id
int64
0
4.52k
code
stringlengths
142
31.2k
answer
stringclasses
7 values
prompt
stringlengths
1.64k
32.6k
test_prompt
stringlengths
1.7k
32.7k
token_length
int64
373
7.8k
__index_level_0__
int64
0
4.5k
432
import java.util.*; import java.io.*; public class Solution{ public static long page(long p,long k){ return (p-1)/k; } public static void main(String[] args) throws Exception { Scanner sc = new Scanner(System.in); long n = sc.nextLong(); int m = sc.nextInt(); long k = sc.nextLong(); long[] p = new long[m]; long del = 0; long nb = 1; int op = 0; for(int i=0;i<m;i++) p[i] = sc.nextLong(); for(int i=1;i<m;i++){ if(page(p[i]-del,k)!=page(p[i-1]-del,k)){ del += nb; nb = 1; op++; }else{ nb++; } } if(nb!=0) op++; System.out.println(op); } }
O(n)
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n. </TASK> <CODE> import java.util.*; import java.io.*; public class Solution{ public static long page(long p,long k){ return (p-1)/k; } public static void main(String[] args) throws Exception { Scanner sc = new Scanner(System.in); long n = sc.nextLong(); int m = sc.nextInt(); long k = sc.nextLong(); long[] p = new long[m]; long del = 0; long nb = 1; int op = 0; for(int i=0;i<m;i++) p[i] = sc.nextLong(); for(int i=1;i<m;i++){ if(page(p[i]-del,k)!=page(p[i-1]-del,k)){ del += nb; nb = 1; op++; }else{ nb++; } } if(nb!=0) op++; System.out.println(op); } } </CODE> <EVALUATION_RUBRIC> - O(log(n)): The execution time ascends in proportion to the logarithm of the input size n. - O(n): The execution time ascends in a one-to-one ratio with the input size n. - O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially. - non-polynomial: The running time increases non-polynomially with input size n, typically exponentially. - O(n^3): The execution time ascends in proportion to the cube of the input size n. - O(1): The execution time is unaffected by the size of the input n. - O(n^2): The execution time ascends in proportion to the square of the input size n. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Classify the following Java code's worst-case time complexity according to its relationship to the input size n. </TASK> <CODE> import java.util.*; import java.io.*; public class Solution{ public static long page(long p,long k){ return (p-1)/k; } public static void main(String[] args) throws Exception { Scanner sc = new Scanner(System.in); long n = sc.nextLong(); int m = sc.nextInt(); long k = sc.nextLong(); long[] p = new long[m]; long del = 0; long nb = 1; int op = 0; for(int i=0;i<m;i++) p[i] = sc.nextLong(); for(int i=1;i<m;i++){ if(page(p[i]-del,k)!=page(p[i-1]-del,k)){ del += nb; nb = 1; op++; }else{ nb++; } } if(nb!=0) op++; System.out.println(op); } } </CODE> <EVALUATION_RUBRIC> - O(log(n)): The running time increases with the logarithm of the input size n. - non-polynomial: The running time increases non-polynomially with input size n, typically exponentially. - O(n^2): The running time increases with the square of the input size n. - O(1): The running time does not change regardless of the input size n. - O(n): The running time grows linearly with the input size n. - others: The code does not clearly correspond to the listed classes or has an unclassified time complexity. - O(nlog(n)): The running time increases with the product of n and logarithm of n. - O(n^3): The running time increases with the cube of the input size n. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
557
431
4,393
import java.util.*; public class Main { public static void main(String[] args) { Scanner sc = new Scanner(System.in); while ( sc.hasNextInt() ) { int n = sc.nextInt(); long m = sc.nextInt(); boolean edge[][] = new boolean[n][n]; long dp[][] = new long[1<<n][n]; for ( long i = 1 ; i<=m ; ++i ) { int u = sc.nextInt(); int v = sc.nextInt(); -- u; -- v; edge[u][v] = edge[v][u] = true; } for ( int i = 0 ; i<n ; ++i ) { dp[1<<i][i] = 1; } long res = 0; for ( int i = 1 ; i<(1<<n) ; ++i ) { int first = cal(i); for ( int j = 0 ; j<n ; ++j ) { if ( dp[i][j]==0 ) { continue; } for ( int k = first ; k<n ; ++k ) { if ( j==k || !edge[j][k] ) { continue; } if ( k==first && (i&(1<<k))!=0 ) { res += dp[i][j]; } if ( (i&(1<<k))==0 ) { dp[i|(1<<k)][k] += dp[i][j]; } } } } res -= m; System.out.println(res/2); } } public static int cal( int x ) { int ord = 0; while ( true ) { if ( (x&(1<<ord))!=0 ) { break; } ++ ord; } return ord; } public static boolean judge( int x ) { int cnt = 0; while ( x>=1 ) { if ( (x&1)==1 ) { ++ cnt; } x >>= 1; } return cnt >= 3; } }
non-polynomial
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n. </TASK> <CODE> import java.util.*; public class Main { public static void main(String[] args) { Scanner sc = new Scanner(System.in); while ( sc.hasNextInt() ) { int n = sc.nextInt(); long m = sc.nextInt(); boolean edge[][] = new boolean[n][n]; long dp[][] = new long[1<<n][n]; for ( long i = 1 ; i<=m ; ++i ) { int u = sc.nextInt(); int v = sc.nextInt(); -- u; -- v; edge[u][v] = edge[v][u] = true; } for ( int i = 0 ; i<n ; ++i ) { dp[1<<i][i] = 1; } long res = 0; for ( int i = 1 ; i<(1<<n) ; ++i ) { int first = cal(i); for ( int j = 0 ; j<n ; ++j ) { if ( dp[i][j]==0 ) { continue; } for ( int k = first ; k<n ; ++k ) { if ( j==k || !edge[j][k] ) { continue; } if ( k==first && (i&(1<<k))!=0 ) { res += dp[i][j]; } if ( (i&(1<<k))==0 ) { dp[i|(1<<k)][k] += dp[i][j]; } } } } res -= m; System.out.println(res/2); } } public static int cal( int x ) { int ord = 0; while ( true ) { if ( (x&(1<<ord))!=0 ) { break; } ++ ord; } return ord; } public static boolean judge( int x ) { int cnt = 0; while ( x>=1 ) { if ( (x&1)==1 ) { ++ cnt; } x >>= 1; } return cnt >= 3; } } </CODE> <EVALUATION_RUBRIC> - O(n): The execution time ascends in a one-to-one ratio with the input size n. - O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially. - non-polynomial: The running time increases non-polynomially with input size n, typically exponentially. - O(log(n)): The execution time ascends in proportion to the logarithm of the input size n. - O(1): The execution time is unaffected by the size of the input n. - O(n^2): The execution time ascends in proportion to the square of the input size n. - O(n^3): The execution time ascends in proportion to the cube of the input size n. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Determine the worst-case time complexity category of a given Java code based on input size n. </TASK> <CODE> import java.util.*; public class Main { public static void main(String[] args) { Scanner sc = new Scanner(System.in); while ( sc.hasNextInt() ) { int n = sc.nextInt(); long m = sc.nextInt(); boolean edge[][] = new boolean[n][n]; long dp[][] = new long[1<<n][n]; for ( long i = 1 ; i<=m ; ++i ) { int u = sc.nextInt(); int v = sc.nextInt(); -- u; -- v; edge[u][v] = edge[v][u] = true; } for ( int i = 0 ; i<n ; ++i ) { dp[1<<i][i] = 1; } long res = 0; for ( int i = 1 ; i<(1<<n) ; ++i ) { int first = cal(i); for ( int j = 0 ; j<n ; ++j ) { if ( dp[i][j]==0 ) { continue; } for ( int k = first ; k<n ; ++k ) { if ( j==k || !edge[j][k] ) { continue; } if ( k==first && (i&(1<<k))!=0 ) { res += dp[i][j]; } if ( (i&(1<<k))==0 ) { dp[i|(1<<k)][k] += dp[i][j]; } } } } res -= m; System.out.println(res/2); } } public static int cal( int x ) { int ord = 0; while ( true ) { if ( (x&(1<<ord))!=0 ) { break; } ++ ord; } return ord; } public static boolean judge( int x ) { int cnt = 0; while ( x>=1 ) { if ( (x&1)==1 ) { ++ cnt; } x >>= 1; } return cnt >= 3; } } </CODE> <EVALUATION_RUBRIC> - O(n^2): The time complexity grows proportionally to the square of the input size. - O(n): The time complexity increases proportionally to the input size n in a linear manner. - O(log(n)): The time complexity increases logarithmically in relation to the input size. - non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially. - O(n^3): The time complexity scales proportionally to the cube of the input size. - O(nlog(n)): The time complexity combines linear and logarithmic growth factors. - O(1): The time complexity is constant to the input size n. - others: The time complexity does not fit any of the above categories or cannot be clearly classified. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
828
4,382
1,091
/* If you want to aim high, aim high Don't let that studying and grades consume you Just live life young ****************************** What do you think? What do you think? 1st on Billboard, what do you think of it Next is a Grammy, what do you think of it However you think, I’m sorry, but shit, I have no fcking interest ******************************* I'm standing on top of my Monopoly board That means I'm on top of my game and it don't stop til my hip don't hop anymore https://www.a2oj.com/Ladder16.html ******************************* 300iq as writer = Sad! */ import java.util.*; import java.io.*; import java.math.*; public class x1080D { public static void main(String hi[]) throws Exception { long[] dp = new long[32]; for(int i=1; i <= 31; i++) dp[i] = 1+4*dp[i-1]; BufferedReader infile = new BufferedReader(new InputStreamReader(System.in)); StringTokenizer st = new StringTokenizer(infile.readLine()); int T = Integer.parseInt(st.nextToken()); StringBuilder sb = new StringBuilder(); matcha:while(T-->0) { st = new StringTokenizer(infile.readLine()); int N = Integer.parseInt(st.nextToken()); long K = Long.parseLong(st.nextToken()); if(N >= 32 || K == 1) sb.append("YES "+(N-1)+"\n"); else if(dp[N] == K) sb.append("YES 0\n"); else if(dp[N] < K) sb.append("NO\n"); else { long total = 3L; long length = 2; for(int res=N-1; res >= 0; res--) { long min = 1+3*dp[N-1-res]; long max = min+dp[N-1]; long cansplit = total-2*length+1; max += dp[res]*cansplit; if(min <= K && K <= max) { sb.append("YES "+res+"\n"); continue matcha; } length <<= 1; total *= 4; } sb.append("NO\n"); } } System.out.print(sb); } }
O(log(n))
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Determine the worst-case time complexity category of a given Java code based on input size n. </TASK> <CODE> /* If you want to aim high, aim high Don't let that studying and grades consume you Just live life young ****************************** What do you think? What do you think? 1st on Billboard, what do you think of it Next is a Grammy, what do you think of it However you think, I’m sorry, but shit, I have no fcking interest ******************************* I'm standing on top of my Monopoly board That means I'm on top of my game and it don't stop til my hip don't hop anymore https://www.a2oj.com/Ladder16.html ******************************* 300iq as writer = Sad! */ import java.util.*; import java.io.*; import java.math.*; public class x1080D { public static void main(String hi[]) throws Exception { long[] dp = new long[32]; for(int i=1; i <= 31; i++) dp[i] = 1+4*dp[i-1]; BufferedReader infile = new BufferedReader(new InputStreamReader(System.in)); StringTokenizer st = new StringTokenizer(infile.readLine()); int T = Integer.parseInt(st.nextToken()); StringBuilder sb = new StringBuilder(); matcha:while(T-->0) { st = new StringTokenizer(infile.readLine()); int N = Integer.parseInt(st.nextToken()); long K = Long.parseLong(st.nextToken()); if(N >= 32 || K == 1) sb.append("YES "+(N-1)+"\n"); else if(dp[N] == K) sb.append("YES 0\n"); else if(dp[N] < K) sb.append("NO\n"); else { long total = 3L; long length = 2; for(int res=N-1; res >= 0; res--) { long min = 1+3*dp[N-1-res]; long max = min+dp[N-1]; long cansplit = total-2*length+1; max += dp[res]*cansplit; if(min <= K && K <= max) { sb.append("YES "+res+"\n"); continue matcha; } length <<= 1; total *= 4; } sb.append("NO\n"); } } System.out.print(sb); } } </CODE> <EVALUATION_RUBRIC> - O(n): The time complexity increases proportionally to the input size n in a linear manner. - O(n^2): The time complexity grows proportionally to the square of the input size. - O(log(n)): The time complexity increases logarithmically in relation to the input size. - O(nlog(n)): The time complexity combines linear and logarithmic growth factors. - O(n^3): The time complexity scales proportionally to the cube of the input size. - non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially. - O(1): The time complexity is constant to the input size n. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Determine the worst-case time complexity category of a given Java code based on input size n. </TASK> <CODE> /* If you want to aim high, aim high Don't let that studying and grades consume you Just live life young ****************************** What do you think? What do you think? 1st on Billboard, what do you think of it Next is a Grammy, what do you think of it However you think, I’m sorry, but shit, I have no fcking interest ******************************* I'm standing on top of my Monopoly board That means I'm on top of my game and it don't stop til my hip don't hop anymore https://www.a2oj.com/Ladder16.html ******************************* 300iq as writer = Sad! */ import java.util.*; import java.io.*; import java.math.*; public class x1080D { public static void main(String hi[]) throws Exception { long[] dp = new long[32]; for(int i=1; i <= 31; i++) dp[i] = 1+4*dp[i-1]; BufferedReader infile = new BufferedReader(new InputStreamReader(System.in)); StringTokenizer st = new StringTokenizer(infile.readLine()); int T = Integer.parseInt(st.nextToken()); StringBuilder sb = new StringBuilder(); matcha:while(T-->0) { st = new StringTokenizer(infile.readLine()); int N = Integer.parseInt(st.nextToken()); long K = Long.parseLong(st.nextToken()); if(N >= 32 || K == 1) sb.append("YES "+(N-1)+"\n"); else if(dp[N] == K) sb.append("YES 0\n"); else if(dp[N] < K) sb.append("NO\n"); else { long total = 3L; long length = 2; for(int res=N-1; res >= 0; res--) { long min = 1+3*dp[N-1-res]; long max = min+dp[N-1]; long cansplit = total-2*length+1; max += dp[res]*cansplit; if(min <= K && K <= max) { sb.append("YES "+res+"\n"); continue matcha; } length <<= 1; total *= 4; } sb.append("NO\n"); } } System.out.print(sb); } } </CODE> <EVALUATION_RUBRIC> - O(1): The time complexity is constant to the input size n. - non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially. - others: The time complexity does not fit any of the above categories or cannot be clearly classified. - O(n): The time complexity increases proportionally to the input size n in a linear manner. - O(n^2): The time complexity grows proportionally to the square of the input size. - O(log(n)): The time complexity increases logarithmically in relation to the input size. - O(nlog(n)): The time complexity combines linear and logarithmic growth factors. - O(n^3): The time complexity scales proportionally to the cube of the input size. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
833
1,090
2,619
import java.util.*; /** * https://codeforces.com/contests */ public class TaskA { public static void main(String[] args) { Scanner sc = new Scanner(System.in); int n = sc.nextInt(); Set<Integer> set = new HashSet<>(); for (int i = 0; i < n; i++) { int a = sc.nextInt(); boolean flag = false; // true = не нужно добавлять List<Integer> toRemove = new ArrayList<>(); for (int b : set) { if (a % b == 0) { flag = true; break; } else if (b % a == 0 && a < b) { toRemove.add(b); } } for (int r: toRemove) { set.remove(r); } if (!flag) { set.add(a); } } System.out.println(set.size()); } }
O(n^2)
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n. </TASK> <CODE> import java.util.*; /** * https://codeforces.com/contests */ public class TaskA { public static void main(String[] args) { Scanner sc = new Scanner(System.in); int n = sc.nextInt(); Set<Integer> set = new HashSet<>(); for (int i = 0; i < n; i++) { int a = sc.nextInt(); boolean flag = false; // true = не нужно добавлять List<Integer> toRemove = new ArrayList<>(); for (int b : set) { if (a % b == 0) { flag = true; break; } else if (b % a == 0 && a < b) { toRemove.add(b); } } for (int r: toRemove) { set.remove(r); } if (!flag) { set.add(a); } } System.out.println(set.size()); } } </CODE> <EVALUATION_RUBRIC> - O(1): The execution time is unaffected by the size of the input n. - O(n^2): The execution time ascends in proportion to the square of the input size n. - O(log(n)): The execution time ascends in proportion to the logarithm of the input size n. - O(n): The execution time ascends in a one-to-one ratio with the input size n. - O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially. - non-polynomial: The running time increases non-polynomially with input size n, typically exponentially. - O(n^3): The execution time ascends in proportion to the cube of the input size n. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Determine the worst-case time complexity category of a given Java code based on input size n. </TASK> <CODE> import java.util.*; /** * https://codeforces.com/contests */ public class TaskA { public static void main(String[] args) { Scanner sc = new Scanner(System.in); int n = sc.nextInt(); Set<Integer> set = new HashSet<>(); for (int i = 0; i < n; i++) { int a = sc.nextInt(); boolean flag = false; // true = не нужно добавлять List<Integer> toRemove = new ArrayList<>(); for (int b : set) { if (a % b == 0) { flag = true; break; } else if (b % a == 0 && a < b) { toRemove.add(b); } } for (int r: toRemove) { set.remove(r); } if (!flag) { set.add(a); } } System.out.println(set.size()); } } </CODE> <EVALUATION_RUBRIC> - non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially. - O(n): The time complexity increases proportionally to the input size n in a linear manner. - others: The time complexity does not fit any of the above categories or cannot be clearly classified. - O(nlog(n)): The time complexity combines linear and logarithmic growth factors. - O(log(n)): The time complexity increases logarithmically in relation to the input size. - O(n^3): The time complexity scales proportionally to the cube of the input size. - O(n^2): The time complexity grows proportionally to the square of the input size. - O(1): The time complexity is constant to the input size n. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
550
2,613
335
import java.io.BufferedReader; import java.io.IOException; import java.io.InputStreamReader; import java.io.PrintWriter; import java.util.StringTokenizer; public class Homyak implements Runnable { private void solve() throws IOException { int n = nextInt(); String seq = nextToken(); int nh = 0; int nt = 0; for (int i = 0; i < n; ++i) if (seq.charAt(i) == 'H') ++nh; else ++nt; int res = n; for (int delta = 0; delta < n; ++delta) { int changed = 0; int at = delta; for (int i = 0; i < nh; ++i) { if (seq.charAt(at) != 'H') ++changed; ++at; if (at >= n) at = 0; } for (int i = 0; i < nt; ++i) { if (seq.charAt(at) != 'T') ++changed; ++at; if (at >= n) at = 0; } res = Math.min(res, changed / 2); } writer.println(res); } public static void main(String[] args) { new Homyak().run(); } BufferedReader reader; StringTokenizer tokenizer; PrintWriter writer; public void run() { try { reader = new BufferedReader(new InputStreamReader(System.in)); tokenizer = null; writer = new PrintWriter(System.out); solve(); reader.close(); writer.close(); } catch (Exception e) { e.printStackTrace(); System.exit(1); } } int nextInt() throws IOException { return Integer.parseInt(nextToken()); } long nextLong() throws IOException { return Long.parseLong(nextToken()); } double nextDouble() throws IOException { return Double.parseDouble(nextToken()); } String nextToken() throws IOException { while (tokenizer == null || !tokenizer.hasMoreTokens()) { tokenizer = new StringTokenizer(reader.readLine()); } return tokenizer.nextToken(); } }
O(n)
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Classify the following Java code's worst-case time complexity according to its relationship to the input size n. </TASK> <CODE> import java.io.BufferedReader; import java.io.IOException; import java.io.InputStreamReader; import java.io.PrintWriter; import java.util.StringTokenizer; public class Homyak implements Runnable { private void solve() throws IOException { int n = nextInt(); String seq = nextToken(); int nh = 0; int nt = 0; for (int i = 0; i < n; ++i) if (seq.charAt(i) == 'H') ++nh; else ++nt; int res = n; for (int delta = 0; delta < n; ++delta) { int changed = 0; int at = delta; for (int i = 0; i < nh; ++i) { if (seq.charAt(at) != 'H') ++changed; ++at; if (at >= n) at = 0; } for (int i = 0; i < nt; ++i) { if (seq.charAt(at) != 'T') ++changed; ++at; if (at >= n) at = 0; } res = Math.min(res, changed / 2); } writer.println(res); } public static void main(String[] args) { new Homyak().run(); } BufferedReader reader; StringTokenizer tokenizer; PrintWriter writer; public void run() { try { reader = new BufferedReader(new InputStreamReader(System.in)); tokenizer = null; writer = new PrintWriter(System.out); solve(); reader.close(); writer.close(); } catch (Exception e) { e.printStackTrace(); System.exit(1); } } int nextInt() throws IOException { return Integer.parseInt(nextToken()); } long nextLong() throws IOException { return Long.parseLong(nextToken()); } double nextDouble() throws IOException { return Double.parseDouble(nextToken()); } String nextToken() throws IOException { while (tokenizer == null || !tokenizer.hasMoreTokens()) { tokenizer = new StringTokenizer(reader.readLine()); } return tokenizer.nextToken(); } } </CODE> <EVALUATION_RUBRIC> - O(log(n)): The running time increases with the logarithm of the input size n. - O(n): The running time grows linearly with the input size n. - non-polynomial: The running time increases non-polynomially with input size n, typically exponentially. - O(1): The running time does not change regardless of the input size n. - O(n^2): The running time increases with the square of the input size n. - O(nlog(n)): The running time increases with the product of n and logarithm of n. - O(n^3): The running time increases with the cube of the input size n. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Classify the following Java code's worst-case time complexity according to its relationship to the input size n. </TASK> <CODE> import java.io.BufferedReader; import java.io.IOException; import java.io.InputStreamReader; import java.io.PrintWriter; import java.util.StringTokenizer; public class Homyak implements Runnable { private void solve() throws IOException { int n = nextInt(); String seq = nextToken(); int nh = 0; int nt = 0; for (int i = 0; i < n; ++i) if (seq.charAt(i) == 'H') ++nh; else ++nt; int res = n; for (int delta = 0; delta < n; ++delta) { int changed = 0; int at = delta; for (int i = 0; i < nh; ++i) { if (seq.charAt(at) != 'H') ++changed; ++at; if (at >= n) at = 0; } for (int i = 0; i < nt; ++i) { if (seq.charAt(at) != 'T') ++changed; ++at; if (at >= n) at = 0; } res = Math.min(res, changed / 2); } writer.println(res); } public static void main(String[] args) { new Homyak().run(); } BufferedReader reader; StringTokenizer tokenizer; PrintWriter writer; public void run() { try { reader = new BufferedReader(new InputStreamReader(System.in)); tokenizer = null; writer = new PrintWriter(System.out); solve(); reader.close(); writer.close(); } catch (Exception e) { e.printStackTrace(); System.exit(1); } } int nextInt() throws IOException { return Integer.parseInt(nextToken()); } long nextLong() throws IOException { return Long.parseLong(nextToken()); } double nextDouble() throws IOException { return Double.parseDouble(nextToken()); } String nextToken() throws IOException { while (tokenizer == null || !tokenizer.hasMoreTokens()) { tokenizer = new StringTokenizer(reader.readLine()); } return tokenizer.nextToken(); } } </CODE> <EVALUATION_RUBRIC> - O(n): The running time grows linearly with the input size n. - others: The code does not clearly correspond to the listed classes or has an unclassified time complexity. - O(nlog(n)): The running time increases with the product of n and logarithm of n. - O(n^2): The running time increases with the square of the input size n. - O(1): The running time does not change regardless of the input size n. - O(log(n)): The running time increases with the logarithm of the input size n. - O(n^3): The running time increases with the cube of the input size n. - non-polynomial: The running time increases non-polynomially with input size n, typically exponentially. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
786
334
2,286
import java.util.*; import java.io.*; import java.math.*; public class A{ void solve(){ int n=ni(); s=new char[n+1]; s[0]='.'; for(int i=1;i<=n;i++) s[i]=ns().charAt(0); dp=new long[5001][5001]; dp[1][0]=1; long sum[]=new long[n+2]; sum[0]=1; for(int i=2;i<=n;i++){ for(int j=0;j<=n;j++) { if (s[i - 1] == 'f') { if(j-1>=0) dp[i][j]=dp[i-1][j-1]; else dp[i][j]=0; }else { dp[i][j]=sum[j]; } } for(int j=n;j>=0;j--){ sum[j]=(sum[j+1]+dp[i][j])%M; } } long ans=0; for(int i=0;i<=n;i++){ ans+=dp[n][i]; if(ans>=M) ans%=M; } pw.println(ans); } char s[]; long dp[][]; long go(int x,int cnt,int n){ // pw.println(x+" "+cnt); if(x>n) return 1; long cc=0; if(dp[x][cnt]!=-1) return dp[x][cnt]; if(s[x]=='f'){ cc=(cc+go(x+1,cnt+1,n))%M; }else { for(int j=cnt;j>=0;j--) cc=(cc+go(x+1,j,n))%M; if(x==n) cc=(cc-cnt+M)%M; } cc%=M; dp[x][cnt]=cc; return cc; } long M=(long)1e9+7; InputStream is; PrintWriter pw; String INPUT = ""; void run() throws Exception { is = INPUT.isEmpty() ? System.in : new ByteArrayInputStream(INPUT.getBytes()); pw = new PrintWriter(System.out); long s = System.currentTimeMillis(); solve(); pw.flush(); if(!INPUT.isEmpty())tr(System.currentTimeMillis()-s+"ms"); } public static void main(String[] args) throws Exception { new A().run(); } private byte[] inbuf = new byte[1024]; public int lenbuf = 0, ptrbuf = 0; private int readByte() { if(lenbuf == -1)throw new InputMismatchException(); if(ptrbuf >= lenbuf){ ptrbuf = 0; try { lenbuf = is.read(inbuf); } catch (IOException e) { throw new InputMismatchException(); } if(lenbuf <= 0)return -1; } return inbuf[ptrbuf++]; } private boolean isSpaceChar(int c) { return !(c >= 33 && c <= 126); } private int skip() { int b; while((b = readByte()) != -1 && isSpaceChar(b)); return b; } private double nd() { return Double.parseDouble(ns()); } private char nc() { return (char)skip(); } private String ns() { int b = skip(); StringBuilder sb = new StringBuilder(); while(!(isSpaceChar(b))){ // when nextLine, (isSpaceChar(b) && b != ' ') sb.appendCodePoint(b); b = readByte(); } return sb.toString(); } private char[] ns(int n) { char[] buf = new char[n]; int b = skip(), p = 0; while(p < n && !(isSpaceChar(b))){ buf[p++] = (char)b; b = readByte(); } return n == p ? buf : Arrays.copyOf(buf, p); } private char[][] nm(int n, int m) { char[][] map = new char[n][]; for(int i = 0;i < n;i++)map[i] = ns(m); return map; } private int[] na(int n) { int[] a = new int[n]; for(int i = 0;i < n;i++)a[i] = ni(); return a; } private int ni() { int num = 0, b; boolean minus = false; while((b = readByte()) != -1 && !((b >= '0' && b <= '9') || b == '-')); if(b == '-'){ minus = true; b = readByte(); } while(true){ if(b >= '0' && b <= '9'){ num = num * 10 + (b - '0'); }else{ return minus ? -num : num; } b = readByte(); } } private long nl() { long num = 0; int b; boolean minus = false; while((b = readByte()) != -1 && !((b >= '0' && b <= '9') || b == '-')); if(b == '-'){ minus = true; b = readByte(); } while(true){ if(b >= '0' && b <= '9'){ num = num * 10 + (b - '0'); }else{ return minus ? -num : num; } b = readByte(); } } private void tr(Object... o) { if(INPUT.length() > 0)System.out.println(Arrays.deepToString(o)); } }
O(n^2)
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n. </TASK> <CODE> import java.util.*; import java.io.*; import java.math.*; public class A{ void solve(){ int n=ni(); s=new char[n+1]; s[0]='.'; for(int i=1;i<=n;i++) s[i]=ns().charAt(0); dp=new long[5001][5001]; dp[1][0]=1; long sum[]=new long[n+2]; sum[0]=1; for(int i=2;i<=n;i++){ for(int j=0;j<=n;j++) { if (s[i - 1] == 'f') { if(j-1>=0) dp[i][j]=dp[i-1][j-1]; else dp[i][j]=0; }else { dp[i][j]=sum[j]; } } for(int j=n;j>=0;j--){ sum[j]=(sum[j+1]+dp[i][j])%M; } } long ans=0; for(int i=0;i<=n;i++){ ans+=dp[n][i]; if(ans>=M) ans%=M; } pw.println(ans); } char s[]; long dp[][]; long go(int x,int cnt,int n){ // pw.println(x+" "+cnt); if(x>n) return 1; long cc=0; if(dp[x][cnt]!=-1) return dp[x][cnt]; if(s[x]=='f'){ cc=(cc+go(x+1,cnt+1,n))%M; }else { for(int j=cnt;j>=0;j--) cc=(cc+go(x+1,j,n))%M; if(x==n) cc=(cc-cnt+M)%M; } cc%=M; dp[x][cnt]=cc; return cc; } long M=(long)1e9+7; InputStream is; PrintWriter pw; String INPUT = ""; void run() throws Exception { is = INPUT.isEmpty() ? System.in : new ByteArrayInputStream(INPUT.getBytes()); pw = new PrintWriter(System.out); long s = System.currentTimeMillis(); solve(); pw.flush(); if(!INPUT.isEmpty())tr(System.currentTimeMillis()-s+"ms"); } public static void main(String[] args) throws Exception { new A().run(); } private byte[] inbuf = new byte[1024]; public int lenbuf = 0, ptrbuf = 0; private int readByte() { if(lenbuf == -1)throw new InputMismatchException(); if(ptrbuf >= lenbuf){ ptrbuf = 0; try { lenbuf = is.read(inbuf); } catch (IOException e) { throw new InputMismatchException(); } if(lenbuf <= 0)return -1; } return inbuf[ptrbuf++]; } private boolean isSpaceChar(int c) { return !(c >= 33 && c <= 126); } private int skip() { int b; while((b = readByte()) != -1 && isSpaceChar(b)); return b; } private double nd() { return Double.parseDouble(ns()); } private char nc() { return (char)skip(); } private String ns() { int b = skip(); StringBuilder sb = new StringBuilder(); while(!(isSpaceChar(b))){ // when nextLine, (isSpaceChar(b) && b != ' ') sb.appendCodePoint(b); b = readByte(); } return sb.toString(); } private char[] ns(int n) { char[] buf = new char[n]; int b = skip(), p = 0; while(p < n && !(isSpaceChar(b))){ buf[p++] = (char)b; b = readByte(); } return n == p ? buf : Arrays.copyOf(buf, p); } private char[][] nm(int n, int m) { char[][] map = new char[n][]; for(int i = 0;i < n;i++)map[i] = ns(m); return map; } private int[] na(int n) { int[] a = new int[n]; for(int i = 0;i < n;i++)a[i] = ni(); return a; } private int ni() { int num = 0, b; boolean minus = false; while((b = readByte()) != -1 && !((b >= '0' && b <= '9') || b == '-')); if(b == '-'){ minus = true; b = readByte(); } while(true){ if(b >= '0' && b <= '9'){ num = num * 10 + (b - '0'); }else{ return minus ? -num : num; } b = readByte(); } } private long nl() { long num = 0; int b; boolean minus = false; while((b = readByte()) != -1 && !((b >= '0' && b <= '9') || b == '-')); if(b == '-'){ minus = true; b = readByte(); } while(true){ if(b >= '0' && b <= '9'){ num = num * 10 + (b - '0'); }else{ return minus ? -num : num; } b = readByte(); } } private void tr(Object... o) { if(INPUT.length() > 0)System.out.println(Arrays.deepToString(o)); } } </CODE> <EVALUATION_RUBRIC> - non-polynomial: The running time increases non-polynomially with input size n, typically exponentially. - O(n^3): The execution time ascends in proportion to the cube of the input size n. - O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially. - O(1): The execution time is unaffected by the size of the input n. - O(n^2): The execution time ascends in proportion to the square of the input size n. - O(n): The execution time ascends in a one-to-one ratio with the input size n. - O(log(n)): The execution time ascends in proportion to the logarithm of the input size n. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Determine the worst-case time complexity category of a given Java code based on input size n. </TASK> <CODE> import java.util.*; import java.io.*; import java.math.*; public class A{ void solve(){ int n=ni(); s=new char[n+1]; s[0]='.'; for(int i=1;i<=n;i++) s[i]=ns().charAt(0); dp=new long[5001][5001]; dp[1][0]=1; long sum[]=new long[n+2]; sum[0]=1; for(int i=2;i<=n;i++){ for(int j=0;j<=n;j++) { if (s[i - 1] == 'f') { if(j-1>=0) dp[i][j]=dp[i-1][j-1]; else dp[i][j]=0; }else { dp[i][j]=sum[j]; } } for(int j=n;j>=0;j--){ sum[j]=(sum[j+1]+dp[i][j])%M; } } long ans=0; for(int i=0;i<=n;i++){ ans+=dp[n][i]; if(ans>=M) ans%=M; } pw.println(ans); } char s[]; long dp[][]; long go(int x,int cnt,int n){ // pw.println(x+" "+cnt); if(x>n) return 1; long cc=0; if(dp[x][cnt]!=-1) return dp[x][cnt]; if(s[x]=='f'){ cc=(cc+go(x+1,cnt+1,n))%M; }else { for(int j=cnt;j>=0;j--) cc=(cc+go(x+1,j,n))%M; if(x==n) cc=(cc-cnt+M)%M; } cc%=M; dp[x][cnt]=cc; return cc; } long M=(long)1e9+7; InputStream is; PrintWriter pw; String INPUT = ""; void run() throws Exception { is = INPUT.isEmpty() ? System.in : new ByteArrayInputStream(INPUT.getBytes()); pw = new PrintWriter(System.out); long s = System.currentTimeMillis(); solve(); pw.flush(); if(!INPUT.isEmpty())tr(System.currentTimeMillis()-s+"ms"); } public static void main(String[] args) throws Exception { new A().run(); } private byte[] inbuf = new byte[1024]; public int lenbuf = 0, ptrbuf = 0; private int readByte() { if(lenbuf == -1)throw new InputMismatchException(); if(ptrbuf >= lenbuf){ ptrbuf = 0; try { lenbuf = is.read(inbuf); } catch (IOException e) { throw new InputMismatchException(); } if(lenbuf <= 0)return -1; } return inbuf[ptrbuf++]; } private boolean isSpaceChar(int c) { return !(c >= 33 && c <= 126); } private int skip() { int b; while((b = readByte()) != -1 && isSpaceChar(b)); return b; } private double nd() { return Double.parseDouble(ns()); } private char nc() { return (char)skip(); } private String ns() { int b = skip(); StringBuilder sb = new StringBuilder(); while(!(isSpaceChar(b))){ // when nextLine, (isSpaceChar(b) && b != ' ') sb.appendCodePoint(b); b = readByte(); } return sb.toString(); } private char[] ns(int n) { char[] buf = new char[n]; int b = skip(), p = 0; while(p < n && !(isSpaceChar(b))){ buf[p++] = (char)b; b = readByte(); } return n == p ? buf : Arrays.copyOf(buf, p); } private char[][] nm(int n, int m) { char[][] map = new char[n][]; for(int i = 0;i < n;i++)map[i] = ns(m); return map; } private int[] na(int n) { int[] a = new int[n]; for(int i = 0;i < n;i++)a[i] = ni(); return a; } private int ni() { int num = 0, b; boolean minus = false; while((b = readByte()) != -1 && !((b >= '0' && b <= '9') || b == '-')); if(b == '-'){ minus = true; b = readByte(); } while(true){ if(b >= '0' && b <= '9'){ num = num * 10 + (b - '0'); }else{ return minus ? -num : num; } b = readByte(); } } private long nl() { long num = 0; int b; boolean minus = false; while((b = readByte()) != -1 && !((b >= '0' && b <= '9') || b == '-')); if(b == '-'){ minus = true; b = readByte(); } while(true){ if(b >= '0' && b <= '9'){ num = num * 10 + (b - '0'); }else{ return minus ? -num : num; } b = readByte(); } } private void tr(Object... o) { if(INPUT.length() > 0)System.out.println(Arrays.deepToString(o)); } } </CODE> <EVALUATION_RUBRIC> - others: The time complexity does not fit any of the above categories or cannot be clearly classified. - O(n): The time complexity increases proportionally to the input size n in a linear manner. - O(1): The time complexity is constant to the input size n. - O(log(n)): The time complexity increases logarithmically in relation to the input size. - O(n^2): The time complexity grows proportionally to the square of the input size. - non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially. - O(n^3): The time complexity scales proportionally to the cube of the input size. - O(nlog(n)): The time complexity combines linear and logarithmic growth factors. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
1,572
2,281
942
import java.io.BufferedReader; import java.io.IOException; import java.io.InputStreamReader; import java.io.PrintWriter; import java.util.List; import java.util.StringTokenizer; public class B { final int INF = 1_000_000_000; void solve() { int n = readInt(); int k = readInt(); long l = 0; long r = INF; while(r - l > 1){ long m = (r + l) >> 1; if(m * (m + 1) / 2 + m >= k + n) r = m; else l = m; } out.print(n - r); } public static void main(String[] args) { new B().run(); } private void run() { try { init(); solve(); out.close(); } catch (Exception e) { e.printStackTrace(); System.exit(-1); } } private BufferedReader in; private StringTokenizer tok = new StringTokenizer(""); private PrintWriter out; private void init() { in = new BufferedReader(new InputStreamReader(System.in)); out = new PrintWriter(System.out); // try { // in = new BufferedReader(new FileReader("absum.in")); // out = new PrintWriter(new File("absum.out")); // } catch (FileNotFoundException e) { // e.printStackTrace(); // } } private String readLine() { try { return in.readLine(); } catch (IOException e) { throw new RuntimeException(e); } } private String readString() { while (!tok.hasMoreTokens()) { String nextLine = readLine(); if (nextLine == null) return null; tok = new StringTokenizer(nextLine); } return tok.nextToken(); } private int readInt() { return Integer.parseInt(readString()); } private long readLong() { return Long.parseLong(readString()); } int[] readIntArray(int n){ int[] res = new int[n]; for(int i = 0;i<n;i++){ res[i] = readInt(); } return res; } long[] readLongArray(int n){ long[] res = new long[n]; for(int i = 0;i<n;i++){ res[i] = readLong(); } return res; } int[] castInt(List<Integer> list){ int[] res = new int[list.size()]; for(int i = 0;i<list.size();i++){ res[i] = list.get(i); } return res; } }
O(log(n))
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Classify the following Java code's worst-case time complexity according to its relationship to the input size n. </TASK> <CODE> import java.io.BufferedReader; import java.io.IOException; import java.io.InputStreamReader; import java.io.PrintWriter; import java.util.List; import java.util.StringTokenizer; public class B { final int INF = 1_000_000_000; void solve() { int n = readInt(); int k = readInt(); long l = 0; long r = INF; while(r - l > 1){ long m = (r + l) >> 1; if(m * (m + 1) / 2 + m >= k + n) r = m; else l = m; } out.print(n - r); } public static void main(String[] args) { new B().run(); } private void run() { try { init(); solve(); out.close(); } catch (Exception e) { e.printStackTrace(); System.exit(-1); } } private BufferedReader in; private StringTokenizer tok = new StringTokenizer(""); private PrintWriter out; private void init() { in = new BufferedReader(new InputStreamReader(System.in)); out = new PrintWriter(System.out); // try { // in = new BufferedReader(new FileReader("absum.in")); // out = new PrintWriter(new File("absum.out")); // } catch (FileNotFoundException e) { // e.printStackTrace(); // } } private String readLine() { try { return in.readLine(); } catch (IOException e) { throw new RuntimeException(e); } } private String readString() { while (!tok.hasMoreTokens()) { String nextLine = readLine(); if (nextLine == null) return null; tok = new StringTokenizer(nextLine); } return tok.nextToken(); } private int readInt() { return Integer.parseInt(readString()); } private long readLong() { return Long.parseLong(readString()); } int[] readIntArray(int n){ int[] res = new int[n]; for(int i = 0;i<n;i++){ res[i] = readInt(); } return res; } long[] readLongArray(int n){ long[] res = new long[n]; for(int i = 0;i<n;i++){ res[i] = readLong(); } return res; } int[] castInt(List<Integer> list){ int[] res = new int[list.size()]; for(int i = 0;i<list.size();i++){ res[i] = list.get(i); } return res; } } </CODE> <EVALUATION_RUBRIC> - O(n): The running time grows linearly with the input size n. - O(log(n)): The running time increases with the logarithm of the input size n. - O(1): The running time does not change regardless of the input size n. - O(n^2): The running time increases with the square of the input size n. - non-polynomial: The running time increases non-polynomially with input size n, typically exponentially. - O(n^3): The running time increases with the cube of the input size n. - O(nlog(n)): The running time increases with the product of n and logarithm of n. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n. </TASK> <CODE> import java.io.BufferedReader; import java.io.IOException; import java.io.InputStreamReader; import java.io.PrintWriter; import java.util.List; import java.util.StringTokenizer; public class B { final int INF = 1_000_000_000; void solve() { int n = readInt(); int k = readInt(); long l = 0; long r = INF; while(r - l > 1){ long m = (r + l) >> 1; if(m * (m + 1) / 2 + m >= k + n) r = m; else l = m; } out.print(n - r); } public static void main(String[] args) { new B().run(); } private void run() { try { init(); solve(); out.close(); } catch (Exception e) { e.printStackTrace(); System.exit(-1); } } private BufferedReader in; private StringTokenizer tok = new StringTokenizer(""); private PrintWriter out; private void init() { in = new BufferedReader(new InputStreamReader(System.in)); out = new PrintWriter(System.out); // try { // in = new BufferedReader(new FileReader("absum.in")); // out = new PrintWriter(new File("absum.out")); // } catch (FileNotFoundException e) { // e.printStackTrace(); // } } private String readLine() { try { return in.readLine(); } catch (IOException e) { throw new RuntimeException(e); } } private String readString() { while (!tok.hasMoreTokens()) { String nextLine = readLine(); if (nextLine == null) return null; tok = new StringTokenizer(nextLine); } return tok.nextToken(); } private int readInt() { return Integer.parseInt(readString()); } private long readLong() { return Long.parseLong(readString()); } int[] readIntArray(int n){ int[] res = new int[n]; for(int i = 0;i<n;i++){ res[i] = readInt(); } return res; } long[] readLongArray(int n){ long[] res = new long[n]; for(int i = 0;i<n;i++){ res[i] = readLong(); } return res; } int[] castInt(List<Integer> list){ int[] res = new int[list.size()]; for(int i = 0;i<list.size();i++){ res[i] = list.get(i); } return res; } } </CODE> <EVALUATION_RUBRIC> - O(n^2): The execution time ascends in proportion to the square of the input size n. - O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially. - non-polynomial: The running time increases non-polynomially with input size n, typically exponentially. - O(n^3): The execution time ascends in proportion to the cube of the input size n. - O(n): The execution time ascends in a one-to-one ratio with the input size n. - O(log(n)): The execution time ascends in proportion to the logarithm of the input size n. - others: The time complexity does not fit to any of the given categories or is ambiguous. - O(1): The execution time is unaffected by the size of the input n. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
889
941
3,119
import java.util.*; import static java.lang.Math.*; public final class FollowTrafficRules { private static double[] acce(double i, double a, double v) { double[] r = new double[2]; r[0] = (v - i)/a; r[1] = 1d/2d * a * pow(r[0], 2) + i * r[0]; return r; } private static double solve(double i, double a, double l) { double e = sqrt(pow(i, 2) + 2d * a * l); e = a > 0 ? e : -1d * e; return (e - i)/a; } private static double time(double i, double a, double v, double l) { double[] r = acce(i, a, v); if (r[1] >= l) return solve(i, a, l); return r[0] + (l - r[1])/v; } public static void main(String[] args) { Scanner sc = new Scanner(System.in); double a = sc.nextDouble(); double v = sc.nextDouble(); double l = sc.nextDouble(); double d = sc.nextDouble(); double w = sc.nextDouble(); double t = 0d; double[] r = acce(0, a, w); if (v <= w || r[1] >= d) t = time(0, a, v, l); else { t += r[0]; t += 2d * time(w, a, v, (d - r[1])/2d); t += time(w, a, v, l - d); } System.out.println(t); } }
O(1)
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Determine the worst-case time complexity category of a given Java code based on input size n. </TASK> <CODE> import java.util.*; import static java.lang.Math.*; public final class FollowTrafficRules { private static double[] acce(double i, double a, double v) { double[] r = new double[2]; r[0] = (v - i)/a; r[1] = 1d/2d * a * pow(r[0], 2) + i * r[0]; return r; } private static double solve(double i, double a, double l) { double e = sqrt(pow(i, 2) + 2d * a * l); e = a > 0 ? e : -1d * e; return (e - i)/a; } private static double time(double i, double a, double v, double l) { double[] r = acce(i, a, v); if (r[1] >= l) return solve(i, a, l); return r[0] + (l - r[1])/v; } public static void main(String[] args) { Scanner sc = new Scanner(System.in); double a = sc.nextDouble(); double v = sc.nextDouble(); double l = sc.nextDouble(); double d = sc.nextDouble(); double w = sc.nextDouble(); double t = 0d; double[] r = acce(0, a, w); if (v <= w || r[1] >= d) t = time(0, a, v, l); else { t += r[0]; t += 2d * time(w, a, v, (d - r[1])/2d); t += time(w, a, v, l - d); } System.out.println(t); } } </CODE> <EVALUATION_RUBRIC> - O(n^3): The time complexity scales proportionally to the cube of the input size. - O(log(n)): The time complexity increases logarithmically in relation to the input size. - O(n^2): The time complexity grows proportionally to the square of the input size. - O(nlog(n)): The time complexity combines linear and logarithmic growth factors. - O(1): The time complexity is constant to the input size n. - O(n): The time complexity increases proportionally to the input size n in a linear manner. - non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Determine the worst-case time complexity category of a given Java code based on input size n. </TASK> <CODE> import java.util.*; import static java.lang.Math.*; public final class FollowTrafficRules { private static double[] acce(double i, double a, double v) { double[] r = new double[2]; r[0] = (v - i)/a; r[1] = 1d/2d * a * pow(r[0], 2) + i * r[0]; return r; } private static double solve(double i, double a, double l) { double e = sqrt(pow(i, 2) + 2d * a * l); e = a > 0 ? e : -1d * e; return (e - i)/a; } private static double time(double i, double a, double v, double l) { double[] r = acce(i, a, v); if (r[1] >= l) return solve(i, a, l); return r[0] + (l - r[1])/v; } public static void main(String[] args) { Scanner sc = new Scanner(System.in); double a = sc.nextDouble(); double v = sc.nextDouble(); double l = sc.nextDouble(); double d = sc.nextDouble(); double w = sc.nextDouble(); double t = 0d; double[] r = acce(0, a, w); if (v <= w || r[1] >= d) t = time(0, a, v, l); else { t += r[0]; t += 2d * time(w, a, v, (d - r[1])/2d); t += time(w, a, v, l - d); } System.out.println(t); } } </CODE> <EVALUATION_RUBRIC> - O(1): The time complexity is constant to the input size n. - O(n^2): The time complexity grows proportionally to the square of the input size. - non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially. - O(log(n)): The time complexity increases logarithmically in relation to the input size. - O(n): The time complexity increases proportionally to the input size n in a linear manner. - O(nlog(n)): The time complexity combines linear and logarithmic growth factors. - O(n^3): The time complexity scales proportionally to the cube of the input size. - others: The time complexity does not fit any of the above categories or cannot be clearly classified. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
712
3,113
1,325
import java.io.OutputStream; import java.io.IOException; import java.io.InputStream; import java.io.OutputStream; import java.io.PrintWriter; import java.io.BufferedWriter; import java.io.Writer; import java.io.OutputStreamWriter; import java.util.InputMismatchException; import java.io.IOException; import java.io.InputStream; /** * Built using CHelper plug-in * Actual solution is at the top * * @author Rishabhdeep Singh */ public class Main { public static void main(String[] args) { InputStream inputStream = System.in; OutputStream outputStream = System.out; InputReader in = new InputReader(inputStream); OutputWriter out = new OutputWriter(outputStream); TaskC solver = new TaskC(); solver.solve(1, in, out); out.close(); } static class TaskC { int MOD = (int) 1e9 + 7; public void solve(int testNumber, InputReader in, OutputWriter out) { long x = in.nextLong(), k = in.nextLong(); long res = Utilities.mul(x, Utilities.power(2, k + 1, MOD), MOD) % MOD - Utilities.power(2, k, MOD) + 1; while (res < 0) res += MOD; out.println(x == 0 ? 0 : res); } } static class InputReader { private InputStream stream; private byte[] buf = new byte[1024]; private int curChar; private int numChars; private InputReader.SpaceCharFilter filter; public InputReader(InputStream stream) { this.stream = stream; } public int read() { if (numChars == -1) { throw new InputMismatchException(); } if (curChar >= numChars) { curChar = 0; try { numChars = stream.read(buf); } catch (IOException e) { throw new InputMismatchException(); } if (numChars <= 0) { return -1; } } return buf[curChar++]; } public long nextLong() { int c = read(); while (isSpaceChar(c)) { c = read(); } int sgn = 1; if (c == '-') { sgn = -1; c = read(); } long res = 0; do { if (c < '0' || c > '9') { throw new InputMismatchException(); } res *= 10; res += c - '0'; c = read(); } while (!isSpaceChar(c)); return res * sgn; } public boolean isSpaceChar(int c) { if (filter != null) { return filter.isSpaceChar(c); } return isWhitespace(c); } public static boolean isWhitespace(int c) { return c == ' ' || c == '\n' || c == '\r' || c == '\t' || c == -1; } public interface SpaceCharFilter { public boolean isSpaceChar(int ch); } } static class OutputWriter { private final PrintWriter writer; public OutputWriter(OutputStream outputStream) { writer = new PrintWriter(new BufferedWriter(new OutputStreamWriter(outputStream))); } public OutputWriter(Writer writer) { this.writer = new PrintWriter(writer); } public void close() { writer.close(); } public void println(long i) { writer.println(i); } } static class Utilities { public static long mul(long x, long y, long mod) { return (x % mod) * (y % mod) % mod; } public static long power(long a, long k, long m) { long res = 1; while (k > 0) { if ((k & 1) != 0) { res = mul(res, a, m); } a = mul(a, a, m); k >>= 1; } return res; } } }
O(log(n))
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Classify the following Java code's worst-case time complexity according to its relationship to the input size n. </TASK> <CODE> import java.io.OutputStream; import java.io.IOException; import java.io.InputStream; import java.io.OutputStream; import java.io.PrintWriter; import java.io.BufferedWriter; import java.io.Writer; import java.io.OutputStreamWriter; import java.util.InputMismatchException; import java.io.IOException; import java.io.InputStream; /** * Built using CHelper plug-in * Actual solution is at the top * * @author Rishabhdeep Singh */ public class Main { public static void main(String[] args) { InputStream inputStream = System.in; OutputStream outputStream = System.out; InputReader in = new InputReader(inputStream); OutputWriter out = new OutputWriter(outputStream); TaskC solver = new TaskC(); solver.solve(1, in, out); out.close(); } static class TaskC { int MOD = (int) 1e9 + 7; public void solve(int testNumber, InputReader in, OutputWriter out) { long x = in.nextLong(), k = in.nextLong(); long res = Utilities.mul(x, Utilities.power(2, k + 1, MOD), MOD) % MOD - Utilities.power(2, k, MOD) + 1; while (res < 0) res += MOD; out.println(x == 0 ? 0 : res); } } static class InputReader { private InputStream stream; private byte[] buf = new byte[1024]; private int curChar; private int numChars; private InputReader.SpaceCharFilter filter; public InputReader(InputStream stream) { this.stream = stream; } public int read() { if (numChars == -1) { throw new InputMismatchException(); } if (curChar >= numChars) { curChar = 0; try { numChars = stream.read(buf); } catch (IOException e) { throw new InputMismatchException(); } if (numChars <= 0) { return -1; } } return buf[curChar++]; } public long nextLong() { int c = read(); while (isSpaceChar(c)) { c = read(); } int sgn = 1; if (c == '-') { sgn = -1; c = read(); } long res = 0; do { if (c < '0' || c > '9') { throw new InputMismatchException(); } res *= 10; res += c - '0'; c = read(); } while (!isSpaceChar(c)); return res * sgn; } public boolean isSpaceChar(int c) { if (filter != null) { return filter.isSpaceChar(c); } return isWhitespace(c); } public static boolean isWhitespace(int c) { return c == ' ' || c == '\n' || c == '\r' || c == '\t' || c == -1; } public interface SpaceCharFilter { public boolean isSpaceChar(int ch); } } static class OutputWriter { private final PrintWriter writer; public OutputWriter(OutputStream outputStream) { writer = new PrintWriter(new BufferedWriter(new OutputStreamWriter(outputStream))); } public OutputWriter(Writer writer) { this.writer = new PrintWriter(writer); } public void close() { writer.close(); } public void println(long i) { writer.println(i); } } static class Utilities { public static long mul(long x, long y, long mod) { return (x % mod) * (y % mod) % mod; } public static long power(long a, long k, long m) { long res = 1; while (k > 0) { if ((k & 1) != 0) { res = mul(res, a, m); } a = mul(a, a, m); k >>= 1; } return res; } } } </CODE> <EVALUATION_RUBRIC> - O(n^2): The running time increases with the square of the input size n. - O(log(n)): The running time increases with the logarithm of the input size n. - O(nlog(n)): The running time increases with the product of n and logarithm of n. - O(n^3): The running time increases with the cube of the input size n. - non-polynomial: The running time increases non-polynomially with input size n, typically exponentially. - O(1): The running time does not change regardless of the input size n. - O(n): The running time grows linearly with the input size n. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Determine the worst-case time complexity category of a given Java code based on input size n. </TASK> <CODE> import java.io.OutputStream; import java.io.IOException; import java.io.InputStream; import java.io.OutputStream; import java.io.PrintWriter; import java.io.BufferedWriter; import java.io.Writer; import java.io.OutputStreamWriter; import java.util.InputMismatchException; import java.io.IOException; import java.io.InputStream; /** * Built using CHelper plug-in * Actual solution is at the top * * @author Rishabhdeep Singh */ public class Main { public static void main(String[] args) { InputStream inputStream = System.in; OutputStream outputStream = System.out; InputReader in = new InputReader(inputStream); OutputWriter out = new OutputWriter(outputStream); TaskC solver = new TaskC(); solver.solve(1, in, out); out.close(); } static class TaskC { int MOD = (int) 1e9 + 7; public void solve(int testNumber, InputReader in, OutputWriter out) { long x = in.nextLong(), k = in.nextLong(); long res = Utilities.mul(x, Utilities.power(2, k + 1, MOD), MOD) % MOD - Utilities.power(2, k, MOD) + 1; while (res < 0) res += MOD; out.println(x == 0 ? 0 : res); } } static class InputReader { private InputStream stream; private byte[] buf = new byte[1024]; private int curChar; private int numChars; private InputReader.SpaceCharFilter filter; public InputReader(InputStream stream) { this.stream = stream; } public int read() { if (numChars == -1) { throw new InputMismatchException(); } if (curChar >= numChars) { curChar = 0; try { numChars = stream.read(buf); } catch (IOException e) { throw new InputMismatchException(); } if (numChars <= 0) { return -1; } } return buf[curChar++]; } public long nextLong() { int c = read(); while (isSpaceChar(c)) { c = read(); } int sgn = 1; if (c == '-') { sgn = -1; c = read(); } long res = 0; do { if (c < '0' || c > '9') { throw new InputMismatchException(); } res *= 10; res += c - '0'; c = read(); } while (!isSpaceChar(c)); return res * sgn; } public boolean isSpaceChar(int c) { if (filter != null) { return filter.isSpaceChar(c); } return isWhitespace(c); } public static boolean isWhitespace(int c) { return c == ' ' || c == '\n' || c == '\r' || c == '\t' || c == -1; } public interface SpaceCharFilter { public boolean isSpaceChar(int ch); } } static class OutputWriter { private final PrintWriter writer; public OutputWriter(OutputStream outputStream) { writer = new PrintWriter(new BufferedWriter(new OutputStreamWriter(outputStream))); } public OutputWriter(Writer writer) { this.writer = new PrintWriter(writer); } public void close() { writer.close(); } public void println(long i) { writer.println(i); } } static class Utilities { public static long mul(long x, long y, long mod) { return (x % mod) * (y % mod) % mod; } public static long power(long a, long k, long m) { long res = 1; while (k > 0) { if ((k & 1) != 0) { res = mul(res, a, m); } a = mul(a, a, m); k >>= 1; } return res; } } } </CODE> <EVALUATION_RUBRIC> - O(n): The time complexity increases proportionally to the input size n in a linear manner. - others: The time complexity does not fit any of the above categories or cannot be clearly classified. - O(log(n)): The time complexity increases logarithmically in relation to the input size. - O(nlog(n)): The time complexity combines linear and logarithmic growth factors. - O(n^2): The time complexity grows proportionally to the square of the input size. - non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially. - O(1): The time complexity is constant to the input size n. - O(n^3): The time complexity scales proportionally to the cube of the input size. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
1,204
1,323
2,867
import java.util.*; import java.io.*; import java.math.*; public class A { public static void main(String[] args) { Scanner sc = new Scanner(System.in); BigInteger l = sc.nextBigInteger(); BigInteger r = sc.nextBigInteger(); BigInteger a = l.add(BigInteger.ZERO); while (a.compareTo(r) < 0) { BigInteger b = a.add(BigInteger.ONE); while (b.compareTo(r) < 0) { try { a.modInverse(b); } catch (ArithmeticException e) { b = b.add(BigInteger.ONE); continue; } BigInteger c = b.add(BigInteger.ONE); while (c.compareTo(r) <= 0) { try { b.modInverse(c); try { a.modInverse(c); } catch (ArithmeticException e) { System.out.printf("%s %s %s\n", a.toString(), b.toString(), c.toString()); return; } } catch (ArithmeticException e) { } c = c.add(BigInteger.ONE); } b = b.add(BigInteger.ONE); } a = a.add(BigInteger.ONE); } System.out.println("-1"); } }
O(1)
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Classify the following Java code's worst-case time complexity according to its relationship to the input size n. </TASK> <CODE> import java.util.*; import java.io.*; import java.math.*; public class A { public static void main(String[] args) { Scanner sc = new Scanner(System.in); BigInteger l = sc.nextBigInteger(); BigInteger r = sc.nextBigInteger(); BigInteger a = l.add(BigInteger.ZERO); while (a.compareTo(r) < 0) { BigInteger b = a.add(BigInteger.ONE); while (b.compareTo(r) < 0) { try { a.modInverse(b); } catch (ArithmeticException e) { b = b.add(BigInteger.ONE); continue; } BigInteger c = b.add(BigInteger.ONE); while (c.compareTo(r) <= 0) { try { b.modInverse(c); try { a.modInverse(c); } catch (ArithmeticException e) { System.out.printf("%s %s %s\n", a.toString(), b.toString(), c.toString()); return; } } catch (ArithmeticException e) { } c = c.add(BigInteger.ONE); } b = b.add(BigInteger.ONE); } a = a.add(BigInteger.ONE); } System.out.println("-1"); } } </CODE> <EVALUATION_RUBRIC> - O(n): The running time grows linearly with the input size n. - O(log(n)): The running time increases with the logarithm of the input size n. - O(1): The running time does not change regardless of the input size n. - O(n^3): The running time increases with the cube of the input size n. - O(n^2): The running time increases with the square of the input size n. - O(nlog(n)): The running time increases with the product of n and logarithm of n. - non-polynomial: The running time increases non-polynomially with input size n, typically exponentially. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Classify the following Java code's worst-case time complexity according to its relationship to the input size n. </TASK> <CODE> import java.util.*; import java.io.*; import java.math.*; public class A { public static void main(String[] args) { Scanner sc = new Scanner(System.in); BigInteger l = sc.nextBigInteger(); BigInteger r = sc.nextBigInteger(); BigInteger a = l.add(BigInteger.ZERO); while (a.compareTo(r) < 0) { BigInteger b = a.add(BigInteger.ONE); while (b.compareTo(r) < 0) { try { a.modInverse(b); } catch (ArithmeticException e) { b = b.add(BigInteger.ONE); continue; } BigInteger c = b.add(BigInteger.ONE); while (c.compareTo(r) <= 0) { try { b.modInverse(c); try { a.modInverse(c); } catch (ArithmeticException e) { System.out.printf("%s %s %s\n", a.toString(), b.toString(), c.toString()); return; } } catch (ArithmeticException e) { } c = c.add(BigInteger.ONE); } b = b.add(BigInteger.ONE); } a = a.add(BigInteger.ONE); } System.out.println("-1"); } } </CODE> <EVALUATION_RUBRIC> - non-polynomial: The running time increases non-polynomially with input size n, typically exponentially. - O(log(n)): The running time increases with the logarithm of the input size n. - O(n^2): The running time increases with the square of the input size n. - O(nlog(n)): The running time increases with the product of n and logarithm of n. - O(n): The running time grows linearly with the input size n. - O(n^3): The running time increases with the cube of the input size n. - O(1): The running time does not change regardless of the input size n. - others: The code does not clearly correspond to the listed classes or has an unclassified time complexity. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
598
2,861
1,885
import java.io.BufferedReader; import java.io.File; import java.io.FileNotFoundException; import java.io.FileReader; import java.io.IOException; import java.io.InputStream; import java.io.InputStreamReader; import java.io.PrintWriter; import java.math.BigInteger; import java.util.HashMap; import java.util.StringTokenizer; public class D { public static void main(String[] args) throws IOException { Scanner sc = new Scanner(System.in); PrintWriter pw = new PrintWriter(System.out); BigInteger ans = BigInteger.ZERO; int n = sc.nextInt(); int arr[] = new int[n]; long cum[] = new long[n]; for (int i = 0; i < n; i++) arr[i] = sc.nextInt(); // int n=(int)2e5; // for(int i=0;i<n;i++){ // arr[i]=1; // if(i>n/2) // arr[i]=(int)1e9; // } for (int i = 0; i < cum.length; i++) { cum[i] = arr[i]; if(i > 0) cum[i] += cum[i-1]; } for (int i = 0; i < n; i++) ans = ans.add(BigInteger.valueOf((1l*(i+1)*arr[i] - cum[i]))); HashMap<Integer, Integer> map = new HashMap<Integer, Integer>(); for (int i = 0; i < n; i++) { ans = ans.subtract(BigInteger.valueOf(map.getOrDefault(arr[i]-1, 0))); ans = ans.add(BigInteger.valueOf(map.getOrDefault(arr[i]+1, 0))); map.put(arr[i], map.getOrDefault(arr[i], 0)+1); } pw.println(ans); pw.flush(); pw.close(); } static class Scanner { StringTokenizer st; BufferedReader br; public Scanner(InputStream s) { br = new BufferedReader(new InputStreamReader(s)); } public Scanner(String s) throws FileNotFoundException { br = new BufferedReader(new FileReader(new File((s)))); } public String next() throws IOException { while (st == null || !st.hasMoreTokens()) st = new StringTokenizer(br.readLine()); return st.nextToken(); } public int nextInt() throws IOException { return Integer.parseInt(next()); } public long nextLong() throws IOException { return Long.parseLong(next()); } public String nextLine() throws IOException { return br.readLine(); } public double nextDouble() throws IOException { String x = next(); StringBuilder sb = new StringBuilder("0"); double res = 0, f = 1; boolean dec = false, neg = false; int start = 0; if (x.charAt(0) == '-') { neg = true; start++; } for (int i = start; i < x.length(); i++) if (x.charAt(i) == '.') { res = Long.parseLong(sb.toString()); sb = new StringBuilder("0"); dec = true; } else { sb.append(x.charAt(i)); if (dec) f *= 10; } res += Long.parseLong(sb.toString()) / f; return res * (neg ? -1 : 1); } public boolean ready() throws IOException { return br.ready(); } } }
O(nlog(n))
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n. </TASK> <CODE> import java.io.BufferedReader; import java.io.File; import java.io.FileNotFoundException; import java.io.FileReader; import java.io.IOException; import java.io.InputStream; import java.io.InputStreamReader; import java.io.PrintWriter; import java.math.BigInteger; import java.util.HashMap; import java.util.StringTokenizer; public class D { public static void main(String[] args) throws IOException { Scanner sc = new Scanner(System.in); PrintWriter pw = new PrintWriter(System.out); BigInteger ans = BigInteger.ZERO; int n = sc.nextInt(); int arr[] = new int[n]; long cum[] = new long[n]; for (int i = 0; i < n; i++) arr[i] = sc.nextInt(); // int n=(int)2e5; // for(int i=0;i<n;i++){ // arr[i]=1; // if(i>n/2) // arr[i]=(int)1e9; // } for (int i = 0; i < cum.length; i++) { cum[i] = arr[i]; if(i > 0) cum[i] += cum[i-1]; } for (int i = 0; i < n; i++) ans = ans.add(BigInteger.valueOf((1l*(i+1)*arr[i] - cum[i]))); HashMap<Integer, Integer> map = new HashMap<Integer, Integer>(); for (int i = 0; i < n; i++) { ans = ans.subtract(BigInteger.valueOf(map.getOrDefault(arr[i]-1, 0))); ans = ans.add(BigInteger.valueOf(map.getOrDefault(arr[i]+1, 0))); map.put(arr[i], map.getOrDefault(arr[i], 0)+1); } pw.println(ans); pw.flush(); pw.close(); } static class Scanner { StringTokenizer st; BufferedReader br; public Scanner(InputStream s) { br = new BufferedReader(new InputStreamReader(s)); } public Scanner(String s) throws FileNotFoundException { br = new BufferedReader(new FileReader(new File((s)))); } public String next() throws IOException { while (st == null || !st.hasMoreTokens()) st = new StringTokenizer(br.readLine()); return st.nextToken(); } public int nextInt() throws IOException { return Integer.parseInt(next()); } public long nextLong() throws IOException { return Long.parseLong(next()); } public String nextLine() throws IOException { return br.readLine(); } public double nextDouble() throws IOException { String x = next(); StringBuilder sb = new StringBuilder("0"); double res = 0, f = 1; boolean dec = false, neg = false; int start = 0; if (x.charAt(0) == '-') { neg = true; start++; } for (int i = start; i < x.length(); i++) if (x.charAt(i) == '.') { res = Long.parseLong(sb.toString()); sb = new StringBuilder("0"); dec = true; } else { sb.append(x.charAt(i)); if (dec) f *= 10; } res += Long.parseLong(sb.toString()) / f; return res * (neg ? -1 : 1); } public boolean ready() throws IOException { return br.ready(); } } } </CODE> <EVALUATION_RUBRIC> - O(n): The execution time ascends in a one-to-one ratio with the input size n. - O(log(n)): The execution time ascends in proportion to the logarithm of the input size n. - O(n^3): The execution time ascends in proportion to the cube of the input size n. - non-polynomial: The running time increases non-polynomially with input size n, typically exponentially. - O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially. - O(n^2): The execution time ascends in proportion to the square of the input size n. - O(1): The execution time is unaffected by the size of the input n. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Classify the following Java code's worst-case time complexity according to its relationship to the input size n. </TASK> <CODE> import java.io.BufferedReader; import java.io.File; import java.io.FileNotFoundException; import java.io.FileReader; import java.io.IOException; import java.io.InputStream; import java.io.InputStreamReader; import java.io.PrintWriter; import java.math.BigInteger; import java.util.HashMap; import java.util.StringTokenizer; public class D { public static void main(String[] args) throws IOException { Scanner sc = new Scanner(System.in); PrintWriter pw = new PrintWriter(System.out); BigInteger ans = BigInteger.ZERO; int n = sc.nextInt(); int arr[] = new int[n]; long cum[] = new long[n]; for (int i = 0; i < n; i++) arr[i] = sc.nextInt(); // int n=(int)2e5; // for(int i=0;i<n;i++){ // arr[i]=1; // if(i>n/2) // arr[i]=(int)1e9; // } for (int i = 0; i < cum.length; i++) { cum[i] = arr[i]; if(i > 0) cum[i] += cum[i-1]; } for (int i = 0; i < n; i++) ans = ans.add(BigInteger.valueOf((1l*(i+1)*arr[i] - cum[i]))); HashMap<Integer, Integer> map = new HashMap<Integer, Integer>(); for (int i = 0; i < n; i++) { ans = ans.subtract(BigInteger.valueOf(map.getOrDefault(arr[i]-1, 0))); ans = ans.add(BigInteger.valueOf(map.getOrDefault(arr[i]+1, 0))); map.put(arr[i], map.getOrDefault(arr[i], 0)+1); } pw.println(ans); pw.flush(); pw.close(); } static class Scanner { StringTokenizer st; BufferedReader br; public Scanner(InputStream s) { br = new BufferedReader(new InputStreamReader(s)); } public Scanner(String s) throws FileNotFoundException { br = new BufferedReader(new FileReader(new File((s)))); } public String next() throws IOException { while (st == null || !st.hasMoreTokens()) st = new StringTokenizer(br.readLine()); return st.nextToken(); } public int nextInt() throws IOException { return Integer.parseInt(next()); } public long nextLong() throws IOException { return Long.parseLong(next()); } public String nextLine() throws IOException { return br.readLine(); } public double nextDouble() throws IOException { String x = next(); StringBuilder sb = new StringBuilder("0"); double res = 0, f = 1; boolean dec = false, neg = false; int start = 0; if (x.charAt(0) == '-') { neg = true; start++; } for (int i = start; i < x.length(); i++) if (x.charAt(i) == '.') { res = Long.parseLong(sb.toString()); sb = new StringBuilder("0"); dec = true; } else { sb.append(x.charAt(i)); if (dec) f *= 10; } res += Long.parseLong(sb.toString()) / f; return res * (neg ? -1 : 1); } public boolean ready() throws IOException { return br.ready(); } } } </CODE> <EVALUATION_RUBRIC> - O(n^2): The running time increases with the square of the input size n. - others: The code does not clearly correspond to the listed classes or has an unclassified time complexity. - O(n^3): The running time increases with the cube of the input size n. - O(nlog(n)): The running time increases with the product of n and logarithm of n. - O(n): The running time grows linearly with the input size n. - O(log(n)): The running time increases with the logarithm of the input size n. - O(1): The running time does not change regardless of the input size n. - non-polynomial: The running time increases non-polynomially with input size n, typically exponentially. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
1,124
1,881
2,803
import java.util.*; import java.io.*; public class Subtractions { /************************ SOLUTION STARTS HERE ***********************/ static long modifiedEuclidGCD(int a , int b) { return b == 0 ? 0 : (a / b) + modifiedEuclidGCD(b, a % b); } private static void solve(FastScanner s1, PrintWriter out){ int T = s1.nextInt(); while(T-->0) out.println(modifiedEuclidGCD(s1.nextInt(), s1.nextInt())); } /************************ SOLUTION ENDS HERE ************************/ /************************ TEMPLATE STARTS HERE *********************/ public static void main(String []args) throws IOException { FastScanner in = new FastScanner(System.in); PrintWriter out = new PrintWriter(new BufferedWriter(new OutputStreamWriter(System.out)), false); solve(in, out); in.close(); out.close(); } static class FastScanner{ BufferedReader reader; StringTokenizer st; FastScanner(InputStream stream){reader=new BufferedReader(new InputStreamReader(stream));st=null;} String next() {while(st == null || !st.hasMoreTokens()){try{String line = reader.readLine();if(line == null){return null;} st = new StringTokenizer(line);}catch (Exception e){throw new RuntimeException();}}return st.nextToken();} String nextLine() {String s=null;try{s=reader.readLine();}catch(IOException e){e.printStackTrace();}return s;} int nextInt() {return Integer.parseInt(next());} long nextLong() {return Long.parseLong(next());} double nextDouble(){return Double.parseDouble(next());} char nextChar() {return next().charAt(0);} int[] nextIntArray(int n) {int[] a= new int[n]; int i=0;while(i<n){a[i++]=nextInt();} return a;} long[] nextLongArray(int n) {long[]a= new long[n]; int i=0;while(i<n){a[i++]=nextLong();} return a;} int[] nextIntArrayOneBased(int n) {int[] a= new int[n+1]; int i=1;while(i<=n){a[i++]=nextInt();} return a;} long[] nextLongArrayOneBased(int n){long[]a= new long[n+1];int i=1;while(i<=n){a[i++]=nextLong();}return a;} void close(){try{reader.close();}catch(IOException e){e.printStackTrace();}} } /************************ TEMPLATE ENDS HERE ************************/ }
O(1)
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Determine the worst-case time complexity category of a given Java code based on input size n. </TASK> <CODE> import java.util.*; import java.io.*; public class Subtractions { /************************ SOLUTION STARTS HERE ***********************/ static long modifiedEuclidGCD(int a , int b) { return b == 0 ? 0 : (a / b) + modifiedEuclidGCD(b, a % b); } private static void solve(FastScanner s1, PrintWriter out){ int T = s1.nextInt(); while(T-->0) out.println(modifiedEuclidGCD(s1.nextInt(), s1.nextInt())); } /************************ SOLUTION ENDS HERE ************************/ /************************ TEMPLATE STARTS HERE *********************/ public static void main(String []args) throws IOException { FastScanner in = new FastScanner(System.in); PrintWriter out = new PrintWriter(new BufferedWriter(new OutputStreamWriter(System.out)), false); solve(in, out); in.close(); out.close(); } static class FastScanner{ BufferedReader reader; StringTokenizer st; FastScanner(InputStream stream){reader=new BufferedReader(new InputStreamReader(stream));st=null;} String next() {while(st == null || !st.hasMoreTokens()){try{String line = reader.readLine();if(line == null){return null;} st = new StringTokenizer(line);}catch (Exception e){throw new RuntimeException();}}return st.nextToken();} String nextLine() {String s=null;try{s=reader.readLine();}catch(IOException e){e.printStackTrace();}return s;} int nextInt() {return Integer.parseInt(next());} long nextLong() {return Long.parseLong(next());} double nextDouble(){return Double.parseDouble(next());} char nextChar() {return next().charAt(0);} int[] nextIntArray(int n) {int[] a= new int[n]; int i=0;while(i<n){a[i++]=nextInt();} return a;} long[] nextLongArray(int n) {long[]a= new long[n]; int i=0;while(i<n){a[i++]=nextLong();} return a;} int[] nextIntArrayOneBased(int n) {int[] a= new int[n+1]; int i=1;while(i<=n){a[i++]=nextInt();} return a;} long[] nextLongArrayOneBased(int n){long[]a= new long[n+1];int i=1;while(i<=n){a[i++]=nextLong();}return a;} void close(){try{reader.close();}catch(IOException e){e.printStackTrace();}} } /************************ TEMPLATE ENDS HERE ************************/ } </CODE> <EVALUATION_RUBRIC> - O(n^3): The time complexity scales proportionally to the cube of the input size. - O(1): The time complexity is constant to the input size n. - O(log(n)): The time complexity increases logarithmically in relation to the input size. - non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially. - O(n): The time complexity increases proportionally to the input size n in a linear manner. - O(n^2): The time complexity grows proportionally to the square of the input size. - O(nlog(n)): The time complexity combines linear and logarithmic growth factors. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Determine the worst-case time complexity category of a given Java code based on input size n. </TASK> <CODE> import java.util.*; import java.io.*; public class Subtractions { /************************ SOLUTION STARTS HERE ***********************/ static long modifiedEuclidGCD(int a , int b) { return b == 0 ? 0 : (a / b) + modifiedEuclidGCD(b, a % b); } private static void solve(FastScanner s1, PrintWriter out){ int T = s1.nextInt(); while(T-->0) out.println(modifiedEuclidGCD(s1.nextInt(), s1.nextInt())); } /************************ SOLUTION ENDS HERE ************************/ /************************ TEMPLATE STARTS HERE *********************/ public static void main(String []args) throws IOException { FastScanner in = new FastScanner(System.in); PrintWriter out = new PrintWriter(new BufferedWriter(new OutputStreamWriter(System.out)), false); solve(in, out); in.close(); out.close(); } static class FastScanner{ BufferedReader reader; StringTokenizer st; FastScanner(InputStream stream){reader=new BufferedReader(new InputStreamReader(stream));st=null;} String next() {while(st == null || !st.hasMoreTokens()){try{String line = reader.readLine();if(line == null){return null;} st = new StringTokenizer(line);}catch (Exception e){throw new RuntimeException();}}return st.nextToken();} String nextLine() {String s=null;try{s=reader.readLine();}catch(IOException e){e.printStackTrace();}return s;} int nextInt() {return Integer.parseInt(next());} long nextLong() {return Long.parseLong(next());} double nextDouble(){return Double.parseDouble(next());} char nextChar() {return next().charAt(0);} int[] nextIntArray(int n) {int[] a= new int[n]; int i=0;while(i<n){a[i++]=nextInt();} return a;} long[] nextLongArray(int n) {long[]a= new long[n]; int i=0;while(i<n){a[i++]=nextLong();} return a;} int[] nextIntArrayOneBased(int n) {int[] a= new int[n+1]; int i=1;while(i<=n){a[i++]=nextInt();} return a;} long[] nextLongArrayOneBased(int n){long[]a= new long[n+1];int i=1;while(i<=n){a[i++]=nextLong();}return a;} void close(){try{reader.close();}catch(IOException e){e.printStackTrace();}} } /************************ TEMPLATE ENDS HERE ************************/ } </CODE> <EVALUATION_RUBRIC> - O(n^3): The time complexity scales proportionally to the cube of the input size. - non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially. - others: The time complexity does not fit any of the above categories or cannot be clearly classified. - O(nlog(n)): The time complexity combines linear and logarithmic growth factors. - O(1): The time complexity is constant to the input size n. - O(n^2): The time complexity grows proportionally to the square of the input size. - O(n): The time complexity increases proportionally to the input size n in a linear manner. - O(log(n)): The time complexity increases logarithmically in relation to the input size. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
900
2,797
2,903
import java.util.*; public class A { public static void main(String[] args) { Scanner s = new Scanner(System.in); int n = s.nextInt(); s.close(); if (n % 2 == 0) System.out.print("4 " + (n-4)); else System.out.print("9 " + (n-9)); } }
O(1)
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Determine the worst-case time complexity category of a given Java code based on input size n. </TASK> <CODE> import java.util.*; public class A { public static void main(String[] args) { Scanner s = new Scanner(System.in); int n = s.nextInt(); s.close(); if (n % 2 == 0) System.out.print("4 " + (n-4)); else System.out.print("9 " + (n-9)); } } </CODE> <EVALUATION_RUBRIC> - O(log(n)): The time complexity increases logarithmically in relation to the input size. - O(n^2): The time complexity grows proportionally to the square of the input size. - O(n): The time complexity increases proportionally to the input size n in a linear manner. - O(n^3): The time complexity scales proportionally to the cube of the input size. - O(nlog(n)): The time complexity combines linear and logarithmic growth factors. - O(1): The time complexity is constant to the input size n. - non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n. </TASK> <CODE> import java.util.*; public class A { public static void main(String[] args) { Scanner s = new Scanner(System.in); int n = s.nextInt(); s.close(); if (n % 2 == 0) System.out.print("4 " + (n-4)); else System.out.print("9 " + (n-9)); } } </CODE> <EVALUATION_RUBRIC> - O(n^3): The execution time ascends in proportion to the cube of the input size n. - non-polynomial: The running time increases non-polynomially with input size n, typically exponentially. - O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially. - O(1): The execution time is unaffected by the size of the input n. - O(n): The execution time ascends in a one-to-one ratio with the input size n. - O(n^2): The execution time ascends in proportion to the square of the input size n. - others: The time complexity does not fit to any of the given categories or is ambiguous. - O(log(n)): The execution time ascends in proportion to the logarithm of the input size n. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
