n): The execution time ascends in a one-to-one ratio with the input size n.
- O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially.
- O(n^3): The execution time ascends in proportion to the cube of the input size n.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Determine the worst-case time complexity category of a given Java code based on input size n.
</TASK>
<CODE>
import java.io.BufferedReader;
import java.io.File;
import java.io.FileReader;
import java.io.IOException;
import java.io.InputStream;
import java.io.InputStreamReader;
import java.io.PrintWriter;
import java.util.LinkedList;
import java.util.Queue;
import java.util.StringTokenizer;
//import java.util.Scanner;
public class Codes {
public static void main(String[] args) throws IOException {
InputReader input = new InputReader(new FileReader(("input.txt")));
int n = input.nextInt();
int m = input.nextInt();
int k = input.nextInt();
boolean[][] visited = new boolean[n][m];
Queue<Point> bfs = new LinkedList<Point>();
for (int i = 0; i < k; i++) {
int x = input.nextInt();
int y = input.nextInt();
visited[x - 1][y - 1] = true;
bfs.add(new Point(x - 1, y - 1));
}
Point last = bfs.peek();
while(!bfs.isEmpty()) {
Point current = bfs.poll();
int curX = current.x;
int curY = current.y;
//the upper tree
if(curX - 1 >= 0) {
if(!visited[curX - 1][curY]) {
bfs.add(new Point(curX - 1,curY));
visited[curX - 1][curY] = true;
}
}
//the tree to the right
if(curY + 1 < m) {
if(!visited[curX][curY + 1]) {
bfs.add(new Point(curX ,curY + 1));
visited[curX][curY + 1] = true;
}
}
//the lower tree
if(curX + 1 < n) {
if(!visited[curX + 1][curY]) {
bfs.add(new Point(curX + 1,curY));
visited[curX + 1][curY] = true;
}
}
//the point to the left
if(curY - 1 >= 0) {
if(!visited[curX][curY - 1]) {
bfs.add(new Point(curX ,curY - 1));
visited[curX][curY - 1] = true;
}
}
if(bfs.peek()!= null)
last = bfs.peek();
}
PrintWriter out = new PrintWriter(new File("output.txt"));
out.println((last.x + 1) + " " + (last.y + 1));
out.close();
//System.out.println((last.x + 1) + " " + (last.y + 1));
}
static class Point {
int x;
int y;
public Point(int x2, int y2) {
x = x2;
y = y2;
}
}
/**
* This reader class is NOT Mine.
**/
static class InputReader {
private BufferedReader reader;
private StringTokenizer tokenizer;
public InputReader(InputStream stream) {
reader = new BufferedReader(new InputStreamReader(stream));
tokenizer = null;
}
public InputReader(FileReader stream) {
reader = new BufferedReader(stream);
tokenizer = null;
}
public String nextLine() {
try {
return reader.readLine();
} catch (IOException e) {
// TODO Auto-generated catch block
e.printStackTrace();
return null;
}
}
public String next() {
while (tokenizer == null || !tokenizer.hasMoreTokens()) {
try {
tokenizer = new StringTokenizer(reader.readLine());
} catch (IOException e) {
throw new RuntimeException(e);
}
}
return tokenizer.nextToken();
}
public int nextInt() {
return Integer.parseInt(next());
}
public long nextLong() {
return Long.parseLong(next());
}
public double nextDouble() {
return Double.parseDouble(next());
}
}
}
</CODE>
<EVALUATION_RUBRIC>
- non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially.
- O(n): The time complexity increases proportionally to the input size n in a linear manner.
- O(n^3): The time complexity scales proportionally to the cube of the input size.
- O(nlog(n)): The time complexity combines linear and logarithmic growth factors.
- O(n^2): The time complexity grows proportionally to the square of the input size.
- others: The time complexity does not fit any of the above categories or cannot be clearly classified.
- O(1): The time complexity is constant to the input size n.
- O(log(n)): The time complexity increases logarithmically in relation to the input size.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
| 1,221
| 3,598
|
2,294
|
import java.io.OutputStream;
import java.io.IOException;
import java.io.InputStream;
import java.io.OutputStream;
import java.io.PrintWriter;
import java.io.BufferedWriter;
import java.io.Writer;
import java.io.OutputStreamWriter;
import java.util.InputMismatchException;
import java.io.IOException;
import java.io.InputStream;
/**
* Built using CHelper plug-in
* Actual solution is at the top
*/
public class Main {
public static void main(String[] args) {
InputStream inputStream = System.in;
OutputStream outputStream = System.out;
InputReader in = new InputReader(inputStream);
OutputWriter out = new OutputWriter(outputStream);
TaskC solver = new TaskC();
solver.solve(1, in, out);
out.close();
}
static class TaskC {
public void solve(int testNumber, InputReader in, OutputWriter out) {
int n = in.readInt();
boolean[] isF = new boolean[n];
for (int i = 0; i < n; i++) {
isF[i] = in.readCharacter() == 'f';
}
FenwickTree[] fenwickTrees = new FenwickTree[n + 1];
for (int i = 0; i < fenwickTrees.length; i++) {
fenwickTrees[i] = new FenwickTree(n + 1);
}
fenwickTrees[n].add(0, 1);
for (int idx = n - 1; idx >= 0; idx--) {
for (int indentLevel = 0; indentLevel < n; indentLevel++) {
long fenwickRes;
if (isF[idx]) {
fenwickRes = fenwickTrees[idx + 1].get(indentLevel + 1, indentLevel + 1);
} else {
fenwickRes = fenwickTrees[idx + 1].get(0, indentLevel);
}
fenwickTrees[idx].add(indentLevel, fenwickRes % MiscUtils.MOD7);
}
}
out.printLine(fenwickTrees[0].get(0, 0));
}
}
static class InputReader {
private InputStream stream;
private byte[] buf = new byte[1024];
private int curChar;
private int numChars;
private InputReader.SpaceCharFilter filter;
public InputReader(InputStream stream) {
this.stream = stream;
}
public int read() {
if (numChars == -1) {
throw new InputMismatchException();
}
if (curChar >= numChars) {
curChar = 0;
try {
numChars = stream.read(buf);
} catch (IOException e) {
throw new InputMismatchException();
}
if (numChars <= 0) {
return -1;
}
}
return buf[curChar++];
}
public int readInt() {
int c = read();
while (isSpaceChar(c)) {
c = read();
}
int sgn = 1;
if (c == '-') {
sgn = -1;
c = read();
}
int res = 0;
do {
if (c < '0' || c > '9') {
throw new InputMismatchException();
}
res *= 10;
res += c - '0';
c = read();
} while (!isSpaceChar(c));
return res * sgn;
}
public boolean isSpaceChar(int c) {
if (filter != null) {
return filter.isSpaceChar(c);
}
return isWhitespace(c);
}
public static boolean isWhitespace(int c) {
return c == ' ' || c == '\n' || c == '\r' || c == '\t' || c == -1;
}
public char readCharacter() {
int c = read();
while (isSpaceChar(c)) {
c = read();
}
return (char) c;
}
public interface SpaceCharFilter {
public boolean isSpaceChar(int ch);
}
}
static class OutputWriter {
private final PrintWriter writer;
public OutputWriter(OutputStream outputStream) {
writer = new PrintWriter(new BufferedWriter(new OutputStreamWriter(outputStream)));
}
public OutputWriter(Writer writer) {
this.writer = new PrintWriter(writer);
}
public void close() {
writer.close();
}
public void printLine(long i) {
writer.println(i);
}
}
static class MiscUtils {
public static final int MOD7 = (int) (1e9 + 7);
}
static class FenwickTree {
private final long[] value;
public FenwickTree(int size) {
value = new long[size];
}
public long get(int from, int to) {
return get(to) - get(from - 1);
}
private long get(int to) {
to = Math.min(to, value.length - 1);
long result = 0;
while (to >= 0) {
result += value[to];
to = (to & (to + 1)) - 1;
}
return result;
}
public void add(int at, long value) {
while (at < this.value.length) {
this.value[at] += value;
at = at | (at + 1);
}
}
}
}
|
O(n^2)
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Determine the worst-case time complexity category of a given Java code based on input size n.
</TASK>
<CODE>
import java.io.OutputStream;
import java.io.IOException;
import java.io.InputStream;
import java.io.OutputStream;
import java.io.PrintWriter;
import java.io.BufferedWriter;
import java.io.Writer;
import java.io.OutputStreamWriter;
import java.util.InputMismatchException;
import java.io.IOException;
import java.io.InputStream;
/**
* Built using CHelper plug-in
* Actual solution is at the top
*/
public class Main {
public static void main(String[] args) {
InputStream inputStream = System.in;
OutputStream outputStream = System.out;
InputReader in = new InputReader(inputStream);
OutputWriter out = new OutputWriter(outputStream);
TaskC solver = new TaskC();
solver.solve(1, in, out);
out.close();
}
static class TaskC {
public void solve(int testNumber, InputReader in, OutputWriter out) {
int n = in.readInt();
boolean[] isF = new boolean[n];
for (int i = 0; i < n; i++) {
isF[i] = in.readCharacter() == 'f';
}
FenwickTree[] fenwickTrees = new FenwickTree[n + 1];
for (int i = 0; i < fenwickTrees.length; i++) {
fenwickTrees[i] = new FenwickTree(n + 1);
}
fenwickTrees[n].add(0, 1);
for (int idx = n - 1; idx >= 0; idx--) {
for (int indentLevel = 0; indentLevel < n; indentLevel++) {
long fenwickRes;
if (isF[idx]) {
fenwickRes = fenwickTrees[idx + 1].get(indentLevel + 1, indentLevel + 1);
} else {
fenwickRes = fenwickTrees[idx + 1].get(0, indentLevel);
}
fenwickTrees[idx].add(indentLevel, fenwickRes % MiscUtils.MOD7);
}
}
out.printLine(fenwickTrees[0].get(0, 0));
}
}
static class InputReader {
private InputStream stream;
private byte[] buf = new byte[1024];
private int curChar;
private int numChars;
private InputReader.SpaceCharFilter filter;
public InputReader(InputStream stream) {
this.stream = stream;
}
public int read() {
if (numChars == -1) {
throw new InputMismatchException();
}
if (curChar >= numChars) {
curChar = 0;
try {
numChars = stream.read(buf);
} catch (IOException e) {
throw new InputMismatchException();
}
if (numChars <= 0) {
return -1;
}
}
return buf[curChar++];
}
public int readInt() {
int c = read();
while (isSpaceChar(c)) {
c = read();
}
int sgn = 1;
if (c == '-') {
sgn = -1;
c = read();
}
int res = 0;
do {
if (c < '0' || c > '9') {
throw new InputMismatchException();
}
res *= 10;
res += c - '0';
c = read();
} while (!isSpaceChar(c));
return res * sgn;
}
public boolean isSpaceChar(int c) {
if (filter != null) {
return filter.isSpaceChar(c);
}
return isWhitespace(c);
}
public static boolean isWhitespace(int c) {
return c == ' ' || c == '\n' || c == '\r' || c == '\t' || c == -1;
}
public char readCharacter() {
int c = read();
while (isSpaceChar(c)) {
c = read();
}
return (char) c;
}
public interface SpaceCharFilter {
public boolean isSpaceChar(int ch);
}
}
static class OutputWriter {
private final PrintWriter writer;
public OutputWriter(OutputStream outputStream) {
writer = new PrintWriter(new BufferedWriter(new OutputStreamWriter(outputStream)));
}
public OutputWriter(Writer writer) {
this.writer = new PrintWriter(writer);
}
public void close() {
writer.close();
}
public void printLine(long i) {
writer.println(i);
}
}
static class MiscUtils {
public static final int MOD7 = (int) (1e9 + 7);
}
static class FenwickTree {
private final long[] value;
public FenwickTree(int size) {
value = new long[size];
}
public long get(int from, int to) {
return get(to) - get(from - 1);
}
private long get(int to) {
to = Math.min(to, value.length - 1);
long result = 0;
while (to >= 0) {
result += value[to];
to = (to & (to + 1)) - 1;
}
return result;
}
public void add(int at, long value) {
while (at < this.value.length) {
this.value[at] += value;
at = at | (at + 1);
}
}
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(n^2): The time complexity grows proportionally to the square of the input size.
- O(1): The time complexity is constant to the input size n.
- O(n): The time complexity increases proportionally to the input size n in a linear manner.
- non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially.
- O(n^3): The time complexity scales proportionally to the cube of the input size.
- O(log(n)): The time complexity increases logarithmically in relation to the input size.
- O(nlog(n)): The time complexity combines linear and logarithmic growth factors.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Determine the worst-case time complexity category of a given Java code based on input size n.
</TASK>
<CODE>
import java.io.OutputStream;
import java.io.IOException;
import java.io.InputStream;
import java.io.OutputStream;
import java.io.PrintWriter;
import java.io.BufferedWriter;
import java.io.Writer;
import java.io.OutputStreamWriter;
import java.util.InputMismatchException;
import java.io.IOException;
import java.io.InputStream;
/**
* Built using CHelper plug-in
* Actual solution is at the top
*/
public class Main {
public static void main(String[] args) {
InputStream inputStream = System.in;
OutputStream outputStream = System.out;
InputReader in = new InputReader(inputStream);
OutputWriter out = new OutputWriter(outputStream);
TaskC solver = new TaskC();
solver.solve(1, in, out);
out.close();
}
static class TaskC {
public void solve(int testNumber, InputReader in, OutputWriter out) {
int n = in.readInt();
boolean[] isF = new boolean[n];
for (int i = 0; i < n; i++) {
isF[i] = in.readCharacter() == 'f';
}
FenwickTree[] fenwickTrees = new FenwickTree[n + 1];
for (int i = 0; i < fenwickTrees.length; i++) {
fenwickTrees[i] = new FenwickTree(n + 1);
}
fenwickTrees[n].add(0, 1);
for (int idx = n - 1; idx >= 0; idx--) {
for (int indentLevel = 0; indentLevel < n; indentLevel++) {
long fenwickRes;
if (isF[idx]) {
fenwickRes = fenwickTrees[idx + 1].get(indentLevel + 1, indentLevel + 1);
} else {
fenwickRes = fenwickTrees[idx + 1].get(0, indentLevel);
}
fenwickTrees[idx].add(indentLevel, fenwickRes % MiscUtils.MOD7);
}
}
out.printLine(fenwickTrees[0].get(0, 0));
}
}
static class InputReader {
private InputStream stream;
private byte[] buf = new byte[1024];
private int curChar;
private int numChars;
private InputReader.SpaceCharFilter filter;
public InputReader(InputStream stream) {
this.stream = stream;
}
public int read() {
if (numChars == -1) {
throw new InputMismatchException();
}
if (curChar >= numChars) {
curChar = 0;
try {
numChars = stream.read(buf);
} catch (IOException e) {
throw new InputMismatchException();
}
if (numChars <= 0) {
return -1;
}
}
return buf[curChar++];
}
public int readInt() {
int c = read();
while (isSpaceChar(c)) {
c = read();
}
int sgn = 1;
if (c == '-') {
sgn = -1;
c = read();
}
int res = 0;
do {
if (c < '0' || c > '9') {
throw new InputMismatchException();
}
res *= 10;
res += c - '0';
c = read();
} while (!isSpaceChar(c));
return res * sgn;
}
public boolean isSpaceChar(int c) {
if (filter != null) {
return filter.isSpaceChar(c);
}
return isWhitespace(c);
}
public static boolean isWhitespace(int c) {
return c == ' ' || c == '\n' || c == '\r' || c == '\t' || c == -1;
}
public char readCharacter() {
int c = read();
while (isSpaceChar(c)) {
c = read();
}
return (char) c;
}
public interface SpaceCharFilter {
public boolean isSpaceChar(int ch);
}
}
static class OutputWriter {
private final PrintWriter writer;
public OutputWriter(OutputStream outputStream) {
writer = new PrintWriter(new BufferedWriter(new OutputStreamWriter(outputStream)));
}
public OutputWriter(Writer writer) {
this.writer = new PrintWriter(writer);
}
public void close() {
writer.close();
}
public void printLine(long i) {
writer.println(i);
}
}
static class MiscUtils {
public static final int MOD7 = (int) (1e9 + 7);
}
static class FenwickTree {
private final long[] value;
public FenwickTree(int size) {
value = new long[size];
}
public long get(int from, int to) {
return get(to) - get(from - 1);
}
private long get(int to) {
to = Math.min(to, value.length - 1);
long result = 0;
while (to >= 0) {
result += value[to];
to = (to & (to + 1)) - 1;
}
return result;
}
public void add(int at, long value) {
while (at < this.value.length) {
this.value[at] += value;
at = at | (at + 1);
}
}
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(1): The time complexity is constant to the input size n.
- O(log(n)): The time complexity increases logarithmically in relation to the input size.
- O(nlog(n)): The time complexity combines linear and logarithmic growth factors.
- O(n^3): The time complexity scales proportionally to the cube of the input size.
- O(n^2): The time complexity grows proportionally to the square of the input size.
- non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially.
- O(n): The time complexity increases proportionally to the input size n in a linear manner.
- others: The time complexity does not fit any of the above categories or cannot be clearly classified.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
| 1,477
| 2,289
|
3,104
|
import java.util.Scanner;
public class Main {
public static void main(String[] args) {
Scanner input = new Scanner(System.in);
int n = input.nextInt();
System.out.println(n * 6 / 4);
}
}
|
O(1)
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Classify the following Java code's worst-case time complexity according to its relationship to the input size n.
</TASK>
<CODE>
import java.util.Scanner;
public class Main {
public static void main(String[] args) {
Scanner input = new Scanner(System.in);
int n = input.nextInt();
System.out.println(n * 6 / 4);
}
}
</CODE>
<EVALUATION_RUBRIC>
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- O(n): The running time grows linearly with the input size n.
- O(nlog(n)): The running time increases with the product of n and logarithm of n.
- O(n^2): The running time increases with the square of the input size n.
- O(log(n)): The running time increases with the logarithm of the input size n.
- O(n^3): The running time increases with the cube of the input size n.
- O(1): The running time does not change regardless of the input size n.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Determine the worst-case time complexity category of a given Java code based on input size n.
</TASK>
<CODE>
import java.util.Scanner;
public class Main {
public static void main(String[] args) {
Scanner input = new Scanner(System.in);
int n = input.nextInt();
System.out.println(n * 6 / 4);
}
}
</CODE>
<EVALUATION_RUBRIC>
- others: The time complexity does not fit any of the above categories or cannot be clearly classified.
- O(n): The time complexity increases proportionally to the input size n in a linear manner.
- O(n^3): The time complexity scales proportionally to the cube of the input size.
- O(1): The time complexity is constant to the input size n.
- O(log(n)): The time complexity increases logarithmically in relation to the input size.
- non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially.
- O(n^2): The time complexity grows proportionally to the square of the input size.
- O(nlog(n)): The time complexity combines linear and logarithmic growth factors.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
| 385
| 3,098
|
2,415
|
import java.util.Arrays;
import java.util.Scanner;
public class D {
public static void main(String[] args) {
Scanner in = new Scanner(System.in);
int n = in.nextInt(), sum = 0;
int [] a = new int[n+1];
for (int i = 1; i <= n; i++) {
a[i] = in.nextInt();
}
for (int i = 1; i <= n; ++i)
for (int j = i + 1; j <= n; ++j)
sum += a[i] > a[j] ? 1 : 0;
int m = in.nextInt();
sum &= 1;
for (int i = 1; i <= m; i++) {
int l = in.nextInt(), r = in.nextInt();
if (((r - l + 1) / 2) % 2 == 1)
sum ^= 1;
System.out.println(sum == 1 ? "odd" : "even");
}
}
}
|
O(n^2)
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n.
</TASK>
<CODE>
import java.util.Arrays;
import java.util.Scanner;
public class D {
public static void main(String[] args) {
Scanner in = new Scanner(System.in);
int n = in.nextInt(), sum = 0;
int [] a = new int[n+1];
for (int i = 1; i <= n; i++) {
a[i] = in.nextInt();
}
for (int i = 1; i <= n; ++i)
for (int j = i + 1; j <= n; ++j)
sum += a[i] > a[j] ? 1 : 0;
int m = in.nextInt();
sum &= 1;
for (int i = 1; i <= m; i++) {
int l = in.nextInt(), r = in.nextInt();
if (((r - l + 1) / 2) % 2 == 1)
sum ^= 1;
System.out.println(sum == 1 ? "odd" : "even");
}
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(n): The execution time ascends in a one-to-one ratio with the input size n.
- O(log(n)): The execution time ascends in proportion to the logarithm of the input size n.
- O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- O(n^3): The execution time ascends in proportion to the cube of the input size n.
- O(1): The execution time is unaffected by the size of the input n.
- O(n^2): The execution time ascends in proportion to the square of the input size n.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n.
</TASK>
<CODE>
import java.util.Arrays;
import java.util.Scanner;
public class D {
public static void main(String[] args) {
Scanner in = new Scanner(System.in);
int n = in.nextInt(), sum = 0;
int [] a = new int[n+1];
for (int i = 1; i <= n; i++) {
a[i] = in.nextInt();
}
for (int i = 1; i <= n; ++i)
for (int j = i + 1; j <= n; ++j)
sum += a[i] > a[j] ? 1 : 0;
int m = in.nextInt();
sum &= 1;
for (int i = 1; i <= m; i++) {
int l = in.nextInt(), r = in.nextInt();
if (((r - l + 1) / 2) % 2 == 1)
sum ^= 1;
System.out.println(sum == 1 ? "odd" : "even");
}
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(n^3): The execution time ascends in proportion to the cube of the input size n.
- O(log(n)): The execution time ascends in proportion to the logarithm of the input size n.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- others: The time complexity does not fit to any of the given categories or is ambiguous.
- O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially.
- O(n^2): The execution time ascends in proportion to the square of the input size n.
- O(n): The execution time ascends in a one-to-one ratio with the input size n.
- O(1): The execution time is unaffected by the size of the input n.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
| 573
| 2,410
|
117
|
import java.util.Scanner;
public class Sasha1113A {
static int solution(int n, int v){
int count;
if(v>=n)
return n-1;
else{
count = (v-1) + ((n-v)*(n-v+1))/2;
}
return count;
}
public static void main(String[] args){
Scanner scan = new Scanner(System.in);
int n = scan.nextInt();
int v = scan.nextInt();
System.out.print(solution(n, v));
}
}
|
O(1)
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Classify the following Java code's worst-case time complexity according to its relationship to the input size n.
</TASK>
<CODE>
import java.util.Scanner;
public class Sasha1113A {
static int solution(int n, int v){
int count;
if(v>=n)
return n-1;
else{
count = (v-1) + ((n-v)*(n-v+1))/2;
}
return count;
}
public static void main(String[] args){
Scanner scan = new Scanner(System.in);
int n = scan.nextInt();
int v = scan.nextInt();
System.out.print(solution(n, v));
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(n): The running time grows linearly with the input size n.
- O(1): The running time does not change regardless of the input size n.
- O(nlog(n)): The running time increases with the product of n and logarithm of n.
- O(log(n)): The running time increases with the logarithm of the input size n.
- O(n^2): The running time increases with the square of the input size n.
- O(n^3): The running time increases with the cube of the input size n.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Determine the worst-case time complexity category of a given Java code based on input size n.
</TASK>
<CODE>
import java.util.Scanner;
public class Sasha1113A {
static int solution(int n, int v){
int count;
if(v>=n)
return n-1;
else{
count = (v-1) + ((n-v)*(n-v+1))/2;
}
return count;
}
public static void main(String[] args){
Scanner scan = new Scanner(System.in);
int n = scan.nextInt();
int v = scan.nextInt();
System.out.print(solution(n, v));
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(n^3): The time complexity scales proportionally to the cube of the input size.
- O(log(n)): The time complexity increases logarithmically in relation to the input size.
- O(n): The time complexity increases proportionally to the input size n in a linear manner.
- non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially.
- O(n^2): The time complexity grows proportionally to the square of the input size.
- others: The time complexity does not fit any of the above categories or cannot be clearly classified.
- O(nlog(n)): The time complexity combines linear and logarithmic growth factors.
- O(1): The time complexity is constant to the input size n.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
| 450
| 117
|
686
|
import java.util.Scanner;
import java.io.PrintWriter;
/**
* @author Egor Kulikov ([email protected])
*/
public class Spreadsheets implements Runnable {
private Scanner in = new Scanner(System.in);
private PrintWriter out = new PrintWriter(System.out);
private String s, ans;
public static void main(String[] args) {
new Thread(new Spreadsheets()).start();
}
private void read() {
s = in.next();
}
private void solve() {
if (s.matches("R\\d+C\\d+")) {
s = s.replace('R', ' ').replace('C', ' ');
Scanner ss = new Scanner(s);
int r = ss.nextInt();
int c = ss.nextInt();
c--;
StringBuffer b = new StringBuffer();
int c26 = 26;
int cc = 0;
while (cc + c26 <= c) {
cc += c26;
c26 *= 26;
}
c -= cc;
while (c26 > 1) {
c26 /= 26;
b.append((char) (c / c26 + 'A'));
c %= c26;
}
ans = b.toString() + r;
} else {
int p = 0;
while (!Character.isDigit(s.charAt(p))) {
p++;
}
int c26 = 1;
int cc = 0;
for (int i = 0; i < p; i++) {
cc += c26;
c26 *= 26;
}
for (int i = 0; i < p; i++) {
c26 /= 26;
cc += c26 * (s.charAt(i) - 'A');
}
ans = "R" + s.substring(p) + "C" + cc;
}
}
private void write() {
out.println(ans);
}
public void run() {
int n = in.nextInt();
for (int i = 0; i < n; i++) {
read();
solve();
write();
}
out.close();
}
}
|
O(n)
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Determine the worst-case time complexity category of a given Java code based on input size n.
</TASK>
<CODE>
import java.util.Scanner;
import java.io.PrintWriter;
/**
* @author Egor Kulikov ([email protected])
*/
public class Spreadsheets implements Runnable {
private Scanner in = new Scanner(System.in);
private PrintWriter out = new PrintWriter(System.out);
private String s, ans;
public static void main(String[] args) {
new Thread(new Spreadsheets()).start();
}
private void read() {
s = in.next();
}
private void solve() {
if (s.matches("R\\d+C\\d+")) {
s = s.replace('R', ' ').replace('C', ' ');
Scanner ss = new Scanner(s);
int r = ss.nextInt();
int c = ss.nextInt();
c--;
StringBuffer b = new StringBuffer();
int c26 = 26;
int cc = 0;
while (cc + c26 <= c) {
cc += c26;
c26 *= 26;
}
c -= cc;
while (c26 > 1) {
c26 /= 26;
b.append((char) (c / c26 + 'A'));
c %= c26;
}
ans = b.toString() + r;
} else {
int p = 0;
while (!Character.isDigit(s.charAt(p))) {
p++;
}
int c26 = 1;
int cc = 0;
for (int i = 0; i < p; i++) {
cc += c26;
c26 *= 26;
}
for (int i = 0; i < p; i++) {
c26 /= 26;
cc += c26 * (s.charAt(i) - 'A');
}
ans = "R" + s.substring(p) + "C" + cc;
}
}
private void write() {
out.println(ans);
}
public void run() {
int n = in.nextInt();
for (int i = 0; i < n; i++) {
read();
solve();
write();
}
out.close();
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(n^3): The time complexity scales proportionally to the cube of the input size.
- O(1): The time complexity is constant to the input size n.
- O(n): The time complexity increases proportionally to the input size n in a linear manner.
- O(log(n)): The time complexity increases logarithmically in relation to the input size.
- O(n^2): The time complexity grows proportionally to the square of the input size.
- O(nlog(n)): The time complexity combines linear and logarithmic growth factors.
- non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Determine the worst-case time complexity category of a given Java code based on input size n.
</TASK>
<CODE>
import java.util.Scanner;
import java.io.PrintWriter;
/**
* @author Egor Kulikov ([email protected])
*/
public class Spreadsheets implements Runnable {
private Scanner in = new Scanner(System.in);
private PrintWriter out = new PrintWriter(System.out);
private String s, ans;
public static void main(String[] args) {
new Thread(new Spreadsheets()).start();
}
private void read() {
s = in.next();
}
private void solve() {
if (s.matches("R\\d+C\\d+")) {
s = s.replace('R', ' ').replace('C', ' ');
Scanner ss = new Scanner(s);
int r = ss.nextInt();
int c = ss.nextInt();
c--;
StringBuffer b = new StringBuffer();
int c26 = 26;
int cc = 0;
while (cc + c26 <= c) {
cc += c26;
c26 *= 26;
}
c -= cc;
while (c26 > 1) {
c26 /= 26;
b.append((char) (c / c26 + 'A'));
c %= c26;
}
ans = b.toString() + r;
} else {
int p = 0;
while (!Character.isDigit(s.charAt(p))) {
p++;
}
int c26 = 1;
int cc = 0;
for (int i = 0; i < p; i++) {
cc += c26;
c26 *= 26;
}
for (int i = 0; i < p; i++) {
c26 /= 26;
cc += c26 * (s.charAt(i) - 'A');
}
ans = "R" + s.substring(p) + "C" + cc;
}
}
private void write() {
out.println(ans);
}
public void run() {
int n = in.nextInt();
for (int i = 0; i < n; i++) {
read();
solve();
write();
}
out.close();
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(n^3): The time complexity scales proportionally to the cube of the input size.
- others: The time complexity does not fit any of the above categories or cannot be clearly classified.
- O(log(n)): The time complexity increases logarithmically in relation to the input size.
- O(nlog(n)): The time complexity combines linear and logarithmic growth factors.
- O(1): The time complexity is constant to the input size n.
- non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially.
- O(n): The time complexity increases proportionally to the input size n in a linear manner.
- O(n^2): The time complexity grows proportionally to the square of the input size.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
| 808
| 685
|
434
|
import java.util.*;
import java.io.*;
public class _1036_B_DiagonalWalkingV2 {
public static void main(String[] args) throws IOException {
int Q = readInt();
while(Q-- > 0) {
long n = readLong(), m = readLong(), k = readLong();
if(Math.max(n, m) > k) println(-1);
else {
long ans = k;
if(n%2 != k%2) ans--;
if(m%2 != k%2) ans--;
println(ans);
}
}
exit();
}
final private static int BUFFER_SIZE = 1 << 16;
private static DataInputStream din = new DataInputStream(System.in);
private static byte[] buffer = new byte[BUFFER_SIZE];
private static int bufferPointer = 0, bytesRead = 0;
static PrintWriter pr = new PrintWriter(new BufferedWriter(new OutputStreamWriter(System.out)));
public static String readLine() throws IOException {
byte[] buf = new byte[64]; // line length
int cnt = 0, c;
while ((c = Read()) != -1) {
if (c == '\n')
break;
buf[cnt++] = (byte) c;
}
return new String(buf, 0, cnt);
}
public static String read() throws IOException {
byte[] ret = new byte[1024];
int idx = 0;
byte c = Read();
while (c <= ' ') {
c = Read();
}
do {
ret[idx++] = c;
c = Read();
} while (c != -1 && c != ' ' && c != '\n' && c != '\r');
return new String(ret, 0, idx);
}
public static int readInt() throws IOException {
int ret = 0;
byte c = Read();
while (c <= ' ')
c = Read();
boolean neg = (c == '-');
if (neg)
c = Read();
do {
ret = ret * 10 + c - '0';
} while ((c = Read()) >= '0' && c <= '9');
if (neg)
return -ret;
return ret;
}
public static long readLong() throws IOException {
long ret = 0;
byte c = Read();
while (c <= ' ')
c = Read();
boolean neg = (c == '-');
if (neg)
c = Read();
do {
ret = ret * 10 + c - '0';
} while ((c = Read()) >= '0' && c <= '9');
if (neg)
return -ret;
return ret;
}
public static double readDouble() throws IOException {
double ret = 0, div = 1;
byte c = Read();
while (c <= ' ')
c = Read();
boolean neg = (c == '-');
if (neg)
c = Read();
do {
ret = ret * 10 + c - '0';
} while ((c = Read()) >= '0' && c <= '9');
if (c == '.') {
while ((c = Read()) >= '0' && c <= '9') {
ret += (c - '0') / (div *= 10);
}
}
if (neg)
return -ret;
return ret;
}
private static void fillBuffer() throws IOException {
bytesRead = din.read(buffer, bufferPointer = 0, BUFFER_SIZE);
if (bytesRead == -1)
buffer[0] = -1;
}
private static byte Read() throws IOException {
if (bufferPointer == bytesRead)
fillBuffer();
return buffer[bufferPointer++];
}
static void print(Object o) {
pr.print(o);
}
static void println(Object o) {
pr.println(o);
}
static void flush() {
pr.flush();
}
static void println() {
pr.println();
}
static void exit() throws IOException {
din.close();
pr.close();
System.exit(0);
}
}
|
O(n)
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Determine the worst-case time complexity category of a given Java code based on input size n.
</TASK>
<CODE>
import java.util.*;
import java.io.*;
public class _1036_B_DiagonalWalkingV2 {
public static void main(String[] args) throws IOException {
int Q = readInt();
while(Q-- > 0) {
long n = readLong(), m = readLong(), k = readLong();
if(Math.max(n, m) > k) println(-1);
else {
long ans = k;
if(n%2 != k%2) ans--;
if(m%2 != k%2) ans--;
println(ans);
}
}
exit();
}
final private static int BUFFER_SIZE = 1 << 16;
private static DataInputStream din = new DataInputStream(System.in);
private static byte[] buffer = new byte[BUFFER_SIZE];
private static int bufferPointer = 0, bytesRead = 0;
static PrintWriter pr = new PrintWriter(new BufferedWriter(new OutputStreamWriter(System.out)));
public static String readLine() throws IOException {
byte[] buf = new byte[64]; // line length
int cnt = 0, c;
while ((c = Read()) != -1) {
if (c == '\n')
break;
buf[cnt++] = (byte) c;
}
return new String(buf, 0, cnt);
}
public static String read() throws IOException {
byte[] ret = new byte[1024];
int idx = 0;
byte c = Read();
while (c <= ' ') {
c = Read();
}
do {
ret[idx++] = c;
c = Read();
} while (c != -1 && c != ' ' && c != '\n' && c != '\r');
return new String(ret, 0, idx);
}
public static int readInt() throws IOException {
int ret = 0;
byte c = Read();
while (c <= ' ')
c = Read();
boolean neg = (c == '-');
if (neg)
c = Read();
do {
ret = ret * 10 + c - '0';
} while ((c = Read()) >= '0' && c <= '9');
if (neg)
return -ret;
return ret;
}
public static long readLong() throws IOException {
long ret = 0;
byte c = Read();
while (c <= ' ')
c = Read();
boolean neg = (c == '-');
if (neg)
c = Read();
do {
ret = ret * 10 + c - '0';
} while ((c = Read()) >= '0' && c <= '9');
if (neg)
return -ret;
return ret;
}
public static double readDouble() throws IOException {
double ret = 0, div = 1;
byte c = Read();
while (c <= ' ')
c = Read();
boolean neg = (c == '-');
if (neg)
c = Read();
do {
ret = ret * 10 + c - '0';
} while ((c = Read()) >= '0' && c <= '9');
if (c == '.') {
while ((c = Read()) >= '0' && c <= '9') {
ret += (c - '0') / (div *= 10);
}
}
if (neg)
return -ret;
return ret;
}
private static void fillBuffer() throws IOException {
bytesRead = din.read(buffer, bufferPointer = 0, BUFFER_SIZE);
if (bytesRead == -1)
buffer[0] = -1;
}
private static byte Read() throws IOException {
if (bufferPointer == bytesRead)
fillBuffer();
return buffer[bufferPointer++];
}
static void print(Object o) {
pr.print(o);
}
static void println(Object o) {
pr.println(o);
}
static void flush() {
pr.flush();
}
static void println() {
pr.println();
}
static void exit() throws IOException {
din.close();
pr.close();
System.exit(0);
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(log(n)): The time complexity increases logarithmically in relation to the input size.
- O(n): The time complexity increases proportionally to the input size n in a linear manner.
- O(n^2): The time complexity grows proportionally to the square of the input size.
- non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially.
- O(nlog(n)): The time complexity combines linear and logarithmic growth factors.
- O(n^3): The time complexity scales proportionally to the cube of the input size.
- O(1): The time complexity is constant to the input size n.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Determine the worst-case time complexity category of a given Java code based on input size n.
</TASK>
<CODE>
import java.util.*;
import java.io.*;
public class _1036_B_DiagonalWalkingV2 {
public static void main(String[] args) throws IOException {
int Q = readInt();
while(Q-- > 0) {
long n = readLong(), m = readLong(), k = readLong();
if(Math.max(n, m) > k) println(-1);
else {
long ans = k;
if(n%2 != k%2) ans--;
if(m%2 != k%2) ans--;
println(ans);
}
}
exit();
}
final private static int BUFFER_SIZE = 1 << 16;
private static DataInputStream din = new DataInputStream(System.in);
private static byte[] buffer = new byte[BUFFER_SIZE];
private static int bufferPointer = 0, bytesRead = 0;
static PrintWriter pr = new PrintWriter(new BufferedWriter(new OutputStreamWriter(System.out)));
public static String readLine() throws IOException {
byte[] buf = new byte[64]; // line length
int cnt = 0, c;
while ((c = Read()) != -1) {
if (c == '\n')
break;
buf[cnt++] = (byte) c;
}
return new String(buf, 0, cnt);
}
public static String read() throws IOException {
byte[] ret = new byte[1024];
int idx = 0;
byte c = Read();
while (c <= ' ') {
c = Read();
}
do {
ret[idx++] = c;
c = Read();
} while (c != -1 && c != ' ' && c != '\n' && c != '\r');
return new String(ret, 0, idx);
}
public static int readInt() throws IOException {
int ret = 0;
byte c = Read();
while (c <= ' ')
c = Read();
boolean neg = (c == '-');
if (neg)
c = Read();
do {
ret = ret * 10 + c - '0';
} while ((c = Read()) >= '0' && c <= '9');
if (neg)
return -ret;
return ret;
}
public static long readLong() throws IOException {
long ret = 0;
byte c = Read();
while (c <= ' ')
c = Read();
boolean neg = (c == '-');
if (neg)
c = Read();
do {
ret = ret * 10 + c - '0';
} while ((c = Read()) >= '0' && c <= '9');
if (neg)
return -ret;
return ret;
}
public static double readDouble() throws IOException {
double ret = 0, div = 1;
byte c = Read();
while (c <= ' ')
c = Read();
boolean neg = (c == '-');
if (neg)
c = Read();
do {
ret = ret * 10 + c - '0';
} while ((c = Read()) >= '0' && c <= '9');
if (c == '.') {
while ((c = Read()) >= '0' && c <= '9') {
ret += (c - '0') / (div *= 10);
}
}
if (neg)
return -ret;
return ret;
}
private static void fillBuffer() throws IOException {
bytesRead = din.read(buffer, bufferPointer = 0, BUFFER_SIZE);
if (bytesRead == -1)
buffer[0] = -1;
}
private static byte Read() throws IOException {
if (bufferPointer == bytesRead)
fillBuffer();
return buffer[bufferPointer++];
}
static void print(Object o) {
pr.print(o);
}
static void println(Object o) {
pr.println(o);
}
static void flush() {
pr.flush();
}
static void println() {
pr.println();
}
static void exit() throws IOException {
din.close();
pr.close();
System.exit(0);
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(n^2): The time complexity grows proportionally to the square of the input size.
- non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially.
- O(n): The time complexity increases proportionally to the input size n in a linear manner.
- O(nlog(n)): The time complexity combines linear and logarithmic growth factors.
- O(log(n)): The time complexity increases logarithmically in relation to the input size.
- O(n^3): The time complexity scales proportionally to the cube of the input size.
- others: The time complexity does not fit any of the above categories or cannot be clearly classified.
- O(1): The time complexity is constant to the input size n.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
| 1,229
| 433
|
4,107
|
import java.io.BufferedReader;
import java.io.IOException;
import java.io.InputStream;
import java.io.InputStreamReader;
import java.util.Arrays;
import java.util.StringTokenizer;
public class LookingForOrder {
static int n;
static int []x,y,memo;
static StringBuilder sb;
static int distance(int i,int j)
{
int dx=x[i]-x[j];
int dy=y[i]-y[j];
return dx*dx+dy*dy;
}
public static int dp(int msk)
{
if(msk==(1<<(n+1))-2)
return 0;
if(memo[msk]!=-1)
return memo[msk];
int ans=10000000;
boolean found=false;
for(int i=1;i<=n && !found;i++)
for(int j=i;j<=n && (msk&1<<i)==0;j++)
if((msk&1<<j)==0)
{
found=true;
int newM=msk|1<<i;
newM|=1<<j;
ans=Math.min(ans, dp(newM)+Math.min(distance(0,i)+distance(i,j)+distance(j,0), distance(0,j)+distance(j,i)+distance(i,0)));
}
return memo[msk]=ans;
}
public static void print(int msk)
{
if(msk==(1<<(n+1))-2)
return ;
for(int i=1;i<=n;i++)
for(int j=i;j<=n && (msk&1<<i)==0;j++)
if((msk&1<<j)==0)
{
int newM=msk|1<<i;
newM|=1<<j;
int d1=distance(0,i)+distance(i,j)+distance(j,0);
int d2=distance(0,j)+distance(j,i)+distance(i,0);
if(dp(msk)== dp(newM)+Math.min(d1,d2))
{
if(i==j)
sb.append("0 "+i+" ");
else if(d1<d2)
sb.append("0 "+i+" "+j+" ");
else
sb.append("0 "+j+" "+i+" ");
print(newM);
return ;
}
}
}
public static void main(String[] args) throws IOException {
Scanner sc=new Scanner(System.in);
int xS=sc.nextInt(),yS=sc.nextInt();
n=sc.nextInt();
x=new int [n+1];
y=new int [n+1];
x[0]=xS;y[0]=yS;
for(int i=1;i<=n;i++)
{
x[i]=sc.nextInt();
y[i]=sc.nextInt();
}
memo=new int [1<<(n+1)];
Arrays.fill(memo,-1);
sb=new StringBuilder();
sb.append(dp(0)+"\n");
print(0);
sb.append("0");
System.out.println(sb);
}
static class Scanner
{
BufferedReader br;
StringTokenizer st;
public Scanner(InputStream s)
{
br=new BufferedReader(new InputStreamReader(s));
}
public String nextLine() throws IOException
{
return br.readLine();
}
public String next() throws IOException
{
while(st==null || !st.hasMoreTokens())
st=new StringTokenizer(br.readLine());
return st.nextToken();
}
public int nextInt() throws IOException
{
return Integer.parseInt(next());
}
public double nextDouble() throws IOException
{
return Double.parseDouble(next());
}
public boolean ready() throws IOException
{
return br.ready();
}
public long nextLong() throws IOException
{
return Long.parseLong(next());
}
}
}
|
non-polynomial
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n.
</TASK>
<CODE>
import java.io.BufferedReader;
import java.io.IOException;
import java.io.InputStream;
import java.io.InputStreamReader;
import java.util.Arrays;
import java.util.StringTokenizer;
public class LookingForOrder {
static int n;
static int []x,y,memo;
static StringBuilder sb;
static int distance(int i,int j)
{
int dx=x[i]-x[j];
int dy=y[i]-y[j];
return dx*dx+dy*dy;
}
public static int dp(int msk)
{
if(msk==(1<<(n+1))-2)
return 0;
if(memo[msk]!=-1)
return memo[msk];
int ans=10000000;
boolean found=false;
for(int i=1;i<=n && !found;i++)
for(int j=i;j<=n && (msk&1<<i)==0;j++)
if((msk&1<<j)==0)
{
found=true;
int newM=msk|1<<i;
newM|=1<<j;
ans=Math.min(ans, dp(newM)+Math.min(distance(0,i)+distance(i,j)+distance(j,0), distance(0,j)+distance(j,i)+distance(i,0)));
}
return memo[msk]=ans;
}
public static void print(int msk)
{
if(msk==(1<<(n+1))-2)
return ;
for(int i=1;i<=n;i++)
for(int j=i;j<=n && (msk&1<<i)==0;j++)
if((msk&1<<j)==0)
{
int newM=msk|1<<i;
newM|=1<<j;
int d1=distance(0,i)+distance(i,j)+distance(j,0);
int d2=distance(0,j)+distance(j,i)+distance(i,0);
if(dp(msk)== dp(newM)+Math.min(d1,d2))
{
if(i==j)
sb.append("0 "+i+" ");
else if(d1<d2)
sb.append("0 "+i+" "+j+" ");
else
sb.append("0 "+j+" "+i+" ");
print(newM);
return ;
}
}
}
public static void main(String[] args) throws IOException {
Scanner sc=new Scanner(System.in);
int xS=sc.nextInt(),yS=sc.nextInt();
n=sc.nextInt();
x=new int [n+1];
y=new int [n+1];
x[0]=xS;y[0]=yS;
for(int i=1;i<=n;i++)
{
x[i]=sc.nextInt();
y[i]=sc.nextInt();
}
memo=new int [1<<(n+1)];
Arrays.fill(memo,-1);
sb=new StringBuilder();
sb.append(dp(0)+"\n");
print(0);
sb.append("0");
System.out.println(sb);
}
static class Scanner
{
BufferedReader br;
StringTokenizer st;
public Scanner(InputStream s)
{
br=new BufferedReader(new InputStreamReader(s));
}
public String nextLine() throws IOException
{
return br.readLine();
}
public String next() throws IOException
{
while(st==null || !st.hasMoreTokens())
st=new StringTokenizer(br.readLine());
return st.nextToken();
}
public int nextInt() throws IOException
{
return Integer.parseInt(next());
}
public double nextDouble() throws IOException
{
return Double.parseDouble(next());
}
public boolean ready() throws IOException
{
return br.ready();
}
public long nextLong() throws IOException
{
return Long.parseLong(next());
}
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially.
- O(n^2): The execution time ascends in proportion to the square of the input size n.
- O(1): The execution time is unaffected by the size of the input n.
- O(n): The execution time ascends in a one-to-one ratio with the input size n.
- O(log(n)): The execution time ascends in proportion to the logarithm of the input size n.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- O(n^3): The execution time ascends in proportion to the cube of the input size n.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Classify the following Java code's worst-case time complexity according to its relationship to the input size n.
</TASK>
<CODE>
import java.io.BufferedReader;
import java.io.IOException;
import java.io.InputStream;
import java.io.InputStreamReader;
import java.util.Arrays;
import java.util.StringTokenizer;
public class LookingForOrder {
static int n;
static int []x,y,memo;
static StringBuilder sb;
static int distance(int i,int j)
{
int dx=x[i]-x[j];
int dy=y[i]-y[j];
return dx*dx+dy*dy;
}
public static int dp(int msk)
{
if(msk==(1<<(n+1))-2)
return 0;
if(memo[msk]!=-1)
return memo[msk];
int ans=10000000;
boolean found=false;
for(int i=1;i<=n && !found;i++)
for(int j=i;j<=n && (msk&1<<i)==0;j++)
if((msk&1<<j)==0)
{
found=true;
int newM=msk|1<<i;
newM|=1<<j;
ans=Math.min(ans, dp(newM)+Math.min(distance(0,i)+distance(i,j)+distance(j,0), distance(0,j)+distance(j,i)+distance(i,0)));
}
return memo[msk]=ans;
}
public static void print(int msk)
{
if(msk==(1<<(n+1))-2)
return ;
for(int i=1;i<=n;i++)
for(int j=i;j<=n && (msk&1<<i)==0;j++)
if((msk&1<<j)==0)
{
int newM=msk|1<<i;
newM|=1<<j;
int d1=distance(0,i)+distance(i,j)+distance(j,0);
int d2=distance(0,j)+distance(j,i)+distance(i,0);
if(dp(msk)== dp(newM)+Math.min(d1,d2))
{
if(i==j)
sb.append("0 "+i+" ");
else if(d1<d2)
sb.append("0 "+i+" "+j+" ");
else
sb.append("0 "+j+" "+i+" ");
print(newM);
return ;
}
}
}
public static void main(String[] args) throws IOException {
Scanner sc=new Scanner(System.in);
int xS=sc.nextInt(),yS=sc.nextInt();
n=sc.nextInt();
x=new int [n+1];
y=new int [n+1];
x[0]=xS;y[0]=yS;
for(int i=1;i<=n;i++)
{
x[i]=sc.nextInt();
y[i]=sc.nextInt();
}
memo=new int [1<<(n+1)];
Arrays.fill(memo,-1);
sb=new StringBuilder();
sb.append(dp(0)+"\n");
print(0);
sb.append("0");
System.out.println(sb);
}
static class Scanner
{
BufferedReader br;
StringTokenizer st;
public Scanner(InputStream s)
{
br=new BufferedReader(new InputStreamReader(s));
}
public String nextLine() throws IOException
{
return br.readLine();
}
public String next() throws IOException
{
while(st==null || !st.hasMoreTokens())
st=new StringTokenizer(br.readLine());
return st.nextToken();
}
public int nextInt() throws IOException
{
return Integer.parseInt(next());
}
public double nextDouble() throws IOException
{
return Double.parseDouble(next());
}
public boolean ready() throws IOException
{
return br.ready();
}
public long nextLong() throws IOException
{
return Long.parseLong(next());
}
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(nlog(n)): The running time increases with the product of n and logarithm of n.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- O(n^3): The running time increases with the cube of the input size n.
- O(1): The running time does not change regardless of the input size n.
- others: The code does not clearly correspond to the listed classes or has an unclassified time complexity.
- O(n^2): The running time increases with the square of the input size n.
- O(n): The running time grows linearly with the input size n.
- O(log(n)): The running time increases with the logarithm of the input size n.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
| 1,183
| 4,096
|
3,987
|
//package round85;
import java.io.PrintWriter;
import java.util.Arrays;
import java.util.HashSet;
import java.util.Scanner;
import java.util.Set;
public class C2 {
Scanner in;
PrintWriter out;
String INPUT = "";
void solve()
{
int n = ni();
int m = ni();
boolean[][] f = new boolean[99][99];
cache = new HashSet<Long>();
out.println(n*m-rec(f, n, m, 0, 0, 0));
}
Set<Long> cache;
long hash(boolean[][] f, int n, int m, int r, int c, int cur)
{
long x = 0;
for(int i = 0;i < n;i++){
for(int j = 0;j < m;j++){
if(f[i][j])x |= 1L<<i*m+j;
}
}
x = x * n + r;
x = x * m + c;
x = x * 41 + cur;
return x;
}
int rec(boolean[][] f, int n, int m, int r, int c, int cur)
{
if(r == n)return cur;
if(c >= m)return rec(f, n, m, r+1, 0, cur);
long h = hash(f, n, m, r, c, cur);
if(cache.contains(h))return 99999;
cache.add(h);
int min = f[r][c] ? rec(f, n, m, r, c+1, cur) : 99999;
{
boolean[] memo = new boolean[]{f[r][c], f[r+1][c], f[r][c+1]};
f[r][c] = true;
f[r+1][c] = true;
f[r][c+1] = true;
min = Math.min(min, rec(f, n, m, r, c+2, cur+1));
f[r][c] = memo[0];
f[r+1][c] = memo[1];
f[r][c+1] = memo[2];
}
{
boolean[] memo = new boolean[]{f[r][c], f[r+1][c], f[r+2][c], f[r+1][c+1], c-1>=0 ? f[r+1][c-1] : false};
f[r][c] = true;
f[r+1][c] = true;
f[r+2][c] = true;
f[r+1][c+1] = true;
if(c-1 >= 0)f[r+1][c-1] = true;
min = Math.min(min, rec(f, n, m, r, c+1, cur+1));
f[r][c] = memo[0];
f[r+1][c] = memo[1];
f[r+2][c] = memo[2];
f[r+1][c+1] = memo[3];
if(c-1 >= 0)f[r+1][c-1] = memo[4];
}
{
boolean[] memo = new boolean[]{f[r][c], f[r][c+1], f[r][c+2], f[r+1][c+1]};
f[r][c] = true;
f[r][c+1] = true;
f[r][c+2] = true;
f[r+1][c+1] = true;
min = Math.min(min, rec(f, n, m, r, c+3, cur+1));
f[r][c] = memo[0];
f[r][c+1] = memo[1];
f[r][c+2] = memo[2];
f[r+1][c+1] = memo[3];
}
return min;
}
int count(int n, int m, int p, int step)
{
int[] dr = {1, 0, -1, 0, 0};
int[] dc = {0, 1, 0, -1, 0};
// (0,i)
int ct = 0;
boolean[][] f = new boolean[n][m];
for(int j = 0;j < n;j++){
for(int k = 0;k < m;k++){
if(k % 5 == p){
ct++;
for(int l = 0;l < 5;l++){
int nr = j+dr[l];
int nc = k+dc[l];
if(nr >= 0 && nr < n && nc >= 0 && nc < m){
f[nr][nc] = true;
}
}
}
}
p = (p+step)%5;
}
for(int j = 0;j < n;j++){
for(int k = 0;k < m;k++){
if(!f[j][k]){
ct++;
for(int l = 0;l < 5;l++){
int nr = j+dr[l];
int nc = k+dc[l];
if(nr >= 0 && nr < n && nc >= 0 && nc < m){
f[nr][nc] = true;
}
}
}
}
}
return ct;
}
void run() throws Exception
{
in = oj ? new Scanner(System.in) : new Scanner(INPUT);
out = new PrintWriter(System.out);
long s = System.currentTimeMillis();
solve();
out.flush();
tr(System.currentTimeMillis()-s+"ms");
}
public static void main(String[] args) throws Exception
{
new C2().run();
}
int ni() { return Integer.parseInt(in.next()); }
long nl() { return Long.parseLong(in.next()); }
double nd() { return Double.parseDouble(in.next()); }
boolean oj = System.getProperty("ONLINE_JUDGE") != null;
void tr(Object... o) { if(!oj)System.out.println(Arrays.deepToString(o)); }
}
|
non-polynomial
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Classify the following Java code's worst-case time complexity according to its relationship to the input size n.
</TASK>
<CODE>
//package round85;
import java.io.PrintWriter;
import java.util.Arrays;
import java.util.HashSet;
import java.util.Scanner;
import java.util.Set;
public class C2 {
Scanner in;
PrintWriter out;
String INPUT = "";
void solve()
{
int n = ni();
int m = ni();
boolean[][] f = new boolean[99][99];
cache = new HashSet<Long>();
out.println(n*m-rec(f, n, m, 0, 0, 0));
}
Set<Long> cache;
long hash(boolean[][] f, int n, int m, int r, int c, int cur)
{
long x = 0;
for(int i = 0;i < n;i++){
for(int j = 0;j < m;j++){
if(f[i][j])x |= 1L<<i*m+j;
}
}
x = x * n + r;
x = x * m + c;
x = x * 41 + cur;
return x;
}
int rec(boolean[][] f, int n, int m, int r, int c, int cur)
{
if(r == n)return cur;
if(c >= m)return rec(f, n, m, r+1, 0, cur);
long h = hash(f, n, m, r, c, cur);
if(cache.contains(h))return 99999;
cache.add(h);
int min = f[r][c] ? rec(f, n, m, r, c+1, cur) : 99999;
{
boolean[] memo = new boolean[]{f[r][c], f[r+1][c], f[r][c+1]};
f[r][c] = true;
f[r+1][c] = true;
f[r][c+1] = true;
min = Math.min(min, rec(f, n, m, r, c+2, cur+1));
f[r][c] = memo[0];
f[r+1][c] = memo[1];
f[r][c+1] = memo[2];
}
{
boolean[] memo = new boolean[]{f[r][c], f[r+1][c], f[r+2][c], f[r+1][c+1], c-1>=0 ? f[r+1][c-1] : false};
f[r][c] = true;
f[r+1][c] = true;
f[r+2][c] = true;
f[r+1][c+1] = true;
if(c-1 >= 0)f[r+1][c-1] = true;
min = Math.min(min, rec(f, n, m, r, c+1, cur+1));
f[r][c] = memo[0];
f[r+1][c] = memo[1];
f[r+2][c] = memo[2];
f[r+1][c+1] = memo[3];
if(c-1 >= 0)f[r+1][c-1] = memo[4];
}
{
boolean[] memo = new boolean[]{f[r][c], f[r][c+1], f[r][c+2], f[r+1][c+1]};
f[r][c] = true;
f[r][c+1] = true;
f[r][c+2] = true;
f[r+1][c+1] = true;
min = Math.min(min, rec(f, n, m, r, c+3, cur+1));
f[r][c] = memo[0];
f[r][c+1] = memo[1];
f[r][c+2] = memo[2];
f[r+1][c+1] = memo[3];
}
return min;
}
int count(int n, int m, int p, int step)
{
int[] dr = {1, 0, -1, 0, 0};
int[] dc = {0, 1, 0, -1, 0};
// (0,i)
int ct = 0;
boolean[][] f = new boolean[n][m];
for(int j = 0;j < n;j++){
for(int k = 0;k < m;k++){
if(k % 5 == p){
ct++;
for(int l = 0;l < 5;l++){
int nr = j+dr[l];
int nc = k+dc[l];
if(nr >= 0 && nr < n && nc >= 0 && nc < m){
f[nr][nc] = true;
}
}
}
}
p = (p+step)%5;
}
for(int j = 0;j < n;j++){
for(int k = 0;k < m;k++){
if(!f[j][k]){
ct++;
for(int l = 0;l < 5;l++){
int nr = j+dr[l];
int nc = k+dc[l];
if(nr >= 0 && nr < n && nc >= 0 && nc < m){
f[nr][nc] = true;
}
}
}
}
}
return ct;
}
void run() throws Exception
{
in = oj ? new Scanner(System.in) : new Scanner(INPUT);
out = new PrintWriter(System.out);
long s = System.currentTimeMillis();
solve();
out.flush();
tr(System.currentTimeMillis()-s+"ms");
}
public static void main(String[] args) throws Exception
{
new C2().run();
}
int ni() { return Integer.parseInt(in.next()); }
long nl() { return Long.parseLong(in.next()); }
double nd() { return Double.parseDouble(in.next()); }
boolean oj = System.getProperty("ONLINE_JUDGE") != null;
void tr(Object... o) { if(!oj)System.out.println(Arrays.deepToString(o)); }
}
</CODE>
<EVALUATION_RUBRIC>
- O(n^3): The running time increases with the cube of the input size n.
- O(n^2): The running time increases with the square of the input size n.
- O(n): The running time grows linearly with the input size n.
- O(1): The running time does not change regardless of the input size n.
- O(log(n)): The running time increases with the logarithm of the input size n.
- O(nlog(n)): The running time increases with the product of n and logarithm of n.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Classify the following Java code's worst-case time complexity according to its relationship to the input size n.
</TASK>
<CODE>
//package round85;
import java.io.PrintWriter;
import java.util.Arrays;
import java.util.HashSet;
import java.util.Scanner;
import java.util.Set;
public class C2 {
Scanner in;
PrintWriter out;
String INPUT = "";
void solve()
{
int n = ni();
int m = ni();
boolean[][] f = new boolean[99][99];
cache = new HashSet<Long>();
out.println(n*m-rec(f, n, m, 0, 0, 0));
}
Set<Long> cache;
long hash(boolean[][] f, int n, int m, int r, int c, int cur)
{
long x = 0;
for(int i = 0;i < n;i++){
for(int j = 0;j < m;j++){
if(f[i][j])x |= 1L<<i*m+j;
}
}
x = x * n + r;
x = x * m + c;
x = x * 41 + cur;
return x;
}
int rec(boolean[][] f, int n, int m, int r, int c, int cur)
{
if(r == n)return cur;
if(c >= m)return rec(f, n, m, r+1, 0, cur);
long h = hash(f, n, m, r, c, cur);
if(cache.contains(h))return 99999;
cache.add(h);
int min = f[r][c] ? rec(f, n, m, r, c+1, cur) : 99999;
{
boolean[] memo = new boolean[]{f[r][c], f[r+1][c], f[r][c+1]};
f[r][c] = true;
f[r+1][c] = true;
f[r][c+1] = true;
min = Math.min(min, rec(f, n, m, r, c+2, cur+1));
f[r][c] = memo[0];
f[r+1][c] = memo[1];
f[r][c+1] = memo[2];
}
{
boolean[] memo = new boolean[]{f[r][c], f[r+1][c], f[r+2][c], f[r+1][c+1], c-1>=0 ? f[r+1][c-1] : false};
f[r][c] = true;
f[r+1][c] = true;
f[r+2][c] = true;
f[r+1][c+1] = true;
if(c-1 >= 0)f[r+1][c-1] = true;
min = Math.min(min, rec(f, n, m, r, c+1, cur+1));
f[r][c] = memo[0];
f[r+1][c] = memo[1];
f[r+2][c] = memo[2];
f[r+1][c+1] = memo[3];
if(c-1 >= 0)f[r+1][c-1] = memo[4];
}
{
boolean[] memo = new boolean[]{f[r][c], f[r][c+1], f[r][c+2], f[r+1][c+1]};
f[r][c] = true;
f[r][c+1] = true;
f[r][c+2] = true;
f[r+1][c+1] = true;
min = Math.min(min, rec(f, n, m, r, c+3, cur+1));
f[r][c] = memo[0];
f[r][c+1] = memo[1];
f[r][c+2] = memo[2];
f[r+1][c+1] = memo[3];
}
return min;
}
int count(int n, int m, int p, int step)
{
int[] dr = {1, 0, -1, 0, 0};
int[] dc = {0, 1, 0, -1, 0};
// (0,i)
int ct = 0;
boolean[][] f = new boolean[n][m];
for(int j = 0;j < n;j++){
for(int k = 0;k < m;k++){
if(k % 5 == p){
ct++;
for(int l = 0;l < 5;l++){
int nr = j+dr[l];
int nc = k+dc[l];
if(nr >= 0 && nr < n && nc >= 0 && nc < m){
f[nr][nc] = true;
}
}
}
}
p = (p+step)%5;
}
for(int j = 0;j < n;j++){
for(int k = 0;k < m;k++){
if(!f[j][k]){
ct++;
for(int l = 0;l < 5;l++){
int nr = j+dr[l];
int nc = k+dc[l];
if(nr >= 0 && nr < n && nc >= 0 && nc < m){
f[nr][nc] = true;
}
}
}
}
}
return ct;
}
void run() throws Exception
{
in = oj ? new Scanner(System.in) : new Scanner(INPUT);
out = new PrintWriter(System.out);
long s = System.currentTimeMillis();
solve();
out.flush();
tr(System.currentTimeMillis()-s+"ms");
}
public static void main(String[] args) throws Exception
{
new C2().run();
}
int ni() { return Integer.parseInt(in.next()); }
long nl() { return Long.parseLong(in.next()); }
double nd() { return Double.parseDouble(in.next()); }
boolean oj = System.getProperty("ONLINE_JUDGE") != null;
void tr(Object... o) { if(!oj)System.out.println(Arrays.deepToString(o)); }
}
</CODE>
<EVALUATION_RUBRIC>
- O(nlog(n)): The running time increases with the product of n and logarithm of n.
- others: The code does not clearly correspond to the listed classes or has an unclassified time complexity.
- O(1): The running time does not change regardless of the input size n.
- O(log(n)): The running time increases with the logarithm of the input size n.
- O(n): The running time grows linearly with the input size n.
- O(n^3): The running time increases with the cube of the input size n.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- O(n^2): The running time increases with the square of the input size n.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
| 1,672
| 3,976
|
720
|
import java.io.BufferedReader;
import java.io.InputStreamReader;
public class Task1b {
static int[] fromRC (String data) {
int pos = data.indexOf('C');
int res[] = new int[2];
res[0] = Integer.parseInt(data.substring(1, pos));
res[1] = Integer.parseInt(data.substring(pos + 1));
return res;
}
static int[] fromXC (String data) {
int pos = 0;
int res[] = new int[2];
res[0] = res[1] = 0;
while (data.charAt(pos) >= 'A' && data.charAt(pos) <= 'Z') {
res[1] *= 26;
res[1]++;
res[1] += data.charAt(pos) - 'A';
pos++;
}
res[0] = Integer.parseInt(data.substring(pos));
return res;
}
static String toRC (int[] data) {
return String.format("R%dC%d", data[0], data[1]);
}
static String toXC (int[] data) {
StringBuilder sb = new StringBuilder();
while (data[1] > 0) {
data[1]--;
sb.append((char)('A' + data[1] % 26));
data[1] /= 26;
}
sb = sb.reverse();
sb.append(data[0]);
return sb.toString();
}
/**
* @param args
*/
public static void main(String[] args) throws Exception {
BufferedReader br = new BufferedReader(new InputStreamReader(System.in));
int n = Integer.parseInt(br.readLine());
for (int i = 0; i < n; i++) {
String s = br.readLine();
if ((s.charAt(0) == 'R') &&
(s.charAt(1) >= '0' && s.charAt(1) <= '9') &&
(s.indexOf('C') != -1)) {
System.out.println(toXC(fromRC(s)));
} else {
System.out.println(toRC(fromXC(s)));
}
}
}
}
|
O(n)
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n.
</TASK>
<CODE>
import java.io.BufferedReader;
import java.io.InputStreamReader;
public class Task1b {
static int[] fromRC (String data) {
int pos = data.indexOf('C');
int res[] = new int[2];
res[0] = Integer.parseInt(data.substring(1, pos));
res[1] = Integer.parseInt(data.substring(pos + 1));
return res;
}
static int[] fromXC (String data) {
int pos = 0;
int res[] = new int[2];
res[0] = res[1] = 0;
while (data.charAt(pos) >= 'A' && data.charAt(pos) <= 'Z') {
res[1] *= 26;
res[1]++;
res[1] += data.charAt(pos) - 'A';
pos++;
}
res[0] = Integer.parseInt(data.substring(pos));
return res;
}
static String toRC (int[] data) {
return String.format("R%dC%d", data[0], data[1]);
}
static String toXC (int[] data) {
StringBuilder sb = new StringBuilder();
while (data[1] > 0) {
data[1]--;
sb.append((char)('A' + data[1] % 26));
data[1] /= 26;
}
sb = sb.reverse();
sb.append(data[0]);
return sb.toString();
}
/**
* @param args
*/
public static void main(String[] args) throws Exception {
BufferedReader br = new BufferedReader(new InputStreamReader(System.in));
int n = Integer.parseInt(br.readLine());
for (int i = 0; i < n; i++) {
String s = br.readLine();
if ((s.charAt(0) == 'R') &&
(s.charAt(1) >= '0' && s.charAt(1) <= '9') &&
(s.indexOf('C') != -1)) {
System.out.println(toXC(fromRC(s)));
} else {
System.out.println(toRC(fromXC(s)));
}
}
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(n^2): The execution time ascends in proportion to the square of the input size n.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- O(n^3): The execution time ascends in proportion to the cube of the input size n.
- O(n): The execution time ascends in a one-to-one ratio with the input size n.
- O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially.
- O(1): The execution time is unaffected by the size of the input n.
- O(log(n)): The execution time ascends in proportion to the logarithm of the input size n.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n.
</TASK>
<CODE>
import java.io.BufferedReader;
import java.io.InputStreamReader;
public class Task1b {
static int[] fromRC (String data) {
int pos = data.indexOf('C');
int res[] = new int[2];
res[0] = Integer.parseInt(data.substring(1, pos));
res[1] = Integer.parseInt(data.substring(pos + 1));
return res;
}
static int[] fromXC (String data) {
int pos = 0;
int res[] = new int[2];
res[0] = res[1] = 0;
while (data.charAt(pos) >= 'A' && data.charAt(pos) <= 'Z') {
res[1] *= 26;
res[1]++;
res[1] += data.charAt(pos) - 'A';
pos++;
}
res[0] = Integer.parseInt(data.substring(pos));
return res;
}
static String toRC (int[] data) {
return String.format("R%dC%d", data[0], data[1]);
}
static String toXC (int[] data) {
StringBuilder sb = new StringBuilder();
while (data[1] > 0) {
data[1]--;
sb.append((char)('A' + data[1] % 26));
data[1] /= 26;
}
sb = sb.reverse();
sb.append(data[0]);
return sb.toString();
}
/**
* @param args
*/
public static void main(String[] args) throws Exception {
BufferedReader br = new BufferedReader(new InputStreamReader(System.in));
int n = Integer.parseInt(br.readLine());
for (int i = 0; i < n; i++) {
String s = br.readLine();
if ((s.charAt(0) == 'R') &&
(s.charAt(1) >= '0' && s.charAt(1) <= '9') &&
(s.indexOf('C') != -1)) {
System.out.println(toXC(fromRC(s)));
} else {
System.out.println(toRC(fromXC(s)));
}
}
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(1): The execution time is unaffected by the size of the input n.
- O(n^3): The execution time ascends in proportion to the cube of the input size n.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- O(log(n)): The execution time ascends in proportion to the logarithm of the input size n.
- O(n^2): The execution time ascends in proportion to the square of the input size n.
- others: The time complexity does not fit to any of the given categories or is ambiguous.
- O(n): The execution time ascends in a one-to-one ratio with the input size n.
- O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
| 814
| 719
|
2,199
|
import java.lang.*;
import java.io.*;
import java.util.*;
public class Main {
public void solve() throws IOException {
int n = nextInt(), r = nextInt();
int x[] = new int[n];
for (int i = 0; i < n; i++) {
x[i] = nextInt();
}
double res[] = new double[n];
res[0] = r;
for (int i = 1; i < n; i++) {
double max = r;
for (int j = 0; j < i; j++) {
int d = Math.abs(x[i] - x[j]);
if(d <= 2 * r){
double yy = Math.sqrt(4 * r * r - d * d);
max = Math.max(max, yy + res[j]);
}
}
res[i] = max;
}
for (int i = 0; i < n; i++) {
out.print(res[i] + " ");
}
}
BufferedReader br;
StringTokenizer sc;
PrintWriter out;
public static void main(String[] args) throws IOException {
Locale.setDefault(Locale.US);
new Main().run();
}
void run() throws IOException {
try {
br = new BufferedReader(new InputStreamReader(System.in));
out = new PrintWriter(System.out);
// br = new BufferedReader(new FileReader("pnumbers.in"));
// out = new PrintWriter(new File("out.txt"));
solve();
out.close();
} catch (Exception e) {
e.printStackTrace();
System.exit(1);
}
}
String nextToken() throws IOException {
while (sc == null || !sc.hasMoreTokens()) {
try {
sc = new StringTokenizer(br.readLine());
} catch (Exception e) {
return null;
}
}
return sc.nextToken();
}
int nextInt() throws IOException {
return Integer.parseInt(nextToken());
}
long nextLong() throws IOException {
return Long.parseLong(nextToken());
}
double nextDouble() throws IOException {
return Double.parseDouble(nextToken());
}
}
|
O(n^2)
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n.
</TASK>
<CODE>
import java.lang.*;
import java.io.*;
import java.util.*;
public class Main {
public void solve() throws IOException {
int n = nextInt(), r = nextInt();
int x[] = new int[n];
for (int i = 0; i < n; i++) {
x[i] = nextInt();
}
double res[] = new double[n];
res[0] = r;
for (int i = 1; i < n; i++) {
double max = r;
for (int j = 0; j < i; j++) {
int d = Math.abs(x[i] - x[j]);
if(d <= 2 * r){
double yy = Math.sqrt(4 * r * r - d * d);
max = Math.max(max, yy + res[j]);
}
}
res[i] = max;
}
for (int i = 0; i < n; i++) {
out.print(res[i] + " ");
}
}
BufferedReader br;
StringTokenizer sc;
PrintWriter out;
public static void main(String[] args) throws IOException {
Locale.setDefault(Locale.US);
new Main().run();
}
void run() throws IOException {
try {
br = new BufferedReader(new InputStreamReader(System.in));
out = new PrintWriter(System.out);
// br = new BufferedReader(new FileReader("pnumbers.in"));
// out = new PrintWriter(new File("out.txt"));
solve();
out.close();
} catch (Exception e) {
e.printStackTrace();
System.exit(1);
}
}
String nextToken() throws IOException {
while (sc == null || !sc.hasMoreTokens()) {
try {
sc = new StringTokenizer(br.readLine());
} catch (Exception e) {
return null;
}
}
return sc.nextToken();
}
int nextInt() throws IOException {
return Integer.parseInt(nextToken());
}
long nextLong() throws IOException {
return Long.parseLong(nextToken());
}
double nextDouble() throws IOException {
return Double.parseDouble(nextToken());
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(n^2): The execution time ascends in proportion to the square of the input size n.
- O(n^3): The execution time ascends in proportion to the cube of the input size n.
- O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially.
- O(1): The execution time is unaffected by the size of the input n.
- O(log(n)): The execution time ascends in proportion to the logarithm of the input size n.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- O(n): The execution time ascends in a one-to-one ratio with the input size n.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Determine the worst-case time complexity category of a given Java code based on input size n.
</TASK>
<CODE>
import java.lang.*;
import java.io.*;
import java.util.*;
public class Main {
public void solve() throws IOException {
int n = nextInt(), r = nextInt();
int x[] = new int[n];
for (int i = 0; i < n; i++) {
x[i] = nextInt();
}
double res[] = new double[n];
res[0] = r;
for (int i = 1; i < n; i++) {
double max = r;
for (int j = 0; j < i; j++) {
int d = Math.abs(x[i] - x[j]);
if(d <= 2 * r){
double yy = Math.sqrt(4 * r * r - d * d);
max = Math.max(max, yy + res[j]);
}
}
res[i] = max;
}
for (int i = 0; i < n; i++) {
out.print(res[i] + " ");
}
}
BufferedReader br;
StringTokenizer sc;
PrintWriter out;
public static void main(String[] args) throws IOException {
Locale.setDefault(Locale.US);
new Main().run();
}
void run() throws IOException {
try {
br = new BufferedReader(new InputStreamReader(System.in));
out = new PrintWriter(System.out);
// br = new BufferedReader(new FileReader("pnumbers.in"));
// out = new PrintWriter(new File("out.txt"));
solve();
out.close();
} catch (Exception e) {
e.printStackTrace();
System.exit(1);
}
}
String nextToken() throws IOException {
while (sc == null || !sc.hasMoreTokens()) {
try {
sc = new StringTokenizer(br.readLine());
} catch (Exception e) {
return null;
}
}
return sc.nextToken();
}
int nextInt() throws IOException {
return Integer.parseInt(nextToken());
}
long nextLong() throws IOException {
return Long.parseLong(nextToken());
}
double nextDouble() throws IOException {
return Double.parseDouble(nextToken());
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(n^3): The time complexity scales proportionally to the cube of the input size.
- O(n^2): The time complexity grows proportionally to the square of the input size.
- others: The time complexity does not fit any of the above categories or cannot be clearly classified.
- O(nlog(n)): The time complexity combines linear and logarithmic growth factors.
- O(n): The time complexity increases proportionally to the input size n in a linear manner.
- O(1): The time complexity is constant to the input size n.
- non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially.
- O(log(n)): The time complexity increases logarithmically in relation to the input size.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
| 797
| 2,195
|
84
|
import java.util.*;
import java.io.*;
import java.awt.Point;
import java.math.BigInteger;
public class stacks {
public static void main(String[] args) throws Exception {
FastIO sc = new FastIO(System.in);
PrintWriter pw = new PrintWriter(System.out);
int n = sc.nextInt();
int m = sc.nextInt();
long remove = 0;
int[] heights = new int[n+1];
for(int i = 0; i < n; i++) {
heights[i] = sc.nextInt();
remove += heights[i];
}
Arrays.sort(heights);
//System.out.println(Arrays.toString(heights));
long keep = 0;
for(int i = n; i> 0; i--) {
if(heights[i-1] >= heights[i]) {
heights[i-1] = heights[i]-1;
}
keep += heights[i] - heights[i-1];
}
//System.out.println(Arrays.toString(heights));
pw.println(remove - keep);
pw.close();
}
static class FastIO {
//Is your Fast I/O being bad?
InputStream dis;
byte[] buffer = new byte[1 << 17];
int pointer = 0;
public FastIO(String fileName) throws Exception {
dis = new FileInputStream(fileName);
}
public FastIO(InputStream is) throws Exception {
dis = is;
}
int nextInt() throws Exception {
int ret = 0;
byte b;
do {
b = nextByte();
} while (b <= ' ');
boolean negative = false;
if (b == '-') {
negative = true;
b = nextByte();
}
while (b >= '0' && b <= '9') {
ret = 10 * ret + b - '0';
b = nextByte();
}
return (negative) ? -ret : ret;
}
long nextLong() throws Exception {
long ret = 0;
byte b;
do {
b = nextByte();
} while (b <= ' ');
boolean negative = false;
if (b == '-') {
negative = true;
b = nextByte();
}
while (b >= '0' && b <= '9') {
ret = 10 * ret + b - '0';
b = nextByte();
}
return (negative) ? -ret : ret;
}
byte nextByte() throws Exception {
if (pointer == buffer.length) {
dis.read(buffer, 0, buffer.length);
pointer = 0;
}
return buffer[pointer++];
}
String next() throws Exception {
StringBuffer ret = new StringBuffer();
byte b;
do {
b = nextByte();
} while (b <= ' ');
while (b > ' ') {
ret.appendCodePoint(b);
b = nextByte();
}
return ret.toString();
}
}
}
|
O(nlog(n))
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Determine the worst-case time complexity category of a given Java code based on input size n.
</TASK>
<CODE>
import java.util.*;
import java.io.*;
import java.awt.Point;
import java.math.BigInteger;
public class stacks {
public static void main(String[] args) throws Exception {
FastIO sc = new FastIO(System.in);
PrintWriter pw = new PrintWriter(System.out);
int n = sc.nextInt();
int m = sc.nextInt();
long remove = 0;
int[] heights = new int[n+1];
for(int i = 0; i < n; i++) {
heights[i] = sc.nextInt();
remove += heights[i];
}
Arrays.sort(heights);
//System.out.println(Arrays.toString(heights));
long keep = 0;
for(int i = n; i> 0; i--) {
if(heights[i-1] >= heights[i]) {
heights[i-1] = heights[i]-1;
}
keep += heights[i] - heights[i-1];
}
//System.out.println(Arrays.toString(heights));
pw.println(remove - keep);
pw.close();
}
static class FastIO {
//Is your Fast I/O being bad?