412
2,897
3,893
import java.lang.*; import java.util.*; import java.io.*; public class Main { static void deal(int n,int[] arr) { int[] a = new int[n]; a[0] = 1; int l = 1; out.println(toString(a,l)); for(int i=1;i<n;i++) { if(arr[i] == 1) { a[l] = 1; l++; } else { int index = l-1; while(index>=0 && a[index] != arr[i]-1) { index--; } a[index]++; l = index+1; } out.println(toString(a,l)); } } static String toString(int[] arr,int l) { StringBuilder sb = new StringBuilder(); for(int i=0;i<l-1;i++) { sb.append(arr[i]); sb.append('.'); } sb.append(arr[l-1]); return sb.toString(); } public static void main(String[] args) { MyScanner sc = new MyScanner(); out = new PrintWriter(new BufferedOutputStream(System.out)); int t = sc.nextInt(); for(int i=0;i<t;i++) { int n = sc.nextInt(); int[] arr = new int[n]; for(int j=0;j<n;j++) arr[j] = sc.nextInt(); deal(n,arr); } out.close(); } //-----------PrintWriter for faster output--------------------------------- public static PrintWriter out; //-----------MyScanner class for faster input---------- public static class MyScanner { BufferedReader br; StringTokenizer st; public MyScanner() { br = new BufferedReader(new InputStreamReader(System.in)); } String next() { while (st == null || !st.hasMoreElements()) { try { st = new StringTokenizer(br.readLine()); } catch (IOException e) { e.printStackTrace(); } } return st.nextToken(); } int nextInt() { return Integer.parseInt(next()); } long nextLong() { return Long.parseLong(next()); } double nextDouble() { return Double.parseDouble(next()); } String nextLine(){ String str = ""; try { str = br.readLine(); } catch (IOException e) { e.printStackTrace(); } return str; } } }
O(n^3)
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Determine the worst-case time complexity category of a given Java code based on input size n. </TASK> <CODE> import java.lang.*; import java.util.*; import java.io.*; public class Main { static void deal(int n,int[] arr) { int[] a = new int[n]; a[0] = 1; int l = 1; out.println(toString(a,l)); for(int i=1;i<n;i++) { if(arr[i] == 1) { a[l] = 1; l++; } else { int index = l-1; while(index>=0 && a[index] != arr[i]-1) { index--; } a[index]++; l = index+1; } out.println(toString(a,l)); } } static String toString(int[] arr,int l) { StringBuilder sb = new StringBuilder(); for(int i=0;i<l-1;i++) { sb.append(arr[i]); sb.append('.'); } sb.append(arr[l-1]); return sb.toString(); } public static void main(String[] args) { MyScanner sc = new MyScanner(); out = new PrintWriter(new BufferedOutputStream(System.out)); int t = sc.nextInt(); for(int i=0;i<t;i++) { int n = sc.nextInt(); int[] arr = new int[n]; for(int j=0;j<n;j++) arr[j] = sc.nextInt(); deal(n,arr); } out.close(); } //-----------PrintWriter for faster output--------------------------------- public static PrintWriter out; //-----------MyScanner class for faster input---------- public static class MyScanner { BufferedReader br; StringTokenizer st; public MyScanner() { br = new BufferedReader(new InputStreamReader(System.in)); } String next() { while (st == null || !st.hasMoreElements()) { try { st = new StringTokenizer(br.readLine()); } catch (IOException e) { e.printStackTrace(); } } return st.nextToken(); } int nextInt() { return Integer.parseInt(next()); } long nextLong() { return Long.parseLong(next()); } double nextDouble() { return Double.parseDouble(next()); } String nextLine(){ String str = ""; try { str = br.readLine(); } catch (IOException e) { e.printStackTrace(); } return str; } } } </CODE> <EVALUATION_RUBRIC> - non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially. - O(1): The time complexity is constant to the input size n. - O(log(n)): The time complexity increases logarithmically in relation to the input size. - O(n^3): The time complexity scales proportionally to the cube of the input size. - O(n): The time complexity increases proportionally to the input size n in a linear manner. - O(n^2): The time complexity grows proportionally to the square of the input size. - O(nlog(n)): The time complexity combines linear and logarithmic growth factors. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Classify the following Java code's worst-case time complexity according to its relationship to the input size n. </TASK> <CODE> import java.lang.*; import java.util.*; import java.io.*; public class Main { static void deal(int n,int[] arr) { int[] a = new int[n]; a[0] = 1; int l = 1; out.println(toString(a,l)); for(int i=1;i<n;i++) { if(arr[i] == 1) { a[l] = 1; l++; } else { int index = l-1; while(index>=0 && a[index] != arr[i]-1) { index--; } a[index]++; l = index+1; } out.println(toString(a,l)); } } static String toString(int[] arr,int l) { StringBuilder sb = new StringBuilder(); for(int i=0;i<l-1;i++) { sb.append(arr[i]); sb.append('.'); } sb.append(arr[l-1]); return sb.toString(); } public static void main(String[] args) { MyScanner sc = new MyScanner(); out = new PrintWriter(new BufferedOutputStream(System.out)); int t = sc.nextInt(); for(int i=0;i<t;i++) { int n = sc.nextInt(); int[] arr = new int[n]; for(int j=0;j<n;j++) arr[j] = sc.nextInt(); deal(n,arr); } out.close(); } //-----------PrintWriter for faster output--------------------------------- public static PrintWriter out; //-----------MyScanner class for faster input---------- public static class MyScanner { BufferedReader br; StringTokenizer st; public MyScanner() { br = new BufferedReader(new InputStreamReader(System.in)); } String next() { while (st == null || !st.hasMoreElements()) { try { st = new StringTokenizer(br.readLine()); } catch (IOException e) { e.printStackTrace(); } } return st.nextToken(); } int nextInt() { return Integer.parseInt(next()); } long nextLong() { return Long.parseLong(next()); } double nextDouble() { return Double.parseDouble(next()); } String nextLine(){ String str = ""; try { str = br.readLine(); } catch (IOException e) { e.printStackTrace(); } return str; } } } </CODE> <EVALUATION_RUBRIC> - others: The code does not clearly correspond to the listed classes or has an unclassified time complexity. - O(log(n)): The running time increases with the logarithm of the input size n. - O(1): The running time does not change regardless of the input size n. - O(n^3): The running time increases with the cube of the input size n. - O(n): The running time grows linearly with the input size n. - non-polynomial: The running time increases non-polynomially with input size n, typically exponentially. - O(nlog(n)): The running time increases with the product of n and logarithm of n. - O(n^2): The running time increases with the square of the input size n. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
837
3,883
3,637
import java.io.*; import java.util.*; import static java.lang.Math.*; public class incendio { void dbg(Object...os) { System.err.println(Arrays.deepToString(os)); } static StringTokenizer _stk; static BufferedReader input; static PrintWriter output; static String next(){return _stk.nextToken();} static int nextInt(){return Integer.parseInt(next());} static String readln()throws IOException {String l=input.readLine();_stk=l==null?null:new StringTokenizer(l," ");return l;} public static void main(String[] args) throws IOException { input = new BufferedReader(new FileReader("input.txt")); output = new PrintWriter(new BufferedWriter(new FileWriter("output.txt"))); new incendio(); output.close(); } incendio() throws IOException { readln(); M = nextInt(); N = nextInt(); readln(); final int K = nextInt(); int xf[]=new int[K], yf[]=new int[K]; readln(); for(int i=0; i<K; i++) { xf[i]=nextInt(); yf[i]=nextInt(); } int best=-1, xbest=0, ybest=0; for(int i=1; i<=M; i++) { for(int j=1; j<=N; j++) { int dist=Integer.MAX_VALUE; for(int k=0; k<K; k++) { dist = Math.min(dist, Math.abs(i-xf[k])+Math.abs(j-yf[k])); } if(dist>best) { best=dist; xbest=i; ybest=j; } } } output.println(xbest+" "+ybest); } int M, N; }
O(n^3)
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Determine the worst-case time complexity category of a given Java code based on input size n. </TASK> <CODE> import java.io.*; import java.util.*; import static java.lang.Math.*; public class incendio { void dbg(Object...os) { System.err.println(Arrays.deepToString(os)); } static StringTokenizer _stk; static BufferedReader input; static PrintWriter output; static String next(){return _stk.nextToken();} static int nextInt(){return Integer.parseInt(next());} static String readln()throws IOException {String l=input.readLine();_stk=l==null?null:new StringTokenizer(l," ");return l;} public static void main(String[] args) throws IOException { input = new BufferedReader(new FileReader("input.txt")); output = new PrintWriter(new BufferedWriter(new FileWriter("output.txt"))); new incendio(); output.close(); } incendio() throws IOException { readln(); M = nextInt(); N = nextInt(); readln(); final int K = nextInt(); int xf[]=new int[K], yf[]=new int[K]; readln(); for(int i=0; i<K; i++) { xf[i]=nextInt(); yf[i]=nextInt(); } int best=-1, xbest=0, ybest=0; for(int i=1; i<=M; i++) { for(int j=1; j<=N; j++) { int dist=Integer.MAX_VALUE; for(int k=0; k<K; k++) { dist = Math.min(dist, Math.abs(i-xf[k])+Math.abs(j-yf[k])); } if(dist>best) { best=dist; xbest=i; ybest=j; } } } output.println(xbest+" "+ybest); } int M, N; } </CODE> <EVALUATION_RUBRIC> - non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially. - O(nlog(n)): The time complexity combines linear and logarithmic growth factors. - O(n^2): The time complexity grows proportionally to the square of the input size. - O(1): The time complexity is constant to the input size n. - O(n): The time complexity increases proportionally to the input size n in a linear manner. - O(log(n)): The time complexity increases logarithmically in relation to the input size. - O(n^3): The time complexity scales proportionally to the cube of the input size. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Classify the following Java code's worst-case time complexity according to its relationship to the input size n. </TASK> <CODE> import java.io.*; import java.util.*; import static java.lang.Math.*; public class incendio { void dbg(Object...os) { System.err.println(Arrays.deepToString(os)); } static StringTokenizer _stk; static BufferedReader input; static PrintWriter output; static String next(){return _stk.nextToken();} static int nextInt(){return Integer.parseInt(next());} static String readln()throws IOException {String l=input.readLine();_stk=l==null?null:new StringTokenizer(l," ");return l;} public static void main(String[] args) throws IOException { input = new BufferedReader(new FileReader("input.txt")); output = new PrintWriter(new BufferedWriter(new FileWriter("output.txt"))); new incendio(); output.close(); } incendio() throws IOException { readln(); M = nextInt(); N = nextInt(); readln(); final int K = nextInt(); int xf[]=new int[K], yf[]=new int[K]; readln(); for(int i=0; i<K; i++) { xf[i]=nextInt(); yf[i]=nextInt(); } int best=-1, xbest=0, ybest=0; for(int i=1; i<=M; i++) { for(int j=1; j<=N; j++) { int dist=Integer.MAX_VALUE; for(int k=0; k<K; k++) { dist = Math.min(dist, Math.abs(i-xf[k])+Math.abs(j-yf[k])); } if(dist>best) { best=dist; xbest=i; ybest=j; } } } output.println(xbest+" "+ybest); } int M, N; } </CODE> <EVALUATION_RUBRIC> - O(n^3): The running time increases with the cube of the input size n. - O(n^2): The running time increases with the square of the input size n. - O(log(n)): The running time increases with the logarithm of the input size n. - O(n): The running time grows linearly with the input size n. - others: The code does not clearly correspond to the listed classes or has an unclassified time complexity. - O(nlog(n)): The running time increases with the product of n and logarithm of n. - O(1): The running time does not change regardless of the input size n. - non-polynomial: The running time increases non-polynomially with input size n, typically exponentially. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
700
3,629
4,516
import java.io.*; import java.util.*; import static java.lang.Math.*; import static java.util.Arrays.*; // editorial sol public class cf1238e { public static void main(String[] args) throws IOException { int n = rni(), m = ni(), cnt[][] = new int[m][m], dp[] = new int[1 << m], all = (1 << m) - 1; char[] s = rcha(); for (int i = 1; i < n; ++i) { ++cnt[s[i] - 'a'][s[i - 1] - 'a']; ++cnt[s[i - 1] - 'a'][s[i] - 'a']; } fill(dp, IBIG); dp[0] = 0; int cnt_bit[] = new int[1 << m], min_bit[] = new int[1 << m], d[][] = new int[1 << m][m]; for (int mask = 1; mask <= all; ++mask) { cnt_bit[mask] = 1 + cnt_bit[mask & (mask - 1)]; for (int i = 0; i < n; ++i) { if ((mask & (1 << i)) > 0) { min_bit[mask] = i; break; } } } for (int mask = 1; mask <= all; ++mask) { for (int i = 0; i < m; ++i) { d[mask][i] = d[mask ^ (1 << min_bit[mask])][i] + cnt[i][min_bit[mask]]; } } for (int mask = 0; mask <= all; ++mask) { for (int i = 0; i < m; ++i) { if ((mask & (1 << i)) > 0) { continue; } int pos = cnt_bit[mask], next = mask | (1 << i); dp[next] = min(dp[next], dp[mask] + pos * (d[mask][i] - d[all ^ next][i])); } } prln(dp[all]); close(); } static BufferedReader __in = new BufferedReader(new InputStreamReader(System.in)); static PrintWriter __out = new PrintWriter(new OutputStreamWriter(System.out)); static StringTokenizer input; static Random __rand = new Random(); // references // IBIG = 1e9 + 7 // IMAX ~= 2e9 // LMAX ~= 9e18 // constants static final int IBIG = 1000000007; static final int IMAX = 2147483647; static final int IMIN = -2147483648; static final long LMAX = 9223372036854775807L; static final long LMIN = -9223372036854775808L; // math util static int minof(int a, int b, int c) {return min(a, min(b, c));} static int minof(int... x) {if (x.length == 1) return x[0]; if (x.length == 2) return min(x[0], x[1]); if (x.length == 3) return min(x[0], min(x[1], x[2])); int min = x[0]; for (int i = 1; i < x.length; ++i) if (x[i] < min) min = x[i]; return min;} static long minof(long a, long b, long c) {return min(a, min(b, c));} static long minof(long... x) {if (x.length == 1) return x[0]; if (x.length == 2) return min(x[0], x[1]); if (x.length == 3) return min(x[0], min(x[1], x[2])); long min = x[0]; for (int i = 1; i < x.length; ++i) if (x[i] < min) min = x[i]; return min;} static int maxof(int a, int b, int c) {return max(a, max(b, c));} static int maxof(int... x) {if (x.length == 1) return x[0]; if (x.length == 2) return max(x[0], x[1]); if (x.length == 3) return max(x[0], max(x[1], x[2])); int max = x[0]; for (int i = 1; i < x.length; ++i) if (x[i] > max) max = x[i]; return max;} static long maxof(long a, long b, long c) {return max(a, max(b, c));} static long maxof(long... x) {if (x.length == 1) return x[0]; if (x.length == 2) return max(x[0], x[1]); if (x.length == 3) return max(x[0], max(x[1], x[2])); long max = x[0]; for (int i = 1; i < x.length; ++i) if (x[i] > max) max = x[i]; return max;} static int powi(int a, int b) {if (a == 0) return 0; int ans = 1; while (b > 0) {if ((b & 1) > 0) ans *= a; a *= a; b >>= 1;} return ans;} static long powl(long a, int b) {if (a == 0) return 0; long ans = 1; while (b > 0) {if ((b & 1) > 0) ans *= a; a *= a; b >>= 1;} return ans;} static int fli(double d) {return (int) d;} static int cei(double d) {return (int) ceil(d);} static long fll(double d) {return (long) d;} static long cel(double d) {return (long) ceil(d);} static int gcf(int a, int b) {return b == 0 ? a : gcf(b, a % b);} static long gcf(long a, long b) {return b == 0 ? a : gcf(b, a % b);} static int lcm(int a, int b) {return a * b / gcf(a, b);} static long lcm(long a, long b) {return a * b / gcf(a, b);} static int randInt(int min, int max) {return __rand.nextInt(max - min + 1) + min;} static long mix(long x) {x += 0x9e3779b97f4a7c15L; x = (x ^ (x >> 30)) * 0xbf58476d1ce4e5b9L; x = (x ^ (x >> 27)) * 0x94d049bb133111ebL; return x ^ (x >> 31);} // array util static void reverse(int[] a) {for (int i = 0, n = a.length, half = n / 2; i < half; ++i) {int swap = a[i]; a[i] = a[n - i - 1]; a[n - i - 1] = swap;}} static void reverse(long[] a) {for (int i = 0, n = a.length, half = n / 2; i < half; ++i) {long swap = a[i]; a[i] = a[n - i - 1]; a[n - i - 1] = swap;}} static void reverse(double[] a) {for (int i = 0, n = a.length, half = n / 2; i < half; ++i) {double swap = a[i]; a[i] = a[n - i - 1]; a[n - i - 1] = swap;}} static void reverse(char[] a) {for (int i = 0, n = a.length, half = n / 2; i < half; ++i) {char swap = a[i]; a[i] = a[n - i - 1]; a[n - i - 1] = swap;}} static void shuffle(int[] a) {int n = a.length - 1; for (int i = 0; i < n; ++i) {int ind = randInt(i, n); int swap = a[i]; a[i] = a[ind]; a[ind] = swap;}} static void shuffle(long[] a) {int n = a.length - 1; for (int i = 0; i < n; ++i) {int ind = randInt(i, n); long swap = a[i]; a[i] = a[ind]; a[ind] = swap;}} static void shuffle(double[] a) {int n = a.length - 1; for (int i = 0; i < n; ++i) {int ind = randInt(i, n); double swap = a[i]; a[i] = a[ind]; a[ind] = swap;}} static void rsort(int[] a) {shuffle(a); sort(a);} static void rsort(long[] a) {shuffle(a); sort(a);} static void rsort(double[] a) {shuffle(a); sort(a);} static int[] copy(int[] a) {int[] ans = new int[a.length]; for (int i = 0; i < a.length; ++i) ans[i] = a[i]; return ans;} static long[] copy(long[] a) {long[] ans = new long[a.length]; for (int i = 0; i < a.length; ++i) ans[i] = a[i]; return ans;} static double[] copy(double[] a) {double[] ans = new double[a.length]; for (int i = 0; i < a.length; ++i) ans[i] = a[i]; return ans;} static char[] copy(char[] a) {char[] ans = new char[a.length]; for (int i = 0; i < a.length; ++i) ans[i] = a[i]; return ans;} // graph util static List<List<Integer>> g(int n) {List<List<Integer>> g = new ArrayList<>(); for (int i = 0; i < n; ++i) g.add(new ArrayList<>()); return g;} static List<Set<Integer>> sg(int n) {List<Set<Integer>> g = new ArrayList<>(); for (int i = 0; i < n; ++i) g.add(new HashSet<>()); return g;} static void c(List<? extends Collection<Integer>> g, int u, int v) {g.get(u).add(v); g.get(v).add(u);} static void cto(List<? extends Collection<Integer>> g, int u, int v) {g.get(u).add(v);} static void dc(List<? extends Collection<Integer>> g, int u, int v) {g.get(u).remove(v); g.get(v).remove(u);} static void dcto(List<? extends Collection<Integer>> g, int u, int v) {g.get(u).remove(v);} // input static void r() throws IOException {input = new StringTokenizer(rline());} static int ri() throws IOException {return Integer.parseInt(rline());} static long rl() throws IOException {return Long.parseLong(rline());} static double rd() throws IOException {return Double.parseDouble(rline());} static int[] ria(int n) throws IOException {int[] a = new int[n]; r(); for (int i = 0; i < n; ++i) a[i] = ni(); return a;} static int[] riam1(int n) throws IOException {int[] a = new int[n]; r(); for (int i = 0; i < n; ++i) a[i] = ni() - 1; return a;} static long[] rla(int n) throws IOException {long[] a = new long[n]; r(); for (int i = 0; i < n; ++i) a[i] = nl(); return a;} static double[] rda(int n) throws IOException {double[] a = new double[n]; r(); for (int i = 0; i < n; ++i) a[i] = nd(); return a;} static char[] rcha() throws IOException {return rline().toCharArray();} static String rline() throws IOException {return __in.readLine();} static String n() {return input.nextToken();} static int rni() throws IOException {r(); return ni();} static int ni() {return Integer.parseInt(n());} static long rnl() throws IOException {r(); return nl();} static long nl() {return Long.parseLong(n());} static double rnd() throws IOException {r(); return nd();} static double nd() {return Double.parseDouble(n());} static List<List<Integer>> rg(int n, int m) throws IOException {List<List<Integer>> g = g(n); for (int i = 0; i < m; ++i) c(g, rni() - 1, ni() - 1); return g;} static void rg(List<List<Integer>> g, int m) throws IOException {for (int i = 0; i < m; ++i) c(g, rni() - 1, ni() - 1);} static List<List<Integer>> rdg(int n, int m) throws IOException {List<List<Integer>> g = g(n); for (int i = 0; i < m; ++i) cto(g, rni() - 1, ni() - 1); return g;} static void rdg(List<List<Integer>> g, int m) throws IOException {for (int i = 0; i < m; ++i) cto(g, rni() - 1, ni() - 1);} static List<Set<Integer>> rsg(int n, int m) throws IOException {List<Set<Integer>> g = sg(n); for (int i = 0; i < m; ++i) c(g, rni() - 1, ni() - 1); return g;} static void rsg(List<Set<Integer>> g, int m) throws IOException {for (int i = 0; i < m; ++i) c(g, rni() - 1, ni() - 1);} static List<Set<Integer>> rdsg(int n, int m) throws IOException {List<Set<Integer>> g = sg(n); for (int i = 0; i < m; ++i) cto(g, rni() - 1, ni() - 1); return g;} static void rdsg(List<Set<Integer>> g, int m) throws IOException {for (int i = 0; i < m; ++i) cto(g, rni() - 1, ni() - 1);} // output static void pr(int i) {__out.print(i);} static void prln(int i) {__out.println(i);} static void pr(long l) {__out.print(l);} static void prln(long l) {__out.println(l);} static void pr(double d) {__out.print(d);} static void prln(double d) {__out.println(d);} static void pr(char c) {__out.print(c);} static void prln(char c) {__out.println(c);} static void pr(char[] s) {__out.print(new String(s));} static void prln(char[] s) {__out.println(new String(s));} static void pr(String s) {__out.print(s);} static void prln(String s) {__out.println(s);} static void pr(Object o) {__out.print(o);} static void prln(Object o) {__out.println(o);} static void prln() {__out.println();} static void pryes() {prln("yes");} static void pry() {prln("Yes");} static void prY() {prln("YES");} static void prno() {prln("no");} static void prn() {prln("No");} static void prN() {prln("NO");} static void pryesno(boolean b) {prln(b ? "yes" : "no");}; static void pryn(boolean b) {prln(b ? "Yes" : "No");} static void prYN(boolean b) {prln(b ? "YES" : "NO");} static void prln(int... a) {for (int i = 0, len = a.length - 1; i < len; pr(a[i]), pr(' '), ++i); if (a.length > 0) prln(a[a.length - 1]); else prln();} static void prln(long... a) {for (int i = 0, len = a.length - 1; i < len; pr(a[i]), pr(' '), ++i); if (a.length > 0) prln(a[a.length - 1]); else prln();} static void prln(double... a) {for (int i = 0, len = a.length - 1; i < len; pr(a[i]), pr(' '), ++i); if (a.length > 0) prln(a[a.length - 1]); else prln();} static <T> void prln(Collection<T> c) {int n = c.size() - 1; Iterator<T> iter = c.iterator(); for (int i = 0; i < n; pr(iter.next()), pr(' '), ++i); if (n >= 0) prln(iter.next()); else prln();} static void h() {prln("hlfd"); flush();} static void flush() {__out.flush();} static void close() {__out.close();}}
non-polynomial
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n. </TASK> <CODE> import java.io.*; import java.util.*; import static java.lang.Math.*; import static java.util.Arrays.*; // editorial sol public class cf1238e { public static void main(String[] args) throws IOException { int n = rni(), m = ni(), cnt[][] = new int[m][m], dp[] = new int[1 << m], all = (1 << m) - 1; char[] s = rcha(); for (int i = 1; i < n; ++i) { ++cnt[s[i] - 'a'][s[i - 1] - 'a']; ++cnt[s[i - 1] - 'a'][s[i] - 'a']; } fill(dp, IBIG); dp[0] = 0; int cnt_bit[] = new int[1 << m], min_bit[] = new int[1 << m], d[][] = new int[1 << m][m]; for (int mask = 1; mask <= all; ++mask) { cnt_bit[mask] = 1 + cnt_bit[mask & (mask - 1)]; for (int i = 0; i < n; ++i) { if ((mask & (1 << i)) > 0) { min_bit[mask] = i; break; } } } for (int mask = 1; mask <= all; ++mask) { for (int i = 0; i < m; ++i) { d[mask][i] = d[mask ^ (1 << min_bit[mask])][i] + cnt[i][min_bit[mask]]; } } for (int mask = 0; mask <= all; ++mask) { for (int i = 0; i < m; ++i) { if ((mask & (1 << i)) > 0) { continue; } int pos = cnt_bit[mask], next = mask | (1 << i); dp[next] = min(dp[next], dp[mask] + pos * (d[mask][i] - d[all ^ next][i])); } } prln(dp[all]); close(); } static BufferedReader __in = new BufferedReader(new InputStreamReader(System.in)); static PrintWriter __out = new PrintWriter(new OutputStreamWriter(System.out)); static StringTokenizer input; static Random __rand = new Random(); // references // IBIG = 1e9 + 7 // IMAX ~= 2e9 // LMAX ~= 9e18 // constants static final int IBIG = 1000000007; static final int IMAX = 2147483647; static final int IMIN = -2147483648; static final long LMAX = 9223372036854775807L; static final long LMIN = -9223372036854775808L; // math util static int minof(int a, int b, int c) {return min(a, min(b, c));} static int minof(int... x) {if (x.length == 1) return x[0]; if (x.length == 2) return min(x[0], x[1]); if (x.length == 3) return min(x[0], min(x[1], x[2])); int min = x[0]; for (int i = 1; i < x.length; ++i) if (x[i] < min) min = x[i]; return min;} static long minof(long a, long b, long c) {return min(a, min(b, c));} static long minof(long... x) {if (x.length == 1) return x[0]; if (x.length == 2) return min(x[0], x[1]); if (x.length == 3) return min(x[0], min(x[1], x[2])); long min = x[0]; for (int i = 1; i < x.length; ++i) if (x[i] < min) min = x[i]; return min;} static int maxof(int a, int b, int c) {return max(a, max(b, c));} static int maxof(int... x) {if (x.length == 1) return x[0]; if (x.length == 2) return max(x[0], x[1]); if (x.length == 3) return max(x[0], max(x[1], x[2])); int max = x[0]; for (int i = 1; i < x.length; ++i) if (x[i] > max) max = x[i]; return max;} static long maxof(long a, long b, long c) {return max(a, max(b, c));} static long maxof(long... x) {if (x.length == 1) return x[0]; if (x.length == 2) return max(x[0], x[1]); if (x.length == 3) return max(x[0], max(x[1], x[2])); long max = x[0]; for (int i = 1; i < x.length; ++i) if (x[i] > max) max = x[i]; return max;} static int powi(int a, int b) {if (a == 0) return 0; int ans = 1; while (b > 0) {if ((b & 1) > 0) ans *= a; a *= a; b >>= 1;} return ans;} static long powl(long a, int b) {if (a == 0) return 0; long ans = 1; while (b > 0) {if ((b & 1) > 0) ans *= a; a *= a; b >>= 1;} return ans;} static int fli(double d) {return (int) d;} static int cei(double d) {return (int) ceil(d);} static long fll(double d) {return (long) d;} static long cel(double d) {return (long) ceil(d);} static int gcf(int a, int b) {return b == 0 ? a : gcf(b, a % b);} static long gcf(long a, long b) {return b == 0 ? a : gcf(b, a % b);} static int lcm(int a, int b) {return a * b / gcf(a, b);} static long lcm(long a, long b) {return a * b / gcf(a, b);} static int randInt(int min, int max) {return __rand.nextInt(max - min + 1) + min;} static long mix(long x) {x += 0x9e3779b97f4a7c15L; x = (x ^ (x >> 30)) * 0xbf58476d1ce4e5b9L; x = (x ^ (x >> 27)) * 0x94d049bb133111ebL; return x ^ (x >> 31);} // array util static void reverse(int[] a) {for (int i = 0, n = a.length, half = n / 2; i < half; ++i) {int swap = a[i]; a[i] = a[n - i - 1]; a[n - i - 1] = swap;}} static void reverse(long[] a) {for (int i = 0, n = a.length, half = n / 2; i < half; ++i) {long swap = a[i]; a[i] = a[n - i - 1]; a[n - i - 1] = swap;}} static void reverse(double[] a) {for (int i = 0, n = a.length, half = n / 2; i < half; ++i) {double swap = a[i]; a[i] = a[n - i - 1]; a[n - i - 1] = swap;}} static void reverse(char[] a) {for (int i = 0, n = a.length, half = n / 2; i < half; ++i) {char swap = a[i]; a[i] = a[n - i - 1]; a[n - i - 1] = swap;}} static void shuffle(int[] a) {int n = a.length - 1; for (int i = 0; i < n; ++i) {int ind = randInt(i, n); int swap = a[i]; a[i] = a[ind]; a[ind] = swap;}} static void shuffle(long[] a) {int n = a.length - 1; for (int i = 0; i < n; ++i) {int ind = randInt(i, n); long swap = a[i]; a[i] = a[ind]; a[ind] = swap;}} static void shuffle(double[] a) {int n = a.length - 1; for (int i = 0; i < n; ++i) {int ind = randInt(i, n); double swap = a[i]; a[i] = a[ind]; a[ind] = swap;}} static void rsort(int[] a) {shuffle(a); sort(a);} static void rsort(long[] a) {shuffle(a); sort(a);} static void rsort(double[] a) {shuffle(a); sort(a);} static int[] copy(int[] a) {int[] ans = new int[a.length]; for (int i = 0; i < a.length; ++i) ans[i] = a[i]; return ans;} static long[] copy(long[] a) {long[] ans = new long[a.length]; for (int i = 0; i < a.length; ++i) ans[i] = a[i]; return ans;} static double[] copy(double[] a) {double[] ans = new double[a.length]; for (int i = 0; i < a.length; ++i) ans[i] = a[i]; return ans;} static char[] copy(char[] a) {char[] ans = new char[a.length]; for (int i = 0; i < a.length; ++i) ans[i] = a[i]; return ans;} // graph util static List<List<Integer>> g(int n) {List<List<Integer>> g = new ArrayList<>(); for (int i = 0; i < n; ++i) g.add(new ArrayList<>()); return g;} static List<Set<Integer>> sg(int n) {List<Set<Integer>> g = new ArrayList<>(); for (int i = 0; i < n; ++i) g.add(new HashSet<>()); return g;} static void c(List<? extends Collection<Integer>> g, int u, int v) {g.get(u).add(v); g.get(v).add(u);} static void cto(List<? extends Collection<Integer>> g, int u, int v) {g.get(u).add(v);} static void dc(List<? extends Collection<Integer>> g, int u, int v) {g.get(u).remove(v); g.get(v).remove(u);} static void dcto(List<? extends Collection<Integer>> g, int u, int v) {g.get(u).remove(v);} // input static void r() throws IOException {input = new StringTokenizer(rline());} static int ri() throws IOException {return Integer.parseInt(rline());} static long rl() throws IOException {return Long.parseLong(rline());} static double rd() throws IOException {return Double.parseDouble(rline());} static int[] ria(int n) throws IOException {int[] a = new int[n]; r(); for (int i = 0; i < n; ++i) a[i] = ni(); return a;} static int[] riam1(int n) throws IOException {int[] a = new int[n]; r(); for (int i = 0; i < n; ++i) a[i] = ni() - 1; return a;} static long[] rla(int n) throws IOException {long[] a = new long[n]; r(); for (int i = 0; i < n; ++i) a[i] = nl(); return a;} static double[] rda(int n) throws IOException {double[] a = new double[n]; r(); for (int i = 0; i < n; ++i) a[i] = nd(); return a;} static char[] rcha() throws IOException {return rline().toCharArray();} static String rline() throws IOException {return __in.readLine();} static String n() {return input.nextToken();} static int rni() throws IOException {r(); return ni();} static int ni() {return Integer.parseInt(n());} static long rnl() throws IOException {r(); return nl();} static long nl() {return Long.parseLong(n());} static double rnd() throws IOException {r(); return nd();} static double nd() {return Double.parseDouble(n());} static List<List<Integer>> rg(int n, int m) throws IOException {List<List<Integer>> g = g(n); for (int i = 0; i < m; ++i) c(g, rni() - 1, ni() - 1); return g;} static void rg(List<List<Integer>> g, int m) throws IOException {for (int i = 0; i < m; ++i) c(g, rni() - 1, ni() - 1);} static List<List<Integer>> rdg(int n, int m) throws IOException {List<List<Integer>> g = g(n); for (int i = 0; i < m; ++i) cto(g, rni() - 1, ni() - 1); return g;} static void rdg(List<List<Integer>> g, int m) throws IOException {for (int i = 0; i < m; ++i) cto(g, rni() - 1, ni() - 1);} static List<Set<Integer>> rsg(int n, int m) throws IOException {List<Set<Integer>> g = sg(n); for (int i = 0; i < m; ++i) c(g, rni() - 1, ni() - 1); return g;} static void rsg(List<Set<Integer>> g, int m) throws IOException {for (int i = 0; i < m; ++i) c(g, rni() - 1, ni() - 1);} static List<Set<Integer>> rdsg(int n, int m) throws IOException {List<Set<Integer>> g = sg(n); for (int i = 0; i < m; ++i) cto(g, rni() - 1, ni() - 1); return g;} static void rdsg(List<Set<Integer>> g, int m) throws IOException {for (int i = 0; i < m; ++i) cto(g, rni() - 1, ni() - 1);} // output static void pr(int i) {__out.print(i);} static void prln(int i) {__out.println(i);} static void pr(long l) {__out.print(l);} static void prln(long l) {__out.println(l);} static void pr(double d) {__out.print(d);} static void prln(double d) {__out.println(d);} static void pr(char c) {__out.print(c);} static void prln(char c) {__out.println(c);} static void pr(char[] s) {__out.print(new String(s));} static void prln(char[] s) {__out.println(new String(s));} static void pr(String s) {__out.print(s);} static void prln(String s) {__out.println(s);} static void pr(Object o) {__out.print(o);} static void prln(Object o) {__out.println(o);} static void prln() {__out.println();} static void pryes() {prln("yes");} static void pry() {prln("Yes");} static void prY() {prln("YES");} static void prno() {prln("no");} static void prn() {prln("No");} static void prN() {prln("NO");} static void pryesno(boolean b) {prln(b ? "yes" : "no");}; static void pryn(boolean b) {prln(b ? "Yes" : "No");} static void prYN(boolean b) {prln(b ? "YES" : "NO");} static void prln(int... a) {for (int i = 0, len = a.length - 1; i < len; pr(a[i]), pr(' '), ++i); if (a.length > 0) prln(a[a.length - 1]); else prln();} static void prln(long... a) {for (int i = 0, len = a.length - 1; i < len; pr(a[i]), pr(' '), ++i); if (a.length > 0) prln(a[a.length - 1]); else prln();} static void prln(double... a) {for (int i = 0, len = a.length - 1; i < len; pr(a[i]), pr(' '), ++i); if (a.length > 0) prln(a[a.length - 1]); else prln();} static <T> void prln(Collection<T> c) {int n = c.size() - 1; Iterator<T> iter = c.iterator(); for (int i = 0; i < n; pr(iter.next()), pr(' '), ++i); if (n >= 0) prln(iter.next()); else prln();} static void h() {prln("hlfd"); flush();} static void flush() {__out.flush();} static void close() {__out.close();}} </CODE> <EVALUATION_RUBRIC> - O(log(n)): The execution time ascends in proportion to the logarithm of the input size n. - O(n): The execution time ascends in a one-to-one ratio with the input size n. - O(1): The execution time is unaffected by the size of the input n. - O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially. - non-polynomial: The running time increases non-polynomially with input size n, typically exponentially. - O(n^2): The execution time ascends in proportion to the square of the input size n. - O(n^3): The execution time ascends in proportion to the cube of the input size n. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Determine the worst-case time complexity category of a given Java code based on input size n. </TASK> <CODE> import java.io.*; import java.util.*; import static java.lang.Math.*; import static java.util.Arrays.*; // editorial sol public class cf1238e { public static void main(String[] args) throws IOException { int n = rni(), m = ni(), cnt[][] = new int[m][m], dp[] = new int[1 << m], all = (1 << m) - 1; char[] s = rcha(); for (int i = 1; i < n; ++i) { ++cnt[s[i] - 'a'][s[i - 1] - 'a']; ++cnt[s[i - 1] - 'a'][s[i] - 'a']; } fill(dp, IBIG); dp[0] = 0; int cnt_bit[] = new int[1 << m], min_bit[] = new int[1 << m], d[][] = new int[1 << m][m]; for (int mask = 1; mask <= all; ++mask) { cnt_bit[mask] = 1 + cnt_bit[mask & (mask - 1)]; for (int i = 0; i < n; ++i) { if ((mask & (1 << i)) > 0) { min_bit[mask] = i; break; } } } for (int mask = 1; mask <= all; ++mask) { for (int i = 0; i < m; ++i) { d[mask][i] = d[mask ^ (1 << min_bit[mask])][i] + cnt[i][min_bit[mask]]; } } for (int mask = 0; mask <= all; ++mask) { for (int i = 0; i < m; ++i) { if ((mask & (1 << i)) > 0) { continue; } int pos = cnt_bit[mask], next = mask | (1 << i); dp[next] = min(dp[next], dp[mask] + pos * (d[mask][i] - d[all ^ next][i])); } } prln(dp[all]); close(); } static BufferedReader __in = new BufferedReader(new InputStreamReader(System.in)); static PrintWriter __out = new PrintWriter(new OutputStreamWriter(System.out)); static StringTokenizer input; static Random __rand = new Random(); // references // IBIG = 1e9 + 7 // IMAX ~= 2e9 // LMAX ~= 9e18 // constants static final int IBIG = 1000000007; static final int IMAX = 2147483647; static final int IMIN = -2147483648; static final long LMAX = 9223372036854775807L; static final long LMIN = -9223372036854775808L; // math util static int minof(int a, int b, int c) {return min(a, min(b, c));} static int minof(int... x) {if (x.length == 1) return x[0]; if (x.length == 2) return min(x[0], x[1]); if (x.length == 3) return min(x[0], min(x[1], x[2])); int min = x[0]; for (int i = 1; i < x.length; ++i) if (x[i] < min) min = x[i]; return min;} static long minof(long a, long b, long c) {return min(a, min(b, c));} static long minof(long... x) {if (x.length == 1) return x[0]; if (x.length == 2) return min(x[0], x[1]); if (x.length == 3) return min(x[0], min(x[1], x[2])); long min = x[0]; for (int i = 1; i < x.length; ++i) if (x[i] < min) min = x[i]; return min;} static int maxof(int a, int b, int c) {return max(a, max(b, c));} static int maxof(int... x) {if (x.length == 1) return x[0]; if (x.length == 2) return max(x[0], x[1]); if (x.length == 3) return max(x[0], max(x[1], x[2])); int max = x[0]; for (int i = 1; i < x.length; ++i) if (x[i] > max) max = x[i]; return max;} static long maxof(long a, long b, long c) {return max(a, max(b, c));} static long maxof(long... x) {if (x.length == 1) return x[0]; if (x.length == 2) return max(x[0], x[1]); if (x.length == 3) return max(x[0], max(x[1], x[2])); long max = x[0]; for (int i = 1; i < x.length; ++i) if (x[i] > max) max = x[i]; return max;} static int powi(int a, int b) {if (a == 0) return 0; int ans = 1; while (b > 0) {if ((b & 1) > 0) ans *= a; a *= a; b >>= 1;} return ans;} static long powl(long a, int b) {if (a == 0) return 0; long ans = 1; while (b > 0) {if ((b & 1) > 0) ans *= a; a *= a; b >>= 1;} return ans;} static int fli(double d) {return (int) d;} static int cei(double d) {return (int) ceil(d);} static long fll(double d) {return (long) d;} static long cel(double d) {return (long) ceil(d);} static int gcf(int a, int b) {return b == 0 ? a : gcf(b, a % b);} static long gcf(long a, long b) {return b == 0 ? a : gcf(b, a % b);} static int lcm(int a, int b) {return a * b / gcf(a, b);} static long lcm(long a, long b) {return a * b / gcf(a, b);} static int randInt(int min, int max) {return __rand.nextInt(max - min + 1) + min;} static long mix(long x) {x += 0x9e3779b97f4a7c15L; x = (x ^ (x >> 30)) * 0xbf58476d1ce4e5b9L; x = (x ^ (x >> 27)) * 0x94d049bb133111ebL; return x ^ (x >> 31);} // array util static void reverse(int[] a) {for (int i = 0, n = a.length, half = n / 2; i < half; ++i) {int swap = a[i]; a[i] = a[n - i - 1]; a[n - i - 1] = swap;}} static void reverse(long[] a) {for (int i = 0, n = a.length, half = n / 2; i < half; ++i) {long swap = a[i]; a[i] = a[n - i - 1]; a[n - i - 1] = swap;}} static void reverse(double[] a) {for (int i = 0, n = a.length, half = n / 2; i < half; ++i) {double swap = a[i]; a[i] = a[n - i - 1]; a[n - i - 1] = swap;}} static void reverse(char[] a) {for (int i = 0, n = a.length, half = n / 2; i < half; ++i) {char swap = a[i]; a[i] = a[n - i - 1]; a[n - i - 1] = swap;}} static void shuffle(int[] a) {int n = a.length - 1; for (int i = 0; i < n; ++i) {int ind = randInt(i, n); int swap = a[i]; a[i] = a[ind]; a[ind] = swap;}} static void shuffle(long[] a) {int n = a.length - 1; for (int i = 0; i < n; ++i) {int ind = randInt(i, n); long swap = a[i]; a[i] = a[ind]; a[ind] = swap;}} static void shuffle(double[] a) {int n = a.length - 1; for (int i = 0; i < n; ++i) {int ind = randInt(i, n); double swap = a[i]; a[i] = a[ind]; a[ind] = swap;}} static void rsort(int[] a) {shuffle(a); sort(a);} static void rsort(long[] a) {shuffle(a); sort(a);} static void rsort(double[] a) {shuffle(a); sort(a);} static int[] copy(int[] a) {int[] ans = new int[a.length]; for (int i = 0; i < a.length; ++i) ans[i] = a[i]; return ans;} static long[] copy(long[] a) {long[] ans = new long[a.length]; for (int i = 0; i < a.length; ++i) ans[i] = a[i]; return ans;} static double[] copy(double[] a) {double[] ans = new double[a.length]; for (int i = 0; i < a.length; ++i) ans[i] = a[i]; return ans;} static char[] copy(char[] a) {char[] ans = new char[a.length]; for (int i = 0; i < a.length; ++i) ans[i] = a[i]; return ans;} // graph util static List<List<Integer>> g(int n) {List<List<Integer>> g = new ArrayList<>(); for (int i = 0; i < n; ++i) g.add(new ArrayList<>()); return g;} static List<Set<Integer>> sg(int n) {List<Set<Integer>> g = new ArrayList<>(); for (int i = 0; i < n; ++i) g.add(new HashSet<>()); return g;} static void c(List<? extends Collection<Integer>> g, int u, int v) {g.get(u).add(v); g.get(v).add(u);} static void cto(List<? extends Collection<Integer>> g, int u, int v) {g.get(u).add(v);} static void dc(List<? extends Collection<Integer>> g, int u, int v) {g.get(u).remove(v); g.get(v).remove(u);} static void dcto(List<? extends Collection<Integer>> g, int u, int v) {g.get(u).remove(v);} // input static void r() throws IOException {input = new StringTokenizer(rline());} static int ri() throws IOException {return Integer.parseInt(rline());} static long rl() throws IOException {return Long.parseLong(rline());} static double rd() throws IOException {return Double.parseDouble(rline());} static int[] ria(int n) throws IOException {int[] a = new int[n]; r(); for (int i = 0; i < n; ++i) a[i] = ni(); return a;} static int[] riam1(int n) throws IOException {int[] a = new int[n]; r(); for (int i = 0; i < n; ++i) a[i] = ni() - 1; return a;} static long[] rla(int n) throws IOException {long[] a = new long[n]; r(); for (int i = 0; i < n; ++i) a[i] = nl(); return a;} static double[] rda(int n) throws IOException {double[] a = new double[n]; r(); for (int i = 0; i < n; ++i) a[i] = nd(); return a;} static char[] rcha() throws IOException {return rline().toCharArray();} static String rline() throws IOException {return __in.readLine();} static String n() {return input.nextToken();} static int rni() throws IOException {r(); return ni();} static int ni() {return Integer.parseInt(n());} static long rnl() throws IOException {r(); return nl();} static long nl() {return Long.parseLong(n());} static double rnd() throws IOException {r(); return nd();} static double nd() {return Double.parseDouble(n());} static List<List<Integer>> rg(int n, int m) throws IOException {List<List<Integer>> g = g(n); for (int i = 0; i < m; ++i) c(g, rni() - 1, ni() - 1); return g;} static void rg(List<List<Integer>> g, int m) throws IOException {for (int i = 0; i < m; ++i) c(g, rni() - 1, ni() - 1);} static List<List<Integer>> rdg(int n, int m) throws IOException {List<List<Integer>> g = g(n); for (int i = 0; i < m; ++i) cto(g, rni() - 1, ni() - 1); return g;} static void rdg(List<List<Integer>> g, int m) throws IOException {for (int i = 0; i < m; ++i) cto(g, rni() - 1, ni() - 1);} static List<Set<Integer>> rsg(int n, int m) throws IOException {List<Set<Integer>> g = sg(n); for (int i = 0; i < m; ++i) c(g, rni() - 1, ni() - 1); return g;} static void rsg(List<Set<Integer>> g, int m) throws IOException {for (int i = 0; i < m; ++i) c(g, rni() - 1, ni() - 1);} static List<Set<Integer>> rdsg(int n, int m) throws IOException {List<Set<Integer>> g = sg(n); for (int i = 0; i < m; ++i) cto(g, rni() - 1, ni() - 1); return g;} static void rdsg(List<Set<Integer>> g, int m) throws IOException {for (int i = 0; i < m; ++i) cto(g, rni() - 1, ni() - 1);} // output static void pr(int i) {__out.print(i);} static void prln(int i) {__out.println(i);} static void pr(long l) {__out.print(l);} static void prln(long l) {__out.println(l);} static void pr(double d) {__out.print(d);} static void prln(double d) {__out.println(d);} static void pr(char c) {__out.print(c);} static void prln(char c) {__out.println(c);} static void pr(char[] s) {__out.print(new String(s));} static void prln(char[] s) {__out.println(new String(s));} static void pr(String s) {__out.print(s);} static void prln(String s) {__out.println(s);} static void pr(Object o) {__out.print(o);} static void prln(Object o) {__out.println(o);} static void prln() {__out.println();} static void pryes() {prln("yes");} static void pry() {prln("Yes");} static void prY() {prln("YES");} static void prno() {prln("no");} static void prn() {prln("No");} static void prN() {prln("NO");} static void pryesno(boolean b) {prln(b ? "yes" : "no");}; static void pryn(boolean b) {prln(b ? "Yes" : "No");} static void prYN(boolean b) {prln(b ? "YES" : "NO");} static void prln(int... a) {for (int i = 0, len = a.length - 1; i < len; pr(a[i]), pr(' '), ++i); if (a.length > 0) prln(a[a.length - 1]); else prln();} static void prln(long... a) {for (int i = 0, len = a.length - 1; i < len; pr(a[i]), pr(' '), ++i); if (a.length > 0) prln(a[a.length - 1]); else prln();} static void prln(double... a) {for (int i = 0, len = a.length - 1; i < len; pr(a[i]), pr(' '), ++i); if (a.length > 0) prln(a[a.length - 1]); else prln();} static <T> void prln(Collection<T> c) {int n = c.size() - 1; Iterator<T> iter = c.iterator(); for (int i = 0; i < n; pr(iter.next()), pr(' '), ++i); if (n >= 0) prln(iter.next()); else prln();} static void h() {prln("hlfd"); flush();} static void flush() {__out.flush();} static void close() {__out.close();}} </CODE> <EVALUATION_RUBRIC> - O(log(n)): The time complexity increases logarithmically in relation to the input size. - others: The time complexity does not fit any of the above categories or cannot be clearly classified. - O(nlog(n)): The time complexity combines linear and logarithmic growth factors. - O(n): The time complexity increases proportionally to the input size n in a linear manner. - non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially. - O(n^2): The time complexity grows proportionally to the square of the input size. - O(1): The time complexity is constant to the input size n. - O(n^3): The time complexity scales proportionally to the cube of the input size. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
4,310
4,504
4,266
import java.util.*; import java.io.*; import java.text.*; public class Main{ //SOLUTION BEGIN //Into the Hardware Mode void pre() throws Exception{} void solve(int TC)throws Exception{ int n = ni(), m = ni(); long[][] a = new long[n][m]; long[] col = new long[m]; for(int i = 0; i< n; i++){ for(int j = 0; j< m; j++){ a[i][j] = nl(); col[j] = Math.max(a[i][j], col[j]); } } Integer[] p = new Integer[m]; for(int i = 0; i< m; i++)p[i] = i; Arrays.sort(p, (Integer i1, Integer i2) -> Long.compare(col[i2], col[i1])); long[][] mat = new long[n][Math.min(m, 6)]; for(int i = 0; i< Math.min(m, 6); i++){ for(int j = 0; j< n; j++)mat[j][i] = a[j][p[i]]; } long pow = 1; for(int i = 0; i< Math.min(m, 6); i++)pow *= n; int[] sh = new int[Math.min(m, 6)]; long ans = 0; for(int i = 0; i< pow; i++){ int x = i; for(int j = 0; j< Math.min(m, 6); j++){ sh[j] = x%n; x/=n; } long cur = 0; for(int ro = 0; ro < n; ro++){ long cR = 0; for(int j = 0; j < Math.min(m, 6); j++)cR = Math.max(cR, mat[(ro+sh[j])%n][j]); cur += cR; } ans = Math.max(ans, cur); } pn(ans); } //SOLUTION END void hold(boolean b)throws Exception{if(!b)throw new Exception("Hold right there, Sparky!");} void exit(boolean b){if(!b)System.exit(0);} long IINF = (long)1e18, mod = (long)1e9+7; final int INF = (int)1e9, MX = (int)2e6+5; DecimalFormat df = new DecimalFormat("0.00000000"); double PI = 3.141592653589793238462643383279502884197169399, eps = 1e-6; static boolean multipleTC = true, memory = false, fileIO = false; FastReader in;PrintWriter out; void run() throws Exception{ if(fileIO){ in = new FastReader("input.txt"); out = new PrintWriter("output.txt"); }else { in = new FastReader(); out = new PrintWriter(System.out); } //Solution Credits: Taranpreet Singh int T = (multipleTC)?ni():1; pre(); for(int t = 1; t<= T; t++)solve(t); out.flush(); out.close(); } public static void main(String[] args) throws Exception{ if(memory)new Thread(null, new Runnable() {public void run(){try{new Main().run();}catch(Exception e){e.printStackTrace();}}}, "1", 1 << 28).start(); else new Main().run(); } int digit(long s){int ans = 0;while(s>0){s/=10;ans++;}return ans;} long gcd(long a, long b){return (b==0)?a:gcd(b,a%b);} int gcd(int a, int b){return (b==0)?a:gcd(b,a%b);} int bit(long n){return (n==0)?0:(1+bit(n&(n-1)));} void p(Object o){out.print(o);} void pn(Object o){out.println(o);} void pni(Object o){out.println(o);out.flush();} String n()throws Exception{return in.next();} String nln()throws Exception{return in.nextLine();} int ni()throws Exception{return Integer.parseInt(in.next());} long nl()throws Exception{return Long.parseLong(in.next());} double nd()throws Exception{return Double.parseDouble(in.next());} class FastReader{ BufferedReader br; StringTokenizer st; public FastReader(){ br = new BufferedReader(new InputStreamReader(System.in)); } public FastReader(String s) throws Exception{ br = new BufferedReader(new FileReader(s)); } String next() throws Exception{ while (st == null || !st.hasMoreElements()){ try{ st = new StringTokenizer(br.readLine()); }catch (IOException e){ throw new Exception(e.toString()); } } return st.nextToken(); } String nextLine() throws Exception{ String str = ""; try{ str = br.readLine(); }catch (IOException e){ throw new Exception(e.toString()); } return str; } } }
non-polynomial
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Determine the worst-case time complexity category of a given Java code based on input size n. </TASK> <CODE> import java.util.*; import java.io.*; import java.text.*; public class Main{ //SOLUTION BEGIN //Into the Hardware Mode void pre() throws Exception{} void solve(int TC)throws Exception{ int n = ni(), m = ni(); long[][] a = new long[n][m]; long[] col = new long[m]; for(int i = 0; i< n; i++){ for(int j = 0; j< m; j++){ a[i][j] = nl(); col[j] = Math.max(a[i][j], col[j]); } } Integer[] p = new Integer[m]; for(int i = 0; i< m; i++)p[i] = i; Arrays.sort(p, (Integer i1, Integer i2) -> Long.compare(col[i2], col[i1])); long[][] mat = new long[n][Math.min(m, 6)]; for(int i = 0; i< Math.min(m, 6); i++){ for(int j = 0; j< n; j++)mat[j][i] = a[j][p[i]]; } long pow = 1; for(int i = 0; i< Math.min(m, 6); i++)pow *= n; int[] sh = new int[Math.min(m, 6)]; long ans = 0; for(int i = 0; i< pow; i++){ int x = i; for(int j = 0; j< Math.min(m, 6); j++){ sh[j] = x%n; x/=n; } long cur = 0; for(int ro = 0; ro < n; ro++){ long cR = 0; for(int j = 0; j < Math.min(m, 6); j++)cR = Math.max(cR, mat[(ro+sh[j])%n][j]); cur += cR; } ans = Math.max(ans, cur); } pn(ans); } //SOLUTION END void hold(boolean b)throws Exception{if(!b)throw new Exception("Hold right there, Sparky!");} void exit(boolean b){if(!b)System.exit(0);} long IINF = (long)1e18, mod = (long)1e9+7; final int INF = (int)1e9, MX = (int)2e6+5; DecimalFormat df = new DecimalFormat("0.00000000"); double PI = 3.141592653589793238462643383279502884197169399, eps = 1e-6; static boolean multipleTC = true, memory = false, fileIO = false; FastReader in;PrintWriter out; void run() throws Exception{ if(fileIO){ in = new FastReader("input.txt"); out = new PrintWriter("output.txt"); }else { in = new FastReader(); out = new PrintWriter(System.out); } //Solution Credits: Taranpreet Singh int T = (multipleTC)?ni():1; pre(); for(int t = 1; t<= T; t++)solve(t); out.flush(); out.close(); } public static void main(String[] args) throws Exception{ if(memory)new Thread(null, new Runnable() {public void run(){try{new Main().run();}catch(Exception e){e.printStackTrace();}}}, "1", 1 << 28).start(); else new Main().run(); } int digit(long s){int ans = 0;while(s>0){s/=10;ans++;}return ans;} long gcd(long a, long b){return (b==0)?a:gcd(b,a%b);} int gcd(int a, int b){return (b==0)?a:gcd(b,a%b);} int bit(long n){return (n==0)?0:(1+bit(n&(n-1)));} void p(Object o){out.print(o);} void pn(Object o){out.println(o);} void pni(Object o){out.println(o);out.flush();} String n()throws Exception{return in.next();} String nln()throws Exception{return in.nextLine();} int ni()throws Exception{return Integer.parseInt(in.next());} long nl()throws Exception{return Long.parseLong(in.next());} double nd()throws Exception{return Double.parseDouble(in.next());} class FastReader{ BufferedReader br; StringTokenizer st; public FastReader(){ br = new BufferedReader(new InputStreamReader(System.in)); } public FastReader(String s) throws Exception{ br = new BufferedReader(new FileReader(s)); } String next() throws Exception{ while (st == null || !st.hasMoreElements()){ try{ st = new StringTokenizer(br.readLine()); }catch (IOException e){ throw new Exception(e.toString()); } } return st.nextToken(); } String nextLine() throws Exception{ String str = ""; try{ str = br.readLine(); }catch (IOException e){ throw new Exception(e.toString()); } return str; } } } </CODE> <EVALUATION_RUBRIC> - O(1): The time complexity is constant to the input size n. - O(n): The time complexity increases proportionally to the input size n in a linear manner. - non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially. - O(n^2): The time complexity grows proportionally to the square of the input size. - O(n^3): The time complexity scales proportionally to the cube of the input size. - O(log(n)): The time complexity increases logarithmically in relation to the input size. - O(nlog(n)): The time complexity combines linear and logarithmic growth factors. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n. </TASK> <CODE> import java.util.*; import java.io.*; import java.text.*; public class Main{ //SOLUTION BEGIN //Into the Hardware Mode void pre() throws Exception{} void solve(int TC)throws Exception{ int n = ni(), m = ni(); long[][] a = new long[n][m]; long[] col = new long[m]; for(int i = 0; i< n; i++){ for(int j = 0; j< m; j++){ a[i][j] = nl(); col[j] = Math.max(a[i][j], col[j]); } } Integer[] p = new Integer[m]; for(int i = 0; i< m; i++)p[i] = i; Arrays.sort(p, (Integer i1, Integer i2) -> Long.compare(col[i2], col[i1])); long[][] mat = new long[n][Math.min(m, 6)]; for(int i = 0; i< Math.min(m, 6); i++){ for(int j = 0; j< n; j++)mat[j][i] = a[j][p[i]]; } long pow = 1; for(int i = 0; i< Math.min(m, 6); i++)pow *= n; int[] sh = new int[Math.min(m, 6)]; long ans = 0; for(int i = 0; i< pow; i++){ int x = i; for(int j = 0; j< Math.min(m, 6); j++){ sh[j] = x%n; x/=n; } long cur = 0; for(int ro = 0; ro < n; ro++){ long cR = 0; for(int j = 0; j < Math.min(m, 6); j++)cR = Math.max(cR, mat[(ro+sh[j])%n][j]); cur += cR; } ans = Math.max(ans, cur); } pn(ans); } //SOLUTION END void hold(boolean b)throws Exception{if(!b)throw new Exception("Hold right there, Sparky!");} void exit(boolean b){if(!b)System.exit(0);} long IINF = (long)1e18, mod = (long)1e9+7; final int INF = (int)1e9, MX = (int)2e6+5; DecimalFormat df = new DecimalFormat("0.00000000"); double PI = 3.141592653589793238462643383279502884197169399, eps = 1e-6; static boolean multipleTC = true, memory = false, fileIO = false; FastReader in;PrintWriter out; void run() throws Exception{ if(fileIO){ in = new FastReader("input.txt"); out = new PrintWriter("output.txt"); }else { in = new FastReader(); out = new PrintWriter(System.out); } //Solution Credits: Taranpreet Singh int T = (multipleTC)?ni():1; pre(); for(int t = 1; t<= T; t++)solve(t); out.flush(); out.close(); } public static void main(String[] args) throws Exception{ if(memory)new Thread(null, new Runnable() {public void run(){try{new Main().run();}catch(Exception e){e.printStackTrace();}}}, "1", 1 << 28).start(); else new Main().run(); } int digit(long s){int ans = 0;while(s>0){s/=10;ans++;}return ans;} long gcd(long a, long b){return (b==0)?a:gcd(b,a%b);} int gcd(int a, int b){return (b==0)?a:gcd(b,a%b);} int bit(long n){return (n==0)?0:(1+bit(n&(n-1)));} void p(Object o){out.print(o);} void pn(Object o){out.println(o);} void pni(Object o){out.println(o);out.flush();} String n()throws Exception{return in.next();} String nln()throws Exception{return in.nextLine();} int ni()throws Exception{return Integer.parseInt(in.next());} long nl()throws Exception{return Long.parseLong(in.next());} double nd()throws Exception{return Double.parseDouble(in.next());} class FastReader{ BufferedReader br; StringTokenizer st; public FastReader(){ br = new BufferedReader(new InputStreamReader(System.in)); } public FastReader(String s) throws Exception{ br = new BufferedReader(new FileReader(s)); } String next() throws Exception{ while (st == null || !st.hasMoreElements()){ try{ st = new StringTokenizer(br.readLine()); }catch (IOException e){ throw new Exception(e.toString()); } } return st.nextToken(); } String nextLine() throws Exception{ String str = ""; try{ str = br.readLine(); }catch (IOException e){ throw new Exception(e.toString()); } return str; } } } </CODE> <EVALUATION_RUBRIC> - O(n^2): The execution time ascends in proportion to the square of the input size n. - O(n): The execution time ascends in a one-to-one ratio with the input size n. - O(1): The execution time is unaffected by the size of the input n. - others: The time complexity does not fit to any of the given categories or is ambiguous. - O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially. - O(n^3): The execution time ascends in proportion to the cube of the input size n. - O(log(n)): The execution time ascends in proportion to the logarithm of the input size n. - non-polynomial: The running time increases non-polynomially with input size n, typically exponentially. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
1,494
4,255
2,820
import java.io.*; import java.util.*; import java.lang.*; public class file{ public static void main(String []args) { Scanner sc=new Scanner(System.in); int n=sc.nextInt(); while(n-->0) { int a=sc.nextInt(); int b=sc.nextInt(); int ans=f(a,b); System.out.println(ans); } } public static int f(int a,int b) { if(a==0||b==0) return 0; if(a>b) { return a/b + f(b,a%b); } else return b/a + f(a,b%a); } }
O(1)
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n. </TASK> <CODE> import java.io.*; import java.util.*; import java.lang.*; public class file{ public static void main(String []args) { Scanner sc=new Scanner(System.in); int n=sc.nextInt(); while(n-->0) { int a=sc.nextInt(); int b=sc.nextInt(); int ans=f(a,b); System.out.println(ans); } } public static int f(int a,int b) { if(a==0||b==0) return 0; if(a>b) { return a/b + f(b,a%b); } else return b/a + f(a,b%a); } } </CODE> <EVALUATION_RUBRIC> - O(n^2): The execution time ascends in proportion to the square of the input size n. - non-polynomial: The running time increases non-polynomially with input size n, typically exponentially. - O(n^3): The execution time ascends in proportion to the cube of the input size n. - O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially. - O(log(n)): The execution time ascends in proportion to the logarithm of the input size n. - O(n): The execution time ascends in a one-to-one ratio with the input size n. - O(1): The execution time is unaffected by the size of the input n. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Classify the following Java code's worst-case time complexity according to its relationship to the input size n. </TASK> <CODE> import java.io.*; import java.util.*; import java.lang.*; public class file{ public static void main(String []args) { Scanner sc=new Scanner(System.in); int n=sc.nextInt(); while(n-->0) { int a=sc.nextInt(); int b=sc.nextInt(); int ans=f(a,b); System.out.println(ans); } } public static int f(int a,int b) { if(a==0||b==0) return 0; if(a>b) { return a/b + f(b,a%b); } else return b/a + f(a,b%a); } } </CODE> <EVALUATION_RUBRIC> - others: The code does not clearly correspond to the listed classes or has an unclassified time complexity. - O(n^2): The running time increases with the square of the input size n. - O(n): The running time grows linearly with the input size n. - O(log(n)): The running time increases with the logarithm of the input size n. - O(n^3): The running time increases with the cube of the input size n. - non-polynomial: The running time increases non-polynomially with input size n, typically exponentially. - O(nlog(n)): The running time increases with the product of n and logarithm of n. - O(1): The running time does not change regardless of the input size n. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
492
2,814
2,266
import java.io.*; import java.util.*; import java.math.*; public class Main { public static void main(String[] args) throws IOException { // StreamTokenizer in = new StreamTokenizer(new BufferedReader(new InputStreamReader(System.in))); PrintWriter out = new PrintWriter(new OutputStreamWriter(System.out)); FastScanner sc = new FastScanner(); int dp[][]=new int[6000][6000]; char a[]=new char[6000]; final int n=sc.nextInt(); boolean flag=false; int cnt=0; char pre='f'; for(int i=1;i<=n;i++) { a[i]=sc.next().charAt(0); } dp[1][1]=1; final int mod=(int)1e9+7; dp[1][1]=1; for(int i=2;i<=n;i++) { if(a[i-1]=='s') { int now=0; for(int j=5050;j>=1;j--) { now=(now+dp[i-1][j])%mod; dp[i][j]=now; } } else { for(int j=5050;j>=1;j--) { dp[i][j]=dp[i-1][j-1]%mod; } } } int ans=0; for(int i=0;i<=5050;i++) { ans+= dp[n][i]%mod; ans%=mod; } out.println(ans%mod); out.flush(); } /* 6 f s f s f s */ static class FastScanner { BufferedReader br; StringTokenizer st; private FastScanner() { try { br = new BufferedReader(new InputStreamReader(System.in)); st = new StringTokenizer(br.readLine()); } catch (Exception e){e.printStackTrace();} } private boolean hasNextToken() { if(st.countTokens()!=StreamTokenizer.TT_EOF) { return true; } else return false; } private String next() { if (st.hasMoreTokens()) return st.nextToken(); try {st = new StringTokenizer(br.readLine());} catch (Exception e) {e.printStackTrace();} return st.nextToken(); } private BigInteger nextBigInteger(){return new BigInteger(next());} private BigDecimal nextBigDecimal(){return new BigDecimal(next());} private int nextInt() {return Integer.parseInt(next());} private long nextLong() {return Long.parseLong(next());} private double nextDouble() {return Double.parseDouble(next());} private String nextLine() { String line = ""; if(st.hasMoreTokens()) line = st.nextToken(); else try {return br.readLine();}catch(IOException e){e.printStackTrace();} while(st.hasMoreTokens()) line += " "+st.nextToken(); return line; } private int[] nextIntArray(int n) { int[] a = new int[n]; for(int i = 0; i < n; i++) a[i] = nextInt(); return a; } private long[] nextLongArray(int n){ long[] a = new long[n]; for(int i = 0; i < n; i++) a[i] = nextLong(); return a; } private double[] nextDoubleArray(int n){ double[] a = new double[n]; for(int i = 0; i < n; i++) a[i] = nextDouble(); return a; } private char[][] nextGrid(int n, int m){ char[][] grid = new char[n][m]; for(int i = 0; i < n; i++) grid[i] = next().toCharArray(); return grid; } private void sort(int arr[]) { int cnt[]=new int[(1<<16)+1]; int ys[]=new int[arr.length]; for(int j=0;j<=16;j+=16){ Arrays.fill(cnt,0); for(int x:arr){cnt[(x>>j&0xFFFF)+1]++;} for(int i=1;i<cnt.length;i++){cnt[i]+=cnt[i-1];} for(int x:arr){ys[cnt[x>>j&0xFFFF]++]=x;} { final int t[]=arr;arr=ys;ys=t;} } if(arr[0]<0||arr[arr.length-1]>=0)return; int i,j,c; for(i=arr.length-1,c=0;arr[i]<0;i--,c++){ys[c]=arr[i];} for(j=arr.length-1;i>=0;i--,j--){arr[j]=arr[i];} for(i=c-1;i>=0;i--){arr[i]=ys[c-1-i];} } } }
O(n^2)
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n. </TASK> <CODE> import java.io.*; import java.util.*; import java.math.*; public class Main { public static void main(String[] args) throws IOException { // StreamTokenizer in = new StreamTokenizer(new BufferedReader(new InputStreamReader(System.in))); PrintWriter out = new PrintWriter(new OutputStreamWriter(System.out)); FastScanner sc = new FastScanner(); int dp[][]=new int[6000][6000]; char a[]=new char[6000]; final int n=sc.nextInt(); boolean flag=false; int cnt=0; char pre='f'; for(int i=1;i<=n;i++) { a[i]=sc.next().charAt(0); } dp[1][1]=1; final int mod=(int)1e9+7; dp[1][1]=1; for(int i=2;i<=n;i++) { if(a[i-1]=='s') { int now=0; for(int j=5050;j>=1;j--) { now=(now+dp[i-1][j])%mod; dp[i][j]=now; } } else { for(int j=5050;j>=1;j--) { dp[i][j]=dp[i-1][j-1]%mod; } } } int ans=0; for(int i=0;i<=5050;i++) { ans+= dp[n][i]%mod; ans%=mod; } out.println(ans%mod); out.flush(); } /* 6 f s f s f s */ static class FastScanner { BufferedReader br; StringTokenizer st; private FastScanner() { try { br = new BufferedReader(new InputStreamReader(System.in)); st = new StringTokenizer(br.readLine()); } catch (Exception e){e.printStackTrace();} } private boolean hasNextToken() { if(st.countTokens()!=StreamTokenizer.TT_EOF) { return true; } else return false; } private String next() { if (st.hasMoreTokens()) return st.nextToken(); try {st = new StringTokenizer(br.readLine());} catch (Exception e) {e.printStackTrace();} return st.nextToken(); } private BigInteger nextBigInteger(){return new BigInteger(next());} private BigDecimal nextBigDecimal(){return new BigDecimal(next());} private int nextInt() {return Integer.parseInt(next());} private long nextLong() {return Long.parseLong(next());} private double nextDouble() {return Double.parseDouble(next());} private String nextLine() { String line = ""; if(st.hasMoreTokens()) line = st.nextToken(); else try {return br.readLine();}catch(IOException e){e.printStackTrace();} while(st.hasMoreTokens()) line += " "+st.nextToken(); return line; } private int[] nextIntArray(int n) { int[] a = new int[n]; for(int i = 0; i < n; i++) a[i] = nextInt(); return a; } private long[] nextLongArray(int n){ long[] a = new long[n]; for(int i = 0; i < n; i++) a[i] = nextLong(); return a; } private double[] nextDoubleArray(int n){ double[] a = new double[n]; for(int i = 0; i < n; i++) a[i] = nextDouble(); return a; } private char[][] nextGrid(int n, int m){ char[][] grid = new char[n][m]; for(int i = 0; i < n; i++) grid[i] = next().toCharArray(); return grid; } private void sort(int arr[]) { int cnt[]=new int[(1<<16)+1]; int ys[]=new int[arr.length]; for(int j=0;j<=16;j+=16){ Arrays.fill(cnt,0); for(int x:arr){cnt[(x>>j&0xFFFF)+1]++;} for(int i=1;i<cnt.length;i++){cnt[i]+=cnt[i-1];} for(int x:arr){ys[cnt[x>>j&0xFFFF]++]=x;} { final int t[]=arr;arr=ys;ys=t;} } if(arr[0]<0||arr[arr.length-1]>=0)return; int i,j,c; for(i=arr.length-1,c=0;arr[i]<0;i--,c++){ys[c]=arr[i];} for(j=arr.length-1;i>=0;i--,j--){arr[j]=arr[i];} for(i=c-1;i>=0;i--){arr[i]=ys[c-1-i];} } } } </CODE> <EVALUATION_RUBRIC> - non-polynomial: The running time increases non-polynomially with input size n, typically exponentially. - O(n): The execution time ascends in a one-to-one ratio with the input size n. - O(n^3): The execution time ascends in proportion to the cube of the input size n. - O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially. - O(log(n)): The execution time ascends in proportion to the logarithm of the input size n. - O(n^2): The execution time ascends in proportion to the square of the input size n. - O(1): The execution time is unaffected by the size of the input n. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n. </TASK> <CODE> import java.io.*; import java.util.*; import java.math.*; public class Main { public static void main(String[] args) throws IOException { // StreamTokenizer in = new StreamTokenizer(new BufferedReader(new InputStreamReader(System.in))); PrintWriter out = new PrintWriter(new OutputStreamWriter(System.out)); FastScanner sc = new FastScanner(); int dp[][]=new int[6000][6000]; char a[]=new char[6000]; final int n=sc.nextInt(); boolean flag=false; int cnt=0; char pre='f'; for(int i=1;i<=n;i++) { a[i]=sc.next().charAt(0); } dp[1][1]=1; final int mod=(int)1e9+7; dp[1][1]=1; for(int i=2;i<=n;i++) { if(a[i-1]=='s') { int now=0; for(int j=5050;j>=1;j--) { now=(now+dp[i-1][j])%mod; dp[i][j]=now; } } else { for(int j=5050;j>=1;j--) { dp[i][j]=dp[i-1][j-1]%mod; } } } int ans=0; for(int i=0;i<=5050;i++) { ans+= dp[n][i]%mod; ans%=mod; } out.println(ans%mod); out.flush(); } /* 6 f s f s f s */ static class FastScanner { BufferedReader br; StringTokenizer st; private FastScanner() { try { br = new BufferedReader(new InputStreamReader(System.in)); st = new StringTokenizer(br.readLine()); } catch (Exception e){e.printStackTrace();} } private boolean hasNextToken() { if(st.countTokens()!=StreamTokenizer.TT_EOF) { return true; } else return false; } private String next() { if (st.hasMoreTokens()) return st.nextToken(); try {st = new StringTokenizer(br.readLine());} catch (Exception e) {e.printStackTrace();} return st.nextToken(); } private BigInteger nextBigInteger(){return new BigInteger(next());} private BigDecimal nextBigDecimal(){return new BigDecimal(next());} private int nextInt() {return Integer.parseInt(next());} private long nextLong() {return Long.parseLong(next());} private double nextDouble() {return Double.parseDouble(next());} private String nextLine() { String line = ""; if(st.hasMoreTokens()) line = st.nextToken(); else try {return br.readLine();}catch(IOException e){e.printStackTrace();} while(st.hasMoreTokens()) line += " "+st.nextToken(); return line; } private int[] nextIntArray(int n) { int[] a = new int[n]; for(int i = 0; i < n; i++) a[i] = nextInt(); return a; } private long[] nextLongArray(int n){ long[] a = new long[n]; for(int i = 0; i < n; i++) a[i] = nextLong(); return a; } private double[] nextDoubleArray(int n){ double[] a = new double[n]; for(int i = 0; i < n; i++) a[i] = nextDouble(); return a; } private char[][] nextGrid(int n, int m){ char[][] grid = new char[n][m]; for(int i = 0; i < n; i++) grid[i] = next().toCharArray(); return grid; } private void sort(int arr[]) { int cnt[]=new int[(1<<16)+1]; int ys[]=new int[arr.length]; for(int j=0;j<=16;j+=16){ Arrays.fill(cnt,0); for(int x:arr){cnt[(x>>j&0xFFFF)+1]++;} for(int i=1;i<cnt.length;i++){cnt[i]+=cnt[i-1];} for(int x:arr){ys[cnt[x>>j&0xFFFF]++]=x;} { final int t[]=arr;arr=ys;ys=t;} } if(arr[0]<0||arr[arr.length-1]>=0)return; int i,j,c; for(i=arr.length-1,c=0;arr[i]<0;i--,c++){ys[c]=arr[i];} for(j=arr.length-1;i>=0;i--,j--){arr[j]=arr[i];} for(i=c-1;i>=0;i--){arr[i]=ys[c-1-i];} } } } </CODE> <EVALUATION_RUBRIC> - non-polynomial: The running time increases non-polynomially with input size n, typically exponentially. - O(n): The execution time ascends in a one-to-one ratio with the input size n. - O(1): The execution time is unaffected by the size of the input n. - others: The time complexity does not fit to any of the given categories or is ambiguous. - O(n^3): The execution time ascends in proportion to the cube of the input size n. - O(log(n)): The execution time ascends in proportion to the logarithm of the input size n. - O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially. - O(n^2): The execution time ascends in proportion to the square of the input size n. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
1,428
2,261
3,861
import java.io.*; import java.util.*; public class C{ public static void main(String[] args) throws IOException { // br = new BufferedReader(new FileReader(".in")); // out = new PrintWriter(new FileWriter(".out")); //new Thread(null, new (), "peepee", 1<<28).start(); read(); int t= RI(); while(t-->0) { read(); int n = RI(); List<Integer> cur = new ArrayList<Integer>(); int[] lvl = new int[n+10]; while(n-->0) { read(); int x = RI(); if (cur.size() == 0) { cur.add(x); lvl[cur.size()]=x; } else { while (!cur.isEmpty()) { if (x == 1+lvl[cur.size()]) { int size = cur.size(); cur.remove(size-1); cur.add(1+lvl[size]); lvl[size] = x; break; } else { // Either add to a new level or go to existing one. if (x == 1) { // add cur.add(x); lvl[cur.size()] = x; break; } else { lvl[cur.size()] = 0; cur.remove(cur.size()-1); } } } if (cur.size() == 0) { cur.add(x); lvl[cur.size()]=x; } } for (int i = 0; i < cur.size(); i++) { out.print(cur.get(i)); if (i != cur.size()-1) out.print("."); } out.println(); } } out.close(); } static BufferedReader br = new BufferedReader(new InputStreamReader(System.in)); static PrintWriter out = new PrintWriter(new BufferedOutputStream(System.out)); static StringTokenizer st; static void read() throws IOException{st = new StringTokenizer(br.readLine());} static int RI() throws IOException{return Integer.parseInt(st.nextToken());} static long RL() throws IOException{return Long.parseLong(st.nextToken());} static double RD() throws IOException{return Double.parseDouble(st.nextToken());} }
O(n^3)
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Classify the following Java code's worst-case time complexity according to its relationship to the input size n. </TASK> <CODE> import java.io.*; import java.util.*; public class C{ public static void main(String[] args) throws IOException { // br = new BufferedReader(new FileReader(".in")); // out = new PrintWriter(new FileWriter(".out")); //new Thread(null, new (), "peepee", 1<<28).start(); read(); int t= RI(); while(t-->0) { read(); int n = RI(); List<Integer> cur = new ArrayList<Integer>(); int[] lvl = new int[n+10]; while(n-->0) { read(); int x = RI(); if (cur.size() == 0) { cur.add(x); lvl[cur.size()]=x; } else { while (!cur.isEmpty()) { if (x == 1+lvl[cur.size()]) { int size = cur.size(); cur.remove(size-1); cur.add(1+lvl[size]); lvl[size] = x; break; } else { // Either add to a new level or go to existing one. if (x == 1) { // add cur.add(x); lvl[cur.size()] = x; break; } else { lvl[cur.size()] = 0; cur.remove(cur.size()-1); } } } if (cur.size() == 0) { cur.add(x); lvl[cur.size()]=x; } } for (int i = 0; i < cur.size(); i++) { out.print(cur.get(i)); if (i != cur.size()-1) out.print("."); } out.println(); } } out.close(); } static BufferedReader br = new BufferedReader(new InputStreamReader(System.in)); static PrintWriter out = new PrintWriter(new BufferedOutputStream(System.out)); static StringTokenizer st; static void read() throws IOException{st = new StringTokenizer(br.readLine());} static int RI() throws IOException{return Integer.parseInt(st.nextToken());} static long RL() throws IOException{return Long.parseLong(st.nextToken());} static double RD() throws IOException{return Double.parseDouble(st.nextToken());} } </CODE> <EVALUATION_RUBRIC> - O(nlog(n)): The running time increases with the product of n and logarithm of n. - O(n^2): The running time increases with the square of the input size n. - O(n): The running time grows linearly with the input size n. - O(log(n)): The running time increases with the logarithm of the input size n. - O(1): The running time does not change regardless of the input size n. - non-polynomial: The running time increases non-polynomially with input size n, typically exponentially. - O(n^3): The running time increases with the cube of the input size n. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n. </TASK> <CODE> import java.io.*; import java.util.*; public class C{ public static void main(String[] args) throws IOException { // br = new BufferedReader(new FileReader(".in")); // out = new PrintWriter(new FileWriter(".out")); //new Thread(null, new (), "peepee", 1<<28).start(); read(); int t= RI(); while(t-->0) { read(); int n = RI(); List<Integer> cur = new ArrayList<Integer>(); int[] lvl = new int[n+10]; while(n-->0) { read(); int x = RI(); if (cur.size() == 0) { cur.add(x); lvl[cur.size()]=x; } else { while (!cur.isEmpty()) { if (x == 1+lvl[cur.size()]) { int size = cur.size(); cur.remove(size-1); cur.add(1+lvl[size]); lvl[size] = x; break; } else { // Either add to a new level or go to existing one. if (x == 1) { // add cur.add(x); lvl[cur.size()] = x; break; } else { lvl[cur.size()] = 0; cur.remove(cur.size()-1); } } } if (cur.size() == 0) { cur.add(x); lvl[cur.size()]=x; } } for (int i = 0; i < cur.size(); i++) { out.print(cur.get(i)); if (i != cur.size()-1) out.print("."); } out.println(); } } out.close(); } static BufferedReader br = new BufferedReader(new InputStreamReader(System.in)); static PrintWriter out = new PrintWriter(new BufferedOutputStream(System.out)); static StringTokenizer st; static void read() throws IOException{st = new StringTokenizer(br.readLine());} static int RI() throws IOException{return Integer.parseInt(st.nextToken());} static long RL() throws IOException{return Long.parseLong(st.nextToken());} static double RD() throws IOException{return Double.parseDouble(st.nextToken());} } </CODE> <EVALUATION_RUBRIC> - O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially. - others: The time complexity does not fit to any of the given categories or is ambiguous. - O(1): The execution time is unaffected by the size of the input n. - non-polynomial: The running time increases non-polynomially with input size n, typically exponentially. - O(log(n)): The execution time ascends in proportion to the logarithm of the input size n. - O(n^2): The execution time ascends in proportion to the square of the input size n. - O(n^3): The execution time ascends in proportion to the cube of the input size n. - O(n): The execution time ascends in a one-to-one ratio with the input size n. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
809
3,851
199
import java.io.*; import java.lang.*; import java.util.*; import static java.lang.Integer.*; import static java.lang.Long.*; import static java.lang.Math.*; import static java.lang.System.*; import static java.util.Arrays.*; import static java.util.Collections.*; public class Main { Main() throws IOException { String a = nextLine(); String b = nextLine(); long ans = 0; int s = 0; for (int i = 0; i < b.length() - a.length(); ++i) { s += b.charAt(i) == '1' ? 1 : 0; } for (int i = 0; i < a.length(); ++i) { s += b.charAt(i + b.length() - a.length()) == '1' ? 1 : 0; ans += a.charAt(i) == '1' ? b.length() - a.length() + 1 - s : s; s -= b.charAt(i) == '1' ? 1 : 0; } out.println(ans); } ////////////////////////////// PrintWriter out = new PrintWriter(System.out, false); BufferedReader in = new BufferedReader(new InputStreamReader(System.in)); StringTokenizer stok = null; String nextLine() throws IOException { while (stok == null || !stok.hasMoreTokens()) { stok = new StringTokenizer(in.readLine()); } return stok.nextToken(); } public static void main(String args[]) throws IOException { if (args.length > 0) { setIn(new FileInputStream(args[0] + ".inp")); setOut(new PrintStream(args[0] + ".out")); } Main solver = new Main(); solver.out.flush(); // could be replace with a method, but nah, this is just competitive programming :p } }
O(n)
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n. </TASK> <CODE> import java.io.*; import java.lang.*; import java.util.*; import static java.lang.Integer.*; import static java.lang.Long.*; import static java.lang.Math.*; import static java.lang.System.*; import static java.util.Arrays.*; import static java.util.Collections.*; public class Main { Main() throws IOException { String a = nextLine(); String b = nextLine(); long ans = 0; int s = 0; for (int i = 0; i < b.length() - a.length(); ++i) { s += b.charAt(i) == '1' ? 1 : 0; } for (int i = 0; i < a.length(); ++i) { s += b.charAt(i + b.length() - a.length()) == '1' ? 1 : 0; ans += a.charAt(i) == '1' ? b.length() - a.length() + 1 - s : s; s -= b.charAt(i) == '1' ? 1 : 0; } out.println(ans); } ////////////////////////////// PrintWriter out = new PrintWriter(System.out, false); BufferedReader in = new BufferedReader(new InputStreamReader(System.in)); StringTokenizer stok = null; String nextLine() throws IOException { while (stok == null || !stok.hasMoreTokens()) { stok = new StringTokenizer(in.readLine()); } return stok.nextToken(); } public static void main(String args[]) throws IOException { if (args.length > 0) { setIn(new FileInputStream(args[0] + ".inp")); setOut(new PrintStream(args[0] + ".out")); } Main solver = new Main(); solver.out.flush(); // could be replace with a method, but nah, this is just competitive programming :p } } </CODE> <EVALUATION_RUBRIC> - O(n): The execution time ascends in a one-to-one ratio with the input size n. - O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially. - O(1): The execution time is unaffected by the size of the input n. - non-polynomial: The running time increases non-polynomially with input size n, typically exponentially. - O(log(n)): The execution time ascends in proportion to the logarithm of the input size n. - O(n^3): The execution time ascends in proportion to the cube of the input size n. - O(n^2): The execution time ascends in proportion to the square of the input size n. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Classify the following Java code's worst-case time complexity according to its relationship to the input size n. </TASK> <CODE> import java.io.*; import java.lang.*; import java.util.*; import static java.lang.Integer.*; import static java.lang.Long.*; import static java.lang.Math.*; import static java.lang.System.*; import static java.util.Arrays.*; import static java.util.Collections.*; public class Main { Main() throws IOException { String a = nextLine(); String b = nextLine(); long ans = 0; int s = 0; for (int i = 0; i < b.length() - a.length(); ++i) { s += b.charAt(i) == '1' ? 1 : 0; } for (int i = 0; i < a.length(); ++i) { s += b.charAt(i + b.length() - a.length()) == '1' ? 1 : 0; ans += a.charAt(i) == '1' ? b.length() - a.length() + 1 - s : s; s -= b.charAt(i) == '1' ? 1 : 0; } out.println(ans); } ////////////////////////////// PrintWriter out = new PrintWriter(System.out, false); BufferedReader in = new BufferedReader(new InputStreamReader(System.in)); StringTokenizer stok = null; String nextLine() throws IOException { while (stok == null || !stok.hasMoreTokens()) { stok = new StringTokenizer(in.readLine()); } return stok.nextToken(); } public static void main(String args[]) throws IOException { if (args.length > 0) { setIn(new FileInputStream(args[0] + ".inp")); setOut(new PrintStream(args[0] + ".out")); } Main solver = new Main(); solver.out.flush(); // could be replace with a method, but nah, this is just competitive programming :p } } </CODE> <EVALUATION_RUBRIC> - O(n): The running time grows linearly with the input size n. - others: The code does not clearly correspond to the listed classes or has an unclassified time complexity. - non-polynomial: The running time increases non-polynomially with input size n, typically exponentially. - O(n^3): The running time increases with the cube of the input size n. - O(log(n)): The running time increases with the logarithm of the input size n. - O(n^2): The running time increases with the square of the input size n. - O(1): The running time does not change regardless of the input size n. - O(nlog(n)): The running time increases with the product of n and logarithm of n. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
737
199
2,253
import java.io.* ; import java.util.* ; import java.text.* ; import java.math.* ; import static java.lang.Math.min ; import static java.lang.Math.max ; public class Codeshefcode{ public static void main(String[] args) throws IOException{ Solver Machine = new Solver() ; Machine.Solve() ; Machine.Finish() ; // new Thread(null,new Runnable(){ // public void run(){ // Solver Machine = new Solver() ; // try{ // Machine.Solve() ; // Machine.Finish() ; // }catch(Exception e){ // e.printStackTrace() ; // System.out.flush() ; // System.exit(-1) ; // }catch(Error e){ // e.printStackTrace() ; // System.out.flush() ; // System.exit(-1) ; // } // } // },"Solver",1l<<27).start() ; } } class Mod{ static long mod=1000000007 ; static long d(long a,long b){ return (a*MI(b))%mod ; } static long m(long a,long b){ return (a*b)%mod ; } static private long MI(long a){ return pow(a,mod-2) ; } static long pow(long a,long b){ if(b<0) return pow(MI(a),-b) ; long val=a ; long ans=1 ; while(b!=0){ if((b&1)==1) ans = (ans*val)%mod ; val = (val*val)%mod ; b/=2 ; } return ans ; } } class pair implements Comparable<pair>{ int x ; int y ; pair(int x,int y){ this.x=x ; this.y=y ;} public int compareTo(pair p){ return (this.x<p.x ? -1 : (this.x>p.x ? 1 : (this.y<p.y ? -1 : (this.y>p.y ? 1 : 0)))) ; } } class Solver{ Reader ip = new Reader(System.in) ; PrintWriter op = new PrintWriter(System.out) ; long dp[][] ; public void Solve() throws IOException{ int n = ip.i() ; int arr[] = new int[n] ; dp = new long[n][n] ; for(int i=0 ; i<n ; i++) for(int j=0 ; j<n ; j++) dp[i][j]=-1 ; for(int i=0 ; i<n ; i++){ String s = ip.s() ; if(s.compareTo("s")==0) arr[i]=0 ; else if(s.compareTo("f")==0) arr[i]=1 ; else throw new IOException() ; } for(int j=0 ; j<n ; j++) dp[n-1][j] = 1 ; for(int i=(n-2) ; i>=0 ; i--){ long cuml[] = new long[n] ; for(int j=0 ; j<n ; j++) cuml[j] = (dp[i+1][j]+(j==0 ? 0 : cuml[j-1]))%Mod.mod ; for(int j=0 ; j<n ; j++) dp[i][j] = (arr[i]==0 ? cuml[j] : (j==(n-1) ? -1 : dp[i+1][j+1])) ; } pln(dp[0][0]) ; } void Finish(){ op.flush(); op.close(); } void p(Object o){ op.print(o) ; } void pln(Object o){ op.println(o) ; } } class mylist extends ArrayList<String>{} class myset extends TreeSet<Integer>{} class mystack extends Stack<Integer>{} class mymap extends TreeMap<Long,Integer>{} class Reader { BufferedReader reader; StringTokenizer tokenizer; Reader(InputStream input) { reader = new BufferedReader( new InputStreamReader(input) ); tokenizer = new StringTokenizer("") ; } String s() throws IOException { while (!tokenizer.hasMoreTokens()){ tokenizer = new StringTokenizer( reader.readLine()) ; } return tokenizer.nextToken(); } int i() throws IOException { return Integer.parseInt(s()) ; } long l() throws IOException{ return Long.parseLong(s()) ; } double d() throws IOException { return Double.parseDouble(s()) ; } }
O(n^2)
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n. </TASK> <CODE> import java.io.* ; import java.util.* ; import java.text.* ; import java.math.* ; import static java.lang.Math.min ; import static java.lang.Math.max ; public class Codeshefcode{ public static void main(String[] args) throws IOException{ Solver Machine = new Solver() ; Machine.Solve() ; Machine.Finish() ; // new Thread(null,new Runnable(){ // public void run(){ // Solver Machine = new Solver() ; // try{ // Machine.Solve() ; // Machine.Finish() ; // }catch(Exception e){ // e.printStackTrace() ; // System.out.flush() ; // System.exit(-1) ; // }catch(Error e){ // e.printStackTrace() ; // System.out.flush() ; // System.exit(-1) ; // } // } // },"Solver",1l<<27).start() ; } } class Mod{ static long mod=1000000007 ; static long d(long a,long b){ return (a*MI(b))%mod ; } static long m(long a,long b){ return (a*b)%mod ; } static private long MI(long a){ return pow(a,mod-2) ; } static long pow(long a,long b){ if(b<0) return pow(MI(a),-b) ; long val=a ; long ans=1 ; while(b!=0){ if((b&1)==1) ans = (ans*val)%mod ; val = (val*val)%mod ; b/=2 ; } return ans ; } } class pair implements Comparable<pair>{ int x ; int y ; pair(int x,int y){ this.x=x ; this.y=y ;} public int compareTo(pair p){ return (this.x<p.x ? -1 : (this.x>p.x ? 1 : (this.y<p.y ? -1 : (this.y>p.y ? 1 : 0)))) ; } } class Solver{ Reader ip = new Reader(System.in) ; PrintWriter op = new PrintWriter(System.out) ; long dp[][] ; public void Solve() throws IOException{ int n = ip.i() ; int arr[] = new int[n] ; dp = new long[n][n] ; for(int i=0 ; i<n ; i++) for(int j=0 ; j<n ; j++) dp[i][j]=-1 ; for(int i=0 ; i<n ; i++){ String s = ip.s() ; if(s.compareTo("s")==0) arr[i]=0 ; else if(s.compareTo("f")==0) arr[i]=1 ; else throw new IOException() ; } for(int j=0 ; j<n ; j++) dp[n-1][j] = 1 ; for(int i=(n-2) ; i>=0 ; i--){ long cuml[] = new long[n] ; for(int j=0 ; j<n ; j++) cuml[j] = (dp[i+1][j]+(j==0 ? 0 : cuml[j-1]))%Mod.mod ; for(int j=0 ; j<n ; j++) dp[i][j] = (arr[i]==0 ? cuml[j] : (j==(n-1) ? -1 : dp[i+1][j+1])) ; } pln(dp[0][0]) ; } void Finish(){ op.flush(); op.close(); } void p(Object o){ op.print(o) ; } void pln(Object o){ op.println(o) ; } } class mylist extends ArrayList<String>{} class myset extends TreeSet<Integer>{} class mystack extends Stack<Integer>{} class mymap extends TreeMap<Long,Integer>{} class Reader { BufferedReader reader; StringTokenizer tokenizer; Reader(InputStream input) { reader = new BufferedReader( new InputStreamReader(input) ); tokenizer = new StringTokenizer("") ; } String s() throws IOException { while (!tokenizer.hasMoreTokens()){ tokenizer = new StringTokenizer( reader.readLine()) ; } return tokenizer.nextToken(); } int i() throws IOException { return Integer.parseInt(s()) ; } long l() throws IOException{ return Long.parseLong(s()) ; } double d() throws IOException { return Double.parseDouble(s()) ; } } </CODE> <EVALUATION_RUBRIC> - non-polynomial: The running time increases non-polynomially with input size n, typically exponentially. - O(1): The execution time is unaffected by the size of the input n. - O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially. - O(n^3): The execution time ascends in proportion to the cube of the input size n. - O(n^2): The execution time ascends in proportion to the square of the input size n. - O(n): The execution time ascends in a one-to-one ratio with the input size n. - O(log(n)): The execution time ascends in proportion to the logarithm of the input size n. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Classify the following Java code's worst-case time complexity according to its relationship to the input size n. </TASK> <CODE> import java.io.* ; import java.util.* ; import java.text.* ; import java.math.* ; import static java.lang.Math.min ; import static java.lang.Math.max ; public class Codeshefcode{ public static void main(String[] args) throws IOException{ Solver Machine = new Solver() ; Machine.Solve() ; Machine.Finish() ; // new Thread(null,new Runnable(){ // public void run(){ // Solver Machine = new Solver() ; // try{ // Machine.Solve() ; // Machine.Finish() ; // }catch(Exception e){ // e.printStackTrace() ; // System.out.flush() ; // System.exit(-1) ; // }catch(Error e){ // e.printStackTrace() ; // System.out.flush() ; // System.exit(-1) ; // } // } // },"Solver",1l<<27).start() ; } } class Mod{ static long mod=1000000007 ; static long d(long a,long b){ return (a*MI(b))%mod ; } static long m(long a,long b){ return (a*b)%mod ; } static private long MI(long a){ return pow(a,mod-2) ; } static long pow(long a,long b){ if(b<0) return pow(MI(a),-b) ; long val=a ; long ans=1 ; while(b!=0){ if((b&1)==1) ans = (ans*val)%mod ; val = (val*val)%mod ; b/=2 ; } return ans ; } } class pair implements Comparable<pair>{ int x ; int y ; pair(int x,int y){ this.x=x ; this.y=y ;} public int compareTo(pair p){ return (this.x<p.x ? -1 : (this.x>p.x ? 1 : (this.y<p.y ? -1 : (this.y>p.y ? 1 : 0)))) ; } } class Solver{ Reader ip = new Reader(System.in) ; PrintWriter op = new PrintWriter(System.out) ; long dp[][] ; public void Solve() throws IOException{ int n = ip.i() ; int arr[] = new int[n] ; dp = new long[n][n] ; for(int i=0 ; i<n ; i++) for(int j=0 ; j<n ; j++) dp[i][j]=-1 ; for(int i=0 ; i<n ; i++){ String s = ip.s() ; if(s.compareTo("s")==0) arr[i]=0 ; else if(s.compareTo("f")==0) arr[i]=1 ; else throw new IOException() ; } for(int j=0 ; j<n ; j++) dp[n-1][j] = 1 ; for(int i=(n-2) ; i>=0 ; i--){ long cuml[] = new long[n] ; for(int j=0 ; j<n ; j++) cuml[j] = (dp[i+1][j]+(j==0 ? 0 : cuml[j-1]))%Mod.mod ; for(int j=0 ; j<n ; j++) dp[i][j] = (arr[i]==0 ? cuml[j] : (j==(n-1) ? -1 : dp[i+1][j+1])) ; } pln(dp[0][0]) ; } void Finish(){ op.flush(); op.close(); } void p(Object o){ op.print(o) ; } void pln(Object o){ op.println(o) ; } } class mylist extends ArrayList<String>{} class myset extends TreeSet<Integer>{} class mystack extends Stack<Integer>{} class mymap extends TreeMap<Long,Integer>{} class Reader { BufferedReader reader; StringTokenizer tokenizer; Reader(InputStream input) { reader = new BufferedReader( new InputStreamReader(input) ); tokenizer = new StringTokenizer("") ; } String s() throws IOException { while (!tokenizer.hasMoreTokens()){ tokenizer = new StringTokenizer( reader.readLine()) ; } return tokenizer.nextToken(); } int i() throws IOException { return Integer.parseInt(s()) ; } long l() throws IOException{ return Long.parseLong(s()) ; } double d() throws IOException { return Double.parseDouble(s()) ; } } </CODE> <EVALUATION_RUBRIC> - O(nlog(n)): The running time increases with the product of n and logarithm of n. - others: The code does not clearly correspond to the listed classes or has an unclassified time complexity. - O(log(n)): The running time increases with the logarithm of the input size n. - non-polynomial: The running time increases non-polynomially with input size n, typically exponentially. - O(1): The running time does not change regardless of the input size n. - O(n): The running time grows linearly with the input size n. - O(n^2): The running time increases with the square of the input size n. - O(n^3): The running time increases with the cube of the input size n. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
1,328
2,248
3,663
import java.io.File; import java.io.FileNotFoundException; import java.io.PrintWriter; import java.util.Arrays; import java.util.PriorityQueue; import java.util.Queue; import java.util.Scanner; public class R035C { public void debug(Object... objects) { System.err.println(Arrays.deepToString(objects)); } public static final int INF = 987654321; public static final long LINF = 987654321987654321L; public static final double EPS = 1e-9; Scanner scanner; PrintWriter out; int[][] iss; public R035C() { try { this.scanner = new Scanner(new File("input.txt")); this.out = new PrintWriter("output.txt"); } catch(FileNotFoundException ex) { ex.printStackTrace(); } } class Point implements Comparable<Point> { int x, y, count; Point(int x, int y) { this.x = x; this.y = y; } public int hashCode() { return x * 17 + y; } public boolean equals(Object o) { if(!(o instanceof Point)) return false; Point that = (Point)o; return this.x == that.x && this.y == that.y; } public int compareTo(Point that) { return this.count - that.count; } public String toString() { return "(" + x + ", " + y + ":" + count + ")"; } } int[] dx = new int[] { 0, 0, -1, 1 }; int[] dy= new int[] { -1, 1, 0, 0 }; int n, m; Queue<Point> q; Point bfs() { int max = -INF; Point p = null; while(!q.isEmpty()) { Point cur = q.remove(); if(max < cur.count) { max = cur.count; p = cur; } for(int i=0; i<dx.length; i++) { int nx = cur.x + dx[i]; int ny = cur.y + dy[i]; if(nx < 0 || nx >= n) { continue; } if(ny < 0 || ny >= m) { continue; } Point np = new Point(nx, ny); if(iss[nx][ny] != 0) { continue; } np.count = cur.count+1; iss[nx][ny] = np.count; q.add(np); } } return p; } private void solve() { this.n = scanner.nextInt(); this.m = scanner.nextInt(); this.iss = new int[n][m]; int k = scanner.nextInt(); q = new PriorityQueue<Point>(); for(int i=0; i<k; i++) { int x = scanner.nextInt() - 1; int y = scanner.nextInt() - 1; Point init = new Point(x, y); init.count = 1; q.add(init); iss[x][y] = 1; } Point p = bfs(); out.println((p.x+1) + " " + (p.y+1)); } private void finish() { this.out.close(); } public static void main(String[] args) { R035C obj = new R035C(); obj.solve(); obj.finish(); } }
O(n^3)
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n. </TASK> <CODE> import java.io.File; import java.io.FileNotFoundException; import java.io.PrintWriter; import java.util.Arrays; import java.util.PriorityQueue; import java.util.Queue; import java.util.Scanner; public class R035C { public void debug(Object... objects) { System.err.println(Arrays.deepToString(objects)); } public static final int INF = 987654321; public static final long LINF = 987654321987654321L; public static final double EPS = 1e-9; Scanner scanner; PrintWriter out; int[][] iss; public R035C() { try { this.scanner = new Scanner(new File("input.txt")); this.out = new PrintWriter("output.txt"); } catch(FileNotFoundException ex) { ex.printStackTrace(); } } class Point implements Comparable<Point> { int x, y, count; Point(int x, int y) { this.x = x; this.y = y; } public int hashCode() { return x * 17 + y; } public boolean equals(Object o) { if(!(o instanceof Point)) return false; Point that = (Point)o; return this.x == that.x && this.y == that.y; } public int compareTo(Point that) { return this.count - that.count; } public String toString() { return "(" + x + ", " + y + ":" + count + ")"; } } int[] dx = new int[] { 0, 0, -1, 1 }; int[] dy= new int[] { -1, 1, 0, 0 }; int n, m; Queue<Point> q; Point bfs() { int max = -INF; Point p = null; while(!q.isEmpty()) { Point cur = q.remove(); if(max < cur.count) { max = cur.count; p = cur; } for(int i=0; i<dx.length; i++) { int nx = cur.x + dx[i]; int ny = cur.y + dy[i]; if(nx < 0 || nx >= n) { continue; } if(ny < 0 || ny >= m) { continue; } Point np = new Point(nx, ny); if(iss[nx][ny] != 0) { continue; } np.count = cur.count+1; iss[nx][ny] = np.count; q.add(np); } } return p; } private void solve() { this.n = scanner.nextInt(); this.m = scanner.nextInt(); this.iss = new int[n][m]; int k = scanner.nextInt(); q = new PriorityQueue<Point>(); for(int i=0; i<k; i++) { int x = scanner.nextInt() - 1; int y = scanner.nextInt() - 1; Point init = new Point(x, y); init.count = 1; q.add(init); iss[x][y] = 1; } Point p = bfs(); out.println((p.x+1) + " " + (p.y+1)); } private void finish() { this.out.close(); } public static void main(String[] args) { R035C obj = new R035C(); obj.solve(); obj.finish(); } } </CODE> <EVALUATION_RUBRIC> - non-polynomial: The running time increases non-polynomially with input size n, typically exponentially. - O(log(n)): The execution time ascends in proportion to the logarithm of the input size n. - O(n^3): The execution time ascends in proportion to the cube of the input size n. - O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially. - O(1): The execution time is unaffected by the size of the input n. - O(n^2): The execution time ascends in proportion to the square of the input size n. - O(n): The execution time ascends in a one-to-one ratio with the input size n. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Classify the following Java code's worst-case time complexity according to its relationship to the input size n. </TASK> <CODE> import java.io.File; import java.io.FileNotFoundException; import java.io.PrintWriter; import java.util.Arrays; import java.util.PriorityQueue; import java.util.Queue; import java.util.Scanner; public class R035C { public void debug(Object... objects) { System.err.println(Arrays.deepToString(objects)); } public static final int INF = 987654321; public static final long LINF = 987654321987654321L; public static final double EPS = 1e-9; Scanner scanner; PrintWriter out; int[][] iss; public R035C() { try { this.scanner = new Scanner(new File("input.txt")); this.out = new PrintWriter("output.txt"); } catch(FileNotFoundException ex) { ex.printStackTrace(); } } class Point implements Comparable<Point> { int x, y, count; Point(int x, int y) { this.x = x; this.y = y; } public int hashCode() { return x * 17 + y; } public boolean equals(Object o) { if(!(o instanceof Point)) return false; Point that = (Point)o; return this.x == that.x && this.y == that.y; } public int compareTo(Point that) { return this.count - that.count; } public String toString() { return "(" + x + ", " + y + ":" + count + ")"; } } int[] dx = new int[] { 0, 0, -1, 1 }; int[] dy= new int[] { -1, 1, 0, 0 }; int n, m; Queue<Point> q; Point bfs() { int max = -INF; Point p = null; while(!q.isEmpty()) { Point cur = q.remove(); if(max < cur.count) { max = cur.count; p = cur; } for(int i=0; i<dx.length; i++) { int nx = cur.x + dx[i]; int ny = cur.y + dy[i]; if(nx < 0 || nx >= n) { continue; } if(ny < 0 || ny >= m) { continue; } Point np = new Point(nx, ny); if(iss[nx][ny] != 0) { continue; } np.count = cur.count+1; iss[nx][ny] = np.count; q.add(np); } } return p; } private void solve() { this.n = scanner.nextInt(); this.m = scanner.nextInt(); this.iss = new int[n][m]; int k = scanner.nextInt(); q = new PriorityQueue<Point>(); for(int i=0; i<k; i++) { int x = scanner.nextInt() - 1; int y = scanner.nextInt() - 1; Point init = new Point(x, y); init.count = 1; q.add(init); iss[x][y] = 1; } Point p = bfs(); out.println((p.x+1) + " " + (p.y+1)); } private void finish() { this.out.close(); } public static void main(String[] args) { R035C obj = new R035C(); obj.solve(); obj.finish(); } } </CODE> <EVALUATION_RUBRIC> - O(1): The running time does not change regardless of the input size n. - others: The code does not clearly correspond to the listed classes or has an unclassified time complexity. - O(log(n)): The running time increases with the logarithm of the input size n. - O(n^2): The running time increases with the square of the input size n. - non-polynomial: The running time increases non-polynomially with input size n, typically exponentially. - O(nlog(n)): The running time increases with the product of n and logarithm of n. - O(n^3): The running time increases with the cube of the input size n. - O(n): The running time grows linearly with the input size n. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
1,105
3,655
3,962
import java.io.BufferedReader; import java.io.InputStreamReader; import java.io.PrintWriter; import java.io.Reader; import java.io.IOException; import java.util.StringTokenizer; /* * @author Tnascimento */ public class MaeDosDragoes { public static PrintWriter saida = new PrintWriter(System.out, false); public static class Escanear { BufferedReader reader; StringTokenizer tokenizer; public Escanear() { this(new InputStreamReader(System.in)); } public Escanear(Reader in) { reader = new BufferedReader(in); } String proximo() { if (tokenizer == null || !tokenizer.hasMoreElements()) { try { tokenizer = new StringTokenizer(reader.readLine()); } catch (IOException e) { e.printStackTrace(); } } return tokenizer.nextToken(); } int proximoNum() { return Integer.parseInt(proximo()); } } public static void main(String[] args) { Escanear escanear = new Escanear(); int proximoInt = escanear.proximoNum(); long[] aux = new long[proximoInt]; double proximoDouble = escanear.proximoNum(); for(Integer i = 0; i < proximoInt; i++) { for(Integer j =0; j < proximoInt; j++) { Integer val = escanear.proximoNum(); if (val.equals(1) || i.equals(j)) { aux[i] |= 1L << j; } } } int esquerda = proximoInt/2; int direita = proximoInt - esquerda; int maiorMascara = 1 << esquerda; int[] depois = new int[1 << esquerda]; Integer mascara = 1; while (mascara < maiorMascara) { int mascaraAtual = mascara; for(int j = 0; j < esquerda; j++) { if (((1 << j) & mascara) > 0) { mascaraAtual &= aux[j + direita] >> direita; depois[mascara] = Math.max(depois[mascara], depois[mascara ^ (1 << j)]); } } if (mascara.equals(mascaraAtual)) { depois[mascara] = Math.max(depois[mascara],Integer.bitCount(mascara)); } mascara++; } // for(int mascara = 1; mascara < maiorMascara; mascara++) { // int mascaraAtual = mascara; // for(int j = 0; j < esquerda; j++) { // if (((1 << j) & mascara) > 0) { // mascaraAtual &= aux[j + direita] >> direita; // depois[mascara] = Math.max(depois[mascara], depois[mascara ^ (1 << j)]); // } // } // if (mascara == mascaraAtual) { // depois[mascara] = Math.max(depois[mascara],Integer.bitCount(mascara)); // } // } int auxiliar = 0; int mascaraMaxima = 1 << direita; for(int masc = 0; masc < mascaraMaxima; masc++) { int mascaraCorrente = masc; int mascaraValor = maiorMascara -1; for(int j = 0; j < direita; j++) { if (((1 << j) & masc) > 0) { mascaraCorrente &= (aux[j] & (mascaraMaxima-1)); mascaraValor &= aux[j] >> direita; } } if (mascaraCorrente != masc) continue; auxiliar = Math.max(auxiliar, Integer.bitCount(masc) + depois[mascaraValor]); } proximoDouble/=auxiliar; saida.println(proximoDouble * proximoDouble * (auxiliar * (auxiliar-1))/2); saida.flush(); } }
non-polynomial
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Classify the following Java code's worst-case time complexity according to its relationship to the input size n. </TASK> <CODE> import java.io.BufferedReader; import java.io.InputStreamReader; import java.io.PrintWriter; import java.io.Reader; import java.io.IOException; import java.util.StringTokenizer; /* * @author Tnascimento */ public class MaeDosDragoes { public static PrintWriter saida = new PrintWriter(System.out, false); public static class Escanear { BufferedReader reader; StringTokenizer tokenizer; public Escanear() { this(new InputStreamReader(System.in)); } public Escanear(Reader in) { reader = new BufferedReader(in); } String proximo() { if (tokenizer == null || !tokenizer.hasMoreElements()) { try { tokenizer = new StringTokenizer(reader.readLine()); } catch (IOException e) { e.printStackTrace(); } } return tokenizer.nextToken(); } int proximoNum() { return Integer.parseInt(proximo()); } } public static void main(String[] args) { Escanear escanear = new Escanear(); int proximoInt = escanear.proximoNum(); long[] aux = new long[proximoInt]; double proximoDouble = escanear.proximoNum(); for(Integer i = 0; i < proximoInt; i++) { for(Integer j =0; j < proximoInt; j++) { Integer val = escanear.proximoNum(); if (val.equals(1) || i.equals(j)) { aux[i] |= 1L << j; } } } int esquerda = proximoInt/2; int direita = proximoInt - esquerda; int maiorMascara = 1 << esquerda; int[] depois = new int[1 << esquerda]; Integer mascara = 1; while (mascara < maiorMascara) { int mascaraAtual = mascara; for(int j = 0; j < esquerda; j++) { if (((1 << j) & mascara) > 0) { mascaraAtual &= aux[j + direita] >> direita; depois[mascara] = Math.max(depois[mascara], depois[mascara ^ (1 << j)]); } } if (mascara.equals(mascaraAtual)) { depois[mascara] = Math.max(depois[mascara],Integer.bitCount(mascara)); } mascara++; } // for(int mascara = 1; mascara < maiorMascara; mascara++) { // int mascaraAtual = mascara; // for(int j = 0; j < esquerda; j++) { // if (((1 << j) & mascara) > 0) { // mascaraAtual &= aux[j + direita] >> direita; // depois[mascara] = Math.max(depois[mascara], depois[mascara ^ (1 << j)]); // } // } // if (mascara == mascaraAtual) { // depois[mascara] = Math.max(depois[mascara],Integer.bitCount(mascara)); // } // } int auxiliar = 0; int mascaraMaxima = 1 << direita; for(int masc = 0; masc < mascaraMaxima; masc++) { int mascaraCorrente = masc; int mascaraValor = maiorMascara -1; for(int j = 0; j < direita; j++) { if (((1 << j) & masc) > 0) { mascaraCorrente &= (aux[j] & (mascaraMaxima-1)); mascaraValor &= aux[j] >> direita; } } if (mascaraCorrente != masc) continue; auxiliar = Math.max(auxiliar, Integer.bitCount(masc) + depois[mascaraValor]); } proximoDouble/=auxiliar; saida.println(proximoDouble * proximoDouble * (auxiliar * (auxiliar-1))/2); saida.flush(); } } </CODE> <EVALUATION_RUBRIC> - O(1): The running time does not change regardless of the input size n. - O(n^3): The running time increases with the cube of the input size n. - O(log(n)): The running time increases with the logarithm of the input size n. - non-polynomial: The running time increases non-polynomially with input size n, typically exponentially. - O(n^2): The running time increases with the square of the input size n. - O(nlog(n)): The running time increases with the product of n and logarithm of n. - O(n): The running time grows linearly with the input size n. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Classify the following Java code's worst-case time complexity according to its relationship to the input size n. </TASK> <CODE> import java.io.BufferedReader; import java.io.InputStreamReader; import java.io.PrintWriter; import java.io.Reader; import java.io.IOException; import java.util.StringTokenizer; /* * @author Tnascimento */ public class MaeDosDragoes { public static PrintWriter saida = new PrintWriter(System.out, false); public static class Escanear { BufferedReader reader; StringTokenizer tokenizer; public Escanear() { this(new InputStreamReader(System.in)); } public Escanear(Reader in) { reader = new BufferedReader(in); } String proximo() { if (tokenizer == null || !tokenizer.hasMoreElements()) { try { tokenizer = new StringTokenizer(reader.readLine()); } catch (IOException e) { e.printStackTrace(); } } return tokenizer.nextToken(); } int proximoNum() { return Integer.parseInt(proximo()); } } public static void main(String[] args) { Escanear escanear = new Escanear(); int proximoInt = escanear.proximoNum(); long[] aux = new long[proximoInt]; double proximoDouble = escanear.proximoNum(); for(Integer i = 0; i < proximoInt; i++) { for(Integer j =0; j < proximoInt; j++) { Integer val = escanear.proximoNum(); if (val.equals(1) || i.equals(j)) { aux[i] |= 1L << j; } } } int esquerda = proximoInt/2; int direita = proximoInt - esquerda; int maiorMascara = 1 << esquerda; int[] depois = new int[1 << esquerda]; Integer mascara = 1; while (mascara < maiorMascara) { int mascaraAtual = mascara; for(int j = 0; j < esquerda; j++) { if (((1 << j) & mascara) > 0) { mascaraAtual &= aux[j + direita] >> direita; depois[mascara] = Math.max(depois[mascara], depois[mascara ^ (1 << j)]); } } if (mascara.equals(mascaraAtual)) { depois[mascara] = Math.max(depois[mascara],Integer.bitCount(mascara)); } mascara++; } // for(int mascara = 1; mascara < maiorMascara; mascara++) { // int mascaraAtual = mascara; // for(int j = 0; j < esquerda; j++) { // if (((1 << j) & mascara) > 0) { // mascaraAtual &= aux[j + direita] >> direita; // depois[mascara] = Math.max(depois[mascara], depois[mascara ^ (1 << j)]); // } // } // if (mascara == mascaraAtual) { // depois[mascara] = Math.max(depois[mascara],Integer.bitCount(mascara)); // } // } int auxiliar = 0; int mascaraMaxima = 1 << direita; for(int masc = 0; masc < mascaraMaxima; masc++) { int mascaraCorrente = masc; int mascaraValor = maiorMascara -1; for(int j = 0; j < direita; j++) { if (((1 << j) & masc) > 0) { mascaraCorrente &= (aux[j] & (mascaraMaxima-1)); mascaraValor &= aux[j] >> direita; } } if (mascaraCorrente != masc) continue; auxiliar = Math.max(auxiliar, Integer.bitCount(masc) + depois[mascaraValor]); } proximoDouble/=auxiliar; saida.println(proximoDouble * proximoDouble * (auxiliar * (auxiliar-1))/2); saida.flush(); } } </CODE> <EVALUATION_RUBRIC> - O(nlog(n)): The running time increases with the product of n and logarithm of n. - O(1): The running time does not change regardless of the input size n. - O(n^3): The running time increases with the cube of the input size n. - O(log(n)): The running time increases with the logarithm of the input size n. - others: The code does not clearly correspond to the listed classes or has an unclassified time complexity. - O(n^2): The running time increases with the square of the input size n. - O(n): The running time grows linearly with the input size n. - non-polynomial: The running time increases non-polynomially with input size n, typically exponentially. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
1,214
3,951
2,890
import java.util.Scanner; public class A { public static void main(String[] args) { Scanner x=new Scanner(System.in); int n=x.nextInt(); if(n%2==0){ System.out.println((n-4)+" "+"4"); } else{ System.out.println((n-9)+" "+"9"); } } }
O(1)
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Determine the worst-case time complexity category of a given Java code based on input size n. </TASK> <CODE> import java.util.Scanner; public class A { public static void main(String[] args) { Scanner x=new Scanner(System.in); int n=x.nextInt(); if(n%2==0){ System.out.println((n-4)+" "+"4"); } else{ System.out.println((n-9)+" "+"9"); } } } </CODE> <EVALUATION_RUBRIC> - non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially. - O(nlog(n)): The time complexity combines linear and logarithmic growth factors. - O(n^3): The time complexity scales proportionally to the cube of the input size. - O(n^2): The time complexity grows proportionally to the square of the input size. - O(log(n)): The time complexity increases logarithmically in relation to the input size. - O(1): The time complexity is constant to the input size n. - O(n): The time complexity increases proportionally to the input size n in a linear manner. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Determine the worst-case time complexity category of a given Java code based on input size n. </TASK> <CODE> import java.util.Scanner; public class A { public static void main(String[] args) { Scanner x=new Scanner(System.in); int n=x.nextInt(); if(n%2==0){ System.out.println((n-4)+" "+"4"); } else{ System.out.println((n-9)+" "+"9"); } } } </CODE> <EVALUATION_RUBRIC> - O(1): The time complexity is constant to the input size n. - non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially. - O(n): The time complexity increases proportionally to the input size n in a linear manner. - O(n^2): The time complexity grows proportionally to the square of the input size. - O(n^3): The time complexity scales proportionally to the cube of the input size. - O(nlog(n)): The time complexity combines linear and logarithmic growth factors. - others: The time complexity does not fit any of the above categories or cannot be clearly classified. - O(log(n)): The time complexity increases logarithmically in relation to the input size. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
412
2,884
1,225
import java.io.*; import java.util.*; public class A { long mod = (long)(1e+9+9); long pow(long a,long b) { long mul = a; long res = 1; while (b > 0) { if (b %2 == 1) { res = (res*mul)%mod; } mul = (mul*mul)%mod; b/=2; } return res; } void solve() throws IOException { long n = nextLong(); long m = nextLong(); long k = nextLong(); long l = -1; long r = m / k; while (l < r - 1) { long mid = (l+r)/2; long leftOk = m - mid*k; long leftPos = n - mid*k; long cgroups = (leftOk + (k-2)) / (k-1); long positions = leftOk+cgroups-1; if (positions <= leftPos) { r = mid; } else { l = mid; } } long res = pow(2,r+1); res = (res - 2 + mod) %mod; res = (res*k) % mod; res = (res+m-r*k) %mod; out.println(res); } void run() throws IOException { in = new BufferedReader(new InputStreamReader(System.in)); out = new PrintWriter(System.out); solve(); out.close(); } public static void main(String[] args) throws IOException { new A().run(); } BufferedReader in; PrintWriter out; StringTokenizer st; String next() throws IOException { while (st == null || !st.hasMoreTokens()) { String temp = in.readLine(); if (temp == null) { return null; } st = new StringTokenizer(temp); } return st.nextToken(); } int nextInt() throws IOException { return Integer.parseInt(next()); } double nextDouble() throws IOException { return Double.parseDouble(next()); } long nextLong() throws IOException { return Long.parseLong(next()); } }
O(log(n))
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n. </TASK> <CODE> import java.io.*; import java.util.*; public class A { long mod = (long)(1e+9+9); long pow(long a,long b) { long mul = a; long res = 1; while (b > 0) { if (b %2 == 1) { res = (res*mul)%mod; } mul = (mul*mul)%mod; b/=2; } return res; } void solve() throws IOException { long n = nextLong(); long m = nextLong(); long k = nextLong(); long l = -1; long r = m / k; while (l < r - 1) { long mid = (l+r)/2; long leftOk = m - mid*k; long leftPos = n - mid*k; long cgroups = (leftOk + (k-2)) / (k-1); long positions = leftOk+cgroups-1; if (positions <= leftPos) { r = mid; } else { l = mid; } } long res = pow(2,r+1); res = (res - 2 + mod) %mod; res = (res*k) % mod; res = (res+m-r*k) %mod; out.println(res); } void run() throws IOException { in = new BufferedReader(new InputStreamReader(System.in)); out = new PrintWriter(System.out); solve(); out.close(); } public static void main(String[] args) throws IOException { new A().run(); } BufferedReader in; PrintWriter out; StringTokenizer st; String next() throws IOException { while (st == null || !st.hasMoreTokens()) { String temp = in.readLine(); if (temp == null) { return null; } st = new StringTokenizer(temp); } return st.nextToken(); } int nextInt() throws IOException { return Integer.parseInt(next()); } double nextDouble() throws IOException { return Double.parseDouble(next()); } long nextLong() throws IOException { return Long.parseLong(next()); } } </CODE> <EVALUATION_RUBRIC> - O(n^3): The execution time ascends in proportion to the cube of the input size n. - O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially. - O(log(n)): The execution time ascends in proportion to the logarithm of the input size n. - O(1): The execution time is unaffected by the size of the input n. - O(n): The execution time ascends in a one-to-one ratio with the input size n. - non-polynomial: The running time increases non-polynomially with input size n, typically exponentially. - O(n^2): The execution time ascends in proportion to the square of the input size n. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Determine the worst-case time complexity category of a given Java code based on input size n. </TASK> <CODE> import java.io.*; import java.util.*; public class A { long mod = (long)(1e+9+9); long pow(long a,long b) { long mul = a; long res = 1; while (b > 0) { if (b %2 == 1) { res = (res*mul)%mod; } mul = (mul*mul)%mod; b/=2; } return res; } void solve() throws IOException { long n = nextLong(); long m = nextLong(); long k = nextLong(); long l = -1; long r = m / k; while (l < r - 1) { long mid = (l+r)/2; long leftOk = m - mid*k; long leftPos = n - mid*k; long cgroups = (leftOk + (k-2)) / (k-1); long positions = leftOk+cgroups-1; if (positions <= leftPos) { r = mid; } else { l = mid; } } long res = pow(2,r+1); res = (res - 2 + mod) %mod; res = (res*k) % mod; res = (res+m-r*k) %mod; out.println(res); } void run() throws IOException { in = new BufferedReader(new InputStreamReader(System.in)); out = new PrintWriter(System.out); solve(); out.close(); } public static void main(String[] args) throws IOException { new A().run(); } BufferedReader in; PrintWriter out; StringTokenizer st; String next() throws IOException { while (st == null || !st.hasMoreTokens()) { String temp = in.readLine(); if (temp == null) { return null; } st = new StringTokenizer(temp); } return st.nextToken(); } int nextInt() throws IOException { return Integer.parseInt(next()); } double nextDouble() throws IOException { return Double.parseDouble(next()); } long nextLong() throws IOException { return Long.parseLong(next()); } } </CODE> <EVALUATION_RUBRIC> - non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially. - others: The time complexity does not fit any of the above categories or cannot be clearly classified. - O(nlog(n)): The time complexity combines linear and logarithmic growth factors. - O(n): The time complexity increases proportionally to the input size n in a linear manner. - O(log(n)): The time complexity increases logarithmically in relation to the input size. - O(1): The time complexity is constant to the input size n. - O(n^3): The time complexity scales proportionally to the cube of the input size. - O(n^2): The time complexity grows proportionally to the square of the input size. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
823
1,224
2,991
import java.util.*; import java.io.*; public class programA { public static void main(String[] args) throws IOException { BufferedReader br = new BufferedReader(new InputStreamReader(System.in)); int n = Integer.parseInt(br.readLine()); if(n%2 == 0)System.out.println(n/2 +1); else System.out.println((int)Math.ceil((double)n/2)); } }
O(1)
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Classify the following Java code's worst-case time complexity according to its relationship to the input size n. </TASK> <CODE> import java.util.*; import java.io.*; public class programA { public static void main(String[] args) throws IOException { BufferedReader br = new BufferedReader(new InputStreamReader(System.in)); int n = Integer.parseInt(br.readLine()); if(n%2 == 0)System.out.println(n/2 +1); else System.out.println((int)Math.ceil((double)n/2)); } } </CODE> <EVALUATION_RUBRIC> - O(n^2): The running time increases with the square of the input size n. - O(nlog(n)): The running time increases with the product of n and logarithm of n. - O(n^3): The running time increases with the cube of the input size n. - O(n): The running time grows linearly with the input size n. - O(log(n)): The running time increases with the logarithm of the input size n. - non-polynomial: The running time increases non-polynomially with input size n, typically exponentially. - O(1): The running time does not change regardless of the input size n. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Classify the following Java code's worst-case time complexity according to its relationship to the input size n. </TASK> <CODE> import java.util.*; import java.io.*; public class programA { public static void main(String[] args) throws IOException { BufferedReader br = new BufferedReader(new InputStreamReader(System.in)); int n = Integer.parseInt(br.readLine()); if(n%2 == 0)System.out.println(n/2 +1); else System.out.println((int)Math.ceil((double)n/2)); } } </CODE> <EVALUATION_RUBRIC> - O(1): The running time does not change regardless of the input size n. - O(n^3): The running time increases with the cube of the input size n. - non-polynomial: The running time increases non-polynomially with input size n, typically exponentially. - O(nlog(n)): The running time increases with the product of n and logarithm of n. - others: The code does not clearly correspond to the listed classes or has an unclassified time complexity. - O(log(n)): The running time increases with the logarithm of the input size n. - O(n^2): The running time increases with the square of the input size n. - O(n): The running time grows linearly with the input size n. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
412
2,985
500
import java.util.*; public class algo121 { public static void main(String args[]) { Scanner ex=new Scanner(System.in); int n=ex.nextInt(); String a[]=new String[n]; String b[]=new String[n]; for(int i=0;i<n;i++) a[i]=ex.next(); for(int i=0;i<n;i++) b[i]=ex.next(); String valid[]={"S","M","L","XS","XL","XXS","XXL","XXXS","XXXL"}; int ai[]=new int[9]; int bi[]=new int[9]; for(int i=0;i<n;i++) { for(int j=0;j<9;j++) { if(a[i].equals(valid[j])) ai[j]++; if(b[i].equals(valid[j])) bi[j]++; } } int ans=0; for(int i=0;i<9;i++) { if(ai[i]>bi[i]) ans=ans+ai[i]-bi[i]; } System.out.println(ans); } }
O(n)
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n. </TASK> <CODE> import java.util.*; public class algo121 { public static void main(String args[]) { Scanner ex=new Scanner(System.in); int n=ex.nextInt(); String a[]=new String[n]; String b[]=new String[n]; for(int i=0;i<n;i++) a[i]=ex.next(); for(int i=0;i<n;i++) b[i]=ex.next(); String valid[]={"S","M","L","XS","XL","XXS","XXL","XXXS","XXXL"}; int ai[]=new int[9]; int bi[]=new int[9]; for(int i=0;i<n;i++) { for(int j=0;j<9;j++) { if(a[i].equals(valid[j])) ai[j]++; if(b[i].equals(valid[j])) bi[j]++; } } int ans=0; for(int i=0;i<9;i++) { if(ai[i]>bi[i]) ans=ans+ai[i]-bi[i]; } System.out.println(ans); } } </CODE> <EVALUATION_RUBRIC> - O(log(n)): The execution time ascends in proportion to the logarithm of the input size n. - O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially. - O(n^2): The execution time ascends in proportion to the square of the input size n. - non-polynomial: The running time increases non-polynomially with input size n, typically exponentially. - O(n): The execution time ascends in a one-to-one ratio with the input size n. - O(n^3): The execution time ascends in proportion to the cube of the input size n. - O(1): The execution time is unaffected by the size of the input n. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n. </TASK> <CODE> import java.util.*; public class algo121 { public static void main(String args[]) { Scanner ex=new Scanner(System.in); int n=ex.nextInt(); String a[]=new String[n]; String b[]=new String[n]; for(int i=0;i<n;i++) a[i]=ex.next(); for(int i=0;i<n;i++) b[i]=ex.next(); String valid[]={"S","M","L","XS","XL","XXS","XXL","XXXS","XXXL"}; int ai[]=new int[9]; int bi[]=new int[9]; for(int i=0;i<n;i++) { for(int j=0;j<9;j++) { if(a[i].equals(valid[j])) ai[j]++; if(b[i].equals(valid[j])) bi[j]++; } } int ans=0; for(int i=0;i<9;i++) { if(ai[i]>bi[i]) ans=ans+ai[i]-bi[i]; } System.out.println(ans); } } </CODE> <EVALUATION_RUBRIC> - O(log(n)): The execution time ascends in proportion to the logarithm of the input size n. - O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially. - O(n^2): The execution time ascends in proportion to the square of the input size n. - others: The time complexity does not fit to any of the given categories or is ambiguous. - O(n^3): The execution time ascends in proportion to the cube of the input size n. - non-polynomial: The running time increases non-polynomially with input size n, typically exponentially. - O(n): The execution time ascends in a one-to-one ratio with the input size n. - O(1): The execution time is unaffected by the size of the input n. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
587
499
1,415
import java.util.Locale; import java.util.Scanner; public class PipelineSolver { private long n; private long k; public static void main(String[] args) { PipelineSolver solver = new PipelineSolver(); solver.readData(); int solution = solver.solve(); solver.print(solution); } private int gcd(int a, int b) { return b == 0 ? a : gcd(b, a % b); } private int lcm(int a, int b) { return a * b / gcd(a, b); } private void print(int[] values) { StringBuilder builder = new StringBuilder(); for (int value : values) { builder.append(value); builder.append(" "); } print(builder); } private void print(Object value) { System.out.println(value); } private void print(boolean value) { System.out.println(value ? "YES" : "NO"); } private void print(int value) { System.out.println(value); } private void print(long value) { System.out.println(value); } private void print(double value) { System.out.printf(Locale.ENGLISH, "%.10f", value); } private int[] getDigits(int number) { int[] digits = new int[10]; int index = digits.length - 1; int digitsCount = 0; while (number > 0) { digits[index] = number % 10; number /= 10; index--; digitsCount++; } int[] result = new int[digitsCount]; System.arraycopy(digits, digits.length - digitsCount, result, 0, digitsCount); return result; } private int[] readArray(Scanner scanner, int size) { int[] result = new int[size]; for (int i = 0; i < size; i++) { result[i] = scanner.nextInt(); } return result; } private void readData() { Scanner scanner = new Scanner(System.in); n = scanner.nextLong(); k = scanner.nextLong(); } private int solve() { if (n == 1) { return 0; } if (n <= k) { return 1; } int result; long l; long d = (5 - 2 * k) * (5 - 2 * k) - 4 * (2 * n - 4 * k + 4); if (d < 0) { result = -1; } else { l = Math.min(Math.max((int)((2 * k - 3 - Math.sqrt(d)) / 2), 0), Math.max((int)((2 * k - 3 + Math.sqrt(d)) / 2), 0)); long difference = n - k * (l + 1) + l * (l + 3) / 2; if (l > k - 2) { result = -1; } else if (l == k - 2) { result = difference == 0 ? (int) (l + 1) : -1; } else { result = (int) (l + 1 + (difference == 0 ? 0 : 1)); } } return result; } }
O(log(n))
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Determine the worst-case time complexity category of a given Java code based on input size n. </TASK> <CODE> import java.util.Locale; import java.util.Scanner; public class PipelineSolver { private long n; private long k; public static void main(String[] args) { PipelineSolver solver = new PipelineSolver(); solver.readData(); int solution = solver.solve(); solver.print(solution); } private int gcd(int a, int b) { return b == 0 ? a : gcd(b, a % b); } private int lcm(int a, int b) { return a * b / gcd(a, b); } private void print(int[] values) { StringBuilder builder = new StringBuilder(); for (int value : values) { builder.append(value); builder.append(" "); } print(builder); } private void print(Object value) { System.out.println(value); } private void print(boolean value) { System.out.println(value ? "YES" : "NO"); } private void print(int value) { System.out.println(value); } private void print(long value) { System.out.println(value); } private void print(double value) { System.out.printf(Locale.ENGLISH, "%.10f", value); } private int[] getDigits(int number) { int[] digits = new int[10]; int index = digits.length - 1; int digitsCount = 0; while (number > 0) { digits[index] = number % 10; number /= 10; index--; digitsCount++; } int[] result = new int[digitsCount]; System.arraycopy(digits, digits.length - digitsCount, result, 0, digitsCount); return result; } private int[] readArray(Scanner scanner, int size) { int[] result = new int[size]; for (int i = 0; i < size; i++) { result[i] = scanner.nextInt(); } return result; } private void readData() { Scanner scanner = new Scanner(System.in); n = scanner.nextLong(); k = scanner.nextLong(); } private int solve() { if (n == 1) { return 0; } if (n <= k) { return 1; } int result; long l; long d = (5 - 2 * k) * (5 - 2 * k) - 4 * (2 * n - 4 * k + 4); if (d < 0) { result = -1; } else { l = Math.min(Math.max((int)((2 * k - 3 - Math.sqrt(d)) / 2), 0), Math.max((int)((2 * k - 3 + Math.sqrt(d)) / 2), 0)); long difference = n - k * (l + 1) + l * (l + 3) / 2; if (l > k - 2) { result = -1; } else if (l == k - 2) { result = difference == 0 ? (int) (l + 1) : -1; } else { result = (int) (l + 1 + (difference == 0 ? 0 : 1)); } } return result; } } </CODE> <EVALUATION_RUBRIC> - non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially. - O(n^3): The time complexity scales proportionally to the cube of the input size. - O(n): The time complexity increases proportionally to the input size n in a linear manner. - O(nlog(n)): The time complexity combines linear and logarithmic growth factors. - O(n^2): The time complexity grows proportionally to the square of the input size. - O(log(n)): The time complexity increases logarithmically in relation to the input size. - O(1): The time complexity is constant to the input size n. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n. </TASK> <CODE> import java.util.Locale; import java.util.Scanner; public class PipelineSolver { private long n; private long k; public static void main(String[] args) { PipelineSolver solver = new PipelineSolver(); solver.readData(); int solution = solver.solve(); solver.print(solution); } private int gcd(int a, int b) { return b == 0 ? a : gcd(b, a % b); } private int lcm(int a, int b) { return a * b / gcd(a, b); } private void print(int[] values) { StringBuilder builder = new StringBuilder(); for (int value : values) { builder.append(value); builder.append(" "); } print(builder); } private void print(Object value) { System.out.println(value); } private void print(boolean value) { System.out.println(value ? "YES" : "NO"); } private void print(int value) { System.out.println(value); } private void print(long value) { System.out.println(value); } private void print(double value) { System.out.printf(Locale.ENGLISH, "%.10f", value); } private int[] getDigits(int number) { int[] digits = new int[10]; int index = digits.length - 1; int digitsCount = 0; while (number > 0) { digits[index] = number % 10; number /= 10; index--; digitsCount++; } int[] result = new int[digitsCount]; System.arraycopy(digits, digits.length - digitsCount, result, 0, digitsCount); return result; } private int[] readArray(Scanner scanner, int size) { int[] result = new int[size]; for (int i = 0; i < size; i++) { result[i] = scanner.nextInt(); } return result; } private void readData() { Scanner scanner = new Scanner(System.in); n = scanner.nextLong(); k = scanner.nextLong(); } private int solve() { if (n == 1) { return 0; } if (n <= k) { return 1; } int result; long l; long d = (5 - 2 * k) * (5 - 2 * k) - 4 * (2 * n - 4 * k + 4); if (d < 0) { result = -1; } else { l = Math.min(Math.max((int)((2 * k - 3 - Math.sqrt(d)) / 2), 0), Math.max((int)((2 * k - 3 + Math.sqrt(d)) / 2), 0)); long difference = n - k * (l + 1) + l * (l + 3) / 2; if (l > k - 2) { result = -1; } else if (l == k - 2) { result = difference == 0 ? (int) (l + 1) : -1; } else { result = (int) (l + 1 + (difference == 0 ? 0 : 1)); } } return result; } } </CODE> <EVALUATION_RUBRIC> - non-polynomial: The running time increases non-polynomially with input size n, typically exponentially. - O(n^2): The execution time ascends in proportion to the square of the input size n. - others: The time complexity does not fit to any of the given categories or is ambiguous. - O(1): The execution time is unaffected by the size of the input n. - O(n^3): The execution time ascends in proportion to the cube of the input size n. - O(n): The execution time ascends in a one-to-one ratio with the input size n. - O(log(n)): The execution time ascends in proportion to the logarithm of the input size n. - O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
1,053
1,413
4,431
import java.io.OutputStream; import java.io.IOException; import java.io.InputStream; import java.io.PrintWriter; import java.io.FilterInputStream; import java.io.BufferedInputStream; import java.io.InputStream; /** * @author khokharnikunj8 */ public class Main { public static void main(String[] args) { new Thread(null, new Runnable() { public void run() { new Main().solve(); } }, "1", 1 << 26).start(); } void solve() { InputStream inputStream = System.in; OutputStream outputStream = System.out; ScanReader in = new ScanReader(inputStream); PrintWriter out = new PrintWriter(outputStream); FElongatedMatrix solver = new FElongatedMatrix(); solver.solve(1, in, out); out.close(); } static class FElongatedMatrix { int[][] G; int[][] G1; public int findIt(int[] map, int n, int start) { int[][] mask = new int[1 << n][n]; for (int i = 0; i < n; i++) mask[(1 << i)][i] = G[start][map[i]]; for (int i = 1; i < (1 << n); i++) { for (int j = 0; j < n; j++) { for (int k = 0; k < n; k++) { if (k != j && (i & (1 << k)) == 0 && (i & (1 << j)) != 0) { mask[(i | (1 << k))][k] = Math.max(mask[(i | (1 << k))][k], Math.min(mask[i][j], G[map[j]][map[k]])); } } } } int ans = 0; for (int i = 0; i < n; i++) ans = Math.max(ans, Math.min(mask[(1 << n) - 1][i], G1[start][map[i]])); return ans; } public void solve(int testNumber, ScanReader in, PrintWriter out) { int n = in.scanInt(); int m = in.scanInt(); G = new int[n][n]; G1 = new int[n][n]; int[][] ar = new int[n][m]; for (int i = 0; i < n; i++) { for (int j = 0; j < m; j++) { ar[i][j] = in.scanInt(); } } if (n == 1) { int ans = Integer.MAX_VALUE; for (int i = 0; i < m - 1; i++) ans = Math.min(ans, Math.abs(ar[0][i] - ar[0][i + 1])); out.println(ans); return; } for (int i = 0; i < n; i++) { for (int j = i + 1; j < n; j++) { int min = Integer.MAX_VALUE; for (int k = 0; k < m; k++) min = Math.min(min, Math.abs(ar[i][k] - ar[j][k])); G[i][j] = G[j][i] = min; } } for (int i = 0; i < n; i++) { for (int j = 0; j < n; j++) { if (i == j) continue; int min = Integer.MAX_VALUE; for (int k = 1; k < m; k++) min = Math.min(min, Math.abs(ar[i][k] - ar[j][k - 1])); G1[i][j] = min; } } int[] map; int ans = 0; for (int i = 0; i < n; i++) { map = new int[n - 1]; int tl = 0; for (int temp = 0; temp < n; temp++) { if (temp == i) continue; map[tl++] = temp; } ans = Math.max(ans, findIt(map, n - 1, i)); } out.println(ans); } } static class ScanReader { private byte[] buf = new byte[4 * 1024]; private int index; private BufferedInputStream in; private int total; public ScanReader(InputStream inputStream) { in = new BufferedInputStream(inputStream); } private int scan() { if (index >= total) { index = 0; try { total = in.read(buf); } catch (Exception e) { e.printStackTrace(); } if (total <= 0) return -1; } return buf[index++]; } public int scanInt() { int integer = 0; int n = scan(); while (isWhiteSpace(n)) n = scan(); int neg = 1; if (n == '-') { neg = -1; n = scan(); } while (!isWhiteSpace(n)) { if (n >= '0' && n <= '9') { integer *= 10; integer += n - '0'; n = scan(); } } return neg * integer; } private boolean isWhiteSpace(int n) { if (n == ' ' || n == '\n' || n == '\r' || n == '\t' || n == -1) return true; else return false; } } }
non-polynomial
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Classify the following Java code's worst-case time complexity according to its relationship to the input size n. </TASK> <CODE> import java.io.OutputStream; import java.io.IOException; import java.io.InputStream; import java.io.PrintWriter; import java.io.FilterInputStream; import java.io.BufferedInputStream; import java.io.InputStream; /** * @author khokharnikunj8 */ public class Main { public static void main(String[] args) { new Thread(null, new Runnable() { public void run() { new Main().solve(); } }, "1", 1 << 26).start(); } void solve() { InputStream inputStream = System.in; OutputStream outputStream = System.out; ScanReader in = new ScanReader(inputStream); PrintWriter out = new PrintWriter(outputStream); FElongatedMatrix solver = new FElongatedMatrix(); solver.solve(1, in, out); out.close(); } static class FElongatedMatrix { int[][] G; int[][] G1; public int findIt(int[] map, int n, int start) { int[][] mask = new int[1 << n][n]; for (int i = 0; i < n; i++) mask[(1 << i)][i] = G[start][map[i]]; for (int i = 1; i < (1 << n); i++) { for (int j = 0; j < n; j++) { for (int k = 0; k < n; k++) { if (k != j && (i & (1 << k)) == 0 && (i & (1 << j)) != 0) { mask[(i | (1 << k))][k] = Math.max(mask[(i | (1 << k))][k], Math.min(mask[i][j], G[map[j]][map[k]])); } } } } int ans = 0; for (int i = 0; i < n; i++) ans = Math.max(ans, Math.min(mask[(1 << n) - 1][i], G1[start][map[i]])); return ans; } public void solve(int testNumber, ScanReader in, PrintWriter out) { int n = in.scanInt(); int m = in.scanInt(); G = new int[n][n]; G1 = new int[n][n]; int[][] ar = new int[n][m]; for (int i = 0; i < n; i++) { for (int j = 0; j < m; j++) { ar[i][j] = in.scanInt(); } } if (n == 1) { int ans = Integer.MAX_VALUE; for (int i = 0; i < m - 1; i++) ans = Math.min(ans, Math.abs(ar[0][i] - ar[0][i + 1])); out.println(ans); return; } for (int i = 0; i < n; i++) { for (int j = i + 1; j < n; j++) { int min = Integer.MAX_VALUE; for (int k = 0; k < m; k++) min = Math.min(min, Math.abs(ar[i][k] - ar[j][k])); G[i][j] = G[j][i] = min; } } for (int i = 0; i < n; i++) { for (int j = 0; j < n; j++) { if (i == j) continue; int min = Integer.MAX_VALUE; for (int k = 1; k < m; k++) min = Math.min(min, Math.abs(ar[i][k] - ar[j][k - 1])); G1[i][j] = min; } } int[] map; int ans = 0; for (int i = 0; i < n; i++) { map = new int[n - 1]; int tl = 0; for (int temp = 0; temp < n; temp++) { if (temp == i) continue; map[tl++] = temp; } ans = Math.max(ans, findIt(map, n - 1, i)); } out.println(ans); } } static class ScanReader { private byte[] buf = new byte[4 * 1024]; private int index; private BufferedInputStream in; private int total; public ScanReader(InputStream inputStream) { in = new BufferedInputStream(inputStream); } private int scan() { if (index >= total) { index = 0; try { total = in.read(buf); } catch (Exception e) { e.printStackTrace(); } if (total <= 0) return -1; } return buf[index++]; } public int scanInt() { int integer = 0; int n = scan(); while (isWhiteSpace(n)) n = scan(); int neg = 1; if (n == '-') { neg = -1; n = scan(); } while (!isWhiteSpace(n)) { if (n >= '0' && n <= '9') { integer *= 10; integer += n - '0'; n = scan(); } } return neg * integer; } private boolean isWhiteSpace(int n) { if (n == ' ' || n == '\n' || n == '\r' || n == '\t' || n == -1) return true; else return false; } } } </CODE> <EVALUATION_RUBRIC> - O(n^2): The running time increases with the square of the input size n. - O(n^3): The running time increases with the cube of the input size n. - non-polynomial: The running time increases non-polynomially with input size n, typically exponentially. - O(log(n)): The running time increases with the logarithm of the input size n. - O(n): The running time grows linearly with the input size n. - O(nlog(n)): The running time increases with the product of n and logarithm of n. - O(1): The running time does not change regardless of the input size n. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Determine the worst-case time complexity category of a given Java code based on input size n. </TASK> <CODE> import java.io.OutputStream; import java.io.IOException; import java.io.InputStream; import java.io.PrintWriter; import java.io.FilterInputStream; import java.io.BufferedInputStream; import java.io.InputStream; /** * @author khokharnikunj8 */ public class Main { public static void main(String[] args) { new Thread(null, new Runnable() { public void run() { new Main().solve(); } }, "1", 1 << 26).start(); } void solve() { InputStream inputStream = System.in; OutputStream outputStream = System.out; ScanReader in = new ScanReader(inputStream); PrintWriter out = new PrintWriter(outputStream); FElongatedMatrix solver = new FElongatedMatrix(); solver.solve(1, in, out); out.close(); } static class FElongatedMatrix { int[][] G; int[][] G1; public int findIt(int[] map, int n, int start) { int[][] mask = new int[1 << n][n]; for (int i = 0; i < n; i++) mask[(1 << i)][i] = G[start][map[i]]; for (int i = 1; i < (1 << n); i++) { for (int j = 0; j < n; j++) { for (int k = 0; k < n; k++) { if (k != j && (i & (1 << k)) == 0 && (i & (1 << j)) != 0) { mask[(i | (1 << k))][k] = Math.max(mask[(i | (1 << k))][k], Math.min(mask[i][j], G[map[j]][map[k]])); } } } } int ans = 0; for (int i = 0; i < n; i++) ans = Math.max(ans, Math.min(mask[(1 << n) - 1][i], G1[start][map[i]])); return ans; } public void solve(int testNumber, ScanReader in, PrintWriter out) { int n = in.scanInt(); int m = in.scanInt(); G = new int[n][n]; G1 = new int[n][n]; int[][] ar = new int[n][m]; for (int i = 0; i < n; i++) { for (int j = 0; j < m; j++) { ar[i][j] = in.scanInt(); } } if (n == 1) { int ans = Integer.MAX_VALUE; for (int i = 0; i < m - 1; i++) ans = Math.min(ans, Math.abs(ar[0][i] - ar[0][i + 1])); out.println(ans); return; } for (int i = 0; i < n; i++) { for (int j = i + 1; j < n; j++) { int min = Integer.MAX_VALUE; for (int k = 0; k < m; k++) min = Math.min(min, Math.abs(ar[i][k] - ar[j][k])); G[i][j] = G[j][i] = min; } } for (int i = 0; i < n; i++) { for (int j = 0; j < n; j++) { if (i == j) continue; int min = Integer.MAX_VALUE; for (int k = 1; k < m; k++) min = Math.min(min, Math.abs(ar[i][k] - ar[j][k - 1])); G1[i][j] = min; } } int[] map; int ans = 0; for (int i = 0; i < n; i++) { map = new int[n - 1]; int tl = 0; for (int temp = 0; temp < n; temp++) { if (temp == i) continue; map[tl++] = temp; } ans = Math.max(ans, findIt(map, n - 1, i)); } out.println(ans); } } static class ScanReader { private byte[] buf = new byte[4 * 1024]; private int index; private BufferedInputStream in; private int total; public ScanReader(InputStream inputStream) { in = new BufferedInputStream(inputStream); } private int scan() { if (index >= total) { index = 0; try { total = in.read(buf); } catch (Exception e) { e.printStackTrace(); } if (total <= 0) return -1; } return buf[index++]; } public int scanInt() { int integer = 0; int n = scan(); while (isWhiteSpace(n)) n = scan(); int neg = 1; if (n == '-') { neg = -1; n = scan(); } while (!isWhiteSpace(n)) { if (n >= '0' && n <= '9') { integer *= 10; integer += n - '0'; n = scan(); } } return neg * integer; } private boolean isWhiteSpace(int n) { if (n == ' ' || n == '\n' || n == '\r' || n == '\t' || n == -1) return true; else return false; } } } </CODE> <EVALUATION_RUBRIC> - others: The time complexity does not fit any of the above categories or cannot be clearly classified. - O(n^2): The time complexity grows proportionally to the square of the input size. - O(1): The time complexity is constant to the input size n. - non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially. - O(n^3): The time complexity scales proportionally to the cube of the input size. - O(n): The time complexity increases proportionally to the input size n in a linear manner. - O(log(n)): The time complexity increases logarithmically in relation to the input size. - O(nlog(n)): The time complexity combines linear and logarithmic growth factors. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
1,542
4,420
2,920
import java.io.*; import java.util.*; public class Main { // main public static void main(String [] args) throws IOException { // makes the reader and writer BufferedReader f = new BufferedReader(new InputStreamReader(System.in)); PrintWriter out = new PrintWriter(new BufferedOutputStream(System.out)); // read in N int N = Integer.parseInt(f.readLine()); // write to out if (N%2==0) out.println("4 "+(N-4)); if (N%2==1) out.println("9 "+(N-9)); // cleanup out.close(); System.exit(0); } }
O(1)
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Determine the worst-case time complexity category of a given Java code based on input size n. </TASK> <CODE> import java.io.*; import java.util.*; public class Main { // main public static void main(String [] args) throws IOException { // makes the reader and writer BufferedReader f = new BufferedReader(new InputStreamReader(System.in)); PrintWriter out = new PrintWriter(new BufferedOutputStream(System.out)); // read in N int N = Integer.parseInt(f.readLine()); // write to out if (N%2==0) out.println("4 "+(N-4)); if (N%2==1) out.println("9 "+(N-9)); // cleanup out.close(); System.exit(0); } } </CODE> <EVALUATION_RUBRIC> - non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially. - O(1): The time complexity is constant to the input size n. - O(nlog(n)): The time complexity combines linear and logarithmic growth factors. - O(n^2): The time complexity grows proportionally to the square of the input size. - O(n): The time complexity increases proportionally to the input size n in a linear manner. - O(log(n)): The time complexity increases logarithmically in relation to the input size. - O(n^3): The time complexity scales proportionally to the cube of the input size. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n. </TASK> <CODE> import java.io.*; import java.util.*; public class Main { // main public static void main(String [] args) throws IOException { // makes the reader and writer BufferedReader f = new BufferedReader(new InputStreamReader(System.in)); PrintWriter out = new PrintWriter(new BufferedOutputStream(System.out)); // read in N int N = Integer.parseInt(f.readLine()); // write to out if (N%2==0) out.println("4 "+(N-4)); if (N%2==1) out.println("9 "+(N-9)); // cleanup out.close(); System.exit(0); } } </CODE> <EVALUATION_RUBRIC> - O(n^2): The execution time ascends in proportion to the square of the input size n. - O(n): The execution time ascends in a one-to-one ratio with the input size n. - O(n^3): The execution time ascends in proportion to the cube of the input size n. - O(log(n)): The execution time ascends in proportion to the logarithm of the input size n. - others: The time complexity does not fit to any of the given categories or is ambiguous. - non-polynomial: The running time increases non-polynomially with input size n, typically exponentially. - O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially. - O(1): The execution time is unaffected by the size of the input n. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
467
2,914
2,837
import java.io.*; import java.util.*; public class A{ public static BufferedReader k; public static BufferedWriter z; public static void main(String [] args)throws IOException{ k = new BufferedReader(new InputStreamReader(System.in)); z = new BufferedWriter(new OutputStreamWriter(System.out)); String[] dat = k.readLine().split(" "); long l = Long.parseLong(dat[0]); long r = Long.parseLong(dat[1]); if(r-l<=1){ z.write(-1+"\n"); } else if(r-l == 2){ if((l&1)!=0){ z.write(-1+"\n"); } else{ z.write(l+" "+(l+1)+" "+r+"\n"); } } else{ if((l&1)==0){ z.write(l+" "+(l+1)+" "+(l+2)+"\n"); } else{ z.write((l+1)+" "+(l+2)+" "+(l+3)+"\n"); } } z.flush(); } }
O(1)
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Determine the worst-case time complexity category of a given Java code based on input size n. </TASK> <CODE> import java.io.*; import java.util.*; public class A{ public static BufferedReader k; public static BufferedWriter z; public static void main(String [] args)throws IOException{ k = new BufferedReader(new InputStreamReader(System.in)); z = new BufferedWriter(new OutputStreamWriter(System.out)); String[] dat = k.readLine().split(" "); long l = Long.parseLong(dat[0]); long r = Long.parseLong(dat[1]); if(r-l<=1){ z.write(-1+"\n"); } else if(r-l == 2){ if((l&1)!=0){ z.write(-1+"\n"); } else{ z.write(l+" "+(l+1)+" "+r+"\n"); } } else{ if((l&1)==0){ z.write(l+" "+(l+1)+" "+(l+2)+"\n"); } else{ z.write((l+1)+" "+(l+2)+" "+(l+3)+"\n"); } } z.flush(); } } </CODE> <EVALUATION_RUBRIC> - O(log(n)): The time complexity increases logarithmically in relation to the input size. - O(n^3): The time complexity scales proportionally to the cube of the input size. - O(nlog(n)): The time complexity combines linear and logarithmic growth factors. - O(n^2): The time complexity grows proportionally to the square of the input size. - non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially. - O(n): The time complexity increases proportionally to the input size n in a linear manner. - O(1): The time complexity is constant to the input size n. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Determine the worst-case time complexity category of a given Java code based on input size n. </TASK> <CODE> import java.io.*; import java.util.*; public class A{ public static BufferedReader k; public static BufferedWriter z; public static void main(String [] args)throws IOException{ k = new BufferedReader(new InputStreamReader(System.in)); z = new BufferedWriter(new OutputStreamWriter(System.out)); String[] dat = k.readLine().split(" "); long l = Long.parseLong(dat[0]); long r = Long.parseLong(dat[1]); if(r-l<=1){ z.write(-1+"\n"); } else if(r-l == 2){ if((l&1)!=0){ z.write(-1+"\n"); } else{ z.write(l+" "+(l+1)+" "+r+"\n"); } } else{ if((l&1)==0){ z.write(l+" "+(l+1)+" "+(l+2)+"\n"); } else{ z.write((l+1)+" "+(l+2)+" "+(l+3)+"\n"); } } z.flush(); } } </CODE> <EVALUATION_RUBRIC> - O(nlog(n)): The time complexity combines linear and logarithmic growth factors. - others: The time complexity does not fit any of the above categories or cannot be clearly classified. - O(log(n)): The time complexity increases logarithmically in relation to the input size. - non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially. - O(n^3): The time complexity scales proportionally to the cube of the input size. - O(n^2): The time complexity grows proportionally to the square of the input size. - O(1): The time complexity is constant to the input size n. - O(n): The time complexity increases proportionally to the input size n in a linear manner. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
568
2,831
4,361
import java.io.*; import java.util.StringTokenizer; public class Main { private FastScanner in; private PrintWriter out; public void solve() throws IOException { int N = in.nextInt(); int M = in.nextInt(); int[][] edges = new int[N][N]; for (int i = 0; i < M; i++) { int a = in.nextInt() - 1; int b = in.nextInt() - 1; edges[a][b] = 1; edges[b][a] = 1; } int globalCountMasks = 1 << N; int[][] masks = new int[N + 1][]; int[] countMasks = new int[N + 1]; for (int i = 0; i <= N; i++) { masks[i] = new int[combinations(N, i)]; } for (int i = 0; i < globalCountMasks; i++) { int c = countBit1(i); masks[c][countMasks[c]] = i; countMasks[c]++; } long globalCountCycles = 0; long[][] count = new long[globalCountMasks][N]; for (int a = 0; a < N - 2; a++) { int aBit = 1 << a; count[aBit][a] = 1; long countCycles = 0; for (int i = 2; i <= N; i++) { for (int m = 0; m < countMasks[i]; m++) { int mask = masks[i][m]; if ((mask & aBit) == 0) continue; if ((mask & (aBit - 1)) > 0) continue; count[mask][a] = 0; for (int v = a + 1; v < N; v++) { int vBit = 1 << v; if ((mask & vBit) == 0) continue; count[mask][v] = 0; for (int t = a; t < N; t++) { if ((mask & (1 << t)) == 0 || t == v || edges[v][t] == 0) continue; count[mask][v] += count[mask ^ vBit][t]; } if (edges[a][v] == 1 && mask != (aBit | vBit)) { countCycles += count[mask][v]; } } } } globalCountCycles += countCycles / 2; } out.println(globalCountCycles); } private int countBit1(int k) { int c = 0; while (k > 0) { c += k & 1; k >>= 1; } return c; } private int combinations(int n, int k) { if (k > n || k < 0) { throw new IllegalArgumentException(); } int r = 1; for (int i = 1; i <= k; i++) { r = r * (n + 1 - i) / i; } return r; } public void run() { try { in = new FastScanner(System.in); out = new PrintWriter(System.out); solve(); out.close(); } catch (IOException e) { e.printStackTrace(); } } class FastScanner { BufferedReader br; StringTokenizer st; FastScanner(InputStream is) { br = new BufferedReader(new InputStreamReader(is)); } String next() { while (st == null || !st.hasMoreTokens()) { try { st = new StringTokenizer(br.readLine()); } catch (IOException e) { e.printStackTrace(); } } return st.nextToken(); } int nextInt() { return Integer.parseInt(next()); } } public static void main(String[] arg) { new Main().run(); } }
non-polynomial
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n. </TASK> <CODE> import java.io.*; import java.util.StringTokenizer; public class Main { private FastScanner in; private PrintWriter out; public void solve() throws IOException { int N = in.nextInt(); int M = in.nextInt(); int[][] edges = new int[N][N]; for (int i = 0; i < M; i++) { int a = in.nextInt() - 1; int b = in.nextInt() - 1; edges[a][b] = 1; edges[b][a] = 1; } int globalCountMasks = 1 << N; int[][] masks = new int[N + 1][]; int[] countMasks = new int[N + 1]; for (int i = 0; i <= N; i++) { masks[i] = new int[combinations(N, i)]; } for (int i = 0; i < globalCountMasks; i++) { int c = countBit1(i); masks[c][countMasks[c]] = i; countMasks[c]++; } long globalCountCycles = 0; long[][] count = new long[globalCountMasks][N]; for (int a = 0; a < N - 2; a++) { int aBit = 1 << a; count[aBit][a] = 1; long countCycles = 0; for (int i = 2; i <= N; i++) { for (int m = 0; m < countMasks[i]; m++) { int mask = masks[i][m]; if ((mask & aBit) == 0) continue; if ((mask & (aBit - 1)) > 0) continue; count[mask][a] = 0; for (int v = a + 1; v < N; v++) { int vBit = 1 << v; if ((mask & vBit) == 0) continue; count[mask][v] = 0; for (int t = a; t < N; t++) { if ((mask & (1 << t)) == 0 || t == v || edges[v][t] == 0) continue; count[mask][v] += count[mask ^ vBit][t]; } if (edges[a][v] == 1 && mask != (aBit | vBit)) { countCycles += count[mask][v]; } } } } globalCountCycles += countCycles / 2; } out.println(globalCountCycles); } private int countBit1(int k) { int c = 0; while (k > 0) { c += k & 1; k >>= 1; } return c; } private int combinations(int n, int k) { if (k > n || k < 0) { throw new IllegalArgumentException(); } int r = 1; for (int i = 1; i <= k; i++) { r = r * (n + 1 - i) / i; } return r; } public void run() { try { in = new FastScanner(System.in); out = new PrintWriter(System.out); solve(); out.close(); } catch (IOException e) { e.printStackTrace(); } } class FastScanner { BufferedReader br; StringTokenizer st; FastScanner(InputStream is) { br = new BufferedReader(new InputStreamReader(is)); } String next() { while (st == null || !st.hasMoreTokens()) { try { st = new StringTokenizer(br.readLine()); } catch (IOException e) { e.printStackTrace(); } } return st.nextToken(); } int nextInt() { return Integer.parseInt(next()); } } public static void main(String[] arg) { new Main().run(); } } </CODE> <EVALUATION_RUBRIC> - O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially. - O(log(n)): The execution time ascends in proportion to the logarithm of the input size n. - O(n^3): The execution time ascends in proportion to the cube of the input size n. - non-polynomial: The running time increases non-polynomially with input size n, typically exponentially. - O(1): The execution time is unaffected by the size of the input n. - O(n): The execution time ascends in a one-to-one ratio with the input size n. - O(n^2): The execution time ascends in proportion to the square of the input size n. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Classify the following Java code's worst-case time complexity according to its relationship to the input size n. </TASK> <CODE> import java.io.*; import java.util.StringTokenizer; public class Main { private FastScanner in; private PrintWriter out; public void solve() throws IOException { int N = in.nextInt(); int M = in.nextInt(); int[][] edges = new int[N][N]; for (int i = 0; i < M; i++) { int a = in.nextInt() - 1; int b = in.nextInt() - 1; edges[a][b] = 1; edges[b][a] = 1; } int globalCountMasks = 1 << N; int[][] masks = new int[N + 1][]; int[] countMasks = new int[N + 1]; for (int i = 0; i <= N; i++) { masks[i] = new int[combinations(N, i)]; } for (int i = 0; i < globalCountMasks; i++) { int c = countBit1(i); masks[c][countMasks[c]] = i; countMasks[c]++; } long globalCountCycles = 0; long[][] count = new long[globalCountMasks][N]; for (int a = 0; a < N - 2; a++) { int aBit = 1 << a; count[aBit][a] = 1; long countCycles = 0; for (int i = 2; i <= N; i++) { for (int m = 0; m < countMasks[i]; m++) { int mask = masks[i][m]; if ((mask & aBit) == 0) continue; if ((mask & (aBit - 1)) > 0) continue; count[mask][a] = 0; for (int v = a + 1; v < N; v++) { int vBit = 1 << v; if ((mask & vBit) == 0) continue; count[mask][v] = 0; for (int t = a; t < N; t++) { if ((mask & (1 << t)) == 0 || t == v || edges[v][t] == 0) continue; count[mask][v] += count[mask ^ vBit][t]; } if (edges[a][v] == 1 && mask != (aBit | vBit)) { countCycles += count[mask][v]; } } } } globalCountCycles += countCycles / 2; } out.println(globalCountCycles); } private int countBit1(int k) { int c = 0; while (k > 0) { c += k & 1; k >>= 1; } return c; } private int combinations(int n, int k) { if (k > n || k < 0) { throw new IllegalArgumentException(); } int r = 1; for (int i = 1; i <= k; i++) { r = r * (n + 1 - i) / i; } return r; } public void run() { try { in = new FastScanner(System.in); out = new PrintWriter(System.out); solve(); out.close(); } catch (IOException e) { e.printStackTrace(); } } class FastScanner { BufferedReader br; StringTokenizer st; FastScanner(InputStream is) { br = new BufferedReader(new InputStreamReader(is)); } String next() { while (st == null || !st.hasMoreTokens()) { try { st = new StringTokenizer(br.readLine()); } catch (IOException e) { e.printStackTrace(); } } return st.nextToken(); } int nextInt() { return Integer.parseInt(next()); } } public static void main(String[] arg) { new Main().run(); } } </CODE> <EVALUATION_RUBRIC> - O(n^3): The running time increases with the cube of the input size n. - O(nlog(n)): The running time increases with the product of n and logarithm of n. - non-polynomial: The running time increases non-polynomially with input size n, typically exponentially. - O(n^2): The running time increases with the square of the input size n. - O(log(n)): The running time increases with the logarithm of the input size n. - others: The code does not clearly correspond to the listed classes or has an unclassified time complexity. - O(1): The running time does not change regardless of the input size n. - O(n): The running time grows linearly with the input size n. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
1,245
4,350
2,745