InputStream dis;
byte[] buffer = new byte[1 << 17];
int pointer = 0;
public FastIO(String fileName) throws Exception {
dis = new FileInputStream(fileName);
}
public FastIO(InputStream is) throws Exception {
dis = is;
}
int nextInt() throws Exception {
int ret = 0;
byte b;
do {
b = nextByte();
} while (b <= ' ');
boolean negative = false;
if (b == '-') {
negative = true;
b = nextByte();
}
while (b >= '0' && b <= '9') {
ret = 10 * ret + b - '0';
b = nextByte();
}
return (negative) ? -ret : ret;
}
long nextLong() throws Exception {
long ret = 0;
byte b;
do {
b = nextByte();
} while (b <= ' ');
boolean negative = false;
if (b == '-') {
negative = true;
b = nextByte();
}
while (b >= '0' && b <= '9') {
ret = 10 * ret + b - '0';
b = nextByte();
}
return (negative) ? -ret : ret;
}
byte nextByte() throws Exception {
if (pointer == buffer.length) {
dis.read(buffer, 0, buffer.length);
pointer = 0;
}
return buffer[pointer++];
}
String next() throws Exception {
StringBuffer ret = new StringBuffer();
byte b;
do {
b = nextByte();
} while (b <= ' ');
while (b > ' ') {
ret.appendCodePoint(b);
b = nextByte();
}
return ret.toString();
}
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(n): The time complexity increases proportionally to the input size n in a linear manner.
- non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially.
- O(n^3): The time complexity scales proportionally to the cube of the input size.
- O(1): The time complexity is constant to the input size n.
- O(n^2): The time complexity grows proportionally to the square of the input size.
- O(log(n)): The time complexity increases logarithmically in relation to the input size.
- O(nlog(n)): The time complexity combines linear and logarithmic growth factors.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Determine the worst-case time complexity category of a given Java code based on input size n.
</TASK>
<CODE>
import java.util.*;
import java.io.*;
import java.awt.Point;
import java.math.BigInteger;
public class stacks {
public static void main(String[] args) throws Exception {
FastIO sc = new FastIO(System.in);
PrintWriter pw = new PrintWriter(System.out);
int n = sc.nextInt();
int m = sc.nextInt();
long remove = 0;
int[] heights = new int[n+1];
for(int i = 0; i < n; i++) {
heights[i] = sc.nextInt();
remove += heights[i];
}
Arrays.sort(heights);
//System.out.println(Arrays.toString(heights));
long keep = 0;
for(int i = n; i> 0; i--) {
if(heights[i-1] >= heights[i]) {
heights[i-1] = heights[i]-1;
}
keep += heights[i] - heights[i-1];
}
//System.out.println(Arrays.toString(heights));
pw.println(remove - keep);
pw.close();
}
static class FastIO {
//Is your Fast I/O being bad?
InputStream dis;
byte[] buffer = new byte[1 << 17];
int pointer = 0;
public FastIO(String fileName) throws Exception {
dis = new FileInputStream(fileName);
}
public FastIO(InputStream is) throws Exception {
dis = is;
}
int nextInt() throws Exception {
int ret = 0;
byte b;
do {
b = nextByte();
} while (b <= ' ');
boolean negative = false;
if (b == '-') {
negative = true;
b = nextByte();
}
while (b >= '0' && b <= '9') {
ret = 10 * ret + b - '0';
b = nextByte();
}
return (negative) ? -ret : ret;
}
long nextLong() throws Exception {
long ret = 0;
byte b;
do {
b = nextByte();
} while (b <= ' ');
boolean negative = false;
if (b == '-') {
negative = true;
b = nextByte();
}
while (b >= '0' && b <= '9') {
ret = 10 * ret + b - '0';
b = nextByte();
}
return (negative) ? -ret : ret;
}
byte nextByte() throws Exception {
if (pointer == buffer.length) {
dis.read(buffer, 0, buffer.length);
pointer = 0;
}
return buffer[pointer++];
}
String next() throws Exception {
StringBuffer ret = new StringBuffer();
byte b;
do {
b = nextByte();
} while (b <= ' ');
while (b > ' ') {
ret.appendCodePoint(b);
b = nextByte();
}
return ret.toString();
}
}
}
</CODE>
<EVALUATION_RUBRIC>
- others: The time complexity does not fit any of the above categories or cannot be clearly classified.
- O(log(n)): The time complexity increases logarithmically in relation to the input size.
- O(n^2): The time complexity grows proportionally to the square of the input size.
- O(1): The time complexity is constant to the input size n.
- O(n): The time complexity increases proportionally to the input size n in a linear manner.
- O(n^3): The time complexity scales proportionally to the cube of the input size.
- O(nlog(n)): The time complexity combines linear and logarithmic growth factors.
- non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
| 995
| 84
|
4,220
|
import java.io.OutputStream;
import java.io.IOException;
import java.io.InputStream;
import java.io.PrintWriter;
import java.util.Arrays;
import java.io.IOException;
import java.io.InputStreamReader;
import java.util.StringTokenizer;
import java.io.BufferedReader;
import java.util.Comparator;
import java.io.InputStream;
/**
* Built using CHelper plug-in
* Actual solution is at the top
*/
public class Main {
public static void main(String[] args) {
InputStream inputStream = System.in;
OutputStream outputStream = System.out;
InputReader in = new InputReader(inputStream);
PrintWriter out = new PrintWriter(outputStream);
TaskE2 solver = new TaskE2();
int testCount = Integer.parseInt(in.next());
for (int i = 1; i <= testCount; i++)
solver.solve(i, in, out);
out.close();
}
static class TaskE2 {
public void solve(int testNumber, InputReader in, PrintWriter out) {
int n = in.nextInt();
int m = in.nextInt();
TaskE2.Column[] columns = new TaskE2.Column[m];
for (int i = 0; i < m; ++i) columns[i] = new TaskE2.Column(new int[n]);
for (int i = 0; i < n; ++i) {
for (int j = 0; j < m; ++j) {
columns[j].vals[i] = in.nextInt();
}
}
for (int i = 0; i < m; ++i) columns[i].initMax();
Arrays.sort(columns, new Comparator<TaskE2.Column>() {
public int compare(TaskE2.Column o1, TaskE2.Column o2) {
return o2.max - o1.max;
}
});
if (columns.length > n) {
columns = Arrays.copyOf(columns, n);
}
out.println(solveOne(columns));
}
private int solveOne(TaskE2.Column[] columns) {
int n = columns[0].vals.length;
int[] best = new int[1 << n];
int[] next = new int[1 << n];
int[] tmp = new int[1 << n];
for (TaskE2.Column c : columns) {
System.arraycopy(best, 0, next, 0, best.length);
for (int rot = 0; rot < n; ++rot) {
System.arraycopy(best, 0, tmp, 0, best.length);
for (int i = 0, pos = rot; i < n; ++i, ++pos) {
if (pos >= n) pos = 0;
int val = c.vals[pos];
for (int j = 0; j < tmp.length; ++j)
if ((j & (1 << i)) == 0) {
tmp[j ^ (1 << i)] = Math.max(tmp[j ^ (1 << i)], tmp[j] + val);
}
}
for (int j = 0; j < tmp.length; ++j) {
next[j] = Math.max(next[j], tmp[j]);
}
}
int[] aa = best;
best = next;
next = aa;
}
return best[best.length - 1];
}
static class Column {
int[] vals;
int max;
public Column(int[] vals) {
this.vals = vals;
}
void initMax() {
max = 0;
for (int x : vals) max = Math.max(max, x);
}
}
}
static class InputReader {
public BufferedReader reader;
public StringTokenizer tokenizer;
public InputReader(InputStream stream) {
reader = new BufferedReader(new InputStreamReader(stream), 32768);
tokenizer = null;
}
public String next() {
while (tokenizer == null || !tokenizer.hasMoreTokens()) {
try {
tokenizer = new StringTokenizer(reader.readLine());
} catch (IOException e) {
throw new RuntimeException(e);
}
}
return tokenizer.nextToken();
}
public int nextInt() {
return Integer.parseInt(next());
}
}
}
|
non-polynomial
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Classify the following Java code's worst-case time complexity according to its relationship to the input size n.
</TASK>
<CODE>
import java.io.OutputStream;
import java.io.IOException;
import java.io.InputStream;
import java.io.PrintWriter;
import java.util.Arrays;
import java.io.IOException;
import java.io.InputStreamReader;
import java.util.StringTokenizer;
import java.io.BufferedReader;
import java.util.Comparator;
import java.io.InputStream;
/**
* Built using CHelper plug-in
* Actual solution is at the top
*/
public class Main {
public static void main(String[] args) {
InputStream inputStream = System.in;
OutputStream outputStream = System.out;
InputReader in = new InputReader(inputStream);
PrintWriter out = new PrintWriter(outputStream);
TaskE2 solver = new TaskE2();
int testCount = Integer.parseInt(in.next());
for (int i = 1; i <= testCount; i++)
solver.solve(i, in, out);
out.close();
}
static class TaskE2 {
public void solve(int testNumber, InputReader in, PrintWriter out) {
int n = in.nextInt();
int m = in.nextInt();
TaskE2.Column[] columns = new TaskE2.Column[m];
for (int i = 0; i < m; ++i) columns[i] = new TaskE2.Column(new int[n]);
for (int i = 0; i < n; ++i) {
for (int j = 0; j < m; ++j) {
columns[j].vals[i] = in.nextInt();
}
}
for (int i = 0; i < m; ++i) columns[i].initMax();
Arrays.sort(columns, new Comparator<TaskE2.Column>() {
public int compare(TaskE2.Column o1, TaskE2.Column o2) {
return o2.max - o1.max;
}
});
if (columns.length > n) {
columns = Arrays.copyOf(columns, n);
}
out.println(solveOne(columns));
}
private int solveOne(TaskE2.Column[] columns) {
int n = columns[0].vals.length;
int[] best = new int[1 << n];
int[] next = new int[1 << n];
int[] tmp = new int[1 << n];
for (TaskE2.Column c : columns) {
System.arraycopy(best, 0, next, 0, best.length);
for (int rot = 0; rot < n; ++rot) {
System.arraycopy(best, 0, tmp, 0, best.length);
for (int i = 0, pos = rot; i < n; ++i, ++pos) {
if (pos >= n) pos = 0;
int val = c.vals[pos];
for (int j = 0; j < tmp.length; ++j)
if ((j & (1 << i)) == 0) {
tmp[j ^ (1 << i)] = Math.max(tmp[j ^ (1 << i)], tmp[j] + val);
}
}
for (int j = 0; j < tmp.length; ++j) {
next[j] = Math.max(next[j], tmp[j]);
}
}
int[] aa = best;
best = next;
next = aa;
}
return best[best.length - 1];
}
static class Column {
int[] vals;
int max;
public Column(int[] vals) {
this.vals = vals;
}
void initMax() {
max = 0;
for (int x : vals) max = Math.max(max, x);
}
}
}
static class InputReader {
public BufferedReader reader;
public StringTokenizer tokenizer;
public InputReader(InputStream stream) {
reader = new BufferedReader(new InputStreamReader(stream), 32768);
tokenizer = null;
}
public String next() {
while (tokenizer == null || !tokenizer.hasMoreTokens()) {
try {
tokenizer = new StringTokenizer(reader.readLine());
} catch (IOException e) {
throw new RuntimeException(e);
}
}
return tokenizer.nextToken();
}
public int nextInt() {
return Integer.parseInt(next());
}
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(nlog(n)): The running time increases with the product of n and logarithm of n.
- O(n): The running time grows linearly with the input size n.
- O(n^3): The running time increases with the cube of the input size n.
- O(1): The running time does not change regardless of the input size n.
- O(log(n)): The running time increases with the logarithm of the input size n.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- O(n^2): The running time increases with the square of the input size n.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Classify the following Java code's worst-case time complexity according to its relationship to the input size n.
</TASK>
<CODE>
import java.io.OutputStream;
import java.io.IOException;
import java.io.InputStream;
import java.io.PrintWriter;
import java.util.Arrays;
import java.io.IOException;
import java.io.InputStreamReader;
import java.util.StringTokenizer;
import java.io.BufferedReader;
import java.util.Comparator;
import java.io.InputStream;
/**
* Built using CHelper plug-in
* Actual solution is at the top
*/
public class Main {
public static void main(String[] args) {
InputStream inputStream = System.in;
OutputStream outputStream = System.out;
InputReader in = new InputReader(inputStream);
PrintWriter out = new PrintWriter(outputStream);
TaskE2 solver = new TaskE2();
int testCount = Integer.parseInt(in.next());
for (int i = 1; i <= testCount; i++)
solver.solve(i, in, out);
out.close();
}
static class TaskE2 {
public void solve(int testNumber, InputReader in, PrintWriter out) {
int n = in.nextInt();
int m = in.nextInt();
TaskE2.Column[] columns = new TaskE2.Column[m];
for (int i = 0; i < m; ++i) columns[i] = new TaskE2.Column(new int[n]);
for (int i = 0; i < n; ++i) {
for (int j = 0; j < m; ++j) {
columns[j].vals[i] = in.nextInt();
}
}
for (int i = 0; i < m; ++i) columns[i].initMax();
Arrays.sort(columns, new Comparator<TaskE2.Column>() {
public int compare(TaskE2.Column o1, TaskE2.Column o2) {
return o2.max - o1.max;
}
});
if (columns.length > n) {
columns = Arrays.copyOf(columns, n);
}
out.println(solveOne(columns));
}
private int solveOne(TaskE2.Column[] columns) {
int n = columns[0].vals.length;
int[] best = new int[1 << n];
int[] next = new int[1 << n];
int[] tmp = new int[1 << n];
for (TaskE2.Column c : columns) {
System.arraycopy(best, 0, next, 0, best.length);
for (int rot = 0; rot < n; ++rot) {
System.arraycopy(best, 0, tmp, 0, best.length);
for (int i = 0, pos = rot; i < n; ++i, ++pos) {
if (pos >= n) pos = 0;
int val = c.vals[pos];
for (int j = 0; j < tmp.length; ++j)
if ((j & (1 << i)) == 0) {
tmp[j ^ (1 << i)] = Math.max(tmp[j ^ (1 << i)], tmp[j] + val);
}
}
for (int j = 0; j < tmp.length; ++j) {
next[j] = Math.max(next[j], tmp[j]);
}
}
int[] aa = best;
best = next;
next = aa;
}
return best[best.length - 1];
}
static class Column {
int[] vals;
int max;
public Column(int[] vals) {
this.vals = vals;
}
void initMax() {
max = 0;
for (int x : vals) max = Math.max(max, x);
}
}
}
static class InputReader {
public BufferedReader reader;
public StringTokenizer tokenizer;
public InputReader(InputStream stream) {
reader = new BufferedReader(new InputStreamReader(stream), 32768);
tokenizer = null;
}
public String next() {
while (tokenizer == null || !tokenizer.hasMoreTokens()) {
try {
tokenizer = new StringTokenizer(reader.readLine());
} catch (IOException e) {
throw new RuntimeException(e);
}
}
return tokenizer.nextToken();
}
public int nextInt() {
return Integer.parseInt(next());
}
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(log(n)): The running time increases with the logarithm of the input size n.
- O(n^3): The running time increases with the cube of the input size n.
- O(n): The running time grows linearly with the input size n.
- O(nlog(n)): The running time increases with the product of n and logarithm of n.
- O(n^2): The running time increases with the square of the input size n.
- O(1): The running time does not change regardless of the input size n.
- others: The code does not clearly correspond to the listed classes or has an unclassified time complexity.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
| 1,212
| 4,209
|
4,347
|
import java.util.*;
import java.io.*;
public class ASimpleTask
{
/************************ SOLUTION STARTS HERE ***********************/
private static void solve(FastScanner s1, PrintWriter out){
int V = s1.nextInt();
int E = s1.nextInt();
int graph[] = new int[V];
long DP[][] = new long[1 << V][V];
while(E-->0) {
int u = s1.nextInt() - 1;
int v = s1.nextInt() - 1;
graph[u] |= (1 << v);
graph[v] |= (1 << u);
}
for(int i=0;i<V;i++)
DP[1 << i][i] = 1;
for(int mask = 1 , end = 1 << V;mask < end;mask++) {
for(int set = mask;Integer.bitCount(set) > 1;set ^= Integer.highestOneBit(set)) {
int u = Integer.numberOfTrailingZeros(Integer.highestOneBit(set));
for(int fromSet = mask ^ (1 << u);fromSet > 0; fromSet ^= Integer.lowestOneBit(fromSet)) {
int v = Integer.numberOfTrailingZeros(fromSet);
// System.out.printf("mask = %s , u = %d , v = %d\n" , Integer.toBinaryString(mask) , u , v);
if((graph[u] & (1 << v)) != 0)
DP[mask][u] += DP[mask ^ (1 << u)][v];
}
}
}
long totalCycles = 0;
for(int mask = 1 , end = 1 << V;mask < end;mask++) {
if(Integer.bitCount(mask) >= 3) {
int start = Integer.numberOfTrailingZeros(mask);
for(int set = mask;Integer.bitCount(set) > 1;set ^= Integer.highestOneBit(set)) {
int u = Integer.numberOfTrailingZeros(Integer.highestOneBit(set));
if((graph[u] & (1 << start)) != 0)
totalCycles += DP[mask][u];
}
}
}
totalCycles /= 2;
/* for(long l[] : DP)
out.println(Arrays.toString(l));*/
out.println(totalCycles);
}
/************************ SOLUTION ENDS HERE ************************/
/************************ TEMPLATE STARTS HERE *********************/
public static void main(String []args) throws IOException {
FastScanner in = new FastScanner(System.in);
PrintWriter out =
new PrintWriter(new BufferedWriter(new OutputStreamWriter(System.out)), false);
solve(in, out);
in.close();
out.close();
}
static class FastScanner{
BufferedReader reader;
StringTokenizer st;
FastScanner(InputStream stream){reader=new BufferedReader(new InputStreamReader(stream));st=null;}
String next()
{while(st == null || !st.hasMoreTokens()){try{String line = reader.readLine();if(line == null){return null;}
st = new StringTokenizer(line);}catch (Exception e){throw new RuntimeException();}}return st.nextToken();}
String nextLine() {String s=null;try{s=reader.readLine();}catch(IOException e){e.printStackTrace();}return s;}
int nextInt() {return Integer.parseInt(next());}
long nextLong() {return Long.parseLong(next());}
double nextDouble(){return Double.parseDouble(next());}
char nextChar() {return next().charAt(0);}
int[] nextIntArray(int n) {int[] a= new int[n]; int i=0;while(i<n){a[i++]=nextInt();} return a;}
long[] nextLongArray(int n) {long[]a= new long[n]; int i=0;while(i<n){a[i++]=nextLong();} return a;}
int[] nextIntArrayOneBased(int n) {int[] a= new int[n+1]; int i=1;while(i<=n){a[i++]=nextInt();} return a;}
long[] nextLongArrayOneBased(int n){long[]a= new long[n+1];int i=1;while(i<=n){a[i++]=nextLong();}return a;}
void close(){try{reader.close();}catch(IOException e){e.printStackTrace();}}
}
/************************ TEMPLATE ENDS HERE ************************/
}
|
non-polynomial
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Determine the worst-case time complexity category of a given Java code based on input size n.
</TASK>
<CODE>
import java.util.*;
import java.io.*;
public class ASimpleTask
{
/************************ SOLUTION STARTS HERE ***********************/
private static void solve(FastScanner s1, PrintWriter out){
int V = s1.nextInt();
int E = s1.nextInt();
int graph[] = new int[V];
long DP[][] = new long[1 << V][V];
while(E-->0) {
int u = s1.nextInt() - 1;
int v = s1.nextInt() - 1;
graph[u] |= (1 << v);
graph[v] |= (1 << u);
}
for(int i=0;i<V;i++)
DP[1 << i][i] = 1;
for(int mask = 1 , end = 1 << V;mask < end;mask++) {
for(int set = mask;Integer.bitCount(set) > 1;set ^= Integer.highestOneBit(set)) {
int u = Integer.numberOfTrailingZeros(Integer.highestOneBit(set));
for(int fromSet = mask ^ (1 << u);fromSet > 0; fromSet ^= Integer.lowestOneBit(fromSet)) {
int v = Integer.numberOfTrailingZeros(fromSet);
// System.out.printf("mask = %s , u = %d , v = %d\n" , Integer.toBinaryString(mask) , u , v);
if((graph[u] & (1 << v)) != 0)
DP[mask][u] += DP[mask ^ (1 << u)][v];
}
}
}
long totalCycles = 0;
for(int mask = 1 , end = 1 << V;mask < end;mask++) {
if(Integer.bitCount(mask) >= 3) {
int start = Integer.numberOfTrailingZeros(mask);
for(int set = mask;Integer.bitCount(set) > 1;set ^= Integer.highestOneBit(set)) {
int u = Integer.numberOfTrailingZeros(Integer.highestOneBit(set));
if((graph[u] & (1 << start)) != 0)
totalCycles += DP[mask][u];
}
}
}
totalCycles /= 2;
/* for(long l[] : DP)
out.println(Arrays.toString(l));*/
out.println(totalCycles);
}
/************************ SOLUTION ENDS HERE ************************/
/************************ TEMPLATE STARTS HERE *********************/
public static void main(String []args) throws IOException {
FastScanner in = new FastScanner(System.in);
PrintWriter out =
new PrintWriter(new BufferedWriter(new OutputStreamWriter(System.out)), false);
solve(in, out);
in.close();
out.close();
}
static class FastScanner{
BufferedReader reader;
StringTokenizer st;
FastScanner(InputStream stream){reader=new BufferedReader(new InputStreamReader(stream));st=null;}
String next()
{while(st == null || !st.hasMoreTokens()){try{String line = reader.readLine();if(line == null){return null;}
st = new StringTokenizer(line);}catch (Exception e){throw new RuntimeException();}}return st.nextToken();}
String nextLine() {String s=null;try{s=reader.readLine();}catch(IOException e){e.printStackTrace();}return s;}
int nextInt() {return Integer.parseInt(next());}
long nextLong() {return Long.parseLong(next());}
double nextDouble(){return Double.parseDouble(next());}
char nextChar() {return next().charAt(0);}
int[] nextIntArray(int n) {int[] a= new int[n]; int i=0;while(i<n){a[i++]=nextInt();} return a;}
long[] nextLongArray(int n) {long[]a= new long[n]; int i=0;while(i<n){a[i++]=nextLong();} return a;}
int[] nextIntArrayOneBased(int n) {int[] a= new int[n+1]; int i=1;while(i<=n){a[i++]=nextInt();} return a;}
long[] nextLongArrayOneBased(int n){long[]a= new long[n+1];int i=1;while(i<=n){a[i++]=nextLong();}return a;}
void close(){try{reader.close();}catch(IOException e){e.printStackTrace();}}
}
/************************ TEMPLATE ENDS HERE ************************/
}
</CODE>
<EVALUATION_RUBRIC>
- O(n): The time complexity increases proportionally to the input size n in a linear manner.
- O(n^3): The time complexity scales proportionally to the cube of the input size.
- O(log(n)): The time complexity increases logarithmically in relation to the input size.
- non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially.
- O(nlog(n)): The time complexity combines linear and logarithmic growth factors.
- O(1): The time complexity is constant to the input size n.
- O(n^2): The time complexity grows proportionally to the square of the input size.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n.
</TASK>
<CODE>
import java.util.*;
import java.io.*;
public class ASimpleTask
{
/************************ SOLUTION STARTS HERE ***********************/
private static void solve(FastScanner s1, PrintWriter out){
int V = s1.nextInt();
int E = s1.nextInt();
int graph[] = new int[V];
long DP[][] = new long[1 << V][V];
while(E-->0) {
int u = s1.nextInt() - 1;
int v = s1.nextInt() - 1;
graph[u] |= (1 << v);
graph[v] |= (1 << u);
}
for(int i=0;i<V;i++)
DP[1 << i][i] = 1;
for(int mask = 1 , end = 1 << V;mask < end;mask++) {
for(int set = mask;Integer.bitCount(set) > 1;set ^= Integer.highestOneBit(set)) {
int u = Integer.numberOfTrailingZeros(Integer.highestOneBit(set));
for(int fromSet = mask ^ (1 << u);fromSet > 0; fromSet ^= Integer.lowestOneBit(fromSet)) {
int v = Integer.numberOfTrailingZeros(fromSet);
// System.out.printf("mask = %s , u = %d , v = %d\n" , Integer.toBinaryString(mask) , u , v);
if((graph[u] & (1 << v)) != 0)
DP[mask][u] += DP[mask ^ (1 << u)][v];
}
}
}
long totalCycles = 0;
for(int mask = 1 , end = 1 << V;mask < end;mask++) {
if(Integer.bitCount(mask) >= 3) {
int start = Integer.numberOfTrailingZeros(mask);
for(int set = mask;Integer.bitCount(set) > 1;set ^= Integer.highestOneBit(set)) {
int u = Integer.numberOfTrailingZeros(Integer.highestOneBit(set));
if((graph[u] & (1 << start)) != 0)
totalCycles += DP[mask][u];
}
}
}
totalCycles /= 2;
/* for(long l[] : DP)
out.println(Arrays.toString(l));*/
out.println(totalCycles);
}
/************************ SOLUTION ENDS HERE ************************/
/************************ TEMPLATE STARTS HERE *********************/
public static void main(String []args) throws IOException {
FastScanner in = new FastScanner(System.in);
PrintWriter out =
new PrintWriter(new BufferedWriter(new OutputStreamWriter(System.out)), false);
solve(in, out);
in.close();
out.close();
}
static class FastScanner{
BufferedReader reader;
StringTokenizer st;
FastScanner(InputStream stream){reader=new BufferedReader(new InputStreamReader(stream));st=null;}
String next()
{while(st == null || !st.hasMoreTokens()){try{String line = reader.readLine();if(line == null){return null;}
st = new StringTokenizer(line);}catch (Exception e){throw new RuntimeException();}}return st.nextToken();}
String nextLine() {String s=null;try{s=reader.readLine();}catch(IOException e){e.printStackTrace();}return s;}
int nextInt() {return Integer.parseInt(next());}
long nextLong() {return Long.parseLong(next());}
double nextDouble(){return Double.parseDouble(next());}
char nextChar() {return next().charAt(0);}
int[] nextIntArray(int n) {int[] a= new int[n]; int i=0;while(i<n){a[i++]=nextInt();} return a;}
long[] nextLongArray(int n) {long[]a= new long[n]; int i=0;while(i<n){a[i++]=nextLong();} return a;}
int[] nextIntArrayOneBased(int n) {int[] a= new int[n+1]; int i=1;while(i<=n){a[i++]=nextInt();} return a;}
long[] nextLongArrayOneBased(int n){long[]a= new long[n+1];int i=1;while(i<=n){a[i++]=nextLong();}return a;}
void close(){try{reader.close();}catch(IOException e){e.printStackTrace();}}
}
/************************ TEMPLATE ENDS HERE ************************/
}
</CODE>
<EVALUATION_RUBRIC>
- O(n^3): The execution time ascends in proportion to the cube of the input size n.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- others: The time complexity does not fit to any of the given categories or is ambiguous.
- O(n^2): The execution time ascends in proportion to the square of the input size n.
- O(n): The execution time ascends in a one-to-one ratio with the input size n.
- O(1): The execution time is unaffected by the size of the input n.
- O(log(n)): The execution time ascends in proportion to the logarithm of the input size n.
- O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
| 1,287
| 4,336
|
250
|
import java.io.*;
import java.math.*;
import java.util.*;
// author @mdazmat9
public class codeforces{
public static void main(String[] args) throws IOException {
Scanner sc = new Scanner(System.in);
PrintWriter out = new PrintWriter(System.out);
int test = 1;
for (int ind = 0; ind < test; ind++) {
int [] a=new int[3];
a[0]=sc.nextInt();
a[1]=sc.nextInt();
a[2]=sc.nextInt();
Arrays.sort(a);
int k1=a[0];
int k2=a[1];
int k3=a[2];
if(k1==1 || k2==1 || k3==1){
out.println("YES");
}
else if((k1==2 && k2==2)||(k2==2 && k3==2)){
out.println("YES");
}
else if(k1==3 && k2==3 && k3==3){
out.println("YES");
}
else if(k1==2 && k2==4 && k3==4){
out.println("YES");
}
else
out.println("NO");
}
out.flush();
}
static void shuffle(int[] a) {
int n = a.length;
for(int i = 0; i < n; i++) {
int r = i + (int) (Math.random() * (n - i));
int tmp = a[i];
a[i] = a[r];
a[r] = tmp;
}
}
static long gcd(long a , long b)
{
if(b == 0)
return a;
return gcd(b , a % b);
}
}
class Scanner {
public BufferedReader reader;
public StringTokenizer st;
public Scanner(InputStream stream) {
reader = new BufferedReader(new InputStreamReader(stream));
st = null;
}
public String next() {
while (st == null || !st.hasMoreTokens()) {
try {
String line = reader.readLine();
if (line == null) return null;
st = new StringTokenizer(line);
} catch (Exception e) {
throw (new RuntimeException());
}
}
return st.nextToken();
}
public int nextInt() {
return Integer.parseInt(next());
}
public long nextLong() {
return Long.parseLong(next());
}
public double nextDouble() {
return Double.parseDouble(next());
}
}
class OutputWriter {
BufferedWriter writer;
public OutputWriter(OutputStream stream) {
writer = new BufferedWriter(new OutputStreamWriter(stream));
}
public void print(int i) throws IOException {
writer.write(i);
}
public void print(String s) throws IOException {
writer.write(s);
}
public void print(char[] c) throws IOException {
writer.write(c);
}
public void close() throws IOException {
writer.close();
}
}
|
O(1)
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Determine the worst-case time complexity category of a given Java code based on input size n.
</TASK>
<CODE>
import java.io.*;
import java.math.*;
import java.util.*;
// author @mdazmat9
public class codeforces{
public static void main(String[] args) throws IOException {
Scanner sc = new Scanner(System.in);
PrintWriter out = new PrintWriter(System.out);
int test = 1;
for (int ind = 0; ind < test; ind++) {
int [] a=new int[3];
a[0]=sc.nextInt();
a[1]=sc.nextInt();
a[2]=sc.nextInt();
Arrays.sort(a);
int k1=a[0];
int k2=a[1];
int k3=a[2];
if(k1==1 || k2==1 || k3==1){
out.println("YES");
}
else if((k1==2 && k2==2)||(k2==2 && k3==2)){
out.println("YES");
}
else if(k1==3 && k2==3 && k3==3){
out.println("YES");
}
else if(k1==2 && k2==4 && k3==4){
out.println("YES");
}
else
out.println("NO");
}
out.flush();
}
static void shuffle(int[] a) {
int n = a.length;
for(int i = 0; i < n; i++) {
int r = i + (int) (Math.random() * (n - i));
int tmp = a[i];
a[i] = a[r];
a[r] = tmp;
}
}
static long gcd(long a , long b)
{
if(b == 0)
return a;
return gcd(b , a % b);
}
}
class Scanner {
public BufferedReader reader;
public StringTokenizer st;
public Scanner(InputStream stream) {
reader = new BufferedReader(new InputStreamReader(stream));
st = null;
}
public String next() {
while (st == null || !st.hasMoreTokens()) {
try {
String line = reader.readLine();
if (line == null) return null;
st = new StringTokenizer(line);
} catch (Exception e) {
throw (new RuntimeException());
}
}
return st.nextToken();
}
public int nextInt() {
return Integer.parseInt(next());
}
public long nextLong() {
return Long.parseLong(next());
}
public double nextDouble() {
return Double.parseDouble(next());
}
}
class OutputWriter {
BufferedWriter writer;
public OutputWriter(OutputStream stream) {
writer = new BufferedWriter(new OutputStreamWriter(stream));
}
public void print(int i) throws IOException {
writer.write(i);
}
public void print(String s) throws IOException {
writer.write(s);
}
public void print(char[] c) throws IOException {
writer.write(c);
}
public void close() throws IOException {
writer.close();
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(nlog(n)): The time complexity combines linear and logarithmic growth factors.
- O(1): The time complexity is constant to the input size n.
- O(log(n)): The time complexity increases logarithmically in relation to the input size.
- O(n): The time complexity increases proportionally to the input size n in a linear manner.
- O(n^3): The time complexity scales proportionally to the cube of the input size.
- O(n^2): The time complexity grows proportionally to the square of the input size.
- non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n.
</TASK>
<CODE>
import java.io.*;
import java.math.*;
import java.util.*;
// author @mdazmat9
public class codeforces{
public static void main(String[] args) throws IOException {
Scanner sc = new Scanner(System.in);
PrintWriter out = new PrintWriter(System.out);
int test = 1;
for (int ind = 0; ind < test; ind++) {
int [] a=new int[3];
a[0]=sc.nextInt();
a[1]=sc.nextInt();
a[2]=sc.nextInt();
Arrays.sort(a);
int k1=a[0];
int k2=a[1];
int k3=a[2];
if(k1==1 || k2==1 || k3==1){
out.println("YES");
}
else if((k1==2 && k2==2)||(k2==2 && k3==2)){
out.println("YES");
}
else if(k1==3 && k2==3 && k3==3){
out.println("YES");
}
else if(k1==2 && k2==4 && k3==4){
out.println("YES");
}
else
out.println("NO");
}
out.flush();
}
static void shuffle(int[] a) {
int n = a.length;
for(int i = 0; i < n; i++) {
int r = i + (int) (Math.random() * (n - i));
int tmp = a[i];
a[i] = a[r];
a[r] = tmp;
}
}
static long gcd(long a , long b)
{
if(b == 0)
return a;
return gcd(b , a % b);
}
}
class Scanner {
public BufferedReader reader;
public StringTokenizer st;
public Scanner(InputStream stream) {
reader = new BufferedReader(new InputStreamReader(stream));
st = null;
}
public String next() {
while (st == null || !st.hasMoreTokens()) {
try {
String line = reader.readLine();
if (line == null) return null;
st = new StringTokenizer(line);
} catch (Exception e) {
throw (new RuntimeException());
}
}
return st.nextToken();
}
public int nextInt() {
return Integer.parseInt(next());
}
public long nextLong() {
return Long.parseLong(next());
}
public double nextDouble() {
return Double.parseDouble(next());
}
}
class OutputWriter {
BufferedWriter writer;
public OutputWriter(OutputStream stream) {
writer = new BufferedWriter(new OutputStreamWriter(stream));
}
public void print(int i) throws IOException {
writer.write(i);
}
public void print(String s) throws IOException {
writer.write(s);
}
public void print(char[] c) throws IOException {
writer.write(c);
}
public void close() throws IOException {
writer.close();
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially.
- O(n): The execution time ascends in a one-to-one ratio with the input size n.
- others: The time complexity does not fit to any of the given categories or is ambiguous.
- O(log(n)): The execution time ascends in proportion to the logarithm of the input size n.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- O(n^3): The execution time ascends in proportion to the cube of the input size n.
- O(n^2): The execution time ascends in proportion to the square of the input size n.
- O(1): The execution time is unaffected by the size of the input n.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
| 958
| 250
|
3,992
|
import java.util.*;
import java.lang.*;
import java.math.*;
import java.io.*;
import static java.lang.Math.*;
import static java.util.Arrays.*;
import static java.util.Collections.*;
// Petya and Spiders
// 2012/08/15
public class P111C{
Scanner sc=new Scanner(System.in);
int INF=1<<28;
double EPS=1e-9;
int h, w;
void run(){
h=sc.nextInt();
w=sc.nextInt();
solve();
}
void solve(){
n=w*h;
g=new long[n];
int[] dx={0, 0, -1, 1};
int[] dy={-1, 1, 0, 0};
for(int y=0; y<h; y++){
for(int x=0; x<w; x++){
for(int k=0; k<4; k++){
int x2=x+dx[k];
int y2=y+dy[k];
if(x2>=0&&x2<w&&y2>=0&&y2<h){
g[y*w+x]|=1L<<(y2*w+x2);
}
}
}
}
mds=(1L<<n)-1;
mds(0, 0, 0);
println((n-Long.bitCount(mds))+"");
}
int n;
long[] g;
long mds;
void mds(long choosed, long removed, long covered){
if(covered==((1L<<n)-1)){
mds=choosed;
return;
}
if(Long.bitCount(choosed)>=Long.bitCount(mds)-1)
return;
long s=covered;
for(long remained=~removed&((1L<<n)-1); remained!=0; remained&=remained-1){
int i=Long.numberOfTrailingZeros(remained);
s|=(1L<<i)|g[i];
}
if(s!=((1L<<n)-1))
return;
int k=-1;
for(long remained=~removed&((1L<<n)-1); remained!=0; remained&=remained-1){
int i=Long.numberOfTrailingZeros(remained);
if((covered>>>i&1)==1){
if(Long.bitCount(g[i]&~covered)<=1){
mds(choosed, removed|(1L<<i), covered);
return;
}
}else{
if(Long.bitCount(g[i]&~removed)==0){
mds(choosed|(1L<<i), removed|(1L<<i), covered|(1L<<i)|g[i]);
return;
}else if(Long.bitCount(g[i]&~removed)==1
&&(g[i]&(~removed|~covered))==(g[i]&~removed)){
int j=Long.numberOfTrailingZeros(g[i]&~removed);
mds(choosed|(1L<<j), removed|(1L<<i)|(1L<<j), covered
|(1L<<j)|g[j]);
return;
}
}
if(k==-1||Long.bitCount(g[i]&~covered)>Long.bitCount(g[k]&~covered))
k=i;
}
if(k==-1)
return;
mds(choosed|(1L<<k), removed|(1L<<k), covered|(1L<<k)|g[k]);
mds(choosed, removed|(1L<<k), covered);
}
void println(String s){
System.out.println(s);
}
void debug(Object... os){
System.err.println(Arrays.deepToString(os));
}
public static void main(String[] args){
Locale.setDefault(Locale.US);
new P111C().run();
}
}
|
non-polynomial
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Classify the following Java code's worst-case time complexity according to its relationship to the input size n.
</TASK>
<CODE>
import java.util.*;
import java.lang.*;
import java.math.*;
import java.io.*;
import static java.lang.Math.*;
import static java.util.Arrays.*;
import static java.util.Collections.*;
// Petya and Spiders
// 2012/08/15
public class P111C{
Scanner sc=new Scanner(System.in);
int INF=1<<28;
double EPS=1e-9;
int h, w;
void run(){
h=sc.nextInt();
w=sc.nextInt();
solve();
}
void solve(){
n=w*h;
g=new long[n];
int[] dx={0, 0, -1, 1};
int[] dy={-1, 1, 0, 0};
for(int y=0; y<h; y++){
for(int x=0; x<w; x++){
for(int k=0; k<4; k++){
int x2=x+dx[k];
int y2=y+dy[k];
if(x2>=0&&x2<w&&y2>=0&&y2<h){
g[y*w+x]|=1L<<(y2*w+x2);
}
}
}
}
mds=(1L<<n)-1;
mds(0, 0, 0);
println((n-Long.bitCount(mds))+"");
}
int n;
long[] g;
long mds;
void mds(long choosed, long removed, long covered){
if(covered==((1L<<n)-1)){
mds=choosed;
return;
}
if(Long.bitCount(choosed)>=Long.bitCount(mds)-1)
return;
long s=covered;
for(long remained=~removed&((1L<<n)-1); remained!=0; remained&=remained-1){
int i=Long.numberOfTrailingZeros(remained);
s|=(1L<<i)|g[i];
}
if(s!=((1L<<n)-1))
return;
int k=-1;
for(long remained=~removed&((1L<<n)-1); remained!=0; remained&=remained-1){
int i=Long.numberOfTrailingZeros(remained);
if((covered>>>i&1)==1){
if(Long.bitCount(g[i]&~covered)<=1){
mds(choosed, removed|(1L<<i), covered);
return;
}
}else{
if(Long.bitCount(g[i]&~removed)==0){
mds(choosed|(1L<<i), removed|(1L<<i), covered|(1L<<i)|g[i]);
return;
}else if(Long.bitCount(g[i]&~removed)==1
&&(g[i]&(~removed|~covered))==(g[i]&~removed)){
int j=Long.numberOfTrailingZeros(g[i]&~removed);
mds(choosed|(1L<<j), removed|(1L<<i)|(1L<<j), covered
|(1L<<j)|g[j]);
return;
}
}
if(k==-1||Long.bitCount(g[i]&~covered)>Long.bitCount(g[k]&~covered))
k=i;
}
if(k==-1)
return;
mds(choosed|(1L<<k), removed|(1L<<k), covered|(1L<<k)|g[k]);
mds(choosed, removed|(1L<<k), covered);
}
void println(String s){
System.out.println(s);
}
void debug(Object... os){
System.err.println(Arrays.deepToString(os));
}
public static void main(String[] args){
Locale.setDefault(Locale.US);
new P111C().run();
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(nlog(n)): The running time increases with the product of n and logarithm of n.
- O(1): The running time does not change regardless of the input size n.
- O(n^2): The running time increases with the square of the input size n.
- O(log(n)): The running time increases with the logarithm of the input size n.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- O(n^3): The running time increases with the cube of the input size n.
- O(n): The running time grows linearly with the input size n.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n.
</TASK>
<CODE>
import java.util.*;
import java.lang.*;
import java.math.*;
import java.io.*;
import static java.lang.Math.*;
import static java.util.Arrays.*;
import static java.util.Collections.*;
// Petya and Spiders
// 2012/08/15
public class P111C{
Scanner sc=new Scanner(System.in);
int INF=1<<28;
double EPS=1e-9;
int h, w;
void run(){
h=sc.nextInt();
w=sc.nextInt();
solve();
}
void solve(){
n=w*h;
g=new long[n];
int[] dx={0, 0, -1, 1};
int[] dy={-1, 1, 0, 0};
for(int y=0; y<h; y++){
for(int x=0; x<w; x++){
for(int k=0; k<4; k++){
int x2=x+dx[k];
int y2=y+dy[k];
if(x2>=0&&x2<w&&y2>=0&&y2<h){
g[y*w+x]|=1L<<(y2*w+x2);
}
}
}
}
mds=(1L<<n)-1;
mds(0, 0, 0);
println((n-Long.bitCount(mds))+"");
}
int n;
long[] g;
long mds;
void mds(long choosed, long removed, long covered){
if(covered==((1L<<n)-1)){
mds=choosed;
return;
}
if(Long.bitCount(choosed)>=Long.bitCount(mds)-1)
return;
long s=covered;
for(long remained=~removed&((1L<<n)-1); remained!=0; remained&=remained-1){
int i=Long.numberOfTrailingZeros(remained);
s|=(1L<<i)|g[i];
}
if(s!=((1L<<n)-1))
return;
int k=-1;
for(long remained=~removed&((1L<<n)-1); remained!=0; remained&=remained-1){
int i=Long.numberOfTrailingZeros(remained);
if((covered>>>i&1)==1){
if(Long.bitCount(g[i]&~covered)<=1){
mds(choosed, removed|(1L<<i), covered);
return;
}
}else{
if(Long.bitCount(g[i]&~removed)==0){
mds(choosed|(1L<<i), removed|(1L<<i), covered|(1L<<i)|g[i]);
return;
}else if(Long.bitCount(g[i]&~removed)==1
&&(g[i]&(~removed|~covered))==(g[i]&~removed)){
int j=Long.numberOfTrailingZeros(g[i]&~removed);
mds(choosed|(1L<<j), removed|(1L<<i)|(1L<<j), covered
|(1L<<j)|g[j]);
return;
}
}
if(k==-1||Long.bitCount(g[i]&~covered)>Long.bitCount(g[k]&~covered))
k=i;
}
if(k==-1)
return;
mds(choosed|(1L<<k), removed|(1L<<k), covered|(1L<<k)|g[k]);
mds(choosed, removed|(1L<<k), covered);
}
void println(String s){
System.out.println(s);
}
void debug(Object... os){
System.err.println(Arrays.deepToString(os));
}
public static void main(String[] args){
Locale.setDefault(Locale.US);
new P111C().run();
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(n^2): The execution time ascends in proportion to the square of the input size n.
- others: The time complexity does not fit to any of the given categories or is ambiguous.
- O(log(n)): The execution time ascends in proportion to the logarithm of the input size n.
- O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially.
- O(1): The execution time is unaffected by the size of the input n.
- O(n^3): The execution time ascends in proportion to the cube of the input size n.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- O(n): The execution time ascends in a one-to-one ratio with the input size n.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
| 1,160
| 3,981
|
2,930
|
import java.util.*;
import static java.lang.Math.*;
import java.io.*;
public class SolutionB {
public static void main(String args[])throws IOException{
Scanner sc = new Scanner(System.in);
int a[] = new int[1501];
for(int i = 0; i < 3; i++){
a[sc.nextInt()]++;
}
if(a[1] > 0 || a[2] > 1 || a[3] > 2 || (a[4] == 2 && a[2] == 1)){
System.out.println("YES");
}else{
System.out.println("NO");
}
}
}
|
O(1)
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n.
</TASK>
<CODE>
import java.util.*;
import static java.lang.Math.*;
import java.io.*;
public class SolutionB {
public static void main(String args[])throws IOException{
Scanner sc = new Scanner(System.in);
int a[] = new int[1501];
for(int i = 0; i < 3; i++){
a[sc.nextInt()]++;
}
if(a[1] > 0 || a[2] > 1 || a[3] > 2 || (a[4] == 2 && a[2] == 1)){
System.out.println("YES");
}else{
System.out.println("NO");
}
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially.
- O(log(n)): The execution time ascends in proportion to the logarithm of the input size n.
- O(n^2): The execution time ascends in proportion to the square of the input size n.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- O(1): The execution time is unaffected by the size of the input n.
- O(n^3): The execution time ascends in proportion to the cube of the input size n.
- O(n): The execution time ascends in a one-to-one ratio with the input size n.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n.
</TASK>
<CODE>
import java.util.*;
import static java.lang.Math.*;
import java.io.*;
public class SolutionB {
public static void main(String args[])throws IOException{
Scanner sc = new Scanner(System.in);
int a[] = new int[1501];
for(int i = 0; i < 3; i++){
a[sc.nextInt()]++;
}
if(a[1] > 0 || a[2] > 1 || a[3] > 2 || (a[4] == 2 && a[2] == 1)){
System.out.println("YES");
}else{
System.out.println("NO");
}
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(n^3): The execution time ascends in proportion to the cube of the input size n.
- O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially.
- O(log(n)): The execution time ascends in proportion to the logarithm of the input size n.
- O(n^2): The execution time ascends in proportion to the square of the input size n.
- others: The time complexity does not fit to any of the given categories or is ambiguous.
- O(1): The execution time is unaffected by the size of the input n.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- O(n): The execution time ascends in a one-to-one ratio with the input size n.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
| 493
| 2,924
|
1,128
|
import java.io.*;
import java.util.*;
/**
* Road to 1600 raiting
*/
public class Main {
static class Task {
PrintWriter out;
int[] num = new int[3];
public void solve(MyScanner in, PrintWriter out) {
this.out = out;
long n = in.nextLong();
long s = in.nextLong();
long l = 1;
long r = n;
while (r - l > 5) {
long x = (l + r) / 2;
long ans = ans(x);
if (ans >= s) {
r = x;
} else {
l = x;
}
}
for (long i = l; i <= r; i++) {
if (ans(i) >= s) {
out.println((n - i + 1));
return;
}
}
out.println(0);
}
long ans(long n) {
long res = n;
while (n > 9) {
res -= n % 10;
n /= 10;
}
res -= n;
return res;
}
}
public static void main(String[] args) {
MyScanner in = new MyScanner();
PrintWriter out = new PrintWriter(System.out);
Task solver = new Task();
solver.solve(in, out);
out.close();
}
public static class MyScanner {
BufferedReader br;
StringTokenizer st;
public MyScanner() {
br = new BufferedReader(new InputStreamReader(System.in));
}
String next() {
while (st == null || !st.hasMoreElements()) {
try {
st = new StringTokenizer(br.readLine());
} catch (IOException e) {
e.printStackTrace();
}
}
return st.nextToken();
}
int nextInt() {
return Integer.parseInt(next());
}
long nextLong() {
return Long.parseLong(next());
}
double nextDouble() {
return Double.parseDouble(next());
}
String nextLine() {
String str = "";
try {
str = br.readLine();
} catch (IOException e) {
e.printStackTrace();
}
return str;
}
}
}
|
O(log(n))
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Classify the following Java code's worst-case time complexity according to its relationship to the input size n.
</TASK>
<CODE>
import java.io.*;
import java.util.*;
/**
* Road to 1600 raiting
*/
public class Main {
static class Task {
PrintWriter out;
int[] num = new int[3];
public void solve(MyScanner in, PrintWriter out) {
this.out = out;
long n = in.nextLong();
long s = in.nextLong();
long l = 1;
long r = n;
while (r - l > 5) {
long x = (l + r) / 2;
long ans = ans(x);
if (ans >= s) {
r = x;
} else {
l = x;
}
}
for (long i = l; i <= r; i++) {
if (ans(i) >= s) {
out.println((n - i + 1));
return;
}
}
out.println(0);
}
long ans(long n) {
long res = n;
while (n > 9) {
res -= n % 10;
n /= 10;
}
res -= n;
return res;
}
}
public static void main(String[] args) {
MyScanner in = new MyScanner();
PrintWriter out = new PrintWriter(System.out);
Task solver = new Task();
solver.solve(in, out);
out.close();
}
public static class MyScanner {
BufferedReader br;
StringTokenizer st;
public MyScanner() {
br = new BufferedReader(new InputStreamReader(System.in));
}
String next() {
while (st == null || !st.hasMoreElements()) {
try {
st = new StringTokenizer(br.readLine());
} catch (IOException e) {
e.printStackTrace();
}
}
return st.nextToken();
}
int nextInt() {
return Integer.parseInt(next());
}
long nextLong() {
return Long.parseLong(next());
}
double nextDouble() {
return Double.parseDouble(next());
}
String nextLine() {
String str = "";
try {
str = br.readLine();
} catch (IOException e) {
e.printStackTrace();
}
return str;
}
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(n^2): The running time increases with the square of the input size n.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- O(n): The running time grows linearly with the input size n.
- O(nlog(n)): The running time increases with the product of n and logarithm of n.
- O(log(n)): The running time increases with the logarithm of the input size n.
- O(n^3): The running time increases with the cube of the input size n.
- O(1): The running time does not change regardless of the input size n.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Classify the following Java code's worst-case time complexity according to its relationship to the input size n.
</TASK>
<CODE>
import java.io.*;
import java.util.*;
/**
* Road to 1600 raiting
*/
public class Main {
static class Task {
PrintWriter out;
int[] num = new int[3];
public void solve(MyScanner in, PrintWriter out) {
this.out = out;
long n = in.nextLong();
long s = in.nextLong();
long l = 1;
long r = n;
while (r - l > 5) {
long x = (l + r) / 2;
long ans = ans(x);
if (ans >= s) {
r = x;
} else {
l = x;
}
}
for (long i = l; i <= r; i++) {
if (ans(i) >= s) {
out.println((n - i + 1));
return;
}
}
out.println(0);
}
long ans(long n) {
long res = n;
while (n > 9) {
res -= n % 10;
n /= 10;
}
res -= n;
return res;
}
}
public static void main(String[] args) {
MyScanner in = new MyScanner();
PrintWriter out = new PrintWriter(System.out);
Task solver = new Task();
solver.solve(in, out);
out.close();
}
public static class MyScanner {
BufferedReader br;
StringTokenizer st;
public MyScanner() {
br = new BufferedReader(new InputStreamReader(System.in));
}
String next() {
while (st == null || !st.hasMoreElements()) {
try {
st = new StringTokenizer(br.readLine());
} catch (IOException e) {
e.printStackTrace();
}
}
return st.nextToken();
}
int nextInt() {
return Integer.parseInt(next());
}
long nextLong() {
return Long.parseLong(next());
}
double nextDouble() {
return Double.parseDouble(next());
}
String nextLine() {
String str = "";
try {
str = br.readLine();
} catch (IOException e) {
e.printStackTrace();
}
return str;
}
}
}
</CODE>
<EVALUATION_RUBRIC>
- others: The code does not clearly correspond to the listed classes or has an unclassified time complexity.
- O(n^3): The running time increases with the cube of the input size n.
- O(log(n)): The running time increases with the logarithm of the input size n.
- O(n^2): The running time increases with the square of the input size n.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- O(nlog(n)): The running time increases with the product of n and logarithm of n.
- O(n): The running time grows linearly with the input size n.
- O(1): The running time does not change regardless of the input size n.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
| 803
| 1,127
|
1,587
|
import java.io.OutputStreamWriter;
import java.io.BufferedWriter;
import java.util.Comparator;
import java.io.OutputStream;
import java.io.PrintWriter;
import java.io.Writer;
import java.io.IOException;
import java.util.Arrays;
import java.util.InputMismatchException;
import java.math.BigInteger;
import java.io.InputStream;
/**
* Built using CHelper plug-in
* Actual solution is at the top
* @author Egor Kulikov ([email protected])
*/
public class Main {
public static void main(String[] args) {
InputStream inputStream = System.in;
OutputStream outputStream = System.out;
InputReader in = new InputReader(inputStream);
OutputWriter out = new OutputWriter(outputStream);
TaskA solver = new TaskA();
solver.solve(1, in, out);
out.close();
}
}
class TaskA {
public void solve(int testNumber, InputReader in, OutputWriter out) {
int count = in.readInt();
int[] array = IOUtils.readIntArray(in, count);
int[] sorted = array.clone();
ArrayUtils.sort(sorted, IntComparator.DEFAULT);
int differs = 0;
for (int i = 0; i < count; i++) {
if (array[i] != sorted[i])
differs++;
}
if (differs <= 2)
out.printLine("YES");
else
out.printLine("NO");
}
}
class InputReader {
private InputStream stream;
private byte[] buf = new byte[1024];
private int curChar;
private int numChars;
private SpaceCharFilter filter;
public InputReader(InputStream stream) {
this.stream = stream;
}
public int read() {
if (numChars == -1)
throw new InputMismatchException();
if (curChar >= numChars) {
curChar = 0;
try {
numChars = stream.read(buf);
} catch (IOException e) {
throw new InputMismatchException();
}
if (numChars <= 0)
return -1;
}
return buf[curChar++];
}
public int readInt() {
int c = read();
while (isSpaceChar(c))
c = read();
int sgn = 1;
if (c == '-') {
sgn = -1;
c = read();
}
int res = 0;
do {
if (c < '0' || c > '9')
throw new InputMismatchException();
res *= 10;
res += c - '0';
c = read();
} while (!isSpaceChar(c));
return res * sgn;
}
public boolean isSpaceChar(int c) {
if (filter != null)
return filter.isSpaceChar(c);
return c == ' ' || c == '\n' || c == '\r' || c == '\t' || c == -1;
}
public interface SpaceCharFilter {
public boolean isSpaceChar(int ch);
}
}
class OutputWriter {
private final PrintWriter writer;
public OutputWriter(OutputStream outputStream) {
writer = new PrintWriter(new BufferedWriter(new OutputStreamWriter(outputStream)));
}
public OutputWriter(Writer writer) {
this.writer = new PrintWriter(writer);
}
public void print(Object...objects) {
for (int i = 0; i < objects.length; i++) {
if (i != 0)
writer.print(' ');
writer.print(objects[i]);
}
}
public void printLine(Object...objects) {
print(objects);
writer.println();
}
public void close() {
writer.close();
}
}
class IOUtils {
public static int[] readIntArray(InputReader in, int size) {
int[] array = new int[size];
for (int i = 0; i < size; i++)
array[i] = in.readInt();
return array;
}
}
class ArrayUtils {
private static int[] tempInt = new int[0];
public static int[] sort(int[] array, IntComparator comparator) {
return sort(array, 0, array.length, comparator);
}
public static int[] sort(int[] array, int from, int to, IntComparator comparator) {
ensureCapacityInt(to - from);
System.arraycopy(array, from, tempInt, 0, to - from);
sortImpl(array, from, to, tempInt, 0, to - from, comparator);
return array;
}
private static void ensureCapacityInt(int size) {
if (tempInt.length >= size)
return;
size = Math.max(size, tempInt.length << 1);
tempInt = new int[size];
}
private static void sortImpl(int[] array, int from, int to, int[] temp, int fromTemp, int toTemp, IntComparator comparator) {
if (to - from <= 1)
return;
int middle = (to - from) >> 1;
int tempMiddle = fromTemp + middle;
sortImpl(temp, fromTemp, tempMiddle, array, from, from + middle, comparator);
sortImpl(temp, tempMiddle, toTemp, array, from + middle, to, comparator);
int index = from;
int index1 = fromTemp;
int index2 = tempMiddle;
while (index1 < tempMiddle && index2 < toTemp) {
if (comparator.compare(temp[index1], temp[index2]) <= 0)
array[index++] = temp[index1++];
else
array[index++] = temp[index2++];
}
if (index1 != tempMiddle)
System.arraycopy(temp, index1, array, index, tempMiddle - index1);
if (index2 != toTemp)
System.arraycopy(temp, index2, array, index, toTemp - index2);
}
}
interface IntComparator {
public static final IntComparator DEFAULT = new IntComparator() {
public int compare(int first, int second) {
if (first < second)
return -1;
if (first > second)
return 1;
return 0;
}
};
public int compare(int first, int second);
}
|
O(nlog(n))
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n.
</TASK>
<CODE>
import java.io.OutputStreamWriter;
import java.io.BufferedWriter;
import java.util.Comparator;
import java.io.OutputStream;
import java.io.PrintWriter;
import java.io.Writer;
import java.io.IOException;
import java.util.Arrays;
import java.util.InputMismatchException;
import java.math.BigInteger;
import java.io.InputStream;
/**
* Built using CHelper plug-in
* Actual solution is at the top
* @author Egor Kulikov ([email protected])
*/
public class Main {
public static void main(String[] args) {
InputStream inputStream = System.in;
OutputStream outputStream = System.out;
InputReader in = new InputReader(inputStream);
OutputWriter out = new OutputWriter(outputStream);
TaskA solver = new TaskA();
solver.solve(1, in, out);
out.close();
}
}
class TaskA {
public void solve(int testNumber, InputReader in, OutputWriter out) {
int count = in.readInt();
int[] array = IOUtils.readIntArray(in, count);
int[] sorted = array.clone();
ArrayUtils.sort(sorted, IntComparator.DEFAULT);
int differs = 0;
for (int i = 0; i < count; i++) {
if (array[i] != sorted[i])
differs++;
}
if (differs <= 2)
out.printLine("YES");
else
out.printLine("NO");
}
}
class InputReader {
private InputStream stream;
private byte[] buf = new byte[1024];
private int curChar;
private int numChars;
private SpaceCharFilter filter;
public InputReader(InputStream stream) {
this.stream = stream;
}
public int read() {
if (numChars == -1)
throw new InputMismatchException();
if (curChar >= numChars) {
curChar = 0;
try {
numChars = stream.read(buf);
} catch (IOException e) {
throw new InputMismatchException();
}
if (numChars <= 0)
return -1;
}
return buf[curChar++];
}
public int readInt() {
int c = read();
while (isSpaceChar(c))
c = read();
int sgn = 1;
if (c == '-') {
sgn = -1;
c = read();
}
int res = 0;
do {
if (c < '0' || c > '9')
throw new InputMismatchException();
res *= 10;
res += c - '0';
c = read();
} while (!isSpaceChar(c));
return res * sgn;
}
public boolean isSpaceChar(int c) {
if (filter != null)
return filter.isSpaceChar(c);
return c == ' ' || c == '\n' || c == '\r' || c == '\t' || c == -1;
}
public interface SpaceCharFilter {
public boolean isSpaceChar(int ch);
}
}
class OutputWriter {
private final PrintWriter writer;
public OutputWriter(OutputStream outputStream) {
writer = new PrintWriter(new BufferedWriter(new OutputStreamWriter(outputStream)));
}
public OutputWriter(Writer writer) {
this.writer = new PrintWriter(writer);
}
public void print(Object...objects) {
for (int i = 0; i < objects.length; i++) {
if (i != 0)
writer.print(' ');
writer.print(objects[i]);
}
}
public void printLine(Object...objects) {
print(objects);
writer.println();
}
public void close() {
writer.close();
}
}
class IOUtils {
public static int[] readIntArray(InputReader in, int size) {
int[] array = new int[size];
for (int i = 0; i < size; i++)
array[i] = in.readInt();
return array;
}
}
class ArrayUtils {
private static int[] tempInt = new int[0];
public static int[] sort(int[] array, IntComparator comparator) {
return sort(array, 0, array.length, comparator);
}
public static int[] sort(int[] array, int from, int to, IntComparator comparator) {
ensureCapacityInt(to - from);
System.arraycopy(array, from, tempInt, 0, to - from);
sortImpl(array, from, to, tempInt, 0, to - from, comparator);
return array;
}
private static void ensureCapacityInt(int size) {
if (tempInt.length >= size)
return;
size = Math.max(size, tempInt.length << 1);
tempInt = new int[size];
}
private static void sortImpl(int[] array, int from, int to, int[] temp, int fromTemp, int toTemp, IntComparator comparator) {
if (to - from <= 1)
return;
int middle = (to - from) >> 1;
int tempMiddle = fromTemp + middle;
sortImpl(temp, fromTemp, tempMiddle, array, from, from + middle, comparator);
sortImpl(temp, tempMiddle, toTemp, array, from + middle, to, comparator);
int index = from;
int index1 = fromTemp;
int index2 = tempMiddle;
while (index1 < tempMiddle && index2 < toTemp) {
if (comparator.compare(temp[index1], temp[index2]) <= 0)
array[index++] = temp[index1++];
else
array[index++] = temp[index2++];
}
if (index1 != tempMiddle)
System.arraycopy(temp, index1, array, index, tempMiddle - index1);
if (index2 != toTemp)
System.arraycopy(temp, index2, array, index, toTemp - index2);
}
}
interface IntComparator {
public static final IntComparator DEFAULT = new IntComparator() {
public int compare(int first, int second) {
if (first < second)
return -1;
if (first > second)
return 1;
return 0;
}
};
public int compare(int first, int second);
}
</CODE>
<EVALUATION_RUBRIC>
- O(n^2): The execution time ascends in proportion to the square of the input size n.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- O(1): The execution time is unaffected by the size of the input n.
- O(n^3): The execution time ascends in proportion to the cube of the input size n.
- O(n): The execution time ascends in a one-to-one ratio with the input size n.
- O(log(n)): The execution time ascends in proportion to the logarithm of the input size n.
- O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n.
</TASK>
<CODE>
import java.io.OutputStreamWriter;
import java.io.BufferedWriter;
import java.util.Comparator;
import java.io.OutputStream;
import java.io.PrintWriter;
import java.io.Writer;
import java.io.IOException;
import java.util.Arrays;
import java.util.InputMismatchException;
import java.math.BigInteger;
import java.io.InputStream;
/**
* Built using CHelper plug-in
* Actual solution is at the top
* @author Egor Kulikov ([email protected])
*/
public class Main {
public static void main(String[] args) {
InputStream inputStream = System.in;
OutputStream outputStream = System.out;
InputReader in = new InputReader(inputStream);
OutputWriter out = new OutputWriter(outputStream);
TaskA solver = new TaskA();
solver.solve(1, in, out);
out.close();
}
}
class TaskA {
public void solve(int testNumber, InputReader in, OutputWriter out) {
int count = in.readInt();
int[] array = IOUtils.readIntArray(in, count);
int[] sorted = array.clone();
ArrayUtils.sort(sorted, IntComparator.DEFAULT);
int differs = 0;
for (int i = 0; i < count; i++) {
if (array[i] != sorted[i])
differs++;
}
if (differs <= 2)
out.printLine("YES");
else
out.printLine("NO");
}
}
class InputReader {
private InputStream stream;
private byte[] buf = new byte[1024];
private int curChar;
private int numChars;
private SpaceCharFilter filter;
public InputReader(InputStream stream) {
this.stream = stream;
}
public int read() {
if (numChars == -1)
throw new InputMismatchException();
if (curChar >= numChars) {
curChar = 0;
try {
numChars = stream.read(buf);
} catch (IOException e) {
throw new InputMismatchException();
}
if (numChars <= 0)
return -1;
}
return buf[curChar++];
}
public int readInt() {
int c = read();
while (isSpaceChar(c))
c = read();
int sgn = 1;
if (c == '-') {
sgn = -1;
c = read();
}
int res = 0;
do {
if (c < '0' || c > '9')
throw new InputMismatchException();
res *= 10;
res += c - '0';
c = read();
} while (!isSpaceChar(c));
return res * sgn;
}
public boolean isSpaceChar(int c) {
if (filter != null)
return filter.isSpaceChar(c);
return c == ' ' || c == '\n' || c == '\r' || c == '\t' || c == -1;
}
public interface SpaceCharFilter {
public boolean isSpaceChar(int ch);
}
}
class OutputWriter {
private final PrintWriter writer;
public OutputWriter(OutputStream outputStream) {
writer = new PrintWriter(new BufferedWriter(new OutputStreamWriter(outputStream)));
}
public OutputWriter(Writer writer) {
this.writer = new PrintWriter(writer);
}
public void print(Object...objects) {
for (int i = 0; i < objects.length; i++) {
if (i != 0)
writer.print(' ');
writer.print(objects[i]);
}
}
public void printLine(Object...objects) {
print(objects);
writer.println();
}
public void close() {
writer.close();
}
}
class IOUtils {
public static int[] readIntArray(InputReader in, int size) {
int[] array = new int[size];
for (int i = 0; i < size; i++)
array[i] = in.readInt();
return array;
}
}
class ArrayUtils {
private static int[] tempInt = new int[0];
public static int[] sort(int[] array, IntComparator comparator) {
return sort(array, 0, array.length, comparator);
}
public static int[] sort(int[] array, int from, int to, IntComparator comparator) {
ensureCapacityInt(to - from);
System.arraycopy(array, from, tempInt, 0, to - from);
sortImpl(array, from, to, tempInt, 0, to - from, comparator);
return array;
}
private static void ensureCapacityInt(int size) {
if (tempInt.length >= size)
return;
size = Math.max(size, tempInt.length << 1);
tempInt = new int[size];
}
private static void sortImpl(int[] array, int from, int to, int[] temp, int fromTemp, int toTemp, IntComparator comparator) {
if (to - from <= 1)
return;
int middle = (to - from) >> 1;
int tempMiddle = fromTemp + middle;
sortImpl(temp, fromTemp, tempMiddle, array, from, from + middle, comparator);
sortImpl(temp, tempMiddle, toTemp, array, from + middle, to, comparator);
int index = from;
int index1 = fromTemp;
int index2 = tempMiddle;
while (index1 < tempMiddle && index2 < toTemp) {
if (comparator.compare(temp[index1], temp[index2]) <= 0)
array[index++] = temp[index1++];
else
array[index++] = temp[index2++];
}
if (index1 != tempMiddle)
System.arraycopy(temp, index1, array, index, tempMiddle - index1);
if (index2 != toTemp)
System.arraycopy(temp, index2, array, index, toTemp - index2);
}
}
interface IntComparator {
public static final IntComparator DEFAULT = new IntComparator() {
public int compare(int first, int second) {
if (first < second)
return -1;
if (first > second)
return 1;
return 0;
}
};
public int compare(int first, int second);
}
</CODE>
<EVALUATION_RUBRIC>
- O(n): The execution time ascends in a one-to-one ratio with the input size n.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- O(log(n)): The execution time ascends in proportion to the logarithm of the input size n.
- O(n^3): The execution time ascends in proportion to the cube of the input size n.
- others: The time complexity does not fit to any of the given categories or is ambiguous.
- O(1): The execution time is unaffected by the size of the input n.
- O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially.
- O(n^2): The execution time ascends in proportion to the square of the input size n.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
| 1,676
| 1,584
|
3,476
|
import java.util.*;
public class P023A {
public static void main(String[] args)
{
Scanner in = new Scanner(System.in);
String line = in.next();
HashSet<String> hash = new HashSet<String>();
int ans = 0;
for (int len = line.length()-1; len > 0; --len)
{
for (int i = 0; i + len <= line.length(); ++i)
{
String sub = line.substring(i, i+len);
if (hash.contains(sub))
{
ans = Math.max(ans, sub.length());
}
hash.add(sub);
}
}
System.out.println(ans);
}
}
|
O(n^3)
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Determine the worst-case time complexity category of a given Java code based on input size n.
</TASK>
<CODE>
import java.util.*;
public class P023A {
public static void main(String[] args)
{
Scanner in = new Scanner(System.in);
String line = in.next();
HashSet<String> hash = new HashSet<String>();
int ans = 0;
for (int len = line.length()-1; len > 0; --len)
{
for (int i = 0; i + len <= line.length(); ++i)
{
String sub = line.substring(i, i+len);
if (hash.contains(sub))
{
ans = Math.max(ans, sub.length());
}
hash.add(sub);
}
}
System.out.println(ans);
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(n^3): The time complexity scales proportionally to the cube of the input size.
- O(n^2): The time complexity grows proportionally to the square of the input size.
- non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially.
- O(log(n)): The time complexity increases logarithmically in relation to the input size.
- O(nlog(n)): The time complexity combines linear and logarithmic growth factors.
- O(1): The time complexity is constant to the input size n.
- O(n): The time complexity increases proportionally to the input size n in a linear manner.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Classify the following Java code's worst-case time complexity according to its relationship to the input size n.
</TASK>
<CODE>
import java.util.*;
public class P023A {
public static void main(String[] args)
{
Scanner in = new Scanner(System.in);
String line = in.next();
HashSet<String> hash = new HashSet<String>();
int ans = 0;
for (int len = line.length()-1; len > 0; --len)
{
for (int i = 0; i + len <= line.length(); ++i)
{
String sub = line.substring(i, i+len);
if (hash.contains(sub))
{
ans = Math.max(ans, sub.length());
}
hash.add(sub);
}
}
System.out.println(ans);
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(n^3): The running time increases with the cube of the input size n.
- O(n^2): The running time increases with the square of the input size n.
- O(nlog(n)): The running time increases with the product of n and logarithm of n.
- O(1): The running time does not change regardless of the input size n.
- O(log(n)): The running time increases with the logarithm of the input size n.
- O(n): The running time grows linearly with the input size n.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- others: The code does not clearly correspond to the listed classes or has an unclassified time complexity.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
| 481
| 3,470
|
1,613
|
import java.io.IOException;
import java.util.Arrays;
import java.io.OutputStream;
import java.io.PrintWriter;
import java.util.Random;
import java.util.NoSuchElementException;
import java.util.TreeSet;
import java.util.Collection;
import java.io.InputStream;
/**
* Built using CHelper plug-in
* Actual solution is at the top
*/
public class Main {
public static void main(String[] args) {
InputStream inputStream = System.in;
OutputStream outputStream = System.out;
MyScanner in = new MyScanner(inputStream);
PrintWriter out = new PrintWriter(outputStream);
TaskA solver = new TaskA();
solver.solve(1, in, out);
out.close();
}
}
class TaskA {
public void solve(int testNumber, MyScanner in, PrintWriter out) {
int n = in.nextInt();
int[] as = new int[n];
for (int i = 0; i < n; i++) as[i] = in.nextInt();
int[] sorted = as.clone();
ArrayUtils.sort(sorted);
int diff = 0;
for (int i = 0; i < n; i++)if(as[i]!=sorted[i])diff++;
if(diff<=2)out.println("YES");
else out.println("NO");
}
}
class MyScanner {
private final InputStream in;
public MyScanner(InputStream in){
this.in = in;
}
public int nextInt(){
try{
int c=in.read();
if(c==-1) return c;
while(c!='-'&&(c<'0'||'9'<c)){
c=in.read();
if(c==-1) return c;
}
if(c=='-') return -nextInt();
int res=0;
do{
res*=10;
res+=c-'0';
c=in.read();
}while('0'<=c&&c<='9');
return res;
}catch(Exception e){
return -1;
}
}
}
class ArrayUtils {
public static void swap(int[] is, int i, int j) {
int t = is[i];
is[i] = is[j];
is[j] = t;
}
public static void shuffle(int[] S) {
Random rnd = r == null ? (r = new Random()) : r;
shuffle(S, rnd);
}
private static Random r;
private static void shuffle(int[] S, Random rnd) {
for (int i = S.length; i > 1; i--)
swap(S, i - 1, rnd.nextInt(i));
}
public static void sort(int[] a) {
shuffle(a);
Arrays.sort(a);
}
}
|
O(nlog(n))
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Classify the following Java code's worst-case time complexity according to its relationship to the input size n.
</TASK>
<CODE>
import java.io.IOException;
import java.util.Arrays;
import java.io.OutputStream;
import java.io.PrintWriter;
import java.util.Random;
import java.util.NoSuchElementException;
import java.util.TreeSet;
import java.util.Collection;
import java.io.InputStream;
/**
* Built using CHelper plug-in
* Actual solution is at the top
*/
public class Main {
public static void main(String[] args) {
InputStream inputStream = System.in;
OutputStream outputStream = System.out;
MyScanner in = new MyScanner(inputStream);
PrintWriter out = new PrintWriter(outputStream);
TaskA solver = new TaskA();
solver.solve(1, in, out);
out.close();
}
}
class TaskA {
public void solve(int testNumber, MyScanner in, PrintWriter out) {
int n = in.nextInt();
int[] as = new int[n];
for (int i = 0; i < n; i++) as[i] = in.nextInt();
int[] sorted = as.clone();
ArrayUtils.sort(sorted);
int diff = 0;
for (int i = 0; i < n; i++)if(as[i]!=sorted[i])diff++;
if(diff<=2)out.println("YES");
else out.println("NO");
}
}
class MyScanner {
private final InputStream in;
public MyScanner(InputStream in){
this.in = in;
}
public int nextInt(){
try{
int c=in.read();
if(c==-1) return c;
while(c!='-'&&(c<'0'||'9'<c)){
c=in.read();
if(c==-1) return c;
}
if(c=='-') return -nextInt();
int res=0;
do{
res*=10;
res+=c-'0';
c=in.read();
}while('0'<=c&&c<='9');
return res;
}catch(Exception e){
return -1;
}
}
}
class ArrayUtils {
public static void swap(int[] is, int i, int j) {
int t = is[i];
is[i] = is[j];
is[j] = t;
}
public static void shuffle(int[] S) {
Random rnd = r == null ? (r = new Random()) : r;
shuffle(S, rnd);
}
private static Random r;
private static void shuffle(int[] S, Random rnd) {
for (int i = S.length; i > 1; i--)
swap(S, i - 1, rnd.nextInt(i));
}
public static void sort(int[] a) {
shuffle(a);
Arrays.sort(a);
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(n^3): The running time increases with the cube of the input size n.
- O(log(n)): The running time increases with the logarithm of the input size n.
- O(n^2): The running time increases with the square of the input size n.
- O(1): The running time does not change regardless of the input size n.
- O(n): The running time grows linearly with the input size n.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- O(nlog(n)): The running time increases with the product of n and logarithm of n.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n.
</TASK>
<CODE>
import java.io.IOException;
import java.util.Arrays;
import java.io.OutputStream;
import java.io.PrintWriter;
import java.util.Random;
import java.util.NoSuchElementException;
import java.util.TreeSet;
import java.util.Collection;
import java.io.InputStream;
/**
* Built using CHelper plug-in
* Actual solution is at the top
*/
public class Main {
public static void main(String[] args) {
InputStream inputStream = System.in;
OutputStream outputStream = System.out;
MyScanner in = new MyScanner(inputStream);
PrintWriter out = new PrintWriter(outputStream);
TaskA solver = new TaskA();
solver.solve(1, in, out);
out.close();
}
}
class TaskA {
public void solve(int testNumber, MyScanner in, PrintWriter out) {
int n = in.nextInt();
int[] as = new int[n];
for (int i = 0; i < n; i++) as[i] = in.nextInt();
int[] sorted = as.clone();
ArrayUtils.sort(sorted);
int diff = 0;
for (int i = 0; i < n; i++)if(as[i]!=sorted[i])diff++;
if(diff<=2)out.println("YES");
else out.println("NO");
}
}
class MyScanner {
private final InputStream in;
public MyScanner(InputStream in){
this.in = in;
}
public int nextInt(){
try{
int c=in.read();
if(c==-1) return c;
while(c!='-'&&(c<'0'||'9'<c)){
c=in.read();
if(c==-1) return c;
}
if(c=='-') return -nextInt();
int res=0;
do{
res*=10;
res+=c-'0';
c=in.read();
}while('0'<=c&&c<='9');
return res;
}catch(Exception e){
return -1;
}
}
}
class ArrayUtils {
public static void swap(int[] is, int i, int j) {
int t = is[i];
is[i] = is[j];
is[j] = t;
}
public static void shuffle(int[] S) {
Random rnd = r == null ? (r = new Random()) : r;
shuffle(S, rnd);
}
private static Random r;
private static void shuffle(int[] S, Random rnd) {
for (int i = S.length; i > 1; i--)
swap(S, i - 1, rnd.nextInt(i));
}
public static void sort(int[] a) {
shuffle(a);
Arrays.sort(a);
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(log(n)): The execution time ascends in proportion to the logarithm of the input size n.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- O(n): The execution time ascends in a one-to-one ratio with the input size n.
- O(n^2): The execution time ascends in proportion to the square of the input size n.
- O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially.
- O(1): The execution time is unaffected by the size of the input n.
- O(n^3): The execution time ascends in proportion to the cube of the input size n.