import java.util.*; public class LCM235A { public static void main(String[] args) { // Set up scanner Scanner sc = new Scanner(System.in); // System.out.println("Enter n"); long n = sc.nextLong(); if (n==1) { System.out.println(1); return; } if (n==2) { System.out.println(2); return; } if (n==3) { System.out.println(6); return; } if (n==4) { System.out.println(12); return; } if (n%2 ==1) // Odd number easy { System.out.println(n*(n-1)*(n-2)); return; } // Even number is a bit harder if (n%3 == 0) { System.out.println((n-1)*(n-2)*(n-3)); } else { System.out.println(n*(n-1)*(n-3)); } } }
O(1)
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Classify the following Java code's worst-case time complexity according to its relationship to the input size n. </TASK> <CODE> import java.util.*; public class LCM235A { public static void main(String[] args) { // Set up scanner Scanner sc = new Scanner(System.in); // System.out.println("Enter n"); long n = sc.nextLong(); if (n==1) { System.out.println(1); return; } if (n==2) { System.out.println(2); return; } if (n==3) { System.out.println(6); return; } if (n==4) { System.out.println(12); return; } if (n%2 ==1) // Odd number easy { System.out.println(n*(n-1)*(n-2)); return; } // Even number is a bit harder if (n%3 == 0) { System.out.println((n-1)*(n-2)*(n-3)); } else { System.out.println(n*(n-1)*(n-3)); } } } </CODE> <EVALUATION_RUBRIC> - O(n): The running time grows linearly with the input size n. - O(nlog(n)): The running time increases with the product of n and logarithm of n. - non-polynomial: The running time increases non-polynomially with input size n, typically exponentially. - O(n^3): The running time increases with the cube of the input size n. - O(n^2): The running time increases with the square of the input size n. - O(log(n)): The running time increases with the logarithm of the input size n. - O(1): The running time does not change regardless of the input size n. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Determine the worst-case time complexity category of a given Java code based on input size n. </TASK> <CODE> import java.util.*; public class LCM235A { public static void main(String[] args) { // Set up scanner Scanner sc = new Scanner(System.in); // System.out.println("Enter n"); long n = sc.nextLong(); if (n==1) { System.out.println(1); return; } if (n==2) { System.out.println(2); return; } if (n==3) { System.out.println(6); return; } if (n==4) { System.out.println(12); return; } if (n%2 ==1) // Odd number easy { System.out.println(n*(n-1)*(n-2)); return; } // Even number is a bit harder if (n%3 == 0) { System.out.println((n-1)*(n-2)*(n-3)); } else { System.out.println(n*(n-1)*(n-3)); } } } </CODE> <EVALUATION_RUBRIC> - O(n^2): The time complexity grows proportionally to the square of the input size. - O(nlog(n)): The time complexity combines linear and logarithmic growth factors. - non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially. - others: The time complexity does not fit any of the above categories or cannot be clearly classified. - O(n^3): The time complexity scales proportionally to the cube of the input size. - O(log(n)): The time complexity increases logarithmically in relation to the input size. - O(1): The time complexity is constant to the input size n. - O(n): The time complexity increases proportionally to the input size n in a linear manner. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
579
2,739
2,049
import java.util.*; public class Main { public static void main(String[] args) { Scanner keyboard = new Scanner(System.in); int size = Integer.parseInt(keyboard.nextLine()); int[] arr = new int[size]; int i = 0; while( size != 0 ) { arr[i] = keyboard.nextInt(); size--; i++; } if( arr.length == 1 ) { System.out.println("NO"); } else { Arrays.sort(arr); boolean val = false; int ans = 0; for ( i = 0; i< arr.length-1 ; i++ ) { if( arr[i] != arr[i+1] ) { val = true; ans = arr[i+1]; System.out.println(ans); i = arr.length; } else if( i == arr.length-2 ) //val == false { System.out.println("NO"); } } } } }
O(nlog(n))
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Classify the following Java code's worst-case time complexity according to its relationship to the input size n. </TASK> <CODE> import java.util.*; public class Main { public static void main(String[] args) { Scanner keyboard = new Scanner(System.in); int size = Integer.parseInt(keyboard.nextLine()); int[] arr = new int[size]; int i = 0; while( size != 0 ) { arr[i] = keyboard.nextInt(); size--; i++; } if( arr.length == 1 ) { System.out.println("NO"); } else { Arrays.sort(arr); boolean val = false; int ans = 0; for ( i = 0; i< arr.length-1 ; i++ ) { if( arr[i] != arr[i+1] ) { val = true; ans = arr[i+1]; System.out.println(ans); i = arr.length; } else if( i == arr.length-2 ) //val == false { System.out.println("NO"); } } } } } </CODE> <EVALUATION_RUBRIC> - O(nlog(n)): The running time increases with the product of n and logarithm of n. - O(n^3): The running time increases with the cube of the input size n. - O(n): The running time grows linearly with the input size n. - O(log(n)): The running time increases with the logarithm of the input size n. - O(1): The running time does not change regardless of the input size n. - O(n^2): The running time increases with the square of the input size n. - non-polynomial: The running time increases non-polynomially with input size n, typically exponentially. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n. </TASK> <CODE> import java.util.*; public class Main { public static void main(String[] args) { Scanner keyboard = new Scanner(System.in); int size = Integer.parseInt(keyboard.nextLine()); int[] arr = new int[size]; int i = 0; while( size != 0 ) { arr[i] = keyboard.nextInt(); size--; i++; } if( arr.length == 1 ) { System.out.println("NO"); } else { Arrays.sort(arr); boolean val = false; int ans = 0; for ( i = 0; i< arr.length-1 ; i++ ) { if( arr[i] != arr[i+1] ) { val = true; ans = arr[i+1]; System.out.println(ans); i = arr.length; } else if( i == arr.length-2 ) //val == false { System.out.println("NO"); } } } } } </CODE> <EVALUATION_RUBRIC> - non-polynomial: The running time increases non-polynomially with input size n, typically exponentially. - O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially. - O(n^2): The execution time ascends in proportion to the square of the input size n. - O(n): The execution time ascends in a one-to-one ratio with the input size n. - others: The time complexity does not fit to any of the given categories or is ambiguous. - O(n^3): The execution time ascends in proportion to the cube of the input size n. - O(1): The execution time is unaffected by the size of the input n. - O(log(n)): The execution time ascends in proportion to the logarithm of the input size n. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
587
2,045
249
import java.io.OutputStream; import java.io.IOException; import java.io.InputStream; import java.io.PrintWriter; import java.util.StringTokenizer; import java.math.BigInteger; import java.io.IOException; import java.io.BufferedReader; import java.io.InputStreamReader; import java.io.InputStream; /** * Built using CHelper plug-in * Actual solution is at the top * * @author programajor */ public class Main { public static void main(String[] args) { InputStream inputStream = System.in; OutputStream outputStream = System.out; InputReader in = new InputReader(inputStream); PrintWriter out = new PrintWriter(outputStream); TaskC solver = new TaskC(); solver.solve(1, in, out); out.close(); } static class TaskC { BigInteger mod = new BigInteger("1000000007"); public void solve(int testNumber, InputReader in, PrintWriter out) { BigInteger x = new BigInteger(in.next()); BigInteger k = new BigInteger(in.next()); if (x.longValue() == 0) { out.print(x); return; } BigInteger pow = powerWithMod(new BigInteger("2"), k); BigInteger current = x.mod(mod).multiply(pow).mod(mod); BigInteger result = current.multiply(new BigInteger("2")).mod(mod) .subtract(pow.subtract(new BigInteger("1")).mod(mod)) .mod(mod); out.print(result); } BigInteger powerWithMod(BigInteger base, BigInteger exponent) { if (exponent.longValue() == 0) { return new BigInteger("1"); } BigInteger temp = powerWithMod(base, exponent.divide(new BigInteger("2"))); BigInteger term = temp.mod(mod); if (exponent.mod(new BigInteger("2")).intValue() == 0) { return term.multiply(term.mod(mod)).mod(mod); } else { return term.multiply(term.mod(mod)).multiply(base.mod(mod)).mod(mod); } } } static class InputReader { private BufferedReader reader; private StringTokenizer tokenizer; public InputReader(InputStream stream) { reader = new BufferedReader(new InputStreamReader(stream), 32768); tokenizer = null; } public String next() { while (tokenizer == null || !tokenizer.hasMoreTokens()) { try { tokenizer = new StringTokenizer(reader.readLine()); } catch (IOException e) { throw new RuntimeException(e); } } return tokenizer.nextToken(); } } }
O(log(n))
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Determine the worst-case time complexity category of a given Java code based on input size n. </TASK> <CODE> import java.io.OutputStream; import java.io.IOException; import java.io.InputStream; import java.io.PrintWriter; import java.util.StringTokenizer; import java.math.BigInteger; import java.io.IOException; import java.io.BufferedReader; import java.io.InputStreamReader; import java.io.InputStream; /** * Built using CHelper plug-in * Actual solution is at the top * * @author programajor */ public class Main { public static void main(String[] args) { InputStream inputStream = System.in; OutputStream outputStream = System.out; InputReader in = new InputReader(inputStream); PrintWriter out = new PrintWriter(outputStream); TaskC solver = new TaskC(); solver.solve(1, in, out); out.close(); } static class TaskC { BigInteger mod = new BigInteger("1000000007"); public void solve(int testNumber, InputReader in, PrintWriter out) { BigInteger x = new BigInteger(in.next()); BigInteger k = new BigInteger(in.next()); if (x.longValue() == 0) { out.print(x); return; } BigInteger pow = powerWithMod(new BigInteger("2"), k); BigInteger current = x.mod(mod).multiply(pow).mod(mod); BigInteger result = current.multiply(new BigInteger("2")).mod(mod) .subtract(pow.subtract(new BigInteger("1")).mod(mod)) .mod(mod); out.print(result); } BigInteger powerWithMod(BigInteger base, BigInteger exponent) { if (exponent.longValue() == 0) { return new BigInteger("1"); } BigInteger temp = powerWithMod(base, exponent.divide(new BigInteger("2"))); BigInteger term = temp.mod(mod); if (exponent.mod(new BigInteger("2")).intValue() == 0) { return term.multiply(term.mod(mod)).mod(mod); } else { return term.multiply(term.mod(mod)).multiply(base.mod(mod)).mod(mod); } } } static class InputReader { private BufferedReader reader; private StringTokenizer tokenizer; public InputReader(InputStream stream) { reader = new BufferedReader(new InputStreamReader(stream), 32768); tokenizer = null; } public String next() { while (tokenizer == null || !tokenizer.hasMoreTokens()) { try { tokenizer = new StringTokenizer(reader.readLine()); } catch (IOException e) { throw new RuntimeException(e); } } return tokenizer.nextToken(); } } } </CODE> <EVALUATION_RUBRIC> - O(n^3): The time complexity scales proportionally to the cube of the input size. - non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially. - O(1): The time complexity is constant to the input size n. - O(log(n)): The time complexity increases logarithmically in relation to the input size. - O(n): The time complexity increases proportionally to the input size n in a linear manner. - O(n^2): The time complexity grows proportionally to the square of the input size. - O(nlog(n)): The time complexity combines linear and logarithmic growth factors. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Determine the worst-case time complexity category of a given Java code based on input size n. </TASK> <CODE> import java.io.OutputStream; import java.io.IOException; import java.io.InputStream; import java.io.PrintWriter; import java.util.StringTokenizer; import java.math.BigInteger; import java.io.IOException; import java.io.BufferedReader; import java.io.InputStreamReader; import java.io.InputStream; /** * Built using CHelper plug-in * Actual solution is at the top * * @author programajor */ public class Main { public static void main(String[] args) { InputStream inputStream = System.in; OutputStream outputStream = System.out; InputReader in = new InputReader(inputStream); PrintWriter out = new PrintWriter(outputStream); TaskC solver = new TaskC(); solver.solve(1, in, out); out.close(); } static class TaskC { BigInteger mod = new BigInteger("1000000007"); public void solve(int testNumber, InputReader in, PrintWriter out) { BigInteger x = new BigInteger(in.next()); BigInteger k = new BigInteger(in.next()); if (x.longValue() == 0) { out.print(x); return; } BigInteger pow = powerWithMod(new BigInteger("2"), k); BigInteger current = x.mod(mod).multiply(pow).mod(mod); BigInteger result = current.multiply(new BigInteger("2")).mod(mod) .subtract(pow.subtract(new BigInteger("1")).mod(mod)) .mod(mod); out.print(result); } BigInteger powerWithMod(BigInteger base, BigInteger exponent) { if (exponent.longValue() == 0) { return new BigInteger("1"); } BigInteger temp = powerWithMod(base, exponent.divide(new BigInteger("2"))); BigInteger term = temp.mod(mod); if (exponent.mod(new BigInteger("2")).intValue() == 0) { return term.multiply(term.mod(mod)).mod(mod); } else { return term.multiply(term.mod(mod)).multiply(base.mod(mod)).mod(mod); } } } static class InputReader { private BufferedReader reader; private StringTokenizer tokenizer; public InputReader(InputStream stream) { reader = new BufferedReader(new InputStreamReader(stream), 32768); tokenizer = null; } public String next() { while (tokenizer == null || !tokenizer.hasMoreTokens()) { try { tokenizer = new StringTokenizer(reader.readLine()); } catch (IOException e) { throw new RuntimeException(e); } } return tokenizer.nextToken(); } } } </CODE> <EVALUATION_RUBRIC> - others: The time complexity does not fit any of the above categories or cannot be clearly classified. - O(n^2): The time complexity grows proportionally to the square of the input size. - O(nlog(n)): The time complexity combines linear and logarithmic growth factors. - non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially. - O(n): The time complexity increases proportionally to the input size n in a linear manner. - O(log(n)): The time complexity increases logarithmically in relation to the input size. - O(1): The time complexity is constant to the input size n. - O(n^3): The time complexity scales proportionally to the cube of the input size. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
842
249
2,944
import java.io.OutputStream; import java.io.IOException; import java.io.PrintWriter; import java.util.InputMismatchException; import java.io.InputStream; /** * Built using CHelper plug-in * Actual solution is at the top * @author George Marcus */ public class Main { public static void main(String[] args) { InputStream inputStream = System.in; OutputStream outputStream = System.out; InputReader in = new InputReader(inputStream); PrintWriter out = new PrintWriter(outputStream); TaskA solver = new TaskA(); solver.solve(1, in, out); out.close(); } } class TaskA { public void solve(int testNumber, InputReader in, PrintWriter out) { long a = in.nextLong(); long b = in.nextLong(); long res = 0; while(a > 1 && b > 1) { if(a < b) { res += b / a; b %= a; } else { res += a / b; a %= b; } } if(a == 1) res += b; else res += a; out.println(res); } } class InputReader { private InputStream stream; private byte[] buf = new byte[1024]; private int curChar; private int numChars; public InputReader(InputStream stream) { this.stream = stream; } public int read() { if (numChars == -1) throw new InputMismatchException(); if (curChar >= numChars) { curChar = 0; try { numChars = stream.read(buf); } catch (IOException e) { throw new InputMismatchException(); } if (numChars <= 0) return -1; } return buf[curChar++]; } public long nextLong() { return Long.parseLong(nextString()); } public String nextString() { int c = read(); while (isSpaceChar(c)) c = read(); StringBuffer res = new StringBuffer(); do { res.appendCodePoint(c); c = read(); } while (!isSpaceChar(c)); return res.toString(); } private boolean isSpaceChar(int c) { return c == ' ' || c == '\n' || c == '\r' || c == '\t' || c == -1; } }
O(1)
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Determine the worst-case time complexity category of a given Java code based on input size n. </TASK> <CODE> import java.io.OutputStream; import java.io.IOException; import java.io.PrintWriter; import java.util.InputMismatchException; import java.io.InputStream; /** * Built using CHelper plug-in * Actual solution is at the top * @author George Marcus */ public class Main { public static void main(String[] args) { InputStream inputStream = System.in; OutputStream outputStream = System.out; InputReader in = new InputReader(inputStream); PrintWriter out = new PrintWriter(outputStream); TaskA solver = new TaskA(); solver.solve(1, in, out); out.close(); } } class TaskA { public void solve(int testNumber, InputReader in, PrintWriter out) { long a = in.nextLong(); long b = in.nextLong(); long res = 0; while(a > 1 && b > 1) { if(a < b) { res += b / a; b %= a; } else { res += a / b; a %= b; } } if(a == 1) res += b; else res += a; out.println(res); } } class InputReader { private InputStream stream; private byte[] buf = new byte[1024]; private int curChar; private int numChars; public InputReader(InputStream stream) { this.stream = stream; } public int read() { if (numChars == -1) throw new InputMismatchException(); if (curChar >= numChars) { curChar = 0; try { numChars = stream.read(buf); } catch (IOException e) { throw new InputMismatchException(); } if (numChars <= 0) return -1; } return buf[curChar++]; } public long nextLong() { return Long.parseLong(nextString()); } public String nextString() { int c = read(); while (isSpaceChar(c)) c = read(); StringBuffer res = new StringBuffer(); do { res.appendCodePoint(c); c = read(); } while (!isSpaceChar(c)); return res.toString(); } private boolean isSpaceChar(int c) { return c == ' ' || c == '\n' || c == '\r' || c == '\t' || c == -1; } } </CODE> <EVALUATION_RUBRIC> - O(log(n)): The time complexity increases logarithmically in relation to the input size. - O(n^2): The time complexity grows proportionally to the square of the input size. - non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially. - O(1): The time complexity is constant to the input size n. - O(n^3): The time complexity scales proportionally to the cube of the input size. - O(nlog(n)): The time complexity combines linear and logarithmic growth factors. - O(n): The time complexity increases proportionally to the input size n in a linear manner. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Determine the worst-case time complexity category of a given Java code based on input size n. </TASK> <CODE> import java.io.OutputStream; import java.io.IOException; import java.io.PrintWriter; import java.util.InputMismatchException; import java.io.InputStream; /** * Built using CHelper plug-in * Actual solution is at the top * @author George Marcus */ public class Main { public static void main(String[] args) { InputStream inputStream = System.in; OutputStream outputStream = System.out; InputReader in = new InputReader(inputStream); PrintWriter out = new PrintWriter(outputStream); TaskA solver = new TaskA(); solver.solve(1, in, out); out.close(); } } class TaskA { public void solve(int testNumber, InputReader in, PrintWriter out) { long a = in.nextLong(); long b = in.nextLong(); long res = 0; while(a > 1 && b > 1) { if(a < b) { res += b / a; b %= a; } else { res += a / b; a %= b; } } if(a == 1) res += b; else res += a; out.println(res); } } class InputReader { private InputStream stream; private byte[] buf = new byte[1024]; private int curChar; private int numChars; public InputReader(InputStream stream) { this.stream = stream; } public int read() { if (numChars == -1) throw new InputMismatchException(); if (curChar >= numChars) { curChar = 0; try { numChars = stream.read(buf); } catch (IOException e) { throw new InputMismatchException(); } if (numChars <= 0) return -1; } return buf[curChar++]; } public long nextLong() { return Long.parseLong(nextString()); } public String nextString() { int c = read(); while (isSpaceChar(c)) c = read(); StringBuffer res = new StringBuffer(); do { res.appendCodePoint(c); c = read(); } while (!isSpaceChar(c)); return res.toString(); } private boolean isSpaceChar(int c) { return c == ' ' || c == '\n' || c == '\r' || c == '\t' || c == -1; } } </CODE> <EVALUATION_RUBRIC> - O(n^2): The time complexity grows proportionally to the square of the input size. - O(n): The time complexity increases proportionally to the input size n in a linear manner. - O(1): The time complexity is constant to the input size n. - others: The time complexity does not fit any of the above categories or cannot be clearly classified. - non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially. - O(nlog(n)): The time complexity combines linear and logarithmic growth factors. - O(log(n)): The time complexity increases logarithmically in relation to the input size. - O(n^3): The time complexity scales proportionally to the cube of the input size. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
845
2,938
2,378
import java.util.Scanner; public class inversion__count { public static void main(String[] args) { Scanner s = new Scanner(System.in); int n=s.nextInt(); int[] a = new int[n+1]; for(int i=1;i<=n;i++){ a[i]=s.nextInt(); } int m=s.nextInt(); int count=0; for(int i=1;i<=n;i++){ for(int j=i+1;j<=n;j++){ if(a[i]>a[j]){ count++; } } } if(count%2==0){ count=0; }else{ count=1; } //System.out.println(count); for(int i=0;i<m;i++){ int l=s.nextInt(); int r=s.nextInt(); if(l==r){ if((count&1)==1){ System.out.println("odd"); }else{ System.out.println("even"); } continue; } int d=r-l+1; int segcount = 0; int temp = (d*(d-1))/2; if((temp&1)==1 && (count&1)==1){ count=0; System.out.println("even"); }else if((temp&1)==1 && (count&1)==0){ count=1; System.out.println("odd"); }else{ if((count&1)==1){ System.out.println("odd"); }else{ System.out.println("even"); } } } } }
O(n^2)
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Determine the worst-case time complexity category of a given Java code based on input size n. </TASK> <CODE> import java.util.Scanner; public class inversion__count { public static void main(String[] args) { Scanner s = new Scanner(System.in); int n=s.nextInt(); int[] a = new int[n+1]; for(int i=1;i<=n;i++){ a[i]=s.nextInt(); } int m=s.nextInt(); int count=0; for(int i=1;i<=n;i++){ for(int j=i+1;j<=n;j++){ if(a[i]>a[j]){ count++; } } } if(count%2==0){ count=0; }else{ count=1; } //System.out.println(count); for(int i=0;i<m;i++){ int l=s.nextInt(); int r=s.nextInt(); if(l==r){ if((count&1)==1){ System.out.println("odd"); }else{ System.out.println("even"); } continue; } int d=r-l+1; int segcount = 0; int temp = (d*(d-1))/2; if((temp&1)==1 && (count&1)==1){ count=0; System.out.println("even"); }else if((temp&1)==1 && (count&1)==0){ count=1; System.out.println("odd"); }else{ if((count&1)==1){ System.out.println("odd"); }else{ System.out.println("even"); } } } } } </CODE> <EVALUATION_RUBRIC> - O(n^2): The time complexity grows proportionally to the square of the input size. - O(1): The time complexity is constant to the input size n. - O(log(n)): The time complexity increases logarithmically in relation to the input size. - non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially. - O(n): The time complexity increases proportionally to the input size n in a linear manner. - O(nlog(n)): The time complexity combines linear and logarithmic growth factors. - O(n^3): The time complexity scales proportionally to the cube of the input size. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Determine the worst-case time complexity category of a given Java code based on input size n. </TASK> <CODE> import java.util.Scanner; public class inversion__count { public static void main(String[] args) { Scanner s = new Scanner(System.in); int n=s.nextInt(); int[] a = new int[n+1]; for(int i=1;i<=n;i++){ a[i]=s.nextInt(); } int m=s.nextInt(); int count=0; for(int i=1;i<=n;i++){ for(int j=i+1;j<=n;j++){ if(a[i]>a[j]){ count++; } } } if(count%2==0){ count=0; }else{ count=1; } //System.out.println(count); for(int i=0;i<m;i++){ int l=s.nextInt(); int r=s.nextInt(); if(l==r){ if((count&1)==1){ System.out.println("odd"); }else{ System.out.println("even"); } continue; } int d=r-l+1; int segcount = 0; int temp = (d*(d-1))/2; if((temp&1)==1 && (count&1)==1){ count=0; System.out.println("even"); }else if((temp&1)==1 && (count&1)==0){ count=1; System.out.println("odd"); }else{ if((count&1)==1){ System.out.println("odd"); }else{ System.out.println("even"); } } } } } </CODE> <EVALUATION_RUBRIC> - O(nlog(n)): The time complexity combines linear and logarithmic growth factors. - O(n): The time complexity increases proportionally to the input size n in a linear manner. - O(1): The time complexity is constant to the input size n. - O(log(n)): The time complexity increases logarithmically in relation to the input size. - others: The time complexity does not fit any of the above categories or cannot be clearly classified. - O(n^2): The time complexity grows proportionally to the square of the input size. - O(n^3): The time complexity scales proportionally to the cube of the input size. - non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
694
2,373
800
import java.io.*; import java.util.*; public class Main { class node{ int data; node next; public node(int val){ data=val; next=null; } } class linkedlist{ node start; node end; int size; int turn; public linkedlist(){ start=null; end=null; size=0; } void add(int val){ if(size==0){ node t=new node(val); start=t; end=t; size++; } else{ node t=new node(val); end.next=t; end=end.next; size++; } } void myfunc(){ if(start.data>start.next.data){ // System.out.println("me ni hu"); node t=new node(start.next.data); start.next=start.next.next; end.next=t; end=end.next; } else{ // System.out.println("me hu"); int t=start.data; start=start.next; add(t); size--; } } int findmax(){ int m=0; node temp=start; for(int i=0;i<size;i++){ if(temp.data>m){ m=temp.data; } temp=temp.next; } return m; } void display(){ node temp=start; for(int i=0;i<size;i++){ System.out.print(temp.data+" "); temp=temp.next; } System.out.println(""); } } linkedlist l; public Main(){ l=new linkedlist(); } public static void main(String [] argv) throws IOException { BufferedReader in=new BufferedReader(new InputStreamReader(System.in)); Main ma=new Main(); String[] l1=in.readLine().split(" "); int n=Integer.parseInt(l1[0]); int q=Integer.parseInt(l1[1]); String[] ar=in.readLine().split(" "); int a1=Integer.parseInt(ar[0]); int b1=Integer.parseInt(ar[1]); for(int i=0;i<n;i++){ ma.l.add(Integer.parseInt(ar[i])); } int m=ma.l.findmax(); int[][] pair=new int[n][2]; int t=0; for(int i=0;i<n;i++){ if(ma.l.start.data==m) break; ma.l.myfunc(); pair[t][0]=ma.l.start.data; pair[t][1]=ma.l.start.next.data; t++; } int rl[]=new int[n]; node temp=ma.l.start; for(int i=0;i<n;i++){ rl[i]=temp.data; temp=temp.next; } for(int i=0;i<q;i++){ long a=Long.parseLong(in.readLine()); if(a==1){ System.out.println(a1 + " " + b1); } else{ if(a<=t+1){ System.out.println(pair[(int)(a-2)][0]+" "+pair[(int)(a-2)][1]); } else{ if((a-t)%(n-1)==0){ System.out.println(rl[0]+" "+rl[n-1]); } else{ System.out.println(rl[0]+" "+rl[(int)((a-t)%(n-1))]); } } } } } }
O(n)
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n. </TASK> <CODE> import java.io.*; import java.util.*; public class Main { class node{ int data; node next; public node(int val){ data=val; next=null; } } class linkedlist{ node start; node end; int size; int turn; public linkedlist(){ start=null; end=null; size=0; } void add(int val){ if(size==0){ node t=new node(val); start=t; end=t; size++; } else{ node t=new node(val); end.next=t; end=end.next; size++; } } void myfunc(){ if(start.data>start.next.data){ // System.out.println("me ni hu"); node t=new node(start.next.data); start.next=start.next.next; end.next=t; end=end.next; } else{ // System.out.println("me hu"); int t=start.data; start=start.next; add(t); size--; } } int findmax(){ int m=0; node temp=start; for(int i=0;i<size;i++){ if(temp.data>m){ m=temp.data; } temp=temp.next; } return m; } void display(){ node temp=start; for(int i=0;i<size;i++){ System.out.print(temp.data+" "); temp=temp.next; } System.out.println(""); } } linkedlist l; public Main(){ l=new linkedlist(); } public static void main(String [] argv) throws IOException { BufferedReader in=new BufferedReader(new InputStreamReader(System.in)); Main ma=new Main(); String[] l1=in.readLine().split(" "); int n=Integer.parseInt(l1[0]); int q=Integer.parseInt(l1[1]); String[] ar=in.readLine().split(" "); int a1=Integer.parseInt(ar[0]); int b1=Integer.parseInt(ar[1]); for(int i=0;i<n;i++){ ma.l.add(Integer.parseInt(ar[i])); } int m=ma.l.findmax(); int[][] pair=new int[n][2]; int t=0; for(int i=0;i<n;i++){ if(ma.l.start.data==m) break; ma.l.myfunc(); pair[t][0]=ma.l.start.data; pair[t][1]=ma.l.start.next.data; t++; } int rl[]=new int[n]; node temp=ma.l.start; for(int i=0;i<n;i++){ rl[i]=temp.data; temp=temp.next; } for(int i=0;i<q;i++){ long a=Long.parseLong(in.readLine()); if(a==1){ System.out.println(a1 + " " + b1); } else{ if(a<=t+1){ System.out.println(pair[(int)(a-2)][0]+" "+pair[(int)(a-2)][1]); } else{ if((a-t)%(n-1)==0){ System.out.println(rl[0]+" "+rl[n-1]); } else{ System.out.println(rl[0]+" "+rl[(int)((a-t)%(n-1))]); } } } } } } </CODE> <EVALUATION_RUBRIC> - O(log(n)): The execution time ascends in proportion to the logarithm of the input size n. - O(n^2): The execution time ascends in proportion to the square of the input size n. - O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially. - O(n): The execution time ascends in a one-to-one ratio with the input size n. - O(n^3): The execution time ascends in proportion to the cube of the input size n. - O(1): The execution time is unaffected by the size of the input n. - non-polynomial: The running time increases non-polynomially with input size n, typically exponentially. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Determine the worst-case time complexity category of a given Java code based on input size n. </TASK> <CODE> import java.io.*; import java.util.*; public class Main { class node{ int data; node next; public node(int val){ data=val; next=null; } } class linkedlist{ node start; node end; int size; int turn; public linkedlist(){ start=null; end=null; size=0; } void add(int val){ if(size==0){ node t=new node(val); start=t; end=t; size++; } else{ node t=new node(val); end.next=t; end=end.next; size++; } } void myfunc(){ if(start.data>start.next.data){ // System.out.println("me ni hu"); node t=new node(start.next.data); start.next=start.next.next; end.next=t; end=end.next; } else{ // System.out.println("me hu"); int t=start.data; start=start.next; add(t); size--; } } int findmax(){ int m=0; node temp=start; for(int i=0;i<size;i++){ if(temp.data>m){ m=temp.data; } temp=temp.next; } return m; } void display(){ node temp=start; for(int i=0;i<size;i++){ System.out.print(temp.data+" "); temp=temp.next; } System.out.println(""); } } linkedlist l; public Main(){ l=new linkedlist(); } public static void main(String [] argv) throws IOException { BufferedReader in=new BufferedReader(new InputStreamReader(System.in)); Main ma=new Main(); String[] l1=in.readLine().split(" "); int n=Integer.parseInt(l1[0]); int q=Integer.parseInt(l1[1]); String[] ar=in.readLine().split(" "); int a1=Integer.parseInt(ar[0]); int b1=Integer.parseInt(ar[1]); for(int i=0;i<n;i++){ ma.l.add(Integer.parseInt(ar[i])); } int m=ma.l.findmax(); int[][] pair=new int[n][2]; int t=0; for(int i=0;i<n;i++){ if(ma.l.start.data==m) break; ma.l.myfunc(); pair[t][0]=ma.l.start.data; pair[t][1]=ma.l.start.next.data; t++; } int rl[]=new int[n]; node temp=ma.l.start; for(int i=0;i<n;i++){ rl[i]=temp.data; temp=temp.next; } for(int i=0;i<q;i++){ long a=Long.parseLong(in.readLine()); if(a==1){ System.out.println(a1 + " " + b1); } else{ if(a<=t+1){ System.out.println(pair[(int)(a-2)][0]+" "+pair[(int)(a-2)][1]); } else{ if((a-t)%(n-1)==0){ System.out.println(rl[0]+" "+rl[n-1]); } else{ System.out.println(rl[0]+" "+rl[(int)((a-t)%(n-1))]); } } } } } } </CODE> <EVALUATION_RUBRIC> - O(log(n)): The time complexity increases logarithmically in relation to the input size. - non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially. - O(n^2): The time complexity grows proportionally to the square of the input size. - others: The time complexity does not fit any of the above categories or cannot be clearly classified. - O(1): The time complexity is constant to the input size n. - O(nlog(n)): The time complexity combines linear and logarithmic growth factors. - O(n): The time complexity increases proportionally to the input size n in a linear manner. - O(n^3): The time complexity scales proportionally to the cube of the input size. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
1,104
799
1,331
import java.io.*; import java.util.*; import java.math.BigInteger; import java.util.Map.Entry; import static java.lang.Math.*; public class C extends PrintWriter { final long mod = 1_000_000_007; long pow(long n, long p) { long r = 1; while (p > 0) { if (p % 2 == 1) { r = (r * n) % mod; } n = (n * n) % mod; p /= 2; } return r; } long solve(long n, long k) { if (k == 0) { return (2 * n) % mod; } if (n == 0) { return 0; } long m = pow(2, k); long a = 2; a = (a * n) % mod; a = (a * m) % mod; long b = (m + mod - 1) % mod; return ((a - b + mod) % mod); } void run() { long n = nextLong(); long k = nextLong(); println(solve(n, k)); } boolean skip() { while (hasNext()) { next(); } return true; } int[][] nextMatrix(int n, int m) { int[][] matrix = new int[n][m]; for (int i = 0; i < n; i++) for (int j = 0; j < m; j++) matrix[i][j] = nextInt(); return matrix; } String next() { while (!tokenizer.hasMoreTokens()) tokenizer = new StringTokenizer(nextLine()); return tokenizer.nextToken(); } boolean hasNext() { while (!tokenizer.hasMoreTokens()) { String line = nextLine(); if (line == null) { return false; } tokenizer = new StringTokenizer(line); } return true; } int[] nextArray(int n) { int[] array = new int[n]; for (int i = 0; i < n; i++) { array[i] = nextInt(); } return array; } int nextInt() { return Integer.parseInt(next()); } long nextLong() { return Long.parseLong(next()); } double nextDouble() { return Double.parseDouble(next()); } String nextLine() { try { return reader.readLine(); } catch (IOException err) { return null; } } public C(OutputStream outputStream) { super(outputStream); } static BufferedReader reader; static StringTokenizer tokenizer = new StringTokenizer(""); static Random rnd = new Random(); static boolean OJ; public static void main(String[] args) throws IOException { OJ = System.getProperty("ONLINE_JUDGE") != null; C solution = new C(System.out); if (OJ) { reader = new BufferedReader(new InputStreamReader(System.in)); solution.run(); } else { reader = new BufferedReader(new FileReader(new File(C.class.getName() + ".txt"))); long timeout = System.currentTimeMillis(); while (solution.hasNext()) { solution.run(); solution.println(); solution.println("----------------------------------"); } solution.println("time: " + (System.currentTimeMillis() - timeout)); } solution.close(); reader.close(); } }
O(log(n))
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Determine the worst-case time complexity category of a given Java code based on input size n. </TASK> <CODE> import java.io.*; import java.util.*; import java.math.BigInteger; import java.util.Map.Entry; import static java.lang.Math.*; public class C extends PrintWriter { final long mod = 1_000_000_007; long pow(long n, long p) { long r = 1; while (p > 0) { if (p % 2 == 1) { r = (r * n) % mod; } n = (n * n) % mod; p /= 2; } return r; } long solve(long n, long k) { if (k == 0) { return (2 * n) % mod; } if (n == 0) { return 0; } long m = pow(2, k); long a = 2; a = (a * n) % mod; a = (a * m) % mod; long b = (m + mod - 1) % mod; return ((a - b + mod) % mod); } void run() { long n = nextLong(); long k = nextLong(); println(solve(n, k)); } boolean skip() { while (hasNext()) { next(); } return true; } int[][] nextMatrix(int n, int m) { int[][] matrix = new int[n][m]; for (int i = 0; i < n; i++) for (int j = 0; j < m; j++) matrix[i][j] = nextInt(); return matrix; } String next() { while (!tokenizer.hasMoreTokens()) tokenizer = new StringTokenizer(nextLine()); return tokenizer.nextToken(); } boolean hasNext() { while (!tokenizer.hasMoreTokens()) { String line = nextLine(); if (line == null) { return false; } tokenizer = new StringTokenizer(line); } return true; } int[] nextArray(int n) { int[] array = new int[n]; for (int i = 0; i < n; i++) { array[i] = nextInt(); } return array; } int nextInt() { return Integer.parseInt(next()); } long nextLong() { return Long.parseLong(next()); } double nextDouble() { return Double.parseDouble(next()); } String nextLine() { try { return reader.readLine(); } catch (IOException err) { return null; } } public C(OutputStream outputStream) { super(outputStream); } static BufferedReader reader; static StringTokenizer tokenizer = new StringTokenizer(""); static Random rnd = new Random(); static boolean OJ; public static void main(String[] args) throws IOException { OJ = System.getProperty("ONLINE_JUDGE") != null; C solution = new C(System.out); if (OJ) { reader = new BufferedReader(new InputStreamReader(System.in)); solution.run(); } else { reader = new BufferedReader(new FileReader(new File(C.class.getName() + ".txt"))); long timeout = System.currentTimeMillis(); while (solution.hasNext()) { solution.run(); solution.println(); solution.println("----------------------------------"); } solution.println("time: " + (System.currentTimeMillis() - timeout)); } solution.close(); reader.close(); } } </CODE> <EVALUATION_RUBRIC> - O(1): The time complexity is constant to the input size n. - O(log(n)): The time complexity increases logarithmically in relation to the input size. - non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially. - O(n): The time complexity increases proportionally to the input size n in a linear manner. - O(n^3): The time complexity scales proportionally to the cube of the input size. - O(nlog(n)): The time complexity combines linear and logarithmic growth factors. - O(n^2): The time complexity grows proportionally to the square of the input size. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n. </TASK> <CODE> import java.io.*; import java.util.*; import java.math.BigInteger; import java.util.Map.Entry; import static java.lang.Math.*; public class C extends PrintWriter { final long mod = 1_000_000_007; long pow(long n, long p) { long r = 1; while (p > 0) { if (p % 2 == 1) { r = (r * n) % mod; } n = (n * n) % mod; p /= 2; } return r; } long solve(long n, long k) { if (k == 0) { return (2 * n) % mod; } if (n == 0) { return 0; } long m = pow(2, k); long a = 2; a = (a * n) % mod; a = (a * m) % mod; long b = (m + mod - 1) % mod; return ((a - b + mod) % mod); } void run() { long n = nextLong(); long k = nextLong(); println(solve(n, k)); } boolean skip() { while (hasNext()) { next(); } return true; } int[][] nextMatrix(int n, int m) { int[][] matrix = new int[n][m]; for (int i = 0; i < n; i++) for (int j = 0; j < m; j++) matrix[i][j] = nextInt(); return matrix; } String next() { while (!tokenizer.hasMoreTokens()) tokenizer = new StringTokenizer(nextLine()); return tokenizer.nextToken(); } boolean hasNext() { while (!tokenizer.hasMoreTokens()) { String line = nextLine(); if (line == null) { return false; } tokenizer = new StringTokenizer(line); } return true; } int[] nextArray(int n) { int[] array = new int[n]; for (int i = 0; i < n; i++) { array[i] = nextInt(); } return array; } int nextInt() { return Integer.parseInt(next()); } long nextLong() { return Long.parseLong(next()); } double nextDouble() { return Double.parseDouble(next()); } String nextLine() { try { return reader.readLine(); } catch (IOException err) { return null; } } public C(OutputStream outputStream) { super(outputStream); } static BufferedReader reader; static StringTokenizer tokenizer = new StringTokenizer(""); static Random rnd = new Random(); static boolean OJ; public static void main(String[] args) throws IOException { OJ = System.getProperty("ONLINE_JUDGE") != null; C solution = new C(System.out); if (OJ) { reader = new BufferedReader(new InputStreamReader(System.in)); solution.run(); } else { reader = new BufferedReader(new FileReader(new File(C.class.getName() + ".txt"))); long timeout = System.currentTimeMillis(); while (solution.hasNext()) { solution.run(); solution.println(); solution.println("----------------------------------"); } solution.println("time: " + (System.currentTimeMillis() - timeout)); } solution.close(); reader.close(); } } </CODE> <EVALUATION_RUBRIC> - others: The time complexity does not fit to any of the given categories or is ambiguous. - O(n^3): The execution time ascends in proportion to the cube of the input size n. - O(1): The execution time is unaffected by the size of the input n. - O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially. - O(log(n)): The execution time ascends in proportion to the logarithm of the input size n. - non-polynomial: The running time increases non-polynomially with input size n, typically exponentially. - O(n^2): The execution time ascends in proportion to the square of the input size n. - O(n): The execution time ascends in a one-to-one ratio with the input size n. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
1,068
1,329
270
//package contese_476; import java.util.*; public class q1 { int m=(int)1e9+7; public class Node { int a; int b; public void Node(int a,int b) { this.a=a; this.b=b; } } public int mul(int a ,int b) { a=a%m; b=b%m; return((a*b)%m); } public int pow(int a,int b) { int x=1; while(b>0) { if(b%2!=0) x=mul(x,a); a=mul(a,a); b=b/2; } return x; } public static long gcd(long a,long b) { if(b==0) return a; else return gcd(b,a%b); } public static void main(String[] args) { Scanner sc=new Scanner(System.in); int n=sc.nextInt(); HashMap<Integer,Integer> h=new HashMap(); //HashMap<Integer,Integer> h1=new HashMap(); int[] a=new int[n]; int x=sc.nextInt(); for(int i=0;i<n;i++) { a[i]=sc.nextInt(); if(h.get(a[i])==null) { h.put(a[i], 1); //h1.put(a[i],i); } else { System.out.print(0); System.exit(0); } } for(int i=0;i<n;i++) { int num=a[i]&x; if(num==a[i]) continue; if(h.get(num)==null) continue; else { System.out.print(1); System.exit(0); } } for(int i=0;i<n;i++) { int num=a[i]&x; if(num==a[i]) continue; if(h.get(num)==null) h.put(num, 1); else { System.out.print(2); System.exit(0); } } System.out.print(-1); } }
O(n)
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Classify the following Java code's worst-case time complexity according to its relationship to the input size n. </TASK> <CODE> //package contese_476; import java.util.*; public class q1 { int m=(int)1e9+7; public class Node { int a; int b; public void Node(int a,int b) { this.a=a; this.b=b; } } public int mul(int a ,int b) { a=a%m; b=b%m; return((a*b)%m); } public int pow(int a,int b) { int x=1; while(b>0) { if(b%2!=0) x=mul(x,a); a=mul(a,a); b=b/2; } return x; } public static long gcd(long a,long b) { if(b==0) return a; else return gcd(b,a%b); } public static void main(String[] args) { Scanner sc=new Scanner(System.in); int n=sc.nextInt(); HashMap<Integer,Integer> h=new HashMap(); //HashMap<Integer,Integer> h1=new HashMap(); int[] a=new int[n]; int x=sc.nextInt(); for(int i=0;i<n;i++) { a[i]=sc.nextInt(); if(h.get(a[i])==null) { h.put(a[i], 1); //h1.put(a[i],i); } else { System.out.print(0); System.exit(0); } } for(int i=0;i<n;i++) { int num=a[i]&x; if(num==a[i]) continue; if(h.get(num)==null) continue; else { System.out.print(1); System.exit(0); } } for(int i=0;i<n;i++) { int num=a[i]&x; if(num==a[i]) continue; if(h.get(num)==null) h.put(num, 1); else { System.out.print(2); System.exit(0); } } System.out.print(-1); } } </CODE> <EVALUATION_RUBRIC> - O(1): The running time does not change regardless of the input size n. - O(nlog(n)): The running time increases with the product of n and logarithm of n. - O(n^3): The running time increases with the cube of the input size n. - O(log(n)): The running time increases with the logarithm of the input size n. - O(n): The running time grows linearly with the input size n. - O(n^2): The running time increases with the square of the input size n. - non-polynomial: The running time increases non-polynomially with input size n, typically exponentially. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Classify the following Java code's worst-case time complexity according to its relationship to the input size n. </TASK> <CODE> //package contese_476; import java.util.*; public class q1 { int m=(int)1e9+7; public class Node { int a; int b; public void Node(int a,int b) { this.a=a; this.b=b; } } public int mul(int a ,int b) { a=a%m; b=b%m; return((a*b)%m); } public int pow(int a,int b) { int x=1; while(b>0) { if(b%2!=0) x=mul(x,a); a=mul(a,a); b=b/2; } return x; } public static long gcd(long a,long b) { if(b==0) return a; else return gcd(b,a%b); } public static void main(String[] args) { Scanner sc=new Scanner(System.in); int n=sc.nextInt(); HashMap<Integer,Integer> h=new HashMap(); //HashMap<Integer,Integer> h1=new HashMap(); int[] a=new int[n]; int x=sc.nextInt(); for(int i=0;i<n;i++) { a[i]=sc.nextInt(); if(h.get(a[i])==null) { h.put(a[i], 1); //h1.put(a[i],i); } else { System.out.print(0); System.exit(0); } } for(int i=0;i<n;i++) { int num=a[i]&x; if(num==a[i]) continue; if(h.get(num)==null) continue; else { System.out.print(1); System.exit(0); } } for(int i=0;i<n;i++) { int num=a[i]&x; if(num==a[i]) continue; if(h.get(num)==null) h.put(num, 1); else { System.out.print(2); System.exit(0); } } System.out.print(-1); } } </CODE> <EVALUATION_RUBRIC> - O(n): The running time grows linearly with the input size n. - non-polynomial: The running time increases non-polynomially with input size n, typically exponentially. - others: The code does not clearly correspond to the listed classes or has an unclassified time complexity. - O(n^3): The running time increases with the cube of the input size n. - O(log(n)): The running time increases with the logarithm of the input size n. - O(1): The running time does not change regardless of the input size n. - O(nlog(n)): The running time increases with the product of n and logarithm of n. - O(n^2): The running time increases with the square of the input size n. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
781
270
3,364
import java.util.Scanner; /* * To change this template, choose Tools | Templates * and open the template in the editor. */ /** * * @author madi */ public class GivenString { public static void main(String[] args) { Scanner sc = new Scanner(System.in); String line = sc.nextLine(); String sub = ""; int count = 0; int max = 0; for (int i = 0; i < line.length() - 1; i++) { sub = line.substring(i, i + 1); int q = i + 1; int p; int r = i; while (q < line.length() && q > 0) { p = q; r = i; int ind = line.indexOf(sub, p); count = 0; if (ind != -1) { for (int j = ind; j < line.length(); j++) { if (line.substring(j, j + 1).equalsIgnoreCase(line.substring(r, r + 1))) { r++; count++; } else { break; } } if (count > max) { max = count; } } q = ind + 1; } } System.out.println(max); } }
O(n^3)
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n. </TASK> <CODE> import java.util.Scanner; /* * To change this template, choose Tools | Templates * and open the template in the editor. */ /** * * @author madi */ public class GivenString { public static void main(String[] args) { Scanner sc = new Scanner(System.in); String line = sc.nextLine(); String sub = ""; int count = 0; int max = 0; for (int i = 0; i < line.length() - 1; i++) { sub = line.substring(i, i + 1); int q = i + 1; int p; int r = i; while (q < line.length() && q > 0) { p = q; r = i; int ind = line.indexOf(sub, p); count = 0; if (ind != -1) { for (int j = ind; j < line.length(); j++) { if (line.substring(j, j + 1).equalsIgnoreCase(line.substring(r, r + 1))) { r++; count++; } else { break; } } if (count > max) { max = count; } } q = ind + 1; } } System.out.println(max); } } </CODE> <EVALUATION_RUBRIC> - O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially. - O(1): The execution time is unaffected by the size of the input n. - non-polynomial: The running time increases non-polynomially with input size n, typically exponentially. - O(n^2): The execution time ascends in proportion to the square of the input size n. - O(n^3): The execution time ascends in proportion to the cube of the input size n. - O(log(n)): The execution time ascends in proportion to the logarithm of the input size n. - O(n): The execution time ascends in a one-to-one ratio with the input size n. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Determine the worst-case time complexity category of a given Java code based on input size n. </TASK> <CODE> import java.util.Scanner; /* * To change this template, choose Tools | Templates * and open the template in the editor. */ /** * * @author madi */ public class GivenString { public static void main(String[] args) { Scanner sc = new Scanner(System.in); String line = sc.nextLine(); String sub = ""; int count = 0; int max = 0; for (int i = 0; i < line.length() - 1; i++) { sub = line.substring(i, i + 1); int q = i + 1; int p; int r = i; while (q < line.length() && q > 0) { p = q; r = i; int ind = line.indexOf(sub, p); count = 0; if (ind != -1) { for (int j = ind; j < line.length(); j++) { if (line.substring(j, j + 1).equalsIgnoreCase(line.substring(r, r + 1))) { r++; count++; } else { break; } } if (count > max) { max = count; } } q = ind + 1; } } System.out.println(max); } } </CODE> <EVALUATION_RUBRIC> - O(1): The time complexity is constant to the input size n. - O(n^2): The time complexity grows proportionally to the square of the input size. - O(nlog(n)): The time complexity combines linear and logarithmic growth factors. - O(n^3): The time complexity scales proportionally to the cube of the input size. - non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially. - O(n): The time complexity increases proportionally to the input size n in a linear manner. - O(log(n)): The time complexity increases logarithmically in relation to the input size. - others: The time complexity does not fit any of the above categories or cannot be clearly classified. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
634
3,358
1,941
import java.util.*; import java.io.*; public class Main { public static void main(String[] args) throws IOException { BufferedReader f = new BufferedReader(new InputStreamReader(System.in)); PrintWriter out = new PrintWriter(new PrintStream(System.out)); StringTokenizer st = new StringTokenizer(f.readLine()); int n = Integer.parseInt(st.nextToken()); int m = Integer.parseInt(st.nextToken()); long[] arrB = new long[n]; long[] arrG = new long[m]; st=new StringTokenizer(f.readLine()); for(int i=0;i<n;i++){ arrB[i]=Long.parseLong(st.nextToken()); } st=new StringTokenizer(f.readLine()); for(int j=0;j<m;j++){ arrG[j]=Long.parseLong(st.nextToken()); } Arrays.sort(arrB); Arrays.sort(arrG); long ans = 0; // for (int i = 0; i < n; i++) ans += arrB[i] * m; // for (int i = 0; i < m - 1; i++) ans += arrG[i] - arrB[0]; // if (arrB[m - 1] != arrB[0]) { // if (arrB.length == 1) { // ans=-1; // } // else ans += arrG[m - 1] - arrB[1]; // } // if (arrG[m-1] < arrB[0]) { // ans=-1; // } for(int i=0;i<n;i++){ ans+=arrB[i]*(long)m; } for(int i=1;i<m;i++){ ans+=arrG[i]-arrB[n-1]; } if(arrB[n-1]!=arrG[0]){ if(n==1){ ans=-1; } else{ //smallest g goes to second to last ans+=arrG[0]-arrB[n-2]; } } if(arrB[n-1]>arrG[0]){ ans=-1; } System.out.println(ans); f.close(); out.close(); } }
O(nlog(n))
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n. </TASK> <CODE> import java.util.*; import java.io.*; public class Main { public static void main(String[] args) throws IOException { BufferedReader f = new BufferedReader(new InputStreamReader(System.in)); PrintWriter out = new PrintWriter(new PrintStream(System.out)); StringTokenizer st = new StringTokenizer(f.readLine()); int n = Integer.parseInt(st.nextToken()); int m = Integer.parseInt(st.nextToken()); long[] arrB = new long[n]; long[] arrG = new long[m]; st=new StringTokenizer(f.readLine()); for(int i=0;i<n;i++){ arrB[i]=Long.parseLong(st.nextToken()); } st=new StringTokenizer(f.readLine()); for(int j=0;j<m;j++){ arrG[j]=Long.parseLong(st.nextToken()); } Arrays.sort(arrB); Arrays.sort(arrG); long ans = 0; // for (int i = 0; i < n; i++) ans += arrB[i] * m; // for (int i = 0; i < m - 1; i++) ans += arrG[i] - arrB[0]; // if (arrB[m - 1] != arrB[0]) { // if (arrB.length == 1) { // ans=-1; // } // else ans += arrG[m - 1] - arrB[1]; // } // if (arrG[m-1] < arrB[0]) { // ans=-1; // } for(int i=0;i<n;i++){ ans+=arrB[i]*(long)m; } for(int i=1;i<m;i++){ ans+=arrG[i]-arrB[n-1]; } if(arrB[n-1]!=arrG[0]){ if(n==1){ ans=-1; } else{ //smallest g goes to second to last ans+=arrG[0]-arrB[n-2]; } } if(arrB[n-1]>arrG[0]){ ans=-1; } System.out.println(ans); f.close(); out.close(); } } </CODE> <EVALUATION_RUBRIC> - O(n^3): The execution time ascends in proportion to the cube of the input size n. - O(n): The execution time ascends in a one-to-one ratio with the input size n. - O(n^2): The execution time ascends in proportion to the square of the input size n. - O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially. - O(1): The execution time is unaffected by the size of the input n. - O(log(n)): The execution time ascends in proportion to the logarithm of the input size n. - non-polynomial: The running time increases non-polynomially with input size n, typically exponentially. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Determine the worst-case time complexity category of a given Java code based on input size n. </TASK> <CODE> import java.util.*; import java.io.*; public class Main { public static void main(String[] args) throws IOException { BufferedReader f = new BufferedReader(new InputStreamReader(System.in)); PrintWriter out = new PrintWriter(new PrintStream(System.out)); StringTokenizer st = new StringTokenizer(f.readLine()); int n = Integer.parseInt(st.nextToken()); int m = Integer.parseInt(st.nextToken()); long[] arrB = new long[n]; long[] arrG = new long[m]; st=new StringTokenizer(f.readLine()); for(int i=0;i<n;i++){ arrB[i]=Long.parseLong(st.nextToken()); } st=new StringTokenizer(f.readLine()); for(int j=0;j<m;j++){ arrG[j]=Long.parseLong(st.nextToken()); } Arrays.sort(arrB); Arrays.sort(arrG); long ans = 0; // for (int i = 0; i < n; i++) ans += arrB[i] * m; // for (int i = 0; i < m - 1; i++) ans += arrG[i] - arrB[0]; // if (arrB[m - 1] != arrB[0]) { // if (arrB.length == 1) { // ans=-1; // } // else ans += arrG[m - 1] - arrB[1]; // } // if (arrG[m-1] < arrB[0]) { // ans=-1; // } for(int i=0;i<n;i++){ ans+=arrB[i]*(long)m; } for(int i=1;i<m;i++){ ans+=arrG[i]-arrB[n-1]; } if(arrB[n-1]!=arrG[0]){ if(n==1){ ans=-1; } else{ //smallest g goes to second to last ans+=arrG[0]-arrB[n-2]; } } if(arrB[n-1]>arrG[0]){ ans=-1; } System.out.println(ans); f.close(); out.close(); } } </CODE> <EVALUATION_RUBRIC> - non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially. - O(n^2): The time complexity grows proportionally to the square of the input size. - O(n): The time complexity increases proportionally to the input size n in a linear manner. - O(nlog(n)): The time complexity combines linear and logarithmic growth factors. - others: The time complexity does not fit any of the above categories or cannot be clearly classified. - O(1): The time complexity is constant to the input size n. - O(n^3): The time complexity scales proportionally to the cube of the input size. - O(log(n)): The time complexity increases logarithmically in relation to the input size. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
806
1,937
3,947
import java.io.BufferedReader; import java.io.File; import java.io.FileNotFoundException; import java.io.FileReader; import java.io.IOException; import java.io.InputStream; import java.io.InputStreamReader; import java.util.StringTokenizer; // 1 -> n/2 XX n/2 + 1 -> n public class MotherOfDragons { static boolean[][] adjMatrix; public static void main(String[] args) throws IOException { Scanner sc = new Scanner(System.in); int n = sc.nextInt(); int k = sc.nextInt(); // for (int i = 1; i <= n; i++) // System.err.printf("%d %.12f\n",i, (k*k*((i-1)/(2.0*i)))); adjMatrix = new boolean[n][n]; for (int i = 0; i < n; i++) for (int j = 0; j < n; j++) adjMatrix[i][j] = sc.nextInt() == 1; long[] edges = new long[n]; for (int i = 0; i < n; i++) { long val = 0; for (int j = 0; j < n; j++) if(adjMatrix[i][j] || i == j) val |= 1l<<j; edges[i] = val; } int h = n/2; int[] cliques = new int[1<<h]; for (int i = 1; i < 1<<h; i++) { int nodes = i; for (int j = 0; j < h; j++) if((i & (1 << j)) != 0) nodes &= edges[j]; if(nodes == i) cliques[i] = Integer.bitCount(i); } for (int i = 1; i < 1<<h; i++) for (int j = 0; j < h; j++) if((i & (1 << j)) != 0) cliques[i] = Math.max(cliques[i], cliques[i ^ (1<<j)]); int max = 0; for (int i = 0; i < cliques.length; i++) max = Math.max(max, cliques[i]); for (int i = 1; i < 1<<(n-h); i++) { long all = -1l; long tmp = (1l*i)<<h; for (int j = h; j < n; j++) if((tmp & (1l << j)) != 0) all &= edges[j]; long node = all&tmp; if(node != tmp) continue; int connected = (int)(all & ((1<<h)-1)); max = Math.max(max, cliques[connected] + Integer.bitCount(i)); } System.out.printf("%.12f\n", (k*k*((max-1)/(2.0*max)))); } static class Scanner { StringTokenizer st; BufferedReader br; public Scanner(InputStream s) { br = new BufferedReader(new InputStreamReader(s)); } public Scanner(String s) throws FileNotFoundException { br = new BufferedReader(new FileReader(new File((s)))); } public String next() throws IOException { while (st == null || !st.hasMoreTokens()) st = new StringTokenizer(br.readLine()); return st.nextToken(); } public int nextInt() throws IOException { return Integer.parseInt(next()); } public long nextLong() throws IOException { return Long.parseLong(next()); } public String nextLine() throws IOException { return br.readLine(); } public double nextDouble() throws IOException { return Double.parseDouble(next()); } } }
non-polynomial
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Classify the following Java code's worst-case time complexity according to its relationship to the input size n. </TASK> <CODE> import java.io.BufferedReader; import java.io.File; import java.io.FileNotFoundException; import java.io.FileReader; import java.io.IOException; import java.io.InputStream; import java.io.InputStreamReader; import java.util.StringTokenizer; // 1 -> n/2 XX n/2 + 1 -> n public class MotherOfDragons { static boolean[][] adjMatrix; public static void main(String[] args) throws IOException { Scanner sc = new Scanner(System.in); int n = sc.nextInt(); int k = sc.nextInt(); // for (int i = 1; i <= n; i++) // System.err.printf("%d %.12f\n",i, (k*k*((i-1)/(2.0*i)))); adjMatrix = new boolean[n][n]; for (int i = 0; i < n; i++) for (int j = 0; j < n; j++) adjMatrix[i][j] = sc.nextInt() == 1; long[] edges = new long[n]; for (int i = 0; i < n; i++) { long val = 0; for (int j = 0; j < n; j++) if(adjMatrix[i][j] || i == j) val |= 1l<<j; edges[i] = val; } int h = n/2; int[] cliques = new int[1<<h]; for (int i = 1; i < 1<<h; i++) { int nodes = i; for (int j = 0; j < h; j++) if((i & (1 << j)) != 0) nodes &= edges[j]; if(nodes == i) cliques[i] = Integer.bitCount(i); } for (int i = 1; i < 1<<h; i++) for (int j = 0; j < h; j++) if((i & (1 << j)) != 0) cliques[i] = Math.max(cliques[i], cliques[i ^ (1<<j)]); int max = 0; for (int i = 0; i < cliques.length; i++) max = Math.max(max, cliques[i]); for (int i = 1; i < 1<<(n-h); i++) { long all = -1l; long tmp = (1l*i)<<h; for (int j = h; j < n; j++) if((tmp & (1l << j)) != 0) all &= edges[j]; long node = all&tmp; if(node != tmp) continue; int connected = (int)(all & ((1<<h)-1)); max = Math.max(max, cliques[connected] + Integer.bitCount(i)); } System.out.printf("%.12f\n", (k*k*((max-1)/(2.0*max)))); } static class Scanner { StringTokenizer st; BufferedReader br; public Scanner(InputStream s) { br = new BufferedReader(new InputStreamReader(s)); } public Scanner(String s) throws FileNotFoundException { br = new BufferedReader(new FileReader(new File((s)))); } public String next() throws IOException { while (st == null || !st.hasMoreTokens()) st = new StringTokenizer(br.readLine()); return st.nextToken(); } public int nextInt() throws IOException { return Integer.parseInt(next()); } public long nextLong() throws IOException { return Long.parseLong(next()); } public String nextLine() throws IOException { return br.readLine(); } public double nextDouble() throws IOException { return Double.parseDouble(next()); } } } </CODE> <EVALUATION_RUBRIC> - O(nlog(n)): The running time increases with the product of n and logarithm of n. - O(n^3): The running time increases with the cube of the input size n. - O(n^2): The running time increases with the square of the input size n. - O(log(n)): The running time increases with the logarithm of the input size n. - non-polynomial: The running time increases non-polynomially with input size n, typically exponentially. - O(1): The running time does not change regardless of the input size n. - O(n): The running time grows linearly with the input size n. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Determine the worst-case time complexity category of a given Java code based on input size n. </TASK> <CODE> import java.io.BufferedReader; import java.io.File; import java.io.FileNotFoundException; import java.io.FileReader; import java.io.IOException; import java.io.InputStream; import java.io.InputStreamReader; import java.util.StringTokenizer; // 1 -> n/2 XX n/2 + 1 -> n public class MotherOfDragons { static boolean[][] adjMatrix; public static void main(String[] args) throws IOException { Scanner sc = new Scanner(System.in); int n = sc.nextInt(); int k = sc.nextInt(); // for (int i = 1; i <= n; i++) // System.err.printf("%d %.12f\n",i, (k*k*((i-1)/(2.0*i)))); adjMatrix = new boolean[n][n]; for (int i = 0; i < n; i++) for (int j = 0; j < n; j++) adjMatrix[i][j] = sc.nextInt() == 1; long[] edges = new long[n]; for (int i = 0; i < n; i++) { long val = 0; for (int j = 0; j < n; j++) if(adjMatrix[i][j] || i == j) val |= 1l<<j; edges[i] = val; } int h = n/2; int[] cliques = new int[1<<h]; for (int i = 1; i < 1<<h; i++) { int nodes = i; for (int j = 0; j < h; j++) if((i & (1 << j)) != 0) nodes &= edges[j]; if(nodes == i) cliques[i] = Integer.bitCount(i); } for (int i = 1; i < 1<<h; i++) for (int j = 0; j < h; j++) if((i & (1 << j)) != 0) cliques[i] = Math.max(cliques[i], cliques[i ^ (1<<j)]); int max = 0; for (int i = 0; i < cliques.length; i++) max = Math.max(max, cliques[i]); for (int i = 1; i < 1<<(n-h); i++) { long all = -1l; long tmp = (1l*i)<<h; for (int j = h; j < n; j++) if((tmp & (1l << j)) != 0) all &= edges[j]; long node = all&tmp; if(node != tmp) continue; int connected = (int)(all & ((1<<h)-1)); max = Math.max(max, cliques[connected] + Integer.bitCount(i)); } System.out.printf("%.12f\n", (k*k*((max-1)/(2.0*max)))); } static class Scanner { StringTokenizer st; BufferedReader br; public Scanner(InputStream s) { br = new BufferedReader(new InputStreamReader(s)); } public Scanner(String s) throws FileNotFoundException { br = new BufferedReader(new FileReader(new File((s)))); } public String next() throws IOException { while (st == null || !st.hasMoreTokens()) st = new StringTokenizer(br.readLine()); return st.nextToken(); } public int nextInt() throws IOException { return Integer.parseInt(next()); } public long nextLong() throws IOException { return Long.parseLong(next()); } public String nextLine() throws IOException { return br.readLine(); } public double nextDouble() throws IOException { return Double.parseDouble(next()); } } } </CODE> <EVALUATION_RUBRIC> - others: The time complexity does not fit any of the above categories or cannot be clearly classified. - non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially. - O(n^3): The time complexity scales proportionally to the cube of the input size. - O(1): The time complexity is constant to the input size n. - O(log(n)): The time complexity increases logarithmically in relation to the input size. - O(nlog(n)): The time complexity combines linear and logarithmic growth factors. - O(n^2): The time complexity grows proportionally to the square of the input size. - O(n): The time complexity increases proportionally to the input size n in a linear manner. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
1,179
3,936
2,230
import java.io.*; import java.util.*; public class cf908G { final static int MOD = 1_000_000_007; public static void main(String[] argv) { cf908G pro = new cf908G(); InputStream fin = null; if (System.getProperty("ONLINE_JUDGE") == null) { try { fin = new FileInputStream("input.txt"); } catch (FileNotFoundException e) { e.printStackTrace(); } } else { fin = System.in; } pro.solve(new Scanner(fin), System.out); } private void solve(Scanner scanner, PrintStream out) { long ans = 0; String X = scanner.next(); for (int x = 0; x < 9; x++) { ans = (ans + solve2(x, X)) % MOD; } out.println((ans % MOD + MOD) % MOD); } private long solve2(int x, String X) { int[][][] f = new int[X.length() + 1][X.length() + 1][2]; f[0][0][1] = 1; int n = X.length(); for (int i = 0; i < n; i++) { for (int j = 0; j <= n; j++) { for (int u = 0; u < 2; u++) { int val = f[i][j][u]; if (val == 0) continue; for (int num = 0; num < 10; num++) { int Xi = X.charAt(i) - '0'; if (u == 1 && num > Xi) break; int _i = i + 1; int _j = num <= x ? j + 1 : j; int _u = u == 1 && num == Xi ? 1 : 0; f[_i][_j][_u] = (f[_i][_j][_u] + val) % MOD; } } } } long base = 1; long ret = 0; for (int i = n; i > 0; i--) { long t = 0; for (int j = 0; j < i; j++) { t = (t + f[n][j][0] + f[n][j][1]) % MOD; } ret = (ret + base * t) % MOD; base = (base * 10) % MOD; } return ret; } }
O(n^2)
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Determine the worst-case time complexity category of a given Java code based on input size n. </TASK> <CODE> import java.io.*; import java.util.*; public class cf908G { final static int MOD = 1_000_000_007; public static void main(String[] argv) { cf908G pro = new cf908G(); InputStream fin = null; if (System.getProperty("ONLINE_JUDGE") == null) { try { fin = new FileInputStream("input.txt"); } catch (FileNotFoundException e) { e.printStackTrace(); } } else { fin = System.in; } pro.solve(new Scanner(fin), System.out); } private void solve(Scanner scanner, PrintStream out) { long ans = 0; String X = scanner.next(); for (int x = 0; x < 9; x++) { ans = (ans + solve2(x, X)) % MOD; } out.println((ans % MOD + MOD) % MOD); } private long solve2(int x, String X) { int[][][] f = new int[X.length() + 1][X.length() + 1][2]; f[0][0][1] = 1; int n = X.length(); for (int i = 0; i < n; i++) { for (int j = 0; j <= n; j++) { for (int u = 0; u < 2; u++) { int val = f[i][j][u]; if (val == 0) continue; for (int num = 0; num < 10; num++) { int Xi = X.charAt(i) - '0'; if (u == 1 && num > Xi) break; int _i = i + 1; int _j = num <= x ? j + 1 : j; int _u = u == 1 && num == Xi ? 1 : 0; f[_i][_j][_u] = (f[_i][_j][_u] + val) % MOD; } } } } long base = 1; long ret = 0; for (int i = n; i > 0; i--) { long t = 0; for (int j = 0; j < i; j++) { t = (t + f[n][j][0] + f[n][j][1]) % MOD; } ret = (ret + base * t) % MOD; base = (base * 10) % MOD; } return ret; } } </CODE> <EVALUATION_RUBRIC> - O(log(n)): The time complexity increases logarithmically in relation to the input size. - O(nlog(n)): The time complexity combines linear and logarithmic growth factors. - non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially. - O(n^2): The time complexity grows proportionally to the square of the input size. - O(1): The time complexity is constant to the input size n. - O(n): The time complexity increases proportionally to the input size n in a linear manner. - O(n^3): The time complexity scales proportionally to the cube of the input size. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n. </TASK> <CODE> import java.io.*; import java.util.*; public class cf908G { final static int MOD = 1_000_000_007; public static void main(String[] argv) { cf908G pro = new cf908G(); InputStream fin = null; if (System.getProperty("ONLINE_JUDGE") == null) { try { fin = new FileInputStream("input.txt"); } catch (FileNotFoundException e) { e.printStackTrace(); } } else { fin = System.in; } pro.solve(new Scanner(fin), System.out); } private void solve(Scanner scanner, PrintStream out) { long ans = 0; String X = scanner.next(); for (int x = 0; x < 9; x++) { ans = (ans + solve2(x, X)) % MOD; } out.println((ans % MOD + MOD) % MOD); } private long solve2(int x, String X) { int[][][] f = new int[X.length() + 1][X.length() + 1][2]; f[0][0][1] = 1; int n = X.length(); for (int i = 0; i < n; i++) { for (int j = 0; j <= n; j++) { for (int u = 0; u < 2; u++) { int val = f[i][j][u]; if (val == 0) continue; for (int num = 0; num < 10; num++) { int Xi = X.charAt(i) - '0'; if (u == 1 && num > Xi) break; int _i = i + 1; int _j = num <= x ? j + 1 : j; int _u = u == 1 && num == Xi ? 1 : 0; f[_i][_j][_u] = (f[_i][_j][_u] + val) % MOD; } } } } long base = 1; long ret = 0; for (int i = n; i > 0; i--) { long t = 0; for (int j = 0; j < i; j++) { t = (t + f[n][j][0] + f[n][j][1]) % MOD; } ret = (ret + base * t) % MOD; base = (base * 10) % MOD; } return ret; } } </CODE> <EVALUATION_RUBRIC> - O(1): The execution time is unaffected by the size of the input n. - O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially. - O(n): The execution time ascends in a one-to-one ratio with the input size n. - others: The time complexity does not fit to any of the given categories or is ambiguous. - O(log(n)): The execution time ascends in proportion to the logarithm of the input size n. - O(n^2): The execution time ascends in proportion to the square of the input size n. - O(n^3): The execution time ascends in proportion to the cube of the input size n. - non-polynomial: The running time increases non-polynomially with input size n, typically exponentially. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
921
2,226
4,352
import java.io.*; import java.util.StringTokenizer; /** * Codeforces 11D - A Simple Task * Created by Darren on 14-10-21. * O(2^n * n^2) time and O(2^n * n) space. * * Tag: dynamic programming, bitmask, graph */ public class D { Reader in = new Reader(System.in); PrintWriter out = new PrintWriter(System.out); public static void main(String[] args) throws IOException { new D().run(); } int n, m; boolean[][] adjacency; // Adjacency matrix void run() throws IOException { n = in.nextInt(); m = in.nextInt(); adjacency = new boolean[n+1][n]; for (int i = 0; i < m; i++) { int u = in.nextInt(), v = in.nextInt(); adjacency[u-1][v-1] = adjacency[v-1][u-1] = true; // Converted to 0-based } final int MASK_BOUND = (1 << n); // dp[i][j]: the number of Hamiltonian walks over the subgraph formed by // the mask i, starting at the smallest vertex and ending at vertex j // dp[1<<i][i] = 1; // dp[i][j] = sum_k{dp[i^j][k]} if j is within the mask i and (k,j) is an edge long[][] dp = new long[MASK_BOUND][n]; for (int i = 0; i < n; i++) dp[1<<i][i] = 1; long sum = 0; for (int mask = 1; mask < MASK_BOUND; mask++) { int lowestVertex = (int) (Math.log(lowest(mask)) / Math.log(2)); for (int i = 0; i < n; i++) { if (bit(i, mask) && i != lowestVertex) { for (int j = 0; j < n; j++) { if (adjacency[j][i]) { dp[mask][i] += dp[mask^(1<<i)][j]; } } // A simple cycle with length not smaller than 3 if (count(mask) >= 3 && adjacency[lowestVertex][i]) sum += dp[mask][i]; } else { // dp[mask][i] = 0 } } } out.println(sum / 2); // A cycle is counted twice out.flush(); } // Return the number of '1's in the binary representation of the mask int count(int mask) { int count = 0; while (mask > 0) { if ((mask & 1) == 1) count++; mask >>= 1; } return count; } // Return an integer with only one '1' in its binary form and the position of the // only '1' is the same with the lowest '1' in mask int lowest(int mask) { // mask = x1b where b is a sequence of zeros; // -mask = x'1b', where x' and b' is formed by reversing digits in x and b; // mask & (-mask) = 0...010...0, where the only 1 is the lowest 1 in mask return mask & (-mask); } // Check whether the digit at the given index of the mask is '1' boolean bit(int index, int mask) { return ((1 << index) & mask) > 0; } static class Reader { BufferedReader reader; StringTokenizer tokenizer; public Reader(InputStream input) { reader = new BufferedReader(new InputStreamReader(input)); tokenizer = new StringTokenizer(""); } /** get next word */ String nextToken() throws IOException { while ( ! tokenizer.hasMoreTokens() ) { //TODO add check for eof if necessary tokenizer = new StringTokenizer( reader.readLine() ); } return tokenizer.nextToken(); } String readLine() throws IOException { return reader.readLine(); } int nextInt() throws IOException { return Integer.parseInt( nextToken() ); } long nextLong() throws IOException { return Long.parseLong( nextToken() ); } double nextDouble() throws IOException { return Double.parseDouble( nextToken() ); } } }
non-polynomial
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n. </TASK> <CODE> import java.io.*; import java.util.StringTokenizer; /** * Codeforces 11D - A Simple Task * Created by Darren on 14-10-21. * O(2^n * n^2) time and O(2^n * n) space. * * Tag: dynamic programming, bitmask, graph */ public class D { Reader in = new Reader(System.in); PrintWriter out = new PrintWriter(System.out); public static void main(String[] args) throws IOException { new D().run(); } int n, m; boolean[][] adjacency; // Adjacency matrix void run() throws IOException { n = in.nextInt(); m = in.nextInt(); adjacency = new boolean[n+1][n]; for (int i = 0; i < m; i++) { int u = in.nextInt(), v = in.nextInt(); adjacency[u-1][v-1] = adjacency[v-1][u-1] = true; // Converted to 0-based } final int MASK_BOUND = (1 << n); // dp[i][j]: the number of Hamiltonian walks over the subgraph formed by // the mask i, starting at the smallest vertex and ending at vertex j // dp[1<<i][i] = 1; // dp[i][j] = sum_k{dp[i^j][k]} if j is within the mask i and (k,j) is an edge long[][] dp = new long[MASK_BOUND][n]; for (int i = 0; i < n; i++) dp[1<<i][i] = 1; long sum = 0; for (int mask = 1; mask < MASK_BOUND; mask++) { int lowestVertex = (int) (Math.log(lowest(mask)) / Math.log(2)); for (int i = 0; i < n; i++) { if (bit(i, mask) && i != lowestVertex) { for (int j = 0; j < n; j++) { if (adjacency[j][i]) { dp[mask][i] += dp[mask^(1<<i)][j]; } } // A simple cycle with length not smaller than 3 if (count(mask) >= 3 && adjacency[lowestVertex][i]) sum += dp[mask][i]; } else { // dp[mask][i] = 0 } } } out.println(sum / 2); // A cycle is counted twice out.flush(); } // Return the number of '1's in the binary representation of the mask int count(int mask) { int count = 0; while (mask > 0) { if ((mask & 1) == 1) count++; mask >>= 1; } return count; } // Return an integer with only one '1' in its binary form and the position of the // only '1' is the same with the lowest '1' in mask int lowest(int mask) { // mask = x1b where b is a sequence of zeros; // -mask = x'1b', where x' and b' is formed by reversing digits in x and b; // mask & (-mask) = 0...010...0, where the only 1 is the lowest 1 in mask return mask & (-mask); } // Check whether the digit at the given index of the mask is '1' boolean bit(int index, int mask) { return ((1 << index) & mask) > 0; } static class Reader { BufferedReader reader; StringTokenizer tokenizer; public Reader(InputStream input) { reader = new BufferedReader(new InputStreamReader(input)); tokenizer = new StringTokenizer(""); } /** get next word */ String nextToken() throws IOException { while ( ! tokenizer.hasMoreTokens() ) { //TODO add check for eof if necessary tokenizer = new StringTokenizer( reader.readLine() ); } return tokenizer.nextToken(); } String readLine() throws IOException { return reader.readLine(); } int nextInt() throws IOException { return Integer.parseInt( nextToken() ); } long nextLong() throws IOException { return Long.parseLong( nextToken() ); } double nextDouble() throws IOException { return Double.parseDouble( nextToken() ); } } } </CODE> <EVALUATION_RUBRIC> - O(log(n)): The execution time ascends in proportion to the logarithm of the input size n. - O(n^2): The execution time ascends in proportion to the square of the input size n. - non-polynomial: The running time increases non-polynomially with input size n, typically exponentially. - O(n): The execution time ascends in a one-to-one ratio with the input size n. - O(n^3): The execution time ascends in proportion to the cube of the input size n. - O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially. - O(1): The execution time is unaffected by the size of the input n. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Determine the worst-case time complexity category of a given Java code based on input size n. </TASK> <CODE> import java.io.*; import java.util.StringTokenizer; /** * Codeforces 11D - A Simple Task * Created by Darren on 14-10-21. * O(2^n * n^2) time and O(2^n * n) space. * * Tag: dynamic programming, bitmask, graph */ public class D { Reader in = new Reader(System.in); PrintWriter out = new PrintWriter(System.out); public static void main(String[] args) throws IOException { new D().run(); } int n, m; boolean[][] adjacency; // Adjacency matrix void run() throws IOException { n = in.nextInt(); m = in.nextInt(); adjacency = new boolean[n+1][n]; for (int i = 0; i < m; i++) { int u = in.nextInt(), v = in.nextInt(); adjacency[u-1][v-1] = adjacency[v-1][u-1] = true; // Converted to 0-based } final int MASK_BOUND = (1 << n); // dp[i][j]: the number of Hamiltonian walks over the subgraph formed by // the mask i, starting at the smallest vertex and ending at vertex j // dp[1<<i][i] = 1; // dp[i][j] = sum_k{dp[i^j][k]} if j is within the mask i and (k,j) is an edge long[][] dp = new long[MASK_BOUND][n]; for (int i = 0; i < n; i++) dp[1<<i][i] = 1; long sum = 0; for (int mask = 1; mask < MASK_BOUND; mask++) { int lowestVertex = (int) (Math.log(lowest(mask)) / Math.log(2)); for (int i = 0; i < n; i++) { if (bit(i, mask) && i != lowestVertex) { for (int j = 0; j < n; j++) { if (adjacency[j][i]) { dp[mask][i] += dp[mask^(1<<i)][j]; } } // A simple cycle with length not smaller than 3 if (count(mask) >= 3 && adjacency[lowestVertex][i]) sum += dp[mask][i]; } else { // dp[mask][i] = 0 } } } out.println(sum / 2); // A cycle is counted twice out.flush(); } // Return the number of '1's in the binary representation of the mask int count(int mask) { int count = 0; while (mask > 0) { if ((mask & 1) == 1) count++; mask >>= 1; } return count; } // Return an integer with only one '1' in its binary form and the position of the // only '1' is the same with the lowest '1' in mask int lowest(int mask) { // mask = x1b where b is a sequence of zeros; // -mask = x'1b', where x' and b' is formed by reversing digits in x and b; // mask & (-mask) = 0...010...0, where the only 1 is the lowest 1 in mask return mask & (-mask); } // Check whether the digit at the given index of the mask is '1' boolean bit(int index, int mask) { return ((1 << index) & mask) > 0; } static class Reader { BufferedReader reader; StringTokenizer tokenizer; public Reader(InputStream input) { reader = new BufferedReader(new InputStreamReader(input)); tokenizer = new StringTokenizer(""); } /** get next word */ String nextToken() throws IOException { while ( ! tokenizer.hasMoreTokens() ) { //TODO add check for eof if necessary tokenizer = new StringTokenizer( reader.readLine() ); } return tokenizer.nextToken(); } String readLine() throws IOException { return reader.readLine(); } int nextInt() throws IOException { return Integer.parseInt( nextToken() ); } long nextLong() throws IOException { return Long.parseLong( nextToken() ); } double nextDouble() throws IOException { return Double.parseDouble( nextToken() ); } } } </CODE> <EVALUATION_RUBRIC> - O(log(n)): The time complexity increases logarithmically in relation to the input size. - O(n^2): The time complexity grows proportionally to the square of the input size. - O(n^3): The time complexity scales proportionally to the cube of the input size. - O(n): The time complexity increases proportionally to the input size n in a linear manner. - others: The time complexity does not fit any of the above categories or cannot be clearly classified. - O(nlog(n)): The time complexity combines linear and logarithmic growth factors. - O(1): The time complexity is constant to the input size n. - non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
1,315
4,341
4,315
import java.awt.List; import java.io.IOException; import java.io.InputStream; import java.io.OutputStream; import java.io.PrintWriter; import java.math.BigDecimal; import java.math.BigInteger; import java.text.DecimalFormat; import java.util.ArrayList; import java.util.Arrays; import java.util.HashMap; import java.util.InputMismatchException; import java.util.Locale; import java.util.TimeZone; public class Cycle { public static void main(String[] args) { Locale.setDefault(Locale.US); InputStream inputstream = System.in; OutputStream outputstream = System.out; FastReader in = new FastReader(inputstream); PrintWriter out = new PrintWriter(outputstream); TaskA solver = new TaskA(); // int testcase = in.ni(); for (int i = 0; i < 1; i++) solver.solve(i, in, out); out.close(); } } class TaskA { public void solve(int testnumber, FastReader in, PrintWriter out) { int n = in.ni(); int m = in.ni(); boolean graph[][] = new boolean[n][n]; for (int i = 0; i < m; i++) { int a = in.ni() - 1; int b = in.ni() - 1; graph[a][b] = true; graph[b][a] = true; } /* * dp[mask][i] be the number of Hamiltonian walks over the subset mask, * starting at the vertex first(mask) and ending at the vertex i */ long dp[][] = new long[1 << n][n]; for (int i = 0; i < n; i++) { dp[1 << i][i] = 1; } long answer = 0; for (int mask = 1; mask < (1 << n); mask++) { int start = Integer.numberOfTrailingZeros(mask); for (int i = 0; i < n; i++) { if ((mask & (1 << i)) == 0) { continue; } for (int j = start + 1; j < n; j++) { if (graph[i][j] && (mask & (1 << j)) == 0) { dp[mask + (1 << j)][j] += dp[mask][i]; } } if (graph[i][start]) { answer += dp[mask][i]; } } } out.println((answer - m) / 2); } } class FastReader { public InputStream stream; private byte[] buf = new byte[1024]; private int curChar; private int numChars; private SpaceCharFilter filter; public FastReader(InputStream stream) { this.stream = stream; } public FastReader() { } public int read() { if (numChars == -1) { throw new InputMismatchException(); } if (curChar >= numChars) { curChar = 0; try { numChars = stream.read(buf); } catch (IOException e) { throw new InputMismatchException(); } if (numChars <= 0) { return -1; } } return buf[curChar++]; } public int ni() { int c = read(); while (isSpaceChar(c)) c = read(); int sgn = 1; if (c == '-') { sgn = -1; c = read(); } int res = 0; do { if (c < '0' || c > '9') { throw new InputMismatchException(); } res *= 10; res += c - '0'; c = read(); } while (!isSpaceChar(c)); return res * sgn; } public String ns() { int c = read(); while (isSpaceChar(c)) c = read(); StringBuilder res = new StringBuilder(); do { res.appendCodePoint(c); c = read(); } while (!isSpaceChar(c)); return res.toString(); } public boolean isSpaceChar(int c) { if (filter != null) { return filter.isSpaceChar(c); } return isWhitespace(c); } public static boolean isWhitespace(int c) { return c == ' ' || c == '\n' || c == '\r' || c == '\t' || c == -1; } public int[] iArr(int n) { int a[] = new int[n]; for (int i = 0; i < n; i++) { a[i] = ni(); } return a; } public String next() { return ns(); } public interface SpaceCharFilter { public boolean isSpaceChar(int ch); } }
non-polynomial
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Classify the following Java code's worst-case time complexity according to its relationship to the input size n. </TASK> <CODE> import java.awt.List; import java.io.IOException; import java.io.InputStream; import java.io.OutputStream; import java.io.PrintWriter; import java.math.BigDecimal; import java.math.BigInteger; import java.text.DecimalFormat; import java.util.ArrayList; import java.util.Arrays; import java.util.HashMap; import java.util.InputMismatchException; import java.util.Locale; import java.util.TimeZone; public class Cycle { public static void main(String[] args) { Locale.setDefault(Locale.US); InputStream inputstream = System.in; OutputStream outputstream = System.out; FastReader in = new FastReader(inputstream); PrintWriter out = new PrintWriter(outputstream); TaskA solver = new TaskA(); // int testcase = in.ni(); for (int i = 0; i < 1; i++) solver.solve(i, in, out); out.close(); } } class TaskA { public void solve(int testnumber, FastReader in, PrintWriter out) { int n = in.ni(); int m = in.ni(); boolean graph[][] = new boolean[n][n]; for (int i = 0; i < m; i++) { int a = in.ni() - 1; int b = in.ni() - 1; graph[a][b] = true; graph[b][a] = true; } /* * dp[mask][i] be the number of Hamiltonian walks over the subset mask, * starting at the vertex first(mask) and ending at the vertex i */ long dp[][] = new long[1 << n][n]; for (int i = 0; i < n; i++) { dp[1 << i][i] = 1; } long answer = 0; for (int mask = 1; mask < (1 << n); mask++) { int start = Integer.numberOfTrailingZeros(mask); for (int i = 0; i < n; i++) { if ((mask & (1 << i)) == 0) { continue; } for (int j = start + 1; j < n; j++) { if (graph[i][j] && (mask & (1 << j)) == 0) { dp[mask + (1 << j)][j] += dp[mask][i]; } } if (graph[i][start]) { answer += dp[mask][i]; } } } out.println((answer - m) / 2); } } class FastReader { public InputStream stream; private byte[] buf = new byte[1024]; private int curChar; private int numChars; private SpaceCharFilter filter; public FastReader(InputStream stream) { this.stream = stream; } public FastReader() { } public int read() { if (numChars == -1) { throw new InputMismatchException(); } if (curChar >= numChars) { curChar = 0; try { numChars = stream.read(buf); } catch (IOException e) { throw new InputMismatchException(); } if (numChars <= 0) { return -1; } } return buf[curChar++]; } public int ni() { int c = read(); while (isSpaceChar(c)) c = read(); int sgn = 1; if (c == '-') { sgn = -1; c = read(); } int res = 0; do { if (c < '0' || c > '9') { throw new InputMismatchException(); } res *= 10; res += c - '0'; c = read(); } while (!isSpaceChar(c)); return res * sgn; } public String ns() { int c = read(); while (isSpaceChar(c)) c = read(); StringBuilder res = new StringBuilder(); do { res.appendCodePoint(c); c = read(); } while (!isSpaceChar(c)); return res.toString(); } public boolean isSpaceChar(int c) { if (filter != null) { return filter.isSpaceChar(c); } return isWhitespace(c); } public static boolean isWhitespace(int c) { return c == ' ' || c == '\n' || c == '\r' || c == '\t' || c == -1; } public int[] iArr(int n) { int a[] = new int[n]; for (int i = 0; i < n; i++) { a[i] = ni(); } return a; } public String next() { return ns(); } public interface SpaceCharFilter { public boolean isSpaceChar(int ch); } } </CODE> <EVALUATION_RUBRIC> - O(log(n)): The running time increases with the logarithm of the input size n. - O(1): The running time does not change regardless of the input size n. - non-polynomial: The running time increases non-polynomially with input size n, typically exponentially. - O(n^3): The running time increases with the cube of the input size n. - O(n): The running time grows linearly with the input size n. - O(nlog(n)): The running time increases with the product of n and logarithm of n. - O(n^2): The running time increases with the square of the input size n. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Classify the following Java code's worst-case time complexity according to its relationship to the input size n. </TASK> <CODE> import java.awt.List; import java.io.IOException; import java.io.InputStream; import java.io.OutputStream; import java.io.PrintWriter; import java.math.BigDecimal; import java.math.BigInteger; import java.text.DecimalFormat; import java.util.ArrayList; import java.util.Arrays; import java.util.HashMap; import java.util.InputMismatchException; import java.util.Locale; import java.util.TimeZone; public class Cycle { public static void main(String[] args) { Locale.setDefault(Locale.US); InputStream inputstream = System.in; OutputStream outputstream = System.out; FastReader in = new FastReader(inputstream); PrintWriter out = new PrintWriter(outputstream); TaskA solver = new TaskA(); // int testcase = in.ni(); for (int i = 0; i < 1; i++) solver.solve(i, in, out); out.close(); } } class TaskA { public void solve(int testnumber, FastReader in, PrintWriter out) { int n = in.ni(); int m = in.ni(); boolean graph[][] = new boolean[n][n]; for (int i = 0; i < m; i++) { int a = in.ni() - 1; int b = in.ni() - 1; graph[a][b] = true; graph[b][a] = true; } /* * dp[mask][i] be the number of Hamiltonian walks over the subset mask, * starting at the vertex first(mask) and ending at the vertex i */ long dp[][] = new long[1 << n][n]; for (int i = 0; i < n; i++) { dp[1 << i][i] = 1; } long answer = 0; for (int mask = 1; mask < (1 << n); mask++) { int start = Integer.numberOfTrailingZeros(mask); for (int i = 0; i < n; i++) { if ((mask & (1 << i)) == 0) { continue; } for (int j = start + 1; j < n; j++) { if (graph[i][j] && (mask & (1 << j)) == 0) { dp[mask + (1 << j)][j] += dp[mask][i]; } } if (graph[i][start]) { answer += dp[mask][i]; } } } out.println((answer - m) / 2); } } class FastReader { public InputStream stream; private byte[] buf = new byte[1024]; private int curChar; private int numChars; private SpaceCharFilter filter; public FastReader(InputStream stream) { this.stream = stream; } public FastReader() { } public int read() { if (numChars == -1) { throw new InputMismatchException(); } if (curChar >= numChars) { curChar = 0; try { numChars = stream.read(buf); } catch (IOException e) { throw new InputMismatchException(); } if (numChars <= 0) { return -1; } } return buf[curChar++]; } public int ni() { int c = read(); while (isSpaceChar(c)) c = read(); int sgn = 1; if (c == '-') { sgn = -1; c = read(); } int res = 0; do { if (c < '0' || c > '9') { throw new InputMismatchException(); } res *= 10; res += c - '0'; c = read(); } while (!isSpaceChar(c)); return res * sgn; } public String ns() { int c = read(); while (isSpaceChar(c)) c = read(); StringBuilder res = new StringBuilder(); do { res.appendCodePoint(c); c = read(); } while (!isSpaceChar(c)); return res.toString(); } public boolean isSpaceChar(int c) { if (filter != null) { return filter.isSpaceChar(c); } return isWhitespace(c); } public static boolean isWhitespace(int c) { return c == ' ' || c == '\n' || c == '\r' || c == '\t' || c == -1; } public int[] iArr(int n) { int a[] = new int[n]; for (int i = 0; i < n; i++) { a[i] = ni(); } return a; } public String next() { return ns(); } public interface SpaceCharFilter { public boolean isSpaceChar(int ch); } } </CODE> <EVALUATION_RUBRIC> - others: The code does not clearly correspond to the listed classes or has an unclassified time complexity. - O(n): The running time grows linearly with the input size n. - O(1): The running time does not change regardless of the input size n. - O(n^2): The running time increases with the square of the input size n. - O(n^3): The running time increases with the cube of the input size n. - O(log(n)): The running time increases with the logarithm of the input size n. - non-polynomial: The running time increases non-polynomially with input size n, typically exponentially. - O(nlog(n)): The running time increases with the product of n and logarithm of n. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
1,460
4,304
4,151
import java.text.DecimalFormat; import java.util.Scanner; /** * * @author Alvaro */ public class Main{ public static int n; public static double [] dp; public static double [][] p; public static void main(String[] args) { Scanner in = new Scanner(System.in); n = in.nextInt(); dp = new double[1<<n]; p = new double[n][n]; for (int i = 0; i < n; i++) { for (int j = 0; j < n; j++) { p[i][j]= in.nextDouble(); } } for (int i = 0; i <(1<<n); i++) { dp[i] = -1; } dp[(1<<n)-1]=1; DecimalFormat d = new DecimalFormat("0.000000"); System.out.print(d.format(f(1<<0))); for (int i = 1; i < n; i++) { System.out.print(" "+d.format(f(1<<i))); } } public static double f(int mask) { if(dp[mask]>-0.5) return dp[mask]; dp[mask] = 0; int vivos = 1; for (int i = 0; i < n; i++) if((mask>>i)%2==1) vivos++; double pares = (vivos*(vivos-1))/2; for (int i = 0; i < n; i++) { for (int j = 0; j < n; j++) { if((mask&(1<<i))!=0&&(mask&(1<<j))==0){ dp[mask]+=f(mask|(1<<j))*p[i][j]/pares; } } } return dp[mask]; } }
non-polynomial
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Classify the following Java code's worst-case time complexity according to its relationship to the input size n. </TASK> <CODE> import java.text.DecimalFormat; import java.util.Scanner; /** * * @author Alvaro */ public class Main{ public static int n; public static double [] dp; public static double [][] p; public static void main(String[] args) { Scanner in = new Scanner(System.in); n = in.nextInt(); dp = new double[1<<n]; p = new double[n][n]; for (int i = 0; i < n; i++) { for (int j = 0; j < n; j++) { p[i][j]= in.nextDouble(); } } for (int i = 0; i <(1<<n); i++) { dp[i] = -1; } dp[(1<<n)-1]=1; DecimalFormat d = new DecimalFormat("0.000000"); System.out.print(d.format(f(1<<0))); for (int i = 1; i < n; i++) { System.out.print(" "+d.format(f(1<<i))); } } public static double f(int mask) { if(dp[mask]>-0.5) return dp[mask]; dp[mask] = 0; int vivos = 1; for (int i = 0; i < n; i++) if((mask>>i)%2==1) vivos++; double pares = (vivos*(vivos-1))/2; for (int i = 0; i < n; i++) { for (int j = 0; j < n; j++) { if((mask&(1<<i))!=0&&(mask&(1<<j))==0){ dp[mask]+=f(mask|(1<<j))*p[i][j]/pares; } } } return dp[mask]; } } </CODE> <EVALUATION_RUBRIC> - O(n^2): The running time increases with the square of the input size n. - O(n^3): The running time increases with the cube of the input size n. - non-polynomial: The running time increases non-polynomially with input size n, typically exponentially. - O(log(n)): The running time increases with the logarithm of the input size n. - O(n): The running time grows linearly with the input size n. - O(1): The running time does not change regardless of the input size n. - O(nlog(n)): The running time increases with the product of n and logarithm of n. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Determine the worst-case time complexity category of a given Java code based on input size n. </TASK> <CODE> import java.text.DecimalFormat; import java.util.Scanner; /** * * @author Alvaro */ public class Main{ public static int n; public static double [] dp; public static double [][] p; public static void main(String[] args) { Scanner in = new Scanner(System.in); n = in.nextInt(); dp = new double[1<<n]; p = new double[n][n]; for (int i = 0; i < n; i++) { for (int j = 0; j < n; j++) { p[i][j]= in.nextDouble(); } } for (int i = 0; i <(1<<n); i++) { dp[i] = -1; } dp[(1<<n)-1]=1; DecimalFormat d = new DecimalFormat("0.000000"); System.out.print(d.format(f(1<<0))); for (int i = 1; i < n; i++) { System.out.print(" "+d.format(f(1<<i))); } } public static double f(int mask) { if(dp[mask]>-0.5) return dp[mask]; dp[mask] = 0; int vivos = 1; for (int i = 0; i < n; i++) if((mask>>i)%2==1) vivos++; double pares = (vivos*(vivos-1))/2; for (int i = 0; i < n; i++) { for (int j = 0; j < n; j++) { if((mask&(1<<i))!=0&&(mask&(1<<j))==0){ dp[mask]+=f(mask|(1<<j))*p[i][j]/pares; } } } return dp[mask]; } } </CODE> <EVALUATION_RUBRIC> - O(n): The time complexity increases proportionally to the input size n in a linear manner. - O(1): The time complexity is constant to the input size n. - non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially. - O(n^3): The time complexity scales proportionally to the cube of the input size. - others: The time complexity does not fit any of the above categories or cannot be clearly classified. - O(log(n)): The time complexity increases logarithmically in relation to the input size. - O(nlog(n)): The time complexity combines linear and logarithmic growth factors. - O(n^2): The time complexity grows proportionally to the square of the input size. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
744
4,140
4,480
import java.io.FileInputStream; import java.io.IOException; import java.io.InputStream; import java.io.OutputStream; import java.nio.charset.Charset; import java.util.Arrays; public class CF1238E { public static void main(String[] args) throws Exception { boolean local = System.getSecurityManager() == null; boolean async = false; Charset charset = Charset.forName("ascii"); FastIO io = local ? new FastIO(new FileInputStream("D:\\DATABASE\\TESTCASE\\Code.in"), System.out, charset) : new FastIO(System.in, System.out, charset); Task task = new Task(io, new Debug(local)); if (async) { Thread t = new Thread(null, task, "dalt", 1 << 27); t.setPriority(Thread.MAX_PRIORITY); t.start(); t.join(); } else { task.run(); } if (local) { io.cache.append("\n\n--memory -- \n" + ((Runtime.getRuntime().totalMemory() - Runtime.getRuntime().freeMemory()) >> 20) + "M"); } io.flush(); } public static class Task implements Runnable { final FastIO io; final Debug debug; int inf = (int) 1e8; long lInf = (long) 1e18; double dInf = 1e50; public Task(FastIO io, Debug debug) { this.io = io; this.debug = debug; } @Override public void run() { solve(); } int[][] fee; int m; long[] dp; int mask; int[][] maskFee; public void solve() { int n = io.readInt(); m = io.readInt(); char[] s = new char[n]; io.readString(s, 0); for (int i = 0; i < n; i++) { s[i] -= 'a'; } fee = new int[m][m]; for (int i = 1; i < n; i++) { fee[s[i]][s[i - 1]]++; fee[s[i - 1]][s[i]]++; } mask = (1 << m) - 1; maskFee = new int[m][mask + 1]; SubsetGenerator sg = new SubsetGenerator(); for (int i = 0; i < m; i++) { for (int j = 0; j < m; j++) { sg.meanings[j] = fee[i][j]; } for (int j = 0; j <= mask; j++) { maskFee[i][j] = sg.next(); } } dp = new long[mask + 1]; Arrays.fill(dp, -1); dp[0] = 0; io.cache.append(dp(mask)); } BitOperator bo = new BitOperator(); public long dp(int s) { if (dp[s] == -1) { long extra = 0; int remainSet = mask - s; for (int j = 0; j < m; j++) { if (bo.bitAt(s, j) == 0) { continue; } extra += maskFee[j][remainSet]; } dp[s] = lInf; for (int j = 0; j < m; j++) { if (bo.bitAt(s, j) == 0) { continue; } int ss = bo.setBit(s, j, false); dp[s] = Math.min(dp[s], extra + dp(ss)); } } return dp[s]; } } /** * Bit operations */ public static class BitOperator { public int bitAt(int x, int i) { return (x >> i) & 1; } public int bitAt(long x, int i) { return (int) ((x >> i) & 1); } public int setBit(int x, int i, boolean v) { if (v) { x |= 1 << i; } else { x &= ~(1 << i); } return x; } public long setBit(long x, int i, boolean v) { if (v) { x |= 1L << i; } else { x &= ~(1L << i); } return x; } public long swapBit(long x, int i, int j) { int bi = bitAt(x, i); int bj = bitAt(x, j); x = setBit(x, i, bj == 1); x = setBit(x, j, bi == 1); return x; } public int swapBit(int x, int i, int j) { int bi = bitAt(x, i); int bj = bitAt(x, j); x = setBit(x, i, bj == 1); x = setBit(x, j, bi == 1); return x; } /** * Determine whether x is subset of y */ public boolean subset(long x, long y) { return intersect(x, y) == x; } /** * Merge two set */ public long merge(long x, long y) { return x | y; } public long intersect(long x, long y) { return x & y; } public long differ(long x, long y) { return x - intersect(x, y); } } public static class SubsetGenerator { private int[] meanings = new int[33]; private int[] bits = new int[33]; private int remain; private int next; public void setSet(int set) { int bitCount = 0; while (set != 0) { meanings[bitCount] = set & -set; bits[bitCount] = 0; set -= meanings[bitCount]; bitCount++; } remain = 1 << bitCount; next = 0; } public boolean hasNext() { return remain > 0; } private void consume() { remain = remain - 1; int i; for (i = 0; bits[i] == 1; i++) { bits[i] = 0; next -= meanings[i]; } bits[i] = 1; next += meanings[i]; } public int next() { int returned = next; consume(); return returned; } } public static class FastIO { public final StringBuilder cache = new StringBuilder(1 << 13); private final InputStream is; private final OutputStream os; private final Charset charset; private StringBuilder defaultStringBuf = new StringBuilder(1 << 13); private byte[] buf = new byte[1 << 13]; private int bufLen; private int bufOffset; private int next; public FastIO(InputStream is, OutputStream os, Charset charset) { this.is = is; this.os = os; this.charset = charset; } public FastIO(InputStream is, OutputStream os) { this(is, os, Charset.forName("ascii")); } private int read() { while (bufLen == bufOffset) { bufOffset = 0; try { bufLen = is.read(buf); } catch (IOException e) { throw new RuntimeException(e); } if (bufLen == -1) { return -1; } } return buf[bufOffset++]; } public void skipBlank() { while (next >= 0 && next <= 32) { next = read(); } } public int readInt() { int sign = 1; skipBlank(); if (next == '+' || next == '-') { sign = next == '+' ? 1 : -1; next = read(); } int val = 0; if (sign == 1) { while (next >= '0' && next <= '9') { val = val * 10 + next - '0'; next = read(); } } else { while (next >= '0' && next <= '9') { val = val * 10 - next + '0'; next = read(); } } return val; } public long readLong() { int sign = 1; skipBlank(); if (next == '+' || next == '-') { sign = next == '+' ? 1 : -1; next = read(); } long val = 0; if (sign == 1) { while (next >= '0' && next <= '9') { val = val * 10 + next - '0'; next = read(); } } else { while (next >= '0' && next <= '9') { val = val * 10 - next + '0'; next = read(); } } return val; } public double readDouble() { boolean sign = true; skipBlank(); if (next == '+' || next == '-') { sign = next == '+'; next = read(); } long val = 0; while (next >= '0' && next <= '9') { val = val * 10 + next - '0'; next = read(); } if (next != '.') { return sign ? val : -val; } next = read(); long radix = 1; long point = 0; while (next >= '0' && next <= '9') { point = point * 10 + next - '0'; radix = radix * 10; next = read(); } double result = val + (double) point / radix; return sign ? result : -result; } public String readString(StringBuilder builder) { skipBlank(); while (next > 32) { builder.append((char) next); next = read(); } return builder.toString(); } public String readString() { defaultStringBuf.setLength(0); return readString(defaultStringBuf); } public int readLine(char[] data, int offset) { int originalOffset = offset; while (next != -1 && next != '\n') { data[offset++] = (char) next; next = read(); } return offset - originalOffset; } public int readString(char[] data, int offset) { skipBlank(); int originalOffset = offset; while (next > 32) { data[offset++] = (char) next; next = read(); } return offset - originalOffset; } public int readString(byte[] data, int offset) { skipBlank(); int originalOffset = offset; while (next > 32) { data[offset++] = (byte) next; next = read(); } return offset - originalOffset; } public char readChar() { skipBlank(); char c = (char) next; next = read(); return c; } public void flush() throws IOException { os.write(cache.toString().getBytes(charset)); os.flush(); cache.setLength(0); } public boolean hasMore() { skipBlank(); return next != -1; } } public static class Debug { private boolean allowDebug; public Debug(boolean allowDebug) { this.allowDebug = allowDebug; } public void assertTrue(boolean flag) { if (!allowDebug) { return; } if (!flag) { fail(); } } public void fail() { throw new RuntimeException(); } public void assertFalse(boolean flag) { if (!allowDebug) { return; } if (flag) { fail(); } } private void outputName(String name) { System.out.print(name + " = "); } public void debug(String name, int x) { if (!allowDebug) { return; } outputName(name); System.out.println("" + x); } public void debug(String name, long x) { if (!allowDebug) { return; } outputName(name); System.out.println("" + x); } public void debug(String name, double x) { if (!allowDebug) { return; } outputName(name); System.out.println("" + x); } public void debug(String name, int[] x) { if (!allowDebug) { return; } outputName(name); System.out.println(Arrays.toString(x)); } public void debug(String name, long[] x) { if (!allowDebug) { return; } outputName(name); System.out.println(Arrays.toString(x)); } public void debug(String name, double[] x) { if (!allowDebug) { return; } outputName(name); System.out.println(Arrays.toString(x)); } public void debug(String name, Object x) { if (!allowDebug) { return; } outputName(name); System.out.println("" + x); } public void debug(String name, Object... x) { if (!allowDebug) { return; } outputName(name); System.out.println(Arrays.deepToString(x)); } } }
non-polynomial
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Determine the worst-case time complexity category of a given Java code based on input size n. </TASK> <CODE> import java.io.FileInputStream; import java.io.IOException; import java.io.InputStream; import java.io.OutputStream; import java.nio.charset.Charset; import java.util.Arrays; public class CF1238E { public static void main(String[] args) throws Exception { boolean local = System.getSecurityManager() == null; boolean async = false; Charset charset = Charset.forName("ascii"); FastIO io = local ? new FastIO(new FileInputStream("D:\\DATABASE\\TESTCASE\\Code.in"), System.out, charset) : new FastIO(System.in, System.out, charset); Task task = new Task(io, new Debug(local)); if (async) { Thread t = new Thread(null, task, "dalt", 1 << 27); t.setPriority(Thread.MAX_PRIORITY); t.start(); t.join(); } else { task.run(); } if (local) { io.cache.append("\n\n--memory -- \n" + ((Runtime.getRuntime().totalMemory() - Runtime.getRuntime().freeMemory()) >> 20) + "M"); } io.flush(); } public static class Task implements Runnable { final FastIO io; final Debug debug; int inf = (int) 1e8; long lInf = (long) 1e18; double dInf = 1e50; public Task(FastIO io, Debug debug) { this.io = io; this.debug = debug; } @Override public void run() { solve(); } int[][] fee; int m; long[] dp; int mask; int[][] maskFee; public void solve() { int n = io.readInt(); m = io.readInt(); char[] s = new char[n]; io.readString(s, 0); for (int i = 0; i < n; i++) { s[i] -= 'a'; } fee = new int[m][m]; for (int i = 1; i < n; i++) { fee[s[i]][s[i - 1]]++; fee[s[i - 1]][s[i]]++; } mask = (1 << m) - 1; maskFee = new int[m][mask + 1]; SubsetGenerator sg = new SubsetGenerator(); for (int i = 0; i < m; i++) { for (int j = 0; j < m; j++) { sg.meanings[j] = fee[i][j]; } for (int j = 0; j <= mask; j++) { maskFee[i][j] = sg.next(); } } dp = new long[mask + 1]; Arrays.fill(dp, -1); dp[0] = 0; io.cache.append(dp(mask)); } BitOperator bo = new BitOperator(); public long dp(int s) { if (dp[s] == -1) { long extra = 0; int remainSet = mask - s; for (int j = 0; j < m; j++) { if (bo.bitAt(s, j) == 0) { continue; } extra += maskFee[j][remainSet]; } dp[s] = lInf; for (int j = 0; j < m; j++) { if (bo.bitAt(s, j) == 0) { continue; } int ss = bo.setBit(s, j, false); dp[s] = Math.min(dp[s], extra + dp(ss)); } } return dp[s]; } } /** * Bit operations */ public static class BitOperator { public int bitAt(int x, int i) { return (x >> i) & 1; } public int bitAt(long x, int i) { return (int) ((x >> i) & 1); } public int setBit(int x, int i, boolean v) { if (v) { x |= 1 << i; } else { x &= ~(1 << i); } return x; } public long setBit(long x, int i, boolean v) { if (v) { x |= 1L << i; } else { x &= ~(1L << i); } return x; } public long swapBit(long x, int i, int j) { int bi = bitAt(x, i); int bj = bitAt(x, j); x = setBit(x, i, bj == 1); x = setBit(x, j, bi == 1); return x; } public int swapBit(int x, int i, int j) { int bi = bitAt(x, i); int bj = bitAt(x, j); x = setBit(x, i, bj == 1); x = setBit(x, j, bi == 1); return x; } /** * Determine whether x is subset of y */ public boolean subset(long x, long y) { return intersect(x, y) == x; } /** * Merge two set */ public long merge(long x, long y) { return x | y; } public long intersect(long x, long y) { return x & y; } public long differ(long x, long y) { return x - intersect(x, y); } } public static class SubsetGenerator { private int[] meanings = new int[33]; private int[] bits = new int[33]; private int remain; private int next; public void setSet(int set) { int bitCount = 0; while (set != 0) { meanings[bitCount] = set & -set; bits[bitCount] = 0; set -= meanings[bitCount]; bitCount++; } remain = 1 << bitCount; next = 0; } public boolean hasNext() { return remain > 0; } private void consume() { remain = remain - 1; int i; for (i = 0; bits[i] == 1; i++) { bits[i] = 0; next -= meanings[i]; } bits[i] = 1; next += meanings[i]; } public int next() { int returned = next; consume(); return returned; } } public static class FastIO { public final StringBuilder cache = new StringBuilder(1 << 13); private final InputStream is; private final OutputStream os; private final Charset charset; private StringBuilder defaultStringBuf = new StringBuilder(1 << 13); private byte[] buf = new byte[1 << 13]; private int bufLen; private int bufOffset; private int next; public FastIO(InputStream is, OutputStream os, Charset charset) { this.is = is; this.os = os; this.charset = charset; } public FastIO(InputStream is, OutputStream os) { this(is, os, Charset.forName("ascii")); } private int read() { while (bufLen == bufOffset) { bufOffset = 0; try { bufLen = is.read(buf); } catch (IOException e) { throw new RuntimeException(e); } if (bufLen == -1) { return -1; } } return buf[bufOffset++]; } public void skipBlank() { while (next >= 0 && next <= 32) { next = read(); } } public int readInt() { int sign = 1; skipBlank(); if (next == '+' || next == '-') { sign = next == '+' ? 1 : -1; next = read(); } int val = 0; if (sign == 1) { while (next >= '0' && next <= '9') { val = val * 10 + next - '0'; next = read(); } } else { while (next >= '0' && next <= '9') { val = val * 10 - next + '0'; next = read(); } } return val; } public long readLong() { int sign = 1; skipBlank(); if (next == '+' || next == '-') { sign = next == '+' ? 1 : -1; next = read(); } long val = 0; if (sign == 1) { while (next >= '0' && next <= '9') { val = val * 10 + next - '0'; next = read(); } } else { while (next >= '0' && next <= '9') { val = val * 10 - next + '0'; next = read(); } } return val; } public double readDouble() { boolean sign = true; skipBlank(); if (next == '+' || next == '-') { sign = next == '+'; next = read(); } long val = 0; while (next >= '0' && next <= '9') { val = val * 10 + next - '0'; next = read(); } if (next != '.') { return sign ? val : -val; } next = read(); long radix = 1; long point = 0; while (next >= '0' && next <= '9') { point = point * 10 + next - '0'; radix = radix * 10; next = read(); } double result = val + (double) point / radix; return sign ? result : -result; } public String readString(StringBuilder builder) { skipBlank(); while (next > 32) { builder.append((char) next); next = read(); } return builder.toString(); } public String readString() { defaultStringBuf.setLength(0); return readString(defaultStringBuf); } public int readLine(char[] data, int offset) { int originalOffset = offset; while (next != -1 && next != '\n') { data[offset++] = (char) next; next = read(); } return offset - originalOffset; } public int readString(char[] data, int offset) { skipBlank(); int originalOffset = offset; while (next > 32) { data[offset++] = (char) next; next = read(); } return offset - originalOffset; } public int readString(byte[] data, int offset) { skipBlank(); int originalOffset = offset; while (next > 32) { data[offset++] = (byte) next; next = read(); } return offset - originalOffset; } public char readChar() { skipBlank(); char c = (char) next; next = read(); return c; } public void flush() throws IOException { os.write(cache.toString().getBytes(charset)); os.flush(); cache.setLength(0); } public boolean hasMore() { skipBlank(); return next != -1; } } public static class Debug { private boolean allowDebug; public Debug(boolean allowDebug) { this.allowDebug = allowDebug; } public void assertTrue(boolean flag) { if (!allowDebug) { return; } if (!flag) { fail(); } } public void fail() { throw new RuntimeException(); } public void assertFalse(boolean flag) { if (!allowDebug) { return; } if (flag) { fail(); } } private void outputName(String name) { System.out.print(name + " = "); } public void debug(String name, int x) { if (!allowDebug) { return; } outputName(name); System.out.println("" + x); } public void debug(String name, long x) { if (!allowDebug) { return; } outputName(name); System.out.println("" + x); } public void debug(String name, double x) { if (!allowDebug) { return; } outputName(name); System.out.println("" + x); } public void debug(String name, int[] x) { if (!allowDebug) { return; } outputName(name); System.out.println(Arrays.toString(x)); } public void debug(String name, long[] x) { if (!allowDebug) { return; } outputName(name); System.out.println(Arrays.toString(x)); } public void debug(String name, double[] x) { if (!allowDebug) { return; } outputName(name); System.out.println(Arrays.toString(x)); } public void debug(String name, Object x) { if (!allowDebug) { return; } outputName(name); System.out.println("" + x); } public void debug(String name, Object... x) { if (!allowDebug) { return; } outputName(name); System.out.println(Arrays.deepToString(x)); } } } </CODE> <EVALUATION_RUBRIC> - O(1): The time complexity is constant to the input size n. - O(nlog(n)): The time complexity combines linear and logarithmic growth factors. - non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially. - O(n^3): The time complexity scales proportionally to the cube of the input size. - O(log(n)): The time complexity increases logarithmically in relation to the input size. - O(n): The time complexity increases proportionally to the input size n in a linear manner. - O(n^2): The time complexity grows proportionally to the square of the input size. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Determine the worst-case time complexity category of a given Java code based on input size n. </TASK> <CODE> import java.io.FileInputStream; import java.io.IOException; import java.io.InputStream; import java.io.OutputStream; import java.nio.charset.Charset; import java.util.Arrays; public class CF1238E { public static void main(String[] args) throws Exception { boolean local = System.getSecurityManager() == null; boolean async = false; Charset charset = Charset.forName("ascii"); FastIO io = local ? new FastIO(new FileInputStream("D:\\DATABASE\\TESTCASE\\Code.in"), System.out, charset) : new FastIO(System.in, System.out, charset); Task task = new Task(io, new Debug(local)); if (async) { Thread t = new Thread(null, task, "dalt", 1 << 27); t.setPriority(Thread.MAX_PRIORITY); t.start(); t.join(); } else { task.run(); } if (local) { io.cache.append("\n\n--memory -- \n" + ((Runtime.getRuntime().totalMemory() - Runtime.getRuntime().freeMemory()) >> 20) + "M"); } io.flush(); } public static class Task implements Runnable { final FastIO io; final Debug debug; int inf = (int) 1e8; long lInf = (long) 1e18; double dInf = 1e50; public Task(FastIO io, Debug debug) { this.io = io; this.debug = debug; } @Override public void run() { solve(); } int[][] fee; int m; long[] dp; int mask; int[][] maskFee; public void solve() { int n = io.readInt(); m = io.readInt(); char[] s = new char[n]; io.readString(s, 0); for (int i = 0; i < n; i++) { s[i] -= 'a'; } fee = new int[m][m]; for (int i = 1; i < n; i++) { fee[s[i]][s[i - 1]]++; fee[s[i - 1]][s[i]]++; } mask = (1 << m) - 1; maskFee = new int[m][mask + 1]; SubsetGenerator sg = new SubsetGenerator(); for (int i = 0; i < m; i++) { for (int j = 0; j < m; j++) { sg.meanings[j] = fee[i][j]; } for (int j = 0; j <= mask; j++) { maskFee[i][j] = sg.next(); } } dp = new long[mask + 1]; Arrays.fill(dp, -1); dp[0] = 0; io.cache.append(dp(mask)); } BitOperator bo = new BitOperator(); public long dp(int s) { if (dp[s] == -1) { long extra = 0; int remainSet = mask - s; for (int j = 0; j < m; j++) { if (bo.bitAt(s, j) == 0) { continue; } extra += maskFee[j][remainSet]; } dp[s] = lInf; for (int j = 0; j < m; j++) { if (bo.bitAt(s, j) == 0) { continue; } int ss = bo.setBit(s, j, false); dp[s] = Math.min(dp[s], extra + dp(ss)); } } return dp[s]; } } /** * Bit operations */ public static class BitOperator { public int bitAt(int x, int i) { return (x >> i) & 1; } public int bitAt(long x, int i) { return (int) ((x >> i) & 1); } public int setBit(int x, int i, boolean v) { if (v) { x |= 1 << i; } else { x &= ~(1 << i); } return x; } public long setBit(long x, int i, boolean v) { if (v) { x |= 1L << i; } else { x &= ~(1L << i); } return x; } public long swapBit(long x, int i, int j) { int bi = bitAt(x, i); int bj = bitAt(x, j); x = setBit(x, i, bj == 1); x = setBit(x, j, bi == 1); return x; } public int swapBit(int x, int i, int j) { int bi = bitAt(x, i); int bj = bitAt(x, j); x = setBit(x, i, bj == 1); x = setBit(x, j, bi == 1); return x; } /** * Determine whether x is subset of y */ public boolean subset(long x, long y) { return intersect(x, y) == x; } /** * Merge two set */ public long merge(long x, long y) { return x | y; } public long intersect(long x, long y) { return x & y; } public long differ(long x, long y) { return x - intersect(x, y); } } public static class SubsetGenerator { private int[] meanings = new int[33]; private int[] bits = new int[33]; private int remain; private int next; public void setSet(int set) { int bitCount = 0; while (set != 0) { meanings[bitCount] = set & -set; bits[bitCount] = 0; set -= meanings[bitCount]; bitCount++; } remain = 1 << bitCount; next = 0; } public boolean hasNext() { return remain > 0; } private void consume() { remain = remain - 1; int i; for (i = 0; bits[i] == 1; i++) { bits[i] = 0; next -= meanings[i]; } bits[i] = 1; next += meanings[i]; } public int next() { int returned = next; consume(); return returned; } } public static class FastIO { public final StringBuilder cache = new StringBuilder(1 << 13); private final InputStream is; private final OutputStream os; private final Charset charset; private StringBuilder defaultStringBuf = new StringBuilder(1 << 13); private byte[] buf = new byte[1 << 13]; private int bufLen; private int bufOffset; private int next; public FastIO(InputStream is, OutputStream os, Charset charset) { this.is = is; this.os = os; this.charset = charset; } public FastIO(InputStream is, OutputStream os) { this(is, os, Charset.forName("ascii")); } private int read() { while (bufLen == bufOffset) { bufOffset = 0; try { bufLen = is.read(buf); } catch (IOException e) { throw new RuntimeException(e); } if (bufLen == -1) { return -1; } } return buf[bufOffset++]; } public void skipBlank() { while (next >= 0 && next <= 32) { next = read(); } } public int readInt() { int sign = 1; skipBlank(); if (next == '+' || next == '-') { sign = next == '+' ? 1 : -1; next = read(); } int val = 0; if (sign == 1) { while (next >= '0' && next <= '9') { val = val * 10 + next - '0'; next = read(); } } else { while (next >= '0' && next <= '9') { val = val * 10 - next + '0'; next = read(); } } return val; } public long readLong() { int sign = 1; skipBlank(); if (next == '+' || next == '-') { sign = next == '+' ? 1 : -1; next = read(); } long val = 0; if (sign == 1) { while (next >= '0' && next <= '9') { val = val * 10 + next - '0'; next = read(); } } else { while (next >= '0' && next <= '9') { val = val * 10 - next + '0'; next = read(); } } return val; } public double readDouble() { boolean sign = true; skipBlank(); if (next == '+' || next == '-') { sign = next == '+'; next = read(); } long val = 0; while (next >= '0' && next <= '9') { val = val * 10 + next - '0'; next = read(); } if (next != '.') { return sign ? val : -val; } next = read(); long radix = 1; long point = 0; while (next >= '0' && next <= '9') { point = point * 10 + next - '0'; radix = radix * 10; next = read(); } double result = val + (double) point / radix; return sign ? result : -result; } public String readString(StringBuilder builder) { skipBlank(); while (next > 32) { builder.append((char) next); next = read(); } return builder.toString(); } public String readString() { defaultStringBuf.setLength(0); return readString(defaultStringBuf); } public int readLine(char[] data, int offset) { int originalOffset = offset; while (next != -1 && next != '\n') { data[offset++] = (char) next; next = read(); } return offset - originalOffset; } public int readString(char[] data, int offset) { skipBlank(); int originalOffset = offset; while (next > 32) { data[offset++] = (char) next; next = read(); } return offset - originalOffset; } public int readString(byte[] data, int offset) { skipBlank(); int originalOffset = offset; while (next > 32) { data[offset++] = (byte) next; next = read(); } return offset - originalOffset; } public char readChar() { skipBlank(); char c = (char) next; next = read(); return c; } public void flush() throws IOException { os.write(cache.toString().getBytes(charset)); os.flush(); cache.setLength(0); } public boolean hasMore() { skipBlank(); return next != -1; } } public static class Debug { private boolean allowDebug; public Debug(boolean allowDebug) { this.allowDebug = allowDebug; } public void assertTrue(boolean flag) { if (!allowDebug) { return; } if (!flag) { fail(); } } public void fail() { throw new RuntimeException(); } public void assertFalse(boolean flag) { if (!allowDebug) { return; } if (flag) { fail(); } } private void outputName(String name) { System.out.print(name + " = "); } public void debug(String name, int x) { if (!allowDebug) { return; } outputName(name); System.out.println("" + x); } public void debug(String name, long x) { if (!allowDebug) { return; } outputName(name); System.out.println("" + x); } public void debug(String name, double x) { if (!allowDebug) { return; } outputName(name); System.out.println("" + x); } public void debug(String name, int[] x) { if (!allowDebug) { return; } outputName(name); System.out.println(Arrays.toString(x)); } public void debug(String name, long[] x) { if (!allowDebug) { return; } outputName(name); System.out.println(Arrays.toString(x)); } public void debug(String name, double[] x) { if (!allowDebug) { return; } outputName(name); System.out.println(Arrays.toString(x)); } public void debug(String name, Object x) { if (!allowDebug) { return; } outputName(name); System.out.println("" + x); } public void debug(String name, Object... x) { if (!allowDebug) { return; } outputName(name); System.out.println(Arrays.deepToString(x)); } } } </CODE> <EVALUATION_RUBRIC> - O(nlog(n)): The time complexity combines linear and logarithmic growth factors. - O(n^2): The time complexity grows proportionally to the square of the input size. - O(log(n)): The time complexity increases logarithmically in relation to the input size. - O(n^3): The time complexity scales proportionally to the cube of the input size. - O(1): The time complexity is constant to the input size n. - others: The time complexity does not fit any of the above categories or cannot be clearly classified. - non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially. - O(n): The time complexity increases proportionally to the input size n in a linear manner. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
3,286
4,469
660
import java.util.Scanner; /** * * @author Ronak */ public class Main { /** * @param args the command line arguments */ public static void main(String[] args) { // TODO code application logic here Scanner in=new Scanner(System.in); int n=in.nextInt(); if(n>=3&&n<=100) { int num[]=new int[n]; for(int i=0;i<n;i++) { num[i]=in.nextInt(); } int even=0,odd=0,ceven=0,codd=0; for(int i=0;i<n;i++) { if(num[i]%2==0) { even++; ceven=i+1; } else { odd++; codd=i+1; } } if(odd==1) { System.out.println(""+codd); } else { System.out.println(""+ceven); } } } }
O(n)
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Determine the worst-case time complexity category of a given Java code based on input size n. </TASK> <CODE> import java.util.Scanner; /** * * @author Ronak */ public class Main { /** * @param args the command line arguments */ public static void main(String[] args) { // TODO code application logic here Scanner in=new Scanner(System.in); int n=in.nextInt(); if(n>=3&&n<=100) { int num[]=new int[n]; for(int i=0;i<n;i++) { num[i]=in.nextInt(); } int even=0,odd=0,ceven=0,codd=0; for(int i=0;i<n;i++) { if(num[i]%2==0) { even++; ceven=i+1; } else { odd++; codd=i+1; } } if(odd==1) { System.out.println(""+codd); } else { System.out.println(""+ceven); } } } } </CODE> <EVALUATION_RUBRIC> - O(log(n)): The time complexity increases logarithmically in relation to the input size. - O(n^3): The time complexity scales proportionally to the cube of the input size. - non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially. - O(n): The time complexity increases proportionally to the input size n in a linear manner. - O(n^2): The time complexity grows proportionally to the square of the input size. - O(1): The time complexity is constant to the input size n. - O(nlog(n)): The time complexity combines linear and logarithmic growth factors. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Determine the worst-case time complexity category of a given Java code based on input size n. </TASK> <CODE> import java.util.Scanner; /** * * @author Ronak */ public class Main { /** * @param args the command line arguments */ public static void main(String[] args) { // TODO code application logic here Scanner in=new Scanner(System.in); int n=in.nextInt(); if(n>=3&&n<=100) { int num[]=new int[n]; for(int i=0;i<n;i++) { num[i]=in.nextInt(); } int even=0,odd=0,ceven=0,codd=0; for(int i=0;i<n;i++) { if(num[i]%2==0) { even++; ceven=i+1; } else { odd++; codd=i+1; } } if(odd==1) { System.out.println(""+codd); } else { System.out.println(""+ceven); } } } } </CODE> <EVALUATION_RUBRIC> - O(1): The time complexity is constant to the input size n. - O(nlog(n)): The time complexity combines linear and logarithmic growth factors. - non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially. - O(log(n)): The time complexity increases logarithmically in relation to the input size. - O(n^3): The time complexity scales proportionally to the cube of the input size. - O(n^2): The time complexity grows proportionally to the square of the input size. - O(n): The time complexity increases proportionally to the input size n in a linear manner. - others: The time complexity does not fit any of the above categories or cannot be clearly classified. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
551
659
4,386
//package round11; import java.io.BufferedOutputStream; import java.io.PrintStream; import java.io.PrintWriter; import java.io.StringReader; import java.util.Arrays; import java.util.Scanner; public class D { private Scanner in; private PrintWriter out; private boolean[][] g; public void solve() { n = ni(); int m = ni(); g = new boolean[n][n]; for(int i = 0;i < m;i++){ int f = ni(); int t = ni(); g[f-1][t-1] = true; g[t-1][f-1] = true; } long ret = 0L; cache = new long[20 << 19]; for(int i = 0;i < n;i++){ start = i; ret += rec(1 << start, i, 0); } out.println(ret/2); } private long[] cache; private int n; private int start; private long rec(int passed, int cur, int depth) { int code = cur << 19 | passed; if(cache[code] != 0)return cache[code]; long ret = 0L; if(g[cur][start] && depth >= 2)ret++; for(int i = start + 1;i < n;i++){ if((passed & (1 << i)) == 0 && g[cur][i]){ ret += rec(passed | (1 << i), i, depth + 1); } } cache[code] = ret; return ret; } public void run() throws Exception { // int m = 19; // StringBuilder sb = new StringBuilder(); // sb.append(m + " "); // sb.append((m*(m-1)/2) + " "); // for(int i = 1;i <= m;i++){ // for(int j = i + 1;j <= m;j++){ // sb.append(i + " " + j + "\n"); // } // } // // in = new Scanner(new StringReader(sb.toString())); // in = new Scanner(new StringReader("4 6 1 2 1 3 1 4 2 3 2 4 3 4")); in = new Scanner(System.in); System.setOut(new PrintStream(new BufferedOutputStream(System.out))); out = new PrintWriter(System.out); // int n = in.nextInt(); int n = 1; for(int i = 1;i <= n;i++){ long t = System.currentTimeMillis(); solve(); out.flush(); System.err.printf("%04d/%04d %7d%n", i, n, System.currentTimeMillis() - t); } } public static void main(String[] args) throws Exception { new D().run(); } private int ni() { return Integer.parseInt(in.next()); } private static void tr(Object... o) { System.out.println(o.length == 1 ? o[0] : Arrays.toString(o)); } private void tra(int[] a) {System.out.println(Arrays.toString(a));} private void tra(int[][] a) { for(int[] e : a){ System.out.println(Arrays.toString(e)); } } }
non-polynomial
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n. </TASK> <CODE> //package round11; import java.io.BufferedOutputStream; import java.io.PrintStream; import java.io.PrintWriter; import java.io.StringReader; import java.util.Arrays; import java.util.Scanner; public class D { private Scanner in; private PrintWriter out; private boolean[][] g; public void solve() { n = ni(); int m = ni(); g = new boolean[n][n]; for(int i = 0;i < m;i++){ int f = ni(); int t = ni(); g[f-1][t-1] = true; g[t-1][f-1] = true; } long ret = 0L; cache = new long[20 << 19]; for(int i = 0;i < n;i++){ start = i; ret += rec(1 << start, i, 0); } out.println(ret/2); } private long[] cache; private int n; private int start; private long rec(int passed, int cur, int depth) { int code = cur << 19 | passed; if(cache[code] != 0)return cache[code]; long ret = 0L; if(g[cur][start] && depth >= 2)ret++; for(int i = start + 1;i < n;i++){ if((passed & (1 << i)) == 0 && g[cur][i]){ ret += rec(passed | (1 << i), i, depth + 1); } } cache[code] = ret; return ret; } public void run() throws Exception { // int m = 19; // StringBuilder sb = new StringBuilder(); // sb.append(m + " "); // sb.append((m*(m-1)/2) + " "); // for(int i = 1;i <= m;i++){ // for(int j = i + 1;j <= m;j++){ // sb.append(i + " " + j + "\n"); // } // } // // in = new Scanner(new StringReader(sb.toString())); // in = new Scanner(new StringReader("4 6 1 2 1 3 1 4 2 3 2 4 3 4")); in = new Scanner(System.in); System.setOut(new PrintStream(new BufferedOutputStream(System.out))); out = new PrintWriter(System.out); // int n = in.nextInt(); int n = 1; for(int i = 1;i <= n;i++){ long t = System.currentTimeMillis(); solve(); out.flush(); System.err.printf("%04d/%04d %7d%n", i, n, System.currentTimeMillis() - t); } } public static void main(String[] args) throws Exception { new D().run(); } private int ni() { return Integer.parseInt(in.next()); } private static void tr(Object... o) { System.out.println(o.length == 1 ? o[0] : Arrays.toString(o)); } private void tra(int[] a) {System.out.println(Arrays.toString(a));} private void tra(int[][] a) { for(int[] e : a){ System.out.println(Arrays.toString(e)); } } } </CODE> <EVALUATION_RUBRIC> - O(n^2): The execution time ascends in proportion to the square of the input size n. - O(1): The execution time is unaffected by the size of the input n. - O(n): The execution time ascends in a one-to-one ratio with the input size n. - O(n^3): The execution time ascends in proportion to the cube of the input size n. - O(log(n)): The execution time ascends in proportion to the logarithm of the input size n. - O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially. - non-polynomial: The running time increases non-polynomially with input size n, typically exponentially. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Classify the following Java code's worst-case time complexity according to its relationship to the input size n. </TASK> <CODE> //package round11; import java.io.BufferedOutputStream; import java.io.PrintStream; import java.io.PrintWriter; import java.io.StringReader; import java.util.Arrays; import java.util.Scanner; public class D { private Scanner in; private PrintWriter out; private boolean[][] g; public void solve() { n = ni(); int m = ni(); g = new boolean[n][n]; for(int i = 0;i < m;i++){ int f = ni(); int t = ni(); g[f-1][t-1] = true; g[t-1][f-1] = true; } long ret = 0L; cache = new long[20 << 19]; for(int i = 0;i < n;i++){ start = i; ret += rec(1 << start, i, 0); } out.println(ret/2); } private long[] cache; private int n; private int start; private long rec(int passed, int cur, int depth) { int code = cur << 19 | passed; if(cache[code] != 0)return cache[code]; long ret = 0L; if(g[cur][start] && depth >= 2)ret++; for(int i = start + 1;i < n;i++){ if((passed & (1 << i)) == 0 && g[cur][i]){ ret += rec(passed | (1 << i), i, depth + 1); } } cache[code] = ret; return ret; } public void run() throws Exception { // int m = 19; // StringBuilder sb = new StringBuilder(); // sb.append(m + " "); // sb.append((m*(m-1)/2) + " "); // for(int i = 1;i <= m;i++){ // for(int j = i + 1;j <= m;j++){ // sb.append(i + " " + j + "\n"); // } // } // // in = new Scanner(new StringReader(sb.toString())); // in = new Scanner(new StringReader("4 6 1 2 1 3 1 4 2 3 2 4 3 4")); in = new Scanner(System.in); System.setOut(new PrintStream(new BufferedOutputStream(System.out))); out = new PrintWriter(System.out); // int n = in.nextInt(); int n = 1; for(int i = 1;i <= n;i++){ long t = System.currentTimeMillis(); solve(); out.flush(); System.err.printf("%04d/%04d %7d%n", i, n, System.currentTimeMillis() - t); } } public static void main(String[] args) throws Exception { new D().run(); } private int ni() { return Integer.parseInt(in.next()); } private static void tr(Object... o) { System.out.println(o.length == 1 ? o[0] : Arrays.toString(o)); } private void tra(int[] a) {System.out.println(Arrays.toString(a));} private void tra(int[][] a) { for(int[] e : a){ System.out.println(Arrays.toString(e)); } } } </CODE> <EVALUATION_RUBRIC> - O(n): The running time grows linearly with the input size n. - O(n^3): The running time increases with the cube of the input size n. - O(1): The running time does not change regardless of the input size n. - O(nlog(n)): The running time increases with the product of n and logarithm of n. - O(n^2): The running time increases with the square of the input size n. - non-polynomial: The running time increases non-polynomially with input size n, typically exponentially. - O(log(n)): The running time increases with the logarithm of the input size n. - others: The code does not clearly correspond to the listed classes or has an unclassified time complexity. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
1,070
4,375
3,370
import java.util.*; import java.io.*; public class givenstring { public static void main(String[] args){ Scanner reader = new Scanner(System.in); String in = reader.next(); int max = 0; for(int i = 0; i < in.length(); i++){ for(int j = i+1; j < in.length(); j++){ //take this substring String consider = in.substring(i, j); for(int k = i+1; k < in.length(); k++){ if(k + consider.length() > in.length()) break; else if(in.substring(k, k+consider.length()).equals(consider)) max = Math.max(max, consider.length()); } } } System.out.println(max); } }
O(n^3)
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Classify the following Java code's worst-case time complexity according to its relationship to the input size n. </TASK> <CODE> import java.util.*; import java.io.*; public class givenstring { public static void main(String[] args){ Scanner reader = new Scanner(System.in); String in = reader.next(); int max = 0; for(int i = 0; i < in.length(); i++){ for(int j = i+1; j < in.length(); j++){ //take this substring String consider = in.substring(i, j); for(int k = i+1; k < in.length(); k++){ if(k + consider.length() > in.length()) break; else if(in.substring(k, k+consider.length()).equals(consider)) max = Math.max(max, consider.length()); } } } System.out.println(max); } } </CODE> <EVALUATION_RUBRIC> - O(n^2): The running time increases with the square of the input size n. - O(nlog(n)): The running time increases with the product of n and logarithm of n. - O(1): The running time does not change regardless of the input size n. - non-polynomial: The running time increases non-polynomially with input size n, typically exponentially. - O(n^3): The running time increases with the cube of the input size n. - O(n): The running time grows linearly with the input size n. - O(log(n)): The running time increases with the logarithm of the input size n. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Determine the worst-case time complexity category of a given Java code based on input size n. </TASK> <CODE> import java.util.*; import java.io.*; public class givenstring { public static void main(String[] args){ Scanner reader = new Scanner(System.in); String in = reader.next(); int max = 0; for(int i = 0; i < in.length(); i++){ for(int j = i+1; j < in.length(); j++){ //take this substring String consider = in.substring(i, j); for(int k = i+1; k < in.length(); k++){ if(k + consider.length() > in.length()) break; else if(in.substring(k, k+consider.length()).equals(consider)) max = Math.max(max, consider.length()); } } } System.out.println(max); } } </CODE> <EVALUATION_RUBRIC> - others: The time complexity does not fit any of the above categories or cannot be clearly classified. - O(1): The time complexity is constant to the input size n. - O(nlog(n)): The time complexity combines linear and logarithmic growth factors. - O(n): The time complexity increases proportionally to the input size n in a linear manner. - non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially. - O(n^3): The time complexity scales proportionally to the cube of the input size. - O(n^2): The time complexity grows proportionally to the square of the input size. - O(log(n)): The time complexity increases logarithmically in relation to the input size. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
503
3,364
2,847
import java.util.Scanner; public class dwl { public static void main(String[] args) { Scanner sc = new Scanner(System.in); String[] lr = sc.nextLine().split(" "); long l = Long.valueOf(lr[0]); long r = Long.valueOf(lr[1]); if (r - l <= 1 || (l == 1 && (r - l) == 2) || (l % 2 != 0 && (r - l) < 3)) System.out.println(-1); else { if (l == 1) System.out.println(2 + " " + 3 + " " + 4); else { if (l % 2 == 0) { String res = ""; res += l + " "; res += (l + 1) + " "; res += (l + 2) + " "; res = res.trim(); System.out.println(res); } else { String res = ""; res += (l + 1) + " "; res += (l + 2) + " "; res += (l + 3) + " "; res = res.trim(); System.out.println(res); } } } } }
O(1)
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Determine the worst-case time complexity category of a given Java code based on input size n. </TASK> <CODE> import java.util.Scanner; public class dwl { public static void main(String[] args) { Scanner sc = new Scanner(System.in); String[] lr = sc.nextLine().split(" "); long l = Long.valueOf(lr[0]); long r = Long.valueOf(lr[1]); if (r - l <= 1 || (l == 1 && (r - l) == 2) || (l % 2 != 0 && (r - l) < 3)) System.out.println(-1); else { if (l == 1) System.out.println(2 + " " + 3 + " " + 4); else { if (l % 2 == 0) { String res = ""; res += l + " "; res += (l + 1) + " "; res += (l + 2) + " "; res = res.trim(); System.out.println(res); } else { String res = ""; res += (l + 1) + " "; res += (l + 2) + " "; res += (l + 3) + " "; res = res.trim(); System.out.println(res); } } } } } </CODE> <EVALUATION_RUBRIC> - non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially. - O(log(n)): The time complexity increases logarithmically in relation to the input size. - O(n^2): The time complexity grows proportionally to the square of the input size. - O(nlog(n)): The time complexity combines linear and logarithmic growth factors. - O(1): The time complexity is constant to the input size n. - O(n): The time complexity increases proportionally to the input size n in a linear manner. - O(n^3): The time complexity scales proportionally to the cube of the input size. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Determine the worst-case time complexity category of a given Java code based on input size n. </TASK> <CODE> import java.util.Scanner; public class dwl { public static void main(String[] args) { Scanner sc = new Scanner(System.in); String[] lr = sc.nextLine().split(" "); long l = Long.valueOf(lr[0]); long r = Long.valueOf(lr[1]); if (r - l <= 1 || (l == 1 && (r - l) == 2) || (l % 2 != 0 && (r - l) < 3)) System.out.println(-1); else { if (l == 1) System.out.println(2 + " " + 3 + " " + 4); else { if (l % 2 == 0) { String res = ""; res += l + " "; res += (l + 1) + " "; res += (l + 2) + " "; res = res.trim(); System.out.println(res); } else { String res = ""; res += (l + 1) + " "; res += (l + 2) + " "; res += (l + 3) + " "; res = res.trim(); System.out.println(res); } } } } } </CODE> <EVALUATION_RUBRIC> - O(n^3): The time complexity scales proportionally to the cube of the input size. - O(log(n)): The time complexity increases logarithmically in relation to the input size. - non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially. - O(n^2): The time complexity grows proportionally to the square of the input size. - O(1): The time complexity is constant to the input size n. - others: The time complexity does not fit any of the above categories or cannot be clearly classified. - O(nlog(n)): The time complexity combines linear and logarithmic growth factors. - O(n): The time complexity increases proportionally to the input size n in a linear manner. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
604
2,841
739
/** * Created by Aminul on 3/14/2019. */ import java.io.IOException; import java.io.InputStream; import java.io.PrintWriter; import java.util.Arrays; import java.util.InputMismatchException; import static java.lang.Math.max; public class E_2 { public static void main(String[] args) throws Exception { FastReader in = new FastReader(System.in); PrintWriter pw = new PrintWriter(System.out); int n = in.nextInt(), k = in.nextInt(), N = (int) 5e6 + 1; int left = 0, right = 0; int a[] = new int[n + 1]; for (int i = 1; i <= n; i++) { a[i] = in.nextInt(); if (a[i] == k) left++; } int f[] = new int[N + 1]; int ans = 0; for (int i = n; i >= 1; i--) { if (a[i] == k) left--; f[a[i]]++; f[a[i]] = max(f[a[i]], 1 + right); ans = max(ans, f[a[i]] + left); if (a[i] == k) right++; } pw.println(ans); pw.close(); } static void debug(Object... obj) { System.err.println(Arrays.deepToString(obj)); } static class FastReader { InputStream is; private byte[] inbuf = new byte[1024]; private int lenbuf = 0, ptrbuf = 0; public FastReader(InputStream is) { this.is = is; } public int readByte() { if (lenbuf == -1) throw new InputMismatchException(); if (ptrbuf >= lenbuf) { ptrbuf = 0; try { lenbuf = is.read(inbuf); } catch (IOException e) { throw new InputMismatchException(); } if (lenbuf <= 0) return -1; } return inbuf[ptrbuf++]; } public int nextInt() { int num = 0, b; boolean minus = false; while ((b = readByte()) != -1 && !((b >= '0' && b <= '9') || b == '-')) ; if (b == '-') { minus = true; b = readByte(); } while (true) { if (b >= '0' && b <= '9') { num = (num << 3) + (num << 1) + (b - '0'); } else { return minus ? -num : num; } b = readByte(); } } } }
O(n)
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Classify the following Java code's worst-case time complexity according to its relationship to the input size n. </TASK> <CODE> /** * Created by Aminul on 3/14/2019. */ import java.io.IOException; import java.io.InputStream; import java.io.PrintWriter; import java.util.Arrays; import java.util.InputMismatchException; import static java.lang.Math.max; public class E_2 { public static void main(String[] args) throws Exception { FastReader in = new FastReader(System.in); PrintWriter pw = new PrintWriter(System.out); int n = in.nextInt(), k = in.nextInt(), N = (int) 5e6 + 1; int left = 0, right = 0; int a[] = new int[n + 1]; for (int i = 1; i <= n; i++) { a[i] = in.nextInt(); if (a[i] == k) left++; } int f[] = new int[N + 1]; int ans = 0; for (int i = n; i >= 1; i--) { if (a[i] == k) left--; f[a[i]]++; f[a[i]] = max(f[a[i]], 1 + right); ans = max(ans, f[a[i]] + left); if (a[i] == k) right++; } pw.println(ans); pw.close(); } static void debug(Object... obj) { System.err.println(Arrays.deepToString(obj)); } static class FastReader { InputStream is; private byte[] inbuf = new byte[1024]; private int lenbuf = 0, ptrbuf = 0; public FastReader(InputStream is) { this.is = is; } public int readByte() { if (lenbuf == -1) throw new InputMismatchException(); if (ptrbuf >= lenbuf) { ptrbuf = 0; try { lenbuf = is.read(inbuf); } catch (IOException e) { throw new InputMismatchException(); } if (lenbuf <= 0) return -1; } return inbuf[ptrbuf++]; } public int nextInt() { int num = 0, b; boolean minus = false; while ((b = readByte()) != -1 && !((b >= '0' && b <= '9') || b == '-')) ; if (b == '-') { minus = true; b = readByte(); } while (true) { if (b >= '0' && b <= '9') { num = (num << 3) + (num << 1) + (b - '0'); } else { return minus ? -num : num; } b = readByte(); } } } } </CODE> <EVALUATION_RUBRIC> - non-polynomial: The running time increases non-polynomially with input size n, typically exponentially. - O(1): The running time does not change regardless of the input size n. - O(n^2): The running time increases with the square of the input size n. - O(log(n)): The running time increases with the logarithm of the input size n. - O(n^3): The running time increases with the cube of the input size n. - O(n): The running time grows linearly with the input size n. - O(nlog(n)): The running time increases with the product of n and logarithm of n. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Determine the worst-case time complexity category of a given Java code based on input size n. </TASK> <CODE> /** * Created by Aminul on 3/14/2019. */ import java.io.IOException; import java.io.InputStream; import java.io.PrintWriter; import java.util.Arrays; import java.util.InputMismatchException; import static java.lang.Math.max; public class E_2 { public static void main(String[] args) throws Exception { FastReader in = new FastReader(System.in); PrintWriter pw = new PrintWriter(System.out); int n = in.nextInt(), k = in.nextInt(), N = (int) 5e6 + 1; int left = 0, right = 0; int a[] = new int[n + 1]; for (int i = 1; i <= n; i++) { a[i] = in.nextInt(); if (a[i] == k) left++; } int f[] = new int[N + 1]; int ans = 0; for (int i = n; i >= 1; i--) { if (a[i] == k) left--; f[a[i]]++; f[a[i]] = max(f[a[i]], 1 + right); ans = max(ans, f[a[i]] + left); if (a[i] == k) right++; } pw.println(ans); pw.close(); } static void debug(Object... obj) { System.err.println(Arrays.deepToString(obj)); } static class FastReader { InputStream is; private byte[] inbuf = new byte[1024]; private int lenbuf = 0, ptrbuf = 0; public FastReader(InputStream is) { this.is = is; } public int readByte() { if (lenbuf == -1) throw new InputMismatchException(); if (ptrbuf >= lenbuf) { ptrbuf = 0; try { lenbuf = is.read(inbuf); } catch (IOException e) { throw new InputMismatchException(); } if (lenbuf <= 0) return -1; } return inbuf[ptrbuf++]; } public int nextInt() { int num = 0, b; boolean minus = false; while ((b = readByte()) != -1 && !((b >= '0' && b <= '9') || b == '-')) ; if (b == '-') { minus = true; b = readByte(); } while (true) { if (b >= '0' && b <= '9') { num = (num << 3) + (num << 1) + (b - '0'); } else { return minus ? -num : num; } b = readByte(); } } } } </CODE> <EVALUATION_RUBRIC> - O(n^3): The time complexity scales proportionally to the cube of the input size. - O(n): The time complexity increases proportionally to the input size n in a linear manner. - others: The time complexity does not fit any of the above categories or cannot be clearly classified. - non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially. - O(nlog(n)): The time complexity combines linear and logarithmic growth factors. - O(log(n)): The time complexity increases logarithmically in relation to the input size. - O(1): The time complexity is constant to the input size n. - O(n^2): The time complexity grows proportionally to the square of the input size. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
929
738
1,214
import java.io.BufferedReader; import java.io.OutputStream; import java.io.IOException; import java.io.InputStreamReader; import java.io.PrintWriter; import java.io.Reader; import java.io.InputStream; /** * Built using CHelper plug-in * Actual solution is at the top */ public class Main { public static void main(String[] args) { InputStream inputStream = System.in; OutputStream outputStream = System.out; InputStreamReader in = new InputStreamReader(inputStream); PrintWriter out = new PrintWriter(outputStream); TaskA solver = new TaskA(); solver.solve(1, in, out); out.close(); } } class TaskA { int MOD = 1000000009; public void solve(int testNumber, InputStreamReader inSt, PrintWriter out) { InputReader in = new InputReader(inSt); long n = in.nextInt(); long m = in.nextInt(); long k = in.nextInt(); long t = find(n, m, k); long twoPow = binPow(2, (int) t); twoPow--; long result = (2 * (k * twoPow % MOD)) % MOD; result += (m - t * k); result = result % MOD; out.println(result); } int binPow(int a, int n) { if (n == 0) { return 1; } if (n % 2 == 1) { return (int) ((binPow(a, n - 1) * (a+ 0l)) % MOD); } else { int b = (binPow(a, n / 2)) % MOD; return (int) (((b+0l) * b) % MOD); } } long find(long n, long m, long k) { long l = 0; long r = m / k; while (l < r) { long mid = (l + r) / 2; long m1 = m - mid * k; long n1 = n - mid * k; if (isPossible(n1, m1, k)) { r = mid; } else { l = mid + 1; } } return l; } boolean isPossible(long n, long m, long k) { long r = m / (k - 1); long q = m - (k - 1) * r; if (q == 0) { return r * (k - 1) + r - 1 <= n; } return r * (k - 1) + q + r <= n; } class InputReader { public BufferedReader reader; private String[] currentArray; int curPointer; public InputReader(InputStreamReader inputStreamReader) { reader = new BufferedReader(inputStreamReader); } public String next() { try { currentArray = null; return reader.readLine(); } catch (IOException e) { throw new RuntimeException(e); } } public void nextChars(char[] t) { try { currentArray = null; reader.read(t); } catch (IOException e) { throw new RuntimeException(e); } } public char nextChar() { try { currentArray = null; return (char) reader.read(); } catch (IOException e) { throw new RuntimeException(e); } } public int nextInt() { if ((currentArray == null) || (curPointer >= currentArray.length)) { try { currentArray = reader.readLine().split(" "); } catch (IOException e) { throw new RuntimeException(e); } curPointer = 0; } return Integer.parseInt(currentArray[curPointer++]); } public long nextLong() { if ((currentArray == null) || (curPointer >= currentArray.length)) { try { currentArray = reader.readLine().split(" "); } catch (IOException e) { throw new RuntimeException(e); } curPointer = 0; } return Long.parseLong(currentArray[curPointer++]); } } }
O(log(n))
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n. </TASK> <CODE> import java.io.BufferedReader; import java.io.OutputStream; import java.io.IOException; import java.io.InputStreamReader; import java.io.PrintWriter; import java.io.Reader; import java.io.InputStream; /** * Built using CHelper plug-in * Actual solution is at the top */ public class Main { public static void main(String[] args) { InputStream inputStream = System.in; OutputStream outputStream = System.out; InputStreamReader in = new InputStreamReader(inputStream); PrintWriter out = new PrintWriter(outputStream); TaskA solver = new TaskA(); solver.solve(1, in, out); out.close(); } } class TaskA { int MOD = 1000000009; public void solve(int testNumber, InputStreamReader inSt, PrintWriter out) { InputReader in = new InputReader(inSt); long n = in.nextInt(); long m = in.nextInt(); long k = in.nextInt(); long t = find(n, m, k); long twoPow = binPow(2, (int) t); twoPow--; long result = (2 * (k * twoPow % MOD)) % MOD; result += (m - t * k); result = result % MOD; out.println(result); } int binPow(int a, int n) { if (n == 0) { return 1; } if (n % 2 == 1) { return (int) ((binPow(a, n - 1) * (a+ 0l)) % MOD); } else { int b = (binPow(a, n / 2)) % MOD; return (int) (((b+0l) * b) % MOD); } } long find(long n, long m, long k) { long l = 0; long r = m / k; while (l < r) { long mid = (l + r) / 2; long m1 = m - mid * k; long n1 = n - mid * k; if (isPossible(n1, m1, k)) { r = mid; } else { l = mid + 1; } } return l; } boolean isPossible(long n, long m, long k) { long r = m / (k - 1); long q = m - (k - 1) * r; if (q == 0) { return r * (k - 1) + r - 1 <= n; } return r * (k - 1) + q + r <= n; } class InputReader { public BufferedReader reader; private String[] currentArray; int curPointer; public InputReader(InputStreamReader inputStreamReader) { reader = new BufferedReader(inputStreamReader); } public String next() { try { currentArray = null; return reader.readLine(); } catch (IOException e) { throw new RuntimeException(e); } } public void nextChars(char[] t) { try { currentArray = null; reader.read(t); } catch (IOException e) { throw new RuntimeException(e); } } public char nextChar() { try { currentArray = null; return (char) reader.read(); } catch (IOException e) { throw new RuntimeException(e); } } public int nextInt() { if ((currentArray == null) || (curPointer >= currentArray.length)) { try { currentArray = reader.readLine().split(" "); } catch (IOException e) { throw new RuntimeException(e); } curPointer = 0; } return Integer.parseInt(currentArray[curPointer++]); } public long nextLong() { if ((currentArray == null) || (curPointer >= currentArray.length)) { try { currentArray = reader.readLine().split(" "); } catch (IOException e) { throw new RuntimeException(e); } curPointer = 0; } return Long.parseLong(currentArray[curPointer++]); } } } </CODE> <EVALUATION_RUBRIC> - O(log(n)): The execution time ascends in proportion to the logarithm of the input size n. - O(1): The execution time is unaffected by the size of the input n. - O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially. - O(n): The execution time ascends in a one-to-one ratio with the input size n. - O(n^2): The execution time ascends in proportion to the square of the input size n. - non-polynomial: The running time increases non-polynomially with input size n, typically exponentially. - O(n^3): The execution time ascends in proportion to the cube of the input size n. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Determine the worst-case time complexity category of a given Java code based on input size n. </TASK> <CODE> import java.io.BufferedReader; import java.io.OutputStream; import java.io.IOException; import java.io.InputStreamReader; import java.io.PrintWriter; import java.io.Reader; import java.io.InputStream; /** * Built using CHelper plug-in * Actual solution is at the top */ public class Main { public static void main(String[] args) { InputStream inputStream = System.in; OutputStream outputStream = System.out; InputStreamReader in = new InputStreamReader(inputStream); PrintWriter out = new PrintWriter(outputStream); TaskA solver = new TaskA(); solver.solve(1, in, out); out.close(); } } class TaskA { int MOD = 1000000009; public void solve(int testNumber, InputStreamReader inSt, PrintWriter out) { InputReader in = new InputReader(inSt); long n = in.nextInt(); long m = in.nextInt(); long k = in.nextInt(); long t = find(n, m, k); long twoPow = binPow(2, (int) t); twoPow--; long result = (2 * (k * twoPow % MOD)) % MOD; result += (m - t * k); result = result % MOD; out.println(result); } int binPow(int a, int n) { if (n == 0) { return 1; } if (n % 2 == 1) { return (int) ((binPow(a, n - 1) * (a+ 0l)) % MOD); } else { int b = (binPow(a, n / 2)) % MOD; return (int) (((b+0l) * b) % MOD); } } long find(long n, long m, long k) { long l = 0; long r = m / k; while (l < r) { long mid = (l + r) / 2; long m1 = m - mid * k; long n1 = n - mid * k; if (isPossible(n1, m1, k)) { r = mid; } else { l = mid + 1; } } return l; } boolean isPossible(long n, long m, long k) { long r = m / (k - 1); long q = m - (k - 1) * r; if (q == 0) { return r * (k - 1) + r - 1 <= n; } return r * (k - 1) + q + r <= n; } class InputReader { public BufferedReader reader; private String[] currentArray; int curPointer; public InputReader(InputStreamReader inputStreamReader) { reader = new BufferedReader(inputStreamReader); } public String next() { try { currentArray = null; return reader.readLine(); } catch (IOException e) { throw new RuntimeException(e); } } public void nextChars(char[] t) { try { currentArray = null; reader.read(t); } catch (IOException e) { throw new RuntimeException(e); } } public char nextChar() { try { currentArray = null; return (char) reader.read(); } catch (IOException e) { throw new RuntimeException(e); } } public int nextInt() { if ((currentArray == null) || (curPointer >= currentArray.length)) { try { currentArray = reader.readLine().split(" "); } catch (IOException e) { throw new RuntimeException(e); } curPointer = 0; } return Integer.parseInt(currentArray[curPointer++]); } public long nextLong() { if ((currentArray == null) || (curPointer >= currentArray.length)) { try { currentArray = reader.readLine().split(" "); } catch (IOException e) { throw new RuntimeException(e); } curPointer = 0; } return Long.parseLong(currentArray[curPointer++]); } } } </CODE> <EVALUATION_RUBRIC> - non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially. - O(n): The time complexity increases proportionally to the input size n in a linear manner. - others: The time complexity does not fit any of the above categories or cannot be clearly classified. - O(1): The time complexity is constant to the input size n. - O(n^2): The time complexity grows proportionally to the square of the input size. - O(log(n)): The time complexity increases logarithmically in relation to the input size. - O(nlog(n)): The time complexity combines linear and logarithmic growth factors. - O(n^3): The time complexity scales proportionally to the cube of the input size. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
1,243
1,213
4,069