- others: The time complexity does not fit to any of the given categories or is ambiguous.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
| 897
| 1,610
|
928
|
import java.io.*;
import java.lang.reflect.Array;
import java.math.BigInteger;
import java.net.Inet4Address;
import java.util.*;
import java.lang.*;
import java.util.HashMap;
import java.util.PriorityQueue;
public class templ implements Runnable{
static class pair implements Comparable
{
int f;
int s;
pair(int fi,int se)
{
f=fi;
s=se;
}
public int compareTo(Object o)//ascending order
{
pair pr=(pair)o;
if(s>pr.s)
return 1;
if(s==pr.s)
{
if(f>pr.f)
return 1;
else
return -1;
}
else
return -1;
}
public boolean equals(Object o)
{
pair ob=(pair)o;
int ff;
int ss;
if(o!=null)
{
ff=ob.f;
ss=ob.s;
if((ff==this.f)&&(ss==this.s))
return true;
}
return false;
}
public int hashCode()
{
return (this.f+" "+this.s).hashCode();
}
}
public class triplet implements Comparable
{
int f,t;
int s;
triplet(int f,int s,int t)
{
this.f=f;
this.s=s;
this.t=t;
}
public boolean equals(Object o)
{
triplet ob=(triplet)o;
int ff;
int ss;
int tt;
if(o!=null)
{
ff=ob.f;
ss=ob.s;
tt=ob.t;
if((ff==this.f)&&(ss==this.s)&&(tt==this.t))
return true;
}
return false;
}
public int hashCode()
{
return (this.f+" "+this.s+" "+this.t).hashCode();
}
public int compareTo(Object o)//ascending order
{
triplet tr=(triplet)o;
if(t>tr.t)
return 1;
else
return -1;
}
}
void merge1(int arr[], int l, int m, int r)
{
int n1 = m - l + 1;
int n2 = r - m;
int L[] = new int [n1];
int R[] = new int [n2];
for (int i=0; i<n1; ++i)
L[i] = arr[l + i];
for (int j=0; j<n2; ++j)
R[j] = arr[m + 1+ j];
int i = 0, j = 0;
int k = l;
while (i < n1 && j < n2)
{
if (L[i]<=R[j])
{
arr[k] = L[i];
i++;
}
else
{
arr[k] = R[j];
j++;
}
k++;
}
while (i < n1)
{
arr[k] = L[i];
i++;
k++;
}
while (j < n2)
{
arr[k] = R[j];
j++;
k++;
}
}
void sort1(int arr[], int l, int r)
{
if (l < r)
{
int m = (l+r)/2;
sort1(arr, l, m);
sort1(arr , m+1, r);
merge1(arr, l, m, r);
}
}
public static void main(String args[])throws Exception
{
new Thread(null,new templ(),"templ",1<<27).start();
}
public void run()
{
try
{
InputReader in = new InputReader(System.in);
PrintWriter out = new PrintWriter(System.out);
int n=in.ni();
int x=in.ni();
long l=1,r=n;
while(l<=r)
{
long mid=(l+r)/2;
long k=(mid*(mid+1))/2-(n-mid);
if(k==x)
{
out.println((n-mid));
break;
}
else if(k<x)
l=mid+1;
else
r=mid-1;
}
out.close();
}
catch(Exception e){
return;
}
}
static class InputReader {
private final InputStream stream;
private final byte[] buf = new byte[8192];
private int curChar, snumChars;
public InputReader(InputStream stream) {
this.stream = stream;
}
public int read() {
if (snumChars == -1)
throw new InputMismatchException();
if (curChar >= snumChars) {
curChar = 0;
try {
snumChars = stream.read(buf);
} catch (IOException e) {
throw new InputMismatchException();
}
if (snumChars <= 0)
return -1;
}
return buf[curChar++];
}
public int ni() {
int c = read();
while (isSpaceChar(c)) {
c = read();
}
int sgn = 1;
if (c == '-') {
sgn = -1;
c = read();
}
int res = 0;
do {
res *= 10;
res += c - '0';
c = read();
} while (!isSpaceChar(c));
return res * sgn;
}
public long nl() {
int c = read();
while (isSpaceChar(c)) {
c = read();
}
int sgn = 1;
if (c == '-') {
sgn = -1;
c = read();
}
long res = 0;
do {
res *= 10;
res += c - '0';
c = read();
} while (!isSpaceChar(c));
return res * sgn;
}
public int[] nextIntArray(int n) {
int a[] = new int[n];
for (int i = 0; i < n; i++) {
a[i] = ni();
}
return a;
}
public String readString() {
int c = read();
while (isSpaceChar(c)) {
c = read();
}
StringBuilder res = new StringBuilder();
do {
res.appendCodePoint(c);
c = read();
} while (!isSpaceChar(c));
return res.toString();
}
public String nextLine() {
int c = read();
while (isSpaceChar(c))
c = read();
StringBuilder res = new StringBuilder();
do {
res.appendCodePoint(c);
c = read();
} while (!isEndOfLine(c));
return res.toString();
}
public boolean isSpaceChar(int c) {
return c == ' ' || c == '\n' || c == '\r' || c == '\t' || c == -1;
}
private boolean isEndOfLine(int c) {
return c == '\n' || c == '\r' || c == -1;
}
}
}
|
O(log(n))
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n.
</TASK>
<CODE>
import java.io.*;
import java.lang.reflect.Array;
import java.math.BigInteger;
import java.net.Inet4Address;
import java.util.*;
import java.lang.*;
import java.util.HashMap;
import java.util.PriorityQueue;
public class templ implements Runnable{
static class pair implements Comparable
{
int f;
int s;
pair(int fi,int se)
{
f=fi;
s=se;
}
public int compareTo(Object o)//ascending order
{
pair pr=(pair)o;
if(s>pr.s)
return 1;
if(s==pr.s)
{
if(f>pr.f)
return 1;
else
return -1;
}
else
return -1;
}
public boolean equals(Object o)
{
pair ob=(pair)o;
int ff;
int ss;
if(o!=null)
{
ff=ob.f;
ss=ob.s;
if((ff==this.f)&&(ss==this.s))
return true;
}
return false;
}
public int hashCode()
{
return (this.f+" "+this.s).hashCode();
}
}
public class triplet implements Comparable
{
int f,t;
int s;
triplet(int f,int s,int t)
{
this.f=f;
this.s=s;
this.t=t;
}
public boolean equals(Object o)
{
triplet ob=(triplet)o;
int ff;
int ss;
int tt;
if(o!=null)
{
ff=ob.f;
ss=ob.s;
tt=ob.t;
if((ff==this.f)&&(ss==this.s)&&(tt==this.t))
return true;
}
return false;
}
public int hashCode()
{
return (this.f+" "+this.s+" "+this.t).hashCode();
}
public int compareTo(Object o)//ascending order
{
triplet tr=(triplet)o;
if(t>tr.t)
return 1;
else
return -1;
}
}
void merge1(int arr[], int l, int m, int r)
{
int n1 = m - l + 1;
int n2 = r - m;
int L[] = new int [n1];
int R[] = new int [n2];
for (int i=0; i<n1; ++i)
L[i] = arr[l + i];
for (int j=0; j<n2; ++j)
R[j] = arr[m + 1+ j];
int i = 0, j = 0;
int k = l;
while (i < n1 && j < n2)
{
if (L[i]<=R[j])
{
arr[k] = L[i];
i++;
}
else
{
arr[k] = R[j];
j++;
}
k++;
}
while (i < n1)
{
arr[k] = L[i];
i++;
k++;
}
while (j < n2)
{
arr[k] = R[j];
j++;
k++;
}
}
void sort1(int arr[], int l, int r)
{
if (l < r)
{
int m = (l+r)/2;
sort1(arr, l, m);
sort1(arr , m+1, r);
merge1(arr, l, m, r);
}
}
public static void main(String args[])throws Exception
{
new Thread(null,new templ(),"templ",1<<27).start();
}
public void run()
{
try
{
InputReader in = new InputReader(System.in);
PrintWriter out = new PrintWriter(System.out);
int n=in.ni();
int x=in.ni();
long l=1,r=n;
while(l<=r)
{
long mid=(l+r)/2;
long k=(mid*(mid+1))/2-(n-mid);
if(k==x)
{
out.println((n-mid));
break;
}
else if(k<x)
l=mid+1;
else
r=mid-1;
}
out.close();
}
catch(Exception e){
return;
}
}
static class InputReader {
private final InputStream stream;
private final byte[] buf = new byte[8192];
private int curChar, snumChars;
public InputReader(InputStream stream) {
this.stream = stream;
}
public int read() {
if (snumChars == -1)
throw new InputMismatchException();
if (curChar >= snumChars) {
curChar = 0;
try {
snumChars = stream.read(buf);
} catch (IOException e) {
throw new InputMismatchException();
}
if (snumChars <= 0)
return -1;
}
return buf[curChar++];
}
public int ni() {
int c = read();
while (isSpaceChar(c)) {
c = read();
}
int sgn = 1;
if (c == '-') {
sgn = -1;
c = read();
}
int res = 0;
do {
res *= 10;
res += c - '0';
c = read();
} while (!isSpaceChar(c));
return res * sgn;
}
public long nl() {
int c = read();
while (isSpaceChar(c)) {
c = read();
}
int sgn = 1;
if (c == '-') {
sgn = -1;
c = read();
}
long res = 0;
do {
res *= 10;
res += c - '0';
c = read();
} while (!isSpaceChar(c));
return res * sgn;
}
public int[] nextIntArray(int n) {
int a[] = new int[n];
for (int i = 0; i < n; i++) {
a[i] = ni();
}
return a;
}
public String readString() {
int c = read();
while (isSpaceChar(c)) {
c = read();
}
StringBuilder res = new StringBuilder();
do {
res.appendCodePoint(c);
c = read();
} while (!isSpaceChar(c));
return res.toString();
}
public String nextLine() {
int c = read();
while (isSpaceChar(c))
c = read();
StringBuilder res = new StringBuilder();
do {
res.appendCodePoint(c);
c = read();
} while (!isEndOfLine(c));
return res.toString();
}
public boolean isSpaceChar(int c) {
return c == ' ' || c == '\n' || c == '\r' || c == '\t' || c == -1;
}
private boolean isEndOfLine(int c) {
return c == '\n' || c == '\r' || c == -1;
}
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially.
- O(n^3): The execution time ascends in proportion to the cube of the input size n.
- O(log(n)): The execution time ascends in proportion to the logarithm of the input size n.
- O(n^2): The execution time ascends in proportion to the square of the input size n.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- O(n): The execution time ascends in a one-to-one ratio with the input size n.
- O(1): The execution time is unaffected by the size of the input n.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Determine the worst-case time complexity category of a given Java code based on input size n.
</TASK>
<CODE>
import java.io.*;
import java.lang.reflect.Array;
import java.math.BigInteger;
import java.net.Inet4Address;
import java.util.*;
import java.lang.*;
import java.util.HashMap;
import java.util.PriorityQueue;
public class templ implements Runnable{
static class pair implements Comparable
{
int f;
int s;
pair(int fi,int se)
{
f=fi;
s=se;
}
public int compareTo(Object o)//ascending order
{
pair pr=(pair)o;
if(s>pr.s)
return 1;
if(s==pr.s)
{
if(f>pr.f)
return 1;
else
return -1;
}
else
return -1;
}
public boolean equals(Object o)
{
pair ob=(pair)o;
int ff;
int ss;
if(o!=null)
{
ff=ob.f;
ss=ob.s;
if((ff==this.f)&&(ss==this.s))
return true;
}
return false;
}
public int hashCode()
{
return (this.f+" "+this.s).hashCode();
}
}
public class triplet implements Comparable
{
int f,t;
int s;
triplet(int f,int s,int t)
{
this.f=f;
this.s=s;
this.t=t;
}
public boolean equals(Object o)
{
triplet ob=(triplet)o;
int ff;
int ss;
int tt;
if(o!=null)
{
ff=ob.f;
ss=ob.s;
tt=ob.t;
if((ff==this.f)&&(ss==this.s)&&(tt==this.t))
return true;
}
return false;
}
public int hashCode()
{
return (this.f+" "+this.s+" "+this.t).hashCode();
}
public int compareTo(Object o)//ascending order
{
triplet tr=(triplet)o;
if(t>tr.t)
return 1;
else
return -1;
}
}
void merge1(int arr[], int l, int m, int r)
{
int n1 = m - l + 1;
int n2 = r - m;
int L[] = new int [n1];
int R[] = new int [n2];
for (int i=0; i<n1; ++i)
L[i] = arr[l + i];
for (int j=0; j<n2; ++j)
R[j] = arr[m + 1+ j];
int i = 0, j = 0;
int k = l;
while (i < n1 && j < n2)
{
if (L[i]<=R[j])
{
arr[k] = L[i];
i++;
}
else
{
arr[k] = R[j];
j++;
}
k++;
}
while (i < n1)
{
arr[k] = L[i];
i++;
k++;
}
while (j < n2)
{
arr[k] = R[j];
j++;
k++;
}
}
void sort1(int arr[], int l, int r)
{
if (l < r)
{
int m = (l+r)/2;
sort1(arr, l, m);
sort1(arr , m+1, r);
merge1(arr, l, m, r);
}
}
public static void main(String args[])throws Exception
{
new Thread(null,new templ(),"templ",1<<27).start();
}
public void run()
{
try
{
InputReader in = new InputReader(System.in);
PrintWriter out = new PrintWriter(System.out);
int n=in.ni();
int x=in.ni();
long l=1,r=n;
while(l<=r)
{
long mid=(l+r)/2;
long k=(mid*(mid+1))/2-(n-mid);
if(k==x)
{
out.println((n-mid));
break;
}
else if(k<x)
l=mid+1;
else
r=mid-1;
}
out.close();
}
catch(Exception e){
return;
}
}
static class InputReader {
private final InputStream stream;
private final byte[] buf = new byte[8192];
private int curChar, snumChars;
public InputReader(InputStream stream) {
this.stream = stream;
}
public int read() {
if (snumChars == -1)
throw new InputMismatchException();
if (curChar >= snumChars) {
curChar = 0;
try {
snumChars = stream.read(buf);
} catch (IOException e) {
throw new InputMismatchException();
}
if (snumChars <= 0)
return -1;
}
return buf[curChar++];
}
public int ni() {
int c = read();
while (isSpaceChar(c)) {
c = read();
}
int sgn = 1;
if (c == '-') {
sgn = -1;
c = read();
}
int res = 0;
do {
res *= 10;
res += c - '0';
c = read();
} while (!isSpaceChar(c));
return res * sgn;
}
public long nl() {
int c = read();
while (isSpaceChar(c)) {
c = read();
}
int sgn = 1;
if (c == '-') {
sgn = -1;
c = read();
}
long res = 0;
do {
res *= 10;
res += c - '0';
c = read();
} while (!isSpaceChar(c));
return res * sgn;
}
public int[] nextIntArray(int n) {
int a[] = new int[n];
for (int i = 0; i < n; i++) {
a[i] = ni();
}
return a;
}
public String readString() {
int c = read();
while (isSpaceChar(c)) {
c = read();
}
StringBuilder res = new StringBuilder();
do {
res.appendCodePoint(c);
c = read();
} while (!isSpaceChar(c));
return res.toString();
}
public String nextLine() {
int c = read();
while (isSpaceChar(c))
c = read();
StringBuilder res = new StringBuilder();
do {
res.appendCodePoint(c);
c = read();
} while (!isEndOfLine(c));
return res.toString();
}
public boolean isSpaceChar(int c) {
return c == ' ' || c == '\n' || c == '\r' || c == '\t' || c == -1;
}
private boolean isEndOfLine(int c) {
return c == '\n' || c == '\r' || c == -1;
}
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(n): The time complexity increases proportionally to the input size n in a linear manner.
- others: The time complexity does not fit any of the above categories or cannot be clearly classified.
- non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially.
- O(n^2): The time complexity grows proportionally to the square of the input size.
- O(log(n)): The time complexity increases logarithmically in relation to the input size.
- O(n^3): The time complexity scales proportionally to the cube of the input size.
- O(1): The time complexity is constant to the input size n.
- O(nlog(n)): The time complexity combines linear and logarithmic growth factors.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
| 1,917
| 927
|
803
|
import java.io.*;
import java.util.*;
public class Main implements Runnable {
public void _main() throws IOException {
int n = nextInt();
int k = nextInt();
boolean[] p = new boolean[n + 1];
Arrays.fill(p, true);
List<Integer> primes = new ArrayList<Integer>();
for (int i = 2; i <= n; i++)
if (p[i]) {
primes.add(i);
for (int j = i + i; j <= n; j += i)
p[j] = false;
}
boolean[] ok = new boolean[n + 1];
for (int i = 0; i < primes.size() - 1; i++) {
int x = primes.get(i);
int y = primes.get(i + 1);
if (x + y + 1 <= n)
ok[x + y + 1] = true;
}
for (int i = 2; i <= n; i++)
if (p[i] && ok[i]) {
--k;
}
out.println(k <= 0 ? "YES" : "NO");
}
private BufferedReader in;
private PrintWriter out;
private StringTokenizer st;
private String next() throws IOException {
while (st == null || !st.hasMoreTokens()) {
String rl = in.readLine();
if (rl == null)
return null;
st = new StringTokenizer(rl);
}
return st.nextToken();
}
private int nextInt() throws IOException {
return Integer.parseInt(next());
}
private long nextLong() throws IOException {
return Long.parseLong(next());
}
private double nextDouble() throws IOException {
return Double.parseDouble(next());
}
public static void main(String[] args) {
new Thread(new Main()).start();
}
public void run() {
try {
in = new BufferedReader(new InputStreamReader(System.in));
out = new PrintWriter(System.out);
_main();
out.close();
} catch (Exception e) {
e.printStackTrace();
System.exit(202);
}
}
}
|
O(n)
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Classify the following Java code's worst-case time complexity according to its relationship to the input size n.
</TASK>
<CODE>
import java.io.*;
import java.util.*;
public class Main implements Runnable {
public void _main() throws IOException {
int n = nextInt();
int k = nextInt();
boolean[] p = new boolean[n + 1];
Arrays.fill(p, true);
List<Integer> primes = new ArrayList<Integer>();
for (int i = 2; i <= n; i++)
if (p[i]) {
primes.add(i);
for (int j = i + i; j <= n; j += i)
p[j] = false;
}
boolean[] ok = new boolean[n + 1];
for (int i = 0; i < primes.size() - 1; i++) {
int x = primes.get(i);
int y = primes.get(i + 1);
if (x + y + 1 <= n)
ok[x + y + 1] = true;
}
for (int i = 2; i <= n; i++)
if (p[i] && ok[i]) {
--k;
}
out.println(k <= 0 ? "YES" : "NO");
}
private BufferedReader in;
private PrintWriter out;
private StringTokenizer st;
private String next() throws IOException {
while (st == null || !st.hasMoreTokens()) {
String rl = in.readLine();
if (rl == null)
return null;
st = new StringTokenizer(rl);
}
return st.nextToken();
}
private int nextInt() throws IOException {
return Integer.parseInt(next());
}
private long nextLong() throws IOException {
return Long.parseLong(next());
}
private double nextDouble() throws IOException {
return Double.parseDouble(next());
}
public static void main(String[] args) {
new Thread(new Main()).start();
}
public void run() {
try {
in = new BufferedReader(new InputStreamReader(System.in));
out = new PrintWriter(System.out);
_main();
out.close();
} catch (Exception e) {
e.printStackTrace();
System.exit(202);
}
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(n^2): The running time increases with the square of the input size n.
- O(n^3): The running time increases with the cube of the input size n.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- O(n): The running time grows linearly with the input size n.
- O(nlog(n)): The running time increases with the product of n and logarithm of n.
- O(1): The running time does not change regardless of the input size n.
- O(log(n)): The running time increases with the logarithm of the input size n.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Classify the following Java code's worst-case time complexity according to its relationship to the input size n.
</TASK>
<CODE>
import java.io.*;
import java.util.*;
public class Main implements Runnable {
public void _main() throws IOException {
int n = nextInt();
int k = nextInt();
boolean[] p = new boolean[n + 1];
Arrays.fill(p, true);
List<Integer> primes = new ArrayList<Integer>();
for (int i = 2; i <= n; i++)
if (p[i]) {
primes.add(i);
for (int j = i + i; j <= n; j += i)
p[j] = false;
}
boolean[] ok = new boolean[n + 1];
for (int i = 0; i < primes.size() - 1; i++) {
int x = primes.get(i);
int y = primes.get(i + 1);
if (x + y + 1 <= n)
ok[x + y + 1] = true;
}
for (int i = 2; i <= n; i++)
if (p[i] && ok[i]) {
--k;
}
out.println(k <= 0 ? "YES" : "NO");
}
private BufferedReader in;
private PrintWriter out;
private StringTokenizer st;
private String next() throws IOException {
while (st == null || !st.hasMoreTokens()) {
String rl = in.readLine();
if (rl == null)
return null;
st = new StringTokenizer(rl);
}
return st.nextToken();
}
private int nextInt() throws IOException {
return Integer.parseInt(next());
}
private long nextLong() throws IOException {
return Long.parseLong(next());
}
private double nextDouble() throws IOException {
return Double.parseDouble(next());
}
public static void main(String[] args) {
new Thread(new Main()).start();
}
public void run() {
try {
in = new BufferedReader(new InputStreamReader(System.in));
out = new PrintWriter(System.out);
_main();
out.close();
} catch (Exception e) {
e.printStackTrace();
System.exit(202);
}
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(n): The running time grows linearly with the input size n.
- O(log(n)): The running time increases with the logarithm of the input size n.
- O(1): The running time does not change regardless of the input size n.
- O(n^3): The running time increases with the cube of the input size n.
- O(n^2): The running time increases with the square of the input size n.
- others: The code does not clearly correspond to the listed classes or has an unclassified time complexity.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- O(nlog(n)): The running time increases with the product of n and logarithm of n.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
| 782
| 802
|
1,074
|
import java.io.BufferedReader;
import java.io.File;
import java.io.FileInputStream;
import java.io.IOException;
import java.io.InputStream;
import java.io.InputStreamReader;
import java.io.PrintStream;
import java.io.PrintWriter;
import java.util.ArrayList;
import java.util.StringTokenizer;
/**
* Created by timur on 28.03.15.
*/
public class TaskD {
boolean eof;
BufferedReader br;
StringTokenizer st;
PrintWriter out;
public static void main(String[] args) throws IOException {
new TaskD().run();
}
public String nextToken() {
while (st == null || !st.hasMoreTokens()) {
try {
st = new StringTokenizer(br.readLine());
} catch (Exception e) {
eof = true;
return "-1";
}
}
return st.nextToken();
}
public int nextInt() {
return Integer.parseInt(nextToken());
}
public long nextLong() {
return Long.parseLong(nextToken());
}
double nextDouble() {
return Double.parseDouble(nextToken());
}
String nextLine() throws IOException {
return br.readLine();
}
void run() throws IOException {
InputStream input = System.in;
PrintStream output = System.out;
try {
File f = new File("a.in");
if (f.exists() && f.canRead()) {
input = new FileInputStream(f);
output = new PrintStream("a.out");
}
} catch (Throwable e) {
}
br = new BufferedReader(new InputStreamReader(input));
out = new PrintWriter(output);
solve();
br.close();
out.close();
}
long md(long x, long y, long x1, long y1) {
return Math.abs(x - x1) + Math.abs(y - y1);
}
double md(double x, double y, double x1, double y1) {
return Math.abs(x - x1) + Math.abs(y - y1);
}
double ed(double x, double y, double x1, double y1) {
return Math.sqrt((x - x1) * (x - x1) + (y - y1) * (y - y1));
}
void solve() {
int t = nextInt();
long n, k;
int m = 34;
long[] res = new long[m];
res[1] = 0;
res[2] = 1;
for (int i = 3; i < m; i++) {
res[i] = res[i - 1] * 4L;
}
long[] l = new long[m];
long[] r = new long[m];
l[0] = 0;
l[1] = 1;
r[0] = 0;
r[1] = 1;
for (int i = 2; i < m; i++) {
l[i] = l[i - 1] * 2 + 1;
r[i] = r[i - 1] * 4;
}
long[] mi = new long[m];
long[] ma = new long[m];
for (int i = 1; i < m; i++) {
mi[i] = mi[i - 1] + l[i];
ma[i] = ma[i - 1] + r[i];
}
// for (int i = 0; i < m - 1; i++) {
// for (int j = 0; j <= i; j++) {
// out.println(i + " " + j + " " + mi[(int)i - j] + " " + (ma[(int)i] - l[(int)i - j + 1] * ma[j]));
// }
// }
for (int i = 0; i < t; i++) {
n = nextLong();
k = nextLong();
if (n >= 32) {
out.println("YES " + (n - 1));
} else {
if (k > ma[(int)n]) {
out.println("NO");
} else {
for (int j = 0; j <= n; j++) {
if (mi[(int)n - j] <= k && ma[(int)n] - l[(int)n - j + 1] * ma[j] >= k) {
out.println("YES " + j);
break;
}
if (j == n - 1) {
out.println("NO");
}
}
}
}
}
}
}
|
O(log(n))
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Determine the worst-case time complexity category of a given Java code based on input size n.
</TASK>
<CODE>
import java.io.BufferedReader;
import java.io.File;
import java.io.FileInputStream;
import java.io.IOException;
import java.io.InputStream;
import java.io.InputStreamReader;
import java.io.PrintStream;
import java.io.PrintWriter;
import java.util.ArrayList;
import java.util.StringTokenizer;
/**
* Created by timur on 28.03.15.
*/
public class TaskD {
boolean eof;
BufferedReader br;
StringTokenizer st;
PrintWriter out;
public static void main(String[] args) throws IOException {
new TaskD().run();
}
public String nextToken() {
while (st == null || !st.hasMoreTokens()) {
try {
st = new StringTokenizer(br.readLine());
} catch (Exception e) {
eof = true;
return "-1";
}
}
return st.nextToken();
}
public int nextInt() {
return Integer.parseInt(nextToken());
}
public long nextLong() {
return Long.parseLong(nextToken());
}
double nextDouble() {
return Double.parseDouble(nextToken());
}
String nextLine() throws IOException {
return br.readLine();
}
void run() throws IOException {
InputStream input = System.in;
PrintStream output = System.out;
try {
File f = new File("a.in");
if (f.exists() && f.canRead()) {
input = new FileInputStream(f);
output = new PrintStream("a.out");
}
} catch (Throwable e) {
}
br = new BufferedReader(new InputStreamReader(input));
out = new PrintWriter(output);
solve();
br.close();
out.close();
}
long md(long x, long y, long x1, long y1) {
return Math.abs(x - x1) + Math.abs(y - y1);
}
double md(double x, double y, double x1, double y1) {
return Math.abs(x - x1) + Math.abs(y - y1);
}
double ed(double x, double y, double x1, double y1) {
return Math.sqrt((x - x1) * (x - x1) + (y - y1) * (y - y1));
}
void solve() {
int t = nextInt();
long n, k;
int m = 34;
long[] res = new long[m];
res[1] = 0;
res[2] = 1;
for (int i = 3; i < m; i++) {
res[i] = res[i - 1] * 4L;
}
long[] l = new long[m];
long[] r = new long[m];
l[0] = 0;
l[1] = 1;
r[0] = 0;
r[1] = 1;
for (int i = 2; i < m; i++) {
l[i] = l[i - 1] * 2 + 1;
r[i] = r[i - 1] * 4;
}
long[] mi = new long[m];
long[] ma = new long[m];
for (int i = 1; i < m; i++) {
mi[i] = mi[i - 1] + l[i];
ma[i] = ma[i - 1] + r[i];
}
// for (int i = 0; i < m - 1; i++) {
// for (int j = 0; j <= i; j++) {
// out.println(i + " " + j + " " + mi[(int)i - j] + " " + (ma[(int)i] - l[(int)i - j + 1] * ma[j]));
// }
// }
for (int i = 0; i < t; i++) {
n = nextLong();
k = nextLong();
if (n >= 32) {
out.println("YES " + (n - 1));
} else {
if (k > ma[(int)n]) {
out.println("NO");
} else {
for (int j = 0; j <= n; j++) {
if (mi[(int)n - j] <= k && ma[(int)n] - l[(int)n - j + 1] * ma[j] >= k) {
out.println("YES " + j);
break;
}
if (j == n - 1) {
out.println("NO");
}
}
}
}
}
}
}
</CODE>
<EVALUATION_RUBRIC>
- non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially.
- O(n): The time complexity increases proportionally to the input size n in a linear manner.
- O(nlog(n)): The time complexity combines linear and logarithmic growth factors.
- O(n^2): The time complexity grows proportionally to the square of the input size.
- O(n^3): The time complexity scales proportionally to the cube of the input size.
- O(1): The time complexity is constant to the input size n.
- O(log(n)): The time complexity increases logarithmically in relation to the input size.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Determine the worst-case time complexity category of a given Java code based on input size n.
</TASK>
<CODE>
import java.io.BufferedReader;
import java.io.File;
import java.io.FileInputStream;
import java.io.IOException;
import java.io.InputStream;
import java.io.InputStreamReader;
import java.io.PrintStream;
import java.io.PrintWriter;
import java.util.ArrayList;
import java.util.StringTokenizer;
/**
* Created by timur on 28.03.15.
*/
public class TaskD {
boolean eof;
BufferedReader br;
StringTokenizer st;
PrintWriter out;
public static void main(String[] args) throws IOException {
new TaskD().run();
}
public String nextToken() {
while (st == null || !st.hasMoreTokens()) {
try {
st = new StringTokenizer(br.readLine());
} catch (Exception e) {
eof = true;
return "-1";
}
}
return st.nextToken();
}
public int nextInt() {
return Integer.parseInt(nextToken());
}
public long nextLong() {
return Long.parseLong(nextToken());
}
double nextDouble() {
return Double.parseDouble(nextToken());
}
String nextLine() throws IOException {
return br.readLine();
}
void run() throws IOException {
InputStream input = System.in;
PrintStream output = System.out;
try {
File f = new File("a.in");
if (f.exists() && f.canRead()) {
input = new FileInputStream(f);
output = new PrintStream("a.out");
}
} catch (Throwable e) {
}
br = new BufferedReader(new InputStreamReader(input));
out = new PrintWriter(output);
solve();
br.close();
out.close();
}
long md(long x, long y, long x1, long y1) {
return Math.abs(x - x1) + Math.abs(y - y1);
}
double md(double x, double y, double x1, double y1) {
return Math.abs(x - x1) + Math.abs(y - y1);
}
double ed(double x, double y, double x1, double y1) {
return Math.sqrt((x - x1) * (x - x1) + (y - y1) * (y - y1));
}
void solve() {
int t = nextInt();
long n, k;
int m = 34;
long[] res = new long[m];
res[1] = 0;
res[2] = 1;
for (int i = 3; i < m; i++) {
res[i] = res[i - 1] * 4L;
}
long[] l = new long[m];
long[] r = new long[m];
l[0] = 0;
l[1] = 1;
r[0] = 0;
r[1] = 1;
for (int i = 2; i < m; i++) {
l[i] = l[i - 1] * 2 + 1;
r[i] = r[i - 1] * 4;
}
long[] mi = new long[m];
long[] ma = new long[m];
for (int i = 1; i < m; i++) {
mi[i] = mi[i - 1] + l[i];
ma[i] = ma[i - 1] + r[i];
}
// for (int i = 0; i < m - 1; i++) {
// for (int j = 0; j <= i; j++) {
// out.println(i + " " + j + " " + mi[(int)i - j] + " " + (ma[(int)i] - l[(int)i - j + 1] * ma[j]));
// }
// }
for (int i = 0; i < t; i++) {
n = nextLong();
k = nextLong();
if (n >= 32) {
out.println("YES " + (n - 1));
} else {
if (k > ma[(int)n]) {
out.println("NO");
} else {
for (int j = 0; j <= n; j++) {
if (mi[(int)n - j] <= k && ma[(int)n] - l[(int)n - j + 1] * ma[j] >= k) {
out.println("YES " + j);
break;
}
if (j == n - 1) {
out.println("NO");
}
}
}
}
}
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(nlog(n)): The time complexity combines linear and logarithmic growth factors.
- O(n): The time complexity increases proportionally to the input size n in a linear manner.
- non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially.
- others: The time complexity does not fit any of the above categories or cannot be clearly classified.
- O(1): The time complexity is constant to the input size n.
- O(log(n)): The time complexity increases logarithmically in relation to the input size.
- O(n^2): The time complexity grows proportionally to the square of the input size.
- O(n^3): The time complexity scales proportionally to the cube of the input size.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
| 1,314
| 1,073
|
1,014
|
import java.io.*;
import java.math.BigDecimal;
import java.math.MathContext;
import java.util.*;
public class Main {
static int len(long n) {
int res = 0;
while (n > 0) {
n /= 10;
res++;
}
return res;
}
static long big(int len) {
long p = 1;
while (len-- > 0) p *= 10;
return p - 1;
}
static long small(int len) {
return big(len - 1) + 1;
}
static long cnt(long n) {
int len = len(n);
long cnt = 0;
for (int l = 1; l < len; l++)
cnt += 1l * l * (big(l) - small(l) + 1);
cnt += 1l * len * (n - small(len));
return cnt;
}
public static void main(String[] args) throws Exception {
Scanner sc = new Scanner(System.in);
PrintWriter out = new PrintWriter(System.out);
long k = sc.nextLong();
if (k == 1) {
System.out.println(1);
return;
}
long lo = 1, hi = k, res = 1;
while(lo <= hi) {
long mid = lo + hi >> 1L;
if(cnt(mid) < k) {
res = mid;
lo = mid + 1;
} else {
hi = mid - 1;
}
}
ArrayList<Integer> digits = new ArrayList<>();
long tmp = res;
while (tmp > 0) {
digits.add((int)(tmp % 10));
tmp /= 10;
}
// System.err.println("RES " + res);
// System.err.println("DIGITS " + digits);
// System.err.println("Cnt Res " + cnt(res));
Collections.reverse(digits);
out.println(digits.get((int)(k - cnt(res) - 1)));
out.flush();
}
static class Scanner {
StringTokenizer st;
BufferedReader br;
public Scanner(InputStream s) {
br = new BufferedReader(new InputStreamReader(s));
}
public Scanner(FileReader f) {
br = new BufferedReader(f);
}
public String next() throws IOException {
while (st == null || !st.hasMoreTokens())
st = new StringTokenizer(br.readLine());
return st.nextToken();
}
public int nextInt() throws IOException {
return Integer.parseInt(next());
}
public long nextLong() throws IOException {
return Long.parseLong(next());
}
public String nextLine() throws IOException {
return br.readLine();
}
public double nextDouble() throws IOException {
String x = next();
StringBuilder sb = new StringBuilder("0");
double res = 0, f = 1;
boolean dec = false, neg = false;
int start = 0;
if (x.charAt(0) == '-') {
neg = true;
start++;
}
for (int i = start; i < x.length(); i++)
if (x.charAt(i) == '.') {
res = Long.parseLong(sb.toString());
sb = new StringBuilder("0");
dec = true;
} else {
sb.append(x.charAt(i));
if (dec)
f *= 10;
}
res += Long.parseLong(sb.toString()) / f;
return res * (neg ? -1 : 1);
}
public boolean ready() throws IOException {
return br.ready();
}
}
}
|
O(log(n))
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Classify the following Java code's worst-case time complexity according to its relationship to the input size n.
</TASK>
<CODE>
import java.io.*;
import java.math.BigDecimal;
import java.math.MathContext;
import java.util.*;
public class Main {
static int len(long n) {
int res = 0;
while (n > 0) {
n /= 10;
res++;
}
return res;
}
static long big(int len) {
long p = 1;
while (len-- > 0) p *= 10;
return p - 1;
}
static long small(int len) {
return big(len - 1) + 1;
}
static long cnt(long n) {
int len = len(n);
long cnt = 0;
for (int l = 1; l < len; l++)
cnt += 1l * l * (big(l) - small(l) + 1);
cnt += 1l * len * (n - small(len));
return cnt;
}
public static void main(String[] args) throws Exception {
Scanner sc = new Scanner(System.in);
PrintWriter out = new PrintWriter(System.out);
long k = sc.nextLong();
if (k == 1) {
System.out.println(1);
return;
}
long lo = 1, hi = k, res = 1;
while(lo <= hi) {
long mid = lo + hi >> 1L;
if(cnt(mid) < k) {
res = mid;
lo = mid + 1;
} else {
hi = mid - 1;
}
}
ArrayList<Integer> digits = new ArrayList<>();
long tmp = res;
while (tmp > 0) {
digits.add((int)(tmp % 10));
tmp /= 10;
}
// System.err.println("RES " + res);
// System.err.println("DIGITS " + digits);
// System.err.println("Cnt Res " + cnt(res));
Collections.reverse(digits);
out.println(digits.get((int)(k - cnt(res) - 1)));
out.flush();
}
static class Scanner {
StringTokenizer st;
BufferedReader br;
public Scanner(InputStream s) {
br = new BufferedReader(new InputStreamReader(s));
}
public Scanner(FileReader f) {
br = new BufferedReader(f);
}
public String next() throws IOException {
while (st == null || !st.hasMoreTokens())
st = new StringTokenizer(br.readLine());
return st.nextToken();
}
public int nextInt() throws IOException {
return Integer.parseInt(next());
}
public long nextLong() throws IOException {
return Long.parseLong(next());
}
public String nextLine() throws IOException {
return br.readLine();
}
public double nextDouble() throws IOException {
String x = next();
StringBuilder sb = new StringBuilder("0");
double res = 0, f = 1;
boolean dec = false, neg = false;
int start = 0;
if (x.charAt(0) == '-') {
neg = true;
start++;
}
for (int i = start; i < x.length(); i++)
if (x.charAt(i) == '.') {
res = Long.parseLong(sb.toString());
sb = new StringBuilder("0");
dec = true;
} else {
sb.append(x.charAt(i));
if (dec)
f *= 10;
}
res += Long.parseLong(sb.toString()) / f;
return res * (neg ? -1 : 1);
}
public boolean ready() throws IOException {
return br.ready();
}
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(n): The running time grows linearly with the input size n.
- O(nlog(n)): The running time increases with the product of n and logarithm of n.
- O(1): The running time does not change regardless of the input size n.
- O(log(n)): The running time increases with the logarithm of the input size n.
- O(n^2): The running time increases with the square of the input size n.
- O(n^3): The running time increases with the cube of the input size n.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Determine the worst-case time complexity category of a given Java code based on input size n.
</TASK>
<CODE>
import java.io.*;
import java.math.BigDecimal;
import java.math.MathContext;
import java.util.*;
public class Main {
static int len(long n) {
int res = 0;
while (n > 0) {
n /= 10;
res++;
}
return res;
}
static long big(int len) {
long p = 1;
while (len-- > 0) p *= 10;
return p - 1;
}
static long small(int len) {
return big(len - 1) + 1;
}
static long cnt(long n) {
int len = len(n);
long cnt = 0;
for (int l = 1; l < len; l++)
cnt += 1l * l * (big(l) - small(l) + 1);
cnt += 1l * len * (n - small(len));
return cnt;
}
public static void main(String[] args) throws Exception {
Scanner sc = new Scanner(System.in);
PrintWriter out = new PrintWriter(System.out);
long k = sc.nextLong();
if (k == 1) {
System.out.println(1);
return;
}
long lo = 1, hi = k, res = 1;
while(lo <= hi) {
long mid = lo + hi >> 1L;
if(cnt(mid) < k) {
res = mid;
lo = mid + 1;
} else {
hi = mid - 1;
}
}
ArrayList<Integer> digits = new ArrayList<>();
long tmp = res;
while (tmp > 0) {
digits.add((int)(tmp % 10));
tmp /= 10;
}
// System.err.println("RES " + res);
// System.err.println("DIGITS " + digits);
// System.err.println("Cnt Res " + cnt(res));
Collections.reverse(digits);
out.println(digits.get((int)(k - cnt(res) - 1)));
out.flush();
}
static class Scanner {
StringTokenizer st;
BufferedReader br;
public Scanner(InputStream s) {
br = new BufferedReader(new InputStreamReader(s));
}
public Scanner(FileReader f) {
br = new BufferedReader(f);
}
public String next() throws IOException {
while (st == null || !st.hasMoreTokens())
st = new StringTokenizer(br.readLine());
return st.nextToken();
}
public int nextInt() throws IOException {
return Integer.parseInt(next());
}
public long nextLong() throws IOException {
return Long.parseLong(next());
}
public String nextLine() throws IOException {
return br.readLine();
}
public double nextDouble() throws IOException {
String x = next();
StringBuilder sb = new StringBuilder("0");
double res = 0, f = 1;
boolean dec = false, neg = false;
int start = 0;
if (x.charAt(0) == '-') {
neg = true;
start++;
}
for (int i = start; i < x.length(); i++)
if (x.charAt(i) == '.') {
res = Long.parseLong(sb.toString());
sb = new StringBuilder("0");
dec = true;
} else {
sb.append(x.charAt(i));
if (dec)
f *= 10;
}
res += Long.parseLong(sb.toString()) / f;
return res * (neg ? -1 : 1);
}
public boolean ready() throws IOException {
return br.ready();
}
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(1): The time complexity is constant to the input size n.
- non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially.
- O(n): The time complexity increases proportionally to the input size n in a linear manner.
- O(n^3): The time complexity scales proportionally to the cube of the input size.
- others: The time complexity does not fit any of the above categories or cannot be clearly classified.
- O(log(n)): The time complexity increases logarithmically in relation to the input size.
- O(nlog(n)): The time complexity combines linear and logarithmic growth factors.
- O(n^2): The time complexity grows proportionally to the square of the input size.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
| 1,100
| 1,013
|
1,698
|
import java.util.*;
import static java.lang.Math.*;
public class Main{
public static void main(String[] args){
new Main().run();
}
void run(){
Scanner sc = new Scanner(System.in);
int n = sc.nextInt();
int t = sc.nextInt() * 2;
H[] tbl = new H[n];
for(int i = 0; i < n; i++)tbl[i] = new H(sc.nextInt()*2, sc.nextInt()*2);
Arrays.sort(tbl);
TreeSet<Integer> cand = new TreeSet<Integer>();
//cand.add(tbl[0].x - tbl[0].len / 2);
for(int i = 0; i < n; i++){
int left = tbl[i].x - tbl[i].len / 2 - t / 2;
if(!cand.contains(left)){
if(i > 0 && tbl[i-1].x + tbl[i-1].len/2 > left - t/2){
}else{
cand.add(left);
}
}
int right = tbl[i].x + tbl[i].len / 2 + t/2;
if(!cand.contains(right)){
if(i < n-1 && tbl[i+1].x - tbl[i+1].len/2 < right + t/2){
}else{
cand.add(right);
}
}
}
System.out.println(cand.size());
}
class H implements Comparable<H>{
int x, len;
H(int a, int b){
x = a;
len = b;
}
public int compareTo(H h){
return this.x - h.x;
}
}
}
|
O(nlog(n))
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n.
</TASK>
<CODE>
import java.util.*;
import static java.lang.Math.*;
public class Main{
public static void main(String[] args){
new Main().run();
}
void run(){
Scanner sc = new Scanner(System.in);
int n = sc.nextInt();
int t = sc.nextInt() * 2;
H[] tbl = new H[n];
for(int i = 0; i < n; i++)tbl[i] = new H(sc.nextInt()*2, sc.nextInt()*2);
Arrays.sort(tbl);
TreeSet<Integer> cand = new TreeSet<Integer>();
//cand.add(tbl[0].x - tbl[0].len / 2);
for(int i = 0; i < n; i++){
int left = tbl[i].x - tbl[i].len / 2 - t / 2;
if(!cand.contains(left)){
if(i > 0 && tbl[i-1].x + tbl[i-1].len/2 > left - t/2){
}else{
cand.add(left);
}
}
int right = tbl[i].x + tbl[i].len / 2 + t/2;
if(!cand.contains(right)){
if(i < n-1 && tbl[i+1].x - tbl[i+1].len/2 < right + t/2){
}else{
cand.add(right);
}
}
}
System.out.println(cand.size());
}
class H implements Comparable<H>{
int x, len;
H(int a, int b){
x = a;
len = b;
}
public int compareTo(H h){
return this.x - h.x;
}
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(n^2): The execution time ascends in proportion to the square of the input size n.
- O(n^3): The execution time ascends in proportion to the cube of the input size n.
- O(1): The execution time is unaffected by the size of the input n.
- O(log(n)): The execution time ascends in proportion to the logarithm of the input size n.
- O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially.
- O(n): The execution time ascends in a one-to-one ratio with the input size n.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Classify the following Java code's worst-case time complexity according to its relationship to the input size n.
</TASK>
<CODE>
import java.util.*;
import static java.lang.Math.*;
public class Main{
public static void main(String[] args){
new Main().run();
}
void run(){
Scanner sc = new Scanner(System.in);
int n = sc.nextInt();
int t = sc.nextInt() * 2;
H[] tbl = new H[n];
for(int i = 0; i < n; i++)tbl[i] = new H(sc.nextInt()*2, sc.nextInt()*2);
Arrays.sort(tbl);
TreeSet<Integer> cand = new TreeSet<Integer>();
//cand.add(tbl[0].x - tbl[0].len / 2);
for(int i = 0; i < n; i++){
int left = tbl[i].x - tbl[i].len / 2 - t / 2;
if(!cand.contains(left)){
if(i > 0 && tbl[i-1].x + tbl[i-1].len/2 > left - t/2){
}else{
cand.add(left);
}
}
int right = tbl[i].x + tbl[i].len / 2 + t/2;
if(!cand.contains(right)){
if(i < n-1 && tbl[i+1].x - tbl[i+1].len/2 < right + t/2){
}else{
cand.add(right);
}
}
}
System.out.println(cand.size());
}
class H implements Comparable<H>{
int x, len;
H(int a, int b){
x = a;
len = b;
}
public int compareTo(H h){
return this.x - h.x;
}
}
}
</CODE>
<EVALUATION_RUBRIC>
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- O(log(n)): The running time increases with the logarithm of the input size n.
- O(n^2): The running time increases with the square of the input size n.
- O(n): The running time grows linearly with the input size n.
- O(nlog(n)): The running time increases with the product of n and logarithm of n.
- others: The code does not clearly correspond to the listed classes or has an unclassified time complexity.
- O(1): The running time does not change regardless of the input size n.
- O(n^3): The running time increases with the cube of the input size n.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
| 714
| 1,695
|
479
|
/*
Keep solving problems.
*/
import java.util.*;
import java.io.*;
public class CFA {
BufferedReader br;
PrintWriter out;
StringTokenizer st;
boolean eof;
private static final long MOD = 1000 * 1000 * 1000 + 7;
private static final int[] dx = {0, -1, 0, 1};
private static final int[] dy = {1, 0, -1, 0};
private static final String yes = "Yes";
private static final String no = "No";
void solve() throws IOException {
int n = nextInt();
String[] arr1 = new String[n];
String[] arr2 = new String[n];
for (int i = 0; i < n; i++) {
arr1[i] = nextString();
}
for (int i = 0; i < n; i++) {
arr2[i] = nextString();
}
Map<String, Integer> m1 = getMap(arr1);
Map<String, Integer> m2 = getMap(arr2);
int res = 0;
for (Map.Entry<String, Integer> entry : m2.entrySet()) {
String key = entry.getKey();
int val = entry.getValue();
if (m1.containsKey(key)) {
int v2 = m1.get(key);
if (val > v2) {
res += val - v2;
}
}
else {
res += val;
}
}
for (Map.Entry<String, Integer> entry : m1.entrySet()) {
String key = entry.getKey();
int val = entry.getValue();
if (m2.containsKey(key)) {
int v2 = m2.get(key);
if (val > v2) {
res += val - v2;
}
}
else {
res += val;
}
}
outln(res / 2);
}
Map<String, Integer> getMap(String[] arr) {
Map<String, Integer> res = new HashMap<>();
for (String str : arr) {
res.put(str, res.getOrDefault(str, 0) + 1);
}
return res;
}
void shuffle(int[] a) {
int n = a.length;
for(int i = 0; i < n; i++) {
int r = i + (int) (Math.random() * (n - i));
int tmp = a[i];
a[i] = a[r];
a[r] = tmp;
}
}
long gcd(long a, long b) {
while(a != 0 && b != 0) {
long c = b;
b = a % b;
a = c;
}
return a + b;
}
private void outln(Object o) {
out.println(o);
}
private void out(Object o) {
out.print(o);
}
private void formatPrint(double val) {
outln(String.format("%.9f%n", val));
}
public CFA() throws IOException {
br = new BufferedReader(new InputStreamReader(System.in));
out = new PrintWriter(System.out);
solve();
out.close();
}
public static void main(String[] args) throws IOException {
new CFA();
}
public long[] nextLongArr(int n) throws IOException{
long[] res = new long[n];
for(int i = 0; i < n; i++)
res[i] = nextLong();
return res;
}
public int[] nextIntArr(int n) throws IOException {
int[] res = new int[n];
for(int i = 0; i < n; i++)
res[i] = nextInt();
return res;
}
public String nextToken() {
while (st == null || !st.hasMoreTokens()) {
try {
st = new StringTokenizer(br.readLine());
} catch (Exception e) {
eof = true;
return null;
}
}
return st.nextToken();
}
public String nextString() {
try {
return br.readLine();
} catch (IOException e) {
eof = true;
return null;
}
}
public int nextInt() throws IOException {
return Integer.parseInt(nextToken());
}
public long nextLong() throws IOException {
return Long.parseLong(nextToken());
}
public double nextDouble() throws IOException {
return Double.parseDouble(nextToken());
}
}
|
O(n)
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n.
</TASK>
<CODE>
/*
Keep solving problems.
*/
import java.util.*;
import java.io.*;
public class CFA {
BufferedReader br;
PrintWriter out;
StringTokenizer st;
boolean eof;
private static final long MOD = 1000 * 1000 * 1000 + 7;
private static final int[] dx = {0, -1, 0, 1};
private static final int[] dy = {1, 0, -1, 0};
private static final String yes = "Yes";
private static final String no = "No";
void solve() throws IOException {
int n = nextInt();
String[] arr1 = new String[n];
String[] arr2 = new String[n];
for (int i = 0; i < n; i++) {
arr1[i] = nextString();
}
for (int i = 0; i < n; i++) {
arr2[i] = nextString();
}
Map<String, Integer> m1 = getMap(arr1);
Map<String, Integer> m2 = getMap(arr2);
int res = 0;
for (Map.Entry<String, Integer> entry : m2.entrySet()) {
String key = entry.getKey();
int val = entry.getValue();
if (m1.containsKey(key)) {
int v2 = m1.get(key);
if (val > v2) {
res += val - v2;
}
}
else {
res += val;
}
}
for (Map.Entry<String, Integer> entry : m1.entrySet()) {
String key = entry.getKey();
int val = entry.getValue();
if (m2.containsKey(key)) {
int v2 = m2.get(key);
if (val > v2) {
res += val - v2;
}
}
else {
res += val;
}
}
outln(res / 2);
}
Map<String, Integer> getMap(String[] arr) {
Map<String, Integer> res = new HashMap<>();
for (String str : arr) {
res.put(str, res.getOrDefault(str, 0) + 1);
}
return res;
}
void shuffle(int[] a) {
int n = a.length;
for(int i = 0; i < n; i++) {
int r = i + (int) (Math.random() * (n - i));
int tmp = a[i];
a[i] = a[r];
a[r] = tmp;
}
}
long gcd(long a, long b) {
while(a != 0 && b != 0) {
long c = b;
b = a % b;
a = c;
}
return a + b;
}
private void outln(Object o) {
out.println(o);
}
private void out(Object o) {
out.print(o);
}
private void formatPrint(double val) {
outln(String.format("%.9f%n", val));
}
public CFA() throws IOException {
br = new BufferedReader(new InputStreamReader(System.in));
out = new PrintWriter(System.out);
solve();
out.close();
}
public static void main(String[] args) throws IOException {
new CFA();
}
public long[] nextLongArr(int n) throws IOException{
long[] res = new long[n];
for(int i = 0; i < n; i++)
res[i] = nextLong();
return res;
}
public int[] nextIntArr(int n) throws IOException {
int[] res = new int[n];
for(int i = 0; i < n; i++)
res[i] = nextInt();
return res;
}
public String nextToken() {
while (st == null || !st.hasMoreTokens()) {
try {
st = new StringTokenizer(br.readLine());
} catch (Exception e) {
eof = true;
return null;
}
}
return st.nextToken();
}
public String nextString() {
try {
return br.readLine();
} catch (IOException e) {
eof = true;
return null;
}
}
public int nextInt() throws IOException {
return Integer.parseInt(nextToken());
}
public long nextLong() throws IOException {
return Long.parseLong(nextToken());
}
public double nextDouble() throws IOException {
return Double.parseDouble(nextToken());
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(1): The execution time is unaffected by the size of the input n.
- O(n^3): The execution time ascends in proportion to the cube of the input size n.
- O(n): The execution time ascends in a one-to-one ratio with the input size n.
- O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially.
- O(n^2): The execution time ascends in proportion to the square of the input size n.
- O(log(n)): The execution time ascends in proportion to the logarithm of the input size n.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Determine the worst-case time complexity category of a given Java code based on input size n.
</TASK>
<CODE>
/*
Keep solving problems.
*/
import java.util.*;
import java.io.*;
public class CFA {
BufferedReader br;
PrintWriter out;
StringTokenizer st;
boolean eof;
private static final long MOD = 1000 * 1000 * 1000 + 7;
private static final int[] dx = {0, -1, 0, 1};
private static final int[] dy = {1, 0, -1, 0};
private static final String yes = "Yes";
private static final String no = "No";
void solve() throws IOException {
int n = nextInt();
String[] arr1 = new String[n];
String[] arr2 = new String[n];
for (int i = 0; i < n; i++) {
arr1[i] = nextString();
}
for (int i = 0; i < n; i++) {
arr2[i] = nextString();
}
Map<String, Integer> m1 = getMap(arr1);
Map<String, Integer> m2 = getMap(arr2);
int res = 0;
for (Map.Entry<String, Integer> entry : m2.entrySet()) {
String key = entry.getKey();
int val = entry.getValue();
if (m1.containsKey(key)) {
int v2 = m1.get(key);
if (val > v2) {
res += val - v2;
}
}
else {
res += val;
}
}
for (Map.Entry<String, Integer> entry : m1.entrySet()) {
String key = entry.getKey();
int val = entry.getValue();
if (m2.containsKey(key)) {
int v2 = m2.get(key);
if (val > v2) {
res += val - v2;
}
}
else {
res += val;
}
}
outln(res / 2);
}
Map<String, Integer> getMap(String[] arr) {
Map<String, Integer> res = new HashMap<>();
for (String str : arr) {
res.put(str, res.getOrDefault(str, 0) + 1);
}
return res;
}
void shuffle(int[] a) {
int n = a.length;
for(int i = 0; i < n; i++) {
int r = i + (int) (Math.random() * (n - i));
int tmp = a[i];
a[i] = a[r];
a[r] = tmp;
}
}
long gcd(long a, long b) {
while(a != 0 && b != 0) {
long c = b;
b = a % b;
a = c;
}
return a + b;
}
private void outln(Object o) {
out.println(o);
}
private void out(Object o) {
out.print(o);
}
private void formatPrint(double val) {
outln(String.format("%.9f%n", val));
}
public CFA() throws IOException {
br = new BufferedReader(new InputStreamReader(System.in));
out = new PrintWriter(System.out);
solve();
out.close();
}
public static void main(String[] args) throws IOException {
new CFA();
}
public long[] nextLongArr(int n) throws IOException{
long[] res = new long[n];
for(int i = 0; i < n; i++)
res[i] = nextLong();
return res;
}
public int[] nextIntArr(int n) throws IOException {
int[] res = new int[n];
for(int i = 0; i < n; i++)
res[i] = nextInt();
return res;
}
public String nextToken() {
while (st == null || !st.hasMoreTokens()) {
try {
st = new StringTokenizer(br.readLine());
} catch (Exception e) {
eof = true;
return null;
}
}
return st.nextToken();
}
public String nextString() {
try {
return br.readLine();
} catch (IOException e) {
eof = true;
return null;
}
}
public int nextInt() throws IOException {
return Integer.parseInt(nextToken());
}
public long nextLong() throws IOException {
return Long.parseLong(nextToken());
}
public double nextDouble() throws IOException {
return Double.parseDouble(nextToken());
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(nlog(n)): The time complexity combines linear and logarithmic growth factors.
- others: The time complexity does not fit any of the above categories or cannot be clearly classified.
- O(n^2): The time complexity grows proportionally to the square of the input size.
- O(n): The time complexity increases proportionally to the input size n in a linear manner.
- O(n^3): The time complexity scales proportionally to the cube of the input size.
- O(log(n)): The time complexity increases logarithmically in relation to the input size.
- non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially.
- O(1): The time complexity is constant to the input size n.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
| 1,313
| 478
|
179
|
import java.io.*;
import java.util.*;
public class A4 {
public BufferedReader input;
public PrintWriter output;
public StringTokenizer stoken = new StringTokenizer("");
public static void main(String[] args) throws IOException {
new A4();
}
A4() throws IOException {
input = new BufferedReader(new InputStreamReader(System.in));
output = new PrintWriter(System.out);
run();
input.close();
output.close();
}
private void run() throws IOException {
int n = Math.toIntExact(nextLong());
int m = Math.toIntExact(nextLong());
int[] coor = new int[n + 1];
int[] ss = new int[n + 1];
for (int i = 0; i < n; i++) {
coor[i] = Math.toIntExact(nextLong());
}
coor[n] = 1000000000;
Arrays.sort(coor);
for (int i = 0; i < m; i++) {
long x1 = nextLong();
long x2 = nextLong();
nextLong();
if (x1 == 1 && x2 >= coor[0]) {
int l = 0;
int r = n + 1;
while (r - l > 1) {
int mi = (r + l) / 2;
if (coor[mi] > x2) {
r = mi;
} else {
l = mi;
}
}
ss[l]++;
}
}
long[] ans = new long[n + 1];
ans[n] = ss[n] + n;
long min = ans[n];
for (int i = n - 1; i > -1; i--) {
ans[i] = ans[i + 1] - 1 + ss[i];
if (ans[i] < min) {
min = ans[i];
}
}
System.out.println(min);
}
private Long nextLong() throws NumberFormatException, IOException {
return Long.parseLong(nextString());
}
private String nextString() throws IOException {
while (!stoken.hasMoreTokens()) {
String st = input.readLine();
stoken = new StringTokenizer(st);
}
return stoken.nextToken();
}
}
|
O(nlog(n))
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Classify the following Java code's worst-case time complexity according to its relationship to the input size n.
</TASK>
<CODE>
import java.io.*;
import java.util.*;
public class A4 {
public BufferedReader input;
public PrintWriter output;
public StringTokenizer stoken = new StringTokenizer("");
public static void main(String[] args) throws IOException {
new A4();
}
A4() throws IOException {
input = new BufferedReader(new InputStreamReader(System.in));
output = new PrintWriter(System.out);
run();
input.close();
output.close();
}
private void run() throws IOException {
int n = Math.toIntExact(nextLong());
int m = Math.toIntExact(nextLong());
int[] coor = new int[n + 1];
int[] ss = new int[n + 1];
for (int i = 0; i < n; i++) {
coor[i] = Math.toIntExact(nextLong());
}
coor[n] = 1000000000;
Arrays.sort(coor);
for (int i = 0; i < m; i++) {
long x1 = nextLong();
long x2 = nextLong();
nextLong();
if (x1 == 1 && x2 >= coor[0]) {
int l = 0;
int r = n + 1;
while (r - l > 1) {
int mi = (r + l) / 2;
if (coor[mi] > x2) {
r = mi;
} else {
l = mi;
}
}
ss[l]++;
}
}
long[] ans = new long[n + 1];
ans[n] = ss[n] + n;
long min = ans[n];
for (int i = n - 1; i > -1; i--) {
ans[i] = ans[i + 1] - 1 + ss[i];
if (ans[i] < min) {
min = ans[i];
}
}
System.out.println(min);
}
private Long nextLong() throws NumberFormatException, IOException {
return Long.parseLong(nextString());
}
private String nextString() throws IOException {
while (!stoken.hasMoreTokens()) {
String st = input.readLine();
stoken = new StringTokenizer(st);
}
return stoken.nextToken();
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(log(n)): The running time increases with the logarithm of the input size n.
- O(1): The running time does not change regardless of the input size n.
- O(n): The running time grows linearly with the input size n.
- O(n^2): The running time increases with the square of the input size n.
- O(nlog(n)): The running time increases with the product of n and logarithm of n.
- O(n^3): The running time increases with the cube of the input size n.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Determine the worst-case time complexity category of a given Java code based on input size n.
</TASK>
<CODE>
import java.io.*;
import java.util.*;
public class A4 {
public BufferedReader input;
public PrintWriter output;
public StringTokenizer stoken = new StringTokenizer("");
public static void main(String[] args) throws IOException {
new A4();
}
A4() throws IOException {
input = new BufferedReader(new InputStreamReader(System.in));
output = new PrintWriter(System.out);
run();
input.close();
output.close();
}
private void run() throws IOException {
int n = Math.toIntExact(nextLong());
int m = Math.toIntExact(nextLong());
int[] coor = new int[n + 1];
int[] ss = new int[n + 1];
for (int i = 0; i < n; i++) {
coor[i] = Math.toIntExact(nextLong());
}
coor[n] = 1000000000;
Arrays.sort(coor);
for (int i = 0; i < m; i++) {
long x1 = nextLong();
long x2 = nextLong();
nextLong();
if (x1 == 1 && x2 >= coor[0]) {
int l = 0;
int r = n + 1;
while (r - l > 1) {
int mi = (r + l) / 2;
if (coor[mi] > x2) {
r = mi;
} else {
l = mi;
}
}
ss[l]++;
}
}
long[] ans = new long[n + 1];
ans[n] = ss[n] + n;
long min = ans[n];
for (int i = n - 1; i > -1; i--) {
ans[i] = ans[i + 1] - 1 + ss[i];
if (ans[i] < min) {
min = ans[i];
}
}
System.out.println(min);
}
private Long nextLong() throws NumberFormatException, IOException {
return Long.parseLong(nextString());
}
private String nextString() throws IOException {
while (!stoken.hasMoreTokens()) {
String st = input.readLine();
stoken = new StringTokenizer(st);
}
return stoken.nextToken();
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(nlog(n)): The time complexity combines linear and logarithmic growth factors.
- O(n^3): The time complexity scales proportionally to the cube of the input size.
- O(n): The time complexity increases proportionally to the input size n in a linear manner.
- others: The time complexity does not fit any of the above categories or cannot be clearly classified.
- O(log(n)): The time complexity increases logarithmically in relation to the input size.
- non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially.
- O(1): The time complexity is constant to the input size n.
- O(n^2): The time complexity grows proportionally to the square of the input size.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
| 821
| 179
|
2,686
|
import java.io.OutputStream;
import java.io.IOException;
import java.io.InputStream;
import java.io.OutputStream;
import java.io.PrintWriter;
import java.io.BufferedWriter;
import java.io.Writer;
import java.io.OutputStreamWriter;
import java.util.InputMismatchException;
import java.io.IOException;
import java.io.InputStream;
/**
* Built using CHelper plug-in Actual solution is at the top
*
* @author ilyakor
*/
public class Main {
public static void main(String[] args) {
InputStream inputStream = System.in;
OutputStream outputStream = System.out;
InputReader in = new InputReader(inputStream);
OutputWriter out = new OutputWriter(outputStream);
TaskA solver = new TaskA();
solver.solve(1, in, out);
out.close();
}
static class TaskA {
public void solve(int testNumber, InputReader in, OutputWriter out) {
int n = in.nextInt();
boolean[] a = new boolean[218];
for (int i = 0; i < n; ++i) {
a[in.nextInt()] = true;
}
int res = 0;
for (int i = 1; i < a.length; ++i) {
if (a[i]) {
++res;
for (int j = i; j < a.length; j += i) {
a[j] = false;
}
}
}
out.printLine(res);
}
}
static class OutputWriter {
private final PrintWriter writer;
public OutputWriter(OutputStream outputStream) {
writer = new PrintWriter(new BufferedWriter(new OutputStreamWriter(outputStream)));
}
public OutputWriter(Writer writer) {
this.writer = new PrintWriter(writer);
}
public void print(Object... objects) {
for (int i = 0; i < objects.length; i++) {
if (i != 0) {
writer.print(' ');
}
writer.print(objects[i]);
}
}
public void printLine(Object... objects) {
print(objects);
writer.println();
}
public void close() {
writer.close();
}
}
static class InputReader {
private InputStream stream;
private byte[] buffer = new byte[10000];
private int cur;
private int count;
public InputReader(InputStream stream) {
this.stream = stream;
}
public static boolean isSpace(int c) {
return c == ' ' || c == '\n' || c == '\r' || c == '\t' || c == -1;
}
public int read() {
if (count == -1) {
throw new InputMismatchException();
}
try {
if (cur >= count) {
cur = 0;
count = stream.read(buffer);
if (count <= 0) {
return -1;
}
}
} catch (IOException e) {
throw new InputMismatchException();
}
return buffer[cur++];
}
public int readSkipSpace() {
int c;
do {
c = read();
} while (isSpace(c));
return c;
}
public int nextInt() {
int sgn = 1;
int c = readSkipSpace();
if (c == '-') {
sgn = -1;
c = read();
}
int res = 0;
do {
if (c < '0' || c > '9') {
throw new InputMismatchException();
}
res = res * 10 + c - '0';
c = read();
} while (!isSpace(c));
res *= sgn;
return res;
}
}
}
|
O(n^2)
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Classify the following Java code's worst-case time complexity according to its relationship to the input size n.
</TASK>
<CODE>
import java.io.OutputStream;
import java.io.IOException;
import java.io.InputStream;
import java.io.OutputStream;
import java.io.PrintWriter;
import java.io.BufferedWriter;
import java.io.Writer;
import java.io.OutputStreamWriter;
import java.util.InputMismatchException;
import java.io.IOException;
import java.io.InputStream;
/**
* Built using CHelper plug-in Actual solution is at the top
*
* @author ilyakor
*/
public class Main {
public static void main(String[] args) {
InputStream inputStream = System.in;
OutputStream outputStream = System.out;
InputReader in = new InputReader(inputStream);
OutputWriter out = new OutputWriter(outputStream);
TaskA solver = new TaskA();
solver.solve(1, in, out);
out.close();
}
static class TaskA {
public void solve(int testNumber, InputReader in, OutputWriter out) {
int n = in.nextInt();
boolean[] a = new boolean[218];
for (int i = 0; i < n; ++i) {
a[in.nextInt()] = true;
}
int res = 0;
for (int i = 1; i < a.length; ++i) {
if (a[i]) {
++res;
for (int j = i; j < a.length; j += i) {
a[j] = false;
}
}
}
out.printLine(res);
}
}
static class OutputWriter {
private final PrintWriter writer;
public OutputWriter(OutputStream outputStream) {
writer = new PrintWriter(new BufferedWriter(new OutputStreamWriter(outputStream)));
}
public OutputWriter(Writer writer) {
this.writer = new PrintWriter(writer);
}
public void print(Object... objects) {
for (int i = 0; i < objects.length; i++) {
if (i != 0) {
writer.print(' ');
}
writer.print(objects[i]);
}
}
public void printLine(Object... objects) {
print(objects);
writer.println();
}
public void close() {
writer.close();
}
}
static class InputReader {
private InputStream stream;
private byte[] buffer = new byte[10000];
private int cur;
private int count;
public InputReader(InputStream stream) {
this.stream = stream;
}
public static boolean isSpace(int c) {
return c == ' ' || c == '\n' || c == '\r' || c == '\t' || c == -1;
}
public int read() {
if (count == -1) {
throw new InputMismatchException();
}
try {
if (cur >= count) {
cur = 0;
count = stream.read(buffer);
if (count <= 0) {
return -1;
}
}
} catch (IOException e) {
throw new InputMismatchException();
}
return buffer[cur++];
}
public int readSkipSpace() {
int c;
do {
c = read();
} while (isSpace(c));
return c;
}
public int nextInt() {
int sgn = 1;
int c = readSkipSpace();
if (c == '-') {
sgn = -1;
c = read();
}
int res = 0;
do {
if (c < '0' || c > '9') {
throw new InputMismatchException();
}
res = res * 10 + c - '0';
c = read();
} while (!isSpace(c));
res *= sgn;
return res;
}
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(nlog(n)): The running time increases with the product of n and logarithm of n.
- O(n^3): The running time increases with the cube of the input size n.
- O(log(n)): The running time increases with the logarithm of the input size n.
- O(1): The running time does not change regardless of the input size n.
- O(n): The running time grows linearly with the input size n.
- O(n^2): The running time increases with the square of the input size n.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Determine the worst-case time complexity category of a given Java code based on input size n.
</TASK>
<CODE>
import java.io.OutputStream;
import java.io.IOException;
import java.io.InputStream;
import java.io.OutputStream;
import java.io.PrintWriter;
import java.io.BufferedWriter;
import java.io.Writer;
import java.io.OutputStreamWriter;
import java.util.InputMismatchException;
import java.io.IOException;
import java.io.InputStream;
/**
* Built using CHelper plug-in Actual solution is at the top
*
* @author ilyakor
*/
public class Main {
public static void main(String[] args) {
InputStream inputStream = System.in;
OutputStream outputStream = System.out;
InputReader in = new InputReader(inputStream);
OutputWriter out = new OutputWriter(outputStream);
TaskA solver = new TaskA();
solver.solve(1, in, out);
out.close();
}
static class TaskA {
public void solve(int testNumber, InputReader in, OutputWriter out) {
int n = in.nextInt();
boolean[] a = new boolean[218];
for (int i = 0; i < n; ++i) {
a[in.nextInt()] = true;
}
int res = 0;
for (int i = 1; i < a.length; ++i) {
if (a[i]) {
++res;
for (int j = i; j < a.length; j += i) {
a[j] = false;
}
}
}
out.printLine(res);
}
}
static class OutputWriter {
private final PrintWriter writer;
public OutputWriter(OutputStream outputStream) {
writer = new PrintWriter(new BufferedWriter(new OutputStreamWriter(outputStream)));
}
public OutputWriter(Writer writer) {
this.writer = new PrintWriter(writer);
}
public void print(Object... objects) {
for (int i = 0; i < objects.length; i++) {
if (i != 0) {
writer.print(' ');
}
writer.print(objects[i]);
}
}
public void printLine(Object... objects) {
print(objects);
writer.println();
}
public void close() {
writer.close();
}
}
static class InputReader {
private InputStream stream;
private byte[] buffer = new byte[10000];
private int cur;
private int count;
public InputReader(InputStream stream) {
this.stream = stream;
}
public static boolean isSpace(int c) {
return c == ' ' || c == '\n' || c == '\r' || c == '\t' || c == -1;
}
public int read() {
if (count == -1) {
throw new InputMismatchException();
}
try {
if (cur >= count) {
cur = 0;
count = stream.read(buffer);
if (count <= 0) {
return -1;
}
}
} catch (IOException e) {
throw new InputMismatchException();
}
return buffer[cur++];
}
public int readSkipSpace() {
int c;
do {
c = read();
} while (isSpace(c));
return c;
}
public int nextInt() {
int sgn = 1;
int c = readSkipSpace();
if (c == '-') {
sgn = -1;
c = read();
}
int res = 0;
do {
if (c < '0' || c > '9') {
throw new InputMismatchException();
}
res = res * 10 + c - '0';
c = read();
} while (!isSpace(c));
res *= sgn;
return res;
}
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(log(n)): The time complexity increases logarithmically in relation to the input size.
- others: The time complexity does not fit any of the above categories or cannot be clearly classified.
- non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially.
- O(n^2): The time complexity grows proportionally to the square of the input size.
- O(nlog(n)): The time complexity combines linear and logarithmic growth factors.
- O(n): The time complexity increases proportionally to the input size n in a linear manner.
- O(n^3): The time complexity scales proportionally to the cube of the input size.
- O(1): The time complexity is constant to the input size n.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
| 1,115
| 2,680
|
1,153
|
import java.util.*;
import java.io.*;
import java.lang.Math.*;
public class Main{
static long s;
static boolean check(long n){
int sum = 0;
long storen=n;
while(n>0){
int k = (int)(n%10);
n /=10;
sum+=k;
}
return storen-(long)sum >= s;
}
public static void main(String args[]){
PrintWriter pw=new PrintWriter(System.out);
InputReader ip=new InputReader(System.in);
long n;
n=ip.nextLong();
s=ip.nextLong();
if(s>n){
pw.println("0");
}
else{
long l=0,r=n;
boolean possible=false;
long mid=0;
int it=100;
while(it-->0){
mid = (l+r)/2;
if(check(mid)){
r=mid;
possible = true;
}
else{
l=mid+1;
}
// pw.println(mid);
// pw.println(l+" "+r);
}
if(possible){
pw.println(n-l+1);
}
else{
pw.println("0");
}
}
pw.close();
}
static class InputReader {
private InputStream stream;
private byte[] buf = new byte[1024];
private int curChar;
private int numChars;
private SpaceCharFilter filter;
public InputReader(InputStream stream) {
this.stream = stream;
}
public int read() {
if (numChars == -1)
throw new InputMismatchException();
if (curChar >= numChars) {
curChar = 0;
try {
numChars = stream.read(buf);
} catch (IOException e) {
throw new InputMismatchException();
}
if (numChars <= 0)
return -1;
}
return buf[curChar++];
}
public String nextLine() {
BufferedReader br = new BufferedReader(new InputStreamReader(System.in));
String str = "";
try {
str = br.readLine();
} catch (IOException e) {
e.printStackTrace();
}
return str;
}
public int nextInt() {
int c = read();
while (isSpaceChar(c))
c = read();
int sgn = 1;
if (c == '-') {
sgn = -1;
c = read();
}
int res = 0;
do {
if (c < '0' || c > '9')
throw new InputMismatchException();
res *= 10;
res += c - '0';
c = read();
}
while (!isSpaceChar(c));
return res * sgn;
}
public long nextLong() {
int c = read();
while (isSpaceChar(c))
c = read();
int sgn = 1;
if (c == '-') {
sgn = -1;
c = read();
}
long res = 0;
do {
if (c < '0' || c > '9')
throw new InputMismatchException();
res *= 10;
res += c - '0';
c = read();
}
while (!isSpaceChar(c));
return res * sgn;
}
public double nextDouble() {
int c = read();
while (isSpaceChar(c))
c = read();
int sgn = 1;
if (c == '-') {
sgn = -1;
c = read();
}
double res = 0;
while (!isSpaceChar(c) && c != '.') {
if (c == 'e' || c == 'E')
return res * Math.pow(10, nextInt());
if (c < '0' || c > '9')
throw new InputMismatchException();
res *= 10;
res += c - '0';
c = read();
}
if (c == '.') {
c = read();
double m = 1;
while (!isSpaceChar(c)) {
if (c == 'e' || c == 'E')
return res * Math.pow(10, nextInt());
if (c < '0' || c > '9')
throw new InputMismatchException();
m /= 10;
res += (c - '0') * m;
c = read();
}
}
return res * sgn;
}
public String readString() {
int c = read();
while (isSpaceChar(c))
c = read();
StringBuilder res = new StringBuilder();
do {
res.appendCodePoint(c);
c = read();
}
while (!isSpaceChar(c));
return res.toString();
}
public boolean isSpaceChar(int c) {
if (filter != null)
return filter.isSpaceChar(c);
return c == ' ' || c == '\n' || c == '\r' || c == '\t' || c == -1;
}
public String next() {
return readString();
}
public interface SpaceCharFilter {
public boolean isSpaceChar(int ch);
}
}
}
|
O(log(n))
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Determine the worst-case time complexity category of a given Java code based on input size n.
</TASK>
<CODE>
import java.util.*;
import java.io.*;
import java.lang.Math.*;
public class Main{
static long s;
static boolean check(long n){
int sum = 0;
long storen=n;
while(n>0){
int k = (int)(n%10);
n /=10;
sum+=k;
}
return storen-(long)sum >= s;
}
public static void main(String args[]){
PrintWriter pw=new PrintWriter(System.out);
InputReader ip=new InputReader(System.in);
long n;
n=ip.nextLong();
s=ip.nextLong();
if(s>n){
pw.println("0");
}
else{
long l=0,r=n;
boolean possible=false;
long mid=0;
int it=100;
while(it-->0){
mid = (l+r)/2;
if(check(mid)){
r=mid;
possible = true;
}
else{
l=mid+1;
}
// pw.println(mid);
// pw.println(l+" "+r);
}
if(possible){
pw.println(n-l+1);
}
else{
pw.println("0");
}
}
pw.close();
}
static class InputReader {
private InputStream stream;
private byte[] buf = new byte[1024];
private int curChar;
private int numChars;
private SpaceCharFilter filter;
public InputReader(InputStream stream) {
this.stream = stream;
}
public int read() {
if (numChars == -1)
throw new InputMismatchException();
if (curChar >= numChars) {
curChar = 0;
try {
numChars = stream.read(buf);
} catch (IOException e) {
throw new InputMismatchException();
}
if (numChars <= 0)
return -1;
}
return buf[curChar++];
}
public String nextLine() {
BufferedReader br = new BufferedReader(new InputStreamReader(System.in));
String str = "";
try {
str = br.readLine();
} catch (IOException e) {
e.printStackTrace();
}
return str;
}
public int nextInt() {
int c = read();
while (isSpaceChar(c))
c = read();
int sgn = 1;
if (c == '-') {
sgn = -1;
c = read();
}
int res = 0;
do {
if (c < '0' || c > '9')
throw new InputMismatchException();
res *= 10;
res += c - '0';
c = read();
}
while (!isSpaceChar(c));
return res * sgn;
}
public long nextLong() {
int c = read();
while (isSpaceChar(c))
c = read();
int sgn = 1;
if (c == '-') {
sgn = -1;
c = read();
}
long res = 0;
do {
if (c < '0' || c > '9')
throw new InputMismatchException();
res *= 10;
res += c - '0';
c = read();
}
while (!isSpaceChar(c));
return res * sgn;
}
public double nextDouble() {
int c = read();
while (isSpaceChar(c))
c = read();
int sgn = 1;
if (c == '-') {
sgn = -1;
c = read();
}
double res = 0;
while (!isSpaceChar(c) && c != '.') {
if (c == 'e' || c == 'E')
return res * Math.pow(10, nextInt());
if (c < '0' || c > '9')
throw new InputMismatchException();
res *= 10;
res += c - '0';
c = read();
}
if (c == '.') {
c = read();
double m = 1;
while (!isSpaceChar(c)) {
if (c == 'e' || c == 'E')
return res * Math.pow(10, nextInt());
if (c < '0' || c > '9')
throw new InputMismatchException();
m /= 10;
res += (c - '0') * m;
c = read();
}
}
return res * sgn;
}
public String readString() {
int c = read();
while (isSpaceChar(c))
c = read();
StringBuilder res = new StringBuilder();
do {
res.appendCodePoint(c);
c = read();
}
while (!isSpaceChar(c));
return res.toString();
}
public boolean isSpaceChar(int c) {
if (filter != null)
return filter.isSpaceChar(c);
return c == ' ' || c == '\n' || c == '\r' || c == '\t' || c == -1;
}
public String next() {
return readString();
}
public interface SpaceCharFilter {
public boolean isSpaceChar(int ch);
}
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(n^2): The time complexity grows proportionally to the square of the input size.