import java.io.BufferedReader; import java.io.InputStreamReader; import java.io.PrintWriter; import java.util.Arrays; import java.util.StringTokenizer; /** * 111118315581 * * @author pttrung */ public class C { static Point hand; static int n; static Point[] data; static int[] next; static int[] dp; static int[][] pre; public static void main(String[] args) { Scanner in = new Scanner(); PrintWriter out = new PrintWriter(System.out); // System.out.println(1 << 24); hand = new Point(in.nextInt(), in.nextInt()); n = in.nextInt(); data = new Point[n]; for (int i = 0; i < n; i++) { data[i] = new Point(in.nextInt(), in.nextInt()); } pre = new int[n][n]; for (int i = 0; i < n; i++) { for (int j = i + 1; j < n; j++) { pre[i][j] = distance(data[i], data[j]); } } next = new int[1 << n]; dp = new int[1 << n]; Arrays.fill(dp, -1); out.println(cal(0)); int start = 0; do { int m = next[start]; int val = m - start; out.print(0 + " "); for (int i = 0; i < n; i++) { if (((1 << i) & val) != 0) { out.print((i + 1) + " "); } } // out.print(0 + " ") ; start = m; } while (start != (1 << n) - 1); out.println(0); out.close(); } public static int cal(int mask) { if ((1 << n) - 1 == mask) { // System.out.println(mask); return 0; } if (dp[mask] != -1) { return dp[mask]; } int result = Integer.MAX_VALUE; for (int i = 0; i < n; i++) { if (((1 << i) & mask) == 0) { int dist = distance(hand, data[i]); for (int j = i + 1; j < n; j++) { if (((1 << j) & mask) == 0) { //System.out.println(i + " " + j); int temp = dist + distance(hand, data[j]) + pre[i][j] + cal(mask | (1 << i) | (1 << j)); //System.out.println(temp); if (temp < result) { result = temp; next[mask] = (mask | (1 << i) | (1 << j)); } } } int temp = 2 * dist + cal(mask | (1 << i)); if (temp < result) { result = temp; next[mask] = (mask | (1 << i)); } break; } } dp[mask] = result; return result; } static int distance(Point a, Point b) { int total = (a.x - b.x) * (a.x - b.x) + (a.y - b.y) * (a.y - b.y); return total; } static class Point { int x, y; public Point(int x, int y) { this.x = x; this.y = y; } } static class Scanner { BufferedReader br; StringTokenizer st; public Scanner() { // System.setOut(new PrintStream(new BufferedOutputStream(System.out), true)); br = new BufferedReader(new InputStreamReader(System.in)); } public String next() { while (st == null || !st.hasMoreTokens()) { try { st = new StringTokenizer(br.readLine()); } catch (Exception e) { throw new RuntimeException(); } } return st.nextToken(); } public long nextLong() { return Long.parseLong(next()); } public int nextInt() { return Integer.parseInt(next()); } public double nextDouble() { return Double.parseDouble(next()); } public String nextLine() { st = null; try { return br.readLine(); } catch (Exception e) { throw new RuntimeException(); } } public boolean endLine() { try { String next = br.readLine(); while (next != null && next.trim().isEmpty()) { next = br.readLine(); } if (next == null) { return true; } st = new StringTokenizer(next); return st.hasMoreTokens(); } catch (Exception e) { throw new RuntimeException(); } } } }
non-polynomial
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Determine the worst-case time complexity category of a given Java code based on input size n. </TASK> <CODE> import java.io.BufferedReader; import java.io.InputStreamReader; import java.io.PrintWriter; import java.util.Arrays; import java.util.StringTokenizer; /** * 111118315581 * * @author pttrung */ public class C { static Point hand; static int n; static Point[] data; static int[] next; static int[] dp; static int[][] pre; public static void main(String[] args) { Scanner in = new Scanner(); PrintWriter out = new PrintWriter(System.out); // System.out.println(1 << 24); hand = new Point(in.nextInt(), in.nextInt()); n = in.nextInt(); data = new Point[n]; for (int i = 0; i < n; i++) { data[i] = new Point(in.nextInt(), in.nextInt()); } pre = new int[n][n]; for (int i = 0; i < n; i++) { for (int j = i + 1; j < n; j++) { pre[i][j] = distance(data[i], data[j]); } } next = new int[1 << n]; dp = new int[1 << n]; Arrays.fill(dp, -1); out.println(cal(0)); int start = 0; do { int m = next[start]; int val = m - start; out.print(0 + " "); for (int i = 0; i < n; i++) { if (((1 << i) & val) != 0) { out.print((i + 1) + " "); } } // out.print(0 + " ") ; start = m; } while (start != (1 << n) - 1); out.println(0); out.close(); } public static int cal(int mask) { if ((1 << n) - 1 == mask) { // System.out.println(mask); return 0; } if (dp[mask] != -1) { return dp[mask]; } int result = Integer.MAX_VALUE; for (int i = 0; i < n; i++) { if (((1 << i) & mask) == 0) { int dist = distance(hand, data[i]); for (int j = i + 1; j < n; j++) { if (((1 << j) & mask) == 0) { //System.out.println(i + " " + j); int temp = dist + distance(hand, data[j]) + pre[i][j] + cal(mask | (1 << i) | (1 << j)); //System.out.println(temp); if (temp < result) { result = temp; next[mask] = (mask | (1 << i) | (1 << j)); } } } int temp = 2 * dist + cal(mask | (1 << i)); if (temp < result) { result = temp; next[mask] = (mask | (1 << i)); } break; } } dp[mask] = result; return result; } static int distance(Point a, Point b) { int total = (a.x - b.x) * (a.x - b.x) + (a.y - b.y) * (a.y - b.y); return total; } static class Point { int x, y; public Point(int x, int y) { this.x = x; this.y = y; } } static class Scanner { BufferedReader br; StringTokenizer st; public Scanner() { // System.setOut(new PrintStream(new BufferedOutputStream(System.out), true)); br = new BufferedReader(new InputStreamReader(System.in)); } public String next() { while (st == null || !st.hasMoreTokens()) { try { st = new StringTokenizer(br.readLine()); } catch (Exception e) { throw new RuntimeException(); } } return st.nextToken(); } public long nextLong() { return Long.parseLong(next()); } public int nextInt() { return Integer.parseInt(next()); } public double nextDouble() { return Double.parseDouble(next()); } public String nextLine() { st = null; try { return br.readLine(); } catch (Exception e) { throw new RuntimeException(); } } public boolean endLine() { try { String next = br.readLine(); while (next != null && next.trim().isEmpty()) { next = br.readLine(); } if (next == null) { return true; } st = new StringTokenizer(next); return st.hasMoreTokens(); } catch (Exception e) { throw new RuntimeException(); } } } } </CODE> <EVALUATION_RUBRIC> - O(n): The time complexity increases proportionally to the input size n in a linear manner. - O(n^3): The time complexity scales proportionally to the cube of the input size. - O(1): The time complexity is constant to the input size n. - O(n^2): The time complexity grows proportionally to the square of the input size. - non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially. - O(nlog(n)): The time complexity combines linear and logarithmic growth factors. - O(log(n)): The time complexity increases logarithmically in relation to the input size. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Determine the worst-case time complexity category of a given Java code based on input size n. </TASK> <CODE> import java.io.BufferedReader; import java.io.InputStreamReader; import java.io.PrintWriter; import java.util.Arrays; import java.util.StringTokenizer; /** * 111118315581 * * @author pttrung */ public class C { static Point hand; static int n; static Point[] data; static int[] next; static int[] dp; static int[][] pre; public static void main(String[] args) { Scanner in = new Scanner(); PrintWriter out = new PrintWriter(System.out); // System.out.println(1 << 24); hand = new Point(in.nextInt(), in.nextInt()); n = in.nextInt(); data = new Point[n]; for (int i = 0; i < n; i++) { data[i] = new Point(in.nextInt(), in.nextInt()); } pre = new int[n][n]; for (int i = 0; i < n; i++) { for (int j = i + 1; j < n; j++) { pre[i][j] = distance(data[i], data[j]); } } next = new int[1 << n]; dp = new int[1 << n]; Arrays.fill(dp, -1); out.println(cal(0)); int start = 0; do { int m = next[start]; int val = m - start; out.print(0 + " "); for (int i = 0; i < n; i++) { if (((1 << i) & val) != 0) { out.print((i + 1) + " "); } } // out.print(0 + " ") ; start = m; } while (start != (1 << n) - 1); out.println(0); out.close(); } public static int cal(int mask) { if ((1 << n) - 1 == mask) { // System.out.println(mask); return 0; } if (dp[mask] != -1) { return dp[mask]; } int result = Integer.MAX_VALUE; for (int i = 0; i < n; i++) { if (((1 << i) & mask) == 0) { int dist = distance(hand, data[i]); for (int j = i + 1; j < n; j++) { if (((1 << j) & mask) == 0) { //System.out.println(i + " " + j); int temp = dist + distance(hand, data[j]) + pre[i][j] + cal(mask | (1 << i) | (1 << j)); //System.out.println(temp); if (temp < result) { result = temp; next[mask] = (mask | (1 << i) | (1 << j)); } } } int temp = 2 * dist + cal(mask | (1 << i)); if (temp < result) { result = temp; next[mask] = (mask | (1 << i)); } break; } } dp[mask] = result; return result; } static int distance(Point a, Point b) { int total = (a.x - b.x) * (a.x - b.x) + (a.y - b.y) * (a.y - b.y); return total; } static class Point { int x, y; public Point(int x, int y) { this.x = x; this.y = y; } } static class Scanner { BufferedReader br; StringTokenizer st; public Scanner() { // System.setOut(new PrintStream(new BufferedOutputStream(System.out), true)); br = new BufferedReader(new InputStreamReader(System.in)); } public String next() { while (st == null || !st.hasMoreTokens()) { try { st = new StringTokenizer(br.readLine()); } catch (Exception e) { throw new RuntimeException(); } } return st.nextToken(); } public long nextLong() { return Long.parseLong(next()); } public int nextInt() { return Integer.parseInt(next()); } public double nextDouble() { return Double.parseDouble(next()); } public String nextLine() { st = null; try { return br.readLine(); } catch (Exception e) { throw new RuntimeException(); } } public boolean endLine() { try { String next = br.readLine(); while (next != null && next.trim().isEmpty()) { next = br.readLine(); } if (next == null) { return true; } st = new StringTokenizer(next); return st.hasMoreTokens(); } catch (Exception e) { throw new RuntimeException(); } } } } </CODE> <EVALUATION_RUBRIC> - O(nlog(n)): The time complexity combines linear and logarithmic growth factors. - O(1): The time complexity is constant to the input size n. - O(n): The time complexity increases proportionally to the input size n in a linear manner. - non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially. - O(n^3): The time complexity scales proportionally to the cube of the input size. - O(n^2): The time complexity grows proportionally to the square of the input size. - others: The time complexity does not fit any of the above categories or cannot be clearly classified. - O(log(n)): The time complexity increases logarithmically in relation to the input size. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
1,383
4,058
830
import java.io.BufferedReader; import java.io.IOException; import java.io.InputStreamReader; import java.io.PrintWriter; import java.util.ArrayList; import java.util.Arrays; import java.util.StringTokenizer; /** * Problem solution template. * @author Andrew Porokhin, [email protected] */ public class Problem17A implements Runnable { void solve() throws NumberFormatException, IOException { int n = nextInt(); int k = nextInt(); ArrayList<Integer> primes = new ArrayList<Integer>(n + 1); boolean[] simplePrime = new boolean[n + 1]; Arrays.fill(simplePrime, 0, simplePrime.length, true); simplePrime[0] = simplePrime[1] = false; for (int i = 2; i <= n; i++) { if (simplePrime[i]) { for (int j = i + i; j <= n; j += i) { simplePrime[j] = false; } primes.add(i); } } int actualK = 0; for (int i = 1; i < primes.size(); i++) { int val = primes.get(i - 1) + primes.get(i) + 1; if (val <= n) { if (simplePrime[val]) { // System.out.printf("%d + %d + 1 = %d%n", primes.get(i - 1), primes.get(i), val); actualK++; } } else { break; } } // System.out.printf("req: %d actual: %d%n", k, actualK); System.out.println((k <= actualK ? "YES" : "NO")); } StringTokenizer st; BufferedReader in; PrintWriter out; public static void main(String[] args) { new Problem17A().run(); } public void run() { try { in = new BufferedReader(new InputStreamReader(System.in)); out = new PrintWriter(System.out); solve(); } catch (Exception e) { e.printStackTrace(); } finally { out.flush(); out.close(); } } String nextToken() throws IOException { while (st == null || !st.hasMoreTokens()) { st = new StringTokenizer(in.readLine()); } return st.nextToken(); } int nextInt() throws NumberFormatException, IOException { return Integer.parseInt(nextToken()); } long nextLong() throws NumberFormatException, IOException { return Long.parseLong(nextToken()); } double nextDouble() throws NumberFormatException, IOException { return Double.parseDouble(nextToken()); } }
O(n)
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Determine the worst-case time complexity category of a given Java code based on input size n. </TASK> <CODE> import java.io.BufferedReader; import java.io.IOException; import java.io.InputStreamReader; import java.io.PrintWriter; import java.util.ArrayList; import java.util.Arrays; import java.util.StringTokenizer; /** * Problem solution template. * @author Andrew Porokhin, [email protected] */ public class Problem17A implements Runnable { void solve() throws NumberFormatException, IOException { int n = nextInt(); int k = nextInt(); ArrayList<Integer> primes = new ArrayList<Integer>(n + 1); boolean[] simplePrime = new boolean[n + 1]; Arrays.fill(simplePrime, 0, simplePrime.length, true); simplePrime[0] = simplePrime[1] = false; for (int i = 2; i <= n; i++) { if (simplePrime[i]) { for (int j = i + i; j <= n; j += i) { simplePrime[j] = false; } primes.add(i); } } int actualK = 0; for (int i = 1; i < primes.size(); i++) { int val = primes.get(i - 1) + primes.get(i) + 1; if (val <= n) { if (simplePrime[val]) { // System.out.printf("%d + %d + 1 = %d%n", primes.get(i - 1), primes.get(i), val); actualK++; } } else { break; } } // System.out.printf("req: %d actual: %d%n", k, actualK); System.out.println((k <= actualK ? "YES" : "NO")); } StringTokenizer st; BufferedReader in; PrintWriter out; public static void main(String[] args) { new Problem17A().run(); } public void run() { try { in = new BufferedReader(new InputStreamReader(System.in)); out = new PrintWriter(System.out); solve(); } catch (Exception e) { e.printStackTrace(); } finally { out.flush(); out.close(); } } String nextToken() throws IOException { while (st == null || !st.hasMoreTokens()) { st = new StringTokenizer(in.readLine()); } return st.nextToken(); } int nextInt() throws NumberFormatException, IOException { return Integer.parseInt(nextToken()); } long nextLong() throws NumberFormatException, IOException { return Long.parseLong(nextToken()); } double nextDouble() throws NumberFormatException, IOException { return Double.parseDouble(nextToken()); } } </CODE> <EVALUATION_RUBRIC> - O(nlog(n)): The time complexity combines linear and logarithmic growth factors. - O(n^3): The time complexity scales proportionally to the cube of the input size. - O(n): The time complexity increases proportionally to the input size n in a linear manner. - O(n^2): The time complexity grows proportionally to the square of the input size. - O(1): The time complexity is constant to the input size n. - non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially. - O(log(n)): The time complexity increases logarithmically in relation to the input size. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Classify the following Java code's worst-case time complexity according to its relationship to the input size n. </TASK> <CODE> import java.io.BufferedReader; import java.io.IOException; import java.io.InputStreamReader; import java.io.PrintWriter; import java.util.ArrayList; import java.util.Arrays; import java.util.StringTokenizer; /** * Problem solution template. * @author Andrew Porokhin, [email protected] */ public class Problem17A implements Runnable { void solve() throws NumberFormatException, IOException { int n = nextInt(); int k = nextInt(); ArrayList<Integer> primes = new ArrayList<Integer>(n + 1); boolean[] simplePrime = new boolean[n + 1]; Arrays.fill(simplePrime, 0, simplePrime.length, true); simplePrime[0] = simplePrime[1] = false; for (int i = 2; i <= n; i++) { if (simplePrime[i]) { for (int j = i + i; j <= n; j += i) { simplePrime[j] = false; } primes.add(i); } } int actualK = 0; for (int i = 1; i < primes.size(); i++) { int val = primes.get(i - 1) + primes.get(i) + 1; if (val <= n) { if (simplePrime[val]) { // System.out.printf("%d + %d + 1 = %d%n", primes.get(i - 1), primes.get(i), val); actualK++; } } else { break; } } // System.out.printf("req: %d actual: %d%n", k, actualK); System.out.println((k <= actualK ? "YES" : "NO")); } StringTokenizer st; BufferedReader in; PrintWriter out; public static void main(String[] args) { new Problem17A().run(); } public void run() { try { in = new BufferedReader(new InputStreamReader(System.in)); out = new PrintWriter(System.out); solve(); } catch (Exception e) { e.printStackTrace(); } finally { out.flush(); out.close(); } } String nextToken() throws IOException { while (st == null || !st.hasMoreTokens()) { st = new StringTokenizer(in.readLine()); } return st.nextToken(); } int nextInt() throws NumberFormatException, IOException { return Integer.parseInt(nextToken()); } long nextLong() throws NumberFormatException, IOException { return Long.parseLong(nextToken()); } double nextDouble() throws NumberFormatException, IOException { return Double.parseDouble(nextToken()); } } </CODE> <EVALUATION_RUBRIC> - O(n^2): The running time increases with the square of the input size n. - O(log(n)): The running time increases with the logarithm of the input size n. - O(n): The running time grows linearly with the input size n. - O(n^3): The running time increases with the cube of the input size n. - O(1): The running time does not change regardless of the input size n. - others: The code does not clearly correspond to the listed classes or has an unclassified time complexity. - O(nlog(n)): The running time increases with the product of n and logarithm of n. - non-polynomial: The running time increases non-polynomially with input size n, typically exponentially. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
889
829
683
/* * Created on 17.05.2019 */ import java.io.BufferedReader; import java.io.IOException; import java.io.InputStreamReader; /** * @author Wolfgang Weck */ public class C01Easy { public static void main(String[] args) { try (BufferedReader r = new BufferedReader(new InputStreamReader(System.in))) { final String[] line = r.readLine().split(" "); final int N = Integer.parseInt(line[0]), P = Integer.parseInt(line[1]); final String[] numS = r.readLine().split(" "); if (numS.length != N) throw new IllegalArgumentException(); final int[] n = new int[N]; int sum1 = 0, sum2 = 0; for (int i = 0; i < N; i++) { n[i] = Integer.parseInt(numS[i]) % P; sum2 += n[i]; if (sum2 >= P) sum2 -= P; } int max = sum2; for (int i = 0; i < N; i++) { sum1 += n[i]; if (sum1 >= P) sum1 -= P; sum2 -= n[i]; if (sum2 < 0) sum2 += P; final int s = sum1 + sum2; if (s > max) max = s; } System.out.println(max); } catch (IOException e) { e.printStackTrace(); } } }
O(n)
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Determine the worst-case time complexity category of a given Java code based on input size n. </TASK> <CODE> /* * Created on 17.05.2019 */ import java.io.BufferedReader; import java.io.IOException; import java.io.InputStreamReader; /** * @author Wolfgang Weck */ public class C01Easy { public static void main(String[] args) { try (BufferedReader r = new BufferedReader(new InputStreamReader(System.in))) { final String[] line = r.readLine().split(" "); final int N = Integer.parseInt(line[0]), P = Integer.parseInt(line[1]); final String[] numS = r.readLine().split(" "); if (numS.length != N) throw new IllegalArgumentException(); final int[] n = new int[N]; int sum1 = 0, sum2 = 0; for (int i = 0; i < N; i++) { n[i] = Integer.parseInt(numS[i]) % P; sum2 += n[i]; if (sum2 >= P) sum2 -= P; } int max = sum2; for (int i = 0; i < N; i++) { sum1 += n[i]; if (sum1 >= P) sum1 -= P; sum2 -= n[i]; if (sum2 < 0) sum2 += P; final int s = sum1 + sum2; if (s > max) max = s; } System.out.println(max); } catch (IOException e) { e.printStackTrace(); } } } </CODE> <EVALUATION_RUBRIC> - O(n^3): The time complexity scales proportionally to the cube of the input size. - O(n^2): The time complexity grows proportionally to the square of the input size. - non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially. - O(n): The time complexity increases proportionally to the input size n in a linear manner. - O(1): The time complexity is constant to the input size n. - O(nlog(n)): The time complexity combines linear and logarithmic growth factors. - O(log(n)): The time complexity increases logarithmically in relation to the input size. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n. </TASK> <CODE> /* * Created on 17.05.2019 */ import java.io.BufferedReader; import java.io.IOException; import java.io.InputStreamReader; /** * @author Wolfgang Weck */ public class C01Easy { public static void main(String[] args) { try (BufferedReader r = new BufferedReader(new InputStreamReader(System.in))) { final String[] line = r.readLine().split(" "); final int N = Integer.parseInt(line[0]), P = Integer.parseInt(line[1]); final String[] numS = r.readLine().split(" "); if (numS.length != N) throw new IllegalArgumentException(); final int[] n = new int[N]; int sum1 = 0, sum2 = 0; for (int i = 0; i < N; i++) { n[i] = Integer.parseInt(numS[i]) % P; sum2 += n[i]; if (sum2 >= P) sum2 -= P; } int max = sum2; for (int i = 0; i < N; i++) { sum1 += n[i]; if (sum1 >= P) sum1 -= P; sum2 -= n[i]; if (sum2 < 0) sum2 += P; final int s = sum1 + sum2; if (s > max) max = s; } System.out.println(max); } catch (IOException e) { e.printStackTrace(); } } } </CODE> <EVALUATION_RUBRIC> - O(n): The execution time ascends in a one-to-one ratio with the input size n. - non-polynomial: The running time increases non-polynomially with input size n, typically exponentially. - O(1): The execution time is unaffected by the size of the input n. - O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially. - O(log(n)): The execution time ascends in proportion to the logarithm of the input size n. - others: The time complexity does not fit to any of the given categories or is ambiguous. - O(n^2): The execution time ascends in proportion to the square of the input size n. - O(n^3): The execution time ascends in proportion to the cube of the input size n. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
650
682
1,962
import java.io.*; import java.util.*; public class A { BufferedReader br; PrintWriter out; StringTokenizer st; boolean eof; class Team implements Comparable<Team>{ int ac; int penalty; public Team(int ac, int penalty) { this.ac = ac; this.penalty = penalty; } @Override public int compareTo(Team o) { if (ac != o.ac) return ac > o.ac ? -1 : 1; return (penalty == o.penalty) ? 0 : (penalty < o.penalty ? -1 : 1); } } void solve() throws IOException { int n = nextInt(); int k = nextInt() - 1; Team[] a = new Team[n]; for (int i = 0; i < n; i++) a[i] = new Team(nextInt(), nextInt()); Arrays.sort(a); for (int i = 0; i < n;) { int j = i; while (j < n && a[j].compareTo(a[i]) == 0) j++; if (i <= k && k < j) { out.println(j - i); return; } i = j; } } void inp() throws IOException { br = new BufferedReader(new InputStreamReader(System.in)); out = new PrintWriter(System.out); solve(); out.close(); } public static void main(String[] args) throws IOException { new A().inp(); } String nextToken() { while (st == null || !st.hasMoreTokens()) { try { st = new StringTokenizer(br.readLine()); } catch (Exception e) { eof = true; return null; } } return st.nextToken(); } String nextString() { try { return br.readLine(); } catch (IOException e) { eof = true; return null; } } int nextInt() throws IOException { return Integer.parseInt(nextToken()); } long nextLong() throws IOException { return Long.parseLong(nextToken()); } double nextDouble() throws IOException { return Double.parseDouble(nextToken()); } }
O(nlog(n))
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Determine the worst-case time complexity category of a given Java code based on input size n. </TASK> <CODE> import java.io.*; import java.util.*; public class A { BufferedReader br; PrintWriter out; StringTokenizer st; boolean eof; class Team implements Comparable<Team>{ int ac; int penalty; public Team(int ac, int penalty) { this.ac = ac; this.penalty = penalty; } @Override public int compareTo(Team o) { if (ac != o.ac) return ac > o.ac ? -1 : 1; return (penalty == o.penalty) ? 0 : (penalty < o.penalty ? -1 : 1); } } void solve() throws IOException { int n = nextInt(); int k = nextInt() - 1; Team[] a = new Team[n]; for (int i = 0; i < n; i++) a[i] = new Team(nextInt(), nextInt()); Arrays.sort(a); for (int i = 0; i < n;) { int j = i; while (j < n && a[j].compareTo(a[i]) == 0) j++; if (i <= k && k < j) { out.println(j - i); return; } i = j; } } void inp() throws IOException { br = new BufferedReader(new InputStreamReader(System.in)); out = new PrintWriter(System.out); solve(); out.close(); } public static void main(String[] args) throws IOException { new A().inp(); } String nextToken() { while (st == null || !st.hasMoreTokens()) { try { st = new StringTokenizer(br.readLine()); } catch (Exception e) { eof = true; return null; } } return st.nextToken(); } String nextString() { try { return br.readLine(); } catch (IOException e) { eof = true; return null; } } int nextInt() throws IOException { return Integer.parseInt(nextToken()); } long nextLong() throws IOException { return Long.parseLong(nextToken()); } double nextDouble() throws IOException { return Double.parseDouble(nextToken()); } } </CODE> <EVALUATION_RUBRIC> - O(n): The time complexity increases proportionally to the input size n in a linear manner. - O(n^3): The time complexity scales proportionally to the cube of the input size. - O(nlog(n)): The time complexity combines linear and logarithmic growth factors. - non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially. - O(n^2): The time complexity grows proportionally to the square of the input size. - O(1): The time complexity is constant to the input size n. - O(log(n)): The time complexity increases logarithmically in relation to the input size. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Classify the following Java code's worst-case time complexity according to its relationship to the input size n. </TASK> <CODE> import java.io.*; import java.util.*; public class A { BufferedReader br; PrintWriter out; StringTokenizer st; boolean eof; class Team implements Comparable<Team>{ int ac; int penalty; public Team(int ac, int penalty) { this.ac = ac; this.penalty = penalty; } @Override public int compareTo(Team o) { if (ac != o.ac) return ac > o.ac ? -1 : 1; return (penalty == o.penalty) ? 0 : (penalty < o.penalty ? -1 : 1); } } void solve() throws IOException { int n = nextInt(); int k = nextInt() - 1; Team[] a = new Team[n]; for (int i = 0; i < n; i++) a[i] = new Team(nextInt(), nextInt()); Arrays.sort(a); for (int i = 0; i < n;) { int j = i; while (j < n && a[j].compareTo(a[i]) == 0) j++; if (i <= k && k < j) { out.println(j - i); return; } i = j; } } void inp() throws IOException { br = new BufferedReader(new InputStreamReader(System.in)); out = new PrintWriter(System.out); solve(); out.close(); } public static void main(String[] args) throws IOException { new A().inp(); } String nextToken() { while (st == null || !st.hasMoreTokens()) { try { st = new StringTokenizer(br.readLine()); } catch (Exception e) { eof = true; return null; } } return st.nextToken(); } String nextString() { try { return br.readLine(); } catch (IOException e) { eof = true; return null; } } int nextInt() throws IOException { return Integer.parseInt(nextToken()); } long nextLong() throws IOException { return Long.parseLong(nextToken()); } double nextDouble() throws IOException { return Double.parseDouble(nextToken()); } } </CODE> <EVALUATION_RUBRIC> - O(n): The running time grows linearly with the input size n. - others: The code does not clearly correspond to the listed classes or has an unclassified time complexity. - O(n^2): The running time increases with the square of the input size n. - O(log(n)): The running time increases with the logarithm of the input size n. - O(n^3): The running time increases with the cube of the input size n. - O(1): The running time does not change regardless of the input size n. - O(nlog(n)): The running time increases with the product of n and logarithm of n. - non-polynomial: The running time increases non-polynomially with input size n, typically exponentially. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
809
1,958
2,651
import java.io.*; import java.util.*; public class oK{ void pre() throws Exception{} void solve(int TC) throws Exception{ int n=ni(); int a[]=new int[n]; for(int i=0;i<n;i++) { a[i]=ni(); } Arrays.sort(a); int b[]=new int[101]; int flag=0; int count=0; for(int i=0;i<n;i++) { flag=0; if(b[a[i]]==0) { count++; } for(int j=i;j<n;j++) { if(b[a[j]]==0&&a[j]%a[i]==0) { b[a[j]]=1; } //if(flag==1)count++; } } pn(count); } // void hold(boolean b)throws Exception{if(!b)throw new Exception("Hold right there, Sparky!");} static boolean multipleTC = false, memory = false; FastReader in;PrintWriter out; void run() throws Exception{ in = new FastReader(); out = new PrintWriter(System.out); int T = (multipleTC)?ni():1; pre();for(int t = 1; t<= T; t++)solve(t); out.flush(); out.close(); } public static void main(String[] args) throws Exception{ if(memory)new Thread(null, new Runnable() {public void run(){try{new oK().run();}catch(Exception e){e.printStackTrace();}}}, "1", 1 << 28).start(); else new oK().run(); } void p(Object o){out.print(o);} void pn(Object o){out.println(o);} void pni(Object o){out.println(o);out.flush();} String n()throws Exception{return in.next();} String nln()throws Exception{return in.nextLine();} int ni()throws Exception{return Integer.parseInt(in.next());} long nl()throws Exception{return Long.parseLong(in.next());} class FastReader{ BufferedReader br; StringTokenizer st; public FastReader(){ br = new BufferedReader(new InputStreamReader(System.in)); } public FastReader(String s) throws Exception{ br = new BufferedReader(new FileReader(s)); } String next() throws Exception{ while (st == null || !st.hasMoreElements()){ try{ st = new StringTokenizer(br.readLine()); }catch (IOException e){ throw new Exception(e.toString()); } } return st.nextToken(); } String nextLine() throws Exception{ String str = ""; try{ str = br.readLine(); }catch (IOException e){ throw new Exception(e.toString()); } return str; } } }
O(n^2)
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n. </TASK> <CODE> import java.io.*; import java.util.*; public class oK{ void pre() throws Exception{} void solve(int TC) throws Exception{ int n=ni(); int a[]=new int[n]; for(int i=0;i<n;i++) { a[i]=ni(); } Arrays.sort(a); int b[]=new int[101]; int flag=0; int count=0; for(int i=0;i<n;i++) { flag=0; if(b[a[i]]==0) { count++; } for(int j=i;j<n;j++) { if(b[a[j]]==0&&a[j]%a[i]==0) { b[a[j]]=1; } //if(flag==1)count++; } } pn(count); } // void hold(boolean b)throws Exception{if(!b)throw new Exception("Hold right there, Sparky!");} static boolean multipleTC = false, memory = false; FastReader in;PrintWriter out; void run() throws Exception{ in = new FastReader(); out = new PrintWriter(System.out); int T = (multipleTC)?ni():1; pre();for(int t = 1; t<= T; t++)solve(t); out.flush(); out.close(); } public static void main(String[] args) throws Exception{ if(memory)new Thread(null, new Runnable() {public void run(){try{new oK().run();}catch(Exception e){e.printStackTrace();}}}, "1", 1 << 28).start(); else new oK().run(); } void p(Object o){out.print(o);} void pn(Object o){out.println(o);} void pni(Object o){out.println(o);out.flush();} String n()throws Exception{return in.next();} String nln()throws Exception{return in.nextLine();} int ni()throws Exception{return Integer.parseInt(in.next());} long nl()throws Exception{return Long.parseLong(in.next());} class FastReader{ BufferedReader br; StringTokenizer st; public FastReader(){ br = new BufferedReader(new InputStreamReader(System.in)); } public FastReader(String s) throws Exception{ br = new BufferedReader(new FileReader(s)); } String next() throws Exception{ while (st == null || !st.hasMoreElements()){ try{ st = new StringTokenizer(br.readLine()); }catch (IOException e){ throw new Exception(e.toString()); } } return st.nextToken(); } String nextLine() throws Exception{ String str = ""; try{ str = br.readLine(); }catch (IOException e){ throw new Exception(e.toString()); } return str; } } } </CODE> <EVALUATION_RUBRIC> - O(n): The execution time ascends in a one-to-one ratio with the input size n. - O(1): The execution time is unaffected by the size of the input n. - O(n^2): The execution time ascends in proportion to the square of the input size n. - O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially. - O(log(n)): The execution time ascends in proportion to the logarithm of the input size n. - non-polynomial: The running time increases non-polynomially with input size n, typically exponentially. - O(n^3): The execution time ascends in proportion to the cube of the input size n. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Classify the following Java code's worst-case time complexity according to its relationship to the input size n. </TASK> <CODE> import java.io.*; import java.util.*; public class oK{ void pre() throws Exception{} void solve(int TC) throws Exception{ int n=ni(); int a[]=new int[n]; for(int i=0;i<n;i++) { a[i]=ni(); } Arrays.sort(a); int b[]=new int[101]; int flag=0; int count=0; for(int i=0;i<n;i++) { flag=0; if(b[a[i]]==0) { count++; } for(int j=i;j<n;j++) { if(b[a[j]]==0&&a[j]%a[i]==0) { b[a[j]]=1; } //if(flag==1)count++; } } pn(count); } // void hold(boolean b)throws Exception{if(!b)throw new Exception("Hold right there, Sparky!");} static boolean multipleTC = false, memory = false; FastReader in;PrintWriter out; void run() throws Exception{ in = new FastReader(); out = new PrintWriter(System.out); int T = (multipleTC)?ni():1; pre();for(int t = 1; t<= T; t++)solve(t); out.flush(); out.close(); } public static void main(String[] args) throws Exception{ if(memory)new Thread(null, new Runnable() {public void run(){try{new oK().run();}catch(Exception e){e.printStackTrace();}}}, "1", 1 << 28).start(); else new oK().run(); } void p(Object o){out.print(o);} void pn(Object o){out.println(o);} void pni(Object o){out.println(o);out.flush();} String n()throws Exception{return in.next();} String nln()throws Exception{return in.nextLine();} int ni()throws Exception{return Integer.parseInt(in.next());} long nl()throws Exception{return Long.parseLong(in.next());} class FastReader{ BufferedReader br; StringTokenizer st; public FastReader(){ br = new BufferedReader(new InputStreamReader(System.in)); } public FastReader(String s) throws Exception{ br = new BufferedReader(new FileReader(s)); } String next() throws Exception{ while (st == null || !st.hasMoreElements()){ try{ st = new StringTokenizer(br.readLine()); }catch (IOException e){ throw new Exception(e.toString()); } } return st.nextToken(); } String nextLine() throws Exception{ String str = ""; try{ str = br.readLine(); }catch (IOException e){ throw new Exception(e.toString()); } return str; } } } </CODE> <EVALUATION_RUBRIC> - non-polynomial: The running time increases non-polynomially with input size n, typically exponentially. - O(n^3): The running time increases with the cube of the input size n. - O(n): The running time grows linearly with the input size n. - O(1): The running time does not change regardless of the input size n. - O(nlog(n)): The running time increases with the product of n and logarithm of n. - others: The code does not clearly correspond to the listed classes or has an unclassified time complexity. - O(n^2): The running time increases with the square of the input size n. - O(log(n)): The running time increases with the logarithm of the input size n. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
1,003
2,645
3,502
import java.io.OutputStream; import java.io.IOException; import java.io.InputStream; import java.io.OutputStream; import java.util.Arrays; import java.io.IOException; import java.io.UncheckedIOException; import java.io.Closeable; import java.io.Writer; import java.io.OutputStreamWriter; import java.math.BigInteger; import java.io.InputStream; /** * Built using CHelper plug-in * Actual solution is at the top */ public class Main { public static void main(String[] args) throws Exception { Thread thread = new Thread(null, new TaskAdapter(), "", 1 << 29); thread.start(); thread.join(); } static class TaskAdapter implements Runnable { @Override public void run() { InputStream inputStream = System.in; OutputStream outputStream = System.out; FastInput in = new FastInput(inputStream); FastOutput out = new FastOutput(outputStream); EPhoenixAndComputers solver = new EPhoenixAndComputers(); solver.solve(1, in, out); out.close(); } } static class EPhoenixAndComputers { public void solve(int testNumber, FastInput in, FastOutput out) { int n = in.ri(); int mod = in.ri(); CachedPow2 cp = new CachedPow2(2, mod, n + 1, mod - 1); Combination comb = new Combination(n + 1, mod); long[][][] dp = new long[n + 1][n + 1][2]; dp[0][0][0] = 1; for (int i = 1; i <= n; i++) { for (int j = 0; j <= n; j++) { dp[i][j][0] = dp[i - 1][j][1]; for (int k = 0; k < i; k++) { int len = i - k; int last = j - len; if (last >= 0) { dp[i][j][1] += dp[k][last][0] * cp.pow(len - 1) % mod * comb.combination(j, len) % mod; } } dp[i][j][1] %= mod; } } long ans = 0; for (int i = 0; i <= n; i++) { ans += dp[n][i][1]; } ans %= mod; out.println(ans); } } static class FastOutput implements AutoCloseable, Closeable, Appendable { private static final int THRESHOLD = 32 << 10; private final Writer os; private StringBuilder cache = new StringBuilder(THRESHOLD * 2); public FastOutput append(CharSequence csq) { cache.append(csq); return this; } public FastOutput append(CharSequence csq, int start, int end) { cache.append(csq, start, end); return this; } private void afterWrite() { if (cache.length() < THRESHOLD) { return; } flush(); } public FastOutput(Writer os) { this.os = os; } public FastOutput(OutputStream os) { this(new OutputStreamWriter(os)); } public FastOutput append(char c) { cache.append(c); afterWrite(); return this; } public FastOutput append(long c) { cache.append(c); afterWrite(); return this; } public FastOutput println(long c) { return append(c).println(); } public FastOutput println() { return append('\n'); } public FastOutput flush() { try { // boolean success = false; // if (stringBuilderValueField != null) { // try { // char[] value = (char[]) stringBuilderValueField.get(cache); // os.write(value, 0, cache.length()); // success = true; // } catch (Exception e) { // } // } // if (!success) { os.append(cache); // } os.flush(); cache.setLength(0); } catch (IOException e) { throw new UncheckedIOException(e); } return this; } public void close() { flush(); try { os.close(); } catch (IOException e) { throw new UncheckedIOException(e); } } public String toString() { return cache.toString(); } } static interface IntegerEntryIterator { boolean hasNext(); void next(); int getEntryKey(); int getEntryValue(); } static class FastInput { private final InputStream is; private byte[] buf = new byte[1 << 13]; private int bufLen; private int bufOffset; private int next; public FastInput(InputStream is) { this.is = is; } private int read() { while (bufLen == bufOffset) { bufOffset = 0; try { bufLen = is.read(buf); } catch (IOException e) { bufLen = -1; } if (bufLen == -1) { return -1; } } return buf[bufOffset++]; } public void skipBlank() { while (next >= 0 && next <= 32) { next = read(); } } public int ri() { return readInt(); } public int readInt() { boolean rev = false; skipBlank(); if (next == '+' || next == '-') { rev = next == '-'; next = read(); } int val = 0; while (next >= '0' && next <= '9') { val = val * 10 - next + '0'; next = read(); } return rev ? val : -val; } } static class Hasher { private long time = System.nanoTime() + System.currentTimeMillis() * 31L; public int shuffle(long z) { z += time; z = (z ^ (z >>> 33)) * 0x62a9d9ed799705f5L; return (int) (((z ^ (z >>> 28)) * 0xcb24d0a5c88c35b3L) >>> 32); } public int hash(int x) { return shuffle(x); } } static class CachedEulerFunction { private static int boundary = 1 << 16; private static int[] euler = MultiplicativeFunctionSieve.getInstance(boundary).getEuler(); private static IntegerHashMap map = new IntegerHashMap(64, true); public static int get(int x) { return get(x, 2); } private static int get(int x, int begin) { if (x <= boundary) { return euler[x]; } int ans = map.getOrDefault(x, -1); if (ans == -1) { int factor = findPrimeFactor(x, begin); int y = x; int exp = 1; while (y % factor == 0) { y /= factor; exp *= factor; } ans = get(y, factor + 1) * (exp - exp / factor); //ans = calc(x); map.put(x, ans); } return ans; } private static int findPrimeFactor(int x, int begin) { for (int i = Math.max(2, begin); i * i <= x; i++) { if (x % i == 0) { return i; } } return x; } } static interface IntCombination { } static class MultiplicativeFunctionSieve { static MultiplicativeFunctionSieve instance = new MultiplicativeFunctionSieve(1 << 16); public int[] primes; public boolean[] isComp; public int primeLength; public int[] smallestPrimeFactor; public int[] expOfSmallestPrimeFactor; int limit; public static MultiplicativeFunctionSieve getInstance(int n) { if (n <= (1 << 16)) { return instance; } return new MultiplicativeFunctionSieve(n); } public int[] getEuler() { int[] euler = new int[limit + 1]; euler[1] = 1; for (int i = 2; i <= limit; i++) { if (!isComp[i]) { euler[i] = i - 1; } else { if (expOfSmallestPrimeFactor[i] == i) { euler[i] = i - i / smallestPrimeFactor[i]; } else { euler[i] = euler[expOfSmallestPrimeFactor[i]] * euler[i / expOfSmallestPrimeFactor[i]]; } } } return euler; } public MultiplicativeFunctionSieve(int limit) { this.limit = limit; isComp = new boolean[limit + 1]; primes = new int[limit + 1]; expOfSmallestPrimeFactor = new int[limit + 1]; smallestPrimeFactor = new int[limit + 1]; primeLength = 0; for (int i = 2; i <= limit; i++) { if (!isComp[i]) { primes[primeLength++] = i; expOfSmallestPrimeFactor[i] = smallestPrimeFactor[i] = i; } for (int j = 0, until = limit / i; j < primeLength && primes[j] <= until; j++) { int pi = primes[j] * i; smallestPrimeFactor[pi] = primes[j]; expOfSmallestPrimeFactor[pi] = smallestPrimeFactor[i] == primes[j] ? (expOfSmallestPrimeFactor[i] * expOfSmallestPrimeFactor[primes[j]]) : expOfSmallestPrimeFactor[primes[j]]; isComp[pi] = true; if (i % primes[j] == 0) { break; } } } } } static class Factorial { int[] fact; int[] inv; int mod; public int getMod() { return mod; } public Factorial(int[] fact, int[] inv, int mod) { this.mod = mod; this.fact = fact; this.inv = inv; fact[0] = inv[0] = 1; int n = Math.min(fact.length, mod); for (int i = 1; i < n; i++) { fact[i] = i; fact[i] = (int) ((long) fact[i] * fact[i - 1] % mod); } if (n - 1 >= 0) { inv[n - 1] = BigInteger.valueOf(fact[n - 1]).modInverse(BigInteger.valueOf(mod)).intValue(); } for (int i = n - 2; i >= 1; i--) { inv[i] = (int) ((long) inv[i + 1] * (i + 1) % mod); } } public Factorial(int limit, int mod) { this(new int[Math.min(limit + 1, mod)], new int[Math.min(limit + 1, mod)], mod); } public int fact(int n) { if (n >= mod) { return 0; } return fact[n]; } public int invFact(int n) { if (n >= mod) { throw new IllegalArgumentException(); } return inv[n]; } } static class CachedPow2 { private int[] first; private int[] second; private int mod; private int low; private int mask; private int phi; private int xphi; public CachedPow2(int x, int mod) { this(x, mod, CachedEulerFunction.get(mod)); } public CachedPow2(int x, int mod, int phi) { this(x, mod, mod, phi); } public CachedPow2(int x, int mod, int limit, int phi) { this.phi = phi; limit = Math.min(limit, mod); this.mod = mod; int log = Log2.ceilLog(limit + 1); low = (log + 1) / 2; mask = (1 << low) - 1; first = new int[1 << low]; second = new int[1 << log - low]; first[0] = 1; for (int i = 1; i < first.length; i++) { first[i] = (int) ((long) x * first[i - 1] % mod); } second[0] = 1; long step = (long) x * first[first.length - 1] % mod; for (int i = 1; i < second.length; i++) { second[i] = (int) (second[i - 1] * step % mod); } xphi = DigitUtils.modPow(x, phi, mod); } public int pow(int exp) { return (int) ((long) first[exp & mask] * second[exp >> low] % mod); } } static class DigitUtils { private DigitUtils() { } public static int mod(long x, int mod) { if (x < -mod || x >= mod) { x %= mod; } if (x < 0) { x += mod; } return (int) x; } public static int mod(int x, int mod) { if (x < -mod || x >= mod) { x %= mod; } if (x < 0) { x += mod; } return x; } public static int modPow(int x, long n, int m) { if (n == 0) { return DigitUtils.mod(1, m); } int ans = modPow(x, n / 2, m); ans = DigitUtils.mod((long) ans * ans, m); if (n % 2 == 1) { ans = DigitUtils.mod((long) ans * x, m); } return ans; } } static class Combination implements IntCombination { final Factorial factorial; int modVal; public Combination(Factorial factorial) { this.factorial = factorial; this.modVal = factorial.getMod(); } public Combination(int limit, int mod) { this(new Factorial(limit, mod)); } public int combination(int m, int n) { if (n > m || n < 0) { return 0; } return (int) ((long) factorial.fact(m) * factorial.invFact(n) % modVal * factorial.invFact(m - n) % modVal); } } static class Log2 { public static int ceilLog(int x) { if (x <= 0) { return 0; } return 32 - Integer.numberOfLeadingZeros(x - 1); } } static class IntegerHashMap { private int now; private int[] slot; private int[] version; private int[] next; private int[] keys; private int[] values; private int alloc; private boolean[] removed; private int mask; private int size; private boolean rehash; private Hasher hasher = new Hasher(); public IntegerHashMap(int cap, boolean rehash) { now = 1; this.mask = (1 << (32 - Integer.numberOfLeadingZeros(cap - 1))) - 1; slot = new int[mask + 1]; version = new int[slot.length]; next = new int[cap + 1]; keys = new int[cap + 1]; values = new int[cap + 1]; removed = new boolean[cap + 1]; this.rehash = rehash; } private void doubleCapacity() { int newSize = Math.max(next.length + 10, next.length * 2); next = Arrays.copyOf(next, newSize); keys = Arrays.copyOf(keys, newSize); values = Arrays.copyOf(values, newSize); removed = Arrays.copyOf(removed, newSize); } public void alloc() { alloc++; if (alloc >= next.length) { doubleCapacity(); } next[alloc] = 0; removed[alloc] = false; size++; } private void rehash() { int[] newSlots = new int[Math.max(16, slot.length * 2)]; int[] newVersions = new int[newSlots.length]; int newMask = newSlots.length - 1; for (int i = 0; i < slot.length; i++) { access(i); if (slot[i] == 0) { continue; } int head = slot[i]; while (head != 0) { int n = next[head]; int s = hash(keys[head]) & newMask; next[head] = newSlots[s]; newSlots[s] = head; head = n; } } this.slot = newSlots; this.version = newVersions; now = 0; this.mask = newMask; } private int hash(int x) { return hasher.hash(x); } public void put(int x, int y) { put(x, y, true); } public void put(int x, int y, boolean cover) { int h = hash(x); int s = h & mask; access(s); if (slot[s] == 0) { alloc(); slot[s] = alloc; keys[alloc] = x; values[alloc] = y; } else { int index = findIndexOrLastEntry(s, x); if (keys[index] != x) { alloc(); next[index] = alloc; keys[alloc] = x; values[alloc] = y; } else if (cover) { values[index] = y; } } if (rehash && size >= slot.length) { rehash(); } } public int getOrDefault(int x, int def) { int h = hash(x); int s = h & mask; access(s); if (slot[s] == 0) { return def; } int index = findIndexOrLastEntry(s, x); return keys[index] == x ? values[index] : def; } private int findIndexOrLastEntry(int s, int x) { int iter = slot[s]; while (keys[iter] != x) { if (next[iter] != 0) { iter = next[iter]; } else { return iter; } } return iter; } private void access(int i) { if (version[i] != now) { version[i] = now; slot[i] = 0; } } public IntegerEntryIterator iterator() { return new IntegerEntryIterator() { int index = 1; int readIndex = -1; public boolean hasNext() { while (index <= alloc && removed[index]) { index++; } return index <= alloc; } public int getEntryKey() { return keys[readIndex]; } public int getEntryValue() { return values[readIndex]; } public void next() { if (!hasNext()) { throw new IllegalStateException(); } readIndex = index; index++; } }; } public String toString() { IntegerEntryIterator iterator = iterator(); StringBuilder builder = new StringBuilder("{"); while (iterator.hasNext()) { iterator.next(); builder.append(iterator.getEntryKey()).append("->").append(iterator.getEntryValue()).append(','); } if (builder.charAt(builder.length() - 1) == ',') { builder.setLength(builder.length() - 1); } builder.append('}'); return builder.toString(); } } }
O(n^3)
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Determine the worst-case time complexity category of a given Java code based on input size n. </TASK> <CODE> import java.io.OutputStream; import java.io.IOException; import java.io.InputStream; import java.io.OutputStream; import java.util.Arrays; import java.io.IOException; import java.io.UncheckedIOException; import java.io.Closeable; import java.io.Writer; import java.io.OutputStreamWriter; import java.math.BigInteger; import java.io.InputStream; /** * Built using CHelper plug-in * Actual solution is at the top */ public class Main { public static void main(String[] args) throws Exception { Thread thread = new Thread(null, new TaskAdapter(), "", 1 << 29); thread.start(); thread.join(); } static class TaskAdapter implements Runnable { @Override public void run() { InputStream inputStream = System.in; OutputStream outputStream = System.out; FastInput in = new FastInput(inputStream); FastOutput out = new FastOutput(outputStream); EPhoenixAndComputers solver = new EPhoenixAndComputers(); solver.solve(1, in, out); out.close(); } } static class EPhoenixAndComputers { public void solve(int testNumber, FastInput in, FastOutput out) { int n = in.ri(); int mod = in.ri(); CachedPow2 cp = new CachedPow2(2, mod, n + 1, mod - 1); Combination comb = new Combination(n + 1, mod); long[][][] dp = new long[n + 1][n + 1][2]; dp[0][0][0] = 1; for (int i = 1; i <= n; i++) { for (int j = 0; j <= n; j++) { dp[i][j][0] = dp[i - 1][j][1]; for (int k = 0; k < i; k++) { int len = i - k; int last = j - len; if (last >= 0) { dp[i][j][1] += dp[k][last][0] * cp.pow(len - 1) % mod * comb.combination(j, len) % mod; } } dp[i][j][1] %= mod; } } long ans = 0; for (int i = 0; i <= n; i++) { ans += dp[n][i][1]; } ans %= mod; out.println(ans); } } static class FastOutput implements AutoCloseable, Closeable, Appendable { private static final int THRESHOLD = 32 << 10; private final Writer os; private StringBuilder cache = new StringBuilder(THRESHOLD * 2); public FastOutput append(CharSequence csq) { cache.append(csq); return this; } public FastOutput append(CharSequence csq, int start, int end) { cache.append(csq, start, end); return this; } private void afterWrite() { if (cache.length() < THRESHOLD) { return; } flush(); } public FastOutput(Writer os) { this.os = os; } public FastOutput(OutputStream os) { this(new OutputStreamWriter(os)); } public FastOutput append(char c) { cache.append(c); afterWrite(); return this; } public FastOutput append(long c) { cache.append(c); afterWrite(); return this; } public FastOutput println(long c) { return append(c).println(); } public FastOutput println() { return append('\n'); } public FastOutput flush() { try { // boolean success = false; // if (stringBuilderValueField != null) { // try { // char[] value = (char[]) stringBuilderValueField.get(cache); // os.write(value, 0, cache.length()); // success = true; // } catch (Exception e) { // } // } // if (!success) { os.append(cache); // } os.flush(); cache.setLength(0); } catch (IOException e) { throw new UncheckedIOException(e); } return this; } public void close() { flush(); try { os.close(); } catch (IOException e) { throw new UncheckedIOException(e); } } public String toString() { return cache.toString(); } } static interface IntegerEntryIterator { boolean hasNext(); void next(); int getEntryKey(); int getEntryValue(); } static class FastInput { private final InputStream is; private byte[] buf = new byte[1 << 13]; private int bufLen; private int bufOffset; private int next; public FastInput(InputStream is) { this.is = is; } private int read() { while (bufLen == bufOffset) { bufOffset = 0; try { bufLen = is.read(buf); } catch (IOException e) { bufLen = -1; } if (bufLen == -1) { return -1; } } return buf[bufOffset++]; } public void skipBlank() { while (next >= 0 && next <= 32) { next = read(); } } public int ri() { return readInt(); } public int readInt() { boolean rev = false; skipBlank(); if (next == '+' || next == '-') { rev = next == '-'; next = read(); } int val = 0; while (next >= '0' && next <= '9') { val = val * 10 - next + '0'; next = read(); } return rev ? val : -val; } } static class Hasher { private long time = System.nanoTime() + System.currentTimeMillis() * 31L; public int shuffle(long z) { z += time; z = (z ^ (z >>> 33)) * 0x62a9d9ed799705f5L; return (int) (((z ^ (z >>> 28)) * 0xcb24d0a5c88c35b3L) >>> 32); } public int hash(int x) { return shuffle(x); } } static class CachedEulerFunction { private static int boundary = 1 << 16; private static int[] euler = MultiplicativeFunctionSieve.getInstance(boundary).getEuler(); private static IntegerHashMap map = new IntegerHashMap(64, true); public static int get(int x) { return get(x, 2); } private static int get(int x, int begin) { if (x <= boundary) { return euler[x]; } int ans = map.getOrDefault(x, -1); if (ans == -1) { int factor = findPrimeFactor(x, begin); int y = x; int exp = 1; while (y % factor == 0) { y /= factor; exp *= factor; } ans = get(y, factor + 1) * (exp - exp / factor); //ans = calc(x); map.put(x, ans); } return ans; } private static int findPrimeFactor(int x, int begin) { for (int i = Math.max(2, begin); i * i <= x; i++) { if (x % i == 0) { return i; } } return x; } } static interface IntCombination { } static class MultiplicativeFunctionSieve { static MultiplicativeFunctionSieve instance = new MultiplicativeFunctionSieve(1 << 16); public int[] primes; public boolean[] isComp; public int primeLength; public int[] smallestPrimeFactor; public int[] expOfSmallestPrimeFactor; int limit; public static MultiplicativeFunctionSieve getInstance(int n) { if (n <= (1 << 16)) { return instance; } return new MultiplicativeFunctionSieve(n); } public int[] getEuler() { int[] euler = new int[limit + 1]; euler[1] = 1; for (int i = 2; i <= limit; i++) { if (!isComp[i]) { euler[i] = i - 1; } else { if (expOfSmallestPrimeFactor[i] == i) { euler[i] = i - i / smallestPrimeFactor[i]; } else { euler[i] = euler[expOfSmallestPrimeFactor[i]] * euler[i / expOfSmallestPrimeFactor[i]]; } } } return euler; } public MultiplicativeFunctionSieve(int limit) { this.limit = limit; isComp = new boolean[limit + 1]; primes = new int[limit + 1]; expOfSmallestPrimeFactor = new int[limit + 1]; smallestPrimeFactor = new int[limit + 1]; primeLength = 0; for (int i = 2; i <= limit; i++) { if (!isComp[i]) { primes[primeLength++] = i; expOfSmallestPrimeFactor[i] = smallestPrimeFactor[i] = i; } for (int j = 0, until = limit / i; j < primeLength && primes[j] <= until; j++) { int pi = primes[j] * i; smallestPrimeFactor[pi] = primes[j]; expOfSmallestPrimeFactor[pi] = smallestPrimeFactor[i] == primes[j] ? (expOfSmallestPrimeFactor[i] * expOfSmallestPrimeFactor[primes[j]]) : expOfSmallestPrimeFactor[primes[j]]; isComp[pi] = true; if (i % primes[j] == 0) { break; } } } } } static class Factorial { int[] fact; int[] inv; int mod; public int getMod() { return mod; } public Factorial(int[] fact, int[] inv, int mod) { this.mod = mod; this.fact = fact; this.inv = inv; fact[0] = inv[0] = 1; int n = Math.min(fact.length, mod); for (int i = 1; i < n; i++) { fact[i] = i; fact[i] = (int) ((long) fact[i] * fact[i - 1] % mod); } if (n - 1 >= 0) { inv[n - 1] = BigInteger.valueOf(fact[n - 1]).modInverse(BigInteger.valueOf(mod)).intValue(); } for (int i = n - 2; i >= 1; i--) { inv[i] = (int) ((long) inv[i + 1] * (i + 1) % mod); } } public Factorial(int limit, int mod) { this(new int[Math.min(limit + 1, mod)], new int[Math.min(limit + 1, mod)], mod); } public int fact(int n) { if (n >= mod) { return 0; } return fact[n]; } public int invFact(int n) { if (n >= mod) { throw new IllegalArgumentException(); } return inv[n]; } } static class CachedPow2 { private int[] first; private int[] second; private int mod; private int low; private int mask; private int phi; private int xphi; public CachedPow2(int x, int mod) { this(x, mod, CachedEulerFunction.get(mod)); } public CachedPow2(int x, int mod, int phi) { this(x, mod, mod, phi); } public CachedPow2(int x, int mod, int limit, int phi) { this.phi = phi; limit = Math.min(limit, mod); this.mod = mod; int log = Log2.ceilLog(limit + 1); low = (log + 1) / 2; mask = (1 << low) - 1; first = new int[1 << low]; second = new int[1 << log - low]; first[0] = 1; for (int i = 1; i < first.length; i++) { first[i] = (int) ((long) x * first[i - 1] % mod); } second[0] = 1; long step = (long) x * first[first.length - 1] % mod; for (int i = 1; i < second.length; i++) { second[i] = (int) (second[i - 1] * step % mod); } xphi = DigitUtils.modPow(x, phi, mod); } public int pow(int exp) { return (int) ((long) first[exp & mask] * second[exp >> low] % mod); } } static class DigitUtils { private DigitUtils() { } public static int mod(long x, int mod) { if (x < -mod || x >= mod) { x %= mod; } if (x < 0) { x += mod; } return (int) x; } public static int mod(int x, int mod) { if (x < -mod || x >= mod) { x %= mod; } if (x < 0) { x += mod; } return x; } public static int modPow(int x, long n, int m) { if (n == 0) { return DigitUtils.mod(1, m); } int ans = modPow(x, n / 2, m); ans = DigitUtils.mod((long) ans * ans, m); if (n % 2 == 1) { ans = DigitUtils.mod((long) ans * x, m); } return ans; } } static class Combination implements IntCombination { final Factorial factorial; int modVal; public Combination(Factorial factorial) { this.factorial = factorial; this.modVal = factorial.getMod(); } public Combination(int limit, int mod) { this(new Factorial(limit, mod)); } public int combination(int m, int n) { if (n > m || n < 0) { return 0; } return (int) ((long) factorial.fact(m) * factorial.invFact(n) % modVal * factorial.invFact(m - n) % modVal); } } static class Log2 { public static int ceilLog(int x) { if (x <= 0) { return 0; } return 32 - Integer.numberOfLeadingZeros(x - 1); } } static class IntegerHashMap { private int now; private int[] slot; private int[] version; private int[] next; private int[] keys; private int[] values; private int alloc; private boolean[] removed; private int mask; private int size; private boolean rehash; private Hasher hasher = new Hasher(); public IntegerHashMap(int cap, boolean rehash) { now = 1; this.mask = (1 << (32 - Integer.numberOfLeadingZeros(cap - 1))) - 1; slot = new int[mask + 1]; version = new int[slot.length]; next = new int[cap + 1]; keys = new int[cap + 1]; values = new int[cap + 1]; removed = new boolean[cap + 1]; this.rehash = rehash; } private void doubleCapacity() { int newSize = Math.max(next.length + 10, next.length * 2); next = Arrays.copyOf(next, newSize); keys = Arrays.copyOf(keys, newSize); values = Arrays.copyOf(values, newSize); removed = Arrays.copyOf(removed, newSize); } public void alloc() { alloc++; if (alloc >= next.length) { doubleCapacity(); } next[alloc] = 0; removed[alloc] = false; size++; } private void rehash() { int[] newSlots = new int[Math.max(16, slot.length * 2)]; int[] newVersions = new int[newSlots.length]; int newMask = newSlots.length - 1; for (int i = 0; i < slot.length; i++) { access(i); if (slot[i] == 0) { continue; } int head = slot[i]; while (head != 0) { int n = next[head]; int s = hash(keys[head]) & newMask; next[head] = newSlots[s]; newSlots[s] = head; head = n; } } this.slot = newSlots; this.version = newVersions; now = 0; this.mask = newMask; } private int hash(int x) { return hasher.hash(x); } public void put(int x, int y) { put(x, y, true); } public void put(int x, int y, boolean cover) { int h = hash(x); int s = h & mask; access(s); if (slot[s] == 0) { alloc(); slot[s] = alloc; keys[alloc] = x; values[alloc] = y; } else { int index = findIndexOrLastEntry(s, x); if (keys[index] != x) { alloc(); next[index] = alloc; keys[alloc] = x; values[alloc] = y; } else if (cover) { values[index] = y; } } if (rehash && size >= slot.length) { rehash(); } } public int getOrDefault(int x, int def) { int h = hash(x); int s = h & mask; access(s); if (slot[s] == 0) { return def; } int index = findIndexOrLastEntry(s, x); return keys[index] == x ? values[index] : def; } private int findIndexOrLastEntry(int s, int x) { int iter = slot[s]; while (keys[iter] != x) { if (next[iter] != 0) { iter = next[iter]; } else { return iter; } } return iter; } private void access(int i) { if (version[i] != now) { version[i] = now; slot[i] = 0; } } public IntegerEntryIterator iterator() { return new IntegerEntryIterator() { int index = 1; int readIndex = -1; public boolean hasNext() { while (index <= alloc && removed[index]) { index++; } return index <= alloc; } public int getEntryKey() { return keys[readIndex]; } public int getEntryValue() { return values[readIndex]; } public void next() { if (!hasNext()) { throw new IllegalStateException(); } readIndex = index; index++; } }; } public String toString() { IntegerEntryIterator iterator = iterator(); StringBuilder builder = new StringBuilder("{"); while (iterator.hasNext()) { iterator.next(); builder.append(iterator.getEntryKey()).append("->").append(iterator.getEntryValue()).append(','); } if (builder.charAt(builder.length() - 1) == ',') { builder.setLength(builder.length() - 1); } builder.append('}'); return builder.toString(); } } } </CODE> <EVALUATION_RUBRIC> - O(n): The time complexity increases proportionally to the input size n in a linear manner. - non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially. - O(1): The time complexity is constant to the input size n. - O(n^3): The time complexity scales proportionally to the cube of the input size. - O(log(n)): The time complexity increases logarithmically in relation to the input size. - O(n^2): The time complexity grows proportionally to the square of the input size. - O(nlog(n)): The time complexity combines linear and logarithmic growth factors. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Determine the worst-case time complexity category of a given Java code based on input size n. </TASK> <CODE> import java.io.OutputStream; import java.io.IOException; import java.io.InputStream; import java.io.OutputStream; import java.util.Arrays; import java.io.IOException; import java.io.UncheckedIOException; import java.io.Closeable; import java.io.Writer; import java.io.OutputStreamWriter; import java.math.BigInteger; import java.io.InputStream; /** * Built using CHelper plug-in * Actual solution is at the top */ public class Main { public static void main(String[] args) throws Exception { Thread thread = new Thread(null, new TaskAdapter(), "", 1 << 29); thread.start(); thread.join(); } static class TaskAdapter implements Runnable { @Override public void run() { InputStream inputStream = System.in; OutputStream outputStream = System.out; FastInput in = new FastInput(inputStream); FastOutput out = new FastOutput(outputStream); EPhoenixAndComputers solver = new EPhoenixAndComputers(); solver.solve(1, in, out); out.close(); } } static class EPhoenixAndComputers { public void solve(int testNumber, FastInput in, FastOutput out) { int n = in.ri(); int mod = in.ri(); CachedPow2 cp = new CachedPow2(2, mod, n + 1, mod - 1); Combination comb = new Combination(n + 1, mod); long[][][] dp = new long[n + 1][n + 1][2]; dp[0][0][0] = 1; for (int i = 1; i <= n; i++) { for (int j = 0; j <= n; j++) { dp[i][j][0] = dp[i - 1][j][1]; for (int k = 0; k < i; k++) { int len = i - k; int last = j - len; if (last >= 0) { dp[i][j][1] += dp[k][last][0] * cp.pow(len - 1) % mod * comb.combination(j, len) % mod; } } dp[i][j][1] %= mod; } } long ans = 0; for (int i = 0; i <= n; i++) { ans += dp[n][i][1]; } ans %= mod; out.println(ans); } } static class FastOutput implements AutoCloseable, Closeable, Appendable { private static final int THRESHOLD = 32 << 10; private final Writer os; private StringBuilder cache = new StringBuilder(THRESHOLD * 2); public FastOutput append(CharSequence csq) { cache.append(csq); return this; } public FastOutput append(CharSequence csq, int start, int end) { cache.append(csq, start, end); return this; } private void afterWrite() { if (cache.length() < THRESHOLD) { return; } flush(); } public FastOutput(Writer os) { this.os = os; } public FastOutput(OutputStream os) { this(new OutputStreamWriter(os)); } public FastOutput append(char c) { cache.append(c); afterWrite(); return this; } public FastOutput append(long c) { cache.append(c); afterWrite(); return this; } public FastOutput println(long c) { return append(c).println(); } public FastOutput println() { return append('\n'); } public FastOutput flush() { try { // boolean success = false; // if (stringBuilderValueField != null) { // try { // char[] value = (char[]) stringBuilderValueField.get(cache); // os.write(value, 0, cache.length()); // success = true; // } catch (Exception e) { // } // } // if (!success) { os.append(cache); // } os.flush(); cache.setLength(0); } catch (IOException e) { throw new UncheckedIOException(e); } return this; } public void close() { flush(); try { os.close(); } catch (IOException e) { throw new UncheckedIOException(e); } } public String toString() { return cache.toString(); } } static interface IntegerEntryIterator { boolean hasNext(); void next(); int getEntryKey(); int getEntryValue(); } static class FastInput { private final InputStream is; private byte[] buf = new byte[1 << 13]; private int bufLen; private int bufOffset; private int next; public FastInput(InputStream is) { this.is = is; } private int read() { while (bufLen == bufOffset) { bufOffset = 0; try { bufLen = is.read(buf); } catch (IOException e) { bufLen = -1; } if (bufLen == -1) { return -1; } } return buf[bufOffset++]; } public void skipBlank() { while (next >= 0 && next <= 32) { next = read(); } } public int ri() { return readInt(); } public int readInt() { boolean rev = false; skipBlank(); if (next == '+' || next == '-') { rev = next == '-'; next = read(); } int val = 0; while (next >= '0' && next <= '9') { val = val * 10 - next + '0'; next = read(); } return rev ? val : -val; } } static class Hasher { private long time = System.nanoTime() + System.currentTimeMillis() * 31L; public int shuffle(long z) { z += time; z = (z ^ (z >>> 33)) * 0x62a9d9ed799705f5L; return (int) (((z ^ (z >>> 28)) * 0xcb24d0a5c88c35b3L) >>> 32); } public int hash(int x) { return shuffle(x); } } static class CachedEulerFunction { private static int boundary = 1 << 16; private static int[] euler = MultiplicativeFunctionSieve.getInstance(boundary).getEuler(); private static IntegerHashMap map = new IntegerHashMap(64, true); public static int get(int x) { return get(x, 2); } private static int get(int x, int begin) { if (x <= boundary) { return euler[x]; } int ans = map.getOrDefault(x, -1); if (ans == -1) { int factor = findPrimeFactor(x, begin); int y = x; int exp = 1; while (y % factor == 0) { y /= factor; exp *= factor; } ans = get(y, factor + 1) * (exp - exp / factor); //ans = calc(x); map.put(x, ans); } return ans; } private static int findPrimeFactor(int x, int begin) { for (int i = Math.max(2, begin); i * i <= x; i++) { if (x % i == 0) { return i; } } return x; } } static interface IntCombination { } static class MultiplicativeFunctionSieve { static MultiplicativeFunctionSieve instance = new MultiplicativeFunctionSieve(1 << 16); public int[] primes; public boolean[] isComp; public int primeLength; public int[] smallestPrimeFactor; public int[] expOfSmallestPrimeFactor; int limit; public static MultiplicativeFunctionSieve getInstance(int n) { if (n <= (1 << 16)) { return instance; } return new MultiplicativeFunctionSieve(n); } public int[] getEuler() { int[] euler = new int[limit + 1]; euler[1] = 1; for (int i = 2; i <= limit; i++) { if (!isComp[i]) { euler[i] = i - 1; } else { if (expOfSmallestPrimeFactor[i] == i) { euler[i] = i - i / smallestPrimeFactor[i]; } else { euler[i] = euler[expOfSmallestPrimeFactor[i]] * euler[i / expOfSmallestPrimeFactor[i]]; } } } return euler; } public MultiplicativeFunctionSieve(int limit) { this.limit = limit; isComp = new boolean[limit + 1]; primes = new int[limit + 1]; expOfSmallestPrimeFactor = new int[limit + 1]; smallestPrimeFactor = new int[limit + 1]; primeLength = 0; for (int i = 2; i <= limit; i++) { if (!isComp[i]) { primes[primeLength++] = i; expOfSmallestPrimeFactor[i] = smallestPrimeFactor[i] = i; } for (int j = 0, until = limit / i; j < primeLength && primes[j] <= until; j++) { int pi = primes[j] * i; smallestPrimeFactor[pi] = primes[j]; expOfSmallestPrimeFactor[pi] = smallestPrimeFactor[i] == primes[j] ? (expOfSmallestPrimeFactor[i] * expOfSmallestPrimeFactor[primes[j]]) : expOfSmallestPrimeFactor[primes[j]]; isComp[pi] = true; if (i % primes[j] == 0) { break; } } } } } static class Factorial { int[] fact; int[] inv; int mod; public int getMod() { return mod; } public Factorial(int[] fact, int[] inv, int mod) { this.mod = mod; this.fact = fact; this.inv = inv; fact[0] = inv[0] = 1; int n = Math.min(fact.length, mod); for (int i = 1; i < n; i++) { fact[i] = i; fact[i] = (int) ((long) fact[i] * fact[i - 1] % mod); } if (n - 1 >= 0) { inv[n - 1] = BigInteger.valueOf(fact[n - 1]).modInverse(BigInteger.valueOf(mod)).intValue(); } for (int i = n - 2; i >= 1; i--) { inv[i] = (int) ((long) inv[i + 1] * (i + 1) % mod); } } public Factorial(int limit, int mod) { this(new int[Math.min(limit + 1, mod)], new int[Math.min(limit + 1, mod)], mod); } public int fact(int n) { if (n >= mod) { return 0; } return fact[n]; } public int invFact(int n) { if (n >= mod) { throw new IllegalArgumentException(); } return inv[n]; } } static class CachedPow2 { private int[] first; private int[] second; private int mod; private int low; private int mask; private int phi; private int xphi; public CachedPow2(int x, int mod) { this(x, mod, CachedEulerFunction.get(mod)); } public CachedPow2(int x, int mod, int phi) { this(x, mod, mod, phi); } public CachedPow2(int x, int mod, int limit, int phi) { this.phi = phi; limit = Math.min(limit, mod); this.mod = mod; int log = Log2.ceilLog(limit + 1); low = (log + 1) / 2; mask = (1 << low) - 1; first = new int[1 << low]; second = new int[1 << log - low]; first[0] = 1; for (int i = 1; i < first.length; i++) { first[i] = (int) ((long) x * first[i - 1] % mod); } second[0] = 1; long step = (long) x * first[first.length - 1] % mod; for (int i = 1; i < second.length; i++) { second[i] = (int) (second[i - 1] * step % mod); } xphi = DigitUtils.modPow(x, phi, mod); } public int pow(int exp) { return (int) ((long) first[exp & mask] * second[exp >> low] % mod); } } static class DigitUtils { private DigitUtils() { } public static int mod(long x, int mod) { if (x < -mod || x >= mod) { x %= mod; } if (x < 0) { x += mod; } return (int) x; } public static int mod(int x, int mod) { if (x < -mod || x >= mod) { x %= mod; } if (x < 0) { x += mod; } return x; } public static int modPow(int x, long n, int m) { if (n == 0) { return DigitUtils.mod(1, m); } int ans = modPow(x, n / 2, m); ans = DigitUtils.mod((long) ans * ans, m); if (n % 2 == 1) { ans = DigitUtils.mod((long) ans * x, m); } return ans; } } static class Combination implements IntCombination { final Factorial factorial; int modVal; public Combination(Factorial factorial) { this.factorial = factorial; this.modVal = factorial.getMod(); } public Combination(int limit, int mod) { this(new Factorial(limit, mod)); } public int combination(int m, int n) { if (n > m || n < 0) { return 0; } return (int) ((long) factorial.fact(m) * factorial.invFact(n) % modVal * factorial.invFact(m - n) % modVal); } } static class Log2 { public static int ceilLog(int x) { if (x <= 0) { return 0; } return 32 - Integer.numberOfLeadingZeros(x - 1); } } static class IntegerHashMap { private int now; private int[] slot; private int[] version; private int[] next; private int[] keys; private int[] values; private int alloc; private boolean[] removed; private int mask; private int size; private boolean rehash; private Hasher hasher = new Hasher(); public IntegerHashMap(int cap, boolean rehash) { now = 1; this.mask = (1 << (32 - Integer.numberOfLeadingZeros(cap - 1))) - 1; slot = new int[mask + 1]; version = new int[slot.length]; next = new int[cap + 1]; keys = new int[cap + 1]; values = new int[cap + 1]; removed = new boolean[cap + 1]; this.rehash = rehash; } private void doubleCapacity() { int newSize = Math.max(next.length + 10, next.length * 2); next = Arrays.copyOf(next, newSize); keys = Arrays.copyOf(keys, newSize); values = Arrays.copyOf(values, newSize); removed = Arrays.copyOf(removed, newSize); } public void alloc() { alloc++; if (alloc >= next.length) { doubleCapacity(); } next[alloc] = 0; removed[alloc] = false; size++; } private void rehash() { int[] newSlots = new int[Math.max(16, slot.length * 2)]; int[] newVersions = new int[newSlots.length]; int newMask = newSlots.length - 1; for (int i = 0; i < slot.length; i++) { access(i); if (slot[i] == 0) { continue; } int head = slot[i]; while (head != 0) { int n = next[head]; int s = hash(keys[head]) & newMask; next[head] = newSlots[s]; newSlots[s] = head; head = n; } } this.slot = newSlots; this.version = newVersions; now = 0; this.mask = newMask; } private int hash(int x) { return hasher.hash(x); } public void put(int x, int y) { put(x, y, true); } public void put(int x, int y, boolean cover) { int h = hash(x); int s = h & mask; access(s); if (slot[s] == 0) { alloc(); slot[s] = alloc; keys[alloc] = x; values[alloc] = y; } else { int index = findIndexOrLastEntry(s, x); if (keys[index] != x) { alloc(); next[index] = alloc; keys[alloc] = x; values[alloc] = y; } else if (cover) { values[index] = y; } } if (rehash && size >= slot.length) { rehash(); } } public int getOrDefault(int x, int def) { int h = hash(x); int s = h & mask; access(s); if (slot[s] == 0) { return def; } int index = findIndexOrLastEntry(s, x); return keys[index] == x ? values[index] : def; } private int findIndexOrLastEntry(int s, int x) { int iter = slot[s]; while (keys[iter] != x) { if (next[iter] != 0) { iter = next[iter]; } else { return iter; } } return iter; } private void access(int i) { if (version[i] != now) { version[i] = now; slot[i] = 0; } } public IntegerEntryIterator iterator() { return new IntegerEntryIterator() { int index = 1; int readIndex = -1; public boolean hasNext() { while (index <= alloc && removed[index]) { index++; } return index <= alloc; } public int getEntryKey() { return keys[readIndex]; } public int getEntryValue() { return values[readIndex]; } public void next() { if (!hasNext()) { throw new IllegalStateException(); } readIndex = index; index++; } }; } public String toString() { IntegerEntryIterator iterator = iterator(); StringBuilder builder = new StringBuilder("{"); while (iterator.hasNext()) { iterator.next(); builder.append(iterator.getEntryKey()).append("->").append(iterator.getEntryValue()).append(','); } if (builder.charAt(builder.length() - 1) == ',') { builder.setLength(builder.length() - 1); } builder.append('}'); return builder.toString(); } } } </CODE> <EVALUATION_RUBRIC> - O(1): The time complexity is constant to the input size n. - O(nlog(n)): The time complexity combines linear and logarithmic growth factors. - O(n): The time complexity increases proportionally to the input size n in a linear manner. - others: The time complexity does not fit any of the above categories or cannot be clearly classified. - O(n^3): The time complexity scales proportionally to the cube of the input size. - O(n^2): The time complexity grows proportionally to the square of the input size. - non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially. - O(log(n)): The time complexity increases logarithmically in relation to the input size. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
4,756
3,496
3,723
/** * author: derrick20 * created: 3/20/21 7:13 PM */ import java.io.*; import java.util.*; import static java.lang.Math.*; public class E2_SquareFreeFast { static FastScanner sc = new FastScanner(); static PrintWriter out = new PrintWriter(System.out); public static void main(String[] args) { // generate(); int T = sc.nextInt(); int MAX = (int) 1e7; int[] canonical = new int[MAX + 1]; canonical[1] = 1; for (int factor = 2; factor <= MAX; factor++) { if (canonical[factor] == 0) { for (int mult = factor; mult <= MAX; mult += factor) { int prev = canonical[mult / factor]; if (prev % factor == 0) { canonical[mult] = prev / factor; } else { canonical[mult] = prev * factor; } } } } int[] last = new int[MAX + 1]; while (T-->0) { int N = sc.nextInt(); int K = sc.nextInt(); int[] a = new int[N + 1]; int[][] dp = new int[2][K + 1]; int[][] start = new int[2][K + 1]; int ptr = 0; for (int i = 1; i <= N; i++) { int nxt = 1 ^ ptr; a[i] = canonical[sc.nextInt()]; for (int k = 0; k <= K; k++) { if (start[ptr][k] > last[a[i]]) { // extend it for free (unique) dp[nxt][k] = dp[ptr][k]; start[nxt][k] = start[ptr][k]; } else { // start anew dp[nxt][k] = dp[ptr][k] + 1; start[nxt][k] = i; } // Use a change (only if existing segment) if (i > 1 && k > 0 && start[ptr][k - 1] <= last[a[i]]) { // if this cost beats the old cost, or if it has a later start point, it's better. if (dp[ptr][k - 1] < dp[nxt][k] || (dp[ptr][k - 1] == dp[nxt][k] && start[ptr][k - 1] > start[nxt][k])) { dp[nxt][k] = dp[ptr][k - 1]; start[nxt][k] = start[ptr][k - 1]; } } } // System.out.println(Arrays.toString(start[nxt])); // System.out.println(Arrays.toString(dp[nxt])); last[a[i]] = i; ptr = nxt; } for (int v : a) { last[v] = 0; } // always allowed to waste initial changes by starting offset, so mono decr out.println(dp[ptr][K]); } out.close(); } static class FastScanner { private int BS = 1 << 16; private char NC = (char) 0; private byte[] buf = new byte[BS]; private int bId = 0, size = 0; private char c = NC; private double cnt = 1; private BufferedInputStream in; public FastScanner() { in = new BufferedInputStream(System.in, BS); } public FastScanner(String s) { try { in = new BufferedInputStream(new FileInputStream(new File(s)), BS); } catch (Exception e) { in = new BufferedInputStream(System.in, BS); } } char getChar() { while (bId == size) { try { size = in.read(buf); } catch (Exception e) { return NC; } if (size == -1) return NC; bId = 0; } return (char) buf[bId++]; } int nextInt() { return (int) nextLong(); } long nextLong() { cnt = 1; boolean neg = false; if (c == NC) c = getChar(); for (; (c < '0' || c > '9'); c = getChar()) { if (c == '-') neg = true; } long res = 0; for (; c >= '0' && c <= '9'; c = getChar()) { res = (res << 3) + (res << 1) + c - '0'; cnt *= 10; } return neg ? -res : res; } double nextDouble() { boolean neg = false; if (c == NC) c = getChar(); for (; (c < '0' || c > '9'); c = getChar()) { if (c == '-') neg = true; } double cur = nextLong(); if (c != '.') { return neg ? -cur : cur; } else { double frac = nextLong() / cnt; return neg ? -cur - frac : cur + frac; } } String next() { StringBuilder res = new StringBuilder(); while (c <= 32) c = getChar(); while (c > 32) { res.append(c); c = getChar(); } return res.toString(); } String nextLine() { StringBuilder res = new StringBuilder(); while (c <= 32) c = getChar(); while (c != '\n') { res.append(c); c = getChar(); } return res.toString(); } boolean hasNext() { if (c > 32) return true; while (true) { c = getChar(); if (c == NC) return false; else if (c > 32) return true; } } } static void ASSERT(boolean assertion, String message) { if (!assertion) throw new AssertionError(message); } static void ASSERT(boolean assertion) { if (!assertion) throw new AssertionError(); } }