- non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially.
- O(n): The time complexity increases proportionally to the input size n in a linear manner.
- O(1): The time complexity is constant to the input size n.
- O(n^3): The time complexity scales proportionally to the cube of the input size.
- O(nlog(n)): The time complexity combines linear and logarithmic growth factors.
- O(log(n)): The time complexity increases logarithmically in relation to the input size.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Determine the worst-case time complexity category of a given Java code based on input size n.
</TASK>
<CODE>
import java.util.*;
import java.io.*;
import java.lang.Math.*;
public class Main{
static long s;
static boolean check(long n){
int sum = 0;
long storen=n;
while(n>0){
int k = (int)(n%10);
n /=10;
sum+=k;
}
return storen-(long)sum >= s;
}
public static void main(String args[]){
PrintWriter pw=new PrintWriter(System.out);
InputReader ip=new InputReader(System.in);
long n;
n=ip.nextLong();
s=ip.nextLong();
if(s>n){
pw.println("0");
}
else{
long l=0,r=n;
boolean possible=false;
long mid=0;
int it=100;
while(it-->0){
mid = (l+r)/2;
if(check(mid)){
r=mid;
possible = true;
}
else{
l=mid+1;
}
// pw.println(mid);
// pw.println(l+" "+r);
}
if(possible){
pw.println(n-l+1);
}
else{
pw.println("0");
}
}
pw.close();
}
static class InputReader {
private InputStream stream;
private byte[] buf = new byte[1024];
private int curChar;
private int numChars;
private SpaceCharFilter filter;
public InputReader(InputStream stream) {
this.stream = stream;
}
public int read() {
if (numChars == -1)
throw new InputMismatchException();
if (curChar >= numChars) {
curChar = 0;
try {
numChars = stream.read(buf);
} catch (IOException e) {
throw new InputMismatchException();
}
if (numChars <= 0)
return -1;
}
return buf[curChar++];
}
public String nextLine() {
BufferedReader br = new BufferedReader(new InputStreamReader(System.in));
String str = "";
try {
str = br.readLine();
} catch (IOException e) {
e.printStackTrace();
}
return str;
}
public int nextInt() {
int c = read();
while (isSpaceChar(c))
c = read();
int sgn = 1;
if (c == '-') {
sgn = -1;
c = read();
}
int res = 0;
do {
if (c < '0' || c > '9')
throw new InputMismatchException();
res *= 10;
res += c - '0';
c = read();
}
while (!isSpaceChar(c));
return res * sgn;
}
public long nextLong() {
int c = read();
while (isSpaceChar(c))
c = read();
int sgn = 1;
if (c == '-') {
sgn = -1;
c = read();
}
long res = 0;
do {
if (c < '0' || c > '9')
throw new InputMismatchException();
res *= 10;
res += c - '0';
c = read();
}
while (!isSpaceChar(c));
return res * sgn;
}
public double nextDouble() {
int c = read();
while (isSpaceChar(c))
c = read();
int sgn = 1;
if (c == '-') {
sgn = -1;
c = read();
}
double res = 0;
while (!isSpaceChar(c) && c != '.') {
if (c == 'e' || c == 'E')
return res * Math.pow(10, nextInt());
if (c < '0' || c > '9')
throw new InputMismatchException();
res *= 10;
res += c - '0';
c = read();
}
if (c == '.') {
c = read();
double m = 1;
while (!isSpaceChar(c)) {
if (c == 'e' || c == 'E')
return res * Math.pow(10, nextInt());
if (c < '0' || c > '9')
throw new InputMismatchException();
m /= 10;
res += (c - '0') * m;
c = read();
}
}
return res * sgn;
}
public String readString() {
int c = read();
while (isSpaceChar(c))
c = read();
StringBuilder res = new StringBuilder();
do {
res.appendCodePoint(c);
c = read();
}
while (!isSpaceChar(c));
return res.toString();
}
public boolean isSpaceChar(int c) {
if (filter != null)
return filter.isSpaceChar(c);
return c == ' ' || c == '\n' || c == '\r' || c == '\t' || c == -1;
}
public String next() {
return readString();
}
public interface SpaceCharFilter {
public boolean isSpaceChar(int ch);
}
}
}
</CODE>
<EVALUATION_RUBRIC>
- others: The time complexity does not fit any of the above categories or cannot be clearly classified.
- O(n^3): The time complexity scales proportionally to the cube of the input size.
- O(1): The time complexity is constant to the input size n.
- O(nlog(n)): The time complexity combines linear and logarithmic growth factors.
- O(n): The time complexity increases proportionally to the input size n in a linear manner.
- O(n^2): The time complexity grows proportionally to the square of the input size.
- O(log(n)): The time complexity increases logarithmically in relation to the input size.
- non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
| 1,478
| 1,152
|
2,526
|
import java.io.OutputStream;
import java.io.IOException;
import java.io.InputStream;
import java.io.PrintWriter;
import java.util.List;
import java.util.StringTokenizer;
import java.util.HashMap;
import java.io.IOException;
import java.io.BufferedReader;
import java.io.InputStreamReader;
import java.util.ArrayList;
import java.io.InputStream;
/**
* Built using CHelper plug-in
* Actual solution is at the top
*/
public class Main {
public static void main(String[] args) {
InputStream inputStream = System.in;
OutputStream outputStream = System.out;
InputReader in = new InputReader(inputStream);
PrintWriter out = new PrintWriter(outputStream);
F2BlokiRavnoiSummiUslozhnennayaRedakciya solver = new F2BlokiRavnoiSummiUslozhnennayaRedakciya();
solver.solve(1, in, out);
out.close();
}
static class F2BlokiRavnoiSummiUslozhnennayaRedakciya {
public void solve(int testNumber, InputReader in, PrintWriter out) {
int n = in.nextInt();
int[] sum = new int[n];
int prev = 0;
for (int i = 0; i < n; i++) {
sum[i] = in.nextInt() + prev;
prev = sum[i];
}
HashMap<Integer, List<Pair<Integer, Integer>>> blocks = new HashMap<>();
int max = 0;
int maxS = 0;
for (int i = 0; i < n; i++) {
for (int h = i; h >= 0; h--) {
int s = sum[i];
if (h > 0) {
s -= sum[h - 1];
}
blocks.putIfAbsent(s, new ArrayList<>());
List<Pair<Integer, Integer>> l = blocks.get(s);
if (l.isEmpty() || l.get(l.size() - 1).sc < h) {
l.add(new Pair<>(h, i));
}
if (l.size() > max) {
max = l.size();
maxS = s;
}
}
}
out.println(max);
for (int i = 0; i < max; i++) {
out.println(String.format("%d %d", blocks.get(maxS).get(i).fs + 1, blocks.get(maxS).get(i).sc + 1));
}
}
}
static class InputReader {
public BufferedReader reader;
public StringTokenizer tokenizer;
public InputReader(InputStream stream) {
reader = new BufferedReader(new InputStreamReader(stream), 32768);
tokenizer = null;
}
public String next() {
while (tokenizer == null || !tokenizer.hasMoreTokens()) {
try {
tokenizer = new StringTokenizer(reader.readLine());
} catch (IOException e) {
throw new RuntimeException(e);
}
}
return tokenizer.nextToken();
}
public int nextInt() {
return Integer.parseInt(next());
}
}
static class Pair<T, K> {
T fs;
K sc;
public Pair(T fs, K sc) {
this.fs = fs;
this.sc = sc;
}
}
}
|
O(n^2)
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Determine the worst-case time complexity category of a given Java code based on input size n.
</TASK>
<CODE>
import java.io.OutputStream;
import java.io.IOException;
import java.io.InputStream;
import java.io.PrintWriter;
import java.util.List;
import java.util.StringTokenizer;
import java.util.HashMap;
import java.io.IOException;
import java.io.BufferedReader;
import java.io.InputStreamReader;
import java.util.ArrayList;
import java.io.InputStream;
/**
* Built using CHelper plug-in
* Actual solution is at the top
*/
public class Main {
public static void main(String[] args) {
InputStream inputStream = System.in;
OutputStream outputStream = System.out;
InputReader in = new InputReader(inputStream);
PrintWriter out = new PrintWriter(outputStream);
F2BlokiRavnoiSummiUslozhnennayaRedakciya solver = new F2BlokiRavnoiSummiUslozhnennayaRedakciya();
solver.solve(1, in, out);
out.close();
}
static class F2BlokiRavnoiSummiUslozhnennayaRedakciya {
public void solve(int testNumber, InputReader in, PrintWriter out) {
int n = in.nextInt();
int[] sum = new int[n];
int prev = 0;
for (int i = 0; i < n; i++) {
sum[i] = in.nextInt() + prev;
prev = sum[i];
}
HashMap<Integer, List<Pair<Integer, Integer>>> blocks = new HashMap<>();
int max = 0;
int maxS = 0;
for (int i = 0; i < n; i++) {
for (int h = i; h >= 0; h--) {
int s = sum[i];
if (h > 0) {
s -= sum[h - 1];
}
blocks.putIfAbsent(s, new ArrayList<>());
List<Pair<Integer, Integer>> l = blocks.get(s);
if (l.isEmpty() || l.get(l.size() - 1).sc < h) {
l.add(new Pair<>(h, i));
}
if (l.size() > max) {
max = l.size();
maxS = s;
}
}
}
out.println(max);
for (int i = 0; i < max; i++) {
out.println(String.format("%d %d", blocks.get(maxS).get(i).fs + 1, blocks.get(maxS).get(i).sc + 1));
}
}
}
static class InputReader {
public BufferedReader reader;
public StringTokenizer tokenizer;
public InputReader(InputStream stream) {
reader = new BufferedReader(new InputStreamReader(stream), 32768);
tokenizer = null;
}
public String next() {
while (tokenizer == null || !tokenizer.hasMoreTokens()) {
try {
tokenizer = new StringTokenizer(reader.readLine());
} catch (IOException e) {
throw new RuntimeException(e);
}
}
return tokenizer.nextToken();
}
public int nextInt() {
return Integer.parseInt(next());
}
}
static class Pair<T, K> {
T fs;
K sc;
public Pair(T fs, K sc) {
this.fs = fs;
this.sc = sc;
}
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(1): The time complexity is constant to the input size n.
- O(nlog(n)): The time complexity combines linear and logarithmic growth factors.
- O(n^2): The time complexity grows proportionally to the square of the input size.
- O(log(n)): The time complexity increases logarithmically in relation to the input size.
- O(n^3): The time complexity scales proportionally to the cube of the input size.
- O(n): The time complexity increases proportionally to the input size n in a linear manner.
- non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n.
</TASK>
<CODE>
import java.io.OutputStream;
import java.io.IOException;
import java.io.InputStream;
import java.io.PrintWriter;
import java.util.List;
import java.util.StringTokenizer;
import java.util.HashMap;
import java.io.IOException;
import java.io.BufferedReader;
import java.io.InputStreamReader;
import java.util.ArrayList;
import java.io.InputStream;
/**
* Built using CHelper plug-in
* Actual solution is at the top
*/
public class Main {
public static void main(String[] args) {
InputStream inputStream = System.in;
OutputStream outputStream = System.out;
InputReader in = new InputReader(inputStream);
PrintWriter out = new PrintWriter(outputStream);
F2BlokiRavnoiSummiUslozhnennayaRedakciya solver = new F2BlokiRavnoiSummiUslozhnennayaRedakciya();
solver.solve(1, in, out);
out.close();
}
static class F2BlokiRavnoiSummiUslozhnennayaRedakciya {
public void solve(int testNumber, InputReader in, PrintWriter out) {
int n = in.nextInt();
int[] sum = new int[n];
int prev = 0;
for (int i = 0; i < n; i++) {
sum[i] = in.nextInt() + prev;
prev = sum[i];
}
HashMap<Integer, List<Pair<Integer, Integer>>> blocks = new HashMap<>();
int max = 0;
int maxS = 0;
for (int i = 0; i < n; i++) {
for (int h = i; h >= 0; h--) {
int s = sum[i];
if (h > 0) {
s -= sum[h - 1];
}
blocks.putIfAbsent(s, new ArrayList<>());
List<Pair<Integer, Integer>> l = blocks.get(s);
if (l.isEmpty() || l.get(l.size() - 1).sc < h) {
l.add(new Pair<>(h, i));
}
if (l.size() > max) {
max = l.size();
maxS = s;
}
}
}
out.println(max);
for (int i = 0; i < max; i++) {
out.println(String.format("%d %d", blocks.get(maxS).get(i).fs + 1, blocks.get(maxS).get(i).sc + 1));
}
}
}
static class InputReader {
public BufferedReader reader;
public StringTokenizer tokenizer;
public InputReader(InputStream stream) {
reader = new BufferedReader(new InputStreamReader(stream), 32768);
tokenizer = null;
}
public String next() {
while (tokenizer == null || !tokenizer.hasMoreTokens()) {
try {
tokenizer = new StringTokenizer(reader.readLine());
} catch (IOException e) {
throw new RuntimeException(e);
}
}
return tokenizer.nextToken();
}
public int nextInt() {
return Integer.parseInt(next());
}
}
static class Pair<T, K> {
T fs;
K sc;
public Pair(T fs, K sc) {
this.fs = fs;
this.sc = sc;
}
}
}
</CODE>
<EVALUATION_RUBRIC>
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- O(n): The execution time ascends in a one-to-one ratio with the input size n.
- O(n^2): The execution time ascends in proportion to the square of the input size n.
- O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially.
- O(n^3): The execution time ascends in proportion to the cube of the input size n.
- others: The time complexity does not fit to any of the given categories or is ambiguous.
- O(log(n)): The execution time ascends in proportion to the logarithm of the input size n.
- O(1): The execution time is unaffected by the size of the input n.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
| 1,014
| 2,520
|
300
|
import java.io.*;
import java.util.*;
public class D999 {
public static void main(String args[])throws IOException
{
Scanner sc=new Scanner(System.in);
int n=sc.nextInt();
int m=sc.nextInt();
int req=n/m;
int arr[]=new int[n+1];
int size[]=new int[m];
List<Integer> list[]=new ArrayList[m];
for(int i=0;i<m;i++)
{
list[i]=new ArrayList<>();
}
for(int i=1;i<=n;i++)
{
arr[i]=sc.nextInt();
size[arr[i]%m]++;
list[arr[i]%m].add(i);
}
long tot=0;int x=0,y=0;
List<Integer> idx=new ArrayList<>();
for(int i=0;i < 2*m;i++)
{
//System.out.println(i+" "+size[i%m]);
if(size[i%m]>req)
{
for(int j=0;j<size[i%m]-req;j++)
{
idx.add(list[i%m].get(j));
y++;
}
size[i%m]=req;
//System.out.println(i+" "+x+" "+y);
}
else if(size[i%m]<req)
{
//System.out.println(idx+" "+i);
while(x!=y && size[i%m]<req)
{
int num=arr[idx.get(x)];
int gg=i-num%m;
tot+=gg;
arr[idx.get(x)]+=gg;
x++;
size[i%m]++;
}
}
}
System.out.println(tot);
for(int i=1;i<=n;i++)
{
System.out.print(arr[i]+" ");
}
}
}
|
O(n)
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n.
</TASK>
<CODE>
import java.io.*;
import java.util.*;
public class D999 {
public static void main(String args[])throws IOException
{
Scanner sc=new Scanner(System.in);
int n=sc.nextInt();
int m=sc.nextInt();
int req=n/m;
int arr[]=new int[n+1];
int size[]=new int[m];
List<Integer> list[]=new ArrayList[m];
for(int i=0;i<m;i++)
{
list[i]=new ArrayList<>();
}
for(int i=1;i<=n;i++)
{
arr[i]=sc.nextInt();
size[arr[i]%m]++;
list[arr[i]%m].add(i);
}
long tot=0;int x=0,y=0;
List<Integer> idx=new ArrayList<>();
for(int i=0;i < 2*m;i++)
{
//System.out.println(i+" "+size[i%m]);
if(size[i%m]>req)
{
for(int j=0;j<size[i%m]-req;j++)
{
idx.add(list[i%m].get(j));
y++;
}
size[i%m]=req;
//System.out.println(i+" "+x+" "+y);
}
else if(size[i%m]<req)
{
//System.out.println(idx+" "+i);
while(x!=y && size[i%m]<req)
{
int num=arr[idx.get(x)];
int gg=i-num%m;
tot+=gg;
arr[idx.get(x)]+=gg;
x++;
size[i%m]++;
}
}
}
System.out.println(tot);
for(int i=1;i<=n;i++)
{
System.out.print(arr[i]+" ");
}
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(log(n)): The execution time ascends in proportion to the logarithm of the input size n.
- O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially.
- O(1): The execution time is unaffected by the size of the input n.
- O(n^3): The execution time ascends in proportion to the cube of the input size n.
- O(n): The execution time ascends in a one-to-one ratio with the input size n.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- O(n^2): The execution time ascends in proportion to the square of the input size n.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Determine the worst-case time complexity category of a given Java code based on input size n.
</TASK>
<CODE>
import java.io.*;
import java.util.*;
public class D999 {
public static void main(String args[])throws IOException
{
Scanner sc=new Scanner(System.in);
int n=sc.nextInt();
int m=sc.nextInt();
int req=n/m;
int arr[]=new int[n+1];
int size[]=new int[m];
List<Integer> list[]=new ArrayList[m];
for(int i=0;i<m;i++)
{
list[i]=new ArrayList<>();
}
for(int i=1;i<=n;i++)
{
arr[i]=sc.nextInt();
size[arr[i]%m]++;
list[arr[i]%m].add(i);
}
long tot=0;int x=0,y=0;
List<Integer> idx=new ArrayList<>();
for(int i=0;i < 2*m;i++)
{
//System.out.println(i+" "+size[i%m]);
if(size[i%m]>req)
{
for(int j=0;j<size[i%m]-req;j++)
{
idx.add(list[i%m].get(j));
y++;
}
size[i%m]=req;
//System.out.println(i+" "+x+" "+y);
}
else if(size[i%m]<req)
{
//System.out.println(idx+" "+i);
while(x!=y && size[i%m]<req)
{
int num=arr[idx.get(x)];
int gg=i-num%m;
tot+=gg;
arr[idx.get(x)]+=gg;
x++;
size[i%m]++;
}
}
}
System.out.println(tot);
for(int i=1;i<=n;i++)
{
System.out.print(arr[i]+" ");
}
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(nlog(n)): The time complexity combines linear and logarithmic growth factors.
- O(1): The time complexity is constant to the input size n.
- non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially.
- O(log(n)): The time complexity increases logarithmically in relation to the input size.
- O(n^2): The time complexity grows proportionally to the square of the input size.
- others: The time complexity does not fit any of the above categories or cannot be clearly classified.
- O(n): The time complexity increases proportionally to the input size n in a linear manner.
- O(n^3): The time complexity scales proportionally to the cube of the input size.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
| 718
| 300
|
1,712
|
import java.io.*;
import java.util.*;
public class Main {
// static Scanner in;
static PrintWriter out;
static StreamTokenizer in; static int next() throws Exception {in.nextToken(); return (int) in.nval;}
public static void main(String[] args) throws Exception {
// in = new Scanner(System.in);
out = new PrintWriter(System.out);
in = new StreamTokenizer(new BufferedReader(new InputStreamReader(System.in)));
int n = next();
int t = 2*next();
int[] x = new int[n];
int[] a = new int[n];
for (int i = 0; i < n; i++) {
x[i] = 2* next() + 2000;
a[i] = next();
}
int[] srt = new int[n];
for (int i = 0; i < n; i++) srt[i] = 10000 * x[i] + a[i];
Arrays.sort(srt);
for (int i = 0; i < n; i++) {
x[i] = srt[i] / 10000;
a[i] = srt[i] % 10000;
}
int answ = 2;
for (int i = 0; i < n - 1; i++) {
if (x[i + 1] - x[i] > a[i] + a[i + 1] + t) answ++;
if (x[i + 1] - x[i] >= a[i] + a[i + 1] + t) answ++;
}
out.println(answ);
out.close();
}
}
|
O(nlog(n))
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Classify the following Java code's worst-case time complexity according to its relationship to the input size n.
</TASK>
<CODE>
import java.io.*;
import java.util.*;
public class Main {
// static Scanner in;
static PrintWriter out;
static StreamTokenizer in; static int next() throws Exception {in.nextToken(); return (int) in.nval;}
public static void main(String[] args) throws Exception {
// in = new Scanner(System.in);
out = new PrintWriter(System.out);
in = new StreamTokenizer(new BufferedReader(new InputStreamReader(System.in)));
int n = next();
int t = 2*next();
int[] x = new int[n];
int[] a = new int[n];
for (int i = 0; i < n; i++) {
x[i] = 2* next() + 2000;
a[i] = next();
}
int[] srt = new int[n];
for (int i = 0; i < n; i++) srt[i] = 10000 * x[i] + a[i];
Arrays.sort(srt);
for (int i = 0; i < n; i++) {
x[i] = srt[i] / 10000;
a[i] = srt[i] % 10000;
}
int answ = 2;
for (int i = 0; i < n - 1; i++) {
if (x[i + 1] - x[i] > a[i] + a[i + 1] + t) answ++;
if (x[i + 1] - x[i] >= a[i] + a[i + 1] + t) answ++;
}
out.println(answ);
out.close();
}
}
</CODE>
<EVALUATION_RUBRIC>
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- O(n^3): The running time increases with the cube of the input size n.
- O(1): The running time does not change regardless of the input size n.
- O(n): The running time grows linearly with the input size n.
- O(n^2): The running time increases with the square of the input size n.
- O(nlog(n)): The running time increases with the product of n and logarithm of n.
- O(log(n)): The running time increases with the logarithm of the input size n.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Classify the following Java code's worst-case time complexity according to its relationship to the input size n.
</TASK>
<CODE>
import java.io.*;
import java.util.*;
public class Main {
// static Scanner in;
static PrintWriter out;
static StreamTokenizer in; static int next() throws Exception {in.nextToken(); return (int) in.nval;}
public static void main(String[] args) throws Exception {
// in = new Scanner(System.in);
out = new PrintWriter(System.out);
in = new StreamTokenizer(new BufferedReader(new InputStreamReader(System.in)));
int n = next();
int t = 2*next();
int[] x = new int[n];
int[] a = new int[n];
for (int i = 0; i < n; i++) {
x[i] = 2* next() + 2000;
a[i] = next();
}
int[] srt = new int[n];
for (int i = 0; i < n; i++) srt[i] = 10000 * x[i] + a[i];
Arrays.sort(srt);
for (int i = 0; i < n; i++) {
x[i] = srt[i] / 10000;
a[i] = srt[i] % 10000;
}
int answ = 2;
for (int i = 0; i < n - 1; i++) {
if (x[i + 1] - x[i] > a[i] + a[i + 1] + t) answ++;
if (x[i + 1] - x[i] >= a[i] + a[i + 1] + t) answ++;
}
out.println(answ);
out.close();
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(n^3): The running time increases with the cube of the input size n.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- O(1): The running time does not change regardless of the input size n.
- O(nlog(n)): The running time increases with the product of n and logarithm of n.
- others: The code does not clearly correspond to the listed classes or has an unclassified time complexity.
- O(log(n)): The running time increases with the logarithm of the input size n.
- O(n): The running time grows linearly with the input size n.
- O(n^2): The running time increases with the square of the input size n.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
| 700
| 1,708
|
1,120
|
import java.util.*;
public class ehab4 {
public static void main( String[] args ) {
Scanner in = new Scanner( System.in );
int a = 0, b = 0;
System.out.println( "? 0 0 " );
System.out.flush();
int c = in.nextInt();
for ( int i = 29; i >= 0; i-- ) {
System.out.println( "? " + ( a + ( 1 << i ) ) + " " + b );
System.out.flush();
int q1 = in.nextInt();
System.out.println( "? " + a + " " + ( b + ( 1 << i ) ) );
System.out.flush();
int q2 = in.nextInt();
if ( q1 == q2 ) {
if ( c == 1 )
a += ( 1 << i );
else if ( c == -1 )
b += ( 1 << i );
c = q1;
}
else if ( q1 == -1 ) {
a += ( 1 << i );
b += ( 1 << i );
}
else if ( q1 == -2 )
return;
}
System.out.println( "! " + a + " " + b );
System.out.flush();
}
}
|
O(log(n))
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Classify the following Java code's worst-case time complexity according to its relationship to the input size n.
</TASK>
<CODE>
import java.util.*;
public class ehab4 {
public static void main( String[] args ) {
Scanner in = new Scanner( System.in );
int a = 0, b = 0;
System.out.println( "? 0 0 " );
System.out.flush();
int c = in.nextInt();
for ( int i = 29; i >= 0; i-- ) {
System.out.println( "? " + ( a + ( 1 << i ) ) + " " + b );
System.out.flush();
int q1 = in.nextInt();
System.out.println( "? " + a + " " + ( b + ( 1 << i ) ) );
System.out.flush();
int q2 = in.nextInt();
if ( q1 == q2 ) {
if ( c == 1 )
a += ( 1 << i );
else if ( c == -1 )
b += ( 1 << i );
c = q1;
}
else if ( q1 == -1 ) {
a += ( 1 << i );
b += ( 1 << i );
}
else if ( q1 == -2 )
return;
}
System.out.println( "! " + a + " " + b );
System.out.flush();
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(n^2): The running time increases with the square of the input size n.
- O(n): The running time grows linearly with the input size n.
- O(log(n)): The running time increases with the logarithm of the input size n.
- O(1): The running time does not change regardless of the input size n.
- O(n^3): The running time increases with the cube of the input size n.
- O(nlog(n)): The running time increases with the product of n and logarithm of n.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Classify the following Java code's worst-case time complexity according to its relationship to the input size n.
</TASK>
<CODE>
import java.util.*;
public class ehab4 {
public static void main( String[] args ) {
Scanner in = new Scanner( System.in );
int a = 0, b = 0;
System.out.println( "? 0 0 " );
System.out.flush();
int c = in.nextInt();
for ( int i = 29; i >= 0; i-- ) {
System.out.println( "? " + ( a + ( 1 << i ) ) + " " + b );
System.out.flush();
int q1 = in.nextInt();
System.out.println( "? " + a + " " + ( b + ( 1 << i ) ) );
System.out.flush();
int q2 = in.nextInt();
if ( q1 == q2 ) {
if ( c == 1 )
a += ( 1 << i );
else if ( c == -1 )
b += ( 1 << i );
c = q1;
}
else if ( q1 == -1 ) {
a += ( 1 << i );
b += ( 1 << i );
}
else if ( q1 == -2 )
return;
}
System.out.println( "! " + a + " " + b );
System.out.flush();
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(n): The running time grows linearly with the input size n.
- O(log(n)): The running time increases with the logarithm of the input size n.
- O(nlog(n)): The running time increases with the product of n and logarithm of n.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- others: The code does not clearly correspond to the listed classes or has an unclassified time complexity.
- O(1): The running time does not change regardless of the input size n.
- O(n^3): The running time increases with the cube of the input size n.
- O(n^2): The running time increases with the square of the input size n.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
| 607
| 1,119
|
4,053
|
import java.io.*;
import java.util.*;
import static java.lang.Math.*;
public class codeforces {
public static long cnt = 0;
public static void f(int g1, int g2, int g3, int last) {
if (g1 == 0 && g2 == 0 && g3 == 0) cnt++;
if (g1 > 0 && last != 1) f(g1 - 1, g2, g3, 1);
if (g2 > 0 && last != 2) f(g1, g2 - 1, g3, 2);
if (g3 > 0 && last != 3) f(g1, g2, g3 - 1, 3);
}
public static void main(String[] args) throws IOException {
BufferedReader scan = new BufferedReader(new InputStreamReader(System.in));
StringTokenizer st = new StringTokenizer(scan.readLine());
int n = Integer.parseInt(st.nextToken());
int t = Integer.parseInt(st.nextToken());
int T[] = new int[n];
int G[] = new int[n];
for (int i = 0; i < n; i++) {
st = new StringTokenizer(scan.readLine());
T[i] = Integer.parseInt(st.nextToken());
G[i] = Integer.parseInt(st.nextToken());
}
long ans = 0;
for (int mask = 1; mask < (1 << n); mask++) {
int sum = 0;
int g1 = 0;
int g2 = 0;
int g3 = 0;
for (int i = 0; i < n; i++) {
if (((1 << i) & mask) > 0) {
sum += T[i];
if (G[i] == 1) g1++;
if (G[i] == 2) g2++;
if (G[i] == 3) g3++;
}
}
cnt = 0;
if (sum == t) f(g1, g2, g3, -1);
for (long i = 1; i <= g1; i++) cnt *= i;
for (long i = 1; i <= g2; i++) cnt *= i;
for (long i = 1; i <= g3; i++) cnt *= i;
ans += cnt;
}
System.out.println(ans % 1000000007);
}
}
|
non-polynomial
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Determine the worst-case time complexity category of a given Java code based on input size n.
</TASK>
<CODE>
import java.io.*;
import java.util.*;
import static java.lang.Math.*;
public class codeforces {
public static long cnt = 0;
public static void f(int g1, int g2, int g3, int last) {
if (g1 == 0 && g2 == 0 && g3 == 0) cnt++;
if (g1 > 0 && last != 1) f(g1 - 1, g2, g3, 1);
if (g2 > 0 && last != 2) f(g1, g2 - 1, g3, 2);
if (g3 > 0 && last != 3) f(g1, g2, g3 - 1, 3);
}
public static void main(String[] args) throws IOException {
BufferedReader scan = new BufferedReader(new InputStreamReader(System.in));
StringTokenizer st = new StringTokenizer(scan.readLine());
int n = Integer.parseInt(st.nextToken());
int t = Integer.parseInt(st.nextToken());
int T[] = new int[n];
int G[] = new int[n];
for (int i = 0; i < n; i++) {
st = new StringTokenizer(scan.readLine());
T[i] = Integer.parseInt(st.nextToken());
G[i] = Integer.parseInt(st.nextToken());
}
long ans = 0;
for (int mask = 1; mask < (1 << n); mask++) {
int sum = 0;
int g1 = 0;
int g2 = 0;
int g3 = 0;
for (int i = 0; i < n; i++) {
if (((1 << i) & mask) > 0) {
sum += T[i];
if (G[i] == 1) g1++;
if (G[i] == 2) g2++;
if (G[i] == 3) g3++;
}
}
cnt = 0;
if (sum == t) f(g1, g2, g3, -1);
for (long i = 1; i <= g1; i++) cnt *= i;
for (long i = 1; i <= g2; i++) cnt *= i;
for (long i = 1; i <= g3; i++) cnt *= i;
ans += cnt;
}
System.out.println(ans % 1000000007);
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(n): The time complexity increases proportionally to the input size n in a linear manner.
- O(1): The time complexity is constant to the input size n.
- O(log(n)): The time complexity increases logarithmically in relation to the input size.
- O(nlog(n)): The time complexity combines linear and logarithmic growth factors.
- O(n^3): The time complexity scales proportionally to the cube of the input size.
- O(n^2): The time complexity grows proportionally to the square of the input size.
- non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Classify the following Java code's worst-case time complexity according to its relationship to the input size n.
</TASK>
<CODE>
import java.io.*;
import java.util.*;
import static java.lang.Math.*;
public class codeforces {
public static long cnt = 0;
public static void f(int g1, int g2, int g3, int last) {
if (g1 == 0 && g2 == 0 && g3 == 0) cnt++;
if (g1 > 0 && last != 1) f(g1 - 1, g2, g3, 1);
if (g2 > 0 && last != 2) f(g1, g2 - 1, g3, 2);
if (g3 > 0 && last != 3) f(g1, g2, g3 - 1, 3);
}
public static void main(String[] args) throws IOException {
BufferedReader scan = new BufferedReader(new InputStreamReader(System.in));
StringTokenizer st = new StringTokenizer(scan.readLine());
int n = Integer.parseInt(st.nextToken());
int t = Integer.parseInt(st.nextToken());
int T[] = new int[n];
int G[] = new int[n];
for (int i = 0; i < n; i++) {
st = new StringTokenizer(scan.readLine());
T[i] = Integer.parseInt(st.nextToken());
G[i] = Integer.parseInt(st.nextToken());
}
long ans = 0;
for (int mask = 1; mask < (1 << n); mask++) {
int sum = 0;
int g1 = 0;
int g2 = 0;
int g3 = 0;
for (int i = 0; i < n; i++) {
if (((1 << i) & mask) > 0) {
sum += T[i];
if (G[i] == 1) g1++;
if (G[i] == 2) g2++;
if (G[i] == 3) g3++;
}
}
cnt = 0;
if (sum == t) f(g1, g2, g3, -1);
for (long i = 1; i <= g1; i++) cnt *= i;
for (long i = 1; i <= g2; i++) cnt *= i;
for (long i = 1; i <= g3; i++) cnt *= i;
ans += cnt;
}
System.out.println(ans % 1000000007);
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(n^2): The running time increases with the square of the input size n.
- O(nlog(n)): The running time increases with the product of n and logarithm of n.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- O(1): The running time does not change regardless of the input size n.
- others: The code does not clearly correspond to the listed classes or has an unclassified time complexity.
- O(n): The running time grows linearly with the input size n.
- O(log(n)): The running time increases with the logarithm of the input size n.
- O(n^3): The running time increases with the cube of the input size n.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
| 858
| 4,042
|
3,282
|
import java.util.Scanner;
public class HexadecimalTheorem {
public static void main(String[] args) {
Scanner read = new Scanner(System.in);
int num = read.nextInt();
int zero, one, two, three;
zero = 0;
one = 1;
two = 1;
three = 2;
if(num == 0)
System.out.println("0 0 0");
else if(num == 1)
System.out.println("0 0 1");
else{
while(num != three){
zero = one;
one = two;
two = three;
three = three + one;
}
System.out.println(zero + " " + one + " " + one);
}
}
}
|
O(1)
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n.
</TASK>
<CODE>
import java.util.Scanner;
public class HexadecimalTheorem {
public static void main(String[] args) {
Scanner read = new Scanner(System.in);
int num = read.nextInt();
int zero, one, two, three;
zero = 0;
one = 1;
two = 1;
three = 2;
if(num == 0)
System.out.println("0 0 0");
else if(num == 1)
System.out.println("0 0 1");
else{
while(num != three){
zero = one;
one = two;
two = three;
three = three + one;
}
System.out.println(zero + " " + one + " " + one);
}
}
}
</CODE>
<EVALUATION_RUBRIC>
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially.
- O(n): The execution time ascends in a one-to-one ratio with the input size n.
- O(n^3): The execution time ascends in proportion to the cube of the input size n.
- O(log(n)): The execution time ascends in proportion to the logarithm of the input size n.
- O(1): The execution time is unaffected by the size of the input n.
- O(n^2): The execution time ascends in proportion to the square of the input size n.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Determine the worst-case time complexity category of a given Java code based on input size n.
</TASK>
<CODE>
import java.util.Scanner;
public class HexadecimalTheorem {
public static void main(String[] args) {
Scanner read = new Scanner(System.in);
int num = read.nextInt();
int zero, one, two, three;
zero = 0;
one = 1;
two = 1;
three = 2;
if(num == 0)
System.out.println("0 0 0");
else if(num == 1)
System.out.println("0 0 1");
else{
while(num != three){
zero = one;
one = two;
two = three;
three = three + one;
}
System.out.println(zero + " " + one + " " + one);
}
}
}
</CODE>
<EVALUATION_RUBRIC>
- non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially.
- O(n^3): The time complexity scales proportionally to the cube of the input size.
- O(n^2): The time complexity grows proportionally to the square of the input size.
- O(n): The time complexity increases proportionally to the input size n in a linear manner.
- others: The time complexity does not fit any of the above categories or cannot be clearly classified.
- O(nlog(n)): The time complexity combines linear and logarithmic growth factors.
- O(1): The time complexity is constant to the input size n.
- O(log(n)): The time complexity increases logarithmically in relation to the input size.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
| 515
| 3,276
|
2,954
|
import java.io.*;
import java.util.*;
public class taskA {
void solve() throws IOException {
long a = nextLong();
long b = nextLong();
long ans = 0;
while (a != 0 && b != 0) {
if (a > b) {
ans += a / b;
a %= b;
} else {
long c = b % a;
ans += b / a;
b = a;
a = c;
}
}
out.println(ans);
}
BufferedReader br;
StringTokenizer st;
PrintWriter out;
void run() {
try {
br = new BufferedReader(new InputStreamReader(System.in));
out = new PrintWriter(System.out);
// br = new BufferedReader(new FileReader(new File("taskA.in")));
// out = new PrintWriter("taskA.out");
solve();
out.close();
} catch (IOException e) {
e.printStackTrace();
}
}
public static void main(String[] args) {
new taskA().run();
}
String nextToken() throws IOException {
while ((st == null) || !st.hasMoreTokens())
st = new StringTokenizer(br.readLine());
return st.nextToken();
}
int nextInt() throws NumberFormatException, IOException {
return Integer.parseInt(nextToken());
}
double nextDouble() throws NumberFormatException, IOException {
return Double.parseDouble(nextToken());
}
long nextLong() throws NumberFormatException, IOException {
return Long.parseLong(nextToken());
}
}
|
O(1)
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n.
</TASK>
<CODE>
import java.io.*;
import java.util.*;
public class taskA {
void solve() throws IOException {
long a = nextLong();
long b = nextLong();
long ans = 0;
while (a != 0 && b != 0) {
if (a > b) {
ans += a / b;
a %= b;
} else {
long c = b % a;
ans += b / a;
b = a;
a = c;
}
}
out.println(ans);
}
BufferedReader br;
StringTokenizer st;
PrintWriter out;
void run() {
try {
br = new BufferedReader(new InputStreamReader(System.in));
out = new PrintWriter(System.out);
// br = new BufferedReader(new FileReader(new File("taskA.in")));
// out = new PrintWriter("taskA.out");
solve();
out.close();
} catch (IOException e) {
e.printStackTrace();
}
}
public static void main(String[] args) {
new taskA().run();
}
String nextToken() throws IOException {
while ((st == null) || !st.hasMoreTokens())
st = new StringTokenizer(br.readLine());
return st.nextToken();
}
int nextInt() throws NumberFormatException, IOException {
return Integer.parseInt(nextToken());
}
double nextDouble() throws NumberFormatException, IOException {
return Double.parseDouble(nextToken());
}
long nextLong() throws NumberFormatException, IOException {
return Long.parseLong(nextToken());
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(n^3): The execution time ascends in proportion to the cube of the input size n.
- O(1): The execution time is unaffected by the size of the input n.
- O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially.
- O(log(n)): The execution time ascends in proportion to the logarithm of the input size n.
- O(n): The execution time ascends in a one-to-one ratio with the input size n.
- O(n^2): The execution time ascends in proportion to the square of the input size n.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Classify the following Java code's worst-case time complexity according to its relationship to the input size n.
</TASK>
<CODE>
import java.io.*;
import java.util.*;
public class taskA {
void solve() throws IOException {
long a = nextLong();
long b = nextLong();
long ans = 0;
while (a != 0 && b != 0) {
if (a > b) {
ans += a / b;
a %= b;
} else {
long c = b % a;
ans += b / a;
b = a;
a = c;
}
}
out.println(ans);
}
BufferedReader br;
StringTokenizer st;
PrintWriter out;
void run() {
try {
br = new BufferedReader(new InputStreamReader(System.in));
out = new PrintWriter(System.out);
// br = new BufferedReader(new FileReader(new File("taskA.in")));
// out = new PrintWriter("taskA.out");
solve();
out.close();
} catch (IOException e) {
e.printStackTrace();
}
}
public static void main(String[] args) {
new taskA().run();
}
String nextToken() throws IOException {
while ((st == null) || !st.hasMoreTokens())
st = new StringTokenizer(br.readLine());
return st.nextToken();
}
int nextInt() throws NumberFormatException, IOException {
return Integer.parseInt(nextToken());
}
double nextDouble() throws NumberFormatException, IOException {
return Double.parseDouble(nextToken());
}
long nextLong() throws NumberFormatException, IOException {
return Long.parseLong(nextToken());
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(n^3): The running time increases with the cube of the input size n.
- O(n^2): The running time increases with the square of the input size n.
- O(1): The running time does not change regardless of the input size n.
- O(nlog(n)): The running time increases with the product of n and logarithm of n.
- O(log(n)): The running time increases with the logarithm of the input size n.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- O(n): The running time grows linearly with the input size n.
- others: The code does not clearly correspond to the listed classes or has an unclassified time complexity.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
| 670
| 2,948
|
1,045
|
import java.util.*;
import java.io.*;
public class A
{
public static void main(String ar[]) throws Exception
{
BufferedReader br=new BufferedReader(new InputStreamReader(System.in));
long k=Long.parseLong(br.readLine());
long l=1,h=1000000000000l;
long p[]=new long[13];
for(int i=1;i<=12;i++)
{
long ll=9*i;
p[i]=ll*(long)Math.pow(10,i-1);
p[i]+=p[i-1];
}
while(h-l>1)
{
long mid=(l+h)/2;
long num=(long)(Math.log(mid)/Math.log(10));
long l1=p[(int)num]+(num+1)*(mid-(long)Math.pow(10,num));
long l2=p[(int)num]+(num+1)*(mid-(long)Math.pow(10,num)+1);
if(k<=l1)
h=mid;
else if(k>l2)
l=mid;
else
{ l=mid; h=mid; }
}
if(h-l==1)
{
long num=(long)(Math.log(h)/Math.log(10));
long l1=p[(int)num]+(num+1)*(h-(long)Math.pow(10,num));
long l2=p[(int)num]+(num+1)*(h-(long)Math.pow(10,num)+1);
if(k>l1 && k<=l2)
{ l=h; }
}
long n=(long)(Math.log(l)/Math.log(10));
long u=p[(int)n]+(n+1)*(l-(long)Math.pow(10,n));
k-=u;
String ss=String.valueOf(l);
//System.out.println(l+" "+k);
System.out.println(ss.charAt((int)(k-1)));
}
}
|
O(log(n))
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Classify the following Java code's worst-case time complexity according to its relationship to the input size n.
</TASK>
<CODE>
import java.util.*;
import java.io.*;
public class A
{
public static void main(String ar[]) throws Exception
{
BufferedReader br=new BufferedReader(new InputStreamReader(System.in));
long k=Long.parseLong(br.readLine());
long l=1,h=1000000000000l;
long p[]=new long[13];
for(int i=1;i<=12;i++)
{
long ll=9*i;
p[i]=ll*(long)Math.pow(10,i-1);
p[i]+=p[i-1];
}
while(h-l>1)
{
long mid=(l+h)/2;
long num=(long)(Math.log(mid)/Math.log(10));
long l1=p[(int)num]+(num+1)*(mid-(long)Math.pow(10,num));
long l2=p[(int)num]+(num+1)*(mid-(long)Math.pow(10,num)+1);
if(k<=l1)
h=mid;
else if(k>l2)
l=mid;
else
{ l=mid; h=mid; }
}
if(h-l==1)
{
long num=(long)(Math.log(h)/Math.log(10));
long l1=p[(int)num]+(num+1)*(h-(long)Math.pow(10,num));
long l2=p[(int)num]+(num+1)*(h-(long)Math.pow(10,num)+1);
if(k>l1 && k<=l2)
{ l=h; }
}
long n=(long)(Math.log(l)/Math.log(10));
long u=p[(int)n]+(n+1)*(l-(long)Math.pow(10,n));
k-=u;
String ss=String.valueOf(l);
//System.out.println(l+" "+k);
System.out.println(ss.charAt((int)(k-1)));
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(n^2): The running time increases with the square of the input size n.
- O(nlog(n)): The running time increases with the product of n and logarithm of n.
- O(1): The running time does not change regardless of the input size n.
- O(n^3): The running time increases with the cube of the input size n.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- O(n): The running time grows linearly with the input size n.
- O(log(n)): The running time increases with the logarithm of the input size n.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Determine the worst-case time complexity category of a given Java code based on input size n.
</TASK>
<CODE>
import java.util.*;
import java.io.*;
public class A
{
public static void main(String ar[]) throws Exception
{
BufferedReader br=new BufferedReader(new InputStreamReader(System.in));
long k=Long.parseLong(br.readLine());
long l=1,h=1000000000000l;
long p[]=new long[13];
for(int i=1;i<=12;i++)
{
long ll=9*i;
p[i]=ll*(long)Math.pow(10,i-1);
p[i]+=p[i-1];
}
while(h-l>1)
{
long mid=(l+h)/2;
long num=(long)(Math.log(mid)/Math.log(10));
long l1=p[(int)num]+(num+1)*(mid-(long)Math.pow(10,num));
long l2=p[(int)num]+(num+1)*(mid-(long)Math.pow(10,num)+1);
if(k<=l1)
h=mid;
else if(k>l2)
l=mid;
else
{ l=mid; h=mid; }
}
if(h-l==1)
{
long num=(long)(Math.log(h)/Math.log(10));
long l1=p[(int)num]+(num+1)*(h-(long)Math.pow(10,num));
long l2=p[(int)num]+(num+1)*(h-(long)Math.pow(10,num)+1);
if(k>l1 && k<=l2)
{ l=h; }
}
long n=(long)(Math.log(l)/Math.log(10));
long u=p[(int)n]+(n+1)*(l-(long)Math.pow(10,n));
k-=u;
String ss=String.valueOf(l);
//System.out.println(l+" "+k);
System.out.println(ss.charAt((int)(k-1)));
}
}
</CODE>
<EVALUATION_RUBRIC>
- non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially.
- O(n^3): The time complexity scales proportionally to the cube of the input size.
- others: The time complexity does not fit any of the above categories or cannot be clearly classified.
- O(nlog(n)): The time complexity combines linear and logarithmic growth factors.
- O(log(n)): The time complexity increases logarithmically in relation to the input size.
- O(n): The time complexity increases proportionally to the input size n in a linear manner.
- O(1): The time complexity is constant to the input size n.
- O(n^2): The time complexity grows proportionally to the square of the input size.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
| 762
| 1,044
|
2,383
|
import java.io.*;
import java.util.*;
import java.math.*;
// import java.awt.Point;
public class Main {
InputStream is;
PrintWriter out;
String INPUT = "";
long MOD = 1_000_000_007;
int inf = Integer.MAX_VALUE;
void solve()
{
int n = ni();
int[] a = new int[n];
for(int i = 0; i < n; i++){
a[i] = ni();
}
long ans = 0;
for(int i = 0; i < n; i++){
for(int j = i+1; j < n; j++){
if(a[j]<a[i]) ans++;
}
}
if(ans%2==0) ans = 0;
else ans = 1;
int m = ni();
for(int i = 0; i < m; i++){
long s = nl();
long g = nl();
long sub = g-s;
long res = sub*(sub+1)/2;
if(res%2==1) ans = 1 - ans;
if(ans==0) out.println("even");
else out.println("odd");
}
}
void run() throws Exception
{
is = INPUT.isEmpty() ? System.in : new ByteArrayInputStream(INPUT.getBytes());
out = new PrintWriter(System.out);
long s = System.currentTimeMillis();
solve();
out.flush();
if(!INPUT.isEmpty())tr(System.currentTimeMillis()-s+"ms");
}
public static void main(String[] args) throws Exception { new Main().run(); }
private byte[] inbuf = new byte[1024];
private int lenbuf = 0, ptrbuf = 0;
private int readByte()
{
if(lenbuf == -1)throw new InputMismatchException();
if(ptrbuf >= lenbuf){
ptrbuf = 0;
try { lenbuf = is.read(inbuf); } catch (IOException e) { throw new InputMismatchException(); }
if(lenbuf <= 0)return -1;
}
return inbuf[ptrbuf++];
}
private boolean isSpaceChar(int c) { return !(c >= 33 && c <= 126); }
private int skip() { int b; while((b = readByte()) != -1 && isSpaceChar(b)); return b; }
private double nd() { return Double.parseDouble(ns()); }
private char nc() { return (char)skip(); }
private String ns()
{
int b = skip();
StringBuilder sb = new StringBuilder();
while(!(isSpaceChar(b) && b != ' ')){
sb.appendCodePoint(b);
b = readByte();
}
return sb.toString();
}
private char[] ns(int n)
{
char[] buf = new char[n];
int b = skip(), p = 0;
while(p < n && !(isSpaceChar(b))){
buf[p++] = (char)b;
b = readByte();
}
return n == p ? buf : Arrays.copyOf(buf, p);
}
private char[][] nm(int n, int m)
{
char[][] map = new char[n][];
for(int i = 0;i < n;i++)map[i] = ns(m);
return map;
}
private int[] na(int n)
{
int[] a = new int[n];
for(int i = 0;i < n;i++)a[i] = ni();
return a;
}
private int ni()
{
int num = 0, b;
boolean minus = false;
while((b = readByte()) != -1 && !((b >= '0' && b <= '9') || b == '-'));
if(b == '-'){
minus = true;
b = readByte();
}
while(true){
if(b >= '0' && b <= '9'){
num = num * 10 + (b - '0');
}else{
return minus ? -num : num;
}
b = readByte();
}
}
private long nl()
{
long num = 0;
int b;
boolean minus = false;
while((b = readByte()) != -1 && !((b >= '0' && b <= '9') || b == '-'));
if(b == '-'){
minus = true;
b = readByte();
}
while(true){
if(b >= '0' && b <= '9'){
num = num * 10 + (b - '0');
}else{
return minus ? -num : num;
}
b = readByte();
}
}
private static void tr(Object... o) { System.out.println(Arrays.deepToString(o)); }
}
|
O(n^2)
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Classify the following Java code's worst-case time complexity according to its relationship to the input size n.
</TASK>
<CODE>
import java.io.*;
import java.util.*;
import java.math.*;
// import java.awt.Point;
public class Main {
InputStream is;
PrintWriter out;
String INPUT = "";
long MOD = 1_000_000_007;
int inf = Integer.MAX_VALUE;
void solve()
{
int n = ni();
int[] a = new int[n];
for(int i = 0; i < n; i++){
a[i] = ni();
}
long ans = 0;
for(int i = 0; i < n; i++){
for(int j = i+1; j < n; j++){
if(a[j]<a[i]) ans++;
}
}
if(ans%2==0) ans = 0;
else ans = 1;
int m = ni();
for(int i = 0; i < m; i++){
long s = nl();
long g = nl();
long sub = g-s;
long res = sub*(sub+1)/2;
if(res%2==1) ans = 1 - ans;
if(ans==0) out.println("even");
else out.println("odd");
}
}
void run() throws Exception
{
is = INPUT.isEmpty() ? System.in : new ByteArrayInputStream(INPUT.getBytes());
out = new PrintWriter(System.out);
long s = System.currentTimeMillis();
solve();
out.flush();
if(!INPUT.isEmpty())tr(System.currentTimeMillis()-s+"ms");
}
public static void main(String[] args) throws Exception { new Main().run(); }
private byte[] inbuf = new byte[1024];
private int lenbuf = 0, ptrbuf = 0;
private int readByte()
{
if(lenbuf == -1)throw new InputMismatchException();
if(ptrbuf >= lenbuf){
ptrbuf = 0;
try { lenbuf = is.read(inbuf); } catch (IOException e) { throw new InputMismatchException(); }
if(lenbuf <= 0)return -1;
}
return inbuf[ptrbuf++];
}
private boolean isSpaceChar(int c) { return !(c >= 33 && c <= 126); }
private int skip() { int b; while((b = readByte()) != -1 && isSpaceChar(b)); return b; }
private double nd() { return Double.parseDouble(ns()); }
private char nc() { return (char)skip(); }
private String ns()
{
int b = skip();
StringBuilder sb = new StringBuilder();
while(!(isSpaceChar(b) && b != ' ')){
sb.appendCodePoint(b);
b = readByte();
}
return sb.toString();
}
private char[] ns(int n)
{
char[] buf = new char[n];
int b = skip(), p = 0;
while(p < n && !(isSpaceChar(b))){
buf[p++] = (char)b;
b = readByte();
}
return n == p ? buf : Arrays.copyOf(buf, p);
}
private char[][] nm(int n, int m)
{
char[][] map = new char[n][];
for(int i = 0;i < n;i++)map[i] = ns(m);
return map;
}
private int[] na(int n)
{
int[] a = new int[n];
for(int i = 0;i < n;i++)a[i] = ni();
return a;
}
private int ni()
{
int num = 0, b;
boolean minus = false;
while((b = readByte()) != -1 && !((b >= '0' && b <= '9') || b == '-'));
if(b == '-'){
minus = true;
b = readByte();
}
while(true){
if(b >= '0' && b <= '9'){
num = num * 10 + (b - '0');
}else{
return minus ? -num : num;
}
b = readByte();
}
}
private long nl()
{
long num = 0;
int b;
boolean minus = false;
while((b = readByte()) != -1 && !((b >= '0' && b <= '9') || b == '-'));
if(b == '-'){
minus = true;
b = readByte();
}
while(true){
if(b >= '0' && b <= '9'){
num = num * 10 + (b - '0');
}else{
return minus ? -num : num;
}
b = readByte();
}
}
private static void tr(Object... o) { System.out.println(Arrays.deepToString(o)); }
}
</CODE>
<EVALUATION_RUBRIC>
- O(nlog(n)): The running time increases with the product of n and logarithm of n.
- O(1): The running time does not change regardless of the input size n.
- O(n^2): The running time increases with the square of the input size n.
- O(n): The running time grows linearly with the input size n.
- O(n^3): The running time increases with the cube of the input size n.
- O(log(n)): The running time increases with the logarithm of the input size n.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n.
</TASK>
<CODE>
import java.io.*;
import java.util.*;
import java.math.*;
// import java.awt.Point;
public class Main {
InputStream is;
PrintWriter out;
String INPUT = "";
long MOD = 1_000_000_007;
int inf = Integer.MAX_VALUE;
void solve()
{
int n = ni();
int[] a = new int[n];
for(int i = 0; i < n; i++){
a[i] = ni();
}
long ans = 0;
for(int i = 0; i < n; i++){
for(int j = i+1; j < n; j++){
if(a[j]<a[i]) ans++;
}
}
if(ans%2==0) ans = 0;
else ans = 1;
int m = ni();
for(int i = 0; i < m; i++){
long s = nl();
long g = nl();
long sub = g-s;
long res = sub*(sub+1)/2;
if(res%2==1) ans = 1 - ans;
if(ans==0) out.println("even");
else out.println("odd");
}
}
void run() throws Exception
{
is = INPUT.isEmpty() ? System.in : new ByteArrayInputStream(INPUT.getBytes());
out = new PrintWriter(System.out);
long s = System.currentTimeMillis();
solve();
out.flush();
if(!INPUT.isEmpty())tr(System.currentTimeMillis()-s+"ms");
}
public static void main(String[] args) throws Exception { new Main().run(); }
private byte[] inbuf = new byte[1024];
private int lenbuf = 0, ptrbuf = 0;
private int readByte()
{
if(lenbuf == -1)throw new InputMismatchException();
if(ptrbuf >= lenbuf){
ptrbuf = 0;
try { lenbuf = is.read(inbuf); } catch (IOException e) { throw new InputMismatchException(); }
if(lenbuf <= 0)return -1;
}
return inbuf[ptrbuf++];
}
private boolean isSpaceChar(int c) { return !(c >= 33 && c <= 126); }
private int skip() { int b; while((b = readByte()) != -1 && isSpaceChar(b)); return b; }
private double nd() { return Double.parseDouble(ns()); }
private char nc() { return (char)skip(); }
private String ns()
{
int b = skip();
StringBuilder sb = new StringBuilder();
while(!(isSpaceChar(b) && b != ' ')){
sb.appendCodePoint(b);
b = readByte();
}
return sb.toString();
}
private char[] ns(int n)
{
char[] buf = new char[n];
int b = skip(), p = 0;
while(p < n && !(isSpaceChar(b))){
buf[p++] = (char)b;
b = readByte();
}
return n == p ? buf : Arrays.copyOf(buf, p);
}
private char[][] nm(int n, int m)
{
char[][] map = new char[n][];
for(int i = 0;i < n;i++)map[i] = ns(m);
return map;
}
private int[] na(int n)
{
int[] a = new int[n];
for(int i = 0;i < n;i++)a[i] = ni();
return a;
}
private int ni()
{
int num = 0, b;
boolean minus = false;
while((b = readByte()) != -1 && !((b >= '0' && b <= '9') || b == '-'));
if(b == '-'){
minus = true;
b = readByte();
}
while(true){
if(b >= '0' && b <= '9'){
num = num * 10 + (b - '0');
}else{
return minus ? -num : num;
}
b = readByte();
}
}
private long nl()
{
long num = 0;
int b;
boolean minus = false;
while((b = readByte()) != -1 && !((b >= '0' && b <= '9') || b == '-'));
if(b == '-'){
minus = true;
b = readByte();
}
while(true){
if(b >= '0' && b <= '9'){
num = num * 10 + (b - '0');
}else{
return minus ? -num : num;
}
b = readByte();
}
}
private static void tr(Object... o) { System.out.println(Arrays.deepToString(o)); }
}
</CODE>
<EVALUATION_RUBRIC>
- O(log(n)): The execution time ascends in proportion to the logarithm of the input size n.
- O(n): The execution time ascends in a one-to-one ratio with the input size n.
- O(n^3): The execution time ascends in proportion to the cube of the input size n.
- O(1): The execution time is unaffected by the size of the input n.
- O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- others: The time complexity does not fit to any of the given categories or is ambiguous.
- O(n^2): The execution time ascends in proportion to the square of the input size n.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
| 1,391
| 2,378
|
4,271
|
import java.io.*;
import java.awt.geom.Point2D;
import java.text.*;
import java.math.*;
import java.util.*;
public class Main implements Runnable {
final String filename = "";
public void solve() throws Exception {
int n = iread(), k = iread(), A = iread();
int[] b = new int[n], l = new int[n];
for (int i = 0; i < n; i++) {
l[i] = iread();
b[i] = iread();
}
int[] c = new int[n];
double ans = 0.0;
for (int mask = 0; mask < 1 << (k + n - 1); mask++) {
int t = 0;
for (int i = 0; i < n + k - 1; i++) {
if ((mask & (1 << i)) != 0)
t++;
}
if (t != k)
continue;
int x = mask;
for (int i = 0; i < n; i++) {
c[i] = b[i];
while (x % 2 == 1) {
c[i] += 10;
x /= 2;
}
if (c[i] > 100)
c[i] = 100;
x /= 2;
}
double res = 0.0;
for (int mask2 = 0; mask2 < 1 << n; mask2++) {
int m = 0;
double p = 1.0;
t = 0;
for (int i = 0; i < n; i++) {
if ((mask2 & (1 << i)) == 0) {
t += l[i];
p *= (100.0 - c[i]) / 100.0;
} else {
p *= c[i] / 100.0;
m++;
}
}
if (m * 2 > n)
res += p;
else
res += p * A * 1.0 / (A + t);
}
ans = Math.max(ans, res);
}
DecimalFormat df = new DecimalFormat("0.0000000");
out.write(df.format(ans) + "\n");
}
public void run() {
try {
in = new BufferedReader(new InputStreamReader(System.in));
out = new BufferedWriter(new OutputStreamWriter(System.out));
// in = new BufferedReader(new FileReader(filename+".in"));
// out = new BufferedWriter(new FileWriter(filename+".out"));
solve();
out.flush();
} catch (Exception e) {
e.printStackTrace();
System.exit(1);
}
}
public int iread() throws Exception {
return Integer.parseInt(readword());
}
public double dread() throws Exception {
return Double.parseDouble(readword());
}
public long lread() throws Exception {
return Long.parseLong(readword());
}
BufferedReader in;
BufferedWriter out;
public String readword() throws IOException {
StringBuilder b = new StringBuilder();
int c;
c = in.read();
while (c >= 0 && c <= ' ')
c = in.read();
if (c < 0)
return "";
while (c > ' ') {
b.append((char) c);
c = in.read();
}
return b.toString();
}
public static void main(String[] args) {
try {
Locale.setDefault(Locale.US);
} catch (Exception e) {
}
// new Thread(new Main()).start();
new Thread(null, new Main(), "1", 1 << 25).start();
}
}
|
non-polynomial
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Determine the worst-case time complexity category of a given Java code based on input size n.
</TASK>
<CODE>
import java.io.*;
import java.awt.geom.Point2D;
import java.text.*;
import java.math.*;
import java.util.*;
public class Main implements Runnable {
final String filename = "";
public void solve() throws Exception {
int n = iread(), k = iread(), A = iread();
int[] b = new int[n], l = new int[n];
for (int i = 0; i < n; i++) {
l[i] = iread();
b[i] = iread();
}
int[] c = new int[n];
double ans = 0.0;
for (int mask = 0; mask < 1 << (k + n - 1); mask++) {
int t = 0;
for (int i = 0; i < n + k - 1; i++) {
if ((mask & (1 << i)) != 0)
t++;
}
if (t != k)
continue;
int x = mask;
for (int i = 0; i < n; i++) {
c[i] = b[i];
while (x % 2 == 1) {
c[i] += 10;
x /= 2;
}
if (c[i] > 100)
c[i] = 100;
x /= 2;
}
double res = 0.0;
for (int mask2 = 0; mask2 < 1 << n; mask2++) {
int m = 0;
double p = 1.0;
t = 0;
for (int i = 0; i < n; i++) {
if ((mask2 & (1 << i)) == 0) {
t += l[i];
p *= (100.0 - c[i]) / 100.0;
} else {
p *= c[i] / 100.0;
m++;
}
}
if (m * 2 > n)
res += p;
else
res += p * A * 1.0 / (A + t);
}
ans = Math.max(ans, res);
}
DecimalFormat df = new DecimalFormat("0.0000000");
out.write(df.format(ans) + "\n");
}
public void run() {
try {
in = new BufferedReader(new InputStreamReader(System.in));
out = new BufferedWriter(new OutputStreamWriter(System.out));
// in = new BufferedReader(new FileReader(filename+".in"));
// out = new BufferedWriter(new FileWriter(filename+".out"));
solve();
out.flush();
} catch (Exception e) {
e.printStackTrace();
System.exit(1);
}
}
public int iread() throws Exception {
return Integer.parseInt(readword());
}
public double dread() throws Exception {
return Double.parseDouble(readword());
}
public long lread() throws Exception {
return Long.parseLong(readword());
}
BufferedReader in;
BufferedWriter out;
public String readword() throws IOException {
StringBuilder b = new StringBuilder();
int c;
c = in.read();
while (c >= 0 && c <= ' ')
c = in.read();
if (c < 0)
return "";
while (c > ' ') {
b.append((char) c);
c = in.read();
}
return b.toString();
}
public static void main(String[] args) {
try {
Locale.setDefault(Locale.US);
} catch (Exception e) {
}
// new Thread(new Main()).start();
new Thread(null, new Main(), "1", 1 << 25).start();
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(n^2): The time complexity grows proportionally to the square of the input size.
- O(log(n)): The time complexity increases logarithmically in relation to the input size.
- non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially.
- O(n): The time complexity increases proportionally to the input size n in a linear manner.
- O(1): The time complexity is constant to the input size n.
- O(nlog(n)): The time complexity combines linear and logarithmic growth factors.
- O(n^3): The time complexity scales proportionally to the cube of the input size.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n.
</TASK>
<CODE>
import java.io.*;
import java.awt.geom.Point2D;
import java.text.*;
import java.math.*;
import java.util.*;
public class Main implements Runnable {
final String filename = "";
public void solve() throws Exception {
int n = iread(), k = iread(), A = iread();
int[] b = new int[n], l = new int[n];
for (int i = 0; i < n; i++) {
l[i] = iread();
b[i] = iread();
}
int[] c = new int[n];
double ans = 0.0;
for (int mask = 0; mask < 1 << (k + n - 1); mask++) {
int t = 0;
for (int i = 0; i < n + k - 1; i++) {
if ((mask & (1 << i)) != 0)
t++;
}
if (t != k)
continue;
int x = mask;
for (int i = 0; i < n; i++) {
c[i] = b[i];
while (x % 2 == 1) {
c[i] += 10;
x /= 2;
}
if (c[i] > 100)
c[i] = 100;
x /= 2;
}
double res = 0.0;
for (int mask2 = 0; mask2 < 1 << n; mask2++) {
int m = 0;
double p = 1.0;
t = 0;
for (int i = 0; i < n; i++) {
if ((mask2 & (1 << i)) == 0) {
t += l[i];
p *= (100.0 - c[i]) / 100.0;
} else {
p *= c[i] / 100.0;
m++;
}
}
if (m * 2 > n)
res += p;
else
res += p * A * 1.0 / (A + t);
}
ans = Math.max(ans, res);
}
DecimalFormat df = new DecimalFormat("0.0000000");
out.write(df.format(ans) + "\n");
}
public void run() {
try {
in = new BufferedReader(new InputStreamReader(System.in));
out = new BufferedWriter(new OutputStreamWriter(System.out));
// in = new BufferedReader(new FileReader(filename+".in"));
// out = new BufferedWriter(new FileWriter(filename+".out"));
solve();
out.flush();
} catch (Exception e) {
e.printStackTrace();
System.exit(1);
}
}
public int iread() throws Exception {
return Integer.parseInt(readword());
}
public double dread() throws Exception {
return Double.parseDouble(readword());
}
public long lread() throws Exception {
return Long.parseLong(readword());
}
BufferedReader in;
BufferedWriter out;
public String readword() throws IOException {
StringBuilder b = new StringBuilder();
int c;
c = in.read();
while (c >= 0 && c <= ' ')
c = in.read();
if (c < 0)
return "";
while (c > ' ') {
b.append((char) c);
c = in.read();
}
return b.toString();
}
public static void main(String[] args) {
try {
Locale.setDefault(Locale.US);
} catch (Exception e) {
}
// new Thread(new Main()).start();
new Thread(null, new Main(), "1", 1 << 25).start();
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(n): The execution time ascends in a one-to-one ratio with the input size n.
- O(n^3): The execution time ascends in proportion to the cube of the input size n.
- others: The time complexity does not fit to any of the given categories or is ambiguous.
- O(n^2): The execution time ascends in proportion to the square of the input size n.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- O(log(n)): The execution time ascends in proportion to the logarithm of the input size n.
- O(1): The execution time is unaffected by the size of the input n.
- O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
| 1,147
| 4,260
|
1,426
|
import java.io.*;
import java.util.*;
public class bender {
static long[] dx = new long[]{0, 1, 0, -1};
static long[] dy = new long[]{-1, 0, 1, 0};
static long n, x, y, c;
public static void main(String[] args) throws IOException {
BufferedReader in = new BufferedReader(new InputStreamReader(System.in));
//BufferedReader in = new BufferedReader(new FileReader("bender.in"));
StringTokenizer dxdync = new StringTokenizer(in.readLine());
n = Long.parseLong(dxdync.nextToken());
x = Long.parseLong(dxdync.nextToken());
y = Long.parseLong(dxdync.nextToken());
c = Long.parseLong(dxdync.nextToken());
long a = 0;
long b = c;
while(a < b){
long m = (a + b)/2;
long[] dxn = new long[4];
long[] dyn = new long[4];
for(int d = 0; d < 4; d++){
dxn[d] = x + dx[d] * m;
dyn[d] = y + dy[d] * m;
}
long ret = (m+1)*(m+1) + m*m;
ret -= h(1 - dyn[0]);
ret -= h(dyn[2] - n);
ret -= h(dxn[1] - n);
ret -= h(1 - dxn[3]);
ret += q(1 - dyn[0] - (n-x+1));
ret += q(1 - dyn[0] - x);
ret += q(dyn[2] - n - (n - x + 1));
ret += q(dyn[2] - n - (x));
if (ret < c) a = m + 1;
else b = m;
}
System.out.println(a);
}
public static long h(long x) {
if (x <= 0) return 0;
return 2*q(x) - x;
}
private static long q(long x){
if (x <= 0) return 0;
return x*(x+1)/2;
}
}
|
O(log(n))
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n.
</TASK>
<CODE>
import java.io.*;
import java.util.*;
public class bender {
static long[] dx = new long[]{0, 1, 0, -1};
static long[] dy = new long[]{-1, 0, 1, 0};
static long n, x, y, c;
public static void main(String[] args) throws IOException {
BufferedReader in = new BufferedReader(new InputStreamReader(System.in));
//BufferedReader in = new BufferedReader(new FileReader("bender.in"));
StringTokenizer dxdync = new StringTokenizer(in.readLine());
n = Long.parseLong(dxdync.nextToken());
x = Long.parseLong(dxdync.nextToken());
y = Long.parseLong(dxdync.nextToken());
c = Long.parseLong(dxdync.nextToken());
long a = 0;
long b = c;
while(a < b){
long m = (a + b)/2;
long[] dxn = new long[4];
long[] dyn = new long[4];
for(int d = 0; d < 4; d++){
dxn[d] = x + dx[d] * m;
dyn[d] = y + dy[d] * m;
}
long ret = (m+1)*(m+1) + m*m;
ret -= h(1 - dyn[0]);
ret -= h(dyn[2] - n);
ret -= h(dxn[1] - n);
ret -= h(1 - dxn[3]);
ret += q(1 - dyn[0] - (n-x+1));
ret += q(1 - dyn[0] - x);
ret += q(dyn[2] - n - (n - x + 1));
ret += q(dyn[2] - n - (x));
if (ret < c) a = m + 1;
else b = m;
}
System.out.println(a);
}
public static long h(long x) {
if (x <= 0) return 0;
return 2*q(x) - x;
}
private static long q(long x){
if (x <= 0) return 0;
return x*(x+1)/2;
}
}
</CODE>
<EVALUATION_RUBRIC>
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- O(n^3): The execution time ascends in proportion to the cube of the input size n.
- O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially.
- O(n^2): The execution time ascends in proportion to the square of the input size n.
- O(log(n)): The execution time ascends in proportion to the logarithm of the input size n.
- O(1): The execution time is unaffected by the size of the input n.
- O(n): The execution time ascends in a one-to-one ratio with the input size n.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Classify the following Java code's worst-case time complexity according to its relationship to the input size n.
</TASK>
<CODE>
import java.io.*;
import java.util.*;
public class bender {
static long[] dx = new long[]{0, 1, 0, -1};
static long[] dy = new long[]{-1, 0, 1, 0};
static long n, x, y, c;
public static void main(String[] args) throws IOException {
BufferedReader in = new BufferedReader(new InputStreamReader(System.in));
//BufferedReader in = new BufferedReader(new FileReader("bender.in"));
StringTokenizer dxdync = new StringTokenizer(in.readLine());
n = Long.parseLong(dxdync.nextToken());
x = Long.parseLong(dxdync.nextToken());
y = Long.parseLong(dxdync.nextToken());
c = Long.parseLong(dxdync.nextToken());
long a = 0;
long b = c;
while(a < b){
long m = (a + b)/2;
long[] dxn = new long[4];
long[] dyn = new long[4];
for(int d = 0; d < 4; d++){
dxn[d] = x + dx[d] * m;
dyn[d] = y + dy[d] * m;
}
long ret = (m+1)*(m+1) + m*m;
ret -= h(1 - dyn[0]);
ret -= h(dyn[2] - n);
ret -= h(dxn[1] - n);
ret -= h(1 - dxn[3]);
ret += q(1 - dyn[0] - (n-x+1));
ret += q(1 - dyn[0] - x);
ret += q(dyn[2] - n - (n - x + 1));
ret += q(dyn[2] - n - (x));
if (ret < c) a = m + 1;
else b = m;
}
System.out.println(a);
}
public static long h(long x) {
if (x <= 0) return 0;
return 2*q(x) - x;
}
private static long q(long x){
if (x <= 0) return 0;
return x*(x+1)/2;
}
}
</CODE>
<EVALUATION_RUBRIC>
- others: The code does not clearly correspond to the listed classes or has an unclassified time complexity.
- O(n^3): The running time increases with the cube of the input size n.
- O(log(n)): The running time increases with the logarithm of the input size n.
- O(1): The running time does not change regardless of the input size n.
- O(n^2): The running time increases with the square of the input size n.
- O(nlog(n)): The running time increases with the product of n and logarithm of n.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- O(n): The running time grows linearly with the input size n.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
| 839
| 1,424
|
1,590
|
import static java.util.Arrays.*;
import static java.lang.Math.*;
import static java.math.BigInteger.*;
import java.util.*;
import java.math.*;
import java.io.*;
public class A implements Runnable
{
String file = "input";
boolean TEST = System.getProperty("ONLINE_JUDGE") == null;
void solve() throws IOException
{
int n = nextInt();
int[] a = new int[n];
for(int i = 0; i < n; i++) a[i] = nextInt();
int[] b = a.clone();
qsort(b);
//sortInt(b);
int count = 0;
for(int i = 0; i < a.length; i++)
if(a[i] != b[i]) count++;
if(count == 0 || count == 2) out.println("YES");
else out.println("NO");
}
void qsort(int[] a)
{
List<Integer> as = new ArrayList<Integer>();
for(int x : a) as.add(x);
Collections.shuffle(as);
for(int i = 0; i < a.length; i++) a[i] = as.get(i);
sort(a);
}
Random rnd = new Random();
void sortInt(int[] a)
{
sortInt(a, 0, a.length - 1);
}
void sortInt(int[] a, int from, int to)
{
if(from >= to) return;
int i = from - 1;
int p = rnd.nextInt(to - from + 1) + from;
int t = a[p]; a[p] = a[to]; a[to] = t;
for(int j = from; j < to; j++)
if(a[j] <= a[to])
{
i++;
t = a[i]; a[i] = a[j]; a[j] = t;
}
t = a[i + 1]; a[i + 1] = a[to]; a[to] = t;
sortInt(a, i + 2, to);
while(i >= 0 && a[i] == a[i + 1]) i--;
sortInt(a, from, i);
}
String next() throws IOException
{
while(st == null || !st.hasMoreTokens()) st = new StringTokenizer(input.readLine());
return st.nextToken();
}
int nextInt() throws IOException
{
return Integer.parseInt(next());
}
long nextLong() throws IOException
{
return Long.parseLong(next());
}
double nextDouble() throws IOException
{
return Double.parseDouble(next());
}
void print(Object... o)
{
System.out.println(deepToString(o));
}
void gcj(Object o)
{
String s = String.valueOf(o);
out.println("Case #" + test + ": " + s);
System.out.println("Case #" + test + ": " + s);
}
BufferedReader input;
PrintWriter out;
StringTokenizer st;
int test;
void init() throws IOException
{
if(TEST) input = new BufferedReader(new FileReader(file + ".in"));
else input = new BufferedReader(new InputStreamReader(System.in));
out = new PrintWriter(new BufferedOutputStream(System.out));
}
public static void main(String[] args) throws IOException
{
new Thread(null, new A(), "", 1 << 22).start();
}
public void run()
{
try
{
init();
if(TEST)
{
int runs = nextInt();
for(int i = 0; i < runs; i++) solve();
}
else solve();
out.close();
}
catch(Exception e)
{
e.printStackTrace();
System.exit(1);
}
}
}
|
O(nlog(n))
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n.
</TASK>
<CODE>
import static java.util.Arrays.*;
import static java.lang.Math.*;
import static java.math.BigInteger.*;
import java.util.*;
import java.math.*;
import java.io.*;
public class A implements Runnable
{
String file = "input";
boolean TEST = System.getProperty("ONLINE_JUDGE") == null;
void solve() throws IOException
{
int n = nextInt();
int[] a = new int[n];
for(int i = 0; i < n; i++) a[i] = nextInt();
int[] b = a.clone();
qsort(b);
//sortInt(b);
int count = 0;
for(int i = 0; i < a.length; i++)
if(a[i] != b[i]) count++;
if(count == 0 || count == 2) out.println("YES");
else out.println("NO");
}
void qsort(int[] a)
{
List<Integer> as = new ArrayList<Integer>();
for(int x : a) as.add(x);
Collections.shuffle(as);
for(int i = 0; i < a.length; i++) a[i] = as.get(i);
sort(a);
}
Random rnd = new Random();
void sortInt(int[] a)
{
sortInt(a, 0, a.length - 1);
}
void sortInt(int[] a, int from, int to)
{
if(from >= to) return;
int i = from - 1;
int p = rnd.nextInt(to - from + 1) + from;
int t = a[p]; a[p] = a[to]; a[to] = t;
for(int j = from; j < to; j++)
if(a[j] <= a[to])
{
i++;
t = a[i]; a[i] = a[j]; a[j] = t;
}
t = a[i + 1]; a[i + 1] = a[to]; a[to] = t;
sortInt(a, i + 2, to);
while(i >= 0 && a[i] == a[i + 1]) i--;
sortInt(a, from, i);
}
String next() throws IOException
{
while(st == null || !st.hasMoreTokens()) st = new StringTokenizer(input.readLine());
return st.nextToken();
}
int nextInt() throws IOException
{
return Integer.parseInt(next());
}
long nextLong() throws IOException
{
return Long.parseLong(next());
}
double nextDouble() throws IOException
{
return Double.parseDouble(next());
}
void print(Object... o)
{
System.out.println(deepToString(o));
}
void gcj(Object o)
{
String s = String.valueOf(o);
out.println("Case #" + test + ": " + s);
System.out.println("Case #" + test + ": " + s);
}
BufferedReader input;
PrintWriter out;
StringTokenizer st;
int test;
void init() throws IOException
{
if(TEST) input = new BufferedReader(new FileReader(file + ".in"));
else input = new BufferedReader(new InputStreamReader(System.in));
out = new PrintWriter(new BufferedOutputStream(System.out));
}
public static void main(String[] args) throws IOException
{
new Thread(null, new A(), "", 1 << 22).start();
}
public void run()
{
try
{
init();
if(TEST)
{
int runs = nextInt();
for(int i = 0; i < runs; i++) solve();
}
else solve();
out.close();
}
catch(Exception e)
{
e.printStackTrace();
System.exit(1);
}
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(n^2): The execution time ascends in proportion to the square of the input size n.
- O(log(n)): The execution time ascends in proportion to the logarithm of the input size n.
- O(1): The execution time is unaffected by the size of the input n.
- O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- O(n): The execution time ascends in a one-to-one ratio with the input size n.
- O(n^3): The execution time ascends in proportion to the cube of the input size n.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n.
</TASK>
<CODE>
import static java.util.Arrays.*;
import static java.lang.Math.*;
import static java.math.BigInteger.*;
import java.util.*;
import java.math.*;
import java.io.*;
public class A implements Runnable
{
String file = "input";
boolean TEST = System.getProperty("ONLINE_JUDGE") == null;
void solve() throws IOException
{
int n = nextInt();
int[] a = new int[n];
for(int i = 0; i < n; i++) a[i] = nextInt();
int[] b = a.clone();
qsort(b);
//sortInt(b);
int count = 0;
for(int i = 0; i < a.length; i++)
if(a[i] != b[i]) count++;
if(count == 0 || count == 2) out.println("YES");
else out.println("NO");
}
void qsort(int[] a)
{
List<Integer> as = new ArrayList<Integer>();
for(int x : a) as.add(x);
Collections.shuffle(as);
for(int i = 0; i < a.length; i++) a[i] = as.get(i);
sort(a);
}
Random rnd = new Random();
void sortInt(int[] a)
{
sortInt(a, 0, a.length - 1);
}
void sortInt(int[] a, int from, int to)
{
if(from >= to) return;
int i = from - 1;
int p = rnd.nextInt(to - from + 1) + from;
int t = a[p]; a[p] = a[to]; a[to] = t;
for(int j = from; j < to; j++)
if(a[j] <= a[to])
{
i++;
t = a[i]; a[i] = a[j]; a[j] = t;
}
t = a[i + 1]; a[i + 1] = a[to]; a[to] = t;
sortInt(a, i + 2, to);
while(i >= 0 && a[i] == a[i + 1]) i--;
sortInt(a, from, i);
}
String next() throws IOException
{
while(st == null || !st.hasMoreTokens()) st = new StringTokenizer(input.readLine());
return st.nextToken();
}
int nextInt() throws IOException
{
return Integer.parseInt(next());
}
long nextLong() throws IOException
{
return Long.parseLong(next());
}
double nextDouble() throws IOException
{
return Double.parseDouble(next());
}
void print(Object... o)
{
System.out.println(deepToString(o));
}
void gcj(Object o)
{
String s = String.valueOf(o);
out.println("Case #" + test + ": " + s);
System.out.println("Case #" + test + ": " + s);
}
BufferedReader input;
PrintWriter out;
StringTokenizer st;
int test;
void init() throws IOException
{
if(TEST) input = new BufferedReader(new FileReader(file + ".in"));
else input = new BufferedReader(new InputStreamReader(System.in));
out = new PrintWriter(new BufferedOutputStream(System.out));
}
public static void main(String[] args) throws IOException
{
new Thread(null, new A(), "", 1 << 22).start();
}
public void run()
{
try
{
init();
if(TEST)
{
int runs = nextInt();
for(int i = 0; i < runs; i++) solve();
}
else solve();
out.close();
}
catch(Exception e)
{
e.printStackTrace();
System.exit(1);
}
}
}
</CODE>
<EVALUATION_RUBRIC>
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- others: The time complexity does not fit to any of the given categories or is ambiguous.
- O(1): The execution time is unaffected by the size of the input n.
- O(log(n)): The execution time ascends in proportion to the logarithm of the input size n.
- O(n^2): The execution time ascends in proportion to the square of the input size n.
- O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially.
- O(n): The execution time ascends in a one-to-one ratio with the input size n.
- O(n^3): The execution time ascends in proportion to the cube of the input size n.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
| 1,168
| 1,587
|
617
|
import java.util.*;
import java.io.*;
import java.math.*;
public class Test5 {
static StreamTokenizer st = new StreamTokenizer(new InputStreamReader(System.in));
static int[] m;
public static void main(String[] z) throws Exception {
PrintWriter pw = new PrintWriter(System.out);
Scanner s = new Scanner(System.in);
int a = ni(), b=ni(), o=2;
m = new int[a];
for(int q=0; q<a; q++) m[q] = ni();
Arrays.sort(m);
for(int q=1; q<a; q++){
if(m[q]-m[q-1]==b*2) o++;
else if(m[q]-m[q-1]>b*2) o+=2;
}
System.out.println(o);
pw.flush();
}
static int ni() throws Exception{
st.nextToken();
return (int)st.nval;
}
static String ns() throws Exception{
st.nextToken();
return st.sval;
}
static long gcd(long a, long b){
for(; a>0 && b>0;)
if(a>b) a%=b;
else b%=a;
return a+b;
}
static class PyraSort {
private static int heapSize;
public static void sort(int[] a) {
buildHeap(a);
while (heapSize > 1) {
swap(a, 0, heapSize - 1);
heapSize--;
heapify(a, 0);
}
}
private static void buildHeap(int[] a) {
heapSize = a.length;
for (int i = a.length / 2; i >= 0; i--) {
heapify(a, i);
}
}
private static void heapify(int[] a, int i) {
int l = 2 * i + 2;
int r = 2 * i + 1;
int largest = i;
if (l < heapSize && a[i] < a[l]) {
largest = l;
}
if (r < heapSize && a[largest] < a[r]) {
largest = r;
}
if (i != largest) {
swap(a, i, largest);
heapify(a, largest);
}
}
private static void swap(int[] a, int i, int j) {
a[i] ^= a[j] ^= a[i];
a[j] ^= a[i];
}
}
}
|
O(n)
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Classify the following Java code's worst-case time complexity according to its relationship to the input size n.
</TASK>
<CODE>
import java.util.*;
import java.io.*;
import java.math.*;
public class Test5 {
static StreamTokenizer st = new StreamTokenizer(new InputStreamReader(System.in));
static int[] m;
public static void main(String[] z) throws Exception {
PrintWriter pw = new PrintWriter(System.out);
Scanner s = new Scanner(System.in);
int a = ni(), b=ni(), o=2;
m = new int[a];
for(int q=0; q<a; q++) m[q] = ni();
Arrays.sort(m);
for(int q=1; q<a; q++){
if(m[q]-m[q-1]==b*2) o++;
else if(m[q]-m[q-1]>b*2) o+=2;
}
System.out.println(o);
pw.flush();
}
static int ni() throws Exception{
st.nextToken();
return (int)st.nval;
}
static String ns() throws Exception{
st.nextToken();
return st.sval;
}
static long gcd(long a, long b){
for(; a>0 && b>0;)
if(a>b) a%=b;
else b%=a;
return a+b;
}
static class PyraSort {
private static int heapSize;
public static void sort(int[] a) {
buildHeap(a);
while (heapSize > 1) {
swap(a, 0, heapSize - 1);
heapSize--;
heapify(a, 0);
}
}
private static void buildHeap(int[] a) {
heapSize = a.length;
for (int i = a.length / 2; i >= 0; i--) {
heapify(a, i);
}
}
private static void heapify(int[] a, int i) {
int l = 2 * i + 2;
int r = 2 * i + 1;
int largest = i;
if (l < heapSize && a[i] < a[l]) {
largest = l;
}
if (r < heapSize && a[largest] < a[r]) {
largest = r;
}
if (i != largest) {
swap(a, i, largest);
heapify(a, largest);
}
}
private static void swap(int[] a, int i, int j) {
a[i] ^= a[j] ^= a[i];
a[j] ^= a[i];
}
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(n^2): The running time increases with the square of the input size n.
- O(n^3): The running time increases with the cube of the input size n.
- O(n): The running time grows linearly with the input size n.
- O(nlog(n)): The running time increases with the product of n and logarithm of n.
- O(1): The running time does not change regardless of the input size n.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- O(log(n)): The running time increases with the logarithm of the input size n.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n.
</TASK>
<CODE>
import java.util.*;
import java.io.*;
import java.math.*;
public class Test5 {
static StreamTokenizer st = new StreamTokenizer(new InputStreamReader(System.in));
static int[] m;
public static void main(String[] z) throws Exception {
PrintWriter pw = new PrintWriter(System.out);
Scanner s = new Scanner(System.in);
int a = ni(), b=ni(), o=2;
m = new int[a];
for(int q=0; q<a; q++) m[q] = ni();
Arrays.sort(m);
for(int q=1; q<a; q++){
if(m[q]-m[q-1]==b*2) o++;
else if(m[q]-m[q-1]>b*2) o+=2;
}
System.out.println(o);
pw.flush();
}
static int ni() throws Exception{
st.nextToken();
return (int)st.nval;
}
static String ns() throws Exception{
st.nextToken();
return st.sval;
}
static long gcd(long a, long b){
for(; a>0 && b>0;)
if(a>b) a%=b;
else b%=a;
return a+b;
}
static class PyraSort {
private static int heapSize;
public static void sort(int[] a) {
buildHeap(a);
while (heapSize > 1) {
swap(a, 0, heapSize - 1);
heapSize--;
heapify(a, 0);
}
}
private static void buildHeap(int[] a) {
heapSize = a.length;
for (int i = a.length / 2; i >= 0; i--) {
heapify(a, i);
}
}
private static void heapify(int[] a, int i) {
int l = 2 * i + 2;
int r = 2 * i + 1;
int largest = i;
if (l < heapSize && a[i] < a[l]) {
largest = l;
}
if (r < heapSize && a[largest] < a[r]) {
largest = r;
}
if (i != largest) {
swap(a, i, largest);
heapify(a, largest);
}
}
private static void swap(int[] a, int i, int j) {
a[i] ^= a[j] ^= a[i];
a[j] ^= a[i];
}
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(n^3): The execution time ascends in proportion to the cube of the input size n.
- O(n): The execution time ascends in a one-to-one ratio with the input size n.
- others: The time complexity does not fit to any of the given categories or is ambiguous.
- O(log(n)): The execution time ascends in proportion to the logarithm of the input size n.
- O(n^2): The execution time ascends in proportion to the square of the input size n.
- O(1): The execution time is unaffected by the size of the input n.
- O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
| 867
| 616
|
4,491
|
import java.io.*;
import java.util.Arrays;
import java.util.StringTokenizer;
public class KeyboardPurchase {
static final int INF = 1000000000;
public static void main(String[] args) {
InputReader in = new InputReader(System.in);
PrintWriter out = new PrintWriter(System.out, false);
int N = in.nextInt(), M = in.nextInt();
String str = in.next();
int[][] count = new int[M][M];
for (int i = 1; i < N; i++) {
char c1 = str.charAt(i - 1), c2 = str.charAt(i);
count[c1 - 'a'][c2 - 'a']++;
count[c2 - 'a'][c1 - 'a']++;
}
int[] dp = new int[(1 << M)];
Arrays.fill(dp, INF);
dp[0] = 0;
for (int mask = 1; mask < (1 << M); mask++) {
int slow = 0;
for (int i = 0; i < M; i++) {
if ((mask & (1 << i)) != 0) {
for (int j = 0; j < M; j++) {
if ((mask & (1 << j)) == 0) {
slow += count[i][j];
}
}
}
}
for (int i = 0; i < M; i++) {
if ((mask & (1 << i)) != 0) {
dp[mask] = Math.min(dp[mask], slow + dp[mask ^ (1 << i)]);
}
}
}
out.println(dp[(1 << M) - 1]);
out.close();
System.exit(0);
}
static class InputReader {
public BufferedReader reader;
public StringTokenizer tokenizer;
public InputReader(InputStream stream) {
reader = new BufferedReader(new InputStreamReader(stream), 32768);
tokenizer = null;
}
public String next() {
while (tokenizer == null || !tokenizer.hasMoreTokens()) {
try {
tokenizer = new StringTokenizer(reader.readLine());
} catch (IOException e) {
throw new RuntimeException(e);
}
}
return tokenizer.nextToken();
}
public int nextInt() {
return Integer.parseInt(next());
}
public long nextLong() {
return Long.parseLong(next());
}
public double nextDouble() {
return Double.parseDouble(next());
}
public String nextLine() {
String str = "";
try {
str = reader.readLine();
} catch (IOException e) {
e.printStackTrace();
}
return str;
}
}
}
|
non-polynomial
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Determine the worst-case time complexity category of a given Java code based on input size n.
</TASK>
<CODE>
import java.io.*;
import java.util.Arrays;
import java.util.StringTokenizer;
public class KeyboardPurchase {
static final int INF = 1000000000;
public static void main(String[] args) {
InputReader in = new InputReader(System.in);
PrintWriter out = new PrintWriter(System.out, false);
int N = in.nextInt(), M = in.nextInt();
String str = in.next();
int[][] count = new int[M][M];
for (int i = 1; i < N; i++) {
char c1 = str.charAt(i - 1), c2 = str.charAt(i);
count[c1 - 'a'][c2 - 'a']++;
count[c2 - 'a'][c1 - 'a']++;
}
int[] dp = new int[(1 << M)];
Arrays.fill(dp, INF);
dp[0] = 0;
for (int mask = 1; mask < (1 << M); mask++) {
int slow = 0;
for (int i = 0; i < M; i++) {
if ((mask & (1 << i)) != 0) {
for (int j = 0; j < M; j++) {
if ((mask & (1 << j)) == 0) {
slow += count[i][j];
}
}
}
}
for (int i = 0; i < M; i++) {
if ((mask & (1 << i)) != 0) {
dp[mask] = Math.min(dp[mask], slow + dp[mask ^ (1 << i)]);
}
}
}
out.println(dp[(1 << M) - 1]);
out.close();
System.exit(0);
}
static class InputReader {
public BufferedReader reader;
public StringTokenizer tokenizer;
public InputReader(InputStream stream) {
reader = new BufferedReader(new InputStreamReader(stream), 32768);
tokenizer = null;
}
public String next() {
while (tokenizer == null || !tokenizer.hasMoreTokens()) {
try {
tokenizer = new StringTokenizer(reader.readLine());
} catch (IOException e) {
throw new RuntimeException(e);
}
}
return tokenizer.nextToken();
}
public int nextInt() {
return Integer.parseInt(next());
}
public long nextLong() {
return Long.parseLong(next());
}
public double nextDouble() {
return Double.parseDouble(next());
}
public String nextLine() {
String str = "";
try {
str = reader.readLine();
} catch (IOException e) {
e.printStackTrace();
}
return str;
}
}
}
</CODE>
<EVALUATION_RUBRIC>
- non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially.
- O(n^3): The time complexity scales proportionally to the cube of the input size.
- O(n): The time complexity increases proportionally to the input size n in a linear manner.
- O(n^2): The time complexity grows proportionally to the square of the input size.
- O(nlog(n)): The time complexity combines linear and logarithmic growth factors.
- O(1): The time complexity is constant to the input size n.
- O(log(n)): The time complexity increases logarithmically in relation to the input size.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Classify the following Java code's worst-case time complexity according to its relationship to the input size n.
</TASK>
<CODE>
import java.io.*;
import java.util.Arrays;
import java.util.StringTokenizer;
public class KeyboardPurchase {
static final int INF = 1000000000;
public static void main(String[] args) {
InputReader in = new InputReader(System.in);
PrintWriter out = new PrintWriter(System.out, false);
int N = in.nextInt(), M = in.nextInt();
String str = in.next();
int[][] count = new int[M][M];
for (int i = 1; i < N; i++) {
char c1 = str.charAt(i - 1), c2 = str.charAt(i);
count[c1 - 'a'][c2 - 'a']++;
count[c2 - 'a'][c1 - 'a']++;
}
int[] dp = new int[(1 << M)];
Arrays.fill(dp, INF);
dp[0] = 0;
for (int mask = 1; mask < (1 << M); mask++) {
int slow = 0;
for (int i = 0; i < M; i++) {
if ((mask & (1 << i)) != 0) {
for (int j = 0; j < M; j++) {
if ((mask & (1 << j)) == 0) {
slow += count[i][j];
}
}
}
}
for (int i = 0; i < M; i++) {
if ((mask & (1 << i)) != 0) {
dp[mask] = Math.min(dp[mask], slow + dp[mask ^ (1 << i)]);
}
}
}
out.println(dp[(1 << M) - 1]);
out.close();
System.exit(0);
}
static class InputReader {
public BufferedReader reader;
public StringTokenizer tokenizer;
public InputReader(InputStream stream) {
reader = new BufferedReader(new InputStreamReader(stream), 32768);
tokenizer = null;
}
public String next() {
while (tokenizer == null || !tokenizer.hasMoreTokens()) {
try {
tokenizer = new StringTokenizer(reader.readLine());
} catch (IOException e) {
throw new RuntimeException(e);
}
}
return tokenizer.nextToken();
}
public int nextInt() {
return Integer.parseInt(next());
}
public long nextLong() {
return Long.parseLong(next());
}
public double nextDouble() {
return Double.parseDouble(next());
}
public String nextLine() {
String str = "";
try {
str = reader.readLine();
} catch (IOException e) {
e.printStackTrace();
}
return str;
}
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(n): The running time grows linearly with the input size n.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- O(nlog(n)): The running time increases with the product of n and logarithm of n.
- O(n^3): The running time increases with the cube of the input size n.
- O(n^2): The running time increases with the square of the input size n.
- others: The code does not clearly correspond to the listed classes or has an unclassified time complexity.
- O(log(n)): The running time increases with the logarithm of the input size n.
- O(1): The running time does not change regardless of the input size n.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
| 901
| 4,480
|
2,810
|
import java.util.*;
import java.io.*;
public class Solution {
public static void main(String[] args) {
Scanner s = new Scanner(System.in);
s.nextLine();
while(s.hasNext()) {
int first = s.nextInt();
int second = s.nextInt();
System.out.println(calculate(first,second));
}
}
public static int calculate(int first, int second) {
int operations = 0;
while(first != 0 && second != 0) {
int temp;
if(first < second) {
temp = second/first;
operations += temp;
second -= (first*temp);
}
else {
temp = first/second;
operations += temp;
first -= (second*temp);
}
}
return operations;
}
}
|
O(1)
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Determine the worst-case time complexity category of a given Java code based on input size n.
</TASK>
<CODE>
import java.util.*;
import java.io.*;
public class Solution {
public static void main(String[] args) {
Scanner s = new Scanner(System.in);
s.nextLine();
while(s.hasNext()) {
int first = s.nextInt();
int second = s.nextInt();
System.out.println(calculate(first,second));
}
}
public static int calculate(int first, int second) {
int operations = 0;
while(first != 0 && second != 0) {
int temp;
if(first < second) {
temp = second/first;
operations += temp;
second -= (first*temp);
}
else {
temp = first/second;
operations += temp;
first -= (second*temp);
}
}
return operations;
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(nlog(n)): The time complexity combines linear and logarithmic growth factors.
- O(n): The time complexity increases proportionally to the input size n in a linear manner.
- O(log(n)): The time complexity increases logarithmically in relation to the input size.
- non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially.
- O(1): The time complexity is constant to the input size n.
- O(n^2): The time complexity grows proportionally to the square of the input size.
- O(n^3): The time complexity scales proportionally to the cube of the input size.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n.
</TASK>
<CODE>
import java.util.*;
import java.io.*;
public class Solution {
public static void main(String[] args) {
Scanner s = new Scanner(System.in);
s.nextLine();
while(s.hasNext()) {
int first = s.nextInt();
int second = s.nextInt();
System.out.println(calculate(first,second));
}
}
public static int calculate(int first, int second) {
int operations = 0;
while(first != 0 && second != 0) {
int temp;
if(first < second) {
temp = second/first;
operations += temp;
second -= (first*temp);
}
else {
temp = first/second;
operations += temp;
first -= (second*temp);
}
}
return operations;
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(n^3): The execution time ascends in proportion to the cube of the input size n.
- O(n): The execution time ascends in a one-to-one ratio with the input size n.
- O(1): The execution time is unaffected by the size of the input n.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- O(n^2): The execution time ascends in proportion to the square of the input size n.
- O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially.
- O(log(n)): The execution time ascends in proportion to the logarithm of the input size n.
- others: The time complexity does not fit to any of the given categories or is ambiguous.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
| 498
| 2,804
|
1,777
|
import java.util.*;
public class Village {
private class House implements Comparable<House> {
Double Coordinate;
Double Sidelength;
private House(double coordinate, double sidelength) {
Coordinate = coordinate;
Sidelength = sidelength;
}
public int compareTo(House o) {
return Coordinate.compareTo(o.Coordinate);
}
}
private void solve() {
Scanner in = new Scanner(System.in);
in.next();
double requireside = in.nextDouble();
ArrayList<House> coordinate = new ArrayList<House>();
while (in.hasNext()) {
double coo = in.nextDouble();
double side = in.nextDouble();
coordinate.add(new House(coo, side));
}
Collections.sort(coordinate);
ArrayList<Double> edges = new ArrayList<Double>();
int count = 2;
for (int i = 0; i < coordinate.size(); i++) {
edges.add(coordinate.get(i).Coordinate
- (double) coordinate.get(i).Sidelength / (double) 2);
edges.add(coordinate.get(i).Coordinate
+ (double) coordinate.get(i).Sidelength / (double) 2);
}
ArrayList<Double> difference = new ArrayList<Double>();
for (int i = 1; i < edges.size() - 1; i++) {
difference.add(Math.abs(edges.get(i) - edges.get(i + 1)));
}
for (int i = 0; i < difference.size(); i += 2) {
if (difference.get(i) == requireside)
count++;
else if (difference.get(i) > requireside)
count += 2;
}
System.out.println(count);
}
public static void main(String args[]) {
Village v = new Village();
v.solve();
}
}
|
O(nlog(n))
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Determine the worst-case time complexity category of a given Java code based on input size n.
</TASK>
<CODE>
import java.util.*;
public class Village {
private class House implements Comparable<House> {
Double Coordinate;
Double Sidelength;
private House(double coordinate, double sidelength) {
Coordinate = coordinate;
Sidelength = sidelength;
}
public int compareTo(House o) {
return Coordinate.compareTo(o.Coordinate);
}
}
private void solve() {
Scanner in = new Scanner(System.in);
in.next();
double requireside = in.nextDouble();
ArrayList<House> coordinate = new ArrayList<House>();
while (in.hasNext()) {
double coo = in.nextDouble();
double side = in.nextDouble();
coordinate.add(new House(coo, side));
}
Collections.sort(coordinate);
ArrayList<Double> edges = new ArrayList<Double>();
int count = 2;
for (int i = 0; i < coordinate.size(); i++) {
edges.add(coordinate.get(i).Coordinate
- (double) coordinate.get(i).Sidelength / (double) 2);
edges.add(coordinate.get(i).Coordinate
+ (double) coordinate.get(i).Sidelength / (double) 2);
}
ArrayList<Double> difference = new ArrayList<Double>();
for (int i = 1; i < edges.size() - 1; i++) {
difference.add(Math.abs(edges.get(i) - edges.get(i + 1)));
}
for (int i = 0; i < difference.size(); i += 2) {
if (difference.get(i) == requireside)
count++;
else if (difference.get(i) > requireside)
count += 2;
}
System.out.println(count);
}
public static void main(String args[]) {
Village v = new Village();
v.solve();
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(n): The time complexity increases proportionally to the input size n in a linear manner.
- non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially.
- O(log(n)): The time complexity increases logarithmically in relation to the input size.
- O(n^3): The time complexity scales proportionally to the cube of the input size.
- O(nlog(n)): The time complexity combines linear and logarithmic growth factors.
- O(1): The time complexity is constant to the input size n.
- O(n^2): The time complexity grows proportionally to the square of the input size.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Determine the worst-case time complexity category of a given Java code based on input size n.
</TASK>
<CODE>
import java.util.*;
public class Village {
private class House implements Comparable<House> {
Double Coordinate;
Double Sidelength;
private House(double coordinate, double sidelength) {
Coordinate = coordinate;
Sidelength = sidelength;
}
public int compareTo(House o) {
return Coordinate.compareTo(o.Coordinate);
}
}
private void solve() {
Scanner in = new Scanner(System.in);
in.next();
double requireside = in.nextDouble();
ArrayList<House> coordinate = new ArrayList<House>();
while (in.hasNext()) {
double coo = in.nextDouble();
double side = in.nextDouble();
coordinate.add(new House(coo, side));
}
Collections.sort(coordinate);
ArrayList<Double> edges = new ArrayList<Double>();
int count = 2;
for (int i = 0; i < coordinate.size(); i++) {
edges.add(coordinate.get(i).Coordinate
- (double) coordinate.get(i).Sidelength / (double) 2);
edges.add(coordinate.get(i).Coordinate
+ (double) coordinate.get(i).Sidelength / (double) 2);
}
ArrayList<Double> difference = new ArrayList<Double>();
for (int i = 1; i < edges.size() - 1; i++) {
difference.add(Math.abs(edges.get(i) - edges.get(i + 1)));
}
for (int i = 0; i < difference.size(); i += 2) {
if (difference.get(i) == requireside)
count++;
else if (difference.get(i) > requireside)
count += 2;
}
System.out.println(count);
}
public static void main(String args[]) {
Village v = new Village();
v.solve();
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(n^2): The time complexity grows proportionally to the square of the input size.
- O(log(n)): The time complexity increases logarithmically in relation to the input size.
- O(n^3): The time complexity scales proportionally to the cube of the input size.
- O(1): The time complexity is constant to the input size n.
- O(n): The time complexity increases proportionally to the input size n in a linear manner.
- non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially.
- O(nlog(n)): The time complexity combines linear and logarithmic growth factors.
- others: The time complexity does not fit any of the above categories or cannot be clearly classified.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
| 726
| 1,773
|
2,787
|
import java.util.Scanner;
public class Main{
public static void main(String args[]){
Scanner in = new Scanner(System.in);
int T = in.nextInt();
while(T!=0){
T--;
int a = in.nextInt();
int b = in.nextInt();
int ans=0;
while(a>0&&b>0){
if(a>b){
int c = a;
a = b;
b = c;
}
ans += (b-(b%a))/a;
b = b%a;
}
System.out.println(ans);
}
}
}
|
O(1)
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n.
</TASK>
<CODE>
import java.util.Scanner;
public class Main{
public static void main(String args[]){
Scanner in = new Scanner(System.in);
int T = in.nextInt();
while(T!=0){
T--;
int a = in.nextInt();
int b = in.nextInt();
int ans=0;
while(a>0&&b>0){
if(a>b){
int c = a;
a = b;
b = c;
}
ans += (b-(b%a))/a;
b = b%a;
}
System.out.println(ans);
}
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(n): The execution time ascends in a one-to-one ratio with the input size n.
- O(n^3): The execution time ascends in proportion to the cube of the input size n.
- O(log(n)): The execution time ascends in proportion to the logarithm of the input size n.
- O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially.
- O(n^2): The execution time ascends in proportion to the square of the input size n.
- O(1): The execution time is unaffected by the size of the input n.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Classify the following Java code's worst-case time complexity according to its relationship to the input size n.
</TASK>
<CODE>
import java.util.Scanner;
public class Main{
public static void main(String args[]){
Scanner in = new Scanner(System.in);
int T = in.nextInt();
while(T!=0){
T--;
int a = in.nextInt();
int b = in.nextInt();
int ans=0;
while(a>0&&b>0){
if(a>b){
int c = a;
a = b;
b = c;
}
ans += (b-(b%a))/a;
b = b%a;
}
System.out.println(ans);
}
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(n): The running time grows linearly with the input size n.
- O(1): The running time does not change regardless of the input size n.
- O(n^3): The running time increases with the cube of the input size n.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- O(log(n)): The running time increases with the logarithm of the input size n.
- others: The code does not clearly correspond to the listed classes or has an unclassified time complexity.
- O(n^2): The running time increases with the square of the input size n.
- O(nlog(n)): The running time increases with the product of n and logarithm of n.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
| 479
| 2,781
|
2,140
|
import java.io.OutputStream;
import java.io.IOException;
import java.io.InputStream;
import java.io.PrintWriter;
import java.util.StringTokenizer;
import java.io.IOException;
import java.io.BufferedReader;
import java.io.InputStreamReader;
import java.io.InputStream;
/**
* Built using CHelper plug-in
* Actual solution is at the top
*/
public class Main {
public static void main(String[] args) {
InputStream inputStream = System.in;
OutputStream outputStream = System.out;
Scanner in = new Scanner(inputStream);
PrintWriter out = new PrintWriter(outputStream);
TaskC solver = new TaskC();
solver.solve(1, in, out);
out.close();
}
static class TaskC {
public void solve(int testNumber, Scanner in, PrintWriter out) {
int n = in.nextInt();
int r = in.nextInt();
int[] xs = new int[n];
for (int i = 0; i < n; i++) xs[i] = in.nextInt();
double[] ys = new double[n];
for (int i = 0; i < n; i++) {
int x = xs[i];
double y = r;
for (int j = 0; j < i; j++) {
y = Math.max(y, calc(xs[j], ys[j], x, r));
}
ys[i] = y;
}
for (int i = 0; i < n; i++) {
out.printf("%.10f ", ys[i]);
}
out.println();
}
private double calc(int x, double y, int x1, int r) {
int dx = Math.abs(x - x1);
if (dx > 2 * r) return 0;
double dy = Math.sqrt(4 * r * r - dx * dx);
return y + dy;
}
}
static class Scanner {
BufferedReader br;
StringTokenizer st;
public Scanner(InputStream in) {
br = new BufferedReader(new InputStreamReader(in), 32768);
}
public String nextLine() {
try {
return br.readLine();
} catch (IOException e) {
return null;
}
}
public boolean hasNext() {
while (st == null || !st.hasMoreTokens()) {
String s = nextLine();
if (s == null)
return false;
st = new StringTokenizer(s);
}
return true;
}
public String next() {
hasNext();
return st.nextToken();
}
public int nextInt() {
return Integer.parseInt(next());
}
}
}
|
O(n^2)
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Classify the following Java code's worst-case time complexity according to its relationship to the input size n.
</TASK>
<CODE>
import java.io.OutputStream;
import java.io.IOException;
import java.io.InputStream;
import java.io.PrintWriter;
import java.util.StringTokenizer;
import java.io.IOException;
import java.io.BufferedReader;
import java.io.InputStreamReader;
import java.io.InputStream;
/**
* Built using CHelper plug-in
* Actual solution is at the top
*/
public class Main {
public static void main(String[] args) {
InputStream inputStream = System.in;
OutputStream outputStream = System.out;
Scanner in = new Scanner(inputStream);
PrintWriter out = new PrintWriter(outputStream);
TaskC solver = new TaskC();
solver.solve(1, in, out);
out.close();
}
static class TaskC {
public void solve(int testNumber, Scanner in, PrintWriter out) {
int n = in.nextInt();
int r = in.nextInt();
int[] xs = new int[n];
for (int i = 0; i < n; i++) xs[i] = in.nextInt();
double[] ys = new double[n];
for (int i = 0; i < n; i++) {
int x = xs[i];
double y = r;
for (int j = 0; j < i; j++) {
y = Math.max(y, calc(xs[j], ys[j], x, r));
}
ys[i] = y;
}
for (int i = 0; i < n; i++) {
out.printf("%.10f ", ys[i]);
}
out.println();
}
private double calc(int x, double y, int x1, int r) {
int dx = Math.abs(x - x1);
if (dx > 2 * r) return 0;
double dy = Math.sqrt(4 * r * r - dx * dx);
return y + dy;
}
}
static class Scanner {
BufferedReader br;
StringTokenizer st;
public Scanner(InputStream in) {
br = new BufferedReader(new InputStreamReader(in), 32768);
}
public String nextLine() {
try {
return br.readLine();
} catch (IOException e) {
return null;
}
}
public boolean hasNext() {
while (st == null || !st.hasMoreTokens()) {
String s = nextLine();
if (s == null)
return false;
st = new StringTokenizer(s);
}
return true;
}
public String next() {
hasNext();
return st.nextToken();
}
public int nextInt() {
return Integer.parseInt(next());
}
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(1): The running time does not change regardless of the input size n.
- O(n^3): The running time increases with the cube of the input size n.
- O(log(n)): The running time increases with the logarithm of the input size n.
- O(nlog(n)): The running time increases with the product of n and logarithm of n.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- O(n^2): The running time increases with the square of the input size n.
- O(n): The running time grows linearly with the input size n.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Classify the following Java code's worst-case time complexity according to its relationship to the input size n.
</TASK>
<CODE>
import java.io.OutputStream;
import java.io.IOException;
import java.io.InputStream;
import java.io.PrintWriter;
import java.util.StringTokenizer;
import java.io.IOException;
import java.io.BufferedReader;
import java.io.InputStreamReader;
import java.io.InputStream;
/**
* Built using CHelper plug-in
* Actual solution is at the top
*/
public class Main {
public static void main(String[] args) {
InputStream inputStream = System.in;
OutputStream outputStream = System.out;
Scanner in = new Scanner(inputStream);
PrintWriter out = new PrintWriter(outputStream);
TaskC solver = new TaskC();
solver.solve(1, in, out);
out.close();
}
static class TaskC {
public void solve(int testNumber, Scanner in, PrintWriter out) {
int n = in.nextInt();
int r = in.nextInt();
int[] xs = new int[n];
for (int i = 0; i < n; i++) xs[i] = in.nextInt();
double[] ys = new double[n];
for (int i = 0; i < n; i++) {
int x = xs[i];
double y = r;
for (int j = 0; j < i; j++) {
y = Math.max(y, calc(xs[j], ys[j], x, r));
}
ys[i] = y;
}
for (int i = 0; i < n; i++) {
out.printf("%.10f ", ys[i]);
}
out.println();
}
private double calc(int x, double y, int x1, int r) {
int dx = Math.abs(x - x1);
if (dx > 2 * r) return 0;
double dy = Math.sqrt(4 * r * r - dx * dx);
return y + dy;
}
}
static class Scanner {
BufferedReader br;
StringTokenizer st;
public Scanner(InputStream in) {
br = new BufferedReader(new InputStreamReader(in), 32768);
}
public String nextLine() {
try {
return br.readLine();
} catch (IOException e) {
return null;
}
}
public boolean hasNext() {
while (st == null || !st.hasMoreTokens()) {
String s = nextLine();
if (s == null)
return false;
st = new StringTokenizer(s);
}
return true;
}
public String next() {
hasNext();
return st.nextToken();
}
public int nextInt() {
return Integer.parseInt(next());
}
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(n^2): The running time increases with the square of the input size n.
- O(n): The running time grows linearly with the input size n.
- O(n^3): The running time increases with the cube of the input size n.
- O(log(n)): The running time increases with the logarithm of the input size n.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- O(nlog(n)): The running time increases with the product of n and logarithm of n.
- others: The code does not clearly correspond to the listed classes or has an unclassified time complexity.
- O(1): The running time does not change regardless of the input size n.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
| 875
| 2,136
|
1,079
|
import java.io.*;
import java.math.BigInteger;
import java.util.StringTokenizer;
import java.util.function.Function;
public class D {
public static void main(String[] args) throws IOException {
try (Input input = new StandardInput(); PrintWriter writer = new PrintWriter(System.out)) {
long[] s = new long[40];
for (int i = 1; i < s.length; i++) {
s[i] = 1 + 4 * s[i - 1];
if (i >= 32) {
s[i] = Long.MAX_VALUE;
}
}
Function<Integer, Long> getS = (i) -> (i < s.length) ? s[i] : Long.MAX_VALUE;
int t = input.nextInt();
testCase:
for (int tt = 0; tt < t; tt++) {
int n = input.nextInt();
long k = input.nextLong();
long kk = 1;
BigInteger maxDivisions = BigInteger.ZERO;
for (int division = 1; division <= n; division++) {
long needToDivide = (1L << division) - 1;
if (needToDivide > k) {
writer.println("NO");
continue testCase;
}
k -= needToDivide;
maxDivisions = maxDivisions.add(BigInteger.valueOf(kk).multiply(BigInteger.valueOf(getS.apply(n - division))));
if (maxDivisions.compareTo(BigInteger.valueOf(k)) >= 0) {
writer.println("YES " + (n - division));
continue testCase;
}
kk += (1L << division + 1);
}
writer.println("NO");
}
}
}
interface Input extends Closeable {
String next() throws IOException;
default int nextInt() throws IOException {
return Integer.parseInt(next());
}
default long nextLong() throws IOException {
return Long.parseLong(next());
}
}
private static class StandardInput implements Input {
private final BufferedReader reader = new BufferedReader(new InputStreamReader(System.in));
private StringTokenizer stringTokenizer;
@Override
public void close() throws IOException {
reader.close();
}
@Override
public String next() throws IOException {
if (stringTokenizer == null || !stringTokenizer.hasMoreTokens()) {
stringTokenizer = new StringTokenizer(reader.readLine());
}
return stringTokenizer.nextToken();
}
}
}
|
O(log(n))
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Determine the worst-case time complexity category of a given Java code based on input size n.
</TASK>
<CODE>
import java.io.*;
import java.math.BigInteger;
import java.util.StringTokenizer;
import java.util.function.Function;
public class D {
public static void main(String[] args) throws IOException {
try (Input input = new StandardInput(); PrintWriter writer = new PrintWriter(System.out)) {
long[] s = new long[40];
for (int i = 1; i < s.length; i++) {
s[i] = 1 + 4 * s[i - 1];
if (i >= 32) {
s[i] = Long.MAX_VALUE;
}
}
Function<Integer, Long> getS = (i) -> (i < s.length) ? s[i] : Long.MAX_VALUE;
int t = input.nextInt();
testCase:
for (int tt = 0; tt < t; tt++) {
int n = input.nextInt();
long k = input.nextLong();
long kk = 1;
BigInteger maxDivisions = BigInteger.ZERO;
for (int division = 1; division <= n; division++) {
long needToDivide = (1L << division) - 1;
if (needToDivide > k) {
writer.println("NO");
continue testCase;
}
k -= needToDivide;
maxDivisions = maxDivisions.add(BigInteger.valueOf(kk).multiply(BigInteger.valueOf(getS.apply(n - division))));
if (maxDivisions.compareTo(BigInteger.valueOf(k)) >= 0) {
writer.println("YES " + (n - division));
continue testCase;
}
kk += (1L << division + 1);
}
writer.println("NO");
}
}
}
interface Input extends Closeable {
String next() throws IOException;
default int nextInt() throws IOException {
return Integer.parseInt(next());
}
default long nextLong() throws IOException {
return Long.parseLong(next());
}
}
private static class StandardInput implements Input {
private final BufferedReader reader = new BufferedReader(new InputStreamReader(System.in));
private StringTokenizer stringTokenizer;
@Override
public void close() throws IOException {
reader.close();
}
@Override
public String next() throws IOException {
if (stringTokenizer == null || !stringTokenizer.hasMoreTokens()) {
stringTokenizer = new StringTokenizer(reader.readLine());
}
return stringTokenizer.nextToken();
}
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(n^3): The time complexity scales proportionally to the cube of the input size.
- O(n^2): The time complexity grows proportionally to the square of the input size.
- non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially.
- O(log(n)): The time complexity increases logarithmically in relation to the input size.
- O(1): The time complexity is constant to the input size n.
- O(n): The time complexity increases proportionally to the input size n in a linear manner.
- O(nlog(n)): The time complexity combines linear and logarithmic growth factors.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Determine the worst-case time complexity category of a given Java code based on input size n.
</TASK>
<CODE>
import java.io.*;
import java.math.BigInteger;
import java.util.StringTokenizer;
import java.util.function.Function;
public class D {
public static void main(String[] args) throws IOException {
try (Input input = new StandardInput(); PrintWriter writer = new PrintWriter(System.out)) {
long[] s = new long[40];
for (int i = 1; i < s.length; i++) {
s[i] = 1 + 4 * s[i - 1];
if (i >= 32) {
s[i] = Long.MAX_VALUE;
}
}
Function<Integer, Long> getS = (i) -> (i < s.length) ? s[i] : Long.MAX_VALUE;
int t = input.nextInt();
testCase:
for (int tt = 0; tt < t; tt++) {
int n = input.nextInt();
long k = input.nextLong();
long kk = 1;
BigInteger maxDivisions = BigInteger.ZERO;
for (int division = 1; division <= n; division++) {
long needToDivide = (1L << division) - 1;
if (needToDivide > k) {
writer.println("NO");
continue testCase;
}
k -= needToDivide;
maxDivisions = maxDivisions.add(BigInteger.valueOf(kk).multiply(BigInteger.valueOf(getS.apply(n - division))));
if (maxDivisions.compareTo(BigInteger.valueOf(k)) >= 0) {
writer.println("YES " + (n - division));
continue testCase;
}
kk += (1L << division + 1);
}
writer.println("NO");
}
}
}
interface Input extends Closeable {
String next() throws IOException;
default int nextInt() throws IOException {
return Integer.parseInt(next());
}
default long nextLong() throws IOException {
return Long.parseLong(next());
}
}
private static class StandardInput implements Input {
private final BufferedReader reader = new BufferedReader(new InputStreamReader(System.in));
private StringTokenizer stringTokenizer;
@Override
public void close() throws IOException {
reader.close();
}
@Override
public String next() throws IOException {
if (stringTokenizer == null || !stringTokenizer.hasMoreTokens()) {
stringTokenizer = new StringTokenizer(reader.readLine());
}
return stringTokenizer.nextToken();
}
}
}
</CODE>
<EVALUATION_RUBRIC>
- others: The time complexity does not fit any of the above categories or cannot be clearly classified.
- O(n): The time complexity increases proportionally to the input size n in a linear manner.
- O(n^3): The time complexity scales proportionally to the cube of the input size.
- O(1): The time complexity is constant to the input size n.
- O(log(n)): The time complexity increases logarithmically in relation to the input size.
- non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially.
- O(nlog(n)): The time complexity combines linear and logarithmic growth factors.
- O(n^2): The time complexity grows proportionally to the square of the input size.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
| 830
| 1,078
|
3,334
|
//package codeforces;
import java.io.BufferedReader;
import java.io.IOException;
import java.io.InputStreamReader;
import java.io.PrintWriter;
import java.util.*;
public class D {
BufferedReader reader = new BufferedReader(new InputStreamReader(System.in));
PrintWriter writer = new PrintWriter(System.out);
StringTokenizer stringTokenizer;
String next() throws IOException {
while (stringTokenizer == null || !stringTokenizer.hasMoreTokens()) {
stringTokenizer = new StringTokenizer(reader.readLine());
}
return stringTokenizer.nextToken();
}
int nextInt() throws IOException {
return Integer.parseInt(next());
}
long nextLong() throws IOException {
return Long.parseLong(next());
}
final int MOD = 1000 * 1000 * 1000 + 7;
int sum(int a, int b) {
a += b;
return a >= MOD ? a - MOD : a;
}
@SuppressWarnings("unchecked")
void solve() throws IOException {
final int n = nextInt();
int m = nextInt();
int[] from = new int[m];
int[] to = new int[m];
for(int i = 0; i < m; i++) {
from[i] = nextInt();
to[i] = nextInt();
}
int ans = solve(n, m, from, to);
writer.println(ans);
writer.close();
}
private int solve(final int n, int m, int[] from, int[] to) {
final List<List<Integer>> g = new ArrayList<>();
for(int i = 0; i <= n; i++) {
g.add(new ArrayList<Integer>());
}
int[] c = new int[n + 1];
int[] loop = new int[n + 1];
for(int i = 0; i < m; i++) {
int u = from[i];
int v = to[i];
g.get(u).add(v);
c[u]++;
c[v]++;
if(u == v) {
loop[u]++;
}
}
class Utils {
int[] prev = new int[n + 1];
int[] used = new int[n + 1];
int mark;
int forbidden;
int maxMatch() {
maxMatch = 0;
for(int i = 1; i <= n; i++) {
mark = i;
if(findPath(i)) {
maxMatch++;
}
}
return maxMatch;
}
boolean findPath(int u) {
if(u == forbidden) {
return false;
}
used[u] = mark;
for (int v : g.get(u)) {
if(v == forbidden) {
continue;
}
if(prev[v] == 0 || (used[prev[v]] != mark && findPath(prev[v]))) {
prev[v] = u;
return true;
}
}
return false;
}
int maxMatch = 0;
}
int ans = Integer.MAX_VALUE;
for(int i = 1; i <= n; i++) {
Utils utils = new Utils();
utils.forbidden = i;
utils.maxMatch();
ans = Math.min(ans, (2 * n - 1 - c[i] + loop[i]) + (m - c[i] + loop[i] - utils.maxMatch) + (n - 1 - utils.maxMatch));
}
return ans;
}
public static void main(String[] args) throws IOException {
new D().solve();
}
}
|
O(n^3)
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n.
</TASK>
<CODE>
//package codeforces;
import java.io.BufferedReader;
import java.io.IOException;
import java.io.InputStreamReader;
import java.io.PrintWriter;
import java.util.*;
public class D {
BufferedReader reader = new BufferedReader(new InputStreamReader(System.in));
PrintWriter writer = new PrintWriter(System.out);
StringTokenizer stringTokenizer;
String next() throws IOException {
while (stringTokenizer == null || !stringTokenizer.hasMoreTokens()) {
stringTokenizer = new StringTokenizer(reader.readLine());
}
return stringTokenizer.nextToken();
}
int nextInt() throws IOException {
return Integer.parseInt(next());
}
long nextLong() throws IOException {
return Long.parseLong(next());
}
final int MOD = 1000 * 1000 * 1000 + 7;
int sum(int a, int b) {
a += b;
return a >= MOD ? a - MOD : a;
}
@SuppressWarnings("unchecked")
void solve() throws IOException {
final int n = nextInt();
int m = nextInt();
int[] from = new int[m];
int[] to = new int[m];
for(int i = 0; i < m; i++) {
from[i] = nextInt();
to[i] = nextInt();
}
int ans = solve(n, m, from, to);
writer.println(ans);
writer.close();
}
private int solve(final int n, int m, int[] from, int[] to) {
final List<List<Integer>> g = new ArrayList<>();
for(int i = 0; i <= n; i++) {
g.add(new ArrayList<Integer>());
}
int[] c = new int[n + 1];
int[] loop = new int[n + 1];
for(int i = 0; i < m; i++) {
int u = from[i];
int v = to[i];
g.get(u).add(v);
c[u]++;
c[v]++;
if(u == v) {
loop[u]++;
}
}
class Utils {
int[] prev = new int[n + 1];
int[] used = new int[n + 1];
int mark;
int forbidden;
int maxMatch() {
maxMatch = 0;
for(int i = 1; i <= n; i++) {
mark = i;
if(findPath(i)) {
maxMatch++;
}
}
return maxMatch;
}
boolean findPath(int u) {
if(u == forbidden) {
return false;
}
used[u] = mark;
for (int v : g.get(u)) {
if(v == forbidden) {
continue;
}
if(prev[v] == 0 || (used[prev[v]] != mark && findPath(prev[v]))) {
prev[v] = u;
return true;
}
}
return false;
}
int maxMatch = 0;
}
int ans = Integer.MAX_VALUE;
for(int i = 1; i <= n; i++) {
Utils utils = new Utils();
utils.forbidden = i;
utils.maxMatch();
ans = Math.min(ans, (2 * n - 1 - c[i] + loop[i]) + (m - c[i] + loop[i] - utils.maxMatch) + (n - 1 - utils.maxMatch));
}
return ans;
}
public static void main(String[] args) throws IOException {
new D().solve();
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(n^2): The execution time ascends in proportion to the square of the input size n.
- O(1): The execution time is unaffected by the size of the input n.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- O(log(n)): The execution time ascends in proportion to the logarithm of the input size n.
- O(n^3): The execution time ascends in proportion to the cube of the input size n.
- O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially.
- O(n): The execution time ascends in a one-to-one ratio with the input size n.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Classify the following Java code's worst-case time complexity according to its relationship to the input size n.
</TASK>
<CODE>
//package codeforces;
import java.io.BufferedReader;
import java.io.IOException;
import java.io.InputStreamReader;
import java.io.PrintWriter;
import java.util.*;
public class D {
BufferedReader reader = new BufferedReader(new InputStreamReader(System.in));
PrintWriter writer = new PrintWriter(System.out);
StringTokenizer stringTokenizer;
String next() throws IOException {
while (stringTokenizer == null || !stringTokenizer.hasMoreTokens()) {
stringTokenizer = new StringTokenizer(reader.readLine());
}
return stringTokenizer.nextToken();
}
int nextInt() throws IOException {
return Integer.parseInt(next());
}
long nextLong() throws IOException {
return Long.parseLong(next());
}
final int MOD = 1000 * 1000 * 1000 + 7;
int sum(int a, int b) {
a += b;
return a >= MOD ? a - MOD : a;
}
@SuppressWarnings("unchecked")
void solve() throws IOException {
final int n = nextInt();
int m = nextInt();
int[] from = new int[m];
int[] to = new int[m];
for(int i = 0; i < m; i++) {
from[i] = nextInt();
to[i] = nextInt();
}
int ans = solve(n, m, from, to);
writer.println(ans);
writer.close();
}
private int solve(final int n, int m, int[] from, int[] to) {
final List<List<Integer>> g = new ArrayList<>();
for(int i = 0; i <= n; i++) {
g.add(new ArrayList<Integer>());
}
int[] c = new int[n + 1];
int[] loop = new int[n + 1];
for(int i = 0; i < m; i++) {
int u = from[i];
int v = to[i];
g.get(u).add(v);
c[u]++;
c[v]++;
if(u == v) {
loop[u]++;
}
}
class Utils {
int[] prev = new int[n + 1];
int[] used = new int[n + 1];
int mark;
int forbidden;
int maxMatch() {
maxMatch = 0;
for(int i = 1; i <= n; i++) {
mark = i;
if(findPath(i)) {
maxMatch++;
}
}
return maxMatch;
}
boolean findPath(int u) {
if(u == forbidden) {
return false;
}
used[u] = mark;
for (int v : g.get(u)) {
if(v == forbidden) {
continue;
}
if(prev[v] == 0 || (used[prev[v]] != mark && findPath(prev[v]))) {
prev[v] = u;
return true;
}
}
return false;
}
int maxMatch = 0;
}
int ans = Integer.MAX_VALUE;
for(int i = 1; i <= n; i++) {
Utils utils = new Utils();
utils.forbidden = i;
utils.maxMatch();
ans = Math.min(ans, (2 * n - 1 - c[i] + loop[i]) + (m - c[i] + loop[i] - utils.maxMatch) + (n - 1 - utils.maxMatch));
}
return ans;
}
public static void main(String[] args) throws IOException {
new D().solve();
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(n^2): The running time increases with the square of the input size n.
- O(n^3): The running time increases with the cube of the input size n.
- O(log(n)): The running time increases with the logarithm of the input size n.
- O(1): The running time does not change regardless of the input size n.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- others: The code does not clearly correspond to the listed classes or has an unclassified time complexity.
- O(nlog(n)): The running time increases with the product of n and logarithm of n.
- O(n): The running time grows linearly with the input size n.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
| 1,096
| 3,328
|
3,850
|
import java.util.*;
import java.io.*;
import java.text.*;
public class CF_1523_C{
//SOLUTION BEGIN
void pre() throws Exception{}
void solve(int TC) throws Exception{
int N = ni();
int[] A = new int[N];
for(int i = 0; i< N; i++)A[i] = ni();
// Stack<Integer> stack = new Stack<>();
int[] stack = new int[2*N];
int sz = 0;
for(int i = 0; i< N; i++){
if(A[i] == 1)stack[sz++] = 1;
else{
while (sz > 0 && stack[sz-1]+1 != A[i])sz--;//!stack.isEmpty() && stack.peek()+1 != A[i])stack.pop();
hold(sz != 0);
stack[sz-1]++;
hold(stack[sz-1] == A[i]);
}
hold(sz != 0);
StringBuilder st = new StringBuilder();
for(int s = 0; s< sz; s++){
st.append(stack[s]);
if(s+1 < sz)st.append(".");
}
pn(st.toString());
}
}
//SOLUTION END
void hold(boolean b)throws Exception{if(!b)throw new Exception("Hold right there, Sparky!");}
void exit(boolean b){if(!b)System.exit(0);}
static void dbg(Object... o){System.err.println(Arrays.deepToString(o));}
final long IINF = (long)1e17;
final int INF = (int)1e9+2;
DecimalFormat df = new DecimalFormat("0.00000000000");
double PI = 3.141592653589793238462643383279502884197169399, eps = 1e-8;
static boolean multipleTC = true, memory = true, fileIO = false;
FastReader in;PrintWriter out;
void run() throws Exception{
long ct = System.currentTimeMillis();
if (fileIO) {
in = new FastReader("");
out = new PrintWriter("");
} else {
in = new FastReader();
out = new PrintWriter(System.out);
}
//Solution Credits: Taranpreet Singh
int T = multipleTC? ni():1;
pre();
for (int t = 1; t <= T; t++) solve(t);
out.flush();
out.close();
System.err.println(System.currentTimeMillis() - ct);
}
public static void main(String[] args) throws Exception{
if(memory)new Thread(null, new Runnable() {public void run(){try{new CF_1523_C().run();}catch(Exception e){e.printStackTrace();System.exit(1);}}}, "1", 1 << 28).start();
else new CF_1523_C().run();
}
int[][] make(int n, int e, int[] from, int[] to, boolean f){
int[][] g = new int[n][];int[]cnt = new int[n];
for(int i = 0; i< e; i++){
cnt[from[i]]++;
if(f)cnt[to[i]]++;
}
for(int i = 0; i< n; i++)g[i] = new int[cnt[i]];
for(int i = 0; i< e; i++){
g[from[i]][--cnt[from[i]]] = to[i];
if(f)g[to[i]][--cnt[to[i]]] = from[i];
}
return g;
}
int[][][] makeS(int n, int e, int[] from, int[] to, boolean f){
int[][][] g = new int[n][][];int[]cnt = new int[n];
for(int i = 0; i< e; i++){
cnt[from[i]]++;
if(f)cnt[to[i]]++;
}
for(int i = 0; i< n; i++)g[i] = new int[cnt[i]][];
for(int i = 0; i< e; i++){
g[from[i]][--cnt[from[i]]] = new int[]{to[i], i, 0};
if(f)g[to[i]][--cnt[to[i]]] = new int[]{from[i], i, 1};
}
return g;
}
int find(int[] set, int u){return set[u] = (set[u] == u?u:find(set, set[u]));}
int digit(long s){int ans = 0;while(s>0){s/=10;ans++;}return ans;}
long gcd(long a, long b){return (b==0)?a:gcd(b,a%b);}
int gcd(int a, int b){return (b==0)?a:gcd(b,a%b);}
int bit(long n){return (n==0)?0:(1+bit(n&(n-1)));}
void p(Object... o){for(Object oo:o)out.print(oo+" ");}
void pn(Object... o){for(int i = 0; i< o.length; i++)out.print(o[i]+(i+1 < o.length?" ":"\n"));}
void pni(Object... o){for(Object oo:o)out.print(oo+" ");out.println();out.flush();}
String n()throws Exception{return in.next();}
String nln()throws Exception{return in.nextLine();}
int ni()throws Exception{return Integer.parseInt(in.next());}
long nl()throws Exception{return Long.parseLong(in.next());}
double nd()throws Exception{return Double.parseDouble(in.next());}
class FastReader{
BufferedReader br;
StringTokenizer st;
public FastReader(){
br = new BufferedReader(new InputStreamReader(System.in));
}
public FastReader(String s) throws Exception{
br = new BufferedReader(new FileReader(s));
}
String next() throws Exception{
while (st == null || !st.hasMoreElements()){
try{
st = new StringTokenizer(br.readLine());
}catch (IOException e){
throw new Exception(e.toString());
}
}
return st.nextToken();
}
String nextLine() throws Exception{
String str;
try{
str = br.readLine();
}catch (IOException e){
throw new Exception(e.toString());
}
return str;
}
}
}
|
O(n^3)
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Classify the following Java code's worst-case time complexity according to its relationship to the input size n.
</TASK>
<CODE>
import java.util.*;
import java.io.*;
import java.text.*;
public class CF_1523_C{
//SOLUTION BEGIN
void pre() throws Exception{}
void solve(int TC) throws Exception{
int N = ni();
int[] A = new int[N];
for(int i = 0; i< N; i++)A[i] = ni();
// Stack<Integer> stack = new Stack<>();
int[] stack = new int[2*N];
int sz = 0;
for(int i = 0; i< N; i++){
if(A[i] == 1)stack[sz++] = 1;
else{
while (sz > 0 && stack[sz-1]+1 != A[i])sz--;//!stack.isEmpty() && stack.peek()+1 != A[i])stack.pop();
hold(sz != 0);
stack[sz-1]++;
hold(stack[sz-1] == A[i]);
}
hold(sz != 0);
StringBuilder st = new StringBuilder();
for(int s = 0; s< sz; s++){
st.append(stack[s]);
if(s+1 < sz)st.append(".");
}
pn(st.toString());
}
}
//SOLUTION END
void hold(boolean b)throws Exception{if(!b)throw new Exception("Hold right there, Sparky!");}
void exit(boolean b){if(!b)System.exit(0);}
static void dbg(Object... o){System.err.println(Arrays.deepToString(o));}
final long IINF = (long)1e17;
final int INF = (int)1e9+2;
DecimalFormat df = new DecimalFormat("0.00000000000");
double PI = 3.141592653589793238462643383279502884197169399, eps = 1e-8;
static boolean multipleTC = true, memory = true, fileIO = false;
FastReader in;PrintWriter out;
void run() throws Exception{
long ct = System.currentTimeMillis();
if (fileIO) {
in = new FastReader("");
out = new PrintWriter("");
} else {
in = new FastReader();
out = new PrintWriter(System.out);
}
//Solution Credits: Taranpreet Singh
int T = multipleTC? ni():1;
pre();
for (int t = 1; t <= T; t++) solve(t);
out.flush();
out.close();
System.err.println(System.currentTimeMillis() - ct);
}
public static void main(String[] args) throws Exception{
if(memory)new Thread(null, new Runnable() {public void run(){try{new CF_1523_C().run();}catch(Exception e){e.printStackTrace();System.exit(1);}}}, "1", 1 << 28).start();
else new CF_1523_C().run();
}
int[][] make(int n, int e, int[] from, int[] to, boolean f){
int[][] g = new int[n][];int[]cnt = new int[n];
for(int i = 0; i< e; i++){
cnt[from[i]]++;
if(f)cnt[to[i]]++;
}
for(int i = 0; i< n; i++)g[i] = new int[cnt[i]];
for(int i = 0; i< e; i++){
g[from[i]][--cnt[from[i]]] = to[i];
if(f)g[to[i]][--cnt[to[i]]] = from[i];
}
return g;
}
int[][][] makeS(int n, int e, int[] from, int[] to, boolean f){
int[][][] g = new int[n][][];int[]cnt = new int[n];
for(int i = 0; i< e; i++){
cnt[from[i]]++;
if(f)cnt[to[i]]++;
}
for(int i = 0; i< n; i++)g[i] = new int[cnt[i]][];
for(int i = 0; i< e; i++){
g[from[i]][--cnt[from[i]]] = new int[]{to[i], i, 0};
if(f)g[to[i]][--cnt[to[i]]] = new int[]{from[i], i, 1};
}
return g;
}
int find(int[] set, int u){return set[u] = (set[u] == u?u:find(set, set[u]));}
int digit(long s){int ans = 0;while(s>0){s/=10;ans++;}return ans;}
long gcd(long a, long b){return (b==0)?a:gcd(b,a%b);}
int gcd(int a, int b){return (b==0)?a:gcd(b,a%b);}
int bit(long n){return (n==0)?0:(1+bit(n&(n-1)));}
void p(Object... o){for(Object oo:o)out.print(oo+" ");}
void pn(Object... o){for(int i = 0; i< o.length; i++)out.print(o[i]+(i+1 < o.length?" ":"\n"));}
void pni(Object... o){for(Object oo:o)out.print(oo+" ");out.println();out.flush();}
String n()throws Exception{return in.next();}
String nln()throws Exception{return in.nextLine();}
int ni()throws Exception{return Integer.parseInt(in.next());}
long nl()throws Exception{return Long.parseLong(in.next());}
double nd()throws Exception{return Double.parseDouble(in.next());}
class FastReader{
BufferedReader br;
StringTokenizer st;
public FastReader(){
br = new BufferedReader(new InputStreamReader(System.in));
}
public FastReader(String s) throws Exception{
br = new BufferedReader(new FileReader(s));
}
String next() throws Exception{
while (st == null || !st.hasMoreElements()){
try{
st = new StringTokenizer(br.readLine());
}catch (IOException e){
throw new Exception(e.toString());
}
}
return st.nextToken();
}
String nextLine() throws Exception{
String str;
try{
str = br.readLine();
}catch (IOException e){
throw new Exception(e.toString());
}
return str;
}
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(log(n)): The running time increases with the logarithm of the input size n.
- O(n): The running time grows linearly with the input size n.
- O(n^2): The running time increases with the square of the input size n.
- O(nlog(n)): The running time increases with the product of n and logarithm of n.
- O(n^3): The running time increases with the cube of the input size n.
- O(1): The running time does not change regardless of the input size n.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Determine the worst-case time complexity category of a given Java code based on input size n.
</TASK>
<CODE>
import java.util.*;
import java.io.*;
import java.text.*;
public class CF_1523_C{
//SOLUTION BEGIN
void pre() throws Exception{}
void solve(int TC) throws Exception{
int N = ni();
int[] A = new int[N];
for(int i = 0; i< N; i++)A[i] = ni();
// Stack<Integer> stack = new Stack<>();
int[] stack = new int[2*N];
int sz = 0;
for(int i = 0; i< N; i++){
if(A[i] == 1)stack[sz++] = 1;
else{
while (sz > 0 && stack[sz-1]+1 != A[i])sz--;//!stack.isEmpty() && stack.peek()+1 != A[i])stack.pop();
hold(sz != 0);
stack[sz-1]++;
hold(stack[sz-1] == A[i]);
}
hold(sz != 0);
StringBuilder st = new StringBuilder();
for(int s = 0; s< sz; s++){
st.append(stack[s]);
if(s+1 < sz)st.append(".");
}
pn(st.toString());
}
}
//SOLUTION END
void hold(boolean b)throws Exception{if(!b)throw new Exception("Hold right there, Sparky!");}
void exit(boolean b){if(!b)System.exit(0);}
static void dbg(Object... o){System.err.println(Arrays.deepToString(o));}
final long IINF = (long)1e17;
final int INF = (int)1e9+2;
DecimalFormat df = new DecimalFormat("0.00000000000");
double PI = 3.141592653589793238462643383279502884197169399, eps = 1e-8;
static boolean multipleTC = true, memory = true, fileIO = false;
FastReader in;PrintWriter out;
void run() throws Exception{
long ct = System.currentTimeMillis();
if (fileIO) {
in = new FastReader("");
out = new PrintWriter("");
} else {
in = new FastReader();
out = new PrintWriter(System.out);
}
//Solution Credits: Taranpreet Singh
int T = multipleTC? ni():1;
pre();
for (int t = 1; t <= T; t++) solve(t);
out.flush();
out.close();
System.err.println(System.currentTimeMillis() - ct);
}
public static void main(String[] args) throws Exception{
if(memory)new Thread(null, new Runnable() {public void run(){try{new CF_1523_C().run();}catch(Exception e){e.printStackTrace();System.exit(1);}}}, "1", 1 << 28).start();
else new CF_1523_C().run();
}
int[][] make(int n, int e, int[] from, int[] to, boolean f){
int[][] g = new int[n][];int[]cnt = new int[n];
for(int i = 0; i< e; i++){
cnt[from[i]]++;
if(f)cnt[to[i]]++;
}
for(int i = 0; i< n; i++)g[i] = new int[cnt[i]];
for(int i = 0; i< e; i++){
g[from[i]][--cnt[from[i]]] = to[i];
if(f)g[to[i]][--cnt[to[i]]] = from[i];
}
return g;
}
int[][][] makeS(int n, int e, int[] from, int[] to, boolean f){
int[][][] g = new int[n][][];int[]cnt = new int[n];
for(int i = 0; i< e; i++){
cnt[from[i]]++;
if(f)cnt[to[i]]++;
}
for(int i = 0; i< n; i++)g[i] = new int[cnt[i]][];
for(int i = 0; i< e; i++){
g[from[i]][--cnt[from[i]]] = new int[]{to[i], i, 0};
if(f)g[to[i]][--cnt[to[i]]] = new int[]{from[i], i, 1};
}
return g;
}
int find(int[] set, int u){return set[u] = (set[u] == u?u:find(set, set[u]));}
int digit(long s){int ans = 0;while(s>0){s/=10;ans++;}return ans;}
long gcd(long a, long b){return (b==0)?a:gcd(b,a%b);}
int gcd(int a, int b){return (b==0)?a:gcd(b,a%b);}
int bit(long n){return (n==0)?0:(1+bit(n&(n-1)));}
void p(Object... o){for(Object oo:o)out.print(oo+" ");}
void pn(Object... o){for(int i = 0; i< o.length; i++)out.print(o[i]+(i+1 < o.length?" ":"\n"));}
void pni(Object... o){for(Object oo:o)out.print(oo+" ");out.println();out.flush();}
String n()throws Exception{return in.next();}
String nln()throws Exception{return in.nextLine();}
int ni()throws Exception{return Integer.parseInt(in.next());}
long nl()throws Exception{return Long.parseLong(in.next());}
double nd()throws Exception{return Double.parseDouble(in.next());}
class FastReader{
BufferedReader br;
StringTokenizer st;
public FastReader(){
br = new BufferedReader(new InputStreamReader(System.in));
}
public FastReader(String s) throws Exception{
br = new BufferedReader(new FileReader(s));
}
String next() throws Exception{
while (st == null || !st.hasMoreElements()){
try{
st = new StringTokenizer(br.readLine());
}catch (IOException e){
throw new Exception(e.toString());
}
}
return st.nextToken();
}
String nextLine() throws Exception{
String str;
try{
str = br.readLine();
}catch (IOException e){
throw new Exception(e.toString());
}
return str;
}
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(1): The time complexity is constant to the input size n.
- others: The time complexity does not fit any of the above categories or cannot be clearly classified.
- O(nlog(n)): The time complexity combines linear and logarithmic growth factors.
- non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially.
- O(n): The time complexity increases proportionally to the input size n in a linear manner.
- O(n^3): The time complexity scales proportionally to the cube of the input size.
- O(n^2): The time complexity grows proportionally to the square of the input size.
- O(log(n)): The time complexity increases logarithmically in relation to the input size.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
| 1,735
| 3,840
|
1,234
|
import java.util.*;
public class Quiz{
static int MOD = (int)1e9 + 9;
public static void main(String[] args){
Scanner reader = new Scanner(System.in);
long n = reader.nextInt();
long m = reader.nextInt();
long k = reader.nextInt();
long r = (n + k - 1)/k;
long longDrops = n%k;
if(longDrops == 0){
long d = m - (r * (k-1));
if(d <= 0){
System.out.println(m);
return;
}
long sum = (fastExpo(2,d+1)-2) * k + (m - d*k);
System.out.println((sum+MOD)%MOD);
}else{
long d = (m-longDrops*r) - (r-1)*(k-longDrops-1);
if(d <= 0){
System.out.println(m);
return;
}
long sum = (fastExpo(2,d+1)-2) * k + (m - d*k);
System.out.println((sum+MOD)%MOD);
}
}
public static long fastExpo(long b, long p){
if(p == 0)
return 1;
if(p % 2 == 1)
return (b * fastExpo(b, p-1))%MOD;
long x = fastExpo(b, p/2);
return (x * x)%MOD;
}
}
|
O(log(n))
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Determine the worst-case time complexity category of a given Java code based on input size n.
</TASK>
<CODE>
import java.util.*;
public class Quiz{
static int MOD = (int)1e9 + 9;
public static void main(String[] args){
Scanner reader = new Scanner(System.in);
long n = reader.nextInt();
long m = reader.nextInt();
long k = reader.nextInt();
long r = (n + k - 1)/k;
long longDrops = n%k;
if(longDrops == 0){
long d = m - (r * (k-1));
if(d <= 0){
System.out.println(m);
return;
}
long sum = (fastExpo(2,d+1)-2) * k + (m - d*k);
System.out.println((sum+MOD)%MOD);
}else{
long d = (m-longDrops*r) - (r-1)*(k-longDrops-1);
if(d <= 0){
System.out.println(m);
return;
}
long sum = (fastExpo(2,d+1)-2) * k + (m - d*k);
System.out.println((sum+MOD)%MOD);
}
}
public static long fastExpo(long b, long p){
if(p == 0)
return 1;
if(p % 2 == 1)
return (b * fastExpo(b, p-1))%MOD;
long x = fastExpo(b, p/2);
return (x * x)%MOD;
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(n^2): The time complexity grows proportionally to the square of the input size.
- non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially.
- O(n^3): The time complexity scales proportionally to the cube of the input size.
- O(n): The time complexity increases proportionally to the input size n in a linear manner.
- O(1): The time complexity is constant to the input size n.
- O(log(n)): The time complexity increases logarithmically in relation to the input size.
- O(nlog(n)): The time complexity combines linear and logarithmic growth factors.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Classify the following Java code's worst-case time complexity according to its relationship to the input size n.
</TASK>
<CODE>
import java.util.*;
public class Quiz{
static int MOD = (int)1e9 + 9;
public static void main(String[] args){
Scanner reader = new Scanner(System.in);
long n = reader.nextInt();
long m = reader.nextInt();
long k = reader.nextInt();
long r = (n + k - 1)/k;
long longDrops = n%k;
if(longDrops == 0){
long d = m - (r * (k-1));
if(d <= 0){
System.out.println(m);
return;
}
long sum = (fastExpo(2,d+1)-2) * k + (m - d*k);
System.out.println((sum+MOD)%MOD);
}else{
long d = (m-longDrops*r) - (r-1)*(k-longDrops-1);
if(d <= 0){
System.out.println(m);
return;
}
long sum = (fastExpo(2,d+1)-2) * k + (m - d*k);
System.out.println((sum+MOD)%MOD);
}
}
public static long fastExpo(long b, long p){
if(p == 0)
return 1;
if(p % 2 == 1)
return (b * fastExpo(b, p-1))%MOD;
long x = fastExpo(b, p/2);
return (x * x)%MOD;
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(nlog(n)): The running time increases with the product of n and logarithm of n.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- others: The code does not clearly correspond to the listed classes or has an unclassified time complexity.
- O(1): The running time does not change regardless of the input size n.
- O(n^3): The running time increases with the cube of the input size n.
- O(log(n)): The running time increases with the logarithm of the input size n.
- O(n^2): The running time increases with the square of the input size n.
- O(n): The running time grows linearly with the input size n.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
| 663
| 1,233
|
4,334
|
import java.io.BufferedReader;
import java.io.IOException;
import java.io.InputStreamReader;
import java.io.PrintWriter;
import java.util.Arrays;
public class Main {
public static BufferedReader in;
public static PrintWriter out;
public static void main(String[] args) throws IOException {
in = new BufferedReader(new InputStreamReader(System.in));
out = new PrintWriter(System.out);
boolean showLineError = true;
if (showLineError) {
solve();
out.close();
} else {
try {
solve();
} catch (Exception e) {
} finally {
out.close();
}
}
}
static void debug(Object... os) {
out.println(Arrays.deepToString(os));
}
private static void solve() throws IOException {
String[] line = nss();
int n = Integer.parseInt(line[0]);
int m = Integer.parseInt(line[1]);
boolean[][] matrix = new boolean[n][n];
for (int i = 0; i < m; i++) {
line = nss();
int u = Integer.parseInt(line[0]) - 1;
int v = Integer.parseInt(line[1]) - 1;
matrix[u][v] = matrix[v][u] = true;
}
long[][] dp = new long[1<<n][n];
for(int i=0;i<n;i++)
dp[1<<i][i]=1;
long ret=0;
for(int mask =0;mask< 1<<n;mask++){
for(int last =0;last<n;last++)
if((mask & (1<<last))!=0){
int first=-1;
for(first=0;first<n;first++)
if((mask & (1<<first))!=0)
break;
for(int add =first;add<n;add++)
if((mask & (1<<add))==0 && matrix[last][add])
dp[mask+ (1<<add)][add]+=dp[mask][last];
if(Long.bitCount(mask)>2 && matrix[first][last])
ret+=dp[mask][last];
}
}
out.println(ret/2L);
}
private static String[] nss() throws IOException {
return in.readLine().split(" ");
}
private static int ni() throws NumberFormatException, IOException {
return Integer.parseInt(in.readLine());
}
}
|
non-polynomial
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Determine the worst-case time complexity category of a given Java code based on input size n.
</TASK>
<CODE>
import java.io.BufferedReader;
import java.io.IOException;
import java.io.InputStreamReader;
import java.io.PrintWriter;
import java.util.Arrays;
public class Main {
public static BufferedReader in;
public static PrintWriter out;
public static void main(String[] args) throws IOException {
in = new BufferedReader(new InputStreamReader(System.in));
out = new PrintWriter(System.out);
boolean showLineError = true;
if (showLineError) {
solve();
out.close();
} else {
try {
solve();
} catch (Exception e) {
} finally {
out.close();
}
}
}
static void debug(Object... os) {
out.println(Arrays.deepToString(os));
}
private static void solve() throws IOException {
String[] line = nss();
int n = Integer.parseInt(line[0]);
int m = Integer.parseInt(line[1]);
boolean[][] matrix = new boolean[n][n];
for (int i = 0; i < m; i++) {
line = nss();
int u = Integer.parseInt(line[0]) - 1;
int v = Integer.parseInt(line[1]) - 1;
matrix[u][v] = matrix[v][u] = true;
}
long[][] dp = new long[1<<n][n];
for(int i=0;i<n;i++)
dp[1<<i][i]=1;
long ret=0;
for(int mask =0;mask< 1<<n;mask++){
for(int last =0;last<n;last++)
if((mask & (1<<last))!=0){
int first=-1;
for(first=0;first<n;first++)
if((mask & (1<<first))!=0)
break;
for(int add =first;add<n;add++)
if((mask & (1<<add))==0 && matrix[last][add])
dp[mask+ (1<<add)][add]+=dp[mask][last];
if(Long.bitCount(mask)>2 && matrix[first][last])
ret+=dp[mask][last];
}
}
out.println(ret/2L);
}
private static String[] nss() throws IOException {
return in.readLine().split(" ");
}
private static int ni() throws NumberFormatException, IOException {
return Integer.parseInt(in.readLine());
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(nlog(n)): The time complexity combines linear and logarithmic growth factors.
- non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially.
- O(n): The time complexity increases proportionally to the input size n in a linear manner.
- O(n^2): The time complexity grows proportionally to the square of the input size.
- O(n^3): The time complexity scales proportionally to the cube of the input size.
- O(1): The time complexity is constant to the input size n.
- O(log(n)): The time complexity increases logarithmically in relation to the input size.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Classify the following Java code's worst-case time complexity according to its relationship to the input size n.
</TASK>
<CODE>
import java.io.BufferedReader;
import java.io.IOException;
import java.io.InputStreamReader;
import java.io.PrintWriter;
import java.util.Arrays;
public class Main {
public static BufferedReader in;
public static PrintWriter out;
public static void main(String[] args) throws IOException {
in = new BufferedReader(new InputStreamReader(System.in));
out = new PrintWriter(System.out);
boolean showLineError = true;
if (showLineError) {
solve();
out.close();
} else {
try {
solve();
} catch (Exception e) {
} finally {
out.close();
}
}
}
static void debug(Object... os) {
out.println(Arrays.deepToString(os));
}
private static void solve() throws IOException {
String[] line = nss();
int n = Integer.parseInt(line[0]);
int m = Integer.parseInt(line[1]);
boolean[][] matrix = new boolean[n][n];
for (int i = 0; i < m; i++) {
line = nss();
int u = Integer.parseInt(line[0]) - 1;
int v = Integer.parseInt(line[1]) - 1;
matrix[u][v] = matrix[v][u] = true;
}
long[][] dp = new long[1<<n][n];
for(int i=0;i<n;i++)
dp[1<<i][i]=1;
long ret=0;
for(int mask =0;mask< 1<<n;mask++){
for(int last =0;last<n;last++)
if((mask & (1<<last))!=0){
int first=-1;
for(first=0;first<n;first++)
if((mask & (1<<first))!=0)
break;
for(int add =first;add<n;add++)
if((mask & (1<<add))==0 && matrix[last][add])
dp[mask+ (1<<add)][add]+=dp[mask][last];
if(Long.bitCount(mask)>2 && matrix[first][last])
ret+=dp[mask][last];
}
}
out.println(ret/2L);
}
private static String[] nss() throws IOException {
return in.readLine().split(" ");
}
private static int ni() throws NumberFormatException, IOException {
return Integer.parseInt(in.readLine());
}
}
</CODE>
<EVALUATION_RUBRIC>
- others: The code does not clearly correspond to the listed classes or has an unclassified time complexity.
- O(n): The running time grows linearly with the input size n.
- O(n^3): The running time increases with the cube of the input size n.
- O(n^2): The running time increases with the square of the input size n.
- O(1): The running time does not change regardless of the input size n.
- O(nlog(n)): The running time increases with the product of n and logarithm of n.
- O(log(n)): The running time increases with the logarithm of the input size n.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
| 833
| 4,323
|
2,251
|
import java.util.*;
public class PythonIndentation {
public static void main(String args[])
{
Scanner sc=new Scanner(System.in);
int t=sc.nextInt();
int a[]=new int[t];
int c=0;
a[0]=1;
long mod=(long) (1e9+7);
sc.nextLine();
for(int i=0;i<t;i++)
{
String s=sc.nextLine();
if(s.equals("f"))
c++;
else
{
for(int j=1;j<=c;j++)
{
a[j]=(int) (((a[j]%mod)+(a[j-1]%mod))%mod);
}
}
}
System.out.println(a[c]);
sc.close();
}
}
|
O(n^2)
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Determine the worst-case time complexity category of a given Java code based on input size n.