O(n^3)
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Determine the worst-case time complexity category of a given Java code based on input size n. </TASK> <CODE> /** * author: derrick20 * created: 3/20/21 7:13 PM */ import java.io.*; import java.util.*; import static java.lang.Math.*; public class E2_SquareFreeFast { static FastScanner sc = new FastScanner(); static PrintWriter out = new PrintWriter(System.out); public static void main(String[] args) { // generate(); int T = sc.nextInt(); int MAX = (int) 1e7; int[] canonical = new int[MAX + 1]; canonical[1] = 1; for (int factor = 2; factor <= MAX; factor++) { if (canonical[factor] == 0) { for (int mult = factor; mult <= MAX; mult += factor) { int prev = canonical[mult / factor]; if (prev % factor == 0) { canonical[mult] = prev / factor; } else { canonical[mult] = prev * factor; } } } } int[] last = new int[MAX + 1]; while (T-->0) { int N = sc.nextInt(); int K = sc.nextInt(); int[] a = new int[N + 1]; int[][] dp = new int[2][K + 1]; int[][] start = new int[2][K + 1]; int ptr = 0; for (int i = 1; i <= N; i++) { int nxt = 1 ^ ptr; a[i] = canonical[sc.nextInt()]; for (int k = 0; k <= K; k++) { if (start[ptr][k] > last[a[i]]) { // extend it for free (unique) dp[nxt][k] = dp[ptr][k]; start[nxt][k] = start[ptr][k]; } else { // start anew dp[nxt][k] = dp[ptr][k] + 1; start[nxt][k] = i; } // Use a change (only if existing segment) if (i > 1 && k > 0 && start[ptr][k - 1] <= last[a[i]]) { // if this cost beats the old cost, or if it has a later start point, it's better. if (dp[ptr][k - 1] < dp[nxt][k] || (dp[ptr][k - 1] == dp[nxt][k] && start[ptr][k - 1] > start[nxt][k])) { dp[nxt][k] = dp[ptr][k - 1]; start[nxt][k] = start[ptr][k - 1]; } } } // System.out.println(Arrays.toString(start[nxt])); // System.out.println(Arrays.toString(dp[nxt])); last[a[i]] = i; ptr = nxt; } for (int v : a) { last[v] = 0; } // always allowed to waste initial changes by starting offset, so mono decr out.println(dp[ptr][K]); } out.close(); } static class FastScanner { private int BS = 1 << 16; private char NC = (char) 0; private byte[] buf = new byte[BS]; private int bId = 0, size = 0; private char c = NC; private double cnt = 1; private BufferedInputStream in; public FastScanner() { in = new BufferedInputStream(System.in, BS); } public FastScanner(String s) { try { in = new BufferedInputStream(new FileInputStream(new File(s)), BS); } catch (Exception e) { in = new BufferedInputStream(System.in, BS); } } char getChar() { while (bId == size) { try { size = in.read(buf); } catch (Exception e) { return NC; } if (size == -1) return NC; bId = 0; } return (char) buf[bId++]; } int nextInt() { return (int) nextLong(); } long nextLong() { cnt = 1; boolean neg = false; if (c == NC) c = getChar(); for (; (c < '0' || c > '9'); c = getChar()) { if (c == '-') neg = true; } long res = 0; for (; c >= '0' && c <= '9'; c = getChar()) { res = (res << 3) + (res << 1) + c - '0'; cnt *= 10; } return neg ? -res : res; } double nextDouble() { boolean neg = false; if (c == NC) c = getChar(); for (; (c < '0' || c > '9'); c = getChar()) { if (c == '-') neg = true; } double cur = nextLong(); if (c != '.') { return neg ? -cur : cur; } else { double frac = nextLong() / cnt; return neg ? -cur - frac : cur + frac; } } String next() { StringBuilder res = new StringBuilder(); while (c <= 32) c = getChar(); while (c > 32) { res.append(c); c = getChar(); } return res.toString(); } String nextLine() { StringBuilder res = new StringBuilder(); while (c <= 32) c = getChar(); while (c != '\n') { res.append(c); c = getChar(); } return res.toString(); } boolean hasNext() { if (c > 32) return true; while (true) { c = getChar(); if (c == NC) return false; else if (c > 32) return true; } } } static void ASSERT(boolean assertion, String message) { if (!assertion) throw new AssertionError(message); } static void ASSERT(boolean assertion) { if (!assertion) throw new AssertionError(); } } </CODE> <EVALUATION_RUBRIC> - non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially. - O(1): The time complexity is constant to the input size n. - O(log(n)): The time complexity increases logarithmically in relation to the input size. - O(n): The time complexity increases proportionally to the input size n in a linear manner. - O(nlog(n)): The time complexity combines linear and logarithmic growth factors. - O(n^2): The time complexity grows proportionally to the square of the input size. - O(n^3): The time complexity scales proportionally to the cube of the input size. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Classify the following Java code's worst-case time complexity according to its relationship to the input size n. </TASK> <CODE> /** * author: derrick20 * created: 3/20/21 7:13 PM */ import java.io.*; import java.util.*; import static java.lang.Math.*; public class E2_SquareFreeFast { static FastScanner sc = new FastScanner(); static PrintWriter out = new PrintWriter(System.out); public static void main(String[] args) { // generate(); int T = sc.nextInt(); int MAX = (int) 1e7; int[] canonical = new int[MAX + 1]; canonical[1] = 1; for (int factor = 2; factor <= MAX; factor++) { if (canonical[factor] == 0) { for (int mult = factor; mult <= MAX; mult += factor) { int prev = canonical[mult / factor]; if (prev % factor == 0) { canonical[mult] = prev / factor; } else { canonical[mult] = prev * factor; } } } } int[] last = new int[MAX + 1]; while (T-->0) { int N = sc.nextInt(); int K = sc.nextInt(); int[] a = new int[N + 1]; int[][] dp = new int[2][K + 1]; int[][] start = new int[2][K + 1]; int ptr = 0; for (int i = 1; i <= N; i++) { int nxt = 1 ^ ptr; a[i] = canonical[sc.nextInt()]; for (int k = 0; k <= K; k++) { if (start[ptr][k] > last[a[i]]) { // extend it for free (unique) dp[nxt][k] = dp[ptr][k]; start[nxt][k] = start[ptr][k]; } else { // start anew dp[nxt][k] = dp[ptr][k] + 1; start[nxt][k] = i; } // Use a change (only if existing segment) if (i > 1 && k > 0 && start[ptr][k - 1] <= last[a[i]]) { // if this cost beats the old cost, or if it has a later start point, it's better. if (dp[ptr][k - 1] < dp[nxt][k] || (dp[ptr][k - 1] == dp[nxt][k] && start[ptr][k - 1] > start[nxt][k])) { dp[nxt][k] = dp[ptr][k - 1]; start[nxt][k] = start[ptr][k - 1]; } } } // System.out.println(Arrays.toString(start[nxt])); // System.out.println(Arrays.toString(dp[nxt])); last[a[i]] = i; ptr = nxt; } for (int v : a) { last[v] = 0; } // always allowed to waste initial changes by starting offset, so mono decr out.println(dp[ptr][K]); } out.close(); } static class FastScanner { private int BS = 1 << 16; private char NC = (char) 0; private byte[] buf = new byte[BS]; private int bId = 0, size = 0; private char c = NC; private double cnt = 1; private BufferedInputStream in; public FastScanner() { in = new BufferedInputStream(System.in, BS); } public FastScanner(String s) { try { in = new BufferedInputStream(new FileInputStream(new File(s)), BS); } catch (Exception e) { in = new BufferedInputStream(System.in, BS); } } char getChar() { while (bId == size) { try { size = in.read(buf); } catch (Exception e) { return NC; } if (size == -1) return NC; bId = 0; } return (char) buf[bId++]; } int nextInt() { return (int) nextLong(); } long nextLong() { cnt = 1; boolean neg = false; if (c == NC) c = getChar(); for (; (c < '0' || c > '9'); c = getChar()) { if (c == '-') neg = true; } long res = 0; for (; c >= '0' && c <= '9'; c = getChar()) { res = (res << 3) + (res << 1) + c - '0'; cnt *= 10; } return neg ? -res : res; } double nextDouble() { boolean neg = false; if (c == NC) c = getChar(); for (; (c < '0' || c > '9'); c = getChar()) { if (c == '-') neg = true; } double cur = nextLong(); if (c != '.') { return neg ? -cur : cur; } else { double frac = nextLong() / cnt; return neg ? -cur - frac : cur + frac; } } String next() { StringBuilder res = new StringBuilder(); while (c <= 32) c = getChar(); while (c > 32) { res.append(c); c = getChar(); } return res.toString(); } String nextLine() { StringBuilder res = new StringBuilder(); while (c <= 32) c = getChar(); while (c != '\n') { res.append(c); c = getChar(); } return res.toString(); } boolean hasNext() { if (c > 32) return true; while (true) { c = getChar(); if (c == NC) return false; else if (c > 32) return true; } } } static void ASSERT(boolean assertion, String message) { if (!assertion) throw new AssertionError(message); } static void ASSERT(boolean assertion) { if (!assertion) throw new AssertionError(); } } </CODE> <EVALUATION_RUBRIC> - O(1): The running time does not change regardless of the input size n. - O(n^2): The running time increases with the square of the input size n. - non-polynomial: The running time increases non-polynomially with input size n, typically exponentially. - O(n^3): The running time increases with the cube of the input size n. - O(n): The running time grows linearly with the input size n. - others: The code does not clearly correspond to the listed classes or has an unclassified time complexity. - O(log(n)): The running time increases with the logarithm of the input size n. - O(nlog(n)): The running time increases with the product of n and logarithm of n. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
1,710
3,715
1,472
import java.io.InputStreamReader; import java.io.IOException; import java.util.InputMismatchException; import java.io.BufferedReader; import java.io.OutputStream; import java.io.PrintWriter; import java.util.StringTokenizer; import java.io.InputStream; /** * Built using CHelper plug-in * Actual solution is at the top * @author Zakhar Voit */ public class Main { public static void main(String[] args) { InputStream inputStream = System.in; OutputStream outputStream = System.out; Scanner in = new Scanner(inputStream); PrintWriter out = new PrintWriter(outputStream); TaskD solver = new TaskD(); solver.solve(1, in, out); out.close(); } } class TaskD { public void solve(int testNumber, Scanner in, PrintWriter out) { out.println(solve(in.nextLong(), in.nextLong())); /*for (long l = 1; l < 500; l++) { for (long r = l; r < 500; r++) { if (badSolve(l, r) != solve(l, r)) { out.println(l + " " + r); return; } } } out.println("OK");*/ } long solve(long l, long r) { if (l == r) return 0; long ans = l ^ (l + 1); for (int i = 0; i < 62; i++) { l |= (1l << i); if (l + 1 <= r) ans = (1l << (i + 2l)) - 1; } return ans; } } class Scanner { BufferedReader in; StringTokenizer tok; public Scanner(InputStream in) { this.in = new BufferedReader(new InputStreamReader(in)); tok = new StringTokenizer(""); } public String nextToken() { if (!tok.hasMoreTokens()) { try { String newLine = in.readLine(); if (newLine == null) throw new InputMismatchException(); tok = new StringTokenizer(newLine); } catch (IOException e) { throw new InputMismatchException(); } return nextToken(); } return tok.nextToken(); } public long nextLong() { return Long.parseLong(nextToken()); } }
O(log(n))
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Determine the worst-case time complexity category of a given Java code based on input size n. </TASK> <CODE> import java.io.InputStreamReader; import java.io.IOException; import java.util.InputMismatchException; import java.io.BufferedReader; import java.io.OutputStream; import java.io.PrintWriter; import java.util.StringTokenizer; import java.io.InputStream; /** * Built using CHelper plug-in * Actual solution is at the top * @author Zakhar Voit */ public class Main { public static void main(String[] args) { InputStream inputStream = System.in; OutputStream outputStream = System.out; Scanner in = new Scanner(inputStream); PrintWriter out = new PrintWriter(outputStream); TaskD solver = new TaskD(); solver.solve(1, in, out); out.close(); } } class TaskD { public void solve(int testNumber, Scanner in, PrintWriter out) { out.println(solve(in.nextLong(), in.nextLong())); /*for (long l = 1; l < 500; l++) { for (long r = l; r < 500; r++) { if (badSolve(l, r) != solve(l, r)) { out.println(l + " " + r); return; } } } out.println("OK");*/ } long solve(long l, long r) { if (l == r) return 0; long ans = l ^ (l + 1); for (int i = 0; i < 62; i++) { l |= (1l << i); if (l + 1 <= r) ans = (1l << (i + 2l)) - 1; } return ans; } } class Scanner { BufferedReader in; StringTokenizer tok; public Scanner(InputStream in) { this.in = new BufferedReader(new InputStreamReader(in)); tok = new StringTokenizer(""); } public String nextToken() { if (!tok.hasMoreTokens()) { try { String newLine = in.readLine(); if (newLine == null) throw new InputMismatchException(); tok = new StringTokenizer(newLine); } catch (IOException e) { throw new InputMismatchException(); } return nextToken(); } return tok.nextToken(); } public long nextLong() { return Long.parseLong(nextToken()); } } </CODE> <EVALUATION_RUBRIC> - non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially. - O(nlog(n)): The time complexity combines linear and logarithmic growth factors. - O(log(n)): The time complexity increases logarithmically in relation to the input size. - O(n): The time complexity increases proportionally to the input size n in a linear manner. - O(n^2): The time complexity grows proportionally to the square of the input size. - O(1): The time complexity is constant to the input size n. - O(n^3): The time complexity scales proportionally to the cube of the input size. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Classify the following Java code's worst-case time complexity according to its relationship to the input size n. </TASK> <CODE> import java.io.InputStreamReader; import java.io.IOException; import java.util.InputMismatchException; import java.io.BufferedReader; import java.io.OutputStream; import java.io.PrintWriter; import java.util.StringTokenizer; import java.io.InputStream; /** * Built using CHelper plug-in * Actual solution is at the top * @author Zakhar Voit */ public class Main { public static void main(String[] args) { InputStream inputStream = System.in; OutputStream outputStream = System.out; Scanner in = new Scanner(inputStream); PrintWriter out = new PrintWriter(outputStream); TaskD solver = new TaskD(); solver.solve(1, in, out); out.close(); } } class TaskD { public void solve(int testNumber, Scanner in, PrintWriter out) { out.println(solve(in.nextLong(), in.nextLong())); /*for (long l = 1; l < 500; l++) { for (long r = l; r < 500; r++) { if (badSolve(l, r) != solve(l, r)) { out.println(l + " " + r); return; } } } out.println("OK");*/ } long solve(long l, long r) { if (l == r) return 0; long ans = l ^ (l + 1); for (int i = 0; i < 62; i++) { l |= (1l << i); if (l + 1 <= r) ans = (1l << (i + 2l)) - 1; } return ans; } } class Scanner { BufferedReader in; StringTokenizer tok; public Scanner(InputStream in) { this.in = new BufferedReader(new InputStreamReader(in)); tok = new StringTokenizer(""); } public String nextToken() { if (!tok.hasMoreTokens()) { try { String newLine = in.readLine(); if (newLine == null) throw new InputMismatchException(); tok = new StringTokenizer(newLine); } catch (IOException e) { throw new InputMismatchException(); } return nextToken(); } return tok.nextToken(); } public long nextLong() { return Long.parseLong(nextToken()); } } </CODE> <EVALUATION_RUBRIC> - O(log(n)): The running time increases with the logarithm of the input size n. - O(n^2): The running time increases with the square of the input size n. - O(n): The running time grows linearly with the input size n. - O(nlog(n)): The running time increases with the product of n and logarithm of n. - O(n^3): The running time increases with the cube of the input size n. - non-polynomial: The running time increases non-polynomially with input size n, typically exponentially. - O(1): The running time does not change regardless of the input size n. - others: The code does not clearly correspond to the listed classes or has an unclassified time complexity. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
818
1,470
3,329
//Author: net12k44 import java.io.*; import java.util.*; public class Main{//} static PrintWriter out; static int c[][]; static int x[] , y[] , n; static int degIn[]; static ArrayList< ArrayList<Integer> >a = new ArrayList< ArrayList<Integer> >(); static int cnt = 0; static boolean b[]; private static boolean dfs(int i) { if (i == -1) return true; if (b[i]) return false; b[i] = true; for(Integer j : a.get(i) ) if ( dfs( y[j] ) ) { x[i] = j; y[j] = i; return true; } return false; } private static void find(int k) { int _cnt = -1; if (k>=0) { x[k] = k; y[k] = k; } while (_cnt != cnt) { _cnt = cnt; Arrays.fill( b , false ); if (k>=0) b[k] = true; for(int i = 0; i < n; ++i) if (x[i] == -1 && dfs(i) ) ++cnt; } if (k>=0) { x[k] = -1; y[k] = -1; } } public static void solve() { n = in.nextInt(); int m = in.nextInt(); b = new boolean[n]; c = new int [n][n]; degIn = new int[n]; x = new int[n]; y = new int[n]; Arrays.fill(x , -1); Arrays.fill(y , -1); for(int i = 0; i < n; ++i) a. add( new ArrayList< Integer > () ); while (m-- > 0) { int i = in.nextInt()-1 , j = in.nextInt()-1; a.get(i).add(j); degIn[j]++; c[i][j] = 1; } find(-1); int kq = Integer.MAX_VALUE; for(int k = 0; k < n; ++k) { if (x[k] != -1) {y[ x[k] ] = -1; x[k] = -1; cnt--; } if (y[k] != -1) {x[ y[k] ] = -1; y[k] = -1; cnt--; } find(k); int t = n*2 - 1 - a.get(k).size() - degIn[k] + c[k][k]; for(int i = 0; i < n; ++i) if (i!=k) t = t + a.get(i).size() - c[i][k]; t = t - cnt + (n-1) - cnt; if (kq > t) kq = t; } out.println(kq); } public static void main (String[] args) throws java.lang.Exception { long startTime = System.currentTimeMillis(); out = new PrintWriter(System.out); solve(); //out.println((String.format("%.2f",(double)(System.currentTimeMillis()-startTime)/1000))); out.close(); } static class in { static BufferedReader reader = new BufferedReader( new InputStreamReader(System.in) ) ; static StringTokenizer tokenizer = new StringTokenizer(""); static String next() { while ( !tokenizer.hasMoreTokens() ) try { tokenizer = new StringTokenizer( reader.readLine() ); } catch (IOException e){ throw new RuntimeException(e); } return tokenizer.nextToken(); } static int nextInt() { return Integer.parseInt( next() ); } static double nextDouble(){ return Double.parseDouble( next() ); } } ////////////////////////////////////////////////// }//
O(n^3)
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n. </TASK> <CODE> //Author: net12k44 import java.io.*; import java.util.*; public class Main{//} static PrintWriter out; static int c[][]; static int x[] , y[] , n; static int degIn[]; static ArrayList< ArrayList<Integer> >a = new ArrayList< ArrayList<Integer> >(); static int cnt = 0; static boolean b[]; private static boolean dfs(int i) { if (i == -1) return true; if (b[i]) return false; b[i] = true; for(Integer j : a.get(i) ) if ( dfs( y[j] ) ) { x[i] = j; y[j] = i; return true; } return false; } private static void find(int k) { int _cnt = -1; if (k>=0) { x[k] = k; y[k] = k; } while (_cnt != cnt) { _cnt = cnt; Arrays.fill( b , false ); if (k>=0) b[k] = true; for(int i = 0; i < n; ++i) if (x[i] == -1 && dfs(i) ) ++cnt; } if (k>=0) { x[k] = -1; y[k] = -1; } } public static void solve() { n = in.nextInt(); int m = in.nextInt(); b = new boolean[n]; c = new int [n][n]; degIn = new int[n]; x = new int[n]; y = new int[n]; Arrays.fill(x , -1); Arrays.fill(y , -1); for(int i = 0; i < n; ++i) a. add( new ArrayList< Integer > () ); while (m-- > 0) { int i = in.nextInt()-1 , j = in.nextInt()-1; a.get(i).add(j); degIn[j]++; c[i][j] = 1; } find(-1); int kq = Integer.MAX_VALUE; for(int k = 0; k < n; ++k) { if (x[k] != -1) {y[ x[k] ] = -1; x[k] = -1; cnt--; } if (y[k] != -1) {x[ y[k] ] = -1; y[k] = -1; cnt--; } find(k); int t = n*2 - 1 - a.get(k).size() - degIn[k] + c[k][k]; for(int i = 0; i < n; ++i) if (i!=k) t = t + a.get(i).size() - c[i][k]; t = t - cnt + (n-1) - cnt; if (kq > t) kq = t; } out.println(kq); } public static void main (String[] args) throws java.lang.Exception { long startTime = System.currentTimeMillis(); out = new PrintWriter(System.out); solve(); //out.println((String.format("%.2f",(double)(System.currentTimeMillis()-startTime)/1000))); out.close(); } static class in { static BufferedReader reader = new BufferedReader( new InputStreamReader(System.in) ) ; static StringTokenizer tokenizer = new StringTokenizer(""); static String next() { while ( !tokenizer.hasMoreTokens() ) try { tokenizer = new StringTokenizer( reader.readLine() ); } catch (IOException e){ throw new RuntimeException(e); } return tokenizer.nextToken(); } static int nextInt() { return Integer.parseInt( next() ); } static double nextDouble(){ return Double.parseDouble( next() ); } } ////////////////////////////////////////////////// }// </CODE> <EVALUATION_RUBRIC> - O(log(n)): The execution time ascends in proportion to the logarithm of the input size n. - non-polynomial: The running time increases non-polynomially with input size n, typically exponentially. - O(n): The execution time ascends in a one-to-one ratio with the input size n. - O(1): The execution time is unaffected by the size of the input n. - O(n^3): The execution time ascends in proportion to the cube of the input size n. - O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially. - O(n^2): The execution time ascends in proportion to the square of the input size n. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Determine the worst-case time complexity category of a given Java code based on input size n. </TASK> <CODE> //Author: net12k44 import java.io.*; import java.util.*; public class Main{//} static PrintWriter out; static int c[][]; static int x[] , y[] , n; static int degIn[]; static ArrayList< ArrayList<Integer> >a = new ArrayList< ArrayList<Integer> >(); static int cnt = 0; static boolean b[]; private static boolean dfs(int i) { if (i == -1) return true; if (b[i]) return false; b[i] = true; for(Integer j : a.get(i) ) if ( dfs( y[j] ) ) { x[i] = j; y[j] = i; return true; } return false; } private static void find(int k) { int _cnt = -1; if (k>=0) { x[k] = k; y[k] = k; } while (_cnt != cnt) { _cnt = cnt; Arrays.fill( b , false ); if (k>=0) b[k] = true; for(int i = 0; i < n; ++i) if (x[i] == -1 && dfs(i) ) ++cnt; } if (k>=0) { x[k] = -1; y[k] = -1; } } public static void solve() { n = in.nextInt(); int m = in.nextInt(); b = new boolean[n]; c = new int [n][n]; degIn = new int[n]; x = new int[n]; y = new int[n]; Arrays.fill(x , -1); Arrays.fill(y , -1); for(int i = 0; i < n; ++i) a. add( new ArrayList< Integer > () ); while (m-- > 0) { int i = in.nextInt()-1 , j = in.nextInt()-1; a.get(i).add(j); degIn[j]++; c[i][j] = 1; } find(-1); int kq = Integer.MAX_VALUE; for(int k = 0; k < n; ++k) { if (x[k] != -1) {y[ x[k] ] = -1; x[k] = -1; cnt--; } if (y[k] != -1) {x[ y[k] ] = -1; y[k] = -1; cnt--; } find(k); int t = n*2 - 1 - a.get(k).size() - degIn[k] + c[k][k]; for(int i = 0; i < n; ++i) if (i!=k) t = t + a.get(i).size() - c[i][k]; t = t - cnt + (n-1) - cnt; if (kq > t) kq = t; } out.println(kq); } public static void main (String[] args) throws java.lang.Exception { long startTime = System.currentTimeMillis(); out = new PrintWriter(System.out); solve(); //out.println((String.format("%.2f",(double)(System.currentTimeMillis()-startTime)/1000))); out.close(); } static class in { static BufferedReader reader = new BufferedReader( new InputStreamReader(System.in) ) ; static StringTokenizer tokenizer = new StringTokenizer(""); static String next() { while ( !tokenizer.hasMoreTokens() ) try { tokenizer = new StringTokenizer( reader.readLine() ); } catch (IOException e){ throw new RuntimeException(e); } return tokenizer.nextToken(); } static int nextInt() { return Integer.parseInt( next() ); } static double nextDouble(){ return Double.parseDouble( next() ); } } ////////////////////////////////////////////////// }// </CODE> <EVALUATION_RUBRIC> - others: The time complexity does not fit any of the above categories or cannot be clearly classified. - O(nlog(n)): The time complexity combines linear and logarithmic growth factors. - O(n): The time complexity increases proportionally to the input size n in a linear manner. - O(n^3): The time complexity scales proportionally to the cube of the input size. - non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially. - O(1): The time complexity is constant to the input size n. - O(log(n)): The time complexity increases logarithmically in relation to the input size. - O(n^2): The time complexity grows proportionally to the square of the input size. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
1,154
3,323
2,319
import java.io.*; import java.util.*; import java.math.*; import java.util.concurrent.*; public final class py_indent { static BufferedReader br=new BufferedReader(new InputStreamReader(System.in)); static FastScanner sc=new FastScanner(br); static PrintWriter out=new PrintWriter(System.out); static Random rnd=new Random(); static int maxn=(int)(5e3+5); static long mod=(long)(1e9+7); static int add(long a,long b) { long ret=(a+b); if(ret>=mod) { ret%=mod; } return (int)ret; } public static void main(String args[]) throws Exception { int n=sc.nextInt();char[] a=new char[n+1];a[0]='s'; for(int i=1;i<=n;i++) { a[i]=sc.next().charAt(0); } int[][] dp=new int[n+1][maxn],sum=new int[n+1][maxn];dp[0][0]=1; sum[0][0]=1; for(int i=1;i<maxn;i++) { sum[0][i]=add(sum[0][i],sum[0][i-1]); } for(int i=1;i<=n;i++) { if(a[i]=='f') { continue; } int curr=0,idx=0; for(int j=i-1;j>=0;j--) { if(a[j]=='s') { idx=j;break; } else { curr++; } } for(int j=0;j<maxn;j++) { int up=Math.max(0,j-curr); long now=(sum[idx][maxn-1]-(up==0?0:sum[idx][up-1])); now=add(now,mod); dp[i][j]=add(dp[i][j],now); } sum[i][0]=dp[i][0]; for(int j=1;j<maxn;j++) { sum[i][j]=add(dp[i][j],sum[i][j-1]); } } //out.println(dp[2][0]+" "+dp[2][1]+" "+dp[2][2]); out.println(dp[n][0]);out.close(); } } class FastScanner { BufferedReader in; StringTokenizer st; public FastScanner(BufferedReader in) { this.in = in; } public String nextToken() throws Exception { while (st == null || !st.hasMoreTokens()) { st = new StringTokenizer(in.readLine()); } return st.nextToken(); } public String next() throws Exception { return nextToken().toString(); } public int nextInt() throws Exception { return Integer.parseInt(nextToken()); } public long nextLong() throws Exception { return Long.parseLong(nextToken()); } public double nextDouble() throws Exception { return Double.parseDouble(nextToken()); } }
O(n^2)
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Determine the worst-case time complexity category of a given Java code based on input size n. </TASK> <CODE> import java.io.*; import java.util.*; import java.math.*; import java.util.concurrent.*; public final class py_indent { static BufferedReader br=new BufferedReader(new InputStreamReader(System.in)); static FastScanner sc=new FastScanner(br); static PrintWriter out=new PrintWriter(System.out); static Random rnd=new Random(); static int maxn=(int)(5e3+5); static long mod=(long)(1e9+7); static int add(long a,long b) { long ret=(a+b); if(ret>=mod) { ret%=mod; } return (int)ret; } public static void main(String args[]) throws Exception { int n=sc.nextInt();char[] a=new char[n+1];a[0]='s'; for(int i=1;i<=n;i++) { a[i]=sc.next().charAt(0); } int[][] dp=new int[n+1][maxn],sum=new int[n+1][maxn];dp[0][0]=1; sum[0][0]=1; for(int i=1;i<maxn;i++) { sum[0][i]=add(sum[0][i],sum[0][i-1]); } for(int i=1;i<=n;i++) { if(a[i]=='f') { continue; } int curr=0,idx=0; for(int j=i-1;j>=0;j--) { if(a[j]=='s') { idx=j;break; } else { curr++; } } for(int j=0;j<maxn;j++) { int up=Math.max(0,j-curr); long now=(sum[idx][maxn-1]-(up==0?0:sum[idx][up-1])); now=add(now,mod); dp[i][j]=add(dp[i][j],now); } sum[i][0]=dp[i][0]; for(int j=1;j<maxn;j++) { sum[i][j]=add(dp[i][j],sum[i][j-1]); } } //out.println(dp[2][0]+" "+dp[2][1]+" "+dp[2][2]); out.println(dp[n][0]);out.close(); } } class FastScanner { BufferedReader in; StringTokenizer st; public FastScanner(BufferedReader in) { this.in = in; } public String nextToken() throws Exception { while (st == null || !st.hasMoreTokens()) { st = new StringTokenizer(in.readLine()); } return st.nextToken(); } public String next() throws Exception { return nextToken().toString(); } public int nextInt() throws Exception { return Integer.parseInt(nextToken()); } public long nextLong() throws Exception { return Long.parseLong(nextToken()); } public double nextDouble() throws Exception { return Double.parseDouble(nextToken()); } } </CODE> <EVALUATION_RUBRIC> - O(n^2): The time complexity grows proportionally to the square of the input size. - O(n): The time complexity increases proportionally to the input size n in a linear manner. - O(nlog(n)): The time complexity combines linear and logarithmic growth factors. - O(n^3): The time complexity scales proportionally to the cube of the input size. - O(log(n)): The time complexity increases logarithmically in relation to the input size. - O(1): The time complexity is constant to the input size n. - non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Classify the following Java code's worst-case time complexity according to its relationship to the input size n. </TASK> <CODE> import java.io.*; import java.util.*; import java.math.*; import java.util.concurrent.*; public final class py_indent { static BufferedReader br=new BufferedReader(new InputStreamReader(System.in)); static FastScanner sc=new FastScanner(br); static PrintWriter out=new PrintWriter(System.out); static Random rnd=new Random(); static int maxn=(int)(5e3+5); static long mod=(long)(1e9+7); static int add(long a,long b) { long ret=(a+b); if(ret>=mod) { ret%=mod; } return (int)ret; } public static void main(String args[]) throws Exception { int n=sc.nextInt();char[] a=new char[n+1];a[0]='s'; for(int i=1;i<=n;i++) { a[i]=sc.next().charAt(0); } int[][] dp=new int[n+1][maxn],sum=new int[n+1][maxn];dp[0][0]=1; sum[0][0]=1; for(int i=1;i<maxn;i++) { sum[0][i]=add(sum[0][i],sum[0][i-1]); } for(int i=1;i<=n;i++) { if(a[i]=='f') { continue; } int curr=0,idx=0; for(int j=i-1;j>=0;j--) { if(a[j]=='s') { idx=j;break; } else { curr++; } } for(int j=0;j<maxn;j++) { int up=Math.max(0,j-curr); long now=(sum[idx][maxn-1]-(up==0?0:sum[idx][up-1])); now=add(now,mod); dp[i][j]=add(dp[i][j],now); } sum[i][0]=dp[i][0]; for(int j=1;j<maxn;j++) { sum[i][j]=add(dp[i][j],sum[i][j-1]); } } //out.println(dp[2][0]+" "+dp[2][1]+" "+dp[2][2]); out.println(dp[n][0]);out.close(); } } class FastScanner { BufferedReader in; StringTokenizer st; public FastScanner(BufferedReader in) { this.in = in; } public String nextToken() throws Exception { while (st == null || !st.hasMoreTokens()) { st = new StringTokenizer(in.readLine()); } return st.nextToken(); } public String next() throws Exception { return nextToken().toString(); } public int nextInt() throws Exception { return Integer.parseInt(nextToken()); } public long nextLong() throws Exception { return Long.parseLong(nextToken()); } public double nextDouble() throws Exception { return Double.parseDouble(nextToken()); } } </CODE> <EVALUATION_RUBRIC> - O(nlog(n)): The running time increases with the product of n and logarithm of n. - O(n^2): The running time increases with the square of the input size n. - non-polynomial: The running time increases non-polynomially with input size n, typically exponentially. - O(n^3): The running time increases with the cube of the input size n. - O(n): The running time grows linearly with the input size n. - others: The code does not clearly correspond to the listed classes or has an unclassified time complexity. - O(1): The running time does not change regardless of the input size n. - O(log(n)): The running time increases with the logarithm of the input size n. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
1,015
2,314
143
//q4 import java.io.*; import java.util.*; import java.math.*; public class q4 { public static void main(String[] args) { Scanner in = new Scanner(System.in); PrintWriter out=new PrintWriter(new OutputStreamWriter(System.out)); int query = in.nextInt(); while (query -- > 0) { int n = in.nextInt(); int k = in.nextInt(); char[] arr = new char[n]; //slot all n into char array String code = in.next(); for (int i = 0; i < n; i++) { arr[i] = code.charAt(i); } //R, G, B cycle int r = 0; int g = 0; int b = 0; for (int i = 0; i < k; i++) { if (i % 3 == 0) { if (arr[i] == 'R') {g++; b++;} else if (arr[i] == 'G') {r++; b++;} else {r++; g++;} //if is 'B' } else if (i % 3 == 1) { if (arr[i] == 'G') {g++; b++;} else if (arr[i] == 'B') {r++; b++;} else {r++; g++;} //if is 'R' } else { //if mod 3 is 2 if (arr[i] == 'B') {g++; b++;} else if (arr[i] == 'R') {r++; b++;} else {r++; g++;} //if is 'G' } } //starting from kth position, if different then add 1, and check (j-k)th position int rMin = r; int gMin = g; int bMin = b; for (int j = k; j < n; j++) { //R cycle if ((j % 3 == 0 && arr[j] != 'R') || (j % 3 == 1 && arr[j] != 'G') || (j % 3 == 2 && arr[j] != 'B')) { r++; } //R cycle if (((j - k) % 3 == 0 && arr[j - k] != 'R') || ((j - k) % 3 == 1 && arr[j - k] != 'G') || ((j - k) % 3 == 2 && arr[j - k] != 'B')) { r--; } rMin = Math.min(r, rMin); //G cycle if ((j % 3 == 0 && arr[j] != 'G') || (j % 3 == 1 && arr[j] != 'B') || (j % 3 == 2 && arr[j] != 'R')) { g++; } if (((j - k) % 3 == 0 && arr[j - k] != 'G') || ((j - k) % 3 == 1 && arr[j - k] != 'B') || ((j - k) % 3 == 2 && arr[j - k] != 'R')) { g--; } gMin = Math.min(gMin, g); //B cycle if ((j % 3 == 0 && arr[j] != 'B') || (j % 3 == 1 && arr[j] != 'R') || (j % 3 == 2 && arr[j] != 'G')) { b++; } if (((j - k) % 3 == 0 && arr[j - k] != 'B') || ((j - k) % 3 == 1 && arr[j - k] != 'R') || ((j - k) % 3 == 2 && arr[j - k] != 'G')) { b--; } bMin = Math.min(bMin, b); } out.println(Math.min(Math.min(rMin, gMin), bMin)); } out.flush(); } }
O(n^2)
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Determine the worst-case time complexity category of a given Java code based on input size n. </TASK> <CODE> //q4 import java.io.*; import java.util.*; import java.math.*; public class q4 { public static void main(String[] args) { Scanner in = new Scanner(System.in); PrintWriter out=new PrintWriter(new OutputStreamWriter(System.out)); int query = in.nextInt(); while (query -- > 0) { int n = in.nextInt(); int k = in.nextInt(); char[] arr = new char[n]; //slot all n into char array String code = in.next(); for (int i = 0; i < n; i++) { arr[i] = code.charAt(i); } //R, G, B cycle int r = 0; int g = 0; int b = 0; for (int i = 0; i < k; i++) { if (i % 3 == 0) { if (arr[i] == 'R') {g++; b++;} else if (arr[i] == 'G') {r++; b++;} else {r++; g++;} //if is 'B' } else if (i % 3 == 1) { if (arr[i] == 'G') {g++; b++;} else if (arr[i] == 'B') {r++; b++;} else {r++; g++;} //if is 'R' } else { //if mod 3 is 2 if (arr[i] == 'B') {g++; b++;} else if (arr[i] == 'R') {r++; b++;} else {r++; g++;} //if is 'G' } } //starting from kth position, if different then add 1, and check (j-k)th position int rMin = r; int gMin = g; int bMin = b; for (int j = k; j < n; j++) { //R cycle if ((j % 3 == 0 && arr[j] != 'R') || (j % 3 == 1 && arr[j] != 'G') || (j % 3 == 2 && arr[j] != 'B')) { r++; } //R cycle if (((j - k) % 3 == 0 && arr[j - k] != 'R') || ((j - k) % 3 == 1 && arr[j - k] != 'G') || ((j - k) % 3 == 2 && arr[j - k] != 'B')) { r--; } rMin = Math.min(r, rMin); //G cycle if ((j % 3 == 0 && arr[j] != 'G') || (j % 3 == 1 && arr[j] != 'B') || (j % 3 == 2 && arr[j] != 'R')) { g++; } if (((j - k) % 3 == 0 && arr[j - k] != 'G') || ((j - k) % 3 == 1 && arr[j - k] != 'B') || ((j - k) % 3 == 2 && arr[j - k] != 'R')) { g--; } gMin = Math.min(gMin, g); //B cycle if ((j % 3 == 0 && arr[j] != 'B') || (j % 3 == 1 && arr[j] != 'R') || (j % 3 == 2 && arr[j] != 'G')) { b++; } if (((j - k) % 3 == 0 && arr[j - k] != 'B') || ((j - k) % 3 == 1 && arr[j - k] != 'R') || ((j - k) % 3 == 2 && arr[j - k] != 'G')) { b--; } bMin = Math.min(bMin, b); } out.println(Math.min(Math.min(rMin, gMin), bMin)); } out.flush(); } } </CODE> <EVALUATION_RUBRIC> - O(n^2): The time complexity grows proportionally to the square of the input size. - O(log(n)): The time complexity increases logarithmically in relation to the input size. - O(n^3): The time complexity scales proportionally to the cube of the input size. - O(1): The time complexity is constant to the input size n. - non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially. - O(n): The time complexity increases proportionally to the input size n in a linear manner. - O(nlog(n)): The time complexity combines linear and logarithmic growth factors. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n. </TASK> <CODE> //q4 import java.io.*; import java.util.*; import java.math.*; public class q4 { public static void main(String[] args) { Scanner in = new Scanner(System.in); PrintWriter out=new PrintWriter(new OutputStreamWriter(System.out)); int query = in.nextInt(); while (query -- > 0) { int n = in.nextInt(); int k = in.nextInt(); char[] arr = new char[n]; //slot all n into char array String code = in.next(); for (int i = 0; i < n; i++) { arr[i] = code.charAt(i); } //R, G, B cycle int r = 0; int g = 0; int b = 0; for (int i = 0; i < k; i++) { if (i % 3 == 0) { if (arr[i] == 'R') {g++; b++;} else if (arr[i] == 'G') {r++; b++;} else {r++; g++;} //if is 'B' } else if (i % 3 == 1) { if (arr[i] == 'G') {g++; b++;} else if (arr[i] == 'B') {r++; b++;} else {r++; g++;} //if is 'R' } else { //if mod 3 is 2 if (arr[i] == 'B') {g++; b++;} else if (arr[i] == 'R') {r++; b++;} else {r++; g++;} //if is 'G' } } //starting from kth position, if different then add 1, and check (j-k)th position int rMin = r; int gMin = g; int bMin = b; for (int j = k; j < n; j++) { //R cycle if ((j % 3 == 0 && arr[j] != 'R') || (j % 3 == 1 && arr[j] != 'G') || (j % 3 == 2 && arr[j] != 'B')) { r++; } //R cycle if (((j - k) % 3 == 0 && arr[j - k] != 'R') || ((j - k) % 3 == 1 && arr[j - k] != 'G') || ((j - k) % 3 == 2 && arr[j - k] != 'B')) { r--; } rMin = Math.min(r, rMin); //G cycle if ((j % 3 == 0 && arr[j] != 'G') || (j % 3 == 1 && arr[j] != 'B') || (j % 3 == 2 && arr[j] != 'R')) { g++; } if (((j - k) % 3 == 0 && arr[j - k] != 'G') || ((j - k) % 3 == 1 && arr[j - k] != 'B') || ((j - k) % 3 == 2 && arr[j - k] != 'R')) { g--; } gMin = Math.min(gMin, g); //B cycle if ((j % 3 == 0 && arr[j] != 'B') || (j % 3 == 1 && arr[j] != 'R') || (j % 3 == 2 && arr[j] != 'G')) { b++; } if (((j - k) % 3 == 0 && arr[j - k] != 'B') || ((j - k) % 3 == 1 && arr[j - k] != 'R') || ((j - k) % 3 == 2 && arr[j - k] != 'G')) { b--; } bMin = Math.min(bMin, b); } out.println(Math.min(Math.min(rMin, gMin), bMin)); } out.flush(); } } </CODE> <EVALUATION_RUBRIC> - O(1): The execution time is unaffected by the size of the input n. - non-polynomial: The running time increases non-polynomially with input size n, typically exponentially. - O(n^2): The execution time ascends in proportion to the square of the input size n. - others: The time complexity does not fit to any of the given categories or is ambiguous. - O(log(n)): The execution time ascends in proportion to the logarithm of the input size n. - O(n^3): The execution time ascends in proportion to the cube of the input size n. - O(n): The execution time ascends in a one-to-one ratio with the input size n. - O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
1,262
143
986
import java.io.OutputStream; import java.io.IOException; import java.io.InputStream; import java.io.OutputStream; import java.io.PrintWriter; import java.io.BufferedWriter; import java.io.Writer; import java.io.OutputStreamWriter; import java.util.InputMismatchException; import java.io.IOException; import java.io.InputStream; /** * Built using CHelper plug-in * Actual solution is at the top * * @author cunbidun */ public class Main { public static void main(String[] args) { InputStream inputStream = System.in; OutputStream outputStream = System.out; InputReader in = new InputReader(inputStream); OutputWriter out = new OutputWriter(outputStream); BSportMafia solver = new BSportMafia(); solver.solve(1, in, out); out.close(); } static class BSportMafia { private InputReader in; private OutputWriter out; public void solve(int testNumber, InputReader in, OutputWriter out) { this.in = in; this.out = out; long n = in.nextInt(); long k = in.nextInt(); for (long i = 1; i * (i + 1) / 2 + i <= n + k; i++) { if (i * (i + 1) / 2 + i == n + k) { out.println(n - i); return; } } } } static class InputReader extends InputStream { private InputStream stream; private byte[] buf = new byte[1 << 16]; private int curChar; private int numChars; public InputReader(InputStream stream) { this.stream = stream; } public int read() { if (numChars == -1) { throw new InputMismatchException(); } if (curChar >= numChars) { curChar = 0; try { numChars = stream.read(buf); } catch (IOException e) { throw new InputMismatchException(); } if (numChars <= 0) { return -1; } } return buf[curChar++]; } public int nextInt() { int c = read(); while (isSpaceChar(c)) c = read(); int sgn = 1; if (c == '-') { sgn = -1; c = read(); } int res = 0; do { if (c < '0' || c > '9') { throw new InputMismatchException(); } res *= 10; res += c - '0'; c = read(); } while (!isSpaceChar(c)); return res * sgn; } private static boolean isSpaceChar(int c) { return c == ' ' || c == '\n' || c == '\r' || c == '\t' || c == -1; } } static class OutputWriter { private final PrintWriter out; public OutputWriter(OutputStream outputStream) { out = new PrintWriter(new BufferedWriter(new OutputStreamWriter(outputStream))); } public OutputWriter(Writer writer) { this.out = new PrintWriter(writer); } public void close() { out.close(); } public void println(long i) { out.println(i); } } }
O(log(n))
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Classify the following Java code's worst-case time complexity according to its relationship to the input size n. </TASK> <CODE> import java.io.OutputStream; import java.io.IOException; import java.io.InputStream; import java.io.OutputStream; import java.io.PrintWriter; import java.io.BufferedWriter; import java.io.Writer; import java.io.OutputStreamWriter; import java.util.InputMismatchException; import java.io.IOException; import java.io.InputStream; /** * Built using CHelper plug-in * Actual solution is at the top * * @author cunbidun */ public class Main { public static void main(String[] args) { InputStream inputStream = System.in; OutputStream outputStream = System.out; InputReader in = new InputReader(inputStream); OutputWriter out = new OutputWriter(outputStream); BSportMafia solver = new BSportMafia(); solver.solve(1, in, out); out.close(); } static class BSportMafia { private InputReader in; private OutputWriter out; public void solve(int testNumber, InputReader in, OutputWriter out) { this.in = in; this.out = out; long n = in.nextInt(); long k = in.nextInt(); for (long i = 1; i * (i + 1) / 2 + i <= n + k; i++) { if (i * (i + 1) / 2 + i == n + k) { out.println(n - i); return; } } } } static class InputReader extends InputStream { private InputStream stream; private byte[] buf = new byte[1 << 16]; private int curChar; private int numChars; public InputReader(InputStream stream) { this.stream = stream; } public int read() { if (numChars == -1) { throw new InputMismatchException(); } if (curChar >= numChars) { curChar = 0; try { numChars = stream.read(buf); } catch (IOException e) { throw new InputMismatchException(); } if (numChars <= 0) { return -1; } } return buf[curChar++]; } public int nextInt() { int c = read(); while (isSpaceChar(c)) c = read(); int sgn = 1; if (c == '-') { sgn = -1; c = read(); } int res = 0; do { if (c < '0' || c > '9') { throw new InputMismatchException(); } res *= 10; res += c - '0'; c = read(); } while (!isSpaceChar(c)); return res * sgn; } private static boolean isSpaceChar(int c) { return c == ' ' || c == '\n' || c == '\r' || c == '\t' || c == -1; } } static class OutputWriter { private final PrintWriter out; public OutputWriter(OutputStream outputStream) { out = new PrintWriter(new BufferedWriter(new OutputStreamWriter(outputStream))); } public OutputWriter(Writer writer) { this.out = new PrintWriter(writer); } public void close() { out.close(); } public void println(long i) { out.println(i); } } } </CODE> <EVALUATION_RUBRIC> - O(log(n)): The running time increases with the logarithm of the input size n. - non-polynomial: The running time increases non-polynomially with input size n, typically exponentially. - O(1): The running time does not change regardless of the input size n. - O(nlog(n)): The running time increases with the product of n and logarithm of n. - O(n^2): The running time increases with the square of the input size n. - O(n): The running time grows linearly with the input size n. - O(n^3): The running time increases with the cube of the input size n. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Determine the worst-case time complexity category of a given Java code based on input size n. </TASK> <CODE> import java.io.OutputStream; import java.io.IOException; import java.io.InputStream; import java.io.OutputStream; import java.io.PrintWriter; import java.io.BufferedWriter; import java.io.Writer; import java.io.OutputStreamWriter; import java.util.InputMismatchException; import java.io.IOException; import java.io.InputStream; /** * Built using CHelper plug-in * Actual solution is at the top * * @author cunbidun */ public class Main { public static void main(String[] args) { InputStream inputStream = System.in; OutputStream outputStream = System.out; InputReader in = new InputReader(inputStream); OutputWriter out = new OutputWriter(outputStream); BSportMafia solver = new BSportMafia(); solver.solve(1, in, out); out.close(); } static class BSportMafia { private InputReader in; private OutputWriter out; public void solve(int testNumber, InputReader in, OutputWriter out) { this.in = in; this.out = out; long n = in.nextInt(); long k = in.nextInt(); for (long i = 1; i * (i + 1) / 2 + i <= n + k; i++) { if (i * (i + 1) / 2 + i == n + k) { out.println(n - i); return; } } } } static class InputReader extends InputStream { private InputStream stream; private byte[] buf = new byte[1 << 16]; private int curChar; private int numChars; public InputReader(InputStream stream) { this.stream = stream; } public int read() { if (numChars == -1) { throw new InputMismatchException(); } if (curChar >= numChars) { curChar = 0; try { numChars = stream.read(buf); } catch (IOException e) { throw new InputMismatchException(); } if (numChars <= 0) { return -1; } } return buf[curChar++]; } public int nextInt() { int c = read(); while (isSpaceChar(c)) c = read(); int sgn = 1; if (c == '-') { sgn = -1; c = read(); } int res = 0; do { if (c < '0' || c > '9') { throw new InputMismatchException(); } res *= 10; res += c - '0'; c = read(); } while (!isSpaceChar(c)); return res * sgn; } private static boolean isSpaceChar(int c) { return c == ' ' || c == '\n' || c == '\r' || c == '\t' || c == -1; } } static class OutputWriter { private final PrintWriter out; public OutputWriter(OutputStream outputStream) { out = new PrintWriter(new BufferedWriter(new OutputStreamWriter(outputStream))); } public OutputWriter(Writer writer) { this.out = new PrintWriter(writer); } public void close() { out.close(); } public void println(long i) { out.println(i); } } } </CODE> <EVALUATION_RUBRIC> - O(n^2): The time complexity grows proportionally to the square of the input size. - O(n^3): The time complexity scales proportionally to the cube of the input size. - others: The time complexity does not fit any of the above categories or cannot be clearly classified. - O(nlog(n)): The time complexity combines linear and logarithmic growth factors. - O(1): The time complexity is constant to the input size n. - non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially. - O(n): The time complexity increases proportionally to the input size n in a linear manner. - O(log(n)): The time complexity increases logarithmically in relation to the input size. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
1,039
985
962
import java.util.*; public class CFEdu66 { public static void main(String[] args) { Scanner in = new Scanner(System.in); long n = in.nextLong(); long k = in.nextLong(); double tmp = Math.sqrt(9 + 8*(n+k)); if(Math.ceil(tmp)-tmp<0.001) tmp = Math.ceil(tmp); long root = (long)tmp; long x = (-3+root)/2; System.out.println(n-x); } }
O(log(n))
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Classify the following Java code's worst-case time complexity according to its relationship to the input size n. </TASK> <CODE> import java.util.*; public class CFEdu66 { public static void main(String[] args) { Scanner in = new Scanner(System.in); long n = in.nextLong(); long k = in.nextLong(); double tmp = Math.sqrt(9 + 8*(n+k)); if(Math.ceil(tmp)-tmp<0.001) tmp = Math.ceil(tmp); long root = (long)tmp; long x = (-3+root)/2; System.out.println(n-x); } } </CODE> <EVALUATION_RUBRIC> - O(n^3): The running time increases with the cube of the input size n. - O(n^2): The running time increases with the square of the input size n. - O(1): The running time does not change regardless of the input size n. - O(n): The running time grows linearly with the input size n. - O(nlog(n)): The running time increases with the product of n and logarithm of n. - O(log(n)): The running time increases with the logarithm of the input size n. - non-polynomial: The running time increases non-polynomially with input size n, typically exponentially. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Determine the worst-case time complexity category of a given Java code based on input size n. </TASK> <CODE> import java.util.*; public class CFEdu66 { public static void main(String[] args) { Scanner in = new Scanner(System.in); long n = in.nextLong(); long k = in.nextLong(); double tmp = Math.sqrt(9 + 8*(n+k)); if(Math.ceil(tmp)-tmp<0.001) tmp = Math.ceil(tmp); long root = (long)tmp; long x = (-3+root)/2; System.out.println(n-x); } } </CODE> <EVALUATION_RUBRIC> - O(log(n)): The time complexity increases logarithmically in relation to the input size. - O(n^2): The time complexity grows proportionally to the square of the input size. - non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially. - others: The time complexity does not fit any of the above categories or cannot be clearly classified. - O(n^3): The time complexity scales proportionally to the cube of the input size. - O(1): The time complexity is constant to the input size n. - O(n): The time complexity increases proportionally to the input size n in a linear manner. - O(nlog(n)): The time complexity combines linear and logarithmic growth factors. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
446
961
2,987
import java.util.Scanner; import java.io.StreamTokenizer; import java.io.InputStreamReader; import java.io.IOException; import java.io.PrintStream; import java.io.BufferedReader; import java.io.OutputStream; import java.io.PrintWriter; import java.io.InputStream; /** * Built using CHelper plug-in * Actual solution is at the top * @author KNIGHT0X300 */ public class Main { public static void main(String[] args) { InputStream inputStream = System.in; OutputStream outputStream = System.out; InputStreamReader in = new InputStreamReader(inputStream); PrintWriter out = new PrintWriter(outputStream); TaskA solver = new TaskA(); solver.solve(1, in, out); out.close(); } } class TaskA { StreamTokenizer in; PrintWriter out; BufferedReader re; Scanner sc; public void solve (int testNumber, InputStreamReader in, PrintWriter out) { this.in = new StreamTokenizer(new BufferedReader(in)); this.re = new BufferedReader(in); this.sc = new Scanner(in); this.out = out; try { this.solve(); } catch (IOException e) { e.printStackTrace(); //To change body of catch statement use File | Settings | File Templates. } out.flush(); } void solve() throws IOException { long a=sc.nextLong(),b=sc.nextLong(); long ans=0,t; while(Math.min(a,b)!=1){ if(a>b){ ans+=a/b; a%=b; } else{ t=b; b=a; a=t; long g=gcd(a,b); a/=g;b/=g; } } ans+=Math.max(a,b); out.println(ans); } public static long gcd(long a, long b) { long c = 0; if(a<0) a=-a; if(b<0) b=-b; while (b>0) { c = a % b; a = b; b = c; } return a; } // do the sum }
O(1)
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Determine the worst-case time complexity category of a given Java code based on input size n. </TASK> <CODE> import java.util.Scanner; import java.io.StreamTokenizer; import java.io.InputStreamReader; import java.io.IOException; import java.io.PrintStream; import java.io.BufferedReader; import java.io.OutputStream; import java.io.PrintWriter; import java.io.InputStream; /** * Built using CHelper plug-in * Actual solution is at the top * @author KNIGHT0X300 */ public class Main { public static void main(String[] args) { InputStream inputStream = System.in; OutputStream outputStream = System.out; InputStreamReader in = new InputStreamReader(inputStream); PrintWriter out = new PrintWriter(outputStream); TaskA solver = new TaskA(); solver.solve(1, in, out); out.close(); } } class TaskA { StreamTokenizer in; PrintWriter out; BufferedReader re; Scanner sc; public void solve (int testNumber, InputStreamReader in, PrintWriter out) { this.in = new StreamTokenizer(new BufferedReader(in)); this.re = new BufferedReader(in); this.sc = new Scanner(in); this.out = out; try { this.solve(); } catch (IOException e) { e.printStackTrace(); //To change body of catch statement use File | Settings | File Templates. } out.flush(); } void solve() throws IOException { long a=sc.nextLong(),b=sc.nextLong(); long ans=0,t; while(Math.min(a,b)!=1){ if(a>b){ ans+=a/b; a%=b; } else{ t=b; b=a; a=t; long g=gcd(a,b); a/=g;b/=g; } } ans+=Math.max(a,b); out.println(ans); } public static long gcd(long a, long b) { long c = 0; if(a<0) a=-a; if(b<0) b=-b; while (b>0) { c = a % b; a = b; b = c; } return a; } // do the sum } </CODE> <EVALUATION_RUBRIC> - O(log(n)): The time complexity increases logarithmically in relation to the input size. - O(nlog(n)): The time complexity combines linear and logarithmic growth factors. - O(n^3): The time complexity scales proportionally to the cube of the input size. - O(n): The time complexity increases proportionally to the input size n in a linear manner. - non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially. - O(n^2): The time complexity grows proportionally to the square of the input size. - O(1): The time complexity is constant to the input size n. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Classify the following Java code's worst-case time complexity according to its relationship to the input size n. </TASK> <CODE> import java.util.Scanner; import java.io.StreamTokenizer; import java.io.InputStreamReader; import java.io.IOException; import java.io.PrintStream; import java.io.BufferedReader; import java.io.OutputStream; import java.io.PrintWriter; import java.io.InputStream; /** * Built using CHelper plug-in * Actual solution is at the top * @author KNIGHT0X300 */ public class Main { public static void main(String[] args) { InputStream inputStream = System.in; OutputStream outputStream = System.out; InputStreamReader in = new InputStreamReader(inputStream); PrintWriter out = new PrintWriter(outputStream); TaskA solver = new TaskA(); solver.solve(1, in, out); out.close(); } } class TaskA { StreamTokenizer in; PrintWriter out; BufferedReader re; Scanner sc; public void solve (int testNumber, InputStreamReader in, PrintWriter out) { this.in = new StreamTokenizer(new BufferedReader(in)); this.re = new BufferedReader(in); this.sc = new Scanner(in); this.out = out; try { this.solve(); } catch (IOException e) { e.printStackTrace(); //To change body of catch statement use File | Settings | File Templates. } out.flush(); } void solve() throws IOException { long a=sc.nextLong(),b=sc.nextLong(); long ans=0,t; while(Math.min(a,b)!=1){ if(a>b){ ans+=a/b; a%=b; } else{ t=b; b=a; a=t; long g=gcd(a,b); a/=g;b/=g; } } ans+=Math.max(a,b); out.println(ans); } public static long gcd(long a, long b) { long c = 0; if(a<0) a=-a; if(b<0) b=-b; while (b>0) { c = a % b; a = b; b = c; } return a; } // do the sum } </CODE> <EVALUATION_RUBRIC> - O(n): The running time grows linearly with the input size n. - O(n^2): The running time increases with the square of the input size n. - O(n^3): The running time increases with the cube of the input size n. - non-polynomial: The running time increases non-polynomially with input size n, typically exponentially. - O(1): The running time does not change regardless of the input size n. - others: The code does not clearly correspond to the listed classes or has an unclassified time complexity. - O(log(n)): The running time increases with the logarithm of the input size n. - O(nlog(n)): The running time increases with the product of n and logarithm of n. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
780
2,981
2,932
import java.io.BufferedReader; import java.io.IOException; import java.io.InputStreamReader; public class Test3 { public static void main(String[] args) throws NumberFormatException, IOException { BufferedReader br=new BufferedReader(new InputStreamReader(System.in)); int x=Integer.parseInt(br.readLine()); int y=Integer.parseInt(br.readLine()); System.out.print((int)(y%(Math.pow(2, x)))); } }
O(1)
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Classify the following Java code's worst-case time complexity according to its relationship to the input size n. </TASK> <CODE> import java.io.BufferedReader; import java.io.IOException; import java.io.InputStreamReader; public class Test3 { public static void main(String[] args) throws NumberFormatException, IOException { BufferedReader br=new BufferedReader(new InputStreamReader(System.in)); int x=Integer.parseInt(br.readLine()); int y=Integer.parseInt(br.readLine()); System.out.print((int)(y%(Math.pow(2, x)))); } } </CODE> <EVALUATION_RUBRIC> - O(nlog(n)): The running time increases with the product of n and logarithm of n. - O(n): The running time grows linearly with the input size n. - O(n^3): The running time increases with the cube of the input size n. - non-polynomial: The running time increases non-polynomially with input size n, typically exponentially. - O(n^2): The running time increases with the square of the input size n. - O(log(n)): The running time increases with the logarithm of the input size n. - O(1): The running time does not change regardless of the input size n. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Classify the following Java code's worst-case time complexity according to its relationship to the input size n. </TASK> <CODE> import java.io.BufferedReader; import java.io.IOException; import java.io.InputStreamReader; public class Test3 { public static void main(String[] args) throws NumberFormatException, IOException { BufferedReader br=new BufferedReader(new InputStreamReader(System.in)); int x=Integer.parseInt(br.readLine()); int y=Integer.parseInt(br.readLine()); System.out.print((int)(y%(Math.pow(2, x)))); } } </CODE> <EVALUATION_RUBRIC> - others: The code does not clearly correspond to the listed classes or has an unclassified time complexity. - non-polynomial: The running time increases non-polynomially with input size n, typically exponentially. - O(n): The running time grows linearly with the input size n. - O(1): The running time does not change regardless of the input size n. - O(n^2): The running time increases with the square of the input size n. - O(n^3): The running time increases with the cube of the input size n. - O(log(n)): The running time increases with the logarithm of the input size n. - O(nlog(n)): The running time increases with the product of n and logarithm of n. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
411
2,926
1,824
import java.io.*; import java.util.*; public class A { public static void main(String[] args) throws Exception { Scanner in = new Scanner(System.in); int n = in.nextInt(); int m = in.nextInt(); int k = in.nextInt(); int so[]= new int[n]; for(int i=0;i<n;i++) so[i]=in.nextInt(); Arrays.sort(so); if(m<=k) { System.out.println("0"); return; } int sum=0; int socUsed=0; int cont=0; for(int i=n-1;i>=0;i--){ cont++; sum+=so[i]; if(sum>=m || sum+(k-1)>=m){ System.out.println(cont); return; } sum--; } System.out.println("-1"); } }
O(nlog(n))
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Determine the worst-case time complexity category of a given Java code based on input size n. </TASK> <CODE> import java.io.*; import java.util.*; public class A { public static void main(String[] args) throws Exception { Scanner in = new Scanner(System.in); int n = in.nextInt(); int m = in.nextInt(); int k = in.nextInt(); int so[]= new int[n]; for(int i=0;i<n;i++) so[i]=in.nextInt(); Arrays.sort(so); if(m<=k) { System.out.println("0"); return; } int sum=0; int socUsed=0; int cont=0; for(int i=n-1;i>=0;i--){ cont++; sum+=so[i]; if(sum>=m || sum+(k-1)>=m){ System.out.println(cont); return; } sum--; } System.out.println("-1"); } } </CODE> <EVALUATION_RUBRIC> - O(n): The time complexity increases proportionally to the input size n in a linear manner. - O(n^2): The time complexity grows proportionally to the square of the input size. - O(n^3): The time complexity scales proportionally to the cube of the input size. - non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially. - O(nlog(n)): The time complexity combines linear and logarithmic growth factors. - O(1): The time complexity is constant to the input size n. - O(log(n)): The time complexity increases logarithmically in relation to the input size. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Classify the following Java code's worst-case time complexity according to its relationship to the input size n. </TASK> <CODE> import java.io.*; import java.util.*; public class A { public static void main(String[] args) throws Exception { Scanner in = new Scanner(System.in); int n = in.nextInt(); int m = in.nextInt(); int k = in.nextInt(); int so[]= new int[n]; for(int i=0;i<n;i++) so[i]=in.nextInt(); Arrays.sort(so); if(m<=k) { System.out.println("0"); return; } int sum=0; int socUsed=0; int cont=0; for(int i=n-1;i>=0;i--){ cont++; sum+=so[i]; if(sum>=m || sum+(k-1)>=m){ System.out.println(cont); return; } sum--; } System.out.println("-1"); } } </CODE> <EVALUATION_RUBRIC> - O(n^3): The running time increases with the cube of the input size n. - O(nlog(n)): The running time increases with the product of n and logarithm of n. - O(n): The running time grows linearly with the input size n. - non-polynomial: The running time increases non-polynomially with input size n, typically exponentially. - O(log(n)): The running time increases with the logarithm of the input size n. - others: The code does not clearly correspond to the listed classes or has an unclassified time complexity. - O(n^2): The running time increases with the square of the input size n. - O(1): The running time does not change regardless of the input size n. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
517
1,820
2,644
import java.io.OutputStream; import java.io.IOException; import java.io.InputStream; import java.io.PrintWriter; import java.util.Arrays; import java.util.StringTokenizer; import java.io.IOException; import java.io.BufferedReader; import java.io.InputStreamReader; import java.io.InputStream; /** * Built using CHelper plug-in * Actual solution is at the top * * @author Washoum */ public class Main { public static void main(String[] args) { InputStream inputStream = System.in; OutputStream outputStream = System.out; inputClass in = new inputClass(inputStream); PrintWriter out = new PrintWriter(outputStream); APaintTheNumbers solver = new APaintTheNumbers(); solver.solve(1, in, out); out.close(); } static class APaintTheNumbers { public void solve(int testNumber, inputClass sc, PrintWriter out) { int n = sc.nextInt(); Integer[] tab = new Integer[n]; for (int i = 0; i < n; i++) { tab[i] = sc.nextInt(); } Arrays.sort(tab); boolean[] done = new boolean[n]; int ans = 0; for (int i = 0; i < n; i++) { if (!done[i]) { ans++; done[i] = true; for (int j = i + 1; j < n; j++) { if (!done[j] && tab[j] % tab[i] == 0) { done[j] = true; } } } } out.println(ans); } } static class inputClass { BufferedReader br; StringTokenizer st; public inputClass(InputStream in) { br = new BufferedReader(new InputStreamReader(in)); } public String next() { while (st == null || !st.hasMoreElements()) { try { st = new StringTokenizer(br.readLine()); } catch (IOException e) { e.printStackTrace(); } } return st.nextToken(); } public int nextInt() { return Integer.parseInt(next()); } } }
O(n^2)
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Classify the following Java code's worst-case time complexity according to its relationship to the input size n. </TASK> <CODE> import java.io.OutputStream; import java.io.IOException; import java.io.InputStream; import java.io.PrintWriter; import java.util.Arrays; import java.util.StringTokenizer; import java.io.IOException; import java.io.BufferedReader; import java.io.InputStreamReader; import java.io.InputStream; /** * Built using CHelper plug-in * Actual solution is at the top * * @author Washoum */ public class Main { public static void main(String[] args) { InputStream inputStream = System.in; OutputStream outputStream = System.out; inputClass in = new inputClass(inputStream); PrintWriter out = new PrintWriter(outputStream); APaintTheNumbers solver = new APaintTheNumbers(); solver.solve(1, in, out); out.close(); } static class APaintTheNumbers { public void solve(int testNumber, inputClass sc, PrintWriter out) { int n = sc.nextInt(); Integer[] tab = new Integer[n]; for (int i = 0; i < n; i++) { tab[i] = sc.nextInt(); } Arrays.sort(tab); boolean[] done = new boolean[n]; int ans = 0; for (int i = 0; i < n; i++) { if (!done[i]) { ans++; done[i] = true; for (int j = i + 1; j < n; j++) { if (!done[j] && tab[j] % tab[i] == 0) { done[j] = true; } } } } out.println(ans); } } static class inputClass { BufferedReader br; StringTokenizer st; public inputClass(InputStream in) { br = new BufferedReader(new InputStreamReader(in)); } public String next() { while (st == null || !st.hasMoreElements()) { try { st = new StringTokenizer(br.readLine()); } catch (IOException e) { e.printStackTrace(); } } return st.nextToken(); } public int nextInt() { return Integer.parseInt(next()); } } } </CODE> <EVALUATION_RUBRIC> - O(n): The running time grows linearly with the input size n. - non-polynomial: The running time increases non-polynomially with input size n, typically exponentially. - O(n^3): The running time increases with the cube of the input size n. - O(log(n)): The running time increases with the logarithm of the input size n. - O(n^2): The running time increases with the square of the input size n. - O(nlog(n)): The running time increases with the product of n and logarithm of n. - O(1): The running time does not change regardless of the input size n. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n. </TASK> <CODE> import java.io.OutputStream; import java.io.IOException; import java.io.InputStream; import java.io.PrintWriter; import java.util.Arrays; import java.util.StringTokenizer; import java.io.IOException; import java.io.BufferedReader; import java.io.InputStreamReader; import java.io.InputStream; /** * Built using CHelper plug-in * Actual solution is at the top * * @author Washoum */ public class Main { public static void main(String[] args) { InputStream inputStream = System.in; OutputStream outputStream = System.out; inputClass in = new inputClass(inputStream); PrintWriter out = new PrintWriter(outputStream); APaintTheNumbers solver = new APaintTheNumbers(); solver.solve(1, in, out); out.close(); } static class APaintTheNumbers { public void solve(int testNumber, inputClass sc, PrintWriter out) { int n = sc.nextInt(); Integer[] tab = new Integer[n]; for (int i = 0; i < n; i++) { tab[i] = sc.nextInt(); } Arrays.sort(tab); boolean[] done = new boolean[n]; int ans = 0; for (int i = 0; i < n; i++) { if (!done[i]) { ans++; done[i] = true; for (int j = i + 1; j < n; j++) { if (!done[j] && tab[j] % tab[i] == 0) { done[j] = true; } } } } out.println(ans); } } static class inputClass { BufferedReader br; StringTokenizer st; public inputClass(InputStream in) { br = new BufferedReader(new InputStreamReader(in)); } public String next() { while (st == null || !st.hasMoreElements()) { try { st = new StringTokenizer(br.readLine()); } catch (IOException e) { e.printStackTrace(); } } return st.nextToken(); } public int nextInt() { return Integer.parseInt(next()); } } } </CODE> <EVALUATION_RUBRIC> - O(n^3): The execution time ascends in proportion to the cube of the input size n. - O(1): The execution time is unaffected by the size of the input n. - others: The time complexity does not fit to any of the given categories or is ambiguous. - O(log(n)): The execution time ascends in proportion to the logarithm of the input size n. - O(n): The execution time ascends in a one-to-one ratio with the input size n. - non-polynomial: The running time increases non-polynomially with input size n, typically exponentially. - O(n^2): The execution time ascends in proportion to the square of the input size n. - O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
770
2,638
255
import java.util.*; public class Main { public static void main(String args[]) { Scanner sc = new Scanner(System.in); int n = sc.nextInt(); int m = sc.nextInt(); long totalBlocks = 0; long a[] = new long[n]; for(int i = 0; i < n; ++i) { a[i] = sc.nextLong(); totalBlocks += a[i]; } Arrays.sort(a); long selected = 0; for(int i = 0; i < n; ++i) { if(a[i] > selected) selected++; } long leftCols = a[n - 1] - selected; long remBlocks = totalBlocks - leftCols - n; System.out.print(remBlocks); } }
O(nlog(n))
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Classify the following Java code's worst-case time complexity according to its relationship to the input size n. </TASK> <CODE> import java.util.*; public class Main { public static void main(String args[]) { Scanner sc = new Scanner(System.in); int n = sc.nextInt(); int m = sc.nextInt(); long totalBlocks = 0; long a[] = new long[n]; for(int i = 0; i < n; ++i) { a[i] = sc.nextLong(); totalBlocks += a[i]; } Arrays.sort(a); long selected = 0; for(int i = 0; i < n; ++i) { if(a[i] > selected) selected++; } long leftCols = a[n - 1] - selected; long remBlocks = totalBlocks - leftCols - n; System.out.print(remBlocks); } } </CODE> <EVALUATION_RUBRIC> - O(n^3): The running time increases with the cube of the input size n. - O(1): The running time does not change regardless of the input size n. - O(n^2): The running time increases with the square of the input size n. - O(nlog(n)): The running time increases with the product of n and logarithm of n. - O(n): The running time grows linearly with the input size n. - O(log(n)): The running time increases with the logarithm of the input size n. - non-polynomial: The running time increases non-polynomially with input size n, typically exponentially. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Classify the following Java code's worst-case time complexity according to its relationship to the input size n. </TASK> <CODE> import java.util.*; public class Main { public static void main(String args[]) { Scanner sc = new Scanner(System.in); int n = sc.nextInt(); int m = sc.nextInt(); long totalBlocks = 0; long a[] = new long[n]; for(int i = 0; i < n; ++i) { a[i] = sc.nextLong(); totalBlocks += a[i]; } Arrays.sort(a); long selected = 0; for(int i = 0; i < n; ++i) { if(a[i] > selected) selected++; } long leftCols = a[n - 1] - selected; long remBlocks = totalBlocks - leftCols - n; System.out.print(remBlocks); } } </CODE> <EVALUATION_RUBRIC> - O(1): The running time does not change regardless of the input size n. - O(n): The running time grows linearly with the input size n. - O(nlog(n)): The running time increases with the product of n and logarithm of n. - O(n^2): The running time increases with the square of the input size n. - others: The code does not clearly correspond to the listed classes or has an unclassified time complexity. - non-polynomial: The running time increases non-polynomially with input size n, typically exponentially. - O(n^3): The running time increases with the cube of the input size n. - O(log(n)): The running time increases with the logarithm of the input size n. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
502
255
1,477
import java.io.*; import java.lang.reflect.*; public class D { final int MOD = (int)1e9 + 7; final double eps = 1e-12; final int INF = (int)1e9; public D () { long L = sc.nextLong(); long R = sc.nextLong(); for (int i = 60; i >= 0; --i) { long b = (1L << i); long A = (L & b), B = (R & b); if (A != B) exit(2*b-1); } exit(0); } //////////////////////////////////////////////////////////////////////////////////// /* Dear hacker, don't bother reading below this line, unless you want to help me debug my I/O routines :-) */ static MyScanner sc = new MyScanner(); static class MyScanner { public String next() { newLine(); return line[index++]; } public char nextChar() { return next().charAt(0); } public int nextInt() { return Integer.parseInt(next()); } public long nextLong() { return Long.parseLong(next()); } public double nextDouble() { return Double.parseDouble(next()); } public String nextLine() { line = null; return readLine(); } public String [] nextStrings() { line = null; return readLine().split(" "); } public char [] nextChars() { return next().toCharArray(); } public Integer [] nextInts() { String [] L = nextStrings(); Integer [] res = new Integer [L.length]; for (int i = 0; i < L.length; ++i) res[i] = Integer.parseInt(L[i]); return res; } public Long [] nextLongs() { String [] L = nextStrings(); Long [] res = new Long [L.length]; for (int i = 0; i < L.length; ++i) res[i] = Long.parseLong(L[i]); return res; } public Double [] nextDoubles() { String [] L = nextStrings(); Double [] res = new Double [L.length]; for (int i = 0; i < L.length; ++i) res[i] = Double.parseDouble(L[i]); return res; } public String [] next (int N) { String [] res = new String [N]; for (int i = 0; i < N; ++i) res[i] = sc.next(); return res; } public Integer [] nextInt (int N) { Integer [] res = new Integer [N]; for (int i = 0; i < N; ++i) res[i] = sc.nextInt(); return res; } public Long [] nextLong (int N) { Long [] res = new Long [N]; for (int i = 0; i < N; ++i) res[i] = sc.nextLong(); return res; } public Double [] nextDouble (int N) { Double [] res = new Double [N]; for (int i = 0; i < N; ++i) res[i] = sc.nextDouble(); return res; } public String [][] nextStrings (int N) { String [][] res = new String [N][]; for (int i = 0; i < N; ++i) res[i] = sc.nextStrings(); return res; } public Integer [][] nextInts (int N) { Integer [][] res = new Integer [N][]; for (int i = 0; i < N; ++i) res[i] = sc.nextInts(); return res; } public Long [][] nextLongs (int N) { Long [][] res = new Long [N][]; for (int i = 0; i < N; ++i) res[i] = sc.nextLongs(); return res; } public Double [][] nextDoubles (int N) { Double [][] res = new Double [N][]; for (int i = 0; i < N; ++i) res[i] = sc.nextDoubles(); return res; } ////////////////////////////////////////////// private boolean eol() { return index == line.length; } private String readLine() { try { return r.readLine(); } catch (Exception e) { throw new Error(e); } } private final BufferedReader r; MyScanner () { this(new BufferedReader(new InputStreamReader(System.in))); } MyScanner(BufferedReader r) { try { this.r = r; while (!r.ready()) Thread.sleep(1); start(); } catch (Exception e) { throw new Error(e); } } private String [] line; private int index; private void newLine() { if (line == null || eol()) { line = readLine().split(" "); index = 0; } } } static void print(Object o, Object... a) { printDelim(" ", o, a); } static void cprint(Object o, Object... a) { printDelim("", o, a); } static void printDelim (String delim, Object o, Object... a) { pw.println(build(delim, o, a)); } static void exit (Object o, Object... a) { print(o, a); exit(); } static void exit () { pw.close(); System.out.flush(); System.err.println("------------------"); System.err.println("Time: " + ((millis() - t) / 1000.0)); System.exit(0); } void NO() { throw new Error("NO!"); } //////////////////////////////////////////////////////////////////////////////////// static String build(String delim, Object o, Object... a) { StringBuilder b = new StringBuilder(); append(b, o, delim); for (Object p : a) append(b, p, delim); return b.toString().trim(); } static void append(StringBuilder b, Object o, String delim) { if (o.getClass().isArray()) { int L = Array.getLength(o); for (int i = 0; i < L; ++i) append(b, Array.get(o, i), delim); } else if (o instanceof Iterable<?>) { for (Object p : (Iterable<?>)o) append(b, p, delim); } else b.append(delim).append(o); } //////////////////////////////////////////////////////////////////////////////////// public static void main(String[] args) { new D(); exit(); } static void start() { t = millis(); } static PrintWriter pw = new PrintWriter(System.out); static long t; static long millis() { return System.currentTimeMillis(); } }
O(log(n))