</TASK>
<CODE>
import java.util.*;
public class PythonIndentation {
public static void main(String args[])
{
Scanner sc=new Scanner(System.in);
int t=sc.nextInt();
int a[]=new int[t];
int c=0;
a[0]=1;
long mod=(long) (1e9+7);
sc.nextLine();
for(int i=0;i<t;i++)
{
String s=sc.nextLine();
if(s.equals("f"))
c++;
else
{
for(int j=1;j<=c;j++)
{
a[j]=(int) (((a[j]%mod)+(a[j-1]%mod))%mod);
}
}
}
System.out.println(a[c]);
sc.close();
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(nlog(n)): The time complexity combines linear and logarithmic growth factors.
- O(1): The time complexity is constant to the input size n.
- O(log(n)): The time complexity increases logarithmically in relation to the input size.
- O(n^3): The time complexity scales proportionally to the cube of the input size.
- O(n^2): The time complexity grows proportionally to the square of the input size.
- O(n): The time complexity increases proportionally to the input size n in a linear manner.
- non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n.
</TASK>
<CODE>
import java.util.*;
public class PythonIndentation {
public static void main(String args[])
{
Scanner sc=new Scanner(System.in);
int t=sc.nextInt();
int a[]=new int[t];
int c=0;
a[0]=1;
long mod=(long) (1e9+7);
sc.nextLine();
for(int i=0;i<t;i++)
{
String s=sc.nextLine();
if(s.equals("f"))
c++;
else
{
for(int j=1;j<=c;j++)
{
a[j]=(int) (((a[j]%mod)+(a[j-1]%mod))%mod);
}
}
}
System.out.println(a[c]);
sc.close();
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(n): The execution time ascends in a one-to-one ratio with the input size n.
- O(1): The execution time is unaffected by the size of the input n.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- O(n^3): The execution time ascends in proportion to the cube of the input size n.
- O(log(n)): The execution time ascends in proportion to the logarithm of the input size n.
- O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially.
- O(n^2): The execution time ascends in proportion to the square of the input size n.
- others: The time complexity does not fit to any of the given categories or is ambiguous.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
| 496
| 2,246
|
1,606
|
import java.util.Arrays;
import java.util.Scanner;
public class test1
{
public static void main(String[] args)
{
Scanner in = new Scanner(System.in);
int n = in.nextInt();
int a[]=new int[n];
int b[]=new int[n];
for(int i=0;i<n;i++)
{
a[i]=in.nextInt();
b[i]=a[i];
}
Arrays.sort(b);
int count=0;
for(int i=0;i<n;i++)
if(a[i]!=b[i])
count++;
if(count<=2)
System.out.println("YES");
else
System.out.println("NO");
}
}
|
O(nlog(n))
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Determine the worst-case time complexity category of a given Java code based on input size n.
</TASK>
<CODE>
import java.util.Arrays;
import java.util.Scanner;
public class test1
{
public static void main(String[] args)
{
Scanner in = new Scanner(System.in);
int n = in.nextInt();
int a[]=new int[n];
int b[]=new int[n];
for(int i=0;i<n;i++)
{
a[i]=in.nextInt();
b[i]=a[i];
}
Arrays.sort(b);
int count=0;
for(int i=0;i<n;i++)
if(a[i]!=b[i])
count++;
if(count<=2)
System.out.println("YES");
else
System.out.println("NO");
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(n^3): The time complexity scales proportionally to the cube of the input size.
- O(nlog(n)): The time complexity combines linear and logarithmic growth factors.
- O(1): The time complexity is constant to the input size n.
- non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially.
- O(log(n)): The time complexity increases logarithmically in relation to the input size.
- O(n^2): The time complexity grows proportionally to the square of the input size.
- O(n): The time complexity increases proportionally to the input size n in a linear manner.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Classify the following Java code's worst-case time complexity according to its relationship to the input size n.
</TASK>
<CODE>
import java.util.Arrays;
import java.util.Scanner;
public class test1
{
public static void main(String[] args)
{
Scanner in = new Scanner(System.in);
int n = in.nextInt();
int a[]=new int[n];
int b[]=new int[n];
for(int i=0;i<n;i++)
{
a[i]=in.nextInt();
b[i]=a[i];
}
Arrays.sort(b);
int count=0;
for(int i=0;i<n;i++)
if(a[i]!=b[i])
count++;
if(count<=2)
System.out.println("YES");
else
System.out.println("NO");
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(n^3): The running time increases with the cube of the input size n.
- others: The code does not clearly correspond to the listed classes or has an unclassified time complexity.
- O(n): The running time grows linearly with the input size n.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- O(1): The running time does not change regardless of the input size n.
- O(nlog(n)): The running time increases with the product of n and logarithm of n.
- O(n^2): The running time increases with the square of the input size n.
- O(log(n)): The running time increases with the logarithm of the input size n.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
| 476
| 1,603
|
4,163
|
import java.util.Arrays;
import java.util.Scanner;
public class P16E {
int n;
double [][]prob;
double []dp;
public P16E() {
Scanner sc = new Scanner(System.in);
n = sc.nextInt();
prob = new double [n][n];
for (int i = 0; i < n; i++){
for (int j = 0; j < n; j++){
prob[i][j] = sc.nextDouble();
}
}
sc.close();
dp = new double[(1<<n)];
Arrays.fill(dp, -1);
for (int i = 0; i < n; i++) {
int a = 1 << i;
System.out.print(compute(a) + " ");
}
}
double compute (int mask){
if (mask == (1<<n) - 1){
return 1;
}
if (dp[mask] != -1){
return dp[mask];
}
double result = 0;
int c = 0;
for (int i = 0; i < n; i++) {
int a = 1 << i;
if ((a & mask) != 0) {
c++;
for (int j = 0; j < n; j++) {
int b = 1 << j;
if ((b & mask) == 0) {
result += (prob[i][j] * compute(mask | b));
}
}
}
}
int nC2 = (c + 1) * c / 2;
dp[mask] = result / nC2;
return dp[mask];
}
public static void main (String []args){
new P16E();
}
}
|
non-polynomial
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n.
</TASK>
<CODE>
import java.util.Arrays;
import java.util.Scanner;
public class P16E {
int n;
double [][]prob;
double []dp;
public P16E() {
Scanner sc = new Scanner(System.in);
n = sc.nextInt();
prob = new double [n][n];
for (int i = 0; i < n; i++){
for (int j = 0; j < n; j++){
prob[i][j] = sc.nextDouble();
}
}
sc.close();
dp = new double[(1<<n)];
Arrays.fill(dp, -1);
for (int i = 0; i < n; i++) {
int a = 1 << i;
System.out.print(compute(a) + " ");
}
}
double compute (int mask){
if (mask == (1<<n) - 1){
return 1;
}
if (dp[mask] != -1){
return dp[mask];
}
double result = 0;
int c = 0;
for (int i = 0; i < n; i++) {
int a = 1 << i;
if ((a & mask) != 0) {
c++;
for (int j = 0; j < n; j++) {
int b = 1 << j;
if ((b & mask) == 0) {
result += (prob[i][j] * compute(mask | b));
}
}
}
}
int nC2 = (c + 1) * c / 2;
dp[mask] = result / nC2;
return dp[mask];
}
public static void main (String []args){
new P16E();
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(n^2): The execution time ascends in proportion to the square of the input size n.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- O(1): The execution time is unaffected by the size of the input n.
- O(n^3): The execution time ascends in proportion to the cube of the input size n.
- O(log(n)): The execution time ascends in proportion to the logarithm of the input size n.
- O(n): The execution time ascends in a one-to-one ratio with the input size n.
- O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Determine the worst-case time complexity category of a given Java code based on input size n.
</TASK>
<CODE>
import java.util.Arrays;
import java.util.Scanner;
public class P16E {
int n;
double [][]prob;
double []dp;
public P16E() {
Scanner sc = new Scanner(System.in);
n = sc.nextInt();
prob = new double [n][n];
for (int i = 0; i < n; i++){
for (int j = 0; j < n; j++){
prob[i][j] = sc.nextDouble();
}
}
sc.close();
dp = new double[(1<<n)];
Arrays.fill(dp, -1);
for (int i = 0; i < n; i++) {
int a = 1 << i;
System.out.print(compute(a) + " ");
}
}
double compute (int mask){
if (mask == (1<<n) - 1){
return 1;
}
if (dp[mask] != -1){
return dp[mask];
}
double result = 0;
int c = 0;
for (int i = 0; i < n; i++) {
int a = 1 << i;
if ((a & mask) != 0) {
c++;
for (int j = 0; j < n; j++) {
int b = 1 << j;
if ((b & mask) == 0) {
result += (prob[i][j] * compute(mask | b));
}
}
}
}
int nC2 = (c + 1) * c / 2;
dp[mask] = result / nC2;
return dp[mask];
}
public static void main (String []args){
new P16E();
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(1): The time complexity is constant to the input size n.
- O(log(n)): The time complexity increases logarithmically in relation to the input size.
- O(n): The time complexity increases proportionally to the input size n in a linear manner.
- non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially.
- O(n^2): The time complexity grows proportionally to the square of the input size.
- O(nlog(n)): The time complexity combines linear and logarithmic growth factors.
- others: The time complexity does not fit any of the above categories or cannot be clearly classified.
- O(n^3): The time complexity scales proportionally to the cube of the input size.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
| 737
| 4,152
|
3,617
|
//package round35;
import java.io.File;
import java.io.PrintWriter;
import java.util.Arrays;
import java.util.Scanner;
public class C {
Scanner in;
PrintWriter out;
// String INPUT = "3 3 1 1 1";
String INPUT = "";
void solve()
{
int n = ni();
int m = ni();
int k = ni();
int[] x = new int[k];
int[] y = new int[k];
for(int i = 0;i < k;i++){
x[i] = ni() - 1;
y[i] = ni() - 1;
}
int max = -1;
int maxi = -1;
int maxj = -1;
for(int i = 0;i < n;i++){
for(int j = 0;j < m;j++){
int min = Integer.MAX_VALUE;
for(int l = 0;l < k;l++){
min = Math.min(min, Math.abs(x[l] - i) + Math.abs(y[l] - j));
}
if(min > max){
max = min;
maxi = i;
maxj = j;
}
}
}
out.println((maxi+1) + " " + (maxj+1));
}
void run() throws Exception
{
in = INPUT.isEmpty() ? new Scanner(new File("input.txt")) : new Scanner(INPUT);
out = INPUT.isEmpty() ? new PrintWriter("output.txt") : new PrintWriter(System.out);
solve();
out.flush();
}
public static void main(String[] args) throws Exception
{
new C().run();
}
int ni() { return Integer.parseInt(in.next()); }
void tr(Object... o) { if(INPUT.length() != 0)System.out.println(o.length > 1 || o[0].getClass().isArray() ? Arrays.deepToString(o) : o[0]); }
static String join(int[] a, int d){StringBuilder sb = new StringBuilder();for(int v : a){sb.append(v + d + " ");}return sb.toString();}
}
|
O(n^3)
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n.
</TASK>
<CODE>
//package round35;
import java.io.File;
import java.io.PrintWriter;
import java.util.Arrays;
import java.util.Scanner;
public class C {
Scanner in;
PrintWriter out;
// String INPUT = "3 3 1 1 1";
String INPUT = "";
void solve()
{
int n = ni();
int m = ni();
int k = ni();
int[] x = new int[k];
int[] y = new int[k];
for(int i = 0;i < k;i++){
x[i] = ni() - 1;
y[i] = ni() - 1;
}
int max = -1;
int maxi = -1;
int maxj = -1;
for(int i = 0;i < n;i++){
for(int j = 0;j < m;j++){
int min = Integer.MAX_VALUE;
for(int l = 0;l < k;l++){
min = Math.min(min, Math.abs(x[l] - i) + Math.abs(y[l] - j));
}
if(min > max){
max = min;
maxi = i;
maxj = j;
}
}
}
out.println((maxi+1) + " " + (maxj+1));
}
void run() throws Exception
{
in = INPUT.isEmpty() ? new Scanner(new File("input.txt")) : new Scanner(INPUT);
out = INPUT.isEmpty() ? new PrintWriter("output.txt") : new PrintWriter(System.out);
solve();
out.flush();
}
public static void main(String[] args) throws Exception
{
new C().run();
}
int ni() { return Integer.parseInt(in.next()); }
void tr(Object... o) { if(INPUT.length() != 0)System.out.println(o.length > 1 || o[0].getClass().isArray() ? Arrays.deepToString(o) : o[0]); }
static String join(int[] a, int d){StringBuilder sb = new StringBuilder();for(int v : a){sb.append(v + d + " ");}return sb.toString();}
}
</CODE>
<EVALUATION_RUBRIC>
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- O(log(n)): The execution time ascends in proportion to the logarithm of the input size n.
- O(n): The execution time ascends in a one-to-one ratio with the input size n.
- O(1): The execution time is unaffected by the size of the input n.
- O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially.
- O(n^2): The execution time ascends in proportion to the square of the input size n.
- O(n^3): The execution time ascends in proportion to the cube of the input size n.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Classify the following Java code's worst-case time complexity according to its relationship to the input size n.
</TASK>
<CODE>
//package round35;
import java.io.File;
import java.io.PrintWriter;
import java.util.Arrays;
import java.util.Scanner;
public class C {
Scanner in;
PrintWriter out;
// String INPUT = "3 3 1 1 1";
String INPUT = "";
void solve()
{
int n = ni();
int m = ni();
int k = ni();
int[] x = new int[k];
int[] y = new int[k];
for(int i = 0;i < k;i++){
x[i] = ni() - 1;
y[i] = ni() - 1;
}
int max = -1;
int maxi = -1;
int maxj = -1;
for(int i = 0;i < n;i++){
for(int j = 0;j < m;j++){
int min = Integer.MAX_VALUE;
for(int l = 0;l < k;l++){
min = Math.min(min, Math.abs(x[l] - i) + Math.abs(y[l] - j));
}
if(min > max){
max = min;
maxi = i;
maxj = j;
}
}
}
out.println((maxi+1) + " " + (maxj+1));
}
void run() throws Exception
{
in = INPUT.isEmpty() ? new Scanner(new File("input.txt")) : new Scanner(INPUT);
out = INPUT.isEmpty() ? new PrintWriter("output.txt") : new PrintWriter(System.out);
solve();
out.flush();
}
public static void main(String[] args) throws Exception
{
new C().run();
}
int ni() { return Integer.parseInt(in.next()); }
void tr(Object... o) { if(INPUT.length() != 0)System.out.println(o.length > 1 || o[0].getClass().isArray() ? Arrays.deepToString(o) : o[0]); }
static String join(int[] a, int d){StringBuilder sb = new StringBuilder();for(int v : a){sb.append(v + d + " ");}return sb.toString();}
}
</CODE>
<EVALUATION_RUBRIC>
- others: The code does not clearly correspond to the listed classes or has an unclassified time complexity.
- O(log(n)): The running time increases with the logarithm of the input size n.
- O(n): The running time grows linearly with the input size n.
- O(1): The running time does not change regardless of the input size n.
- O(nlog(n)): The running time increases with the product of n and logarithm of n.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- O(n^2): The running time increases with the square of the input size n.
- O(n^3): The running time increases with the cube of the input size n.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
| 805
| 3,609
|
141
|
import java.io.IOException;
import java.io.InputStream;
import java.io.PrintWriter;
import java.io.*;
import java.util.*;
import java.math.*;
import java.lang.*;
import java.util.PriorityQueue;
import static java.lang.Math.*;
public class solution implements Runnable {
static class InputReader {
private InputStream stream;
private byte[] buf = new byte[1024];
private int curChar;
private int numChars;
private SpaceCharFilter filter;
private BufferedReader br = new BufferedReader(new InputStreamReader(System.in));
public InputReader(InputStream stream) {
this.stream = stream;
}
public int read() {
if (numChars==-1)
throw new InputMismatchException();
if (curChar >= numChars) {
curChar = 0;
try {
numChars = stream.read(buf);
}
catch (IOException e) {
throw new InputMismatchException();
}
if(numChars <= 0)
return -1;
}
return buf[curChar++];
}
public String nextLine() {
String str = "";
try {
str = br.readLine();
}
catch (IOException e) {
e.printStackTrace();
}
return str;
}
public int nextInt() {
int c = read();
while(isSpaceChar(c))
c = read();
int sgn = 1;
if (c == '-') {
sgn = -1;
c = read();
}
int res = 0;
do {
if(c<'0'||c>'9')
throw new InputMismatchException();
res *= 10;
res += c - '0';
c = read();
}
while (!isSpaceChar(c));
return res * sgn;
}
public long nextLong() {
int c = read();
while (isSpaceChar(c))
c = read();
int sgn = 1;
if (c == '-') {
sgn = -1;
c = read();
}
long res = 0;
do {
if (c < '0' || c > '9')
throw new InputMismatchException();
res *= 10;
res += c - '0';
c = read();
}
while (!isSpaceChar(c));
return res * sgn;
}
public double nextDouble() {
int c = read();
while (isSpaceChar(c))
c = read();
int sgn = 1;
if (c == '-') {
sgn = -1;
c = read();
}
double res = 0;
while (!isSpaceChar(c) && c != '.') {
if (c == 'e' || c == 'E')
return res * Math.pow(10, nextInt());
if (c < '0' || c > '9')
throw new InputMismatchException();
res *= 10;
res += c - '0';
c = read();
}
if (c == '.') {
c = read();
double m = 1;
while (!isSpaceChar(c)) {
if (c == 'e' || c == 'E')
return res * Math.pow(10, nextInt());
if (c < '0' || c > '9')
throw new InputMismatchException();
m /= 10;
res += (c - '0') * m;
c = read();
}
}
return res * sgn;
}
public String readString() {
int c = read();
while (isSpaceChar(c))
c = read();
StringBuilder res = new StringBuilder();
do {
res.appendCodePoint(c);
c = read();
}
while (!isSpaceChar(c));
return res.toString();
}
public boolean isSpaceChar(int c) {
if (filter != null)
return filter.isSpaceChar(c);
return c == ' ' || c == '\n' || c == '\r' || c == '\t' || c == -1;
}
public String next() {
return readString();
}
public interface SpaceCharFilter {
public boolean isSpaceChar(int ch);
}
}
static int mod = (int)1e9+7;
public static long fastexpo(long pow)
{
long expo = 2;
long ans = 1;
while(pow!=0)
{
if((pow&1)==1)
{
ans = (ans*expo)%mod;
}
expo = (expo*expo)%mod;
pow = pow>>1;
}
return ans;
}
public static void main(String args[]) throws Exception {
new Thread(null, new solution(),"Main",1<<26).start();
}
public void run() {
InputReader sc = new InputReader(System.in);
PrintWriter out = new PrintWriter(System.out);
long x = sc.nextLong();
if(x==0)
{
out.println(0);
out.close();
return;
}
long k = sc.nextLong();
long a = ((fastexpo(k+1)%mod)*(x%mod))%mod;
long b = (-1*fastexpo(k)%mod+mod)%mod;
long ans = (a+b+1)%mod;
out.println(ans);
out.close();
}
}
|
O(log(n))
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n.
</TASK>
<CODE>
import java.io.IOException;
import java.io.InputStream;
import java.io.PrintWriter;
import java.io.*;
import java.util.*;
import java.math.*;
import java.lang.*;
import java.util.PriorityQueue;
import static java.lang.Math.*;
public class solution implements Runnable {
static class InputReader {
private InputStream stream;
private byte[] buf = new byte[1024];
private int curChar;
private int numChars;
private SpaceCharFilter filter;
private BufferedReader br = new BufferedReader(new InputStreamReader(System.in));
public InputReader(InputStream stream) {
this.stream = stream;
}
public int read() {
if (numChars==-1)
throw new InputMismatchException();
if (curChar >= numChars) {
curChar = 0;
try {
numChars = stream.read(buf);
}
catch (IOException e) {
throw new InputMismatchException();
}
if(numChars <= 0)
return -1;
}
return buf[curChar++];
}
public String nextLine() {
String str = "";
try {
str = br.readLine();
}
catch (IOException e) {
e.printStackTrace();
}
return str;
}
public int nextInt() {
int c = read();
while(isSpaceChar(c))
c = read();
int sgn = 1;
if (c == '-') {
sgn = -1;
c = read();
}
int res = 0;
do {
if(c<'0'||c>'9')
throw new InputMismatchException();
res *= 10;
res += c - '0';
c = read();
}
while (!isSpaceChar(c));
return res * sgn;
}
public long nextLong() {
int c = read();
while (isSpaceChar(c))
c = read();
int sgn = 1;
if (c == '-') {
sgn = -1;
c = read();
}
long res = 0;
do {
if (c < '0' || c > '9')
throw new InputMismatchException();
res *= 10;
res += c - '0';
c = read();
}
while (!isSpaceChar(c));
return res * sgn;
}
public double nextDouble() {
int c = read();
while (isSpaceChar(c))
c = read();
int sgn = 1;
if (c == '-') {
sgn = -1;
c = read();
}
double res = 0;
while (!isSpaceChar(c) && c != '.') {
if (c == 'e' || c == 'E')
return res * Math.pow(10, nextInt());
if (c < '0' || c > '9')
throw new InputMismatchException();
res *= 10;
res += c - '0';
c = read();
}
if (c == '.') {
c = read();
double m = 1;
while (!isSpaceChar(c)) {
if (c == 'e' || c == 'E')
return res * Math.pow(10, nextInt());
if (c < '0' || c > '9')
throw new InputMismatchException();
m /= 10;
res += (c - '0') * m;
c = read();
}
}
return res * sgn;
}
public String readString() {
int c = read();
while (isSpaceChar(c))
c = read();
StringBuilder res = new StringBuilder();
do {
res.appendCodePoint(c);
c = read();
}
while (!isSpaceChar(c));
return res.toString();
}
public boolean isSpaceChar(int c) {
if (filter != null)
return filter.isSpaceChar(c);
return c == ' ' || c == '\n' || c == '\r' || c == '\t' || c == -1;
}
public String next() {
return readString();
}
public interface SpaceCharFilter {
public boolean isSpaceChar(int ch);
}
}
static int mod = (int)1e9+7;
public static long fastexpo(long pow)
{
long expo = 2;
long ans = 1;
while(pow!=0)
{
if((pow&1)==1)
{
ans = (ans*expo)%mod;
}
expo = (expo*expo)%mod;
pow = pow>>1;
}
return ans;
}
public static void main(String args[]) throws Exception {
new Thread(null, new solution(),"Main",1<<26).start();
}
public void run() {
InputReader sc = new InputReader(System.in);
PrintWriter out = new PrintWriter(System.out);
long x = sc.nextLong();
if(x==0)
{
out.println(0);
out.close();
return;
}
long k = sc.nextLong();
long a = ((fastexpo(k+1)%mod)*(x%mod))%mod;
long b = (-1*fastexpo(k)%mod+mod)%mod;
long ans = (a+b+1)%mod;
out.println(ans);
out.close();
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(n^2): The execution time ascends in proportion to the square of the input size n.
- O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially.
- O(n): The execution time ascends in a one-to-one ratio with the input size n.
- O(log(n)): The execution time ascends in proportion to the logarithm of the input size n.
- O(n^3): The execution time ascends in proportion to the cube of the input size n.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- O(1): The execution time is unaffected by the size of the input n.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Classify the following Java code's worst-case time complexity according to its relationship to the input size n.
</TASK>
<CODE>
import java.io.IOException;
import java.io.InputStream;
import java.io.PrintWriter;
import java.io.*;
import java.util.*;
import java.math.*;
import java.lang.*;
import java.util.PriorityQueue;
import static java.lang.Math.*;
public class solution implements Runnable {
static class InputReader {
private InputStream stream;
private byte[] buf = new byte[1024];
private int curChar;
private int numChars;
private SpaceCharFilter filter;
private BufferedReader br = new BufferedReader(new InputStreamReader(System.in));
public InputReader(InputStream stream) {
this.stream = stream;
}
public int read() {
if (numChars==-1)
throw new InputMismatchException();
if (curChar >= numChars) {
curChar = 0;
try {
numChars = stream.read(buf);
}
catch (IOException e) {
throw new InputMismatchException();
}
if(numChars <= 0)
return -1;
}
return buf[curChar++];
}
public String nextLine() {
String str = "";
try {
str = br.readLine();
}
catch (IOException e) {
e.printStackTrace();
}
return str;
}
public int nextInt() {
int c = read();
while(isSpaceChar(c))
c = read();
int sgn = 1;
if (c == '-') {
sgn = -1;
c = read();
}
int res = 0;
do {
if(c<'0'||c>'9')
throw new InputMismatchException();
res *= 10;
res += c - '0';
c = read();
}
while (!isSpaceChar(c));
return res * sgn;
}
public long nextLong() {
int c = read();
while (isSpaceChar(c))
c = read();
int sgn = 1;
if (c == '-') {
sgn = -1;
c = read();
}
long res = 0;
do {
if (c < '0' || c > '9')
throw new InputMismatchException();
res *= 10;
res += c - '0';
c = read();
}
while (!isSpaceChar(c));
return res * sgn;
}
public double nextDouble() {
int c = read();
while (isSpaceChar(c))
c = read();
int sgn = 1;
if (c == '-') {
sgn = -1;
c = read();
}
double res = 0;
while (!isSpaceChar(c) && c != '.') {
if (c == 'e' || c == 'E')
return res * Math.pow(10, nextInt());
if (c < '0' || c > '9')
throw new InputMismatchException();
res *= 10;
res += c - '0';
c = read();
}
if (c == '.') {
c = read();
double m = 1;
while (!isSpaceChar(c)) {
if (c == 'e' || c == 'E')
return res * Math.pow(10, nextInt());
if (c < '0' || c > '9')
throw new InputMismatchException();
m /= 10;
res += (c - '0') * m;
c = read();
}
}
return res * sgn;
}
public String readString() {
int c = read();
while (isSpaceChar(c))
c = read();
StringBuilder res = new StringBuilder();
do {
res.appendCodePoint(c);
c = read();
}
while (!isSpaceChar(c));
return res.toString();
}
public boolean isSpaceChar(int c) {
if (filter != null)
return filter.isSpaceChar(c);
return c == ' ' || c == '\n' || c == '\r' || c == '\t' || c == -1;
}
public String next() {
return readString();
}
public interface SpaceCharFilter {
public boolean isSpaceChar(int ch);
}
}
static int mod = (int)1e9+7;
public static long fastexpo(long pow)
{
long expo = 2;
long ans = 1;
while(pow!=0)
{
if((pow&1)==1)
{
ans = (ans*expo)%mod;
}
expo = (expo*expo)%mod;
pow = pow>>1;
}
return ans;
}
public static void main(String args[]) throws Exception {
new Thread(null, new solution(),"Main",1<<26).start();
}
public void run() {
InputReader sc = new InputReader(System.in);
PrintWriter out = new PrintWriter(System.out);
long x = sc.nextLong();
if(x==0)
{
out.println(0);
out.close();
return;
}
long k = sc.nextLong();
long a = ((fastexpo(k+1)%mod)*(x%mod))%mod;
long b = (-1*fastexpo(k)%mod+mod)%mod;
long ans = (a+b+1)%mod;
out.println(ans);
out.close();
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(log(n)): The running time increases with the logarithm of the input size n.
- O(n^3): The running time increases with the cube of the input size n.
- O(n^2): The running time increases with the square of the input size n.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- O(1): The running time does not change regardless of the input size n.
- O(n): The running time grows linearly with the input size n.
- O(nlog(n)): The running time increases with the product of n and logarithm of n.
- others: The code does not clearly correspond to the listed classes or has an unclassified time complexity.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
| 1,541
| 141
|
2,696
|
import java.util.*;
import java.io.*;
public class A {
public static void main(String[] args) {
FastScanner scanner = new FastScanner();
PrintWriter out = new PrintWriter(System.out, false);
int n = scanner.nextInt();
int[] arr = new int[n];
for(int i = 0; i < n; i++) {
arr[i] = scanner.nextInt();
}
Arrays.sort(arr);
int[] cols = new int[n];
Arrays.fill(cols, -1);
int ans = 0;
for(int i = 0; i < n; i++) {
if (cols[i] == -1) {
cols[i] = ans++;
for(int j = i + 1; j < n; j++) {
if (arr[j] % arr[i] == 0) cols[j] = cols[i];
}
}
}
out.println(ans);
out.flush();
}
public static class FastScanner {
BufferedReader br;
StringTokenizer st;
public FastScanner(Reader in) {
br = new BufferedReader(in);
}
public FastScanner() {
this(new InputStreamReader(System.in));
}
String next() {
while (st == null || !st.hasMoreElements()) {
try {
st = new StringTokenizer(br.readLine());
} catch (IOException e) {
e.printStackTrace();
}
}
return st.nextToken();
}
int nextInt() {
return Integer.parseInt(next());
}
long nextLong() {
return Long.parseLong(next());
}
double nextDouble() {
return Double.parseDouble(next());
}
String readNextLine() {
String str = "";
try {
str = br.readLine();
} catch (IOException e) {
e.printStackTrace();
}
return str;
}
}
}
|
O(n^2)
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Classify the following Java code's worst-case time complexity according to its relationship to the input size n.
</TASK>
<CODE>
import java.util.*;
import java.io.*;
public class A {
public static void main(String[] args) {
FastScanner scanner = new FastScanner();
PrintWriter out = new PrintWriter(System.out, false);
int n = scanner.nextInt();
int[] arr = new int[n];
for(int i = 0; i < n; i++) {
arr[i] = scanner.nextInt();
}
Arrays.sort(arr);
int[] cols = new int[n];
Arrays.fill(cols, -1);
int ans = 0;
for(int i = 0; i < n; i++) {
if (cols[i] == -1) {
cols[i] = ans++;
for(int j = i + 1; j < n; j++) {
if (arr[j] % arr[i] == 0) cols[j] = cols[i];
}
}
}
out.println(ans);
out.flush();
}
public static class FastScanner {
BufferedReader br;
StringTokenizer st;
public FastScanner(Reader in) {
br = new BufferedReader(in);
}
public FastScanner() {
this(new InputStreamReader(System.in));
}
String next() {
while (st == null || !st.hasMoreElements()) {
try {
st = new StringTokenizer(br.readLine());
} catch (IOException e) {
e.printStackTrace();
}
}
return st.nextToken();
}
int nextInt() {
return Integer.parseInt(next());
}
long nextLong() {
return Long.parseLong(next());
}
double nextDouble() {
return Double.parseDouble(next());
}
String readNextLine() {
String str = "";
try {
str = br.readLine();
} catch (IOException e) {
e.printStackTrace();
}
return str;
}
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(nlog(n)): The running time increases with the product of n and logarithm of n.
- O(n^3): The running time increases with the cube of the input size n.
- O(1): The running time does not change regardless of the input size n.
- O(n): The running time grows linearly with the input size n.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- O(log(n)): The running time increases with the logarithm of the input size n.
- O(n^2): The running time increases with the square of the input size n.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Determine the worst-case time complexity category of a given Java code based on input size n.
</TASK>
<CODE>
import java.util.*;
import java.io.*;
public class A {
public static void main(String[] args) {
FastScanner scanner = new FastScanner();
PrintWriter out = new PrintWriter(System.out, false);
int n = scanner.nextInt();
int[] arr = new int[n];
for(int i = 0; i < n; i++) {
arr[i] = scanner.nextInt();
}
Arrays.sort(arr);
int[] cols = new int[n];
Arrays.fill(cols, -1);
int ans = 0;
for(int i = 0; i < n; i++) {
if (cols[i] == -1) {
cols[i] = ans++;
for(int j = i + 1; j < n; j++) {
if (arr[j] % arr[i] == 0) cols[j] = cols[i];
}
}
}
out.println(ans);
out.flush();
}
public static class FastScanner {
BufferedReader br;
StringTokenizer st;
public FastScanner(Reader in) {
br = new BufferedReader(in);
}
public FastScanner() {
this(new InputStreamReader(System.in));
}
String next() {
while (st == null || !st.hasMoreElements()) {
try {
st = new StringTokenizer(br.readLine());
} catch (IOException e) {
e.printStackTrace();
}
}
return st.nextToken();
}
int nextInt() {
return Integer.parseInt(next());
}
long nextLong() {
return Long.parseLong(next());
}
double nextDouble() {
return Double.parseDouble(next());
}
String readNextLine() {
String str = "";
try {
str = br.readLine();
} catch (IOException e) {
e.printStackTrace();
}
return str;
}
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(log(n)): The time complexity increases logarithmically in relation to the input size.
- O(n^2): The time complexity grows proportionally to the square of the input size.
- O(nlog(n)): The time complexity combines linear and logarithmic growth factors.
- O(n^3): The time complexity scales proportionally to the cube of the input size.
- others: The time complexity does not fit any of the above categories or cannot be clearly classified.
- O(1): The time complexity is constant to the input size n.
- non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially.
- O(n): The time complexity increases proportionally to the input size n in a linear manner.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
| 727
| 2,690
|
1,205
|
import java.io.BufferedReader;
import java.io.InputStreamReader;
import java.util.StringTokenizer;
public class A {
public static void main(String[] args) throws Exception {
int n=nextInt();
int m=nextInt();
int k=nextInt();
int wa=n-m;
if(n/k<=wa){
System.out.println(m);
}else{
int notFull=wa;
int full=n/k-wa;
long res=1;
int power=full+1;
int mod=1000000009;
long powTwo=2;
while(power>0){
if((power&1)==1){
res=(res*powTwo)%mod;
}
power>>=1;
powTwo=(powTwo*powTwo)%mod;
}
res=(((res-2+mod)%mod)*k)%mod;
res=((res+notFull*(k-1))%mod+n%k)%mod;
System.out.println(res);
}
}
static BufferedReader br = new BufferedReader(new InputStreamReader(
System.in));
static StringTokenizer tokenizer = new StringTokenizer("");
static int nextInt() throws Exception {
return Integer.parseInt(next());
}
static double nextDouble() throws Exception {
return Double.parseDouble(next());
}
static String next() throws Exception {
while (true) {
if (tokenizer.hasMoreTokens()) {
return tokenizer.nextToken();
}
String s = br.readLine();
if (s == null) {
return null;
}
tokenizer = new StringTokenizer(s);
}
}
}
|
O(log(n))
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n.
</TASK>
<CODE>
import java.io.BufferedReader;
import java.io.InputStreamReader;
import java.util.StringTokenizer;
public class A {
public static void main(String[] args) throws Exception {
int n=nextInt();
int m=nextInt();
int k=nextInt();
int wa=n-m;
if(n/k<=wa){
System.out.println(m);
}else{
int notFull=wa;
int full=n/k-wa;
long res=1;
int power=full+1;
int mod=1000000009;
long powTwo=2;
while(power>0){
if((power&1)==1){
res=(res*powTwo)%mod;
}
power>>=1;
powTwo=(powTwo*powTwo)%mod;
}
res=(((res-2+mod)%mod)*k)%mod;
res=((res+notFull*(k-1))%mod+n%k)%mod;
System.out.println(res);
}
}
static BufferedReader br = new BufferedReader(new InputStreamReader(
System.in));
static StringTokenizer tokenizer = new StringTokenizer("");
static int nextInt() throws Exception {
return Integer.parseInt(next());
}
static double nextDouble() throws Exception {
return Double.parseDouble(next());
}
static String next() throws Exception {
while (true) {
if (tokenizer.hasMoreTokens()) {
return tokenizer.nextToken();
}
String s = br.readLine();
if (s == null) {
return null;
}
tokenizer = new StringTokenizer(s);
}
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(n^2): The execution time ascends in proportion to the square of the input size n.
- O(1): The execution time is unaffected by the size of the input n.
- O(log(n)): The execution time ascends in proportion to the logarithm of the input size n.
- O(n^3): The execution time ascends in proportion to the cube of the input size n.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- O(n): The execution time ascends in a one-to-one ratio with the input size n.
- O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Classify the following Java code's worst-case time complexity according to its relationship to the input size n.
</TASK>
<CODE>
import java.io.BufferedReader;
import java.io.InputStreamReader;
import java.util.StringTokenizer;
public class A {
public static void main(String[] args) throws Exception {
int n=nextInt();
int m=nextInt();
int k=nextInt();
int wa=n-m;
if(n/k<=wa){
System.out.println(m);
}else{
int notFull=wa;
int full=n/k-wa;
long res=1;
int power=full+1;
int mod=1000000009;
long powTwo=2;
while(power>0){
if((power&1)==1){
res=(res*powTwo)%mod;
}
power>>=1;
powTwo=(powTwo*powTwo)%mod;
}
res=(((res-2+mod)%mod)*k)%mod;
res=((res+notFull*(k-1))%mod+n%k)%mod;
System.out.println(res);
}
}
static BufferedReader br = new BufferedReader(new InputStreamReader(
System.in));
static StringTokenizer tokenizer = new StringTokenizer("");
static int nextInt() throws Exception {
return Integer.parseInt(next());
}
static double nextDouble() throws Exception {
return Double.parseDouble(next());
}
static String next() throws Exception {
while (true) {
if (tokenizer.hasMoreTokens()) {
return tokenizer.nextToken();
}
String s = br.readLine();
if (s == null) {
return null;
}
tokenizer = new StringTokenizer(s);
}
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(n^2): The running time increases with the square of the input size n.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- O(1): The running time does not change regardless of the input size n.
- O(nlog(n)): The running time increases with the product of n and logarithm of n.
- O(n^3): The running time increases with the cube of the input size n.
- O(log(n)): The running time increases with the logarithm of the input size n.
- others: The code does not clearly correspond to the listed classes or has an unclassified time complexity.
- O(n): The running time grows linearly with the input size n.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
| 687
| 1,204
|
313
|
import java.io.BufferedReader;
import java.io.IOException;
import java.io.InputStreamReader;
import java.util.ArrayList;
import java.util.Arrays;
import java.util.Collections;
import java.util.HashMap;
import java.util.HashSet;
import java.util.LinkedList;
import java.util.Map;
import java.util.PriorityQueue;
import java.util.Queue;
import java.util.Set;
public class Main {
private static BufferedReader br = new BufferedReader(new InputStreamReader(System.in));
public static void main(String[] args) throws NumberFormatException, IOException {
String[] s = br.readLine().trim().split(" ");
int n = Integer.parseInt(s[0]);
int m = Integer.parseInt(s[1]);
long b[] = new long[n];
s = br.readLine().trim().split(" ");
for(int i = 0; i < n; i++) {
b[i] = Integer.parseInt(s[i]);
}
long g[] = new long[m];
s = br.readLine().trim().split(" ");
for(int i = 0; i < m; i++) {
g[i] = Integer.parseInt(s[i]);
}
Arrays.sort(b);
Arrays.sort(g);
if(g[0] < b[n-1]) {
System.out.println("-1");
}
else if(g[0] == b[n-1]){
long ans = 0;
for(int i = 0; i < m; i++) {
ans += g[i];
}
for(int i = 0; i < n-1; i++) {
ans += (m)*b[i];
}
System.out.println(ans);
}
else {
long ans = 0;
for(int i = 0; i < m; i++) {
ans += g[i];
}
for(int i = 0; i < n-1; i++) {
ans += (m)*b[i];
}
ans += b[n-1]-b[n-2];
System.out.println(ans);
}
}
}
|
O(nlog(n))
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Classify the following Java code's worst-case time complexity according to its relationship to the input size n.
</TASK>
<CODE>
import java.io.BufferedReader;
import java.io.IOException;
import java.io.InputStreamReader;
import java.util.ArrayList;
import java.util.Arrays;
import java.util.Collections;
import java.util.HashMap;
import java.util.HashSet;
import java.util.LinkedList;
import java.util.Map;
import java.util.PriorityQueue;
import java.util.Queue;
import java.util.Set;
public class Main {
private static BufferedReader br = new BufferedReader(new InputStreamReader(System.in));
public static void main(String[] args) throws NumberFormatException, IOException {
String[] s = br.readLine().trim().split(" ");
int n = Integer.parseInt(s[0]);
int m = Integer.parseInt(s[1]);
long b[] = new long[n];
s = br.readLine().trim().split(" ");
for(int i = 0; i < n; i++) {
b[i] = Integer.parseInt(s[i]);
}
long g[] = new long[m];
s = br.readLine().trim().split(" ");
for(int i = 0; i < m; i++) {
g[i] = Integer.parseInt(s[i]);
}
Arrays.sort(b);
Arrays.sort(g);
if(g[0] < b[n-1]) {
System.out.println("-1");
}
else if(g[0] == b[n-1]){
long ans = 0;
for(int i = 0; i < m; i++) {
ans += g[i];
}
for(int i = 0; i < n-1; i++) {
ans += (m)*b[i];
}
System.out.println(ans);
}
else {
long ans = 0;
for(int i = 0; i < m; i++) {
ans += g[i];
}
for(int i = 0; i < n-1; i++) {
ans += (m)*b[i];
}
ans += b[n-1]-b[n-2];
System.out.println(ans);
}
}
}
</CODE>
<EVALUATION_RUBRIC>
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- O(log(n)): The running time increases with the logarithm of the input size n.
- O(1): The running time does not change regardless of the input size n.
- O(n^3): The running time increases with the cube of the input size n.
- O(n^2): The running time increases with the square of the input size n.
- O(n): The running time grows linearly with the input size n.
- O(nlog(n)): The running time increases with the product of n and logarithm of n.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Determine the worst-case time complexity category of a given Java code based on input size n.
</TASK>
<CODE>
import java.io.BufferedReader;
import java.io.IOException;
import java.io.InputStreamReader;
import java.util.ArrayList;
import java.util.Arrays;
import java.util.Collections;
import java.util.HashMap;
import java.util.HashSet;
import java.util.LinkedList;
import java.util.Map;
import java.util.PriorityQueue;
import java.util.Queue;
import java.util.Set;
public class Main {
private static BufferedReader br = new BufferedReader(new InputStreamReader(System.in));
public static void main(String[] args) throws NumberFormatException, IOException {
String[] s = br.readLine().trim().split(" ");
int n = Integer.parseInt(s[0]);
int m = Integer.parseInt(s[1]);
long b[] = new long[n];
s = br.readLine().trim().split(" ");
for(int i = 0; i < n; i++) {
b[i] = Integer.parseInt(s[i]);
}
long g[] = new long[m];
s = br.readLine().trim().split(" ");
for(int i = 0; i < m; i++) {
g[i] = Integer.parseInt(s[i]);
}
Arrays.sort(b);
Arrays.sort(g);
if(g[0] < b[n-1]) {
System.out.println("-1");
}
else if(g[0] == b[n-1]){
long ans = 0;
for(int i = 0; i < m; i++) {
ans += g[i];
}
for(int i = 0; i < n-1; i++) {
ans += (m)*b[i];
}
System.out.println(ans);
}
else {
long ans = 0;
for(int i = 0; i < m; i++) {
ans += g[i];
}
for(int i = 0; i < n-1; i++) {
ans += (m)*b[i];
}
ans += b[n-1]-b[n-2];
System.out.println(ans);
}
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(1): The time complexity is constant to the input size n.
- O(n^3): The time complexity scales proportionally to the cube of the input size.
- others: The time complexity does not fit any of the above categories or cannot be clearly classified.
- O(nlog(n)): The time complexity combines linear and logarithmic growth factors.
- O(log(n)): The time complexity increases logarithmically in relation to the input size.
- non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially.
- O(n): The time complexity increases proportionally to the input size n in a linear manner.
- O(n^2): The time complexity grows proportionally to the square of the input size.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
| 763
| 313
|
1,389
|
import java.io.InputStreamReader;
import java.io.IOException;
import java.util.ArrayList;
import java.util.Arrays;
import java.util.PriorityQueue;
import java.util.Scanner;
import java.io.BufferedReader;
import java.io.OutputStream;
import java.io.PrintWriter;
import java.util.StringTokenizer;
import java.io.InputStream;
public class palin {
public static void main(String[] args) {
InputStream inputStream = System.in;
OutputStream outputStream = System.out;
InputReader in = new InputReader(inputStream);
PrintWriter out = new PrintWriter(System.out);
Scanner scan = new Scanner(System.in);
TaskC solver = new TaskC();
solver.solve(1, in, out);
out.close();
}
}
class TaskC {
public void solve(int testNumber, InputReader in, PrintWriter out) {
long n = in.nextLong() - 1;
long k = in.nextLong() - 1;
if (n == 0) {
out.print("0");
} else {
if (k >= n) {
out.print("1");
} else {
if (k * (k + 1) / 2 < n) {
out.print("-1");
} else {
long t = binsearch(n, k, 1, k);
long ans = k - t + 1;
if (k * (k + 1) / 2 - t * (t - 1) / 2 != n)
ans++;
System.out.println(ans);
}
}
}
}
public static long binsearch(long n, long k, long from, long to) {
if (from == to) {
return from;
}
long mid = (from + to) / 2;
if ((k * (k + 1)) / 2 - (mid * (mid - 1)) / 2 > n)
return binsearch(n, k, mid + 1, to);
else
return binsearch(n, k, from, mid);
}
}
class InputReader {
BufferedReader br;
StringTokenizer st;
public InputReader(InputStream in) {
br = new BufferedReader(new InputStreamReader(in));
st = null;
}
public String next() {
while (st == null || !st.hasMoreTokens()) {
try {
st = new StringTokenizer(br.readLine());
} catch (IOException e) {
throw new RuntimeException(e);
}
}
return st.nextToken();
}
public int nextInt() {
return Integer.parseInt(next());
}
public long nextLong() {
return Long.parseLong(next());
}
}
|
O(log(n))
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Classify the following Java code's worst-case time complexity according to its relationship to the input size n.
</TASK>
<CODE>
import java.io.InputStreamReader;
import java.io.IOException;
import java.util.ArrayList;
import java.util.Arrays;
import java.util.PriorityQueue;
import java.util.Scanner;
import java.io.BufferedReader;
import java.io.OutputStream;
import java.io.PrintWriter;
import java.util.StringTokenizer;
import java.io.InputStream;
public class palin {
public static void main(String[] args) {
InputStream inputStream = System.in;
OutputStream outputStream = System.out;
InputReader in = new InputReader(inputStream);
PrintWriter out = new PrintWriter(System.out);
Scanner scan = new Scanner(System.in);
TaskC solver = new TaskC();
solver.solve(1, in, out);
out.close();
}
}
class TaskC {
public void solve(int testNumber, InputReader in, PrintWriter out) {
long n = in.nextLong() - 1;
long k = in.nextLong() - 1;
if (n == 0) {
out.print("0");
} else {
if (k >= n) {
out.print("1");
} else {
if (k * (k + 1) / 2 < n) {
out.print("-1");
} else {
long t = binsearch(n, k, 1, k);
long ans = k - t + 1;
if (k * (k + 1) / 2 - t * (t - 1) / 2 != n)
ans++;
System.out.println(ans);
}
}
}
}
public static long binsearch(long n, long k, long from, long to) {
if (from == to) {
return from;
}
long mid = (from + to) / 2;
if ((k * (k + 1)) / 2 - (mid * (mid - 1)) / 2 > n)
return binsearch(n, k, mid + 1, to);
else
return binsearch(n, k, from, mid);
}
}
class InputReader {
BufferedReader br;
StringTokenizer st;
public InputReader(InputStream in) {
br = new BufferedReader(new InputStreamReader(in));
st = null;
}
public String next() {
while (st == null || !st.hasMoreTokens()) {
try {
st = new StringTokenizer(br.readLine());
} catch (IOException e) {
throw new RuntimeException(e);
}
}
return st.nextToken();
}
public int nextInt() {
return Integer.parseInt(next());
}
public long nextLong() {
return Long.parseLong(next());
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(n^3): The running time increases with the cube of the input size n.
- O(log(n)): The running time increases with the logarithm of the input size n.
- O(n^2): The running time increases with the square of the input size n.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- O(nlog(n)): The running time increases with the product of n and logarithm of n.
- O(1): The running time does not change regardless of the input size n.
- O(n): The running time grows linearly with the input size n.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n.
</TASK>
<CODE>
import java.io.InputStreamReader;
import java.io.IOException;
import java.util.ArrayList;
import java.util.Arrays;
import java.util.PriorityQueue;
import java.util.Scanner;
import java.io.BufferedReader;
import java.io.OutputStream;
import java.io.PrintWriter;
import java.util.StringTokenizer;
import java.io.InputStream;
public class palin {
public static void main(String[] args) {
InputStream inputStream = System.in;
OutputStream outputStream = System.out;
InputReader in = new InputReader(inputStream);
PrintWriter out = new PrintWriter(System.out);
Scanner scan = new Scanner(System.in);
TaskC solver = new TaskC();
solver.solve(1, in, out);
out.close();
}
}
class TaskC {
public void solve(int testNumber, InputReader in, PrintWriter out) {
long n = in.nextLong() - 1;
long k = in.nextLong() - 1;
if (n == 0) {
out.print("0");
} else {
if (k >= n) {
out.print("1");
} else {
if (k * (k + 1) / 2 < n) {
out.print("-1");
} else {
long t = binsearch(n, k, 1, k);
long ans = k - t + 1;
if (k * (k + 1) / 2 - t * (t - 1) / 2 != n)
ans++;
System.out.println(ans);
}
}
}
}
public static long binsearch(long n, long k, long from, long to) {
if (from == to) {
return from;
}
long mid = (from + to) / 2;
if ((k * (k + 1)) / 2 - (mid * (mid - 1)) / 2 > n)
return binsearch(n, k, mid + 1, to);
else
return binsearch(n, k, from, mid);
}
}
class InputReader {
BufferedReader br;
StringTokenizer st;
public InputReader(InputStream in) {
br = new BufferedReader(new InputStreamReader(in));
st = null;
}
public String next() {
while (st == null || !st.hasMoreTokens()) {
try {
st = new StringTokenizer(br.readLine());
} catch (IOException e) {
throw new RuntimeException(e);
}
}
return st.nextToken();
}
public int nextInt() {
return Integer.parseInt(next());
}
public long nextLong() {
return Long.parseLong(next());
}
}
</CODE>
<EVALUATION_RUBRIC>
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- O(1): The execution time is unaffected by the size of the input n.
- O(n): The execution time ascends in a one-to-one ratio with the input size n.
- others: The time complexity does not fit to any of the given categories or is ambiguous.
- O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially.
- O(log(n)): The execution time ascends in proportion to the logarithm of the input size n.
- O(n^3): The execution time ascends in proportion to the cube of the input size n.
- O(n^2): The execution time ascends in proportion to the square of the input size n.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
| 889
| 1,387
|
3,173
|
import java.util.Scanner;
public class A {
/**
* @param args
*/
public static void main(String[] args) {
Account acnt = new Account();
acnt.solve();
acnt.print();
}
}
class Account {
Account() {
Scanner scr = new Scanner(System.in);
n = scr.nextInt();
}
void solve() {
if (n > 0) {
ans = n;
}
else {
int nn = -n;
int ans1 = nn/10;
int ans2 = nn % 10 + (nn/100)*10;
if (ans1 < ans2){
ans = -ans1;
}
else {
ans = -ans2;
}
}
}
void print(){
System.out.println(ans);
}
int ans;
int n;
}
|
O(1)
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Determine the worst-case time complexity category of a given Java code based on input size n.
</TASK>
<CODE>
import java.util.Scanner;
public class A {
/**
* @param args
*/
public static void main(String[] args) {
Account acnt = new Account();
acnt.solve();
acnt.print();
}
}
class Account {
Account() {
Scanner scr = new Scanner(System.in);
n = scr.nextInt();
}
void solve() {
if (n > 0) {
ans = n;
}
else {
int nn = -n;
int ans1 = nn/10;
int ans2 = nn % 10 + (nn/100)*10;
if (ans1 < ans2){
ans = -ans1;
}
else {
ans = -ans2;
}
}
}
void print(){
System.out.println(ans);
}
int ans;
int n;
}
</CODE>
<EVALUATION_RUBRIC>
- O(log(n)): The time complexity increases logarithmically in relation to the input size.
- non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially.
- O(nlog(n)): The time complexity combines linear and logarithmic growth factors.
- O(n^3): The time complexity scales proportionally to the cube of the input size.
- O(n^2): The time complexity grows proportionally to the square of the input size.
- O(1): The time complexity is constant to the input size n.
- O(n): The time complexity increases proportionally to the input size n in a linear manner.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Classify the following Java code's worst-case time complexity according to its relationship to the input size n.
</TASK>
<CODE>
import java.util.Scanner;
public class A {
/**
* @param args
*/
public static void main(String[] args) {
Account acnt = new Account();
acnt.solve();
acnt.print();
}
}
class Account {
Account() {
Scanner scr = new Scanner(System.in);
n = scr.nextInt();
}
void solve() {
if (n > 0) {
ans = n;
}
else {
int nn = -n;
int ans1 = nn/10;
int ans2 = nn % 10 + (nn/100)*10;
if (ans1 < ans2){
ans = -ans1;
}
else {
ans = -ans2;
}
}
}
void print(){
System.out.println(ans);
}
int ans;
int n;
}
</CODE>
<EVALUATION_RUBRIC>
- O(n^3): The running time increases with the cube of the input size n.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- others: The code does not clearly correspond to the listed classes or has an unclassified time complexity.
- O(1): The running time does not change regardless of the input size n.
- O(n): The running time grows linearly with the input size n.
- O(nlog(n)): The running time increases with the product of n and logarithm of n.
- O(log(n)): The running time increases with the logarithm of the input size n.
- O(n^2): The running time increases with the square of the input size n.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
| 525
| 3,167
|
299
|
import java.util.*;
import java.io.*;
import java.math.*;
public class loser
{
static class InputReader {
public BufferedReader br;
public StringTokenizer token;
public InputReader(InputStream stream)
{
br=new BufferedReader(new InputStreamReader(stream),32768);
token=null;
}
public String next()
{
while(token==null || !token.hasMoreTokens())
{
try
{
token=new StringTokenizer(br.readLine());
}
catch(IOException e)
{
throw new RuntimeException(e);
}
}
return token.nextToken();
}
public int nextInt()
{
return Integer.parseInt(next());
}
public long nextLong()
{
return Long.parseLong(next());
}
}
static class card{
long a;
int i;
public card(long a,int i)
{
this.a=a;
this.i=i;
}
}
static class sort implements Comparator<pair>
{
public int compare(pair o1,pair o2)
{
if(o1.a!=o2.a)
return (int)(o1.a-o2.a);
else
return (int)(o1.b-o2.b);
}
}
static void shuffle(long a[])
{
List<Long> l=new ArrayList<>();
for(int i=0;i<a.length;i++)
l.add(a[i]);
Collections.shuffle(l);
for(int i=0;i<a.length;i++)
a[i]=l.get(i);
}
/*static long gcd(long a,long b)
{
if(b==0)
return a;
else
return gcd(b,a%b);
}*/
/*static boolean valid(int i,int j)
{
if(i<4 && i>=0 && j<4 && j>=0)
return true;
else
return false;
}*/
static class pair{
int a,b;
public pair(int a,int b)
{
this.a=a;
this.b=b;
}
}
public static void main(String[] args)
{
InputReader sc=new InputReader(System.in);
int k=sc.nextInt();
int n=sc.nextInt();
int s=sc.nextInt();
int p=sc.nextInt();
long d=(long)Math.ceil((double)n/s);
if(d==0)
d=1;
d=k*d;
long ans=(long)Math.ceil((double)d/p);
System.out.println(ans);
}
}
|
O(1)
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Classify the following Java code's worst-case time complexity according to its relationship to the input size n.
</TASK>
<CODE>
import java.util.*;
import java.io.*;
import java.math.*;
public class loser
{
static class InputReader {
public BufferedReader br;
public StringTokenizer token;
public InputReader(InputStream stream)
{
br=new BufferedReader(new InputStreamReader(stream),32768);
token=null;
}
public String next()
{
while(token==null || !token.hasMoreTokens())
{
try
{
token=new StringTokenizer(br.readLine());
}
catch(IOException e)
{
throw new RuntimeException(e);
}
}
return token.nextToken();
}
public int nextInt()
{
return Integer.parseInt(next());
}
public long nextLong()
{
return Long.parseLong(next());
}
}
static class card{
long a;
int i;
public card(long a,int i)
{
this.a=a;
this.i=i;
}
}
static class sort implements Comparator<pair>
{
public int compare(pair o1,pair o2)
{
if(o1.a!=o2.a)
return (int)(o1.a-o2.a);
else
return (int)(o1.b-o2.b);
}
}
static void shuffle(long a[])
{
List<Long> l=new ArrayList<>();
for(int i=0;i<a.length;i++)
l.add(a[i]);
Collections.shuffle(l);
for(int i=0;i<a.length;i++)
a[i]=l.get(i);
}
/*static long gcd(long a,long b)
{
if(b==0)
return a;
else
return gcd(b,a%b);
}*/
/*static boolean valid(int i,int j)
{
if(i<4 && i>=0 && j<4 && j>=0)
return true;
else
return false;
}*/
static class pair{
int a,b;
public pair(int a,int b)
{
this.a=a;
this.b=b;
}
}
public static void main(String[] args)
{
InputReader sc=new InputReader(System.in);
int k=sc.nextInt();
int n=sc.nextInt();
int s=sc.nextInt();
int p=sc.nextInt();
long d=(long)Math.ceil((double)n/s);
if(d==0)
d=1;
d=k*d;
long ans=(long)Math.ceil((double)d/p);
System.out.println(ans);
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(n^3): The running time increases with the cube of the input size n.
- O(1): The running time does not change regardless of the input size n.
- O(nlog(n)): The running time increases with the product of n and logarithm of n.
- O(log(n)): The running time increases with the logarithm of the input size n.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- O(n): The running time grows linearly with the input size n.
- O(n^2): The running time increases with the square of the input size n.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Classify the following Java code's worst-case time complexity according to its relationship to the input size n.
</TASK>
<CODE>
import java.util.*;
import java.io.*;
import java.math.*;
public class loser
{
static class InputReader {
public BufferedReader br;
public StringTokenizer token;
public InputReader(InputStream stream)
{
br=new BufferedReader(new InputStreamReader(stream),32768);
token=null;
}
public String next()
{
while(token==null || !token.hasMoreTokens())
{
try
{
token=new StringTokenizer(br.readLine());
}
catch(IOException e)
{
throw new RuntimeException(e);
}
}
return token.nextToken();
}
public int nextInt()
{
return Integer.parseInt(next());
}
public long nextLong()
{
return Long.parseLong(next());
}
}
static class card{
long a;
int i;
public card(long a,int i)
{
this.a=a;
this.i=i;
}
}
static class sort implements Comparator<pair>
{
public int compare(pair o1,pair o2)
{
if(o1.a!=o2.a)
return (int)(o1.a-o2.a);
else
return (int)(o1.b-o2.b);
}
}
static void shuffle(long a[])
{
List<Long> l=new ArrayList<>();
for(int i=0;i<a.length;i++)
l.add(a[i]);
Collections.shuffle(l);
for(int i=0;i<a.length;i++)
a[i]=l.get(i);
}
/*static long gcd(long a,long b)
{
if(b==0)
return a;
else
return gcd(b,a%b);
}*/
/*static boolean valid(int i,int j)
{
if(i<4 && i>=0 && j<4 && j>=0)
return true;
else
return false;
}*/
static class pair{
int a,b;
public pair(int a,int b)
{
this.a=a;
this.b=b;
}
}
public static void main(String[] args)
{
InputReader sc=new InputReader(System.in);
int k=sc.nextInt();
int n=sc.nextInt();
int s=sc.nextInt();
int p=sc.nextInt();
long d=(long)Math.ceil((double)n/s);
if(d==0)
d=1;
d=k*d;
long ans=(long)Math.ceil((double)d/p);
System.out.println(ans);
}
}
</CODE>
<EVALUATION_RUBRIC>
- others: The code does not clearly correspond to the listed classes or has an unclassified time complexity.
- O(1): The running time does not change regardless of the input size n.
- O(n): The running time grows linearly with the input size n.
- O(n^3): The running time increases with the cube of the input size n.
- O(n^2): The running time increases with the square of the input size n.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- O(nlog(n)): The running time increases with the product of n and logarithm of n.
- O(log(n)): The running time increases with the logarithm of the input size n.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
| 856
| 299
|
171
|
import java.io.*;
import java.util.*;
import java.math.*;
public class bhaa {
InputStream is;
PrintWriter o;
/////////////////// CODED++ BY++ ++ ++ ++ BHAVYA++ ARORA++ ++ ++ ++ FROM++ JAYPEE++ INSTITUTE++ OF++ INFORMATION++ TECHNOLOGY++ ////////////////
///////////////////////// Make it work, make it right, make it fast. Make it work, make it right, make it fast. Make it work, make it right, make it fast. Make it work, make it right, make it fast. /////////////////
boolean chpr(int n)
{
if(n==1)
{
return true;
}if(n==2)
{
return true;
}
if(n==3)
{
return true;
}
if(n%2==0)
{
return false;
}
if(n%3==0)
{
return false;
}
int w=2;
int i=5;
while(i*i<=n)
{
if(n%i==0)
{
return false;
}
i+=w;
w=6-w;
}
return true;
}
void solve() {
int n=ni();
int k=ni();
int rr=2*n;
int gr=5*n;
int br=8*n;
o.println((long)(Math.ceil(rr*1.0/k)+Math.ceil(gr*1.0/k)+Math.ceil(br*1.0/k)));
}
//---------- I/O Template ----------
public static void main(String[] args) { new bhaa().run(); }
void run() {
is = System.in;
o = new PrintWriter(System.out);
solve();
o.flush();
}
byte input[] = new byte[1024];
int len = 0, ptr = 0;
int readByte() {
if(ptr >= len) { ptr = 0;
try { len = is.read(input); }
catch(IOException e) { throw new InputMismatchException(); }
if(len <= 0) { return -1; }
} return input[ptr++];
}
boolean isSpaceChar(int c) { return !( c >= 33 && c <= 126 ); }
int skip() {
int b = readByte();
while(b != -1 && isSpaceChar(b)) { b = readByte(); }
return b;
}
char nc() { return (char)skip(); }
String ns() {
int b = skip();
StringBuilder sb = new StringBuilder();
while(!isSpaceChar(b)) { sb.appendCodePoint(b); b = readByte(); }
return sb.toString();
}
String nLine() {
int b = skip();
StringBuilder sb = new StringBuilder();
while( !(isSpaceChar(b) && b != ' ') ) { sb.appendCodePoint(b); b = readByte(); }
return sb.toString();
}
int ni() {
int n = 0, b = readByte();
boolean minus = false;
while(b != -1 && !( (b >= '0' && b <= '9') || b == '-')) { b = readByte(); }
if(b == '-') { minus = true; b = readByte(); }
if(b == -1) { return -1; } //no input
while(b >= '0' && b <= '9') { n = n * 10 + (b - '0'); b = readByte(); }
return minus ? -n : n;
}
long nl() {
long n = 0L; int b = readByte();
boolean minus = false;
while(b != -1 && !( (b >= '0' && b <= '9') || b == '-')) { b = readByte(); }
if(b == '-') { minus = true; b = readByte(); }
while(b >= '0' && b <= '9') { n = n * 10 + (b - '0'); b = readByte(); }
return minus ? -n : n;
}
double nd() { return Double.parseDouble(ns()); }
float nf() { return Float.parseFloat(ns()); }
int[] nia(int n) {
int a[] = new int[n];
for(int i = 0; i < n; i++) { a[i] = ni(); }
return a;
}
long[] nla(int n) {
long a[] = new long[n];
for(int i = 0; i < n; i++) { a[i] = nl(); }
return a;
}
int [][] nim(int n)
{
int mat[][]=new int[n][n];
for(int i=0;i<n;i++)
{
for(int j=0;j<n;j++)
{
mat[i][j]=ni();
}
}
return mat;
}
long [][] nlm(int n)
{
long mat[][]=new long[n][n];
for(int i=0;i<n;i++)
{
for(int j=0;j<n;j++)
{
mat[i][j]=nl();
}
}
return mat;
}
char[] ns(int n) {
char c[] = new char[n];
int i, b = skip();
for(i = 0; i < n; i++) {
if(isSpaceChar(b)) { break; }
c[i] = (char)b; b = readByte();
} return i == n ? c : Arrays.copyOf(c,i);
}
void piarr(int arr[])
{
for(int i=0;i<arr.length;i++)
{
o.print(arr[i]+" ");
}
o.println();
}
void plarr(long arr[])
{
for(int i=0;i<arr.length;i++)
{
o.print(arr[i]+" ");
}
o.println();
}
void pimat(int mat[][])
{
for(int i=0;i<mat.length;i++)
{
for(int j=0;j<mat[0].length;j++)
{
o.print(mat[i][j]);
}
o.println();
}
}
void plmat(long mat[][])
{
for(int i=0;i<mat.length;i++)
{
for(int j=0;j<mat[0].length;j++)
{
o.print(mat[i][j]);
}
o.println();
}
}
//////////////////////////////////// template finished //////////////////////////////////////
}
|
O(1)
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n.
</TASK>
<CODE>
import java.io.*;
import java.util.*;
import java.math.*;
public class bhaa {
InputStream is;
PrintWriter o;
/////////////////// CODED++ BY++ ++ ++ ++ BHAVYA++ ARORA++ ++ ++ ++ FROM++ JAYPEE++ INSTITUTE++ OF++ INFORMATION++ TECHNOLOGY++ ////////////////
///////////////////////// Make it work, make it right, make it fast. Make it work, make it right, make it fast. Make it work, make it right, make it fast. Make it work, make it right, make it fast. /////////////////
boolean chpr(int n)
{
if(n==1)
{
return true;
}if(n==2)
{
return true;
}
if(n==3)
{
return true;
}
if(n%2==0)
{
return false;
}
if(n%3==0)
{
return false;
}
int w=2;
int i=5;
while(i*i<=n)
{
if(n%i==0)
{
return false;
}
i+=w;
w=6-w;
}
return true;
}
void solve() {
int n=ni();
int k=ni();
int rr=2*n;
int gr=5*n;
int br=8*n;
o.println((long)(Math.ceil(rr*1.0/k)+Math.ceil(gr*1.0/k)+Math.ceil(br*1.0/k)));
}
//---------- I/O Template ----------
public static void main(String[] args) { new bhaa().run(); }
void run() {
is = System.in;
o = new PrintWriter(System.out);
solve();
o.flush();
}
byte input[] = new byte[1024];
int len = 0, ptr = 0;
int readByte() {
if(ptr >= len) { ptr = 0;
try { len = is.read(input); }
catch(IOException e) { throw new InputMismatchException(); }
if(len <= 0) { return -1; }
} return input[ptr++];
}
boolean isSpaceChar(int c) { return !( c >= 33 && c <= 126 ); }
int skip() {
int b = readByte();
while(b != -1 && isSpaceChar(b)) { b = readByte(); }
return b;
}
char nc() { return (char)skip(); }
String ns() {
int b = skip();
StringBuilder sb = new StringBuilder();
while(!isSpaceChar(b)) { sb.appendCodePoint(b); b = readByte(); }
return sb.toString();
}
String nLine() {
int b = skip();
StringBuilder sb = new StringBuilder();
while( !(isSpaceChar(b) && b != ' ') ) { sb.appendCodePoint(b); b = readByte(); }
return sb.toString();
}
int ni() {
int n = 0, b = readByte();
boolean minus = false;
while(b != -1 && !( (b >= '0' && b <= '9') || b == '-')) { b = readByte(); }
if(b == '-') { minus = true; b = readByte(); }
if(b == -1) { return -1; } //no input
while(b >= '0' && b <= '9') { n = n * 10 + (b - '0'); b = readByte(); }
return minus ? -n : n;
}
long nl() {
long n = 0L; int b = readByte();
boolean minus = false;
while(b != -1 && !( (b >= '0' && b <= '9') || b == '-')) { b = readByte(); }
if(b == '-') { minus = true; b = readByte(); }
while(b >= '0' && b <= '9') { n = n * 10 + (b - '0'); b = readByte(); }
return minus ? -n : n;
}
double nd() { return Double.parseDouble(ns()); }
float nf() { return Float.parseFloat(ns()); }
int[] nia(int n) {
int a[] = new int[n];
for(int i = 0; i < n; i++) { a[i] = ni(); }
return a;
}
long[] nla(int n) {
long a[] = new long[n];
for(int i = 0; i < n; i++) { a[i] = nl(); }
return a;
}
int [][] nim(int n)
{
int mat[][]=new int[n][n];
for(int i=0;i<n;i++)
{
for(int j=0;j<n;j++)
{
mat[i][j]=ni();
}
}
return mat;
}
long [][] nlm(int n)
{
long mat[][]=new long[n][n];
for(int i=0;i<n;i++)
{
for(int j=0;j<n;j++)
{
mat[i][j]=nl();
}
}
return mat;
}
char[] ns(int n) {
char c[] = new char[n];
int i, b = skip();
for(i = 0; i < n; i++) {
if(isSpaceChar(b)) { break; }
c[i] = (char)b; b = readByte();
} return i == n ? c : Arrays.copyOf(c,i);
}
void piarr(int arr[])
{
for(int i=0;i<arr.length;i++)
{
o.print(arr[i]+" ");
}
o.println();
}
void plarr(long arr[])
{
for(int i=0;i<arr.length;i++)
{
o.print(arr[i]+" ");
}
o.println();
}
void pimat(int mat[][])
{
for(int i=0;i<mat.length;i++)
{
for(int j=0;j<mat[0].length;j++)
{
o.print(mat[i][j]);
}
o.println();
}
}
void plmat(long mat[][])
{
for(int i=0;i<mat.length;i++)
{
for(int j=0;j<mat[0].length;j++)
{
o.print(mat[i][j]);
}
o.println();
}
}
//////////////////////////////////// template finished //////////////////////////////////////
}
</CODE>
<EVALUATION_RUBRIC>
- O(n): The execution time ascends in a one-to-one ratio with the input size n.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- O(n^3): The execution time ascends in proportion to the cube of the input size n.
- O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially.
- O(n^2): The execution time ascends in proportion to the square of the input size n.
- O(log(n)): The execution time ascends in proportion to the logarithm of the input size n.
- O(1): The execution time is unaffected by the size of the input n.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Determine the worst-case time complexity category of a given Java code based on input size n.
</TASK>
<CODE>
import java.io.*;
import java.util.*;
import java.math.*;
public class bhaa {
InputStream is;
PrintWriter o;
/////////////////// CODED++ BY++ ++ ++ ++ BHAVYA++ ARORA++ ++ ++ ++ FROM++ JAYPEE++ INSTITUTE++ OF++ INFORMATION++ TECHNOLOGY++ ////////////////
///////////////////////// Make it work, make it right, make it fast. Make it work, make it right, make it fast. Make it work, make it right, make it fast. Make it work, make it right, make it fast. /////////////////
boolean chpr(int n)
{
if(n==1)
{
return true;
}if(n==2)
{
return true;
}
if(n==3)
{
return true;
}
if(n%2==0)
{
return false;
}
if(n%3==0)
{
return false;
}
int w=2;
int i=5;
while(i*i<=n)
{
if(n%i==0)
{
return false;
}
i+=w;
w=6-w;
}
return true;
}
void solve() {
int n=ni();
int k=ni();
int rr=2*n;
int gr=5*n;
int br=8*n;
o.println((long)(Math.ceil(rr*1.0/k)+Math.ceil(gr*1.0/k)+Math.ceil(br*1.0/k)));
}
//---------- I/O Template ----------
public static void main(String[] args) { new bhaa().run(); }
void run() {
is = System.in;
o = new PrintWriter(System.out);
solve();
o.flush();
}
byte input[] = new byte[1024];
int len = 0, ptr = 0;
int readByte() {
if(ptr >= len) { ptr = 0;
try { len = is.read(input); }
catch(IOException e) { throw new InputMismatchException(); }
if(len <= 0) { return -1; }
} return input[ptr++];
}
boolean isSpaceChar(int c) { return !( c >= 33 && c <= 126 ); }
int skip() {
int b = readByte();
while(b != -1 && isSpaceChar(b)) { b = readByte(); }
return b;
}
char nc() { return (char)skip(); }
String ns() {
int b = skip();
StringBuilder sb = new StringBuilder();
while(!isSpaceChar(b)) { sb.appendCodePoint(b); b = readByte(); }
return sb.toString();
}
String nLine() {
int b = skip();
StringBuilder sb = new StringBuilder();
while( !(isSpaceChar(b) && b != ' ') ) { sb.appendCodePoint(b); b = readByte(); }
return sb.toString();
}
int ni() {
int n = 0, b = readByte();
boolean minus = false;
while(b != -1 && !( (b >= '0' && b <= '9') || b == '-')) { b = readByte(); }
if(b == '-') { minus = true; b = readByte(); }
if(b == -1) { return -1; } //no input
while(b >= '0' && b <= '9') { n = n * 10 + (b - '0'); b = readByte(); }
return minus ? -n : n;
}
long nl() {
long n = 0L; int b = readByte();
boolean minus = false;
while(b != -1 && !( (b >= '0' && b <= '9') || b == '-')) { b = readByte(); }
if(b == '-') { minus = true; b = readByte(); }
while(b >= '0' && b <= '9') { n = n * 10 + (b - '0'); b = readByte(); }
return minus ? -n : n;
}
double nd() { return Double.parseDouble(ns()); }
float nf() { return Float.parseFloat(ns()); }
int[] nia(int n) {
int a[] = new int[n];
for(int i = 0; i < n; i++) { a[i] = ni(); }
return a;
}
long[] nla(int n) {
long a[] = new long[n];
for(int i = 0; i < n; i++) { a[i] = nl(); }
return a;
}
int [][] nim(int n)
{
int mat[][]=new int[n][n];
for(int i=0;i<n;i++)
{
for(int j=0;j<n;j++)
{
mat[i][j]=ni();
}
}
return mat;
}
long [][] nlm(int n)
{
long mat[][]=new long[n][n];
for(int i=0;i<n;i++)
{
for(int j=0;j<n;j++)
{
mat[i][j]=nl();
}
}
return mat;
}
char[] ns(int n) {
char c[] = new char[n];
int i, b = skip();
for(i = 0; i < n; i++) {
if(isSpaceChar(b)) { break; }
c[i] = (char)b; b = readByte();
} return i == n ? c : Arrays.copyOf(c,i);
}
void piarr(int arr[])
{
for(int i=0;i<arr.length;i++)
{
o.print(arr[i]+" ");
}
o.println();
}
void plarr(long arr[])
{
for(int i=0;i<arr.length;i++)
{
o.print(arr[i]+" ");
}
o.println();
}
void pimat(int mat[][])
{
for(int i=0;i<mat.length;i++)
{
for(int j=0;j<mat[0].length;j++)
{
o.print(mat[i][j]);
}
o.println();
}
}
void plmat(long mat[][])
{
for(int i=0;i<mat.length;i++)
{
for(int j=0;j<mat[0].length;j++)
{
o.print(mat[i][j]);
}
o.println();
}
}
//////////////////////////////////// template finished //////////////////////////////////////
}
</CODE>
<EVALUATION_RUBRIC>
- O(n): The time complexity increases proportionally to the input size n in a linear manner.
- O(n^3): The time complexity scales proportionally to the cube of the input size.
- non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially.
- O(1): The time complexity is constant to the input size n.
- O(n^2): The time complexity grows proportionally to the square of the input size.
- others: The time complexity does not fit any of the above categories or cannot be clearly classified.
- O(nlog(n)): The time complexity combines linear and logarithmic growth factors.
- O(log(n)): The time complexity increases logarithmically in relation to the input size.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
| 1,848
| 171
|
2,382
|
import java.util.*;
import java.io.*;
import java.math.BigInteger;
public class D {
FastScanner in;
PrintWriter out;
boolean systemIO = true;
public void solve() {
int n = in.nextInt();
int[] a = new int[n];
for (int i = 0; i < a.length; i++) {
a[i] = in.nextInt();
}
int x = 0;
for (int i = 0; i < a.length; i++) {
for (int j = i + 1; j < a.length; j++) {
if (a[i] > a[j]) {
x++;
}
}
}
boolean ans = x % 2 == 0;
int m = in.nextInt();
for (int i = 0; i < m; i++) {
int len = -in.nextInt() + in.nextInt();
len = len * (len + 1) / 2;
if (len % 2 == 1) {
ans = !ans;
}
if (ans) {
out.println("even");
} else {
out.println("odd");
}
}
}
public void run() {
try {
if (systemIO) {
in = new FastScanner(System.in);
out = new PrintWriter(System.out);
} else {
in = new FastScanner(new File("segments.in"));
out = new PrintWriter(new File("segments.out"));
}
solve();
out.close();
} catch (IOException e) {
e.printStackTrace();
}
}
class FastScanner {
BufferedReader br;
StringTokenizer st;
FastScanner(File f) {
try {
br = new BufferedReader(new FileReader(f));
} catch (FileNotFoundException e) {
e.printStackTrace();
}
}
FastScanner(InputStream f) {
br = new BufferedReader(new InputStreamReader(f));
}
String nextLine() {
try {
return br.readLine();
} catch (IOException e) {
return null;
}
}
String next() {
while (st == null || !st.hasMoreTokens()) {
try {
st = new StringTokenizer(br.readLine());
} catch (IOException e) {
e.printStackTrace();
}
}
return st.nextToken();
}
int nextInt() {
return Integer.parseInt(next());
}
long nextLong() {
return Long.parseLong(next());
}
double nextDouble() {
return Double.parseDouble(next());
}
}
// AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
public static void main(String[] arg) {
new D().run();
}
}
|
O(n^2)
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n.
</TASK>
<CODE>
import java.util.*;
import java.io.*;
import java.math.BigInteger;
public class D {
FastScanner in;
PrintWriter out;
boolean systemIO = true;
public void solve() {
int n = in.nextInt();
int[] a = new int[n];
for (int i = 0; i < a.length; i++) {
a[i] = in.nextInt();
}
int x = 0;
for (int i = 0; i < a.length; i++) {
for (int j = i + 1; j < a.length; j++) {
if (a[i] > a[j]) {
x++;
}
}
}
boolean ans = x % 2 == 0;
int m = in.nextInt();
for (int i = 0; i < m; i++) {
int len = -in.nextInt() + in.nextInt();
len = len * (len + 1) / 2;
if (len % 2 == 1) {
ans = !ans;
}
if (ans) {
out.println("even");
} else {
out.println("odd");
}
}
}
public void run() {
try {
if (systemIO) {
in = new FastScanner(System.in);
out = new PrintWriter(System.out);
} else {
in = new FastScanner(new File("segments.in"));
out = new PrintWriter(new File("segments.out"));
}
solve();
out.close();
} catch (IOException e) {
e.printStackTrace();
}
}
class FastScanner {
BufferedReader br;
StringTokenizer st;
FastScanner(File f) {
try {
br = new BufferedReader(new FileReader(f));
} catch (FileNotFoundException e) {
e.printStackTrace();
}
}
FastScanner(InputStream f) {
br = new BufferedReader(new InputStreamReader(f));
}
String nextLine() {
try {
return br.readLine();
} catch (IOException e) {
return null;
}
}
String next() {
while (st == null || !st.hasMoreTokens()) {
try {
st = new StringTokenizer(br.readLine());
} catch (IOException e) {
e.printStackTrace();
}
}
return st.nextToken();
}
int nextInt() {
return Integer.parseInt(next());
}
long nextLong() {
return Long.parseLong(next());
}
double nextDouble() {
return Double.parseDouble(next());
}
}
// AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
public static void main(String[] arg) {
new D().run();
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(1): The execution time is unaffected by the size of the input n.
- O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially.
- O(n^2): The execution time ascends in proportion to the square of the input size n.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- O(n): The execution time ascends in a one-to-one ratio with the input size n.
- O(n^3): The execution time ascends in proportion to the cube of the input size n.
- O(log(n)): The execution time ascends in proportion to the logarithm of the input size n.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Classify the following Java code's worst-case time complexity according to its relationship to the input size n.
</TASK>
<CODE>
import java.util.*;
import java.io.*;
import java.math.BigInteger;
public class D {
FastScanner in;
PrintWriter out;
boolean systemIO = true;
public void solve() {
int n = in.nextInt();
int[] a = new int[n];
for (int i = 0; i < a.length; i++) {
a[i] = in.nextInt();
}
int x = 0;
for (int i = 0; i < a.length; i++) {
for (int j = i + 1; j < a.length; j++) {
if (a[i] > a[j]) {
x++;
}
}
}
boolean ans = x % 2 == 0;
int m = in.nextInt();
for (int i = 0; i < m; i++) {
int len = -in.nextInt() + in.nextInt();
len = len * (len + 1) / 2;
if (len % 2 == 1) {
ans = !ans;
}
if (ans) {
out.println("even");
} else {
out.println("odd");
}
}
}
public void run() {
try {
if (systemIO) {
in = new FastScanner(System.in);
out = new PrintWriter(System.out);
} else {
in = new FastScanner(new File("segments.in"));
out = new PrintWriter(new File("segments.out"));
}
solve();
out.close();
} catch (IOException e) {
e.printStackTrace();
}
}
class FastScanner {
BufferedReader br;
StringTokenizer st;
FastScanner(File f) {
try {
br = new BufferedReader(new FileReader(f));
} catch (FileNotFoundException e) {
e.printStackTrace();
}
}
FastScanner(InputStream f) {
br = new BufferedReader(new InputStreamReader(f));
}
String nextLine() {
try {
return br.readLine();
} catch (IOException e) {
return null;
}
}
String next() {
while (st == null || !st.hasMoreTokens()) {
try {
st = new StringTokenizer(br.readLine());
} catch (IOException e) {
e.printStackTrace();
}
}
return st.nextToken();
}
int nextInt() {
return Integer.parseInt(next());
}
long nextLong() {
return Long.parseLong(next());
}
double nextDouble() {
return Double.parseDouble(next());
}
}
// AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
public static void main(String[] arg) {
new D().run();
}
}
</CODE>
<EVALUATION_RUBRIC>
- others: The code does not clearly correspond to the listed classes or has an unclassified time complexity.
- O(n^3): The running time increases with the cube of the input size n.
- O(1): The running time does not change regardless of the input size n.
- O(log(n)): The running time increases with the logarithm of the input size n.
- O(n): The running time grows linearly with the input size n.
- O(n^2): The running time increases with the square of the input size n.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- O(nlog(n)): The running time increases with the product of n and logarithm of n.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
| 1,057
| 2,377
|
3,561
|
import java.awt.Point;
import java.io.File;
import java.io.FileNotFoundException;
import java.io.FileReader;
import java.io.PrintStream;
import java.util.LinkedList;
import java.util.Queue;
import java.util.Scanner;
import java.util.HashSet;
public class FireAgain {
Point[] coordinate;
Queue<Point> q = new LinkedList<>();
// HashSet<Point> vis = new HashSet<>();
boolean[][] vis;
PrintStream out;
int x, y;
boolean distance(Point word1, Point word2) {
if (Math.abs(word1.x - word2.x) == 1 && Math.abs(word1.y - word2.y) == 1)
return false;
if (Math.abs(word1.x - word2.x) == 1 && word1.y == word2.y)
return true;
if (word1.x == word2.x && Math.abs(word1.y - word2.y) == 1)
return true;
return false;
}
void bfs(Point s) {
while (!q.isEmpty()) {
s = q.poll();
Point p = new Point();
p.x = s.x - 1;
p.y = s.y;
if (p.x >= 1 && p.x <= x && p.y >= 1 && p.y <= y) {
if (!vis[p.x][p.y]) {
vis[p.x][p.y] = true;
q.add(p);
}
}
p = new Point();
p.x = s.x + 1;
p.y = s.y;
if (p.x >= 1 && p.x <= x && p.y >= 1 && p.y <= y) {
if (!vis[p.x][p.y]) {
vis[p.x][p.y] = true;
q.add(p);
}
}
p = new Point();
p.x = s.x;
p.y = s.y - 1;
if (p.x >= 1 && p.x <= x && p.y >= 1 && p.y <= y) {
if (!vis[p.x][p.y]) {
vis[p.x][p.y] = true;
q.add(p);
}
}
p = new Point () ;
p.x = s.x ;
p.y = s.y + 1;
if (p.x >= 1 && p.x <= x && p.y >= 1 && p.y <= y) {
if (!vis[p.x][p.y]) {
vis[p.x][p.y] = true ;
q.add(p);
}
}
if (q.size() == 0)
out.print(s.x + " " + s.y);
}
}
public static void main(String[] args) throws FileNotFoundException {
// TODO Auto-generated method stub
FireAgain F = new FireAgain();
Scanner in = new Scanner (new FileReader("input.txt"));
F.out = new PrintStream(new File("output.txt"));
F.x = in.nextInt();
F.y = in.nextInt();
int l = 0;
F.vis = new boolean[F.x + 1][F.y + 1];
int k = in.nextInt();
for (int i = 0; i < k; i++) {
Point P = new Point(in.nextInt(), in.nextInt());
F.vis[P.x][P.y] = true; // add in set
F.q.add(P);
}
F.bfs(F.q.peek());
}
}
|
O(n^3)
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Determine the worst-case time complexity category of a given Java code based on input size n.
</TASK>
<CODE>
import java.awt.Point;
import java.io.File;
import java.io.FileNotFoundException;
import java.io.FileReader;
import java.io.PrintStream;
import java.util.LinkedList;
import java.util.Queue;
import java.util.Scanner;
import java.util.HashSet;
public class FireAgain {
Point[] coordinate;
Queue<Point> q = new LinkedList<>();
// HashSet<Point> vis = new HashSet<>();
boolean[][] vis;
PrintStream out;
int x, y;
boolean distance(Point word1, Point word2) {
if (Math.abs(word1.x - word2.x) == 1 && Math.abs(word1.y - word2.y) == 1)
return false;
if (Math.abs(word1.x - word2.x) == 1 && word1.y == word2.y)
return true;
if (word1.x == word2.x && Math.abs(word1.y - word2.y) == 1)
return true;
return false;
}
void bfs(Point s) {
while (!q.isEmpty()) {
s = q.poll();
Point p = new Point();
p.x = s.x - 1;
p.y = s.y;
if (p.x >= 1 && p.x <= x && p.y >= 1 && p.y <= y) {
if (!vis[p.x][p.y]) {
vis[p.x][p.y] = true;
q.add(p);
}
}
p = new Point();
p.x = s.x + 1;
p.y = s.y;
if (p.x >= 1 && p.x <= x && p.y >= 1 && p.y <= y) {
if (!vis[p.x][p.y]) {
vis[p.x][p.y] = true;
q.add(p);
}
}
p = new Point();
p.x = s.x;
p.y = s.y - 1;
if (p.x >= 1 && p.x <= x && p.y >= 1 && p.y <= y) {
if (!vis[p.x][p.y]) {
vis[p.x][p.y] = true;
q.add(p);
}
}
p = new Point () ;
p.x = s.x ;
p.y = s.y + 1;
if (p.x >= 1 && p.x <= x && p.y >= 1 && p.y <= y) {
if (!vis[p.x][p.y]) {
vis[p.x][p.y] = true ;
q.add(p);
}
}
if (q.size() == 0)
out.print(s.x + " " + s.y);
}
}
public static void main(String[] args) throws FileNotFoundException {
// TODO Auto-generated method stub
FireAgain F = new FireAgain();
Scanner in = new Scanner (new FileReader("input.txt"));
F.out = new PrintStream(new File("output.txt"));
F.x = in.nextInt();
F.y = in.nextInt();
int l = 0;
F.vis = new boolean[F.x + 1][F.y + 1];
int k = in.nextInt();
for (int i = 0; i < k; i++) {
Point P = new Point(in.nextInt(), in.nextInt());
F.vis[P.x][P.y] = true; // add in set
F.q.add(P);
}
F.bfs(F.q.peek());
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(1): The time complexity is constant to the input size n.
- O(n): The time complexity increases proportionally to the input size n in a linear manner.
- O(nlog(n)): The time complexity combines linear and logarithmic growth factors.
- O(log(n)): The time complexity increases logarithmically in relation to the input size.
- O(n^3): The time complexity scales proportionally to the cube of the input size.
- non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially.
- O(n^2): The time complexity grows proportionally to the square of the input size.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Determine the worst-case time complexity category of a given Java code based on input size n.
</TASK>
<CODE>
import java.awt.Point;
import java.io.File;
import java.io.FileNotFoundException;
import java.io.FileReader;
import java.io.PrintStream;
import java.util.LinkedList;
import java.util.Queue;
import java.util.Scanner;
import java.util.HashSet;
public class FireAgain {
Point[] coordinate;
Queue<Point> q = new LinkedList<>();
// HashSet<Point> vis = new HashSet<>();
boolean[][] vis;
PrintStream out;
int x, y;
boolean distance(Point word1, Point word2) {
if (Math.abs(word1.x - word2.x) == 1 && Math.abs(word1.y - word2.y) == 1)
return false;
if (Math.abs(word1.x - word2.x) == 1 && word1.y == word2.y)
return true;
if (word1.x == word2.x && Math.abs(word1.y - word2.y) == 1)
return true;
return false;
}
void bfs(Point s) {
while (!q.isEmpty()) {
s = q.poll();
Point p = new Point();
p.x = s.x - 1;
p.y = s.y;
if (p.x >= 1 && p.x <= x && p.y >= 1 && p.y <= y) {
if (!vis[p.x][p.y]) {
vis[p.x][p.y] = true;
q.add(p);
}
}
p = new Point();
p.x = s.x + 1;
p.y = s.y;
if (p.x >= 1 && p.x <= x && p.y >= 1 && p.y <= y) {
if (!vis[p.x][p.y]) {
vis[p.x][p.y] = true;
q.add(p);
}
}
p = new Point();
p.x = s.x;
p.y = s.y - 1;
if (p.x >= 1 && p.x <= x && p.y >= 1 && p.y <= y) {
if (!vis[p.x][p.y]) {
vis[p.x][p.y] = true;
q.add(p);
}
}
p = new Point () ;
p.x = s.x ;
p.y = s.y + 1;
if (p.x >= 1 && p.x <= x && p.y >= 1 && p.y <= y) {
if (!vis[p.x][p.y]) {
vis[p.x][p.y] = true ;
q.add(p);
}
}
if (q.size() == 0)
out.print(s.x + " " + s.y);
}
}
public static void main(String[] args) throws FileNotFoundException {
// TODO Auto-generated method stub
FireAgain F = new FireAgain();
Scanner in = new Scanner (new FileReader("input.txt"));
F.out = new PrintStream(new File("output.txt"));
F.x = in.nextInt();
F.y = in.nextInt();
int l = 0;
F.vis = new boolean[F.x + 1][F.y + 1];
int k = in.nextInt();
for (int i = 0; i < k; i++) {
Point P = new Point(in.nextInt(), in.nextInt());
F.vis[P.x][P.y] = true; // add in set
F.q.add(P);
}
F.bfs(F.q.peek());
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(log(n)): The time complexity increases logarithmically in relation to the input size.
- non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially.
- O(n): The time complexity increases proportionally to the input size n in a linear manner.
- O(1): The time complexity is constant to the input size n.
- O(n^3): The time complexity scales proportionally to the cube of the input size.
- others: The time complexity does not fit any of the above categories or cannot be clearly classified.
- O(nlog(n)): The time complexity combines linear and logarithmic growth factors.
- O(n^2): The time complexity grows proportionally to the square of the input size.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
| 1,077
| 3,554
|
3,427
|
import java.util.Scanner;
public class A023 {
public static void main(String[] args) {
System.out.println(f());
}
static int f() {
Scanner in = new Scanner(System.in);
String line = in.next();
for (int length = line.length(); length > 0; length--) {
for (int start = 0; start + length <= line.length(); start++) {
if(line.indexOf(line.substring(start,start+length),start+1)>=0) {
return length;
}
}
}
return 0;
}
}
|
O(n^3)
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n.
</TASK>
<CODE>
import java.util.Scanner;
public class A023 {
public static void main(String[] args) {
System.out.println(f());
}
static int f() {
Scanner in = new Scanner(System.in);
String line = in.next();
for (int length = line.length(); length > 0; length--) {
for (int start = 0; start + length <= line.length(); start++) {
if(line.indexOf(line.substring(start,start+length),start+1)>=0) {
return length;
}
}
}
return 0;
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- O(n^3): The execution time ascends in proportion to the cube of the input size n.
- O(1): The execution time is unaffected by the size of the input n.
- O(n^2): The execution time ascends in proportion to the square of the input size n.
- O(log(n)): The execution time ascends in proportion to the logarithm of the input size n.
- O(n): The execution time ascends in a one-to-one ratio with the input size n.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Determine the worst-case time complexity category of a given Java code based on input size n.
</TASK>
<CODE>
import java.util.Scanner;
public class A023 {
public static void main(String[] args) {
System.out.println(f());
}
static int f() {
Scanner in = new Scanner(System.in);
String line = in.next();
for (int length = line.length(); length > 0; length--) {
for (int start = 0; start + length <= line.length(); start++) {
if(line.indexOf(line.substring(start,start+length),start+1)>=0) {
return length;
}
}
}
return 0;
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(n^2): The time complexity grows proportionally to the square of the input size.
- O(nlog(n)): The time complexity combines linear and logarithmic growth factors.
- O(1): The time complexity is constant to the input size n.
- O(n^3): The time complexity scales proportionally to the cube of the input size.
- non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially.
- others: The time complexity does not fit any of the above categories or cannot be clearly classified.
- O(log(n)): The time complexity increases logarithmically in relation to the input size.
- O(n): The time complexity increases proportionally to the input size n in a linear manner.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
| 476
| 3,421
|
980
|
import java.util.*;
public class algo_1802
{
public static void main(String args[])
{
Scanner ex=new Scanner(System.in);
int n=ex.nextInt();
int k=ex.nextInt();
int x=(int)((Math.sqrt(9.0+8.0*((double)n+(double)k))-3.0)/2.0);
System.out.println(n-x);
}
}
|
O(log(n))
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n.
</TASK>
<CODE>
import java.util.*;
public class algo_1802
{
public static void main(String args[])
{
Scanner ex=new Scanner(System.in);
int n=ex.nextInt();
int k=ex.nextInt();
int x=(int)((Math.sqrt(9.0+8.0*((double)n+(double)k))-3.0)/2.0);
System.out.println(n-x);
}
}
</CODE>
<EVALUATION_RUBRIC>
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially.
- O(1): The execution time is unaffected by the size of the input n.
- O(n^3): The execution time ascends in proportion to the cube of the input size n.
- O(n^2): The execution time ascends in proportion to the square of the input size n.
- O(n): The execution time ascends in a one-to-one ratio with the input size n.
- O(log(n)): The execution time ascends in proportion to the logarithm of the input size n.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Classify the following Java code's worst-case time complexity according to its relationship to the input size n.
</TASK>
<CODE>
import java.util.*;
public class algo_1802
{
public static void main(String args[])
{
Scanner ex=new Scanner(System.in);
int n=ex.nextInt();
int k=ex.nextInt();
int x=(int)((Math.sqrt(9.0+8.0*((double)n+(double)k))-3.0)/2.0);
System.out.println(n-x);
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(n^2): The running time increases with the square of the input size n.
- O(n): The running time grows linearly with the input size n.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- O(n^3): The running time increases with the cube of the input size n.
- O(1): The running time does not change regardless of the input size n.
- others: The code does not clearly correspond to the listed classes or has an unclassified time complexity.
- O(log(n)): The running time increases with the logarithm of the input size n.
- O(nlog(n)): The running time increases with the product of n and logarithm of n.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
| 439
| 979
|
1,699
|
import java.io.*;
import java.util.*;
public class j
{
public static void main(String a[])throws IOException
{
BufferedReader b=new BufferedReader(new InputStreamReader(System.in));
int k=0,i=0,j=0,n=0,p=0,t=0;
String s;
s=b.readLine();
StringTokenizer c=new StringTokenizer(s);
n=Integer.parseInt(c.nextToken());
k=Integer.parseInt(c.nextToken());
int d[]=new int[n];
int e[]=new int[n];
for(i=0;i<n;i++)
{
s=b.readLine();
StringTokenizer z=new StringTokenizer(s);
d[i]=Integer.parseInt(z.nextToken());
e[i]=Integer.parseInt(z.nextToken());
}
for(i=0;i<n-1;i++)
{
for(j=i+1;j<n;j++)
{
if(d[j]<d[i])
{
t=d[j];
d[j]=d[i];
d[i]=t;
t=e[j];
e[j]=e[i];
e[i]=t;
}
}
}
for(i=0;i<n-1;i++)
{
if(((d[i+1]-e[i+1]/2.0)-(d[i]+e[i]/2.0))>k)
p+=2;
if(((d[i+1]-e[i+1]/2.0)-(d[i]+e[i]/2.0))==k)
p++;
}
System.out.print(p+2);
}
}
|
O(nlog(n))
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Classify the following Java code's worst-case time complexity according to its relationship to the input size n.
</TASK>
<CODE>
import java.io.*;
import java.util.*;
public class j
{
public static void main(String a[])throws IOException
{
BufferedReader b=new BufferedReader(new InputStreamReader(System.in));
int k=0,i=0,j=0,n=0,p=0,t=0;
String s;
s=b.readLine();
StringTokenizer c=new StringTokenizer(s);
n=Integer.parseInt(c.nextToken());
k=Integer.parseInt(c.nextToken());
int d[]=new int[n];
int e[]=new int[n];
for(i=0;i<n;i++)
{
s=b.readLine();
StringTokenizer z=new StringTokenizer(s);
d[i]=Integer.parseInt(z.nextToken());
e[i]=Integer.parseInt(z.nextToken());
}
for(i=0;i<n-1;i++)
{
for(j=i+1;j<n;j++)
{
if(d[j]<d[i])
{
t=d[j];
d[j]=d[i];
d[i]=t;
t=e[j];
e[j]=e[i];
e[i]=t;
}
}
}
for(i=0;i<n-1;i++)
{
if(((d[i+1]-e[i+1]/2.0)-(d[i]+e[i]/2.0))>k)
p+=2;
if(((d[i+1]-e[i+1]/2.0)-(d[i]+e[i]/2.0))==k)
p++;
}
System.out.print(p+2);
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(n^3): The running time increases with the cube of the input size n.
- O(log(n)): The running time increases with the logarithm of the input size n.
- O(n): The running time grows linearly with the input size n.
- O(n^2): The running time increases with the square of the input size n.
- O(1): The running time does not change regardless of the input size n.
- O(nlog(n)): The running time increases with the product of n and logarithm of n.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Determine the worst-case time complexity category of a given Java code based on input size n.
</TASK>
<CODE>
import java.io.*;
import java.util.*;
public class j
{
public static void main(String a[])throws IOException
{
BufferedReader b=new BufferedReader(new InputStreamReader(System.in));
int k=0,i=0,j=0,n=0,p=0,t=0;
String s;
s=b.readLine();
StringTokenizer c=new StringTokenizer(s);
n=Integer.parseInt(c.nextToken());
k=Integer.parseInt(c.nextToken());
int d[]=new int[n];
int e[]=new int[n];
for(i=0;i<n;i++)
{
s=b.readLine();
StringTokenizer z=new StringTokenizer(s);
d[i]=Integer.parseInt(z.nextToken());
e[i]=Integer.parseInt(z.nextToken());
}
for(i=0;i<n-1;i++)
{
for(j=i+1;j<n;j++)
{
if(d[j]<d[i])
{
t=d[j];
d[j]=d[i];
d[i]=t;
t=e[j];
e[j]=e[i];
e[i]=t;
}
}
}
for(i=0;i<n-1;i++)
{
if(((d[i+1]-e[i+1]/2.0)-(d[i]+e[i]/2.0))>k)
p+=2;
if(((d[i+1]-e[i+1]/2.0)-(d[i]+e[i]/2.0))==k)
p++;
}
System.out.print(p+2);
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(1): The time complexity is constant to the input size n.
- O(nlog(n)): The time complexity combines linear and logarithmic growth factors.
- O(log(n)): The time complexity increases logarithmically in relation to the input size.
- non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially.
- O(n^3): The time complexity scales proportionally to the cube of the input size.
- others: The time complexity does not fit any of the above categories or cannot be clearly classified.
- O(n): The time complexity increases proportionally to the input size n in a linear manner.
- O(n^2): The time complexity grows proportionally to the square of the input size.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
| 609
| 1,696
|
1,596
|
import java.io.*;
import java.util.*;
public class A {
final String filename = new String("C").toLowerCase();
void solve() throws Exception {
int n = nextInt();
int[] a = new int[n];
for (int i = 0; i < n; i++) {
a[i] = nextInt();
}
if (isSorted(a)) {
out.println("YES");
return;
}
int pos1 = -1;
for (int i = 0; i < n - 1; i++) {
if (a[i] > a[i + 1]) {
int j = i;
while (j >= 0 && a[j] == a[i]) {
j--;
}
pos1 = j + 1;
break;
}
}
int pos2 = -1;
for (int i = n - 2; i >= 0; i--) {
if (a[i] > a[i + 1]) {
int j = i + 1;
while (j < n && a[j] == a[i + 1]) {
j++;
}
pos2 = j - 1;
break;
}
}
int tmp = a[pos1];
a[pos1] = a[pos2];
a[pos2] = tmp;
if (isSorted(a)) {
out.println("YES");
} else {
out.println("NO");
}
}
boolean isSorted(int[] a) {
for (int i = 0; i < a.length - 1; i++) {
if (a[i] > a[i + 1]) {
return false;
}
}
return true;
}
void run() {
try {
in = new BufferedReader(new InputStreamReader(System.in));
out = new PrintWriter(System.out);
// in = new BufferedReader(new FileReader("input.txt"));
// out = new PrintWriter("output.txt");
solve();
out.close();
} catch (Exception e) {
e.printStackTrace();
System.exit(1);
}
}
BufferedReader in;
StringTokenizer st;
PrintWriter out;
String nextToken() throws Exception {
while (st == null || !st.hasMoreTokens())
st = new StringTokenizer(in.readLine());
return st.nextToken();
}
int nextInt() throws Exception {
return Integer.parseInt(nextToken());
}
long nextLong() throws Exception {
return Long.parseLong(nextToken());
}
double nextDouble() throws Exception {
return Double.parseDouble(nextToken());
}
public static void main(String[] args) {
new A().run();
}
}
|
O(nlog(n))
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Classify the following Java code's worst-case time complexity according to its relationship to the input size n.
</TASK>
<CODE>
import java.io.*;
import java.util.*;
public class A {
final String filename = new String("C").toLowerCase();
void solve() throws Exception {
int n = nextInt();
int[] a = new int[n];
for (int i = 0; i < n; i++) {
a[i] = nextInt();
}
if (isSorted(a)) {
out.println("YES");
return;
}
int pos1 = -1;
for (int i = 0; i < n - 1; i++) {
if (a[i] > a[i + 1]) {
int j = i;
while (j >= 0 && a[j] == a[i]) {
j--;
}
pos1 = j + 1;
break;
}
}
int pos2 = -1;
for (int i = n - 2; i >= 0; i--) {
if (a[i] > a[i + 1]) {
int j = i + 1;
while (j < n && a[j] == a[i + 1]) {
j++;
}
pos2 = j - 1;
break;
}
}
int tmp = a[pos1];
a[pos1] = a[pos2];
a[pos2] = tmp;
if (isSorted(a)) {
out.println("YES");
} else {
out.println("NO");
}
}
boolean isSorted(int[] a) {
for (int i = 0; i < a.length - 1; i++) {
if (a[i] > a[i + 1]) {
return false;
}
}
return true;
}
void run() {
try {
in = new BufferedReader(new InputStreamReader(System.in));
out = new PrintWriter(System.out);
// in = new BufferedReader(new FileReader("input.txt"));
// out = new PrintWriter("output.txt");
solve();
out.close();
} catch (Exception e) {
e.printStackTrace();
System.exit(1);
}
}
BufferedReader in;
StringTokenizer st;
PrintWriter out;
String nextToken() throws Exception {
while (st == null || !st.hasMoreTokens())
st = new StringTokenizer(in.readLine());
return st.nextToken();
}
int nextInt() throws Exception {
return Integer.parseInt(nextToken());
}
long nextLong() throws Exception {
return Long.parseLong(nextToken());
}
double nextDouble() throws Exception {
return Double.parseDouble(nextToken());
}
public static void main(String[] args) {
new A().run();
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(n^3): The running time increases with the cube of the input size n.
- O(1): The running time does not change regardless of the input size n.
- O(nlog(n)): The running time increases with the product of n and logarithm of n.
- O(n^2): The running time increases with the square of the input size n.
- O(log(n)): The running time increases with the logarithm of the input size n.
- O(n): The running time grows linearly with the input size n.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n.
</TASK>
<CODE>
import java.io.*;
import java.util.*;
public class A {
final String filename = new String("C").toLowerCase();
void solve() throws Exception {
int n = nextInt();
int[] a = new int[n];
for (int i = 0; i < n; i++) {
a[i] = nextInt();
}
if (isSorted(a)) {
out.println("YES");
return;
}
int pos1 = -1;
for (int i = 0; i < n - 1; i++) {
if (a[i] > a[i + 1]) {
int j = i;
while (j >= 0 && a[j] == a[i]) {
j--;
}
pos1 = j + 1;
break;
}
}
int pos2 = -1;
for (int i = n - 2; i >= 0; i--) {
if (a[i] > a[i + 1]) {
int j = i + 1;
while (j < n && a[j] == a[i + 1]) {
j++;
}
pos2 = j - 1;
break;
}
}
int tmp = a[pos1];
a[pos1] = a[pos2];
a[pos2] = tmp;
if (isSorted(a)) {
out.println("YES");
} else {
out.println("NO");
}
}
boolean isSorted(int[] a) {
for (int i = 0; i < a.length - 1; i++) {
if (a[i] > a[i + 1]) {
return false;
}
}
return true;
}
void run() {
try {
in = new BufferedReader(new InputStreamReader(System.in));
out = new PrintWriter(System.out);
// in = new BufferedReader(new FileReader("input.txt"));
// out = new PrintWriter("output.txt");
solve();
out.close();
} catch (Exception e) {
e.printStackTrace();
System.exit(1);
}
}
BufferedReader in;
StringTokenizer st;
PrintWriter out;
String nextToken() throws Exception {
while (st == null || !st.hasMoreTokens())
st = new StringTokenizer(in.readLine());
return st.nextToken();
}
int nextInt() throws Exception {
return Integer.parseInt(nextToken());
}
long nextLong() throws Exception {
return Long.parseLong(nextToken());
}
double nextDouble() throws Exception {
return Double.parseDouble(nextToken());
}
public static void main(String[] args) {
new A().run();
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially.
- O(n^3): The execution time ascends in proportion to the cube of the input size n.
- O(n): The execution time ascends in a one-to-one ratio with the input size n.
- O(n^2): The execution time ascends in proportion to the square of the input size n.
- others: The time complexity does not fit to any of the given categories or is ambiguous.
- O(1): The execution time is unaffected by the size of the input n.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- O(log(n)): The execution time ascends in proportion to the logarithm of the input size n.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
| 909
| 1,593
|
1,294
|
import java.io.OutputStream;
import java.io.IOException;
import java.io.InputStream;
import java.io.PrintWriter;
import java.util.StringTokenizer;
import java.io.IOException;
import java.io.BufferedReader;
import java.io.InputStreamReader;
import java.io.InputStream;
/**
* Built using CHelper plug-in
* Actual solution is at the top
*
* @author Vadim Semenov
*/
public class Main {
public static void main(String[] args) {
InputStream inputStream = System.in;
OutputStream outputStream = System.out;
InputReader in = new InputReader(inputStream);
PrintWriter out = new PrintWriter(outputStream);
TaskC solver = new TaskC();
solver.solve(1, in, out);
out.close();
}
static final class TaskC {
private static final int MODULO = 1_000_000_000 + 7;
public void solve(int __, InputReader in, PrintWriter out) {
long qty = in.nextLong();
long months = in.nextLong();
if (qty == 0) {
out.println(0);
return;
}
qty %= MODULO;
long pow = pow(2, months + 1);
qty = (qty * pow) % MODULO;
long sub = (pow - 2 + MODULO) % MODULO * pow(2, MODULO - 2) % MODULO;
qty = (qty - sub + MODULO) % MODULO;
out.println(qty);
}
private long pow(long base, long power) {
long result = 1;
while (power > 0) {
if ((power & 1) != 0) {
result = (result * base) % MODULO;
}
base = (base * base) % MODULO;
power >>>= 1;
}
return result;
}
}
static class InputReader {
private final BufferedReader reader;
private StringTokenizer tokenizer;
public InputReader(InputStream in) {
reader = new BufferedReader(new InputStreamReader(in));
}
public long nextLong() {
return Long.parseLong(next());
}
public String next() {
while (tokenizer == null || !tokenizer.hasMoreTokens()) {
tokenizer = new StringTokenizer(readLine());
}
return tokenizer.nextToken();
}
public String readLine() {
String line;
try {
line = reader.readLine();
} catch (IOException e) {
throw new RuntimeException(e);
}
return line;
}
}
}
|
O(log(n))
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Classify the following Java code's worst-case time complexity according to its relationship to the input size n.
</TASK>
<CODE>
import java.io.OutputStream;
import java.io.IOException;
import java.io.InputStream;
import java.io.PrintWriter;
import java.util.StringTokenizer;
import java.io.IOException;
import java.io.BufferedReader;
import java.io.InputStreamReader;
import java.io.InputStream;
/**
* Built using CHelper plug-in
* Actual solution is at the top
*
* @author Vadim Semenov
*/
public class Main {
public static void main(String[] args) {
InputStream inputStream = System.in;
OutputStream outputStream = System.out;
InputReader in = new InputReader(inputStream);
PrintWriter out = new PrintWriter(outputStream);
TaskC solver = new TaskC();
solver.solve(1, in, out);
out.close();
}
static final class TaskC {
private static final int MODULO = 1_000_000_000 + 7;
public void solve(int __, InputReader in, PrintWriter out) {
long qty = in.nextLong();
long months = in.nextLong();
if (qty == 0) {
out.println(0);
return;
}
qty %= MODULO;
long pow = pow(2, months + 1);
qty = (qty * pow) % MODULO;
long sub = (pow - 2 + MODULO) % MODULO * pow(2, MODULO - 2) % MODULO;
qty = (qty - sub + MODULO) % MODULO;
out.println(qty);
}
private long pow(long base, long power) {
long result = 1;
while (power > 0) {
if ((power & 1) != 0) {
result = (result * base) % MODULO;
}
base = (base * base) % MODULO;
power >>>= 1;
}
return result;
}
}
static class InputReader {
private final BufferedReader reader;
private StringTokenizer tokenizer;
public InputReader(InputStream in) {
reader = new BufferedReader(new InputStreamReader(in));
}
public long nextLong() {
return Long.parseLong(next());
}
public String next() {
while (tokenizer == null || !tokenizer.hasMoreTokens()) {
tokenizer = new StringTokenizer(readLine());
}
return tokenizer.nextToken();
}
public String readLine() {
String line;
try {
line = reader.readLine();
} catch (IOException e) {
throw new RuntimeException(e);
}
return line;
}
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(n): The running time grows linearly with the input size n.
- O(nlog(n)): The running time increases with the product of n and logarithm of n.
- O(1): The running time does not change regardless of the input size n.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- O(n^2): The running time increases with the square of the input size n.
- O(log(n)): The running time increases with the logarithm of the input size n.
- O(n^3): The running time increases with the cube of the input size n.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Classify the following Java code's worst-case time complexity according to its relationship to the input size n.
</TASK>
<CODE>
import java.io.OutputStream;
import java.io.IOException;
import java.io.InputStream;
import java.io.PrintWriter;
import java.util.StringTokenizer;
import java.io.IOException;
import java.io.BufferedReader;
import java.io.InputStreamReader;
import java.io.InputStream;
/**
* Built using CHelper plug-in
* Actual solution is at the top
*
* @author Vadim Semenov
*/
public class Main {
public static void main(String[] args) {
InputStream inputStream = System.in;
OutputStream outputStream = System.out;
InputReader in = new InputReader(inputStream);
PrintWriter out = new PrintWriter(outputStream);
TaskC solver = new TaskC();
solver.solve(1, in, out);
out.close();
}
static final class TaskC {
private static final int MODULO = 1_000_000_000 + 7;
public void solve(int __, InputReader in, PrintWriter out) {
long qty = in.nextLong();
long months = in.nextLong();
if (qty == 0) {
out.println(0);
return;
}
qty %= MODULO;
long pow = pow(2, months + 1);
qty = (qty * pow) % MODULO;
long sub = (pow - 2 + MODULO) % MODULO * pow(2, MODULO - 2) % MODULO;
qty = (qty - sub + MODULO) % MODULO;
out.println(qty);
}
private long pow(long base, long power) {
long result = 1;
while (power > 0) {
if ((power & 1) != 0) {
result = (result * base) % MODULO;
}
base = (base * base) % MODULO;
power >>>= 1;
}
return result;
}
}
static class InputReader {
private final BufferedReader reader;
private StringTokenizer tokenizer;
public InputReader(InputStream in) {
reader = new BufferedReader(new InputStreamReader(in));
}
public long nextLong() {
return Long.parseLong(next());
}
public String next() {
while (tokenizer == null || !tokenizer.hasMoreTokens()) {
tokenizer = new StringTokenizer(readLine());
}
return tokenizer.nextToken();
}
public String readLine() {
String line;
try {
line = reader.readLine();
} catch (IOException e) {
throw new RuntimeException(e);
}
return line;
}
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(n^3): The running time increases with the cube of the input size n.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- O(nlog(n)): The running time increases with the product of n and logarithm of n.
- O(n^2): The running time increases with the square of the input size n.
- O(log(n)): The running time increases with the logarithm of the input size n.
- others: The code does not clearly correspond to the listed classes or has an unclassified time complexity.
- O(1): The running time does not change regardless of the input size n.
- O(n): The running time grows linearly with the input size n.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
| 862
| 1,292
|
1,793
|
import java.io.BufferedReader;
import java.io.OutputStream;
import java.io.IOException;
import java.io.InputStreamReader;
import java.util.Arrays;
import java.io.PrintWriter;
import java.util.StringTokenizer;
import java.io.InputStream;
/**
* Built using CHelper plug-in
* Actual solution is at the top
* @author c0der
*/
public class Main {
public static void main(String[] args) {
InputStream inputStream = System.in;
OutputStream outputStream = System.out;
InputReader in = new InputReader(inputStream);
PrintWriter out = new PrintWriter(outputStream);
TaskA solver = new TaskA();
solver.solve(1, in, out);
out.close();
}
}
class TaskA {
public void solve(int testNumber, InputReader in, PrintWriter out) {
int n = in.nextInt();
int m = in.nextInt();
int k = in.nextInt();
int[] a = new int[ n ];
for (int i=0; i<n; i++) a[i] = in.nextInt();
if ( m <= k ) out.println( 0 );
else
{
m -= k - 1;
Arrays.sort( a );
int ans = 0;
for (int i=n-1; i>=0; i--)
{
ans++;
//out.println(m+" "+a[i]);
m -= a[ i ];
if ( m <= 0 ) break;
m++;
}
if ( m > 0 ) out.println( -1 );
else out.println( ans );
}
}
}
class InputReader {
BufferedReader br;
StringTokenizer st;
public InputReader(InputStream in)
{
br = new BufferedReader(new InputStreamReader(in));
st = null;
}
public String next()
{
while (st==null || !st.hasMoreTokens())
{
try {
st = new StringTokenizer(br.readLine());
} catch (IOException e) {
throw new RuntimeException(e);
}
}
return st.nextToken();
}
public int nextInt()
{
return Integer.parseInt(next());
}
}
|
O(nlog(n))
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Determine the worst-case time complexity category of a given Java code based on input size n.
</TASK>
<CODE>
import java.io.BufferedReader;
import java.io.OutputStream;
import java.io.IOException;
import java.io.InputStreamReader;
import java.util.Arrays;
import java.io.PrintWriter;
import java.util.StringTokenizer;
import java.io.InputStream;
/**
* Built using CHelper plug-in
* Actual solution is at the top
* @author c0der
*/
public class Main {
public static void main(String[] args) {
InputStream inputStream = System.in;
OutputStream outputStream = System.out;
InputReader in = new InputReader(inputStream);
PrintWriter out = new PrintWriter(outputStream);
TaskA solver = new TaskA();
solver.solve(1, in, out);
out.close();
}
}
class TaskA {
public void solve(int testNumber, InputReader in, PrintWriter out) {
int n = in.nextInt();
int m = in.nextInt();
int k = in.nextInt();
int[] a = new int[ n ];
for (int i=0; i<n; i++) a[i] = in.nextInt();
if ( m <= k ) out.println( 0 );
else
{
m -= k - 1;
Arrays.sort( a );
int ans = 0;
for (int i=n-1; i>=0; i--)
{
ans++;
//out.println(m+" "+a[i]);
m -= a[ i ];
if ( m <= 0 ) break;
m++;
}
if ( m > 0 ) out.println( -1 );
else out.println( ans );
}
}
}
class InputReader {
BufferedReader br;
StringTokenizer st;
public InputReader(InputStream in)
{
br = new BufferedReader(new InputStreamReader(in));
st = null;
}
public String next()
{
while (st==null || !st.hasMoreTokens())
{
try {
st = new StringTokenizer(br.readLine());
} catch (IOException e) {
throw new RuntimeException(e);
}
}
return st.nextToken();
}
public int nextInt()
{
return Integer.parseInt(next());
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(n): The time complexity increases proportionally to the input size n in a linear manner.
- O(1): The time complexity is constant to the input size n.
- O(n^3): The time complexity scales proportionally to the cube of the input size.
- non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially.
- O(log(n)): The time complexity increases logarithmically in relation to the input size.
- O(n^2): The time complexity grows proportionally to the square of the input size.
- O(nlog(n)): The time complexity combines linear and logarithmic growth factors.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n.
</TASK>
<CODE>
import java.io.BufferedReader;
import java.io.OutputStream;
import java.io.IOException;
import java.io.InputStreamReader;
import java.util.Arrays;
import java.io.PrintWriter;
import java.util.StringTokenizer;
import java.io.InputStream;
/**
* Built using CHelper plug-in
* Actual solution is at the top
* @author c0der
*/
public class Main {
public static void main(String[] args) {
InputStream inputStream = System.in;
OutputStream outputStream = System.out;
InputReader in = new InputReader(inputStream);
PrintWriter out = new PrintWriter(outputStream);
TaskA solver = new TaskA();
solver.solve(1, in, out);
out.close();
}
}
class TaskA {
public void solve(int testNumber, InputReader in, PrintWriter out) {
int n = in.nextInt();
int m = in.nextInt();
int k = in.nextInt();
int[] a = new int[ n ];
for (int i=0; i<n; i++) a[i] = in.nextInt();
if ( m <= k ) out.println( 0 );
else
{
m -= k - 1;
Arrays.sort( a );
int ans = 0;
for (int i=n-1; i>=0; i--)
{
ans++;
//out.println(m+" "+a[i]);
m -= a[ i ];
if ( m <= 0 ) break;
m++;
}
if ( m > 0 ) out.println( -1 );
else out.println( ans );
}
}
}
class InputReader {
BufferedReader br;
StringTokenizer st;
public InputReader(InputStream in)
{
br = new BufferedReader(new InputStreamReader(in));
st = null;
}
public String next()
{
while (st==null || !st.hasMoreTokens())
{
try {
st = new StringTokenizer(br.readLine());
} catch (IOException e) {
throw new RuntimeException(e);
}
}
return st.nextToken();
}
public int nextInt()
{
return Integer.parseInt(next());
}
}
</CODE>
<EVALUATION_RUBRIC>
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- O(n): The execution time ascends in a one-to-one ratio with the input size n.
- O(1): The execution time is unaffected by the size of the input n.
- others: The time complexity does not fit to any of the given categories or is ambiguous.
- O(n^2): The execution time ascends in proportion to the square of the input size n.
- O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially.
- O(n^3): The execution time ascends in proportion to the cube of the input size n.
- O(log(n)): The execution time ascends in proportion to the logarithm of the input size n.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
| 767
| 1,789
|
2,725
|
/*
* To change this license header, choose License Headers in Project Properties.
* To change this template file, choose Tools | Templates
* and open the template in the editor.
*/
//package NumberTheory;
import java.io.BufferedReader;
import java.io.IOException;
import java.io.InputStreamReader;
/**
*
* @author Sourav Kumar Paul
*/
public class A235 {
public static void main(String[] args) throws IOException{
BufferedReader reader = new BufferedReader(new InputStreamReader(System.in));
long n = Long.parseLong(reader.readLine());
//int gcd = gcd(924,923);
//System.out.println(gcd);
// System.out.println(gcd(923,461));
if(n<=2)
System.out.println(n);
else if(n==3)
System.out.println("6");
else if(n % 2== 0)
{
if(n % 3 == 0)
{
System.out.println((n-3)*(n-1)*(n-2));
}
else
System.out.println(n * (n-1) * (n-3) );
}
else
System.out.println(n*(n-1)*(n-2));
}
private static int gcd(int i, int j) {
int a = Math.min(i,j);
int b = Math.max(i,j);
while(a != 0)
{
int temp = b % a;
b = a;
a = temp;
}
return b;
}
}
|
O(1)
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Classify the following Java code's worst-case time complexity according to its relationship to the input size n.
</TASK>
<CODE>
/*
* To change this license header, choose License Headers in Project Properties.
* To change this template file, choose Tools | Templates
* and open the template in the editor.
*/
//package NumberTheory;
import java.io.BufferedReader;
import java.io.IOException;
import java.io.InputStreamReader;
/**
*
* @author Sourav Kumar Paul
*/
public class A235 {
public static void main(String[] args) throws IOException{
BufferedReader reader = new BufferedReader(new InputStreamReader(System.in));
long n = Long.parseLong(reader.readLine());
//int gcd = gcd(924,923);
//System.out.println(gcd);
// System.out.println(gcd(923,461));
if(n<=2)
System.out.println(n);
else if(n==3)
System.out.println("6");
else if(n % 2== 0)
{
if(n % 3 == 0)
{
System.out.println((n-3)*(n-1)*(n-2));
}
else
System.out.println(n * (n-1) * (n-3) );
}
else
System.out.println(n*(n-1)*(n-2));
}
private static int gcd(int i, int j) {
int a = Math.min(i,j);
int b = Math.max(i,j);
while(a != 0)
{
int temp = b % a;
b = a;
a = temp;
}
return b;
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(n): The running time grows linearly with the input size n.
- O(n^3): The running time increases with the cube of the input size n.
- O(n^2): The running time increases with the square of the input size n.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- O(nlog(n)): The running time increases with the product of n and logarithm of n.
- O(log(n)): The running time increases with the logarithm of the input size n.
- O(1): The running time does not change regardless of the input size n.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n.
</TASK>
<CODE>
/*
* To change this license header, choose License Headers in Project Properties.
* To change this template file, choose Tools | Templates
* and open the template in the editor.
*/
//package NumberTheory;
import java.io.BufferedReader;
import java.io.IOException;
import java.io.InputStreamReader;
/**
*
* @author Sourav Kumar Paul
*/
public class A235 {
public static void main(String[] args) throws IOException{
BufferedReader reader = new BufferedReader(new InputStreamReader(System.in));
long n = Long.parseLong(reader.readLine());
//int gcd = gcd(924,923);
//System.out.println(gcd);
// System.out.println(gcd(923,461));
if(n<=2)
System.out.println(n);
else if(n==3)
System.out.println("6");
else if(n % 2== 0)
{
if(n % 3 == 0)
{
System.out.println((n-3)*(n-1)*(n-2));
}
else
System.out.println(n * (n-1) * (n-3) );
}
else
System.out.println(n*(n-1)*(n-2));
}
private static int gcd(int i, int j) {
int a = Math.min(i,j);
int b = Math.max(i,j);
while(a != 0)
{
int temp = b % a;
b = a;
a = temp;
}
return b;
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(n^2): The execution time ascends in proportion to the square of the input size n.
- O(1): The execution time is unaffected by the size of the input n.
- O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially.
- O(n): The execution time ascends in a one-to-one ratio with the input size n.
- O(log(n)): The execution time ascends in proportion to the logarithm of the input size n.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- O(n^3): The execution time ascends in proportion to the cube of the input size n.
- others: The time complexity does not fit to any of the given categories or is ambiguous.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
| 658
| 2,719
|
1,449
|
import java.io.IOException;
import java.io.OutputStreamWriter;
import java.io.BufferedWriter;
import java.util.InputMismatchException;
import java.io.OutputStream;
import java.io.PrintWriter;
import java.util.NoSuchElementException;
import java.io.Writer;
import java.math.BigInteger;
import java.io.InputStream;
/**
* Built using CHelper plug-in
* Actual solution is at the top
* @author Egor Kulikov ([email protected])
*/
public class Main {
public static void main(String[] args) {
InputStream inputStream = System.in;
OutputStream outputStream = System.out;
InputReader in = new InputReader(inputStream);
OutputWriter out = new OutputWriter(outputStream);
TaskB solver = new TaskB();
solver.solve(1, in, out);
out.close();
}
}
class TaskB {
public void solve(int testNumber, InputReader in, OutputWriter out) {
int side = in.readInt();
int row = in.readInt() - 1;
int column = in.readInt() - 1;
int required = in.readInt();
long left = 0;
long right = 2 * side - 2;
while (left < right) {
long current = (left + right) / 2;
long result = calculate(row, column, current) + calculate(column, side - row - 1, current) +
calculate(side - row - 1, side - column - 1, current) + calculate(side - column - 1, row, current) + 1;
if (result >= required)
right = current;
else
left = current + 1;
}
out.printLine(left);
}
private long calculate(int row, int column, long current) {
column++;
long total = 0;
long mn = Math.min(row, column);
long mx = Math.max(row, column);
if (current <= mn)
return current * (current + 1) / 2;
total += mn * (mn + 1) / 2;
current -= mn;
mx -= mn;
if (current <= mx)
return total + mn * current;
total += mn * mx;
current -= mx;
if (current < mn)
return total + (mn - 1) * mn / 2 - (mn - current - 1) * (mn - current) / 2;
return total + (mn - 1) * mn / 2;
}
}
class InputReader {
private InputStream stream;
private byte[] buf = new byte[1024];
private int curChar;
private int numChars;
private SpaceCharFilter filter;
public InputReader(InputStream stream) {
this.stream = stream;
}
public int read() {
if (numChars == -1)
throw new InputMismatchException();
if (curChar >= numChars) {
curChar = 0;
try {
numChars = stream.read(buf);
} catch (IOException e) {
throw new InputMismatchException();
}
if (numChars <= 0)
return -1;
}
return buf[curChar++];
}
public int readInt() {
int c = read();
while (isSpaceChar(c))
c = read();
int sgn = 1;
if (c == '-') {
sgn = -1;
c = read();
}
int res = 0;
do {
if (c < '0' || c > '9')
throw new InputMismatchException();
res *= 10;
res += c - '0';
c = read();
} while (!isSpaceChar(c));
return res * sgn;
}
public boolean isSpaceChar(int c) {
if (filter != null)
return filter.isSpaceChar(c);
return isWhitespace(c);
}
public static boolean isWhitespace(int c) {
return c == ' ' || c == '\n' || c == '\r' || c == '\t' || c == -1;
}
public interface SpaceCharFilter {
public boolean isSpaceChar(int ch);
}
}
class OutputWriter {
private final PrintWriter writer;
public OutputWriter(OutputStream outputStream) {
writer = new PrintWriter(new BufferedWriter(new OutputStreamWriter(outputStream)));
}
public OutputWriter(Writer writer) {
this.writer = new PrintWriter(writer);
}
public void print(Object...objects) {
for (int i = 0; i < objects.length; i++) {
if (i != 0)
writer.print(' ');
writer.print(objects[i]);
}
}
public void printLine(Object...objects) {
print(objects);
writer.println();
}
public void close() {
writer.close();
}
}
|
O(log(n))
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Determine the worst-case time complexity category of a given Java code based on input size n.
</TASK>
<CODE>
import java.io.IOException;
import java.io.OutputStreamWriter;
import java.io.BufferedWriter;
import java.util.InputMismatchException;
import java.io.OutputStream;
import java.io.PrintWriter;
import java.util.NoSuchElementException;
import java.io.Writer;
import java.math.BigInteger;
import java.io.InputStream;
/**
* Built using CHelper plug-in
* Actual solution is at the top
* @author Egor Kulikov ([email protected])
*/
public class Main {
public static void main(String[] args) {
InputStream inputStream = System.in;
OutputStream outputStream = System.out;
InputReader in = new InputReader(inputStream);
OutputWriter out = new OutputWriter(outputStream);
TaskB solver = new TaskB();
solver.solve(1, in, out);
out.close();
}
}
class TaskB {
public void solve(int testNumber, InputReader in, OutputWriter out) {
int side = in.readInt();
int row = in.readInt() - 1;
int column = in.readInt() - 1;
int required = in.readInt();
long left = 0;
long right = 2 * side - 2;
while (left < right) {
long current = (left + right) / 2;
long result = calculate(row, column, current) + calculate(column, side - row - 1, current) +
calculate(side - row - 1, side - column - 1, current) + calculate(side - column - 1, row, current) + 1;
if (result >= required)
right = current;
else
left = current + 1;
}
out.printLine(left);
}
private long calculate(int row, int column, long current) {
column++;
long total = 0;
long mn = Math.min(row, column);
long mx = Math.max(row, column);
if (current <= mn)
return current * (current + 1) / 2;
total += mn * (mn + 1) / 2;
current -= mn;
mx -= mn;
if (current <= mx)
return total + mn * current;
total += mn * mx;
current -= mx;
if (current < mn)
return total + (mn - 1) * mn / 2 - (mn - current - 1) * (mn - current) / 2;
return total + (mn - 1) * mn / 2;
}
}
class InputReader {
private InputStream stream;
private byte[] buf = new byte[1024];
private int curChar;
private int numChars;
private SpaceCharFilter filter;
public InputReader(InputStream stream) {
this.stream = stream;
}
public int read() {
if (numChars == -1)
throw new InputMismatchException();
if (curChar >= numChars) {
curChar = 0;
try {
numChars = stream.read(buf);
} catch (IOException e) {
throw new InputMismatchException();
}
if (numChars <= 0)
return -1;
}
return buf[curChar++];
}
public int readInt() {
int c = read();
while (isSpaceChar(c))
c = read();
int sgn = 1;
if (c == '-') {
sgn = -1;
c = read();
}
int res = 0;
do {
if (c < '0' || c > '9')
throw new InputMismatchException();
res *= 10;
res += c - '0';
c = read();
} while (!isSpaceChar(c));
return res * sgn;
}
public boolean isSpaceChar(int c) {
if (filter != null)
return filter.isSpaceChar(c);
return isWhitespace(c);
}
public static boolean isWhitespace(int c) {
return c == ' ' || c == '\n' || c == '\r' || c == '\t' || c == -1;
}
public interface SpaceCharFilter {
public boolean isSpaceChar(int ch);
}
}
class OutputWriter {
private final PrintWriter writer;
public OutputWriter(OutputStream outputStream) {
writer = new PrintWriter(new BufferedWriter(new OutputStreamWriter(outputStream)));
}
public OutputWriter(Writer writer) {
this.writer = new PrintWriter(writer);
}
public void print(Object...objects) {
for (int i = 0; i < objects.length; i++) {
if (i != 0)
writer.print(' ');
writer.print(objects[i]);
}
}
public void printLine(Object...objects) {
print(objects);
writer.println();
}
public void close() {
writer.close();
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(nlog(n)): The time complexity combines linear and logarithmic growth factors.
- O(n^2): The time complexity grows proportionally to the square of the input size.
- O(1): The time complexity is constant to the input size n.
- O(n^3): The time complexity scales proportionally to the cube of the input size.
- O(log(n)): The time complexity increases logarithmically in relation to the input size.
- O(n): The time complexity increases proportionally to the input size n in a linear manner.
- non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Determine the worst-case time complexity category of a given Java code based on input size n.
</TASK>
<CODE>
import java.io.IOException;
import java.io.OutputStreamWriter;
import java.io.BufferedWriter;
import java.util.InputMismatchException;
import java.io.OutputStream;
import java.io.PrintWriter;
import java.util.NoSuchElementException;
import java.io.Writer;
import java.math.BigInteger;
import java.io.InputStream;
/**
* Built using CHelper plug-in
* Actual solution is at the top
* @author Egor Kulikov ([email protected])
*/
public class Main {
public static void main(String[] args) {
InputStream inputStream = System.in;
OutputStream outputStream = System.out;
InputReader in = new InputReader(inputStream);
OutputWriter out = new OutputWriter(outputStream);
TaskB solver = new TaskB();
solver.solve(1, in, out);
out.close();
}
}
class TaskB {
public void solve(int testNumber, InputReader in, OutputWriter out) {
int side = in.readInt();
int row = in.readInt() - 1;
int column = in.readInt() - 1;
int required = in.readInt();
long left = 0;
long right = 2 * side - 2;
while (left < right) {
long current = (left + right) / 2;
long result = calculate(row, column, current) + calculate(column, side - row - 1, current) +
calculate(side - row - 1, side - column - 1, current) + calculate(side - column - 1, row, current) + 1;
if (result >= required)
right = current;
else
left = current + 1;
}
out.printLine(left);
}
private long calculate(int row, int column, long current) {
column++;
long total = 0;
long mn = Math.min(row, column);
long mx = Math.max(row, column);
if (current <= mn)
return current * (current + 1) / 2;
total += mn * (mn + 1) / 2;
current -= mn;
mx -= mn;
if (current <= mx)
return total + mn * current;
total += mn * mx;
current -= mx;
if (current < mn)
return total + (mn - 1) * mn / 2 - (mn - current - 1) * (mn - current) / 2;
return total + (mn - 1) * mn / 2;
}
}
class InputReader {
private InputStream stream;
private byte[] buf = new byte[1024];
private int curChar;
private int numChars;
private SpaceCharFilter filter;
public InputReader(InputStream stream) {
this.stream = stream;
}
public int read() {
if (numChars == -1)
throw new InputMismatchException();
if (curChar >= numChars) {
curChar = 0;
try {
numChars = stream.read(buf);
} catch (IOException e) {
throw new InputMismatchException();
}
if (numChars <= 0)
return -1;
}
return buf[curChar++];
}
public int readInt() {
int c = read();
while (isSpaceChar(c))
c = read();
int sgn = 1;
if (c == '-') {
sgn = -1;
c = read();
}
int res = 0;
do {
if (c < '0' || c > '9')
throw new InputMismatchException();
res *= 10;
res += c - '0';
c = read();
} while (!isSpaceChar(c));
return res * sgn;
}
public boolean isSpaceChar(int c) {
if (filter != null)
return filter.isSpaceChar(c);
return isWhitespace(c);
}
public static boolean isWhitespace(int c) {
return c == ' ' || c == '\n' || c == '\r' || c == '\t' || c == -1;
}
public interface SpaceCharFilter {
public boolean isSpaceChar(int ch);
}
}
class OutputWriter {
private final PrintWriter writer;
public OutputWriter(OutputStream outputStream) {
writer = new PrintWriter(new BufferedWriter(new OutputStreamWriter(outputStream)));
}
public OutputWriter(Writer writer) {
this.writer = new PrintWriter(writer);
}
public void print(Object...objects) {
for (int i = 0; i < objects.length; i++) {
if (i != 0)
writer.print(' ');
writer.print(objects[i]);
}
}
public void printLine(Object...objects) {
print(objects);
writer.println();
}
public void close() {
writer.close();
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(nlog(n)): The time complexity combines linear and logarithmic growth factors.
- O(n^2): The time complexity grows proportionally to the square of the input size.
- O(log(n)): The time complexity increases logarithmically in relation to the input size.
- O(1): The time complexity is constant to the input size n.
- O(n^3): The time complexity scales proportionally to the cube of the input size.
- others: The time complexity does not fit any of the above categories or cannot be clearly classified.
- non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially.
- O(n): The time complexity increases proportionally to the input size n in a linear manner.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
| 1,355
| 1,447
|
183
|
import java.io.BufferedReader;
import java.io.BufferedWriter;
import java.io.IOException;
import java.io.InputStreamReader;
import java.io.OutputStreamWriter;
import java.io.PrintWriter;
import java.util.ArrayList;
import java.util.Arrays;
import java.util.Comparator;
import java.util.StringTokenizer;
public class Div1_526C {
static int nV;
static ArrayList<Integer>[] chldn;
static int root;
static int[][] anc;
static int[] depth;
static int[] num;
static int[] nLoc;
static int[][] tree;
public static void main(String[] args) throws IOException {
BufferedReader reader = new BufferedReader(new InputStreamReader(System.in));
PrintWriter printer = new PrintWriter(new BufferedWriter(new OutputStreamWriter(System.out)));
nV = Integer.parseInt(reader.readLine());
chldn = new ArrayList[nV];
for (int i = 0; i < nV; i++) {
chldn[i] = new ArrayList<>();
}
anc = new int[nV][21];
depth = new int[nV];
num = new int[nV];
nLoc = new int[nV];
tree = new int[nV * 4][2];
for (int[] a : tree) {
a[0] = a[1] = -1;
}
root = 0;
StringTokenizer inputData = new StringTokenizer(reader.readLine());
for (int i = 0; i < nV; i++) {
num[i] = Integer.parseInt(inputData.nextToken());
nLoc[num[i]] = i;
}
inputData = new StringTokenizer(reader.readLine());
for (int i = 1; i < nV; i++) {
anc[i][0] = Integer.parseInt(inputData.nextToken()) - 1;
chldn[anc[i][0]].add(i);
}
preprocess();
build(1, 0, nV - 1);
int nQ = Integer.parseInt(reader.readLine());
while (nQ-- > 0) {
inputData = new StringTokenizer(reader.readLine());
if (inputData.nextToken().equals("1")) {
int a = Integer.parseInt(inputData.nextToken()) - 1;
int b = Integer.parseInt(inputData.nextToken()) - 1;
int temp = num[a];
num[a] = num[b];
num[b] = temp;
nLoc[num[a]] = a;
nLoc[num[b]] = b;
update(1, 0, nV - 1, num[a]);
update(1, 0, nV - 1, num[b]);
} else {
printer.println(query(1, 0, nV - 1, nLoc[0], nLoc[0]) + 1);
}
}
printer.close();
}
static void build(int nI, int cL, int cR) {
if (cL == cR) {
tree[nI][0] = nLoc[cL];
tree[nI][1] = nLoc[cL];
} else {
int mid = (cL + cR) >> 1;
build(nI * 2, cL, mid);
build(nI * 2 + 1, mid + 1, cR);
if (tree[nI * 2][0] != -1 && tree[nI * 2 + 1][0] != -1) {
merge(tree[nI * 2][0], tree[nI * 2][1], tree[nI * 2 + 1][0], tree[nI * 2 + 1][1]);
tree[nI][0] = mResp[0];
tree[nI][1] = mResp[1];
}
}
}
static int query(int nI, int cL, int cR, int e1, int e2) {
if (cL == cR) {
merge(e1, e2, nLoc[cL], nLoc[cL]);
if (mResp[0] != -1) {
return cL;
} else {
return cL - 1;
}
}
int mid = (cL + cR) >> 1;
merge(tree[nI * 2][0], tree[nI * 2][1], e1, e2);
if (mResp[0] != -1) {
return query(nI * 2 + 1, mid + 1, cR, mResp[0], mResp[1]);
}
return query(nI * 2, cL, mid, e1, e2);
}
static void update(int nI, int cL, int cR, int uI) {
if (cL == cR) {
tree[nI][0] = nLoc[cL];
tree[nI][1] = nLoc[cL];
} else {
int mid = (cL + cR) >> 1;
if (uI <= mid) {
update(nI * 2, cL, mid, uI);
} else {
update(nI * 2 + 1, mid + 1, cR, uI);
}
merge(tree[nI * 2][0], tree[nI * 2][1], tree[nI * 2 + 1][0], tree[nI * 2 + 1][1]);
tree[nI][0] = mResp[0];
tree[nI][1] = mResp[1];
}
}
static int[] mResp = new int[2];
static void merge1(int... a) {
for (int i = 0; i < 3; i++) {
if (a[i] == -1) {
mResp[0] = mResp[1] = -1;
return;
}
}
if (onPath(a[0], a[1], a[2])) {
mResp[0] = a[0];
mResp[1] = a[1];
return;
}
if (onPath(a[0], a[2], a[1])) {
mResp[0] = a[0];
mResp[1] = a[2];
return;
}
if (onPath(a[1], a[2], a[0])) {
mResp[0] = a[1];
mResp[1] = a[2];
return;
}
mResp[0] = mResp[1] = -1;
}
static void merge(int... a) {
merge1(a[0], a[1], a[2]);
merge1(mResp[0], mResp[1], a[3]);
}
static boolean onPath(int a, int b, int c) {
if (a == c || b == c) {
return true;
}
if (depth[a] > depth[c]) {
a = jump(a, depth[a] - depth[c] - 1);
}
if (depth[b] > depth[c]) {
b = jump(b, depth[b] - depth[c] - 1);
}
if (a == b) {
return false;
}
if (anc[a][0] == c || anc[b][0] == c) {
return true;
}
return false;
}
// good for depth of up to 1_048_576 = 2^20
static void preprocess() {
anc[root][0] = root;
fParent(root);
for (int k = 1; k <= 20; k++) {
for (int i = 0; i < nV; i++) {
anc[i][k] = anc[anc[i][k - 1]][k - 1];
}
}
}
static void fParent(int cV) {
for (int aV : chldn[cV]) {
anc[aV][0] = cV;
depth[aV] = depth[cV] + 1;
fParent(aV);
}
}
static int fLCA(int a, int b) {
if (depth[a] > depth[b]) {
int temp = b;
b = a;
a = temp;
}
b = jump(b, depth[b] - depth[a]);
if (a == b) {
return a;
}
for (int i = 20; i >= 0; i--) {
if (anc[a][i] != anc[b][i]) {
a = anc[a][i];
b = anc[b][i];
}
}
return anc[a][0];
}
static int jump(int cV, int d) {
for (int i = 0; i <= 20; i++) {
if ((d & (1 << i)) != 0) {
cV = anc[cV][i];
}
}
return cV;
}
static Comparator<Integer> BY_DEPTH = new Comparator<Integer>() {
public int compare(Integer o1, Integer o2) {
return -Integer.compare(depth[o1], depth[o2]); // greatest depth first
}
};
}
|
O(nlog(n))
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n.
</TASK>
<CODE>
import java.io.BufferedReader;
import java.io.BufferedWriter;
import java.io.IOException;
import java.io.InputStreamReader;
import java.io.OutputStreamWriter;
import java.io.PrintWriter;
import java.util.ArrayList;
import java.util.Arrays;
import java.util.Comparator;
import java.util.StringTokenizer;
public class Div1_526C {
static int nV;
static ArrayList<Integer>[] chldn;
static int root;
static int[][] anc;
static int[] depth;
static int[] num;
static int[] nLoc;
static int[][] tree;
public static void main(String[] args) throws IOException {
BufferedReader reader = new BufferedReader(new InputStreamReader(System.in));
PrintWriter printer = new PrintWriter(new BufferedWriter(new OutputStreamWriter(System.out)));
nV = Integer.parseInt(reader.readLine());
chldn = new ArrayList[nV];
for (int i = 0; i < nV; i++) {
chldn[i] = new ArrayList<>();
}
anc = new int[nV][21];
depth = new int[nV];
num = new int[nV];
nLoc = new int[nV];
tree = new int[nV * 4][2];
for (int[] a : tree) {
a[0] = a[1] = -1;
}
root = 0;
StringTokenizer inputData = new StringTokenizer(reader.readLine());
for (int i = 0; i < nV; i++) {
num[i] = Integer.parseInt(inputData.nextToken());
nLoc[num[i]] = i;
}
inputData = new StringTokenizer(reader.readLine());
for (int i = 1; i < nV; i++) {
anc[i][0] = Integer.parseInt(inputData.nextToken()) - 1;
chldn[anc[i][0]].add(i);
}
preprocess();
build(1, 0, nV - 1);
int nQ = Integer.parseInt(reader.readLine());
while (nQ-- > 0) {
inputData = new StringTokenizer(reader.readLine());
if (inputData.nextToken().equals("1")) {
int a = Integer.parseInt(inputData.nextToken()) - 1;
int b = Integer.parseInt(inputData.nextToken()) - 1;
int temp = num[a];
num[a] = num[b];
num[b] = temp;
nLoc[num[a]] = a;
nLoc[num[b]] = b;
update(1, 0, nV - 1, num[a]);
update(1, 0, nV - 1, num[b]);
} else {
printer.println(query(1, 0, nV - 1, nLoc[0], nLoc[0]) + 1);
}
}
printer.close();
}
static void build(int nI, int cL, int cR) {
if (cL == cR) {
tree[nI][0] = nLoc[cL];
tree[nI][1] = nLoc[cL];
} else {
int mid = (cL + cR) >> 1;
build(nI * 2, cL, mid);
build(nI * 2 + 1, mid + 1, cR);
if (tree[nI * 2][0] != -1 && tree[nI * 2 + 1][0] != -1) {
merge(tree[nI * 2][0], tree[nI * 2][1], tree[nI * 2 + 1][0], tree[nI * 2 + 1][1]);
tree[nI][0] = mResp[0];
tree[nI][1] = mResp[1];
}
}
}
static int query(int nI, int cL, int cR, int e1, int e2) {
if (cL == cR) {
merge(e1, e2, nLoc[cL], nLoc[cL]);
if (mResp[0] != -1) {
return cL;
} else {
return cL - 1;
}
}
int mid = (cL + cR) >> 1;
merge(tree[nI * 2][0], tree[nI * 2][1], e1, e2);
if (mResp[0] != -1) {
return query(nI * 2 + 1, mid + 1, cR, mResp[0], mResp[1]);
}
return query(nI * 2, cL, mid, e1, e2);
}
static void update(int nI, int cL, int cR, int uI) {
if (cL == cR) {
tree[nI][0] = nLoc[cL];
tree[nI][1] = nLoc[cL];
} else {
int mid = (cL + cR) >> 1;
if (uI <= mid) {
update(nI * 2, cL, mid, uI);
} else {
update(nI * 2 + 1, mid + 1, cR, uI);
}
merge(tree[nI * 2][0], tree[nI * 2][1], tree[nI * 2 + 1][0], tree[nI * 2 + 1][1]);
tree[nI][0] = mResp[0];
tree[nI][1] = mResp[1];
}
}
static int[] mResp = new int[2];
static void merge1(int... a) {
for (int i = 0; i < 3; i++) {
if (a[i] == -1) {
mResp[0] = mResp[1] = -1;
return;
}
}
if (onPath(a[0], a[1], a[2])) {
mResp[0] = a[0];
mResp[1] = a[1];
return;
}
if (onPath(a[0], a[2], a[1])) {
mResp[0] = a[0];
mResp[1] = a[2];
return;
}
if (onPath(a[1], a[2], a[0])) {
mResp[0] = a[1];
mResp[1] = a[2];
return;
}
mResp[0] = mResp[1] = -1;
}
static void merge(int... a) {
merge1(a[0], a[1], a[2]);
merge1(mResp[0], mResp[1], a[3]);
}
static boolean onPath(int a, int b, int c) {
if (a == c || b == c) {
return true;
}
if (depth[a] > depth[c]) {
a = jump(a, depth[a] - depth[c] - 1);
}
if (depth[b] > depth[c]) {
b = jump(b, depth[b] - depth[c] - 1);
}
if (a == b) {
return false;
}
if (anc[a][0] == c || anc[b][0] == c) {
return true;
}
return false;
}
// good for depth of up to 1_048_576 = 2^20
static void preprocess() {
anc[root][0] = root;
fParent(root);
for (int k = 1; k <= 20; k++) {
for (int i = 0; i < nV; i++) {
anc[i][k] = anc[anc[i][k - 1]][k - 1];
}
}
}
static void fParent(int cV) {
for (int aV : chldn[cV]) {
anc[aV][0] = cV;
depth[aV] = depth[cV] + 1;
fParent(aV);
}
}
static int fLCA(int a, int b) {
if (depth[a] > depth[b]) {
int temp = b;
b = a;
a = temp;
}
b = jump(b, depth[b] - depth[a]);
if (a == b) {
return a;
}
for (int i = 20; i >= 0; i--) {
if (anc[a][i] != anc[b][i]) {
a = anc[a][i];
b = anc[b][i];
}
}
return anc[a][0];
}
static int jump(int cV, int d) {
for (int i = 0; i <= 20; i++) {
if ((d & (1 << i)) != 0) {
cV = anc[cV][i];
}
}
return cV;
}
static Comparator<Integer> BY_DEPTH = new Comparator<Integer>() {
public int compare(Integer o1, Integer o2) {
return -Integer.compare(depth[o1], depth[o2]); // greatest depth first
}
};
}
</CODE>
<EVALUATION_RUBRIC>
- O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- O(n^2): The execution time ascends in proportion to the square of the input size n.
- O(n^3): The execution time ascends in proportion to the cube of the input size n.
- O(n): The execution time ascends in a one-to-one ratio with the input size n.
- O(1): The execution time is unaffected by the size of the input n.
- O(log(n)): The execution time ascends in proportion to the logarithm of the input size n.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n.
</TASK>
<CODE>
import java.io.BufferedReader;
import java.io.BufferedWriter;
import java.io.IOException;
import java.io.InputStreamReader;
import java.io.OutputStreamWriter;
import java.io.PrintWriter;
import java.util.ArrayList;
import java.util.Arrays;
import java.util.Comparator;
import java.util.StringTokenizer;
public class Div1_526C {
static int nV;
static ArrayList<Integer>[] chldn;
static int root;
static int[][] anc;
static int[] depth;
static int[] num;
static int[] nLoc;
static int[][] tree;
public static void main(String[] args) throws IOException {
BufferedReader reader = new BufferedReader(new InputStreamReader(System.in));
PrintWriter printer = new PrintWriter(new BufferedWriter(new OutputStreamWriter(System.out)));
nV = Integer.parseInt(reader.readLine());
chldn = new ArrayList[nV];
for (int i = 0; i < nV; i++) {
chldn[i] = new ArrayList<>();
}
anc = new int[nV][21];
depth = new int[nV];
num = new int[nV];
nLoc = new int[nV];
tree = new int[nV * 4][2];
for (int[] a : tree) {
a[0] = a[1] = -1;
}
root = 0;
StringTokenizer inputData = new StringTokenizer(reader.readLine());
for (int i = 0; i < nV; i++) {
num[i] = Integer.parseInt(inputData.nextToken());
nLoc[num[i]] = i;
}
inputData = new StringTokenizer(reader.readLine());
for (int i = 1; i < nV; i++) {
anc[i][0] = Integer.parseInt(inputData.nextToken()) - 1;
chldn[anc[i][0]].add(i);
}
preprocess();
build(1, 0, nV - 1);
int nQ = Integer.parseInt(reader.readLine());
while (nQ-- > 0) {
inputData = new StringTokenizer(reader.readLine());
if (inputData.nextToken().equals("1")) {
int a = Integer.parseInt(inputData.nextToken()) - 1;
int b = Integer.parseInt(inputData.nextToken()) - 1;
int temp = num[a];
num[a] = num[b];
num[b] = temp;
nLoc[num[a]] = a;
nLoc[num[b]] = b;
update(1, 0, nV - 1, num[a]);
update(1, 0, nV - 1, num[b]);
} else {
printer.println(query(1, 0, nV - 1, nLoc[0], nLoc[0]) + 1);
}
}
printer.close();
}
static void build(int nI, int cL, int cR) {
if (cL == cR) {
tree[nI][0] = nLoc[cL];
tree[nI][1] = nLoc[cL];
} else {
int mid = (cL + cR) >> 1;
build(nI * 2, cL, mid);
build(nI * 2 + 1, mid + 1, cR);
if (tree[nI * 2][0] != -1 && tree[nI * 2 + 1][0] != -1) {
merge(tree[nI * 2][0], tree[nI * 2][1], tree[nI * 2 + 1][0], tree[nI * 2 + 1][1]);
tree[nI][0] = mResp[0];
tree[nI][1] = mResp[1];
}
}
}
static int query(int nI, int cL, int cR, int e1, int e2) {
if (cL == cR) {
merge(e1, e2, nLoc[cL], nLoc[cL]);
if (mResp[0] != -1) {
return cL;
} else {
return cL - 1;
}
}
int mid = (cL + cR) >> 1;
merge(tree[nI * 2][0], tree[nI * 2][1], e1, e2);
if (mResp[0] != -1) {
return query(nI * 2 + 1, mid + 1, cR, mResp[0], mResp[1]);
}
return query(nI * 2, cL, mid, e1, e2);
}
static void update(int nI, int cL, int cR, int uI) {
if (cL == cR) {
tree[nI][0] = nLoc[cL];
tree[nI][1] = nLoc[cL];
} else {
int mid = (cL + cR) >> 1;
if (uI <= mid) {
update(nI * 2, cL, mid, uI);
} else {
update(nI * 2 + 1, mid + 1, cR, uI);
}
merge(tree[nI * 2][0], tree[nI * 2][1], tree[nI * 2 + 1][0], tree[nI * 2 + 1][1]);
tree[nI][0] = mResp[0];
tree[nI][1] = mResp[1];
}
}
static int[] mResp = new int[2];
static void merge1(int... a) {
for (int i = 0; i < 3; i++) {
if (a[i] == -1) {
mResp[0] = mResp[1] = -1;
return;
}
}
if (onPath(a[0], a[1], a[2])) {
mResp[0] = a[0];
mResp[1] = a[1];
return;
}
if (onPath(a[0], a[2], a[1])) {
mResp[0] = a[0];
mResp[1] = a[2];
return;
}
if (onPath(a[1], a[2], a[0])) {
mResp[0] = a[1];
mResp[1] = a[2];
return;
}
mResp[0] = mResp[1] = -1;
}
static void merge(int... a) {
merge1(a[0], a[1], a[2]);
merge1(mResp[0], mResp[1], a[3]);
}
static boolean onPath(int a, int b, int c) {
if (a == c || b == c) {
return true;
}
if (depth[a] > depth[c]) {
a = jump(a, depth[a] - depth[c] - 1);
}
if (depth[b] > depth[c]) {
b = jump(b, depth[b] - depth[c] - 1);
}
if (a == b) {
return false;
}
if (anc[a][0] == c || anc[b][0] == c) {
return true;
}
return false;
}
// good for depth of up to 1_048_576 = 2^20
static void preprocess() {
anc[root][0] = root;
fParent(root);
for (int k = 1; k <= 20; k++) {
for (int i = 0; i < nV; i++) {
anc[i][k] = anc[anc[i][k - 1]][k - 1];
}
}
}
static void fParent(int cV) {
for (int aV : chldn[cV]) {
anc[aV][0] = cV;
depth[aV] = depth[cV] + 1;
fParent(aV);
}
}
static int fLCA(int a, int b) {
if (depth[a] > depth[b]) {
int temp = b;
b = a;
a = temp;
}
b = jump(b, depth[b] - depth[a]);
if (a == b) {
return a;
}
for (int i = 20; i >= 0; i--) {
if (anc[a][i] != anc[b][i]) {
a = anc[a][i];
b = anc[b][i];
}
}
return anc[a][0];
}
static int jump(int cV, int d) {
for (int i = 0; i <= 20; i++) {
if ((d & (1 << i)) != 0) {
cV = anc[cV][i];
}
}
return cV;
}
static Comparator<Integer> BY_DEPTH = new Comparator<Integer>() {
public int compare(Integer o1, Integer o2) {
return -Integer.compare(depth[o1], depth[o2]); // greatest depth first
}
};
}
</CODE>
<EVALUATION_RUBRIC>
- O(n^2): The execution time ascends in proportion to the square of the input size n.
- O(1): The execution time is unaffected by the size of the input n.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- others: The time complexity does not fit to any of the given categories or is ambiguous.
- O(n^3): The execution time ascends in proportion to the cube of the input size n.
- O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially.
- O(n): The execution time ascends in a one-to-one ratio with the input size n.
- O(log(n)): The execution time ascends in proportion to the logarithm of the input size n.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
| 2,409
| 183
|
4,356
|
import java.util.Scanner;
public class Hello {
public static void main(String[] args){
Scanner scan = new Scanner(System.in);
int n = scan.nextInt();
int m = scan.nextInt();
boolean[][] graph = new boolean[n][n];
for(int i = 0; i < m; i++) {
int from = scan.nextInt() - 1;
int to = scan.nextInt() - 1;
graph[from][to] = graph[to][from] = true;
}
int max = 1 << n;
long[][] dp = new long[max][n];
for(int mask = 1; mask < max; mask++) {
for(int i = 0; i < n; i++) {
boolean existI = (mask & (1 << i)) > 0;
if(Integer.bitCount(mask) == 1 && existI) {
dp[mask][i] = 1;
} else if(Integer.bitCount(mask) > 1 && existI && first(mask) != i) {
long sum = 0;
for(int j = 0; j < n; j++) {
if(graph[i][j]) sum += dp[mask ^ (1 << i)][j];
}
dp[mask][i] = sum;
}
}
}
long countCycles = 0;
for(int mask = 7; mask < max; mask++) {
for(int i = 0; i < n; i++) {
if(Integer.bitCount(mask) >= 3 && graph[first(mask)][i]) {
countCycles += dp[mask][i];
}
}
}
System.out.println(countCycles / 2);
}
public static int first(int mask) {
int i = 0;
while((mask & (1 << i++)) == 0);
return i - 1;
}
}
|
non-polynomial
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n.
</TASK>
<CODE>
import java.util.Scanner;
public class Hello {
public static void main(String[] args){
Scanner scan = new Scanner(System.in);
int n = scan.nextInt();
int m = scan.nextInt();
boolean[][] graph = new boolean[n][n];
for(int i = 0; i < m; i++) {
int from = scan.nextInt() - 1;
int to = scan.nextInt() - 1;
graph[from][to] = graph[to][from] = true;
}
int max = 1 << n;
long[][] dp = new long[max][n];
for(int mask = 1; mask < max; mask++) {
for(int i = 0; i < n; i++) {
boolean existI = (mask & (1 << i)) > 0;
if(Integer.bitCount(mask) == 1 && existI) {
dp[mask][i] = 1;
} else if(Integer.bitCount(mask) > 1 && existI && first(mask) != i) {
long sum = 0;
for(int j = 0; j < n; j++) {
if(graph[i][j]) sum += dp[mask ^ (1 << i)][j];
}
dp[mask][i] = sum;
}
}
}
long countCycles = 0;
for(int mask = 7; mask < max; mask++) {
for(int i = 0; i < n; i++) {
if(Integer.bitCount(mask) >= 3 && graph[first(mask)][i]) {
countCycles += dp[mask][i];
}
}
}
System.out.println(countCycles / 2);
}
public static int first(int mask) {
int i = 0;
while((mask & (1 << i++)) == 0);
return i - 1;
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(n^2): The execution time ascends in proportion to the square of the input size n.
- O(n^3): The execution time ascends in proportion to the cube of the input size n.
- O(n): The execution time ascends in a one-to-one ratio with the input size n.
- O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially.
- O(1): The execution time is unaffected by the size of the input n.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- O(log(n)): The execution time ascends in proportion to the logarithm of the input size n.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Determine the worst-case time complexity category of a given Java code based on input size n.
</TASK>
<CODE>
import java.util.Scanner;
public class Hello {
public static void main(String[] args){
Scanner scan = new Scanner(System.in);
int n = scan.nextInt();
int m = scan.nextInt();
boolean[][] graph = new boolean[n][n];
for(int i = 0; i < m; i++) {
int from = scan.nextInt() - 1;
int to = scan.nextInt() - 1;
graph[from][to] = graph[to][from] = true;
}
int max = 1 << n;
long[][] dp = new long[max][n];
for(int mask = 1; mask < max; mask++) {
for(int i = 0; i < n; i++) {
boolean existI = (mask & (1 << i)) > 0;
if(Integer.bitCount(mask) == 1 && existI) {
dp[mask][i] = 1;
} else if(Integer.bitCount(mask) > 1 && existI && first(mask) != i) {
long sum = 0;
for(int j = 0; j < n; j++) {
if(graph[i][j]) sum += dp[mask ^ (1 << i)][j];
}
dp[mask][i] = sum;
}
}
}
long countCycles = 0;
for(int mask = 7; mask < max; mask++) {
for(int i = 0; i < n; i++) {
if(Integer.bitCount(mask) >= 3 && graph[first(mask)][i]) {
countCycles += dp[mask][i];
}
}
}
System.out.println(countCycles / 2);
}
public static int first(int mask) {
int i = 0;
while((mask & (1 << i++)) == 0);
return i - 1;
}
}
</CODE>
<EVALUATION_RUBRIC>
- non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially.
- O(log(n)): The time complexity increases logarithmically in relation to the input size.
- O(1): The time complexity is constant to the input size n.
- O(n^3): The time complexity scales proportionally to the cube of the input size.
- O(n): The time complexity increases proportionally to the input size n in a linear manner.
- O(n^2): The time complexity grows proportionally to the square of the input size.
- O(nlog(n)): The time complexity combines linear and logarithmic growth factors.
- others: The time complexity does not fit any of the above categories or cannot be clearly classified.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
| 776
| 4,345
|
2,959
|
import java.util.*;
import java.lang.*;
import java.io.*;
public class Ideone {
static long ans=0;
public static void Stepgcd(long a,long b) {
if (b!=0) {ans+=(a/b);Stepgcd(b,a%b);}
}
public static void main (String[] args) throws java.lang.Exception {
Scanner in=new Scanner(System.in);
long a=in.nextLong(),b=in.nextLong();
Stepgcd(a,b);
System.out.println(ans);
}
}
|
O(1)
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Classify the following Java code's worst-case time complexity according to its relationship to the input size n.
</TASK>
<CODE>
import java.util.*;
import java.lang.*;
import java.io.*;
public class Ideone {
static long ans=0;
public static void Stepgcd(long a,long b) {
if (b!=0) {ans+=(a/b);Stepgcd(b,a%b);}
}
public static void main (String[] args) throws java.lang.Exception {
Scanner in=new Scanner(System.in);
long a=in.nextLong(),b=in.nextLong();
Stepgcd(a,b);
System.out.println(ans);
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(1): The running time does not change regardless of the input size n.
- O(n^2): The running time increases with the square of the input size n.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- O(n^3): The running time increases with the cube of the input size n.
- O(n): The running time grows linearly with the input size n.
- O(log(n)): The running time increases with the logarithm of the input size n.
- O(nlog(n)): The running time increases with the product of n and logarithm of n.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Determine the worst-case time complexity category of a given Java code based on input size n.
</TASK>
<CODE>
import java.util.*;
import java.lang.*;
import java.io.*;
public class Ideone {
static long ans=0;
public static void Stepgcd(long a,long b) {
if (b!=0) {ans+=(a/b);Stepgcd(b,a%b);}
}
public static void main (String[] args) throws java.lang.Exception {
Scanner in=new Scanner(System.in);
long a=in.nextLong(),b=in.nextLong();
Stepgcd(a,b);
System.out.println(ans);
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(log(n)): The time complexity increases logarithmically in relation to the input size.
- O(n^2): The time complexity grows proportionally to the square of the input size.
- O(n^3): The time complexity scales proportionally to the cube of the input size.
- O(nlog(n)): The time complexity combines linear and logarithmic growth factors.
- O(n): The time complexity increases proportionally to the input size n in a linear manner.
- non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially.
- O(1): The time complexity is constant to the input size n.
- others: The time complexity does not fit any of the above categories or cannot be clearly classified.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
| 440
| 2,953
|
4,415
|
import java.io.*;
import java.math.BigInteger;
import java.util.*;
public class A {
static MyScanner sc;
static PrintWriter pw;
public static void main(String[] args) throws Throwable {
sc = new MyScanner();
pw = new PrintWriter(System.out);
n = sc.nextInt();
int m = sc.nextInt();
int[][] a = new int[n][m];
for (int i = 0; i < n; i++)
for (int j = 0; j < m; j++)
a[i][j] = sc.nextInt();
val = new int[n][n];
for (int i = 0; i < n; i++)
Arrays.fill(val[i], Integer.MAX_VALUE);
for (int i = 0; i < n; i++)
for (int j = i; j < n; j++) {
for (int k = 0; k < m; k++)
val[i][j] = val[j][i] = Math.min(val[i][j], Math.abs(a[i][k] - a[j][k]));
}
val2 = new int[n][n];
for (int i = 0; i < n; i++)
Arrays.fill(val2[i], Integer.MAX_VALUE);
for (int i = 0; i < n; i++)
for (int j = 0; j < n; j++) {
for (int k = 0; k < m - 1; k++)
val2[i][j] = Math.min(val2[i][j], Math.abs(a[i][k] - a[j][k + 1]));
}
mem = new Long[n][n][1 << n];
long ans = 0;
for (int i = 0; i < n; i++) {
ans = Math.max(ans, dp(i, i, 1 << i));
}
if (n == 1)
pw.println(val2[0][0]);
else
pw.println(ans);
pw.flush();
pw.close();
}
static int n;
static int[][] val, val2;
static Long[][][] mem;
static long dp(int st, int lst, int msk) {
int bits = Integer.bitCount(msk);
if (mem[st][lst][msk] != null)
return mem[st][lst][msk];
long ans = 0;
for (int i = 0; i < n; i++)
if ((msk & (1 << i)) == 0) {
int newMsk = (msk | (1 << i));
if (bits < n - 1)
ans = Math.max(ans, Math.min(val[lst][i], dp(st, i, newMsk)));
else
ans = Math.max(ans, Math.min(val[lst][i], val2[i][st]));
}
return mem[st][lst][msk] = ans;
}
static class MyScanner {
BufferedReader br;
StringTokenizer st;
public MyScanner() {
br = new BufferedReader(new InputStreamReader(System.in));
}
String next() {
while (st == null || !st.hasMoreElements()) {
try {
st = new StringTokenizer(br.readLine());
} catch (IOException e) {
e.printStackTrace();
}
}
return st.nextToken();
}
int nextInt() {
return Integer.parseInt(next());
}
long nextLong() {
return Long.parseLong(next());
}
double nextDouble() {
return Double.parseDouble(next());
}
String nextLine() {
String str = "";
try {
str = br.readLine();
} catch (IOException e) {
e.printStackTrace();
}
return str;
}
}
}
|
non-polynomial
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Determine the worst-case time complexity category of a given Java code based on input size n.
</TASK>
<CODE>
import java.io.*;
import java.math.BigInteger;
import java.util.*;
public class A {
static MyScanner sc;
static PrintWriter pw;
public static void main(String[] args) throws Throwable {
sc = new MyScanner();
pw = new PrintWriter(System.out);
n = sc.nextInt();
int m = sc.nextInt();
int[][] a = new int[n][m];
for (int i = 0; i < n; i++)
for (int j = 0; j < m; j++)
a[i][j] = sc.nextInt();
val = new int[n][n];
for (int i = 0; i < n; i++)
Arrays.fill(val[i], Integer.MAX_VALUE);
for (int i = 0; i < n; i++)
for (int j = i; j < n; j++) {
for (int k = 0; k < m; k++)
val[i][j] = val[j][i] = Math.min(val[i][j], Math.abs(a[i][k] - a[j][k]));
}
val2 = new int[n][n];
for (int i = 0; i < n; i++)
Arrays.fill(val2[i], Integer.MAX_VALUE);
for (int i = 0; i < n; i++)
for (int j = 0; j < n; j++) {
for (int k = 0; k < m - 1; k++)
val2[i][j] = Math.min(val2[i][j], Math.abs(a[i][k] - a[j][k + 1]));
}
mem = new Long[n][n][1 << n];
long ans = 0;
for (int i = 0; i < n; i++) {
ans = Math.max(ans, dp(i, i, 1 << i));
}
if (n == 1)
pw.println(val2[0][0]);
else
pw.println(ans);
pw.flush();
pw.close();
}
static int n;
static int[][] val, val2;
static Long[][][] mem;
static long dp(int st, int lst, int msk) {
int bits = Integer.bitCount(msk);
if (mem[st][lst][msk] != null)
return mem[st][lst][msk];
long ans = 0;
for (int i = 0; i < n; i++)
if ((msk & (1 << i)) == 0) {
int newMsk = (msk | (1 << i));
if (bits < n - 1)
ans = Math.max(ans, Math.min(val[lst][i], dp(st, i, newMsk)));
else
ans = Math.max(ans, Math.min(val[lst][i], val2[i][st]));
}
return mem[st][lst][msk] = ans;
}
static class MyScanner {
BufferedReader br;
StringTokenizer st;
public MyScanner() {
br = new BufferedReader(new InputStreamReader(System.in));
}
String next() {
while (st == null || !st.hasMoreElements()) {
try {
st = new StringTokenizer(br.readLine());
} catch (IOException e) {
e.printStackTrace();
}
}
return st.nextToken();
}
int nextInt() {
return Integer.parseInt(next());
}
long nextLong() {
return Long.parseLong(next());
}
double nextDouble() {
return Double.parseDouble(next());
}
String nextLine() {
String str = "";
try {
str = br.readLine();
} catch (IOException e) {
e.printStackTrace();
}
return str;
}
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(n^3): The time complexity scales proportionally to the cube of the input size.
- O(n): The time complexity increases proportionally to the input size n in a linear manner.
- O(log(n)): The time complexity increases logarithmically in relation to the input size.
- O(n^2): The time complexity grows proportionally to the square of the input size.
- O(1): The time complexity is constant to the input size n.
- O(nlog(n)): The time complexity combines linear and logarithmic growth factors.
- non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Classify the following Java code's worst-case time complexity according to its relationship to the input size n.
</TASK>
<CODE>
import java.io.*;
import java.math.BigInteger;
import java.util.*;
public class A {
static MyScanner sc;
static PrintWriter pw;
public static void main(String[] args) throws Throwable {
sc = new MyScanner();
pw = new PrintWriter(System.out);
n = sc.nextInt();
int m = sc.nextInt();
int[][] a = new int[n][m];
for (int i = 0; i < n; i++)
for (int j = 0; j < m; j++)
a[i][j] = sc.nextInt();
val = new int[n][n];
for (int i = 0; i < n; i++)
Arrays.fill(val[i], Integer.MAX_VALUE);
for (int i = 0; i < n; i++)
for (int j = i; j < n; j++) {
for (int k = 0; k < m; k++)
val[i][j] = val[j][i] = Math.min(val[i][j], Math.abs(a[i][k] - a[j][k]));
}
val2 = new int[n][n];
for (int i = 0; i < n; i++)
Arrays.fill(val2[i], Integer.MAX_VALUE);
for (int i = 0; i < n; i++)
for (int j = 0; j < n; j++) {
for (int k = 0; k < m - 1; k++)
val2[i][j] = Math.min(val2[i][j], Math.abs(a[i][k] - a[j][k + 1]));
}
mem = new Long[n][n][1 << n];
long ans = 0;
for (int i = 0; i < n; i++) {
ans = Math.max(ans, dp(i, i, 1 << i));
}
if (n == 1)
pw.println(val2[0][0]);
else
pw.println(ans);
pw.flush();
pw.close();
}
static int n;
static int[][] val, val2;
static Long[][][] mem;
static long dp(int st, int lst, int msk) {
int bits = Integer.bitCount(msk);
if (mem[st][lst][msk] != null)
return mem[st][lst][msk];
long ans = 0;
for (int i = 0; i < n; i++)
if ((msk & (1 << i)) == 0) {
int newMsk = (msk | (1 << i));
if (bits < n - 1)
ans = Math.max(ans, Math.min(val[lst][i], dp(st, i, newMsk)));
else
ans = Math.max(ans, Math.min(val[lst][i], val2[i][st]));
}
return mem[st][lst][msk] = ans;
}
static class MyScanner {
BufferedReader br;
StringTokenizer st;
public MyScanner() {
br = new BufferedReader(new InputStreamReader(System.in));
}
String next() {
while (st == null || !st.hasMoreElements()) {
try {
st = new StringTokenizer(br.readLine());
} catch (IOException e) {
e.printStackTrace();
}
}
return st.nextToken();
}
int nextInt() {
return Integer.parseInt(next());
}
long nextLong() {
return Long.parseLong(next());
}
double nextDouble() {
return Double.parseDouble(next());
}
String nextLine() {
String str = "";
try {
str = br.readLine();
} catch (IOException e) {
e.printStackTrace();
}
return str;
}
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(n): The running time grows linearly with the input size n.
- O(n^3): The running time increases with the cube of the input size n.
- O(1): The running time does not change regardless of the input size n.
- O(log(n)): The running time increases with the logarithm of the input size n.
- O(n^2): The running time increases with the square of the input size n.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- O(nlog(n)): The running time increases with the product of n and logarithm of n.
- others: The code does not clearly correspond to the listed classes or has an unclassified time complexity.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
| 1,142
| 4,404
|
4,146
|
import java.util.*;
public class Main {
static Scanner cin = new Scanner(System.in);
private int xs, ys, n;
private int[] x, y;
public static void main(String[] args) throws Exception {
new Main().run();
}
class Item implements Comparable<Item> {
int w, h, idx;
Item(int w, int h, int idx) {
this.w = w;
this.h = h;
this.idx = idx;
}
@Override
public int compareTo(Item o) {
if (this.w == o.w) {
return this.h - o.h;
}
return this.w - o.w;
}
}
private void run() throws Exception {
xs = cin.nextInt();
ys = cin.nextInt();
n = cin.nextInt();
x = new int[n + 1];
y = new int[n + 1];
for (int i = 0; i < n; i++) {
x[i] = cin.nextInt();
y[i] = cin.nextInt();
}
int[] res = new int[1 << n];
Arrays.fill(res, Integer.MAX_VALUE);
int[] ds = new int[n];
for (int i = 0; i < n; i++) {
ds[i] = (x[i] - xs) * (x[i] - xs) + (y[i] - ys) * (y[i] - ys);
}
int[][] d = new int[n + 1][n + 1];
int[] tr = new int[1 << n];
for (int i = 0; i < n; i++) {
for (int j = 0; j < n; j++) {
d[i][j] = (x[i] - x[j]) * (x[i] - x[j]) + (y[i] - y[j]) * (y[i] - y[j]);
}
}
//----------------------
res[0] = 0;
for (int i = 1; i < (1 << n); i++) {
for (int j = 0; j < n; j++) {
if (((i >> j) & 1) != 0) {
if (res[i - (1 << j)] + 2 * ds[j] < res[i]) {
res[i] = res[i - (1 << j)] + 2 * ds[j];
tr[i] = i - (1 << j);
}
for (int k = j + 1; k < n; k++) {
if (((i >> k) & 1) != 0) {
if (res[i - (1 << j) - (1 << k)] + ds[k] + ds[j] + d[k][j] < res[i]) {
res[i] = res[i - (1 << j) - (1 << k)] + ds[k] + ds[j] + d[k][j];
tr[i] = i - (1 << j) - (1 << k);
}
}
}
break;
}
}
}
System.out.println(res[(1 << n) - 1]);
int now = (1 << n) - 1;
while (now != 0) {
System.out.print("0 ");
int dif = now - tr[now];
for (int i = 0; i < n && dif != 0; i++) {
if (((dif >> i) & 1) != 0) {
System.out.print((i + 1) + " ");
dif -= (1 << i);
}
}
now=tr[now];
}
System.out.print("0");
}
}
|
non-polynomial
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Classify the following Java code's worst-case time complexity according to its relationship to the input size n.
</TASK>
<CODE>
import java.util.*;
public class Main {
static Scanner cin = new Scanner(System.in);
private int xs, ys, n;
private int[] x, y;
public static void main(String[] args) throws Exception {
new Main().run();
}
class Item implements Comparable<Item> {
int w, h, idx;
Item(int w, int h, int idx) {
this.w = w;
this.h = h;
this.idx = idx;
}
@Override
public int compareTo(Item o) {
if (this.w == o.w) {
return this.h - o.h;
}
return this.w - o.w;
}
}
private void run() throws Exception {
xs = cin.nextInt();
ys = cin.nextInt();
n = cin.nextInt();
x = new int[n + 1];
y = new int[n + 1];
for (int i = 0; i < n; i++) {
x[i] = cin.nextInt();
y[i] = cin.nextInt();
}
int[] res = new int[1 << n];
Arrays.fill(res, Integer.MAX_VALUE);
int[] ds = new int[n];
for (int i = 0; i < n; i++) {
ds[i] = (x[i] - xs) * (x[i] - xs) + (y[i] - ys) * (y[i] - ys);
}
int[][] d = new int[n + 1][n + 1];
int[] tr = new int[1 << n];
for (int i = 0; i < n; i++) {
for (int j = 0; j < n; j++) {
d[i][j] = (x[i] - x[j]) * (x[i] - x[j]) + (y[i] - y[j]) * (y[i] - y[j]);
}
}
//----------------------
res[0] = 0;
for (int i = 1; i < (1 << n); i++) {
for (int j = 0; j < n; j++) {
if (((i >> j) & 1) != 0) {
if (res[i - (1 << j)] + 2 * ds[j] < res[i]) {
res[i] = res[i - (1 << j)] + 2 * ds[j];
tr[i] = i - (1 << j);
}
for (int k = j + 1; k < n; k++) {
if (((i >> k) & 1) != 0) {
if (res[i - (1 << j) - (1 << k)] + ds[k] + ds[j] + d[k][j] < res[i]) {
res[i] = res[i - (1 << j) - (1 << k)] + ds[k] + ds[j] + d[k][j];
tr[i] = i - (1 << j) - (1 << k);
}
}
}
break;
}
}
}
System.out.println(res[(1 << n) - 1]);
int now = (1 << n) - 1;
while (now != 0) {
System.out.print("0 ");
int dif = now - tr[now];
for (int i = 0; i < n && dif != 0; i++) {
if (((dif >> i) & 1) != 0) {
System.out.print((i + 1) + " ");
dif -= (1 << i);
}
}
now=tr[now];
}
System.out.print("0");
}
}
</CODE>
<EVALUATION_RUBRIC>
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- O(1): The running time does not change regardless of the input size n.
- O(n^2): The running time increases with the square of the input size n.
- O(n): The running time grows linearly with the input size n.
- O(n^3): The running time increases with the cube of the input size n.
- O(nlog(n)): The running time increases with the product of n and logarithm of n.
- O(log(n)): The running time increases with the logarithm of the input size n.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n.
</TASK>
<CODE>
import java.util.*;
public class Main {
static Scanner cin = new Scanner(System.in);
private int xs, ys, n;
private int[] x, y;
public static void main(String[] args) throws Exception {
new Main().run();
}
class Item implements Comparable<Item> {
int w, h, idx;
Item(int w, int h, int idx) {
this.w = w;
this.h = h;
this.idx = idx;
}
@Override
public int compareTo(Item o) {
if (this.w == o.w) {
return this.h - o.h;
}
return this.w - o.w;
}
}
private void run() throws Exception {
xs = cin.nextInt();
ys = cin.nextInt();
n = cin.nextInt();
x = new int[n + 1];
y = new int[n + 1];
for (int i = 0; i < n; i++) {
x[i] = cin.nextInt();
y[i] = cin.nextInt();
}
int[] res = new int[1 << n];
Arrays.fill(res, Integer.MAX_VALUE);
int[] ds = new int[n];
for (int i = 0; i < n; i++) {
ds[i] = (x[i] - xs) * (x[i] - xs) + (y[i] - ys) * (y[i] - ys);
}
int[][] d = new int[n + 1][n + 1];
int[] tr = new int[1 << n];
for (int i = 0; i < n; i++) {
for (int j = 0; j < n; j++) {
d[i][j] = (x[i] - x[j]) * (x[i] - x[j]) + (y[i] - y[j]) * (y[i] - y[j]);
}
}
//----------------------
res[0] = 0;
for (int i = 1; i < (1 << n); i++) {
for (int j = 0; j < n; j++) {
if (((i >> j) & 1) != 0) {
if (res[i - (1 << j)] + 2 * ds[j] < res[i]) {
res[i] = res[i - (1 << j)] + 2 * ds[j];
tr[i] = i - (1 << j);
}
for (int k = j + 1; k < n; k++) {
if (((i >> k) & 1) != 0) {
if (res[i - (1 << j) - (1 << k)] + ds[k] + ds[j] + d[k][j] < res[i]) {
res[i] = res[i - (1 << j) - (1 << k)] + ds[k] + ds[j] + d[k][j];
tr[i] = i - (1 << j) - (1 << k);
}
}
}
break;
}
}
}
System.out.println(res[(1 << n) - 1]);
int now = (1 << n) - 1;
while (now != 0) {
System.out.print("0 ");
int dif = now - tr[now];
for (int i = 0; i < n && dif != 0; i++) {
if (((dif >> i) & 1) != 0) {
System.out.print((i + 1) + " ");
dif -= (1 << i);
}
}
now=tr[now];
}
System.out.print("0");
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(n): The execution time ascends in a one-to-one ratio with the input size n.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- O(n^2): The execution time ascends in proportion to the square of the input size n.
- O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially.
- O(n^3): The execution time ascends in proportion to the cube of the input size n.
- others: The time complexity does not fit to any of the given categories or is ambiguous.
- O(1): The execution time is unaffected by the size of the input n.
- O(log(n)): The execution time ascends in proportion to the logarithm of the input size n.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
| 1,138
| 4,135
|
1,489
|
/* Codeforces Template */
import java.io.*;
import java.util.*;
import static java.lang.Math.*;
import static java.util.Arrays.fill;
import static java.util.Arrays.binarySearch;
import static java.util.Arrays.sort;
public class Main {
static long initTime;
static final Random rnd = new Random(7777L);
static boolean writeLog = false;
public static void main(String[] args) throws IOException {
initTime = System.currentTimeMillis();
try {
writeLog = "true".equals(System.getProperty("LOCAL_RUN_7777"));
} catch (SecurityException e) {}
new Thread(null, new Runnable() {
public void run() {
try {
try {
if (new File("input.txt").exists())
System.setIn(new FileInputStream("input.txt"));
} catch (SecurityException e) {}
long prevTime = System.currentTimeMillis();
new Main().run();
log("Total time: " + (System.currentTimeMillis() - prevTime) + " ms");
log("Memory status: " + memoryStatus());
} catch (IOException e) {
e.printStackTrace();
}
}
}, "1", 1L << 24).start();
}
void run() throws IOException {
in = new BufferedReader(new InputStreamReader(System.in));
out = new PrintWriter(System.out);
solve();
out.close();
in.close();
}
/***************************************************************
* Solution
**************************************************************/
void solve() throws IOException {
long leftBorder = nextLong();
long rightBorder = nextLong();
long[][][][][] dp = new long [64][2][2][2][2];
for (long[][][][] a : dp) for (long[][][] b : a) for (long[][] c : b) for (long[] d : c) fill(d, -1L);
dp[63][0][0][0][0] = 0L;
for (int lastBit = 63; lastBit > 0; lastBit--) {
int curBit = lastBit - 1;
int leftBit = (int) ((leftBorder >> curBit) & 1L);
int rightBit = (int) ((rightBorder >> curBit) & 1L);
for (int agl = 0; agl < 2; agl++) {
for (int alr = 0; alr < 2; alr++) {
for (int bgl = 0; bgl < 2; bgl++) {
for (int blr = 0; blr < 2; blr++) {
long prvXor = dp[lastBit][agl][alr][bgl][blr];
if (prvXor < 0L) continue;
for (int ab = 0; ab < 2; ab++) {
int nagl = left(agl, leftBit, ab);
int nalr = right(alr, rightBit, ab);
if (nagl < 0 || nalr < 0) continue;
for (int bb = 0; bb < 2; bb++) {
int nbgl = left(bgl, leftBit, bb);
int nblr = right(blr, rightBit, bb);
if (nbgl < 0 || nblr < 0) continue;
long setBit = ab ^ bb;
dp[curBit][nagl][nalr][nbgl][nblr] = max(dp[curBit][nagl][nalr][nbgl][nblr], prvXor | (setBit << curBit));
}
}
}
}
}
}
}
long answer = -1L;
for (int agl = 0; agl < 2; agl++) {
for (int alr = 0; alr < 2; alr++) {
for (int bgl = 0; bgl < 2; bgl++) {
for (int blr = 0; blr < 2; blr++) {
answer = max(answer, dp[0][agl][alr][bgl][blr]);
}
}
}
}
// System.err.println(Long.toBinaryString(leftBorder));
// System.err.println(Long.toBinaryString(rightBorder));
// System.err.println(Long.toBinaryString(answer));
out.println(answer);
}
int left(int gl, int leftBit, int b) {
if (gl == 0) {
if (b < leftBit) return -1;
if (b == leftBit) return 0;
if (b > leftBit) return 1;
}
return 1;
}
int right(int lr, int rightBit, int b) {
if (lr == 0) {
if (b < rightBit) return 1;
if (b == rightBit) return 0;
if (b > rightBit) return -1;
}
return 1;
}
/***************************************************************
* Input
**************************************************************/
BufferedReader in;
PrintWriter out;
StringTokenizer st = new StringTokenizer("");
String nextToken() throws IOException {
while (!st.hasMoreTokens())
st = new StringTokenizer(in.readLine());
return st.nextToken();
}
int nextInt() throws IOException {
return Integer.parseInt(nextToken());
}
long nextLong() throws IOException {
return Long.parseLong(nextToken());
}
double nextDouble() throws IOException {
return Double.parseDouble(nextToken());
}
int[] nextIntArray(int size) throws IOException {
int[] ret = new int [size];
for (int i = 0; i < size; i++)
ret[i] = nextInt();
return ret;
}
long[] nextLongArray(int size) throws IOException {
long[] ret = new long [size];
for (int i = 0; i < size; i++)
ret[i] = nextLong();
return ret;
}
double[] nextDoubleArray(int size) throws IOException {
double[] ret = new double [size];
for (int i = 0; i < size; i++)
ret[i] = nextDouble();
return ret;
}
String nextLine() throws IOException {
st = new StringTokenizer("");
return in.readLine();
}
boolean EOF() throws IOException {
while (!st.hasMoreTokens()) {
String s = in.readLine();
if (s == null)
return true;
st = new StringTokenizer(s);
}
return false;
}
/***************************************************************
* Output
**************************************************************/
void printRepeat(String s, int count) {
for (int i = 0; i < count; i++)
out.print(s);
}
void printArray(int[] array) {
if (array == null || array.length == 0)
return;
for (int i = 0; i < array.length; i++) {
if (i > 0) out.print(' ');
out.print(array[i]);
}
out.println();
}
void printArray(long[] array) {
if (array == null || array.length == 0)
return;
for (int i = 0; i < array.length; i++) {
if (i > 0) out.print(' ');
out.print(array[i]);
}
out.println();
}
void printArray(double[] array) {
if (array == null || array.length == 0)
return;
for (int i = 0; i < array.length; i++) {
if (i > 0) out.print(' ');
out.print(array[i]);
}
out.println();
}
void printArray(double[] array, String spec) {
if (array == null || array.length == 0)
return;
for (int i = 0; i < array.length; i++) {
if (i > 0) out.print(' ');
out.printf(Locale.US, spec, array[i]);
}
out.println();
}
void printArray(Object[] array) {
if (array == null || array.length == 0)
return;
boolean blank = false;
for (Object x : array) {
if (blank) out.print(' '); else blank = true;
out.print(x);
}
out.println();
}
@SuppressWarnings("rawtypes")
void printCollection(Collection collection) {
if (collection == null || collection.isEmpty())
return;
boolean blank = false;
for (Object x : collection) {
if (blank) out.print(' '); else blank = true;
out.print(x);
}
out.println();
}
/***************************************************************
* Utility
**************************************************************/
static String memoryStatus() {
return (Runtime.getRuntime().totalMemory() - Runtime.getRuntime().freeMemory() >> 20) + "/" + (Runtime.getRuntime().totalMemory() >> 20) + " MB";
}
static void checkMemory() {
System.err.println(memoryStatus());
}
static long prevTimeStamp = Long.MIN_VALUE;
static void updateTimer() {
prevTimeStamp = System.currentTimeMillis();
}
static long elapsedTime() {
return (System.currentTimeMillis() - prevTimeStamp);
}
static void checkTimer() {
System.err.println(elapsedTime() + " ms");
}
static void chk(boolean f) {
if (!f) throw new RuntimeException("Assert failed");
}
static void chk(boolean f, String format, Object ... args) {
if (!f) throw new RuntimeException(String.format(format, args));
}
static void log(String format, Object ... args) {
if (writeLog) System.err.println(String.format(Locale.US, format, args));
}
}
|
O(log(n))
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Classify the following Java code's worst-case time complexity according to its relationship to the input size n.
</TASK>
<CODE>
/* Codeforces Template */
import java.io.*;
import java.util.*;
import static java.lang.Math.*;
import static java.util.Arrays.fill;
import static java.util.Arrays.binarySearch;
import static java.util.Arrays.sort;
public class Main {
static long initTime;
static final Random rnd = new Random(7777L);
static boolean writeLog = false;
public static void main(String[] args) throws IOException {
initTime = System.currentTimeMillis();
try {
writeLog = "true".equals(System.getProperty("LOCAL_RUN_7777"));
} catch (SecurityException e) {}
new Thread(null, new Runnable() {
public void run() {
try {
try {
if (new File("input.txt").exists())
System.setIn(new FileInputStream("input.txt"));
} catch (SecurityException e) {}
long prevTime = System.currentTimeMillis();
new Main().run();
log("Total time: " + (System.currentTimeMillis() - prevTime) + " ms");
log("Memory status: " + memoryStatus());
} catch (IOException e) {
e.printStackTrace();
}
}
}, "1", 1L << 24).start();
}
void run() throws IOException {
in = new BufferedReader(new InputStreamReader(System.in));
out = new PrintWriter(System.out);
solve();
out.close();
in.close();
}
/***************************************************************
* Solution
**************************************************************/
void solve() throws IOException {
long leftBorder = nextLong();
long rightBorder = nextLong();
long[][][][][] dp = new long [64][2][2][2][2];
for (long[][][][] a : dp) for (long[][][] b : a) for (long[][] c : b) for (long[] d : c) fill(d, -1L);
dp[63][0][0][0][0] = 0L;
for (int lastBit = 63; lastBit > 0; lastBit--) {
int curBit = lastBit - 1;
int leftBit = (int) ((leftBorder >> curBit) & 1L);
int rightBit = (int) ((rightBorder >> curBit) & 1L);
for (int agl = 0; agl < 2; agl++) {
for (int alr = 0; alr < 2; alr++) {
for (int bgl = 0; bgl < 2; bgl++) {
for (int blr = 0; blr < 2; blr++) {
long prvXor = dp[lastBit][agl][alr][bgl][blr];
if (prvXor < 0L) continue;
for (int ab = 0; ab < 2; ab++) {
int nagl = left(agl, leftBit, ab);
int nalr = right(alr, rightBit, ab);
if (nagl < 0 || nalr < 0) continue;
for (int bb = 0; bb < 2; bb++) {
int nbgl = left(bgl, leftBit, bb);
int nblr = right(blr, rightBit, bb);
if (nbgl < 0 || nblr < 0) continue;
long setBit = ab ^ bb;
dp[curBit][nagl][nalr][nbgl][nblr] = max(dp[curBit][nagl][nalr][nbgl][nblr], prvXor | (setBit << curBit));
}
}
}
}
}
}
}
long answer = -1L;
for (int agl = 0; agl < 2; agl++) {
for (int alr = 0; alr < 2; alr++) {
for (int bgl = 0; bgl < 2; bgl++) {
for (int blr = 0; blr < 2; blr++) {
answer = max(answer, dp[0][agl][alr][bgl][blr]);
}
}
}
}
// System.err.println(Long.toBinaryString(leftBorder));
// System.err.println(Long.toBinaryString(rightBorder));
// System.err.println(Long.toBinaryString(answer));
out.println(answer);
}
int left(int gl, int leftBit, int b) {
if (gl == 0) {
if (b < leftBit) return -1;
if (b == leftBit) return 0;
if (b > leftBit) return 1;
}
return 1;
}
int right(int lr, int rightBit, int b) {
if (lr == 0) {
if (b < rightBit) return 1;
if (b == rightBit) return 0;
if (b > rightBit) return -1;
}
return 1;
}
/***************************************************************
* Input
**************************************************************/
BufferedReader in;
PrintWriter out;
StringTokenizer st = new StringTokenizer("");
String nextToken() throws IOException {
while (!st.hasMoreTokens())
st = new StringTokenizer(in.readLine());
return st.nextToken();
}
int nextInt() throws IOException {
return Integer.parseInt(nextToken());
}
long nextLong() throws IOException {
return Long.parseLong(nextToken());
}
double nextDouble() throws IOException {
return Double.parseDouble(nextToken());
}
int[] nextIntArray(int size) throws IOException {
int[] ret = new int [size];
for (int i = 0; i < size; i++)
ret[i] = nextInt();
return ret;
}
long[] nextLongArray(int size) throws IOException {
long[] ret = new long [size];
for (int i = 0; i < size; i++)
ret[i] = nextLong();
return ret;
}
double[] nextDoubleArray(int size) throws IOException {
double[] ret = new double [size];
for (int i = 0; i < size; i++)
ret[i] = nextDouble();
return ret;
}
String nextLine() throws IOException {
st = new StringTokenizer("");
return in.readLine();
}
boolean EOF() throws IOException {
while (!st.hasMoreTokens()) {
String s = in.readLine();
if (s == null)
return true;
st = new StringTokenizer(s);
}
return false;
}
/***************************************************************
* Output
**************************************************************/
void printRepeat(String s, int count) {
for (int i = 0; i < count; i++)
out.print(s);
}
void printArray(int[] array) {
if (array == null || array.length == 0)
return;
for (int i = 0; i < array.length; i++) {
if (i > 0) out.print(' ');
out.print(array[i]);
}
out.println();
}
void printArray(long[] array) {
if (array == null || array.length == 0)
return;
for (int i = 0; i < array.length; i++) {
if (i > 0) out.print(' ');
out.print(array[i]);
}
out.println();
}
void printArray(double[] array) {
if (array == null || array.length == 0)
return;
for (int i = 0; i < array.length; i++) {
if (i > 0) out.print(' ');
out.print(array[i]);
}
out.println();
}
void printArray(double[] array, String spec) {
if (array == null || array.length == 0)
return;
for (int i = 0; i < array.length; i++) {
if (i > 0) out.print(' ');
out.printf(Locale.US, spec, array[i]);
}
out.println();
}
void printArray(Object[] array) {
if (array == null || array.length == 0)
return;
boolean blank = false;
for (Object x : array) {
if (blank) out.print(' '); else blank = true;
out.print(x);
}
out.println();
}
@SuppressWarnings("rawtypes")
void printCollection(Collection collection) {
if (collection == null || collection.isEmpty())
return;
boolean blank = false;
for (Object x : collection) {
if (blank) out.print(' '); else blank = true;
out.print(x);
}
out.println();
}
/***************************************************************
* Utility
**************************************************************/
static String memoryStatus() {
return (Runtime.getRuntime().totalMemory() - Runtime.getRuntime().freeMemory() >> 20) + "/" + (Runtime.getRuntime().totalMemory() >> 20) + " MB";
}
static void checkMemory() {
System.err.println(memoryStatus());
}
static long prevTimeStamp = Long.MIN_VALUE;
static void updateTimer() {
prevTimeStamp = System.currentTimeMillis();
}
static long elapsedTime() {
return (System.currentTimeMillis() - prevTimeStamp);
}
static void checkTimer() {
System.err.println(elapsedTime() + " ms");
}
static void chk(boolean f) {
if (!f) throw new RuntimeException("Assert failed");
}
static void chk(boolean f, String format, Object ... args) {
if (!f) throw new RuntimeException(String.format(format, args));
}
static void log(String format, Object ... args) {
if (writeLog) System.err.println(String.format(Locale.US, format, args));
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(n^3): The running time increases with the cube of the input size n.
- O(n^2): The running time increases with the square of the input size n.
- O(n): The running time grows linearly with the input size n.
- O(1): The running time does not change regardless of the input size n.
- O(log(n)): The running time increases with the logarithm of the input size n.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- O(nlog(n)): The running time increases with the product of n and logarithm of n.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n.
</TASK>
<CODE>
/* Codeforces Template */
import java.io.*;
import java.util.*;
import static java.lang.Math.*;
import static java.util.Arrays.fill;
import static java.util.Arrays.binarySearch;
import static java.util.Arrays.sort;
public class Main {
static long initTime;
static final Random rnd = new Random(7777L);
static boolean writeLog = false;
public static void main(String[] args) throws IOException {
initTime = System.currentTimeMillis();
try {
writeLog = "true".equals(System.getProperty("LOCAL_RUN_7777"));
} catch (SecurityException e) {}
new Thread(null, new Runnable() {
public void run() {
try {
try {
if (new File("input.txt").exists())
System.setIn(new FileInputStream("input.txt"));
} catch (SecurityException e) {}
long prevTime = System.currentTimeMillis();
new Main().run();
log("Total time: " + (System.currentTimeMillis() - prevTime) + " ms");
log("Memory status: " + memoryStatus());
} catch (IOException e) {
e.printStackTrace();
}
}
}, "1", 1L << 24).start();
}
void run() throws IOException {
in = new BufferedReader(new InputStreamReader(System.in));
out = new PrintWriter(System.out);
solve();
out.close();
in.close();
}
/***************************************************************
* Solution
**************************************************************/
void solve() throws IOException {
long leftBorder = nextLong();
long rightBorder = nextLong();
long[][][][][] dp = new long [64][2][2][2][2];
for (long[][][][] a : dp) for (long[][][] b : a) for (long[][] c : b) for (long[] d : c) fill(d, -1L);
dp[63][0][0][0][0] = 0L;
for (int lastBit = 63; lastBit > 0; lastBit--) {
int curBit = lastBit - 1;
int leftBit = (int) ((leftBorder >> curBit) & 1L);
int rightBit = (int) ((rightBorder >> curBit) & 1L);
for (int agl = 0; agl < 2; agl++) {
for (int alr = 0; alr < 2; alr++) {
for (int bgl = 0; bgl < 2; bgl++) {
for (int blr = 0; blr < 2; blr++) {
long prvXor = dp[lastBit][agl][alr][bgl][blr];
if (prvXor < 0L) continue;
for (int ab = 0; ab < 2; ab++) {
int nagl = left(agl, leftBit, ab);
int nalr = right(alr, rightBit, ab);
if (nagl < 0 || nalr < 0) continue;
for (int bb = 0; bb < 2; bb++) {
int nbgl = left(bgl, leftBit, bb);
int nblr = right(blr, rightBit, bb);
if (nbgl < 0 || nblr < 0) continue;
long setBit = ab ^ bb;
dp[curBit][nagl][nalr][nbgl][nblr] = max(dp[curBit][nagl][nalr][nbgl][nblr], prvXor | (setBit << curBit));
}
}
}
}
}
}
}
long answer = -1L;
for (int agl = 0; agl < 2; agl++) {
for (int alr = 0; alr < 2; alr++) {
for (int bgl = 0; bgl < 2; bgl++) {
for (int blr = 0; blr < 2; blr++) {
answer = max(answer, dp[0][agl][alr][bgl][blr]);
}
}
}
}
// System.err.println(Long.toBinaryString(leftBorder));
// System.err.println(Long.toBinaryString(rightBorder));
// System.err.println(Long.toBinaryString(answer));
out.println(answer);
}
int left(int gl, int leftBit, int b) {
if (gl == 0) {
if (b < leftBit) return -1;
if (b == leftBit) return 0;
if (b > leftBit) return 1;
}
return 1;
}
int right(int lr, int rightBit, int b) {
if (lr == 0) {
if (b < rightBit) return 1;
if (b == rightBit) return 0;
if (b > rightBit) return -1;
}
return 1;
}
/***************************************************************
* Input
**************************************************************/
BufferedReader in;
PrintWriter out;
StringTokenizer st = new StringTokenizer("");
String nextToken() throws IOException {
while (!st.hasMoreTokens())
st = new StringTokenizer(in.readLine());
return st.nextToken();
}
int nextInt() throws IOException {
return Integer.parseInt(nextToken());
}
long nextLong() throws IOException {
return Long.parseLong(nextToken());
}
double nextDouble() throws IOException {
return Double.parseDouble(nextToken());
}
int[] nextIntArray(int size) throws IOException {
int[] ret = new int [size];
for (int i = 0; i < size; i++)
ret[i] = nextInt();
return ret;
}
long[] nextLongArray(int size) throws IOException {
long[] ret = new long [size];
for (int i = 0; i < size; i++)
ret[i] = nextLong();
return ret;
}
double[] nextDoubleArray(int size) throws IOException {
double[] ret = new double [size];
for (int i = 0; i < size; i++)
ret[i] = nextDouble();
return ret;
}
String nextLine() throws IOException {
st = new StringTokenizer("");
return in.readLine();
}
boolean EOF() throws IOException {
while (!st.hasMoreTokens()) {
String s = in.readLine();
if (s == null)
return true;
st = new StringTokenizer(s);
}
return false;
}
/***************************************************************
* Output
**************************************************************/
void printRepeat(String s, int count) {
for (int i = 0; i < count; i++)
out.print(s);
}
void printArray(int[] array) {
if (array == null || array.length == 0)
return;
for (int i = 0; i < array.length; i++) {
if (i > 0) out.print(' ');
out.print(array[i]);
}
out.println();
}
void printArray(long[] array) {
if (array == null || array.length == 0)
return;
for (int i = 0; i < array.length; i++) {
if (i > 0) out.print(' ');
out.print(array[i]);
}
out.println();
}
void printArray(double[] array) {
if (array == null || array.length == 0)
return;
for (int i = 0; i < array.length; i++) {
if (i > 0) out.print(' ');
out.print(array[i]);
}
out.println();
}
void printArray(double[] array, String spec) {
if (array == null || array.length == 0)
return;
for (int i = 0; i < array.length; i++) {
if (i > 0) out.print(' ');
out.printf(Locale.US, spec, array[i]);
}
out.println();
}
void printArray(Object[] array) {
if (array == null || array.length == 0)
return;
boolean blank = false;
for (Object x : array) {
if (blank) out.print(' '); else blank = true;
out.print(x);
}
out.println();
}
@SuppressWarnings("rawtypes")
void printCollection(Collection collection) {
if (collection == null || collection.isEmpty())
return;
boolean blank = false;
for (Object x : collection) {
if (blank) out.print(' '); else blank = true;
out.print(x);
}
out.println();
}
/***************************************************************
* Utility
**************************************************************/
static String memoryStatus() {
return (Runtime.getRuntime().totalMemory() - Runtime.getRuntime().freeMemory() >> 20) + "/" + (Runtime.getRuntime().totalMemory() >> 20) + " MB";
}
static void checkMemory() {
System.err.println(memoryStatus());
}
static long prevTimeStamp = Long.MIN_VALUE;
static void updateTimer() {
prevTimeStamp = System.currentTimeMillis();
}
static long elapsedTime() {
return (System.currentTimeMillis() - prevTimeStamp);
}
static void checkTimer() {
System.err.println(elapsedTime() + " ms");
}
static void chk(boolean f) {
if (!f) throw new RuntimeException("Assert failed");
}
static void chk(boolean f, String format, Object ... args) {
if (!f) throw new RuntimeException(String.format(format, args));
}
static void log(String format, Object ... args) {
if (writeLog) System.err.println(String.format(Locale.US, format, args));
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially.
- O(n^2): The execution time ascends in proportion to the square of the input size n.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- O(n^3): The execution time ascends in proportion to the cube of the input size n.
- O(1): The execution time is unaffected by the size of the input n.
- O(log(n)): The execution time ascends in proportion to the logarithm of the input size n.
- others: The time complexity does not fit to any of the given categories or is ambiguous.
- O(n): The execution time ascends in a one-to-one ratio with the input size n.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
| 2,493
| 1,487
|
850
|
import java.io.BufferedReader;
import java.io.IOException;
import java.io.InputStreamReader;
import java.io.PrintWriter;
import java.util.ArrayList;
import java.util.List;
import java.util.StringTokenizer;
public class A {
BufferedReader in;
StringTokenizer st;
PrintWriter out;
void solve() throws IOException {
int n = nextInt();
int k = nextInt();
boolean[] sieve = new boolean[n + 1];
List<Integer> primes = new ArrayList<Integer>();
for (int i = 2; i <= n; ++i) {
if (!sieve[i]) {
primes.add(i);
for (int j = 2 * i; j <= n; j += i) {
sieve[j] = true;
}
}
}
int count = 0;
for (int i = 0; i + 1 < primes.size(); ++i) {
int v = primes.get(i) + primes.get(i + 1) + 1;
if (v <= n && !sieve[v]) {
++count;
}
}
// System.err.println(count);
out.println(count >= k ? "YES" : "NO");
}
public void run() throws IOException {
in = new BufferedReader(new InputStreamReader(System.in));
out = new PrintWriter(System.out);
eat("");
solve();
out.close();
in.close();
}
void eat(String s) {
st = new StringTokenizer(s);
}
String next() throws IOException {
while (!st.hasMoreTokens()) {
String line = in.readLine();
if (line == null) {
return null;
}
eat(line);
}
return st.nextToken();
}
int nextInt() throws IOException {
return Integer.parseInt(next());
}
long nextLong() throws IOException {
return Long.parseLong(next());
}
double nextDouble() throws IOException {
return Double.parseDouble(next());
}
public static void main(String[] args) throws IOException {
new A().run();
}
}
|
O(n)
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Determine the worst-case time complexity category of a given Java code based on input size n.
</TASK>
<CODE>
import java.io.BufferedReader;
import java.io.IOException;
import java.io.InputStreamReader;
import java.io.PrintWriter;
import java.util.ArrayList;
import java.util.List;
import java.util.StringTokenizer;
public class A {
BufferedReader in;
StringTokenizer st;
PrintWriter out;
void solve() throws IOException {
int n = nextInt();
int k = nextInt();
boolean[] sieve = new boolean[n + 1];
List<Integer> primes = new ArrayList<Integer>();
for (int i = 2; i <= n; ++i) {
if (!sieve[i]) {
primes.add(i);
for (int j = 2 * i; j <= n; j += i) {
sieve[j] = true;
}
}
}
int count = 0;
for (int i = 0; i + 1 < primes.size(); ++i) {
int v = primes.get(i) + primes.get(i + 1) + 1;
if (v <= n && !sieve[v]) {
++count;
}
}
// System.err.println(count);
out.println(count >= k ? "YES" : "NO");
}
public void run() throws IOException {
in = new BufferedReader(new InputStreamReader(System.in));
out = new PrintWriter(System.out);
eat("");
solve();
out.close();
in.close();
}
void eat(String s) {
st = new StringTokenizer(s);
}
String next() throws IOException {
while (!st.hasMoreTokens()) {
String line = in.readLine();
if (line == null) {
return null;
}
eat(line);
}
return st.nextToken();
}
int nextInt() throws IOException {
return Integer.parseInt(next());
}
long nextLong() throws IOException {
return Long.parseLong(next());
}
double nextDouble() throws IOException {
return Double.parseDouble(next());
}
public static void main(String[] args) throws IOException {
new A().run();
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(1): The time complexity is constant to the input size n.
- O(n): The time complexity increases proportionally to the input size n in a linear manner.
- non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially.
- O(n^3): The time complexity scales proportionally to the cube of the input size.
- O(nlog(n)): The time complexity combines linear and logarithmic growth factors.
- O(log(n)): The time complexity increases logarithmically in relation to the input size.
- O(n^2): The time complexity grows proportionally to the square of the input size.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Classify the following Java code's worst-case time complexity according to its relationship to the input size n.
</TASK>
<CODE>
import java.io.BufferedReader;
import java.io.IOException;
import java.io.InputStreamReader;
import java.io.PrintWriter;
import java.util.ArrayList;
import java.util.List;
import java.util.StringTokenizer;
public class A {
BufferedReader in;
StringTokenizer st;
PrintWriter out;
void solve() throws IOException {
int n = nextInt();
int k = nextInt();
boolean[] sieve = new boolean[n + 1];
List<Integer> primes = new ArrayList<Integer>();
for (int i = 2; i <= n; ++i) {
if (!sieve[i]) {
primes.add(i);
for (int j = 2 * i; j <= n; j += i) {
sieve[j] = true;
}
}
}
int count = 0;
for (int i = 0; i + 1 < primes.size(); ++i) {
int v = primes.get(i) + primes.get(i + 1) + 1;
if (v <= n && !sieve[v]) {
++count;
}
}
// System.err.println(count);
out.println(count >= k ? "YES" : "NO");
}
public void run() throws IOException {
in = new BufferedReader(new InputStreamReader(System.in));
out = new PrintWriter(System.out);
eat("");
solve();
out.close();
in.close();
}
void eat(String s) {
st = new StringTokenizer(s);
}
String next() throws IOException {
while (!st.hasMoreTokens()) {
String line = in.readLine();
if (line == null) {
return null;
}
eat(line);
}
return st.nextToken();
}
int nextInt() throws IOException {
return Integer.parseInt(next());
}
long nextLong() throws IOException {
return Long.parseLong(next());
}
double nextDouble() throws IOException {
return Double.parseDouble(next());
}
public static void main(String[] args) throws IOException {
new A().run();
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(n^3): The running time increases with the cube of the input size n.
- O(log(n)): The running time increases with the logarithm of the input size n.
- O(nlog(n)): The running time increases with the product of n and logarithm of n.
- O(n^2): The running time increases with the square of the input size n.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- others: The code does not clearly correspond to the listed classes or has an unclassified time complexity.
- O(1): The running time does not change regardless of the input size n.
- O(n): The running time grows linearly with the input size n.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
| 755
| 849
|
2,448
|
import java.util.*;
import java.io.*;
import java.math.*;
public class Solution{
static class Node implements Comparable<Node>{
int sum;
int l;
int r;
Node next;
int nb;
Node ini;
boolean not;
public Node(int sum,int l,int r){
this.sum = sum;
this.l = l;
this.r = r;
nb = 0;
not = false;
ini = null;
}
@Override
public int compareTo(Node node){
if(sum-node.sum!=0) return sum-node.sum;
else if(l-node.l!=0) return l-node.l;
else return r - node.r;
}
}
public static void main(String[] args)throws IOException{
BufferedReader br = new BufferedReader(new InputStreamReader(System.in));
StringTokenizer st = new StringTokenizer(br.readLine());
PrintWriter out = new PrintWriter(System.out);
int n = Integer.parseInt(st.nextToken());
TreeSet<Node> ts = new TreeSet<Node>();
st = new StringTokenizer(br.readLine());
int[] a = new int[n+1];
for(int i=1;i<=n;i++) a[i] = Integer.parseInt(st.nextToken());
int[] s = new int[n+1];
for(int i=1;i<=n;i++) s[i] = s[i-1] + a[i];
for(int i=1;i<=n;i++){
for(int j=i;j<=n;j++){
ts.add(new Node(s[j]-s[i-1],i,j));
}
}
int minvalue = -2000*(int)Math.pow(10,5);
int maxvalue = 2000*(int)Math.pow(10,5);
ts.add(new Node(minvalue,0,0));
ts.add(new Node(maxvalue,0,0));
//System.out.println(minvalue);
Node node = ts.higher(ts.first());
int sum = 0;
int max = 0;
Node m = null;
while(node.sum!=maxvalue){
sum = node.sum;
while(node.sum==sum){
node = ts.higher(node);
}
Node var = ts.lower(node);
// System.out.println(sum+" "+var.sum);
max = 0;
while(var.sum==sum){
Node next = ts.higher(new Node(sum,var.r+1,0));
if(max>1+next.nb){
var.nb = max;
var.ini = m;
}
else if(next.ini==null){
var.nb = 1 + next.nb;
var.next = next;
if(max<var.nb){
max = var.nb;
m = var;
}
}else{
var.nb = 1 + next.nb;
var.next = next.ini;
if(max<var.nb){
max = var.nb;
m = var;
}
}
var = ts.lower(var);
//System.out.println(sum+" "+var.sum);
}
}
int k = 0;
Node best = new Node(minvalue,0,0);
//var = new Node(minvalue,0,0);
for(Node var:ts){
if(k<var.nb){
k = var.nb;
best = var;
if(var.ini!=null) best = var.ini;
}
}
if(k==0) System.out.println("erreur");
else{
out.println(k);
sum = best.sum;
while(best.sum==sum){
out.println(best.l+" "+best.r);
best = best.next;
}
}
out.flush();
}
}
|
O(n^2)
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Classify the following Java code's worst-case time complexity according to its relationship to the input size n.
</TASK>
<CODE>
import java.util.*;
import java.io.*;
import java.math.*;
public class Solution{
static class Node implements Comparable<Node>{
int sum;
int l;
int r;
Node next;
int nb;
Node ini;
boolean not;
public Node(int sum,int l,int r){
this.sum = sum;
this.l = l;
this.r = r;
nb = 0;
not = false;
ini = null;
}
@Override
public int compareTo(Node node){
if(sum-node.sum!=0) return sum-node.sum;
else if(l-node.l!=0) return l-node.l;
else return r - node.r;
}
}
public static void main(String[] args)throws IOException{
BufferedReader br = new BufferedReader(new InputStreamReader(System.in));
StringTokenizer st = new StringTokenizer(br.readLine());
PrintWriter out = new PrintWriter(System.out);
int n = Integer.parseInt(st.nextToken());
TreeSet<Node> ts = new TreeSet<Node>();
st = new StringTokenizer(br.readLine());
int[] a = new int[n+1];
for(int i=1;i<=n;i++) a[i] = Integer.parseInt(st.nextToken());
int[] s = new int[n+1];
for(int i=1;i<=n;i++) s[i] = s[i-1] + a[i];
for(int i=1;i<=n;i++){
for(int j=i;j<=n;j++){
ts.add(new Node(s[j]-s[i-1],i,j));
}
}
int minvalue = -2000*(int)Math.pow(10,5);
int maxvalue = 2000*(int)Math.pow(10,5);
ts.add(new Node(minvalue,0,0));
ts.add(new Node(maxvalue,0,0));
//System.out.println(minvalue);
Node node = ts.higher(ts.first());
int sum = 0;
int max = 0;
Node m = null;
while(node.sum!=maxvalue){
sum = node.sum;
while(node.sum==sum){
node = ts.higher(node);
}
Node var = ts.lower(node);
// System.out.println(sum+" "+var.sum);
max = 0;
while(var.sum==sum){
Node next = ts.higher(new Node(sum,var.r+1,0));
if(max>1+next.nb){
var.nb = max;
var.ini = m;
}
else if(next.ini==null){
var.nb = 1 + next.nb;
var.next = next;
if(max<var.nb){
max = var.nb;
m = var;
}
}else{
var.nb = 1 + next.nb;
var.next = next.ini;
if(max<var.nb){
max = var.nb;
m = var;
}
}
var = ts.lower(var);
//System.out.println(sum+" "+var.sum);
}
}
int k = 0;
Node best = new Node(minvalue,0,0);
//var = new Node(minvalue,0,0);
for(Node var:ts){
if(k<var.nb){
k = var.nb;
best = var;
if(var.ini!=null) best = var.ini;
}
}
if(k==0) System.out.println("erreur");
else{
out.println(k);
sum = best.sum;
while(best.sum==sum){
out.println(best.l+" "+best.r);
best = best.next;
}
}
out.flush();
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(nlog(n)): The running time increases with the product of n and logarithm of n.
- O(n^3): The running time increases with the cube of the input size n.
- O(n^2): The running time increases with the square of the input size n.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- O(log(n)): The running time increases with the logarithm of the input size n.
- O(1): The running time does not change regardless of the input size n.
- O(n): The running time grows linearly with the input size n.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n.
</TASK>
<CODE>
import java.util.*;
import java.io.*;
import java.math.*;
public class Solution{
static class Node implements Comparable<Node>{
int sum;
int l;
int r;
Node next;
int nb;
Node ini;
boolean not;
public Node(int sum,int l,int r){
this.sum = sum;
this.l = l;
this.r = r;
nb = 0;
not = false;
ini = null;
}
@Override
public int compareTo(Node node){
if(sum-node.sum!=0) return sum-node.sum;
else if(l-node.l!=0) return l-node.l;
else return r - node.r;
}
}
public static void main(String[] args)throws IOException{
BufferedReader br = new BufferedReader(new InputStreamReader(System.in));
StringTokenizer st = new StringTokenizer(br.readLine());
PrintWriter out = new PrintWriter(System.out);
int n = Integer.parseInt(st.nextToken());
TreeSet<Node> ts = new TreeSet<Node>();
st = new StringTokenizer(br.readLine());
int[] a = new int[n+1];
for(int i=1;i<=n;i++) a[i] = Integer.parseInt(st.nextToken());
int[] s = new int[n+1];
for(int i=1;i<=n;i++) s[i] = s[i-1] + a[i];
for(int i=1;i<=n;i++){
for(int j=i;j<=n;j++){
ts.add(new Node(s[j]-s[i-1],i,j));
}
}
int minvalue = -2000*(int)Math.pow(10,5);
int maxvalue = 2000*(int)Math.pow(10,5);
ts.add(new Node(minvalue,0,0));
ts.add(new Node(maxvalue,0,0));
//System.out.println(minvalue);
Node node = ts.higher(ts.first());
int sum = 0;
int max = 0;
Node m = null;
while(node.sum!=maxvalue){
sum = node.sum;
while(node.sum==sum){
node = ts.higher(node);
}
Node var = ts.lower(node);
// System.out.println(sum+" "+var.sum);
max = 0;
while(var.sum==sum){
Node next = ts.higher(new Node(sum,var.r+1,0));
if(max>1+next.nb){
var.nb = max;
var.ini = m;
}
else if(next.ini==null){
var.nb = 1 + next.nb;
var.next = next;
if(max<var.nb){
max = var.nb;
m = var;
}
}else{
var.nb = 1 + next.nb;
var.next = next.ini;
if(max<var.nb){
max = var.nb;
m = var;
}
}
var = ts.lower(var);
//System.out.println(sum+" "+var.sum);
}
}
int k = 0;
Node best = new Node(minvalue,0,0);
//var = new Node(minvalue,0,0);
for(Node var:ts){
if(k<var.nb){
k = var.nb;
best = var;
if(var.ini!=null) best = var.ini;
}
}
if(k==0) System.out.println("erreur");
else{
out.println(k);
sum = best.sum;
while(best.sum==sum){
out.println(best.l+" "+best.r);
best = best.next;
}
}
out.flush();
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(1): The execution time is unaffected by the size of the input n.
- O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially.
- O(n): The execution time ascends in a one-to-one ratio with the input size n.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- O(n^2): The execution time ascends in proportion to the square of the input size n.
- others: The time complexity does not fit to any of the given categories or is ambiguous.
- O(log(n)): The execution time ascends in proportion to the logarithm of the input size n.
- O(n^3): The execution time ascends in proportion to the cube of the input size n.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
| 1,134
| 2,443
|
3,406
|
import java.io.PrintWriter;
import java.util.HashMap;
import java.util.Map;
import java.util.Scanner;
public class P19 {
public static void main(String[] args) {
Scanner in = new Scanner(System.in);
PrintWriter out = new PrintWriter(System.out);
Map<Integer, Integer> mapa = new HashMap<Integer, Integer>();
String str = in.next();
int len = str.length();
int maxCurrent = 0;
for (int i = 0; i < len; ++i) {
for (int j = 1; j <= len; ++j) {
if (i + j > len) continue;
//System.out.format("Adding from %d to %d -> %s\n",i, i+j,str.substring(i, i + j));
int hashCode = str.substring(i, i + j).hashCode();
Integer current = mapa.get(hashCode);
if (current == null)
current = 0;
current++;
mapa.put(hashCode, current);
if (current > 1)
maxCurrent = Math.max(maxCurrent, j);
}
}
out.println(maxCurrent);
out.flush();
out.close();
}
}
|
O(n^3)
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Determine the worst-case time complexity category of a given Java code based on input size n.
</TASK>
<CODE>
import java.io.PrintWriter;
import java.util.HashMap;
import java.util.Map;
import java.util.Scanner;
public class P19 {
public static void main(String[] args) {
Scanner in = new Scanner(System.in);
PrintWriter out = new PrintWriter(System.out);
Map<Integer, Integer> mapa = new HashMap<Integer, Integer>();
String str = in.next();
int len = str.length();
int maxCurrent = 0;
for (int i = 0; i < len; ++i) {
for (int j = 1; j <= len; ++j) {
if (i + j > len) continue;
//System.out.format("Adding from %d to %d -> %s\n",i, i+j,str.substring(i, i + j));
int hashCode = str.substring(i, i + j).hashCode();
Integer current = mapa.get(hashCode);
if (current == null)
current = 0;
current++;
mapa.put(hashCode, current);
if (current > 1)
maxCurrent = Math.max(maxCurrent, j);
}
}
out.println(maxCurrent);
out.flush();
out.close();
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(log(n)): The time complexity increases logarithmically in relation to the input size.
- O(n^2): The time complexity grows proportionally to the square of the input size.
- O(n^3): The time complexity scales proportionally to the cube of the input size.
- O(1): The time complexity is constant to the input size n.
- non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially.
- O(n): The time complexity increases proportionally to the input size n in a linear manner.
- O(nlog(n)): The time complexity combines linear and logarithmic growth factors.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Classify the following Java code's worst-case time complexity according to its relationship to the input size n.
</TASK>
<CODE>
import java.io.PrintWriter;
import java.util.HashMap;
import java.util.Map;
import java.util.Scanner;
public class P19 {
public static void main(String[] args) {
Scanner in = new Scanner(System.in);
PrintWriter out = new PrintWriter(System.out);
Map<Integer, Integer> mapa = new HashMap<Integer, Integer>();
String str = in.next();
int len = str.length();
int maxCurrent = 0;
for (int i = 0; i < len; ++i) {
for (int j = 1; j <= len; ++j) {
if (i + j > len) continue;
//System.out.format("Adding from %d to %d -> %s\n",i, i+j,str.substring(i, i + j));
int hashCode = str.substring(i, i + j).hashCode();
Integer current = mapa.get(hashCode);
if (current == null)
current = 0;
current++;
mapa.put(hashCode, current);
if (current > 1)
maxCurrent = Math.max(maxCurrent, j);
}
}
out.println(maxCurrent);
out.flush();
out.close();
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(n^3): The running time increases with the cube of the input size n.
- O(n): The running time grows linearly with the input size n.
- O(n^2): The running time increases with the square of the input size n.
- O(nlog(n)): The running time increases with the product of n and logarithm of n.
- O(1): The running time does not change regardless of the input size n.
- O(log(n)): The running time increases with the logarithm of the input size n.
- others: The code does not clearly correspond to the listed classes or has an unclassified time complexity.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
| 581
| 3,400
|
639
|
import java.io.BufferedReader;
import java.io.InputStreamReader;
import java.io.PrintWriter;
public class ProblemA {
public static void main(String[] args) throws Exception{
BufferedReader reader = new BufferedReader(new InputStreamReader(System.in));
PrintWriter writer = new PrintWriter(System.out);
int n = Integer.parseInt(reader.readLine());
String [] split = reader.readLine().split("\\s+");
int value;
int [] count = new int[2];
int [] pos = new int[2];
for(int i = 0; i < split.length; i++){
value = Integer.parseInt(split[i]);
count[value % 2] ++;
pos[value % 2] = i + 1;
}
writer.println((count[0] == 1) ? pos[0] : pos[1]);
writer.flush();
writer.close();
}
}
|
O(n)
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n.
</TASK>
<CODE>
import java.io.BufferedReader;
import java.io.InputStreamReader;
import java.io.PrintWriter;
public class ProblemA {
public static void main(String[] args) throws Exception{
BufferedReader reader = new BufferedReader(new InputStreamReader(System.in));
PrintWriter writer = new PrintWriter(System.out);
int n = Integer.parseInt(reader.readLine());
String [] split = reader.readLine().split("\\s+");
int value;
int [] count = new int[2];
int [] pos = new int[2];
for(int i = 0; i < split.length; i++){
value = Integer.parseInt(split[i]);
count[value % 2] ++;
pos[value % 2] = i + 1;
}
writer.println((count[0] == 1) ? pos[0] : pos[1]);
writer.flush();
writer.close();
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(n): The execution time ascends in a one-to-one ratio with the input size n.
- O(n^2): The execution time ascends in proportion to the square of the input size n.
- O(log(n)): The execution time ascends in proportion to the logarithm of the input size n.
- O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- O(n^3): The execution time ascends in proportion to the cube of the input size n.
- O(1): The execution time is unaffected by the size of the input n.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Determine the worst-case time complexity category of a given Java code based on input size n.
</TASK>
<CODE>
import java.io.BufferedReader;
import java.io.InputStreamReader;
import java.io.PrintWriter;
public class ProblemA {
public static void main(String[] args) throws Exception{
BufferedReader reader = new BufferedReader(new InputStreamReader(System.in));
PrintWriter writer = new PrintWriter(System.out);
int n = Integer.parseInt(reader.readLine());
String [] split = reader.readLine().split("\\s+");
int value;
int [] count = new int[2];
int [] pos = new int[2];
for(int i = 0; i < split.length; i++){
value = Integer.parseInt(split[i]);
count[value % 2] ++;
pos[value % 2] = i + 1;
}
writer.println((count[0] == 1) ? pos[0] : pos[1]);
writer.flush();
writer.close();
}
}
</CODE>
<EVALUATION_RUBRIC>
- others: The time complexity does not fit any of the above categories or cannot be clearly classified.
- O(n): The time complexity increases proportionally to the input size n in a linear manner.
- non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially.
- O(log(n)): The time complexity increases logarithmically in relation to the input size.
- O(n^2): The time complexity grows proportionally to the square of the input size.
- O(nlog(n)): The time complexity combines linear and logarithmic growth factors.
- O(n^3): The time complexity scales proportionally to the cube of the input size.
- O(1): The time complexity is constant to the input size n.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
| 528
| 638
|
2,646
|
import java.util.Scanner;
public class first {
static int max = 1000000000;
public static void main(String[] args) {
Scanner sc = new Scanner(System.in);
int n = sc.nextInt();
int[] tab = new int[n];
for(int i=0;i<n;i++) {
tab[i] = sc.nextInt();
}
for(int i=0;i<n;i++) {
for(int j=0;j<n;j++) {
if(i!=j)
if(tab[i]>=tab[j] && tab[i]%tab[j]==0) {
tab[i] = max;
}
}
}
int res = 0;
for(int i=0;i<n;i++) {
if(tab[i]!=max) res++;
}
System.out.println(res);
//System.out.println(4%-1);
}
}
|
O(n^2)
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Determine the worst-case time complexity category of a given Java code based on input size n.
</TASK>
<CODE>
import java.util.Scanner;
public class first {
static int max = 1000000000;
public static void main(String[] args) {
Scanner sc = new Scanner(System.in);
int n = sc.nextInt();
int[] tab = new int[n];
for(int i=0;i<n;i++) {
tab[i] = sc.nextInt();
}
for(int i=0;i<n;i++) {
for(int j=0;j<n;j++) {
if(i!=j)
if(tab[i]>=tab[j] && tab[i]%tab[j]==0) {
tab[i] = max;
}
}
}
int res = 0;
for(int i=0;i<n;i++) {
if(tab[i]!=max) res++;
}
System.out.println(res);
//System.out.println(4%-1);
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(log(n)): The time complexity increases logarithmically in relation to the input size.
- O(n): The time complexity increases proportionally to the input size n in a linear manner.
- O(nlog(n)): The time complexity combines linear and logarithmic growth factors.
- O(n^2): The time complexity grows proportionally to the square of the input size.
- O(n^3): The time complexity scales proportionally to the cube of the input size.
- non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially.
- O(1): The time complexity is constant to the input size n.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Classify the following Java code's worst-case time complexity according to its relationship to the input size n.
</TASK>
<CODE>
import java.util.Scanner;
public class first {
static int max = 1000000000;
public static void main(String[] args) {
Scanner sc = new Scanner(System.in);
int n = sc.nextInt();
int[] tab = new int[n];
for(int i=0;i<n;i++) {
tab[i] = sc.nextInt();
}
for(int i=0;i<n;i++) {
for(int j=0;j<n;j++) {
if(i!=j)
if(tab[i]>=tab[j] && tab[i]%tab[j]==0) {
tab[i] = max;
}
}
}
int res = 0;
for(int i=0;i<n;i++) {
if(tab[i]!=max) res++;
}
System.out.println(res);
//System.out.println(4%-1);
}
}
</CODE>
<EVALUATION_RUBRIC>
- others: The code does not clearly correspond to the listed classes or has an unclassified time complexity.
- O(n^2): The running time increases with the square of the input size n.
- O(n): The running time grows linearly with the input size n.
- O(nlog(n)): The running time increases with the product of n and logarithm of n.
- O(log(n)): The running time increases with the logarithm of the input size n.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- O(n^3): The running time increases with the cube of the input size n.
- O(1): The running time does not change regardless of the input size n.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
| 522
| 2,640
|
2,072
|
import java.io.*;
import java.util.*;
public class CodeForce {
private void solve() throws IOException {
final int N = nextInt();
int []A = new int[N];
for(int i = 0; i < N; i++) A[i] = nextInt();
Arrays.sort(A);
if(A[N-1] == 1) A[N-1] = 2;
else A[N-1] = 1;
Arrays.sort(A);
for(int i = 0; i < N; i++)
System.out.print(A[i] + " ");
}
public static void main(String[] args) {
new CodeForce().run();
}
BufferedReader reader;
StringTokenizer tokenizer;
PrintWriter writer;
public void run() {
try {
reader = new BufferedReader(new InputStreamReader(System.in));
tokenizer = null;
writer = new PrintWriter(new FileOutputStream(new File("output.txt")));
solve();
reader.close();
writer.close();
} catch (Exception e) {
e.printStackTrace();
System.exit(1);
}
}
int nextInt() throws IOException {
return Integer.parseInt(nextToken());
}
long nextLong() throws IOException {
return Long.parseLong(nextToken());
}
double nextDouble() throws IOException {
return Double.parseDouble(nextToken());
}
String nextLine() throws IOException {
return reader.readLine();
}
String nextToken() throws IOException {
while (tokenizer == null || !tokenizer.hasMoreTokens()) {
tokenizer = new StringTokenizer(reader.readLine());
}
return tokenizer.nextToken();
}
}
|
O(nlog(n))
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Classify the following Java code's worst-case time complexity according to its relationship to the input size n.
</TASK>
<CODE>
import java.io.*;
import java.util.*;
public class CodeForce {
private void solve() throws IOException {
final int N = nextInt();
int []A = new int[N];
for(int i = 0; i < N; i++) A[i] = nextInt();
Arrays.sort(A);
if(A[N-1] == 1) A[N-1] = 2;
else A[N-1] = 1;
Arrays.sort(A);
for(int i = 0; i < N; i++)
System.out.print(A[i] + " ");
}
public static void main(String[] args) {
new CodeForce().run();
}
BufferedReader reader;
StringTokenizer tokenizer;
PrintWriter writer;
public void run() {
try {
reader = new BufferedReader(new InputStreamReader(System.in));
tokenizer = null;
writer = new PrintWriter(new FileOutputStream(new File("output.txt")));
solve();
reader.close();
writer.close();
} catch (Exception e) {
e.printStackTrace();
System.exit(1);
}
}
int nextInt() throws IOException {
return Integer.parseInt(nextToken());
}
long nextLong() throws IOException {
return Long.parseLong(nextToken());
}
double nextDouble() throws IOException {
return Double.parseDouble(nextToken());
}
String nextLine() throws IOException {
return reader.readLine();
}
String nextToken() throws IOException {
while (tokenizer == null || !tokenizer.hasMoreTokens()) {
tokenizer = new StringTokenizer(reader.readLine());
}
return tokenizer.nextToken();
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(1): The running time does not change regardless of the input size n.
- O(n^2): The running time increases with the square of the input size n.
- O(n^3): The running time increases with the cube of the input size n.
- O(nlog(n)): The running time increases with the product of n and logarithm of n.
- O(log(n)): The running time increases with the logarithm of the input size n.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- O(n): The running time grows linearly with the input size n.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Classify the following Java code's worst-case time complexity according to its relationship to the input size n.
</TASK>
<CODE>
import java.io.*;
import java.util.*;
public class CodeForce {
private void solve() throws IOException {
final int N = nextInt();
int []A = new int[N];
for(int i = 0; i < N; i++) A[i] = nextInt();
Arrays.sort(A);
if(A[N-1] == 1) A[N-1] = 2;
else A[N-1] = 1;
Arrays.sort(A);
for(int i = 0; i < N; i++)
System.out.print(A[i] + " ");
}
public static void main(String[] args) {
new CodeForce().run();
}
BufferedReader reader;
StringTokenizer tokenizer;
PrintWriter writer;
public void run() {
try {
reader = new BufferedReader(new InputStreamReader(System.in));
tokenizer = null;
writer = new PrintWriter(new FileOutputStream(new File("output.txt")));
solve();
reader.close();
writer.close();
} catch (Exception e) {
e.printStackTrace();
System.exit(1);
}
}
int nextInt() throws IOException {
return Integer.parseInt(nextToken());
}
long nextLong() throws IOException {
return Long.parseLong(nextToken());
}
double nextDouble() throws IOException {
return Double.parseDouble(nextToken());
}
String nextLine() throws IOException {
return reader.readLine();
}
String nextToken() throws IOException {
while (tokenizer == null || !tokenizer.hasMoreTokens()) {
tokenizer = new StringTokenizer(reader.readLine());
}
return tokenizer.nextToken();
}
}
</CODE>
<EVALUATION_RUBRIC>
- others: The code does not clearly correspond to the listed classes or has an unclassified time complexity.
- O(1): The running time does not change regardless of the input size n.
- O(n^2): The running time increases with the square of the input size n.
- O(nlog(n)): The running time increases with the product of n and logarithm of n.
- O(n^3): The running time increases with the cube of the input size n.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- O(log(n)): The running time increases with the logarithm of the input size n.
- O(n): The running time grows linearly with the input size n.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
| 668
| 2,068
|
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.