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Classify the following Java code's worst-case time complexity according to its relationship to the input size n. </TASK> <CODE> import java.io.*; import java.lang.reflect.*; public class D { final int MOD = (int)1e9 + 7; final double eps = 1e-12; final int INF = (int)1e9; public D () { long L = sc.nextLong(); long R = sc.nextLong(); for (int i = 60; i >= 0; --i) { long b = (1L << i); long A = (L & b), B = (R & b); if (A != B) exit(2*b-1); } exit(0); } //////////////////////////////////////////////////////////////////////////////////// /* Dear hacker, don't bother reading below this line, unless you want to help me debug my I/O routines :-) */ static MyScanner sc = new MyScanner(); static class MyScanner { public String next() { newLine(); return line[index++]; } public char nextChar() { return next().charAt(0); } public int nextInt() { return Integer.parseInt(next()); } public long nextLong() { return Long.parseLong(next()); } public double nextDouble() { return Double.parseDouble(next()); } public String nextLine() { line = null; return readLine(); } public String [] nextStrings() { line = null; return readLine().split(" "); } public char [] nextChars() { return next().toCharArray(); } public Integer [] nextInts() { String [] L = nextStrings(); Integer [] res = new Integer [L.length]; for (int i = 0; i < L.length; ++i) res[i] = Integer.parseInt(L[i]); return res; } public Long [] nextLongs() { String [] L = nextStrings(); Long [] res = new Long [L.length]; for (int i = 0; i < L.length; ++i) res[i] = Long.parseLong(L[i]); return res; } public Double [] nextDoubles() { String [] L = nextStrings(); Double [] res = new Double [L.length]; for (int i = 0; i < L.length; ++i) res[i] = Double.parseDouble(L[i]); return res; } public String [] next (int N) { String [] res = new String [N]; for (int i = 0; i < N; ++i) res[i] = sc.next(); return res; } public Integer [] nextInt (int N) { Integer [] res = new Integer [N]; for (int i = 0; i < N; ++i) res[i] = sc.nextInt(); return res; } public Long [] nextLong (int N) { Long [] res = new Long [N]; for (int i = 0; i < N; ++i) res[i] = sc.nextLong(); return res; } public Double [] nextDouble (int N) { Double [] res = new Double [N]; for (int i = 0; i < N; ++i) res[i] = sc.nextDouble(); return res; } public String [][] nextStrings (int N) { String [][] res = new String [N][]; for (int i = 0; i < N; ++i) res[i] = sc.nextStrings(); return res; } public Integer [][] nextInts (int N) { Integer [][] res = new Integer [N][]; for (int i = 0; i < N; ++i) res[i] = sc.nextInts(); return res; } public Long [][] nextLongs (int N) { Long [][] res = new Long [N][]; for (int i = 0; i < N; ++i) res[i] = sc.nextLongs(); return res; } public Double [][] nextDoubles (int N) { Double [][] res = new Double [N][]; for (int i = 0; i < N; ++i) res[i] = sc.nextDoubles(); return res; } ////////////////////////////////////////////// private boolean eol() { return index == line.length; } private String readLine() { try { return r.readLine(); } catch (Exception e) { throw new Error(e); } } private final BufferedReader r; MyScanner () { this(new BufferedReader(new InputStreamReader(System.in))); } MyScanner(BufferedReader r) { try { this.r = r; while (!r.ready()) Thread.sleep(1); start(); } catch (Exception e) { throw new Error(e); } } private String [] line; private int index; private void newLine() { if (line == null || eol()) { line = readLine().split(" "); index = 0; } } } static void print(Object o, Object... a) { printDelim(" ", o, a); } static void cprint(Object o, Object... a) { printDelim("", o, a); } static void printDelim (String delim, Object o, Object... a) { pw.println(build(delim, o, a)); } static void exit (Object o, Object... a) { print(o, a); exit(); } static void exit () { pw.close(); System.out.flush(); System.err.println("------------------"); System.err.println("Time: " + ((millis() - t) / 1000.0)); System.exit(0); } void NO() { throw new Error("NO!"); } //////////////////////////////////////////////////////////////////////////////////// static String build(String delim, Object o, Object... a) { StringBuilder b = new StringBuilder(); append(b, o, delim); for (Object p : a) append(b, p, delim); return b.toString().trim(); } static void append(StringBuilder b, Object o, String delim) { if (o.getClass().isArray()) { int L = Array.getLength(o); for (int i = 0; i < L; ++i) append(b, Array.get(o, i), delim); } else if (o instanceof Iterable<?>) { for (Object p : (Iterable<?>)o) append(b, p, delim); } else b.append(delim).append(o); } //////////////////////////////////////////////////////////////////////////////////// public static void main(String[] args) { new D(); exit(); } static void start() { t = millis(); } static PrintWriter pw = new PrintWriter(System.out); static long t; static long millis() { return System.currentTimeMillis(); } } </CODE> <EVALUATION_RUBRIC> - O(1): The running time does not change regardless of the input size n. - O(n^2): The running time increases with the square of the input size n. - O(log(n)): The running time increases with the logarithm of the input size n. - O(n): The running time grows linearly with the input size n. - O(n^3): The running time increases with the cube of the input size n. - O(nlog(n)): The running time increases with the product of n and logarithm of n. - non-polynomial: The running time increases non-polynomially with input size n, typically exponentially. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Classify the following Java code's worst-case time complexity according to its relationship to the input size n. </TASK> <CODE> import java.io.*; import java.lang.reflect.*; public class D { final int MOD = (int)1e9 + 7; final double eps = 1e-12; final int INF = (int)1e9; public D () { long L = sc.nextLong(); long R = sc.nextLong(); for (int i = 60; i >= 0; --i) { long b = (1L << i); long A = (L & b), B = (R & b); if (A != B) exit(2*b-1); } exit(0); } //////////////////////////////////////////////////////////////////////////////////// /* Dear hacker, don't bother reading below this line, unless you want to help me debug my I/O routines :-) */ static MyScanner sc = new MyScanner(); static class MyScanner { public String next() { newLine(); return line[index++]; } public char nextChar() { return next().charAt(0); } public int nextInt() { return Integer.parseInt(next()); } public long nextLong() { return Long.parseLong(next()); } public double nextDouble() { return Double.parseDouble(next()); } public String nextLine() { line = null; return readLine(); } public String [] nextStrings() { line = null; return readLine().split(" "); } public char [] nextChars() { return next().toCharArray(); } public Integer [] nextInts() { String [] L = nextStrings(); Integer [] res = new Integer [L.length]; for (int i = 0; i < L.length; ++i) res[i] = Integer.parseInt(L[i]); return res; } public Long [] nextLongs() { String [] L = nextStrings(); Long [] res = new Long [L.length]; for (int i = 0; i < L.length; ++i) res[i] = Long.parseLong(L[i]); return res; } public Double [] nextDoubles() { String [] L = nextStrings(); Double [] res = new Double [L.length]; for (int i = 0; i < L.length; ++i) res[i] = Double.parseDouble(L[i]); return res; } public String [] next (int N) { String [] res = new String [N]; for (int i = 0; i < N; ++i) res[i] = sc.next(); return res; } public Integer [] nextInt (int N) { Integer [] res = new Integer [N]; for (int i = 0; i < N; ++i) res[i] = sc.nextInt(); return res; } public Long [] nextLong (int N) { Long [] res = new Long [N]; for (int i = 0; i < N; ++i) res[i] = sc.nextLong(); return res; } public Double [] nextDouble (int N) { Double [] res = new Double [N]; for (int i = 0; i < N; ++i) res[i] = sc.nextDouble(); return res; } public String [][] nextStrings (int N) { String [][] res = new String [N][]; for (int i = 0; i < N; ++i) res[i] = sc.nextStrings(); return res; } public Integer [][] nextInts (int N) { Integer [][] res = new Integer [N][]; for (int i = 0; i < N; ++i) res[i] = sc.nextInts(); return res; } public Long [][] nextLongs (int N) { Long [][] res = new Long [N][]; for (int i = 0; i < N; ++i) res[i] = sc.nextLongs(); return res; } public Double [][] nextDoubles (int N) { Double [][] res = new Double [N][]; for (int i = 0; i < N; ++i) res[i] = sc.nextDoubles(); return res; } ////////////////////////////////////////////// private boolean eol() { return index == line.length; } private String readLine() { try { return r.readLine(); } catch (Exception e) { throw new Error(e); } } private final BufferedReader r; MyScanner () { this(new BufferedReader(new InputStreamReader(System.in))); } MyScanner(BufferedReader r) { try { this.r = r; while (!r.ready()) Thread.sleep(1); start(); } catch (Exception e) { throw new Error(e); } } private String [] line; private int index; private void newLine() { if (line == null || eol()) { line = readLine().split(" "); index = 0; } } } static void print(Object o, Object... a) { printDelim(" ", o, a); } static void cprint(Object o, Object... a) { printDelim("", o, a); } static void printDelim (String delim, Object o, Object... a) { pw.println(build(delim, o, a)); } static void exit (Object o, Object... a) { print(o, a); exit(); } static void exit () { pw.close(); System.out.flush(); System.err.println("------------------"); System.err.println("Time: " + ((millis() - t) / 1000.0)); System.exit(0); } void NO() { throw new Error("NO!"); } //////////////////////////////////////////////////////////////////////////////////// static String build(String delim, Object o, Object... a) { StringBuilder b = new StringBuilder(); append(b, o, delim); for (Object p : a) append(b, p, delim); return b.toString().trim(); } static void append(StringBuilder b, Object o, String delim) { if (o.getClass().isArray()) { int L = Array.getLength(o); for (int i = 0; i < L; ++i) append(b, Array.get(o, i), delim); } else if (o instanceof Iterable<?>) { for (Object p : (Iterable<?>)o) append(b, p, delim); } else b.append(delim).append(o); } //////////////////////////////////////////////////////////////////////////////////// public static void main(String[] args) { new D(); exit(); } static void start() { t = millis(); } static PrintWriter pw = new PrintWriter(System.out); static long t; static long millis() { return System.currentTimeMillis(); } } </CODE> <EVALUATION_RUBRIC> - O(n): The running time grows linearly with the input size n. - O(n^3): The running time increases with the cube of the input size n. - O(1): The running time does not change regardless of the input size n. - O(nlog(n)): The running time increases with the product of n and logarithm of n. - O(log(n)): The running time increases with the logarithm of the input size n. - others: The code does not clearly correspond to the listed classes or has an unclassified time complexity. - non-polynomial: The running time increases non-polynomially with input size n, typically exponentially. - O(n^2): The running time increases with the square of the input size n. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
1,889
1,475
3,270
import java.util.Scanner; public class Main { public static void main(String[] args) { Scanner r = new Scanner(System.in); int N = r.nextInt(); System.out.println(N + " " + 0 + " " + 0); } }
O(1)
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Determine the worst-case time complexity category of a given Java code based on input size n. </TASK> <CODE> import java.util.Scanner; public class Main { public static void main(String[] args) { Scanner r = new Scanner(System.in); int N = r.nextInt(); System.out.println(N + " " + 0 + " " + 0); } } </CODE> <EVALUATION_RUBRIC> - O(1): The time complexity is constant to the input size n. - O(n^3): The time complexity scales proportionally to the cube of the input size. - O(n^2): The time complexity grows proportionally to the square of the input size. - O(n): The time complexity increases proportionally to the input size n in a linear manner. - O(log(n)): The time complexity increases logarithmically in relation to the input size. - O(nlog(n)): The time complexity combines linear and logarithmic growth factors. - non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Classify the following Java code's worst-case time complexity according to its relationship to the input size n. </TASK> <CODE> import java.util.Scanner; public class Main { public static void main(String[] args) { Scanner r = new Scanner(System.in); int N = r.nextInt(); System.out.println(N + " " + 0 + " " + 0); } } </CODE> <EVALUATION_RUBRIC> - O(n^2): The running time increases with the square of the input size n. - others: The code does not clearly correspond to the listed classes or has an unclassified time complexity. - O(n): The running time grows linearly with the input size n. - non-polynomial: The running time increases non-polynomially with input size n, typically exponentially. - O(n^3): The running time increases with the cube of the input size n. - O(nlog(n)): The running time increases with the product of n and logarithm of n. - O(log(n)): The running time increases with the logarithm of the input size n. - O(1): The running time does not change regardless of the input size n. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
387
3,264
3,957
import java.io.BufferedReader; import java.io.InputStreamReader; import java.io.PrintWriter; import java.io.Reader; import java.io.IOException; import java.util.StringTokenizer; /* * @author Tnascimento */ public class MaeDosDragoes { // public static StringTokenizer tokenizer; // public static BufferedReader reader; public static PrintWriter saida = new PrintWriter(System.out, false); // public static String proximo() { // while (tokenizer == null || !tokenizer.hasMoreElements()) { // try { // tokenizer = new StringTokenizer(reader.readLine()); // } catch (RuntimeException e) { // e.printStackTrace(); // } // } // return tokenizer.nextToken(); // } public static class FastScanner { BufferedReader br; StringTokenizer st; public FastScanner(Reader in) { br = new BufferedReader(in); } public FastScanner() { this(new InputStreamReader(System.in)); } String next() { while (st == null || !st.hasMoreElements()) { try { st = new StringTokenizer(br.readLine()); } catch (IOException e) { e.printStackTrace(); } } return st.nextToken(); } int nextInt() { return Integer.parseInt(next()); } long nextLong() { return Long.parseLong(next()); } double nextDouble() { return Double.parseDouble(next()); } String readNextLine() { String str = ""; try { str = br.readLine(); } catch (IOException e) { e.printStackTrace(); } return str; } } public static void main(String[] args) { FastScanner fastScanner = new FastScanner(); int proximoInt = fastScanner.nextInt(); double proximoDouble = fastScanner.nextInt(); long[] graph = new long[proximoInt]; for(Integer i = 0; i < proximoInt; i++) { for(Integer j =0; j < proximoInt; j++) { Integer val = fastScanner.nextInt(); if (val.equals(1) || i.equals(j)) { graph[i] |= 1L << j; } } } int szLeft = proximoInt/2; int szRight = proximoInt - szLeft; int[] dp = new int[1 << szLeft]; int maxMask = 1 << szLeft; for(int mask = 1; mask <maxMask; mask++) { int curMask = mask; for(int j = 0; j < szLeft; j++) { if (((1 << j) & mask) > 0) { curMask &= graph[j + szRight] >> szRight; dp[mask] = Math.max(dp[mask], dp[mask ^ (1 << j)]); } } if (mask == curMask) { dp[mask] = Math.max(dp[mask],Integer.bitCount(mask)); } } int ans = 0; int rmaxMask = 1 << szRight; for(int mask = 0; mask < rmaxMask; mask++) { int curMask = mask; int oMask = maxMask -1; for(int j = 0; j < szRight; j++) { if (((1 << j) & mask) > 0) { curMask &= (graph[j] & (rmaxMask-1)); oMask &= graph[j] >> szRight; } } if (curMask != mask) continue; ans = Math.max(ans, Integer.bitCount(mask) + dp[oMask]); } proximoDouble/=ans; saida.println(proximoDouble * proximoDouble * (ans * (ans-1))/2); saida.flush(); } }
non-polynomial
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Classify the following Java code's worst-case time complexity according to its relationship to the input size n. </TASK> <CODE> import java.io.BufferedReader; import java.io.InputStreamReader; import java.io.PrintWriter; import java.io.Reader; import java.io.IOException; import java.util.StringTokenizer; /* * @author Tnascimento */ public class MaeDosDragoes { // public static StringTokenizer tokenizer; // public static BufferedReader reader; public static PrintWriter saida = new PrintWriter(System.out, false); // public static String proximo() { // while (tokenizer == null || !tokenizer.hasMoreElements()) { // try { // tokenizer = new StringTokenizer(reader.readLine()); // } catch (RuntimeException e) { // e.printStackTrace(); // } // } // return tokenizer.nextToken(); // } public static class FastScanner { BufferedReader br; StringTokenizer st; public FastScanner(Reader in) { br = new BufferedReader(in); } public FastScanner() { this(new InputStreamReader(System.in)); } String next() { while (st == null || !st.hasMoreElements()) { try { st = new StringTokenizer(br.readLine()); } catch (IOException e) { e.printStackTrace(); } } return st.nextToken(); } int nextInt() { return Integer.parseInt(next()); } long nextLong() { return Long.parseLong(next()); } double nextDouble() { return Double.parseDouble(next()); } String readNextLine() { String str = ""; try { str = br.readLine(); } catch (IOException e) { e.printStackTrace(); } return str; } } public static void main(String[] args) { FastScanner fastScanner = new FastScanner(); int proximoInt = fastScanner.nextInt(); double proximoDouble = fastScanner.nextInt(); long[] graph = new long[proximoInt]; for(Integer i = 0; i < proximoInt; i++) { for(Integer j =0; j < proximoInt; j++) { Integer val = fastScanner.nextInt(); if (val.equals(1) || i.equals(j)) { graph[i] |= 1L << j; } } } int szLeft = proximoInt/2; int szRight = proximoInt - szLeft; int[] dp = new int[1 << szLeft]; int maxMask = 1 << szLeft; for(int mask = 1; mask <maxMask; mask++) { int curMask = mask; for(int j = 0; j < szLeft; j++) { if (((1 << j) & mask) > 0) { curMask &= graph[j + szRight] >> szRight; dp[mask] = Math.max(dp[mask], dp[mask ^ (1 << j)]); } } if (mask == curMask) { dp[mask] = Math.max(dp[mask],Integer.bitCount(mask)); } } int ans = 0; int rmaxMask = 1 << szRight; for(int mask = 0; mask < rmaxMask; mask++) { int curMask = mask; int oMask = maxMask -1; for(int j = 0; j < szRight; j++) { if (((1 << j) & mask) > 0) { curMask &= (graph[j] & (rmaxMask-1)); oMask &= graph[j] >> szRight; } } if (curMask != mask) continue; ans = Math.max(ans, Integer.bitCount(mask) + dp[oMask]); } proximoDouble/=ans; saida.println(proximoDouble * proximoDouble * (ans * (ans-1))/2); saida.flush(); } } </CODE> <EVALUATION_RUBRIC> - O(n): The running time grows linearly with the input size n. - O(n^3): The running time increases with the cube of the input size n. - O(1): The running time does not change regardless of the input size n. - O(log(n)): The running time increases with the logarithm of the input size n. - non-polynomial: The running time increases non-polynomially with input size n, typically exponentially. - O(nlog(n)): The running time increases with the product of n and logarithm of n. - O(n^2): The running time increases with the square of the input size n. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n. </TASK> <CODE> import java.io.BufferedReader; import java.io.InputStreamReader; import java.io.PrintWriter; import java.io.Reader; import java.io.IOException; import java.util.StringTokenizer; /* * @author Tnascimento */ public class MaeDosDragoes { // public static StringTokenizer tokenizer; // public static BufferedReader reader; public static PrintWriter saida = new PrintWriter(System.out, false); // public static String proximo() { // while (tokenizer == null || !tokenizer.hasMoreElements()) { // try { // tokenizer = new StringTokenizer(reader.readLine()); // } catch (RuntimeException e) { // e.printStackTrace(); // } // } // return tokenizer.nextToken(); // } public static class FastScanner { BufferedReader br; StringTokenizer st; public FastScanner(Reader in) { br = new BufferedReader(in); } public FastScanner() { this(new InputStreamReader(System.in)); } String next() { while (st == null || !st.hasMoreElements()) { try { st = new StringTokenizer(br.readLine()); } catch (IOException e) { e.printStackTrace(); } } return st.nextToken(); } int nextInt() { return Integer.parseInt(next()); } long nextLong() { return Long.parseLong(next()); } double nextDouble() { return Double.parseDouble(next()); } String readNextLine() { String str = ""; try { str = br.readLine(); } catch (IOException e) { e.printStackTrace(); } return str; } } public static void main(String[] args) { FastScanner fastScanner = new FastScanner(); int proximoInt = fastScanner.nextInt(); double proximoDouble = fastScanner.nextInt(); long[] graph = new long[proximoInt]; for(Integer i = 0; i < proximoInt; i++) { for(Integer j =0; j < proximoInt; j++) { Integer val = fastScanner.nextInt(); if (val.equals(1) || i.equals(j)) { graph[i] |= 1L << j; } } } int szLeft = proximoInt/2; int szRight = proximoInt - szLeft; int[] dp = new int[1 << szLeft]; int maxMask = 1 << szLeft; for(int mask = 1; mask <maxMask; mask++) { int curMask = mask; for(int j = 0; j < szLeft; j++) { if (((1 << j) & mask) > 0) { curMask &= graph[j + szRight] >> szRight; dp[mask] = Math.max(dp[mask], dp[mask ^ (1 << j)]); } } if (mask == curMask) { dp[mask] = Math.max(dp[mask],Integer.bitCount(mask)); } } int ans = 0; int rmaxMask = 1 << szRight; for(int mask = 0; mask < rmaxMask; mask++) { int curMask = mask; int oMask = maxMask -1; for(int j = 0; j < szRight; j++) { if (((1 << j) & mask) > 0) { curMask &= (graph[j] & (rmaxMask-1)); oMask &= graph[j] >> szRight; } } if (curMask != mask) continue; ans = Math.max(ans, Integer.bitCount(mask) + dp[oMask]); } proximoDouble/=ans; saida.println(proximoDouble * proximoDouble * (ans * (ans-1))/2); saida.flush(); } } </CODE> <EVALUATION_RUBRIC> - O(n^3): The execution time ascends in proportion to the cube of the input size n. - O(1): The execution time is unaffected by the size of the input n. - O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially. - others: The time complexity does not fit to any of the given categories or is ambiguous. - non-polynomial: The running time increases non-polynomially with input size n, typically exponentially. - O(log(n)): The execution time ascends in proportion to the logarithm of the input size n. - O(n): The execution time ascends in a one-to-one ratio with the input size n. - O(n^2): The execution time ascends in proportion to the square of the input size n. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
1,146
3,946
1,696
import java.io.BufferedReader; import java.io.IOException; import java.io.InputStreamReader; import java.io.PrintWriter; import java.util.HashSet; import java.util.Set; import java.util.StringTokenizer; public class Houses implements Runnable { private void solve() throws IOException { int n = nextInt(); int t = nextInt(); int[] x = new int[n]; int[] a = new int[n]; for (int i = 0; i < n; ++i) { x[i] = nextInt() * 2; a[i] = nextInt(); } Set<Integer> res = new HashSet<Integer>(); for (int i = 0; i < n; ++i) { if (valid(n, t, x, a, x[i] + a[i] + t)) res.add(x[i] + a[i] + t); if (valid(n, t, x, a, x[i] - a[i] - t)) res.add(x[i] - a[i] - t); } writer.println(res.size()); } private boolean valid(int n, int t, int[] x, int[] a, int pos) { for (int i = 0; i < n; ++i) { if (Math.abs(pos - x[i]) < a[i] + t) return false; } return true; } public static void main(String[] args) { new Houses().run(); } BufferedReader reader; StringTokenizer tokenizer; PrintWriter writer; public void run() { try { reader = new BufferedReader(new InputStreamReader(System.in)); tokenizer = null; writer = new PrintWriter(System.out); solve(); reader.close(); writer.close(); } catch (Exception e) { e.printStackTrace(); System.exit(1); } } int nextInt() throws IOException { return Integer.parseInt(nextToken()); } long nextLong() throws IOException { return Long.parseLong(nextToken()); } double nextDouble() throws IOException { return Double.parseDouble(nextToken()); } String nextToken() throws IOException { while (tokenizer == null || !tokenizer.hasMoreTokens()) { tokenizer = new StringTokenizer(reader.readLine()); } return tokenizer.nextToken(); } }
O(nlog(n))
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n. </TASK> <CODE> import java.io.BufferedReader; import java.io.IOException; import java.io.InputStreamReader; import java.io.PrintWriter; import java.util.HashSet; import java.util.Set; import java.util.StringTokenizer; public class Houses implements Runnable { private void solve() throws IOException { int n = nextInt(); int t = nextInt(); int[] x = new int[n]; int[] a = new int[n]; for (int i = 0; i < n; ++i) { x[i] = nextInt() * 2; a[i] = nextInt(); } Set<Integer> res = new HashSet<Integer>(); for (int i = 0; i < n; ++i) { if (valid(n, t, x, a, x[i] + a[i] + t)) res.add(x[i] + a[i] + t); if (valid(n, t, x, a, x[i] - a[i] - t)) res.add(x[i] - a[i] - t); } writer.println(res.size()); } private boolean valid(int n, int t, int[] x, int[] a, int pos) { for (int i = 0; i < n; ++i) { if (Math.abs(pos - x[i]) < a[i] + t) return false; } return true; } public static void main(String[] args) { new Houses().run(); } BufferedReader reader; StringTokenizer tokenizer; PrintWriter writer; public void run() { try { reader = new BufferedReader(new InputStreamReader(System.in)); tokenizer = null; writer = new PrintWriter(System.out); solve(); reader.close(); writer.close(); } catch (Exception e) { e.printStackTrace(); System.exit(1); } } int nextInt() throws IOException { return Integer.parseInt(nextToken()); } long nextLong() throws IOException { return Long.parseLong(nextToken()); } double nextDouble() throws IOException { return Double.parseDouble(nextToken()); } String nextToken() throws IOException { while (tokenizer == null || !tokenizer.hasMoreTokens()) { tokenizer = new StringTokenizer(reader.readLine()); } return tokenizer.nextToken(); } } </CODE> <EVALUATION_RUBRIC> - O(n^3): The execution time ascends in proportion to the cube of the input size n. - non-polynomial: The running time increases non-polynomially with input size n, typically exponentially. - O(n): The execution time ascends in a one-to-one ratio with the input size n. - O(log(n)): The execution time ascends in proportion to the logarithm of the input size n. - O(n^2): The execution time ascends in proportion to the square of the input size n. - O(1): The execution time is unaffected by the size of the input n. - O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Determine the worst-case time complexity category of a given Java code based on input size n. </TASK> <CODE> import java.io.BufferedReader; import java.io.IOException; import java.io.InputStreamReader; import java.io.PrintWriter; import java.util.HashSet; import java.util.Set; import java.util.StringTokenizer; public class Houses implements Runnable { private void solve() throws IOException { int n = nextInt(); int t = nextInt(); int[] x = new int[n]; int[] a = new int[n]; for (int i = 0; i < n; ++i) { x[i] = nextInt() * 2; a[i] = nextInt(); } Set<Integer> res = new HashSet<Integer>(); for (int i = 0; i < n; ++i) { if (valid(n, t, x, a, x[i] + a[i] + t)) res.add(x[i] + a[i] + t); if (valid(n, t, x, a, x[i] - a[i] - t)) res.add(x[i] - a[i] - t); } writer.println(res.size()); } private boolean valid(int n, int t, int[] x, int[] a, int pos) { for (int i = 0; i < n; ++i) { if (Math.abs(pos - x[i]) < a[i] + t) return false; } return true; } public static void main(String[] args) { new Houses().run(); } BufferedReader reader; StringTokenizer tokenizer; PrintWriter writer; public void run() { try { reader = new BufferedReader(new InputStreamReader(System.in)); tokenizer = null; writer = new PrintWriter(System.out); solve(); reader.close(); writer.close(); } catch (Exception e) { e.printStackTrace(); System.exit(1); } } int nextInt() throws IOException { return Integer.parseInt(nextToken()); } long nextLong() throws IOException { return Long.parseLong(nextToken()); } double nextDouble() throws IOException { return Double.parseDouble(nextToken()); } String nextToken() throws IOException { while (tokenizer == null || !tokenizer.hasMoreTokens()) { tokenizer = new StringTokenizer(reader.readLine()); } return tokenizer.nextToken(); } } </CODE> <EVALUATION_RUBRIC> - O(nlog(n)): The time complexity combines linear and logarithmic growth factors. - O(1): The time complexity is constant to the input size n. - O(n): The time complexity increases proportionally to the input size n in a linear manner. - O(n^3): The time complexity scales proportionally to the cube of the input size. - others: The time complexity does not fit any of the above categories or cannot be clearly classified. - O(n^2): The time complexity grows proportionally to the square of the input size. - O(log(n)): The time complexity increases logarithmically in relation to the input size. - non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
832
1,693
3,592
import java.io.*; import java.util.*; public class Main { public static void main(String[] args) throws IOException { PrintWriter pw = new PrintWriter(new FileWriter("output.txt")); Scanner in=new Scanner(new File("input.txt")); int n,m,k; n=in.nextInt(); m=in.nextInt(); k=in.nextInt(); Vector<Integer> vec=new Vector<Integer>(); Vector<Integer> temp=new Vector<Integer>(); boolean[][] mas=new boolean[n][m]; long time=System.currentTimeMillis(); for(int i=0;i<k;i++) { vec.add(in.nextInt()-1); vec.add(in.nextInt()-1); mas[vec.get(vec.size()-2)][vec.get(vec.size()-1)]=true; } int x,y; x=y=0; while(vec.size()!=0) { for(int i=0;i<vec.size();i+=2) { x=vec.get(i); y=vec.get(i+1); if(x>0 && !mas[x-1][y]) { temp.add(x-1); temp.add(y); mas[x-1][y]=true; } if(x<n-1 && !mas[x+1][y]) { temp.add(x+1); temp.add(y); mas[x+1][y]=true; } if(y>0 && !mas[x][y-1]) { temp.add(x); temp.add(y-1); mas[x][y-1]=true; } if(y<m-1 && !mas[x][y+1]) { temp.add(x); temp.add(y+1); mas[x][y+1]=true; } } vec=temp; temp=new Vector<Integer>(); } pw.println((x+1)+" "+(y+1)); System.out.println(System.currentTimeMillis()-time); in.close(); pw.close(); } }
O(n^3)
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Classify the following Java code's worst-case time complexity according to its relationship to the input size n. </TASK> <CODE> import java.io.*; import java.util.*; public class Main { public static void main(String[] args) throws IOException { PrintWriter pw = new PrintWriter(new FileWriter("output.txt")); Scanner in=new Scanner(new File("input.txt")); int n,m,k; n=in.nextInt(); m=in.nextInt(); k=in.nextInt(); Vector<Integer> vec=new Vector<Integer>(); Vector<Integer> temp=new Vector<Integer>(); boolean[][] mas=new boolean[n][m]; long time=System.currentTimeMillis(); for(int i=0;i<k;i++) { vec.add(in.nextInt()-1); vec.add(in.nextInt()-1); mas[vec.get(vec.size()-2)][vec.get(vec.size()-1)]=true; } int x,y; x=y=0; while(vec.size()!=0) { for(int i=0;i<vec.size();i+=2) { x=vec.get(i); y=vec.get(i+1); if(x>0 && !mas[x-1][y]) { temp.add(x-1); temp.add(y); mas[x-1][y]=true; } if(x<n-1 && !mas[x+1][y]) { temp.add(x+1); temp.add(y); mas[x+1][y]=true; } if(y>0 && !mas[x][y-1]) { temp.add(x); temp.add(y-1); mas[x][y-1]=true; } if(y<m-1 && !mas[x][y+1]) { temp.add(x); temp.add(y+1); mas[x][y+1]=true; } } vec=temp; temp=new Vector<Integer>(); } pw.println((x+1)+" "+(y+1)); System.out.println(System.currentTimeMillis()-time); in.close(); pw.close(); } } </CODE> <EVALUATION_RUBRIC> - O(n^2): The running time increases with the square of the input size n. - O(n): The running time grows linearly with the input size n. - O(1): The running time does not change regardless of the input size n. - O(nlog(n)): The running time increases with the product of n and logarithm of n. - O(log(n)): The running time increases with the logarithm of the input size n. - O(n^3): The running time increases with the cube of the input size n. - non-polynomial: The running time increases non-polynomially with input size n, typically exponentially. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Classify the following Java code's worst-case time complexity according to its relationship to the input size n. </TASK> <CODE> import java.io.*; import java.util.*; public class Main { public static void main(String[] args) throws IOException { PrintWriter pw = new PrintWriter(new FileWriter("output.txt")); Scanner in=new Scanner(new File("input.txt")); int n,m,k; n=in.nextInt(); m=in.nextInt(); k=in.nextInt(); Vector<Integer> vec=new Vector<Integer>(); Vector<Integer> temp=new Vector<Integer>(); boolean[][] mas=new boolean[n][m]; long time=System.currentTimeMillis(); for(int i=0;i<k;i++) { vec.add(in.nextInt()-1); vec.add(in.nextInt()-1); mas[vec.get(vec.size()-2)][vec.get(vec.size()-1)]=true; } int x,y; x=y=0; while(vec.size()!=0) { for(int i=0;i<vec.size();i+=2) { x=vec.get(i); y=vec.get(i+1); if(x>0 && !mas[x-1][y]) { temp.add(x-1); temp.add(y); mas[x-1][y]=true; } if(x<n-1 && !mas[x+1][y]) { temp.add(x+1); temp.add(y); mas[x+1][y]=true; } if(y>0 && !mas[x][y-1]) { temp.add(x); temp.add(y-1); mas[x][y-1]=true; } if(y<m-1 && !mas[x][y+1]) { temp.add(x); temp.add(y+1); mas[x][y+1]=true; } } vec=temp; temp=new Vector<Integer>(); } pw.println((x+1)+" "+(y+1)); System.out.println(System.currentTimeMillis()-time); in.close(); pw.close(); } } </CODE> <EVALUATION_RUBRIC> - O(1): The running time does not change regardless of the input size n. - non-polynomial: The running time increases non-polynomially with input size n, typically exponentially. - O(n): The running time grows linearly with the input size n. - O(log(n)): The running time increases with the logarithm of the input size n. - others: The code does not clearly correspond to the listed classes or has an unclassified time complexity. - O(nlog(n)): The running time increases with the product of n and logarithm of n. - O(n^3): The running time increases with the cube of the input size n. - O(n^2): The running time increases with the square of the input size n. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
751
3,584
1,283
import java.io.IOException; import java.io.InputStream; import java.util.InputMismatchException; public class Main { static long MOD = (long) 1e9 + 7; static long[][] identity = {{1, 0}, {0, 1}}; public static void main(String[] args) { FastScanner input = new FastScanner(System.in); long x = input.nextLong(); long k = input.nextLong(); long[][] matrix = { {2, MOD - 1}, {0, 1} }; if (x == 0) System.out.println(0); else if (k == 0) { System.out.println((x * 2) % MOD); } else { x %= MOD; matrix = matrixexpo(k, matrix); long low = (x * matrix[0][0] + matrix[0][1]) % MOD; long hi = x * mathpow(k, 2) % MOD; System.out.println((low + hi) % MOD); } } static long mathpow(long k, long x) { if (k == 0) return 1L; else return mathpow(k / 2, (x * x) % MOD) * (k % 2 == 1 ? x : 1) % MOD; } static long[][] matrixexpo(long k, long[][] matrix) { if (k == 0) return identity; if (k % 2 == 0) return matrixexpo(k / 2, multiply(matrix, matrix)); else return multiply(matrix, matrixexpo(k / 2, multiply(matrix, matrix))); } static long[][] multiply(long[][] arr, long[][] brr) { int n = arr.length, m = arr[0].length, p = brr[0].length; long[][] product = new long[n][p]; for (int i = 0; i < n; i++) for (int j = 0; j < p; j++) for (int k = 0; k < m; k++) product[i][j] = (product[i][j] + arr[i][k] * brr[k][j]) % MOD; return product; } // Matt Fontaine's Fast IO static class FastScanner { private InputStream stream; private byte[] buf = new byte[1024]; private int curChar; private int numChars; public FastScanner(InputStream stream) { this.stream = stream; } int read() { if (numChars == -1) throw new InputMismatchException(); if (curChar >= numChars) { curChar = 0; try { numChars = stream.read(buf); } catch (IOException e) { throw new InputMismatchException(); } if (numChars <= 0) return -1; } return buf[curChar++]; } boolean isSpaceChar(int c) { return c == ' ' || c == '\n' || c == '\r' || c == '\t' || c == -1; } boolean isEndline(int c) { return c == '\n' || c == '\r' || c == -1; } int nextInt() { return Integer.parseInt(next()); } long nextLong() { return Long.parseLong(next()); } double nextDouble() { return Double.parseDouble(next()); } String next() { int c = read(); while (isSpaceChar(c)) c = read(); StringBuilder res = new StringBuilder(); do { res.appendCodePoint(c); c = read(); } while (!isSpaceChar(c)); return res.toString(); } String nextLine() { int c = read(); while (isEndline(c)) c = read(); StringBuilder res = new StringBuilder(); do { res.appendCodePoint(c); c = read(); } while (!isEndline(c)); return res.toString(); } } }
O(log(n))
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n. </TASK> <CODE> import java.io.IOException; import java.io.InputStream; import java.util.InputMismatchException; public class Main { static long MOD = (long) 1e9 + 7; static long[][] identity = {{1, 0}, {0, 1}}; public static void main(String[] args) { FastScanner input = new FastScanner(System.in); long x = input.nextLong(); long k = input.nextLong(); long[][] matrix = { {2, MOD - 1}, {0, 1} }; if (x == 0) System.out.println(0); else if (k == 0) { System.out.println((x * 2) % MOD); } else { x %= MOD; matrix = matrixexpo(k, matrix); long low = (x * matrix[0][0] + matrix[0][1]) % MOD; long hi = x * mathpow(k, 2) % MOD; System.out.println((low + hi) % MOD); } } static long mathpow(long k, long x) { if (k == 0) return 1L; else return mathpow(k / 2, (x * x) % MOD) * (k % 2 == 1 ? x : 1) % MOD; } static long[][] matrixexpo(long k, long[][] matrix) { if (k == 0) return identity; if (k % 2 == 0) return matrixexpo(k / 2, multiply(matrix, matrix)); else return multiply(matrix, matrixexpo(k / 2, multiply(matrix, matrix))); } static long[][] multiply(long[][] arr, long[][] brr) { int n = arr.length, m = arr[0].length, p = brr[0].length; long[][] product = new long[n][p]; for (int i = 0; i < n; i++) for (int j = 0; j < p; j++) for (int k = 0; k < m; k++) product[i][j] = (product[i][j] + arr[i][k] * brr[k][j]) % MOD; return product; } // Matt Fontaine's Fast IO static class FastScanner { private InputStream stream; private byte[] buf = new byte[1024]; private int curChar; private int numChars; public FastScanner(InputStream stream) { this.stream = stream; } int read() { if (numChars == -1) throw new InputMismatchException(); if (curChar >= numChars) { curChar = 0; try { numChars = stream.read(buf); } catch (IOException e) { throw new InputMismatchException(); } if (numChars <= 0) return -1; } return buf[curChar++]; } boolean isSpaceChar(int c) { return c == ' ' || c == '\n' || c == '\r' || c == '\t' || c == -1; } boolean isEndline(int c) { return c == '\n' || c == '\r' || c == -1; } int nextInt() { return Integer.parseInt(next()); } long nextLong() { return Long.parseLong(next()); } double nextDouble() { return Double.parseDouble(next()); } String next() { int c = read(); while (isSpaceChar(c)) c = read(); StringBuilder res = new StringBuilder(); do { res.appendCodePoint(c); c = read(); } while (!isSpaceChar(c)); return res.toString(); } String nextLine() { int c = read(); while (isEndline(c)) c = read(); StringBuilder res = new StringBuilder(); do { res.appendCodePoint(c); c = read(); } while (!isEndline(c)); return res.toString(); } } } </CODE> <EVALUATION_RUBRIC> - O(n): The execution time ascends in a one-to-one ratio with the input size n. - O(n^3): The execution time ascends in proportion to the cube of the input size n. - O(n^2): The execution time ascends in proportion to the square of the input size n. - O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially. - non-polynomial: The running time increases non-polynomially with input size n, typically exponentially. - O(log(n)): The execution time ascends in proportion to the logarithm of the input size n. - O(1): The execution time is unaffected by the size of the input n. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Classify the following Java code's worst-case time complexity according to its relationship to the input size n. </TASK> <CODE> import java.io.IOException; import java.io.InputStream; import java.util.InputMismatchException; public class Main { static long MOD = (long) 1e9 + 7; static long[][] identity = {{1, 0}, {0, 1}}; public static void main(String[] args) { FastScanner input = new FastScanner(System.in); long x = input.nextLong(); long k = input.nextLong(); long[][] matrix = { {2, MOD - 1}, {0, 1} }; if (x == 0) System.out.println(0); else if (k == 0) { System.out.println((x * 2) % MOD); } else { x %= MOD; matrix = matrixexpo(k, matrix); long low = (x * matrix[0][0] + matrix[0][1]) % MOD; long hi = x * mathpow(k, 2) % MOD; System.out.println((low + hi) % MOD); } } static long mathpow(long k, long x) { if (k == 0) return 1L; else return mathpow(k / 2, (x * x) % MOD) * (k % 2 == 1 ? x : 1) % MOD; } static long[][] matrixexpo(long k, long[][] matrix) { if (k == 0) return identity; if (k % 2 == 0) return matrixexpo(k / 2, multiply(matrix, matrix)); else return multiply(matrix, matrixexpo(k / 2, multiply(matrix, matrix))); } static long[][] multiply(long[][] arr, long[][] brr) { int n = arr.length, m = arr[0].length, p = brr[0].length; long[][] product = new long[n][p]; for (int i = 0; i < n; i++) for (int j = 0; j < p; j++) for (int k = 0; k < m; k++) product[i][j] = (product[i][j] + arr[i][k] * brr[k][j]) % MOD; return product; } // Matt Fontaine's Fast IO static class FastScanner { private InputStream stream; private byte[] buf = new byte[1024]; private int curChar; private int numChars; public FastScanner(InputStream stream) { this.stream = stream; } int read() { if (numChars == -1) throw new InputMismatchException(); if (curChar >= numChars) { curChar = 0; try { numChars = stream.read(buf); } catch (IOException e) { throw new InputMismatchException(); } if (numChars <= 0) return -1; } return buf[curChar++]; } boolean isSpaceChar(int c) { return c == ' ' || c == '\n' || c == '\r' || c == '\t' || c == -1; } boolean isEndline(int c) { return c == '\n' || c == '\r' || c == -1; } int nextInt() { return Integer.parseInt(next()); } long nextLong() { return Long.parseLong(next()); } double nextDouble() { return Double.parseDouble(next()); } String next() { int c = read(); while (isSpaceChar(c)) c = read(); StringBuilder res = new StringBuilder(); do { res.appendCodePoint(c); c = read(); } while (!isSpaceChar(c)); return res.toString(); } String nextLine() { int c = read(); while (isEndline(c)) c = read(); StringBuilder res = new StringBuilder(); do { res.appendCodePoint(c); c = read(); } while (!isEndline(c)); return res.toString(); } } } </CODE> <EVALUATION_RUBRIC> - O(nlog(n)): The running time increases with the product of n and logarithm of n. - non-polynomial: The running time increases non-polynomially with input size n, typically exponentially. - O(n): The running time grows linearly with the input size n. - O(1): The running time does not change regardless of the input size n. - O(n^2): The running time increases with the square of the input size n. - O(log(n)): The running time increases with the logarithm of the input size n. - O(n^3): The running time increases with the cube of the input size n. - others: The code does not clearly correspond to the listed classes or has an unclassified time complexity. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
1,264
1,281
1,837
import java.io.OutputStream; import java.io.IOException; import java.io.OutputStreamWriter; import java.io.PrintWriter; import java.util.Arrays; import java.io.BufferedWriter; import java.util.InputMismatchException; import java.io.Writer; import java.io.InputStream; /** * Built using CHelper plug-in * Actual solution is at the top * @author BSRK Aditya ([email protected]) */ public class Main { public static void main(String[] args) { InputStream inputStream = System.in; OutputStream outputStream = System.out; InputReader in = new InputReader(inputStream); OutputWriter out = new OutputWriter(outputStream); TaskA solver = new TaskA(); solver.solve(1, in, out); out.close(); } } class TaskA { public void solve(int testNumber, InputReader in, OutputWriter out) { int n = in.readInt(); int m = in.readInt(); int k = in.readInt(); int [] filters = new int[n]; for(int i = 0; i < n; ++i) filters[i] = in.readInt(); Arrays.sort(filters); int nS = 0, tN = k; while(tN < m && nS < n) { tN += filters[n-1-nS] - 1; nS++; } if(tN >= m) out.printLine(nS); else out.printLine(-1); } } class InputReader { private InputStream stream; private byte[] buf = new byte[1024]; private int curChar; private int numChars; private SpaceCharFilter filter; public InputReader(InputStream stream) { this.stream = stream; } public int read() { if (numChars == -1) throw new InputMismatchException(); if (curChar >= numChars) { curChar = 0; try { numChars = stream.read(buf); } catch (IOException e) { throw new InputMismatchException(); } if (numChars <= 0) return -1; } return buf[curChar++]; } public int readInt() { int c = read(); while (isSpaceChar(c)) c = read(); int sgn = 1; if (c == '-') { sgn = -1; c = read(); } int res = 0; do { if (c < '0' || c > '9') throw new InputMismatchException(); res *= 10; res += c - '0'; c = read(); } while (!isSpaceChar(c)); return res * sgn; } public boolean isSpaceChar(int c) { if (filter != null) return filter.isSpaceChar(c); return c == ' ' || c == '\n' || c == '\r' || c == '\t' || c == -1; } public interface SpaceCharFilter { public boolean isSpaceChar(int ch); } } class OutputWriter { private final PrintWriter writer; public OutputWriter(OutputStream outputStream) { writer = new PrintWriter(new BufferedWriter(new OutputStreamWriter(outputStream))); } public OutputWriter(Writer writer) { this.writer = new PrintWriter(writer); } public void print(Object...objects) { for (int i = 0; i < objects.length; i++) { if (i != 0) writer.print(' '); writer.print(objects[i]); } } public void printLine(Object...objects) { print(objects); writer.println(); } public void close() { writer.close(); } }
O(nlog(n))
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n. </TASK> <CODE> import java.io.OutputStream; import java.io.IOException; import java.io.OutputStreamWriter; import java.io.PrintWriter; import java.util.Arrays; import java.io.BufferedWriter; import java.util.InputMismatchException; import java.io.Writer; import java.io.InputStream; /** * Built using CHelper plug-in * Actual solution is at the top * @author BSRK Aditya ([email protected]) */ public class Main { public static void main(String[] args) { InputStream inputStream = System.in; OutputStream outputStream = System.out; InputReader in = new InputReader(inputStream); OutputWriter out = new OutputWriter(outputStream); TaskA solver = new TaskA(); solver.solve(1, in, out); out.close(); } } class TaskA { public void solve(int testNumber, InputReader in, OutputWriter out) { int n = in.readInt(); int m = in.readInt(); int k = in.readInt(); int [] filters = new int[n]; for(int i = 0; i < n; ++i) filters[i] = in.readInt(); Arrays.sort(filters); int nS = 0, tN = k; while(tN < m && nS < n) { tN += filters[n-1-nS] - 1; nS++; } if(tN >= m) out.printLine(nS); else out.printLine(-1); } } class InputReader { private InputStream stream; private byte[] buf = new byte[1024]; private int curChar; private int numChars; private SpaceCharFilter filter; public InputReader(InputStream stream) { this.stream = stream; } public int read() { if (numChars == -1) throw new InputMismatchException(); if (curChar >= numChars) { curChar = 0; try { numChars = stream.read(buf); } catch (IOException e) { throw new InputMismatchException(); } if (numChars <= 0) return -1; } return buf[curChar++]; } public int readInt() { int c = read(); while (isSpaceChar(c)) c = read(); int sgn = 1; if (c == '-') { sgn = -1; c = read(); } int res = 0; do { if (c < '0' || c > '9') throw new InputMismatchException(); res *= 10; res += c - '0'; c = read(); } while (!isSpaceChar(c)); return res * sgn; } public boolean isSpaceChar(int c) { if (filter != null) return filter.isSpaceChar(c); return c == ' ' || c == '\n' || c == '\r' || c == '\t' || c == -1; } public interface SpaceCharFilter { public boolean isSpaceChar(int ch); } } class OutputWriter { private final PrintWriter writer; public OutputWriter(OutputStream outputStream) { writer = new PrintWriter(new BufferedWriter(new OutputStreamWriter(outputStream))); } public OutputWriter(Writer writer) { this.writer = new PrintWriter(writer); } public void print(Object...objects) { for (int i = 0; i < objects.length; i++) { if (i != 0) writer.print(' '); writer.print(objects[i]); } } public void printLine(Object...objects) { print(objects); writer.println(); } public void close() { writer.close(); } } </CODE> <EVALUATION_RUBRIC> - O(n^3): The execution time ascends in proportion to the cube of the input size n. - O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially. - O(n): The execution time ascends in a one-to-one ratio with the input size n. - O(n^2): The execution time ascends in proportion to the square of the input size n. - non-polynomial: The running time increases non-polynomially with input size n, typically exponentially. - O(log(n)): The execution time ascends in proportion to the logarithm of the input size n. - O(1): The execution time is unaffected by the size of the input n. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Determine the worst-case time complexity category of a given Java code based on input size n. </TASK> <CODE> import java.io.OutputStream; import java.io.IOException; import java.io.OutputStreamWriter; import java.io.PrintWriter; import java.util.Arrays; import java.io.BufferedWriter; import java.util.InputMismatchException; import java.io.Writer; import java.io.InputStream; /** * Built using CHelper plug-in * Actual solution is at the top * @author BSRK Aditya ([email protected]) */ public class Main { public static void main(String[] args) { InputStream inputStream = System.in; OutputStream outputStream = System.out; InputReader in = new InputReader(inputStream); OutputWriter out = new OutputWriter(outputStream); TaskA solver = new TaskA(); solver.solve(1, in, out); out.close(); } } class TaskA { public void solve(int testNumber, InputReader in, OutputWriter out) { int n = in.readInt(); int m = in.readInt(); int k = in.readInt(); int [] filters = new int[n]; for(int i = 0; i < n; ++i) filters[i] = in.readInt(); Arrays.sort(filters); int nS = 0, tN = k; while(tN < m && nS < n) { tN += filters[n-1-nS] - 1; nS++; } if(tN >= m) out.printLine(nS); else out.printLine(-1); } } class InputReader { private InputStream stream; private byte[] buf = new byte[1024]; private int curChar; private int numChars; private SpaceCharFilter filter; public InputReader(InputStream stream) { this.stream = stream; } public int read() { if (numChars == -1) throw new InputMismatchException(); if (curChar >= numChars) { curChar = 0; try { numChars = stream.read(buf); } catch (IOException e) { throw new InputMismatchException(); } if (numChars <= 0) return -1; } return buf[curChar++]; } public int readInt() { int c = read(); while (isSpaceChar(c)) c = read(); int sgn = 1; if (c == '-') { sgn = -1; c = read(); } int res = 0; do { if (c < '0' || c > '9') throw new InputMismatchException(); res *= 10; res += c - '0'; c = read(); } while (!isSpaceChar(c)); return res * sgn; } public boolean isSpaceChar(int c) { if (filter != null) return filter.isSpaceChar(c); return c == ' ' || c == '\n' || c == '\r' || c == '\t' || c == -1; } public interface SpaceCharFilter { public boolean isSpaceChar(int ch); } } class OutputWriter { private final PrintWriter writer; public OutputWriter(OutputStream outputStream) { writer = new PrintWriter(new BufferedWriter(new OutputStreamWriter(outputStream))); } public OutputWriter(Writer writer) { this.writer = new PrintWriter(writer); } public void print(Object...objects) { for (int i = 0; i < objects.length; i++) { if (i != 0) writer.print(' '); writer.print(objects[i]); } } public void printLine(Object...objects) { print(objects); writer.println(); } public void close() { writer.close(); } } </CODE> <EVALUATION_RUBRIC> - O(n^2): The time complexity grows proportionally to the square of the input size. - others: The time complexity does not fit any of the above categories or cannot be clearly classified. - O(n^3): The time complexity scales proportionally to the cube of the input size. - O(1): The time complexity is constant to the input size n. - non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially. - O(n): The time complexity increases proportionally to the input size n in a linear manner. - O(log(n)): The time complexity increases logarithmically in relation to the input size. - O(nlog(n)): The time complexity combines linear and logarithmic growth factors. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
1,145
1,833
2,143
import java.io.*; import java.util.*; public class C { public static void main(String[] args) throws IOException { FastScanner in = new FastScanner(System.in); PrintWriter out = new PrintWriter(new BufferedWriter(new OutputStreamWriter(System.out))); int n = in.nextInt(); double r = in.nextInt(); double[] x = new double[n+1]; double[] y = new double[n+1]; for (int i = 1; i <= n; i++) { x[i] = in.nextInt(); } int[] lastx = new int[1001]; for (int i = 1; i <= n; i++) { double s = x[i] - r, e = x[i] + r; for (int j = (int)Math.max(0, s); j <= (int)Math.min(1000, e); j++) { if (lastx[j] == 0) { y[i] = Math.max(y[i], findY(x[i], x[i], 0 - r, 2 * r)); } else { y[i] = Math.max(y[i], findY(x[lastx[j]], x[i], y[lastx[j]], 2 * r)); } lastx[j] = i; } } for (int i = 1; i <= n; i++) { out.println(y[i]); } out.close(); } public static double findY(double x1, double x2, double y1, double d) { return Math.max(y1 + Math.sqrt(-1 * Math.pow(x1, 2) + 2 * x1 * x2 + Math.pow(d, 2) - Math.pow(x2, 2)), y1 - Math.sqrt(-1 * Math.pow(x1, 2) + 2 * x1 * x2 + Math.pow(d, 2) - Math.pow(x2, 2))); } static class FastScanner { private InputStream stream; private byte[] buf = new byte[1024]; private int curChar; private int numChars; public FastScanner(InputStream stream) { this.stream = stream; } int read() { if (numChars == -1) throw new InputMismatchException(); if (curChar >= numChars) { curChar = 0; try { numChars = stream.read(buf); } catch (IOException e) { throw new InputMismatchException(); } if (numChars <= 0) return -1; } return buf[curChar++]; } boolean isSpaceChar(int c) { return c == ' ' || c == '\n' || c == '\r' || c == '\t' || c == -1; } boolean isEndline(int c) { return c == '\n' || c == '\r' || c == -1; } public int nextInt() { return Integer.parseInt(next()); } public long nextLong() { return Long.parseLong(next()); } public double nextDouble() { return Double.parseDouble(next()); } public String next() { int c = read(); while (isSpaceChar(c)) c = read(); StringBuilder res = new StringBuilder(); do { res.appendCodePoint(c); c = read(); } while (!isSpaceChar(c)); return res.toString(); } public String nextLine() { int c = read(); while (isEndline(c)) c = read(); StringBuilder res = new StringBuilder(); do { res.appendCodePoint(c); c = read(); } while (!isEndline(c)); return res.toString(); } } }
O(n^2)
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Classify the following Java code's worst-case time complexity according to its relationship to the input size n. </TASK> <CODE> import java.io.*; import java.util.*; public class C { public static void main(String[] args) throws IOException { FastScanner in = new FastScanner(System.in); PrintWriter out = new PrintWriter(new BufferedWriter(new OutputStreamWriter(System.out))); int n = in.nextInt(); double r = in.nextInt(); double[] x = new double[n+1]; double[] y = new double[n+1]; for (int i = 1; i <= n; i++) { x[i] = in.nextInt(); } int[] lastx = new int[1001]; for (int i = 1; i <= n; i++) { double s = x[i] - r, e = x[i] + r; for (int j = (int)Math.max(0, s); j <= (int)Math.min(1000, e); j++) { if (lastx[j] == 0) { y[i] = Math.max(y[i], findY(x[i], x[i], 0 - r, 2 * r)); } else { y[i] = Math.max(y[i], findY(x[lastx[j]], x[i], y[lastx[j]], 2 * r)); } lastx[j] = i; } } for (int i = 1; i <= n; i++) { out.println(y[i]); } out.close(); } public static double findY(double x1, double x2, double y1, double d) { return Math.max(y1 + Math.sqrt(-1 * Math.pow(x1, 2) + 2 * x1 * x2 + Math.pow(d, 2) - Math.pow(x2, 2)), y1 - Math.sqrt(-1 * Math.pow(x1, 2) + 2 * x1 * x2 + Math.pow(d, 2) - Math.pow(x2, 2))); } static class FastScanner { private InputStream stream; private byte[] buf = new byte[1024]; private int curChar; private int numChars; public FastScanner(InputStream stream) { this.stream = stream; } int read() { if (numChars == -1) throw new InputMismatchException(); if (curChar >= numChars) { curChar = 0; try { numChars = stream.read(buf); } catch (IOException e) { throw new InputMismatchException(); } if (numChars <= 0) return -1; } return buf[curChar++]; } boolean isSpaceChar(int c) { return c == ' ' || c == '\n' || c == '\r' || c == '\t' || c == -1; } boolean isEndline(int c) { return c == '\n' || c == '\r' || c == -1; } public int nextInt() { return Integer.parseInt(next()); } public long nextLong() { return Long.parseLong(next()); } public double nextDouble() { return Double.parseDouble(next()); } public String next() { int c = read(); while (isSpaceChar(c)) c = read(); StringBuilder res = new StringBuilder(); do { res.appendCodePoint(c); c = read(); } while (!isSpaceChar(c)); return res.toString(); } public String nextLine() { int c = read(); while (isEndline(c)) c = read(); StringBuilder res = new StringBuilder(); do { res.appendCodePoint(c); c = read(); } while (!isEndline(c)); return res.toString(); } } } </CODE> <EVALUATION_RUBRIC> - O(n^3): The running time increases with the cube of the input size n. - non-polynomial: The running time increases non-polynomially with input size n, typically exponentially. - O(nlog(n)): The running time increases with the product of n and logarithm of n. - O(n^2): The running time increases with the square of the input size n. - O(log(n)): The running time increases with the logarithm of the input size n. - O(n): The running time grows linearly with the input size n. - O(1): The running time does not change regardless of the input size n. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Determine the worst-case time complexity category of a given Java code based on input size n. </TASK> <CODE> import java.io.*; import java.util.*; public class C { public static void main(String[] args) throws IOException { FastScanner in = new FastScanner(System.in); PrintWriter out = new PrintWriter(new BufferedWriter(new OutputStreamWriter(System.out))); int n = in.nextInt(); double r = in.nextInt(); double[] x = new double[n+1]; double[] y = new double[n+1]; for (int i = 1; i <= n; i++) { x[i] = in.nextInt(); } int[] lastx = new int[1001]; for (int i = 1; i <= n; i++) { double s = x[i] - r, e = x[i] + r; for (int j = (int)Math.max(0, s); j <= (int)Math.min(1000, e); j++) { if (lastx[j] == 0) { y[i] = Math.max(y[i], findY(x[i], x[i], 0 - r, 2 * r)); } else { y[i] = Math.max(y[i], findY(x[lastx[j]], x[i], y[lastx[j]], 2 * r)); } lastx[j] = i; } } for (int i = 1; i <= n; i++) { out.println(y[i]); } out.close(); } public static double findY(double x1, double x2, double y1, double d) { return Math.max(y1 + Math.sqrt(-1 * Math.pow(x1, 2) + 2 * x1 * x2 + Math.pow(d, 2) - Math.pow(x2, 2)), y1 - Math.sqrt(-1 * Math.pow(x1, 2) + 2 * x1 * x2 + Math.pow(d, 2) - Math.pow(x2, 2))); } static class FastScanner { private InputStream stream; private byte[] buf = new byte[1024]; private int curChar; private int numChars; public FastScanner(InputStream stream) { this.stream = stream; } int read() { if (numChars == -1) throw new InputMismatchException(); if (curChar >= numChars) { curChar = 0; try { numChars = stream.read(buf); } catch (IOException e) { throw new InputMismatchException(); } if (numChars <= 0) return -1; } return buf[curChar++]; } boolean isSpaceChar(int c) { return c == ' ' || c == '\n' || c == '\r' || c == '\t' || c == -1; } boolean isEndline(int c) { return c == '\n' || c == '\r' || c == -1; } public int nextInt() { return Integer.parseInt(next()); } public long nextLong() { return Long.parseLong(next()); } public double nextDouble() { return Double.parseDouble(next()); } public String next() { int c = read(); while (isSpaceChar(c)) c = read(); StringBuilder res = new StringBuilder(); do { res.appendCodePoint(c); c = read(); } while (!isSpaceChar(c)); return res.toString(); } public String nextLine() { int c = read(); while (isEndline(c)) c = read(); StringBuilder res = new StringBuilder(); do { res.appendCodePoint(c); c = read(); } while (!isEndline(c)); return res.toString(); } } } </CODE> <EVALUATION_RUBRIC> - others: The time complexity does not fit any of the above categories or cannot be clearly classified. - O(log(n)): The time complexity increases logarithmically in relation to the input size. - O(nlog(n)): The time complexity combines linear and logarithmic growth factors. - O(1): The time complexity is constant to the input size n. - O(n^3): The time complexity scales proportionally to the cube of the input size. - non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially. - O(n): The time complexity increases proportionally to the input size n in a linear manner. - O(n^2): The time complexity grows proportionally to the square of the input size. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
1,166
2,139
4,513
import java.util.*; import java.io.*; public class Main { public static void main(String args[]) {new Main().run();} FastReader in = new FastReader(); PrintWriter out = new PrintWriter(System.out); void run(){ out.println(work()); out.flush(); } long mod=1000000007; long gcd(long a,long b) { return b==0?a:gcd(b,a%b); } long work() { int n=in.nextInt(); int m=in.nextInt(); String str=in.next(); long[] dp=new long[1<<m]; long[][] cnt=new long[m][m]; long[] rec=new long[1<<m];//记录每次移动的一位怎加的值,减少重复计算 for(int i=1;i<n;i++) { int n1=str.charAt(i-1)-'a'; int n2=str.charAt(i)-'a'; cnt[n1][n2]++; cnt[n2][n1]++; } for(int i=1;i<1<<m;i++) { dp[i]=9999999999L; long v=0; int b=0;//最低位的1 for(int j=0;j<m;j++) { if((i&(1<<j))>0) { b=j; break; } } for(int j=0;j<m;j++) { if((i&(1<<j))==0) { v+=cnt[b][j]; }else { if(b!=j)v-=cnt[b][j]; } } v+=rec[i-(1<<b)]; for(int j=0;j<m;j++) { if((i&(1<<j))>0) { dp[i]=Math.min(dp[i], dp[i-(1<<j)]+v); } } rec[i]=v; } return dp[(1<<m)-1]; } } class FastReader { BufferedReader br; StringTokenizer st; public FastReader() { br=new BufferedReader(new InputStreamReader(System.in)); } public String next() { if(st==null || !st.hasMoreElements()) { try { st = new StringTokenizer(br.readLine()); } catch (IOException e) { e.printStackTrace(); } } return st.nextToken(); } public int nextInt() { return Integer.parseInt(next()); } public long nextLong() { return Long.parseLong(next()); } }
non-polynomial
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Classify the following Java code's worst-case time complexity according to its relationship to the input size n. </TASK> <CODE> import java.util.*; import java.io.*; public class Main { public static void main(String args[]) {new Main().run();} FastReader in = new FastReader(); PrintWriter out = new PrintWriter(System.out); void run(){ out.println(work()); out.flush(); } long mod=1000000007; long gcd(long a,long b) { return b==0?a:gcd(b,a%b); } long work() { int n=in.nextInt(); int m=in.nextInt(); String str=in.next(); long[] dp=new long[1<<m]; long[][] cnt=new long[m][m]; long[] rec=new long[1<<m];//记录每次移动的一位怎加的值,减少重复计算 for(int i=1;i<n;i++) { int n1=str.charAt(i-1)-'a'; int n2=str.charAt(i)-'a'; cnt[n1][n2]++; cnt[n2][n1]++; } for(int i=1;i<1<<m;i++) { dp[i]=9999999999L; long v=0; int b=0;//最低位的1 for(int j=0;j<m;j++) { if((i&(1<<j))>0) { b=j; break; } } for(int j=0;j<m;j++) { if((i&(1<<j))==0) { v+=cnt[b][j]; }else { if(b!=j)v-=cnt[b][j]; } } v+=rec[i-(1<<b)]; for(int j=0;j<m;j++) { if((i&(1<<j))>0) { dp[i]=Math.min(dp[i], dp[i-(1<<j)]+v); } } rec[i]=v; } return dp[(1<<m)-1]; } } class FastReader { BufferedReader br; StringTokenizer st; public FastReader() { br=new BufferedReader(new InputStreamReader(System.in)); } public String next() { if(st==null || !st.hasMoreElements()) { try { st = new StringTokenizer(br.readLine()); } catch (IOException e) { e.printStackTrace(); } } return st.nextToken(); } public int nextInt() { return Integer.parseInt(next()); } public long nextLong() { return Long.parseLong(next()); } } </CODE> <EVALUATION_RUBRIC> - O(n^2): The running time increases with the square of the input size n. - O(n^3): The running time increases with the cube of the input size n. - non-polynomial: The running time increases non-polynomially with input size n, typically exponentially. - O(n): The running time grows linearly with the input size n. - O(log(n)): The running time increases with the logarithm of the input size n. - O(1): The running time does not change regardless of the input size n. - O(nlog(n)): The running time increases with the product of n and logarithm of n. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n. </TASK> <CODE> import java.util.*; import java.io.*; public class Main { public static void main(String args[]) {new Main().run();} FastReader in = new FastReader(); PrintWriter out = new PrintWriter(System.out); void run(){ out.println(work()); out.flush(); } long mod=1000000007; long gcd(long a,long b) { return b==0?a:gcd(b,a%b); } long work() { int n=in.nextInt(); int m=in.nextInt(); String str=in.next(); long[] dp=new long[1<<m]; long[][] cnt=new long[m][m]; long[] rec=new long[1<<m];//记录每次移动的一位怎加的值,减少重复计算 for(int i=1;i<n;i++) { int n1=str.charAt(i-1)-'a'; int n2=str.charAt(i)-'a'; cnt[n1][n2]++; cnt[n2][n1]++; } for(int i=1;i<1<<m;i++) { dp[i]=9999999999L; long v=0; int b=0;//最低位的1 for(int j=0;j<m;j++) { if((i&(1<<j))>0) { b=j; break; } } for(int j=0;j<m;j++) { if((i&(1<<j))==0) { v+=cnt[b][j]; }else { if(b!=j)v-=cnt[b][j]; } } v+=rec[i-(1<<b)]; for(int j=0;j<m;j++) { if((i&(1<<j))>0) { dp[i]=Math.min(dp[i], dp[i-(1<<j)]+v); } } rec[i]=v; } return dp[(1<<m)-1]; } } class FastReader { BufferedReader br; StringTokenizer st; public FastReader() { br=new BufferedReader(new InputStreamReader(System.in)); } public String next() { if(st==null || !st.hasMoreElements()) { try { st = new StringTokenizer(br.readLine()); } catch (IOException e) { e.printStackTrace(); } } return st.nextToken(); } public int nextInt() { return Integer.parseInt(next()); } public long nextLong() { return Long.parseLong(next()); } } </CODE> <EVALUATION_RUBRIC> - O(n^2): The execution time ascends in proportion to the square of the input size n. - O(n): The execution time ascends in a one-to-one ratio with the input size n. - O(log(n)): The execution time ascends in proportion to the logarithm of the input size n. - non-polynomial: The running time increases non-polynomially with input size n, typically exponentially. - others: The time complexity does not fit to any of the given categories or is ambiguous. - O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially. - O(n^3): The execution time ascends in proportion to the cube of the input size n. - O(1): The execution time is unaffected by the size of the input n. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
887
4,501
2,728
import java.util.Scanner; public class A235 { public static void main(String[] args) { // TODO Auto-generated method stub Scanner sc = new Scanner(System.in); long n = sc.nextInt(); if (n == 1) { System.out.println(1); return; } else if (n == 2) { System.out.println(2); return; } else if (n == 3) { System.out.println(6); return; } if (n % 2 == 0) { if(n % 3 == 0) System.out.println((n - 1) * (n - 2) * (n - 3)); else System.out.println((n - 1) * n * (n - 3)); } else { System.out.println(n * (n - 1) * (n - 2)); } } }
O(1)
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Determine the worst-case time complexity category of a given Java code based on input size n. </TASK> <CODE> import java.util.Scanner; public class A235 { public static void main(String[] args) { // TODO Auto-generated method stub Scanner sc = new Scanner(System.in); long n = sc.nextInt(); if (n == 1) { System.out.println(1); return; } else if (n == 2) { System.out.println(2); return; } else if (n == 3) { System.out.println(6); return; } if (n % 2 == 0) { if(n % 3 == 0) System.out.println((n - 1) * (n - 2) * (n - 3)); else System.out.println((n - 1) * n * (n - 3)); } else { System.out.println(n * (n - 1) * (n - 2)); } } } </CODE> <EVALUATION_RUBRIC> - O(1): The time complexity is constant to the input size n. - non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially. - O(n^3): The time complexity scales proportionally to the cube of the input size. - O(n^2): The time complexity grows proportionally to the square of the input size. - O(n): The time complexity increases proportionally to the input size n in a linear manner. - O(log(n)): The time complexity increases logarithmically in relation to the input size. - O(nlog(n)): The time complexity combines linear and logarithmic growth factors. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Classify the following Java code's worst-case time complexity according to its relationship to the input size n. </TASK> <CODE> import java.util.Scanner; public class A235 { public static void main(String[] args) { // TODO Auto-generated method stub Scanner sc = new Scanner(System.in); long n = sc.nextInt(); if (n == 1) { System.out.println(1); return; } else if (n == 2) { System.out.println(2); return; } else if (n == 3) { System.out.println(6); return; } if (n % 2 == 0) { if(n % 3 == 0) System.out.println((n - 1) * (n - 2) * (n - 3)); else System.out.println((n - 1) * n * (n - 3)); } else { System.out.println(n * (n - 1) * (n - 2)); } } } </CODE> <EVALUATION_RUBRIC> - O(nlog(n)): The running time increases with the product of n and logarithm of n. - O(n): The running time grows linearly with the input size n. - O(n^2): The running time increases with the square of the input size n. - O(log(n)): The running time increases with the logarithm of the input size n. - others: The code does not clearly correspond to the listed classes or has an unclassified time complexity. - non-polynomial: The running time increases non-polynomially with input size n, typically exponentially. - O(n^3): The running time increases with the cube of the input size n. - O(1): The running time does not change regardless of the input size n. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
535
2,722
1,299
import java.math.BigInteger; import java.util.*; import java.io.*; public class Contest { public static void main(String[] args)throws IOException { BufferedReader br = new BufferedReader(new InputStreamReader(System.in)); String[] s=br.readLine().split(" "); BigInteger x = new BigInteger(s[0]); BigInteger k = new BigInteger(s[1]); BigInteger mod = new BigInteger(String.valueOf((int) (Math.pow(10, 9) + 7))); BigInteger two = new BigInteger("2"); BigInteger interm = two.modPow(k, mod); BigInteger res = interm.multiply(two.multiply(x).subtract(BigInteger.ONE)).add(BigInteger.ONE).mod(mod); if(x.equals(BigInteger.ZERO)) { System.out.println("0"); return; } System.out.println(res); } }
O(log(n))
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Determine the worst-case time complexity category of a given Java code based on input size n. </TASK> <CODE> import java.math.BigInteger; import java.util.*; import java.io.*; public class Contest { public static void main(String[] args)throws IOException { BufferedReader br = new BufferedReader(new InputStreamReader(System.in)); String[] s=br.readLine().split(" "); BigInteger x = new BigInteger(s[0]); BigInteger k = new BigInteger(s[1]); BigInteger mod = new BigInteger(String.valueOf((int) (Math.pow(10, 9) + 7))); BigInteger two = new BigInteger("2"); BigInteger interm = two.modPow(k, mod); BigInteger res = interm.multiply(two.multiply(x).subtract(BigInteger.ONE)).add(BigInteger.ONE).mod(mod); if(x.equals(BigInteger.ZERO)) { System.out.println("0"); return; } System.out.println(res); } } </CODE> <EVALUATION_RUBRIC> - O(1): The time complexity is constant to the input size n. - O(n): The time complexity increases proportionally to the input size n in a linear manner. - O(n^2): The time complexity grows proportionally to the square of the input size. - O(n^3): The time complexity scales proportionally to the cube of the input size. - O(log(n)): The time complexity increases logarithmically in relation to the input size. - non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially. - O(nlog(n)): The time complexity combines linear and logarithmic growth factors. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Classify the following Java code's worst-case time complexity according to its relationship to the input size n. </TASK> <CODE> import java.math.BigInteger; import java.util.*; import java.io.*; public class Contest { public static void main(String[] args)throws IOException { BufferedReader br = new BufferedReader(new InputStreamReader(System.in)); String[] s=br.readLine().split(" "); BigInteger x = new BigInteger(s[0]); BigInteger k = new BigInteger(s[1]); BigInteger mod = new BigInteger(String.valueOf((int) (Math.pow(10, 9) + 7))); BigInteger two = new BigInteger("2"); BigInteger interm = two.modPow(k, mod); BigInteger res = interm.multiply(two.multiply(x).subtract(BigInteger.ONE)).add(BigInteger.ONE).mod(mod); if(x.equals(BigInteger.ZERO)) { System.out.println("0"); return; } System.out.println(res); } } </CODE> <EVALUATION_RUBRIC> - O(log(n)): The running time increases with the logarithm of the input size n. - O(n): The running time grows linearly with the input size n. - O(nlog(n)): The running time increases with the product of n and logarithm of n. - others: The code does not clearly correspond to the listed classes or has an unclassified time complexity. - O(n^2): The running time increases with the square of the input size n. - O(n^3): The running time increases with the cube of the input size n. - non-polynomial: The running time increases non-polynomially with input size n, typically exponentially. - O(1): The running time does not change regardless of the input size n. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
503
1,297
2,654
import static java.lang.Math.*; import static java.util.Arrays.* ; import java.math.BigInteger; import java.util.*; import java.io.*; public class D { int [][] adjList ; int dfs(int u , int p ) { int size = 1 ; for(int v : adjList[u]) if(v != p ) { int curr = dfs(v, u) ; size += curr ; } return size ; } void main() throws Exception { Scanner sc = new Scanner(System.in); PrintWriter out = new PrintWriter(System.out); int n = sc.nextInt() ; int [] a = new int [n] ; boolean [] vis = new boolean[n] ; int cnt = 0 ; for(int i = 0 ;i < n ; i++) a[i] = sc.nextInt() ; sort(a); for(int i = 0 ;i < n ; i ++) { if(!vis[i]) { for(int j= i ; j < n ; j++) if(a[j] % a[i] == 0) vis[j] = true ; cnt ++ ; } } out.println(cnt); out.flush(); out.close(); } class SegmentTree { int [] sTree ; int [] lazy ; int N ; SegmentTree(int n) { N = 1 << (32 - Integer.numberOfLeadingZeros(n - 1)) ; sTree = new int [N << 1] ; lazy= new int [N << 1] ; } void push(int node , int b , int e , int mid) { sTree[node << 1] += (mid - b + 1) * lazy[node] ; sTree[node << 1 | 1] += (e - mid) * lazy[node] ; lazy[node << 1] += lazy[node] ; lazy[node << 1 | 1] += lazy[node] ; lazy[node] = 0 ; } void updateRange(int node , int b , int e , int i , int j , int val) { if(i > e || j < b)return; if(i <= b && e <= j) { sTree[node] += (e - b + 1) * val ; lazy[node] += val ; return; } int mid = b + e >> 1 ; push(node , b , e , mid) ; updateRange(node << 1 , b , mid , i , j , val); updateRange(node << 1 | 1 , mid + 1 , e , i , j , val); sTree[node] = sTree[node << 1] + sTree[node << 1 | 1] ; } int query(int node , int b , int e , int i , int j) { if(i > e || j < b) return 0 ; if(i <= b && e <= j) return sTree[node] ; int mid = b + e >> 1 ; push(node , b , e , mid); return query(node << 1 , b , mid , i , j) + query(node << 1 | 1 , mid + 1 , e , i , j) ; } } class Compressor { TreeSet<Integer> set = new TreeSet<>() ; TreeMap<Integer ,Integer> map = new TreeMap<>() ; void add(int x) { set.add(x) ; } void fix() { for(int x : set) map.put(x , map.size() + 1) ; } int get(int x) { return map.get(x) ; } } class Scanner { BufferedReader br ; StringTokenizer st ; Scanner(InputStream in) { br = new BufferedReader(new InputStreamReader(in)) ; } String next() throws Exception { while (st == null || !st.hasMoreTokens()) st = new StringTokenizer(br.readLine()) ; return st.nextToken() ; } int nextInt() throws Exception { return Integer.parseInt(next()) ; } long nextLong() throws Exception { return Long.parseLong(next()) ; } double nextDouble() throws Exception { return Double.parseDouble(next()) ; } } public static void main (String [] args) throws Exception {(new D()).main();} }
O(n^2)
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Determine the worst-case time complexity category of a given Java code based on input size n. </TASK> <CODE> import static java.lang.Math.*; import static java.util.Arrays.* ; import java.math.BigInteger; import java.util.*; import java.io.*; public class D { int [][] adjList ; int dfs(int u , int p ) { int size = 1 ; for(int v : adjList[u]) if(v != p ) { int curr = dfs(v, u) ; size += curr ; } return size ; } void main() throws Exception { Scanner sc = new Scanner(System.in); PrintWriter out = new PrintWriter(System.out); int n = sc.nextInt() ; int [] a = new int [n] ; boolean [] vis = new boolean[n] ; int cnt = 0 ; for(int i = 0 ;i < n ; i++) a[i] = sc.nextInt() ; sort(a); for(int i = 0 ;i < n ; i ++) { if(!vis[i]) { for(int j= i ; j < n ; j++) if(a[j] % a[i] == 0) vis[j] = true ; cnt ++ ; } } out.println(cnt); out.flush(); out.close(); } class SegmentTree { int [] sTree ; int [] lazy ; int N ; SegmentTree(int n) { N = 1 << (32 - Integer.numberOfLeadingZeros(n - 1)) ; sTree = new int [N << 1] ; lazy= new int [N << 1] ; } void push(int node , int b , int e , int mid) { sTree[node << 1] += (mid - b + 1) * lazy[node] ; sTree[node << 1 | 1] += (e - mid) * lazy[node] ; lazy[node << 1] += lazy[node] ; lazy[node << 1 | 1] += lazy[node] ; lazy[node] = 0 ; } void updateRange(int node , int b , int e , int i , int j , int val) { if(i > e || j < b)return; if(i <= b && e <= j) { sTree[node] += (e - b + 1) * val ; lazy[node] += val ; return; } int mid = b + e >> 1 ; push(node , b , e , mid) ; updateRange(node << 1 , b , mid , i , j , val); updateRange(node << 1 | 1 , mid + 1 , e , i , j , val); sTree[node] = sTree[node << 1] + sTree[node << 1 | 1] ; } int query(int node , int b , int e , int i , int j) { if(i > e || j < b) return 0 ; if(i <= b && e <= j) return sTree[node] ; int mid = b + e >> 1 ; push(node , b , e , mid); return query(node << 1 , b , mid , i , j) + query(node << 1 | 1 , mid + 1 , e , i , j) ; } } class Compressor { TreeSet<Integer> set = new TreeSet<>() ; TreeMap<Integer ,Integer> map = new TreeMap<>() ; void add(int x) { set.add(x) ; } void fix() { for(int x : set) map.put(x , map.size() + 1) ; } int get(int x) { return map.get(x) ; } } class Scanner { BufferedReader br ; StringTokenizer st ; Scanner(InputStream in) { br = new BufferedReader(new InputStreamReader(in)) ; } String next() throws Exception { while (st == null || !st.hasMoreTokens()) st = new StringTokenizer(br.readLine()) ; return st.nextToken() ; } int nextInt() throws Exception { return Integer.parseInt(next()) ; } long nextLong() throws Exception { return Long.parseLong(next()) ; } double nextDouble() throws Exception { return Double.parseDouble(next()) ; } } public static void main (String [] args) throws Exception {(new D()).main();} } </CODE> <EVALUATION_RUBRIC> - O(log(n)): The time complexity increases logarithmically in relation to the input size. - O(n^3): The time complexity scales proportionally to the cube of the input size. - O(nlog(n)): The time complexity combines linear and logarithmic growth factors. - O(1): The time complexity is constant to the input size n. - O(n^2): The time complexity grows proportionally to the square of the input size. - O(n): The time complexity increases proportionally to the input size n in a linear manner. - non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n. </TASK> <CODE> import static java.lang.Math.*; import static java.util.Arrays.* ; import java.math.BigInteger; import java.util.*; import java.io.*; public class D { int [][] adjList ; int dfs(int u , int p ) { int size = 1 ; for(int v : adjList[u]) if(v != p ) { int curr = dfs(v, u) ; size += curr ; } return size ; } void main() throws Exception { Scanner sc = new Scanner(System.in); PrintWriter out = new PrintWriter(System.out); int n = sc.nextInt() ; int [] a = new int [n] ; boolean [] vis = new boolean[n] ; int cnt = 0 ; for(int i = 0 ;i < n ; i++) a[i] = sc.nextInt() ; sort(a); for(int i = 0 ;i < n ; i ++) { if(!vis[i]) { for(int j= i ; j < n ; j++) if(a[j] % a[i] == 0) vis[j] = true ; cnt ++ ; } } out.println(cnt); out.flush(); out.close(); } class SegmentTree { int [] sTree ; int [] lazy ; int N ; SegmentTree(int n) { N = 1 << (32 - Integer.numberOfLeadingZeros(n - 1)) ; sTree = new int [N << 1] ; lazy= new int [N << 1] ; } void push(int node , int b , int e , int mid) { sTree[node << 1] += (mid - b + 1) * lazy[node] ; sTree[node << 1 | 1] += (e - mid) * lazy[node] ; lazy[node << 1] += lazy[node] ; lazy[node << 1 | 1] += lazy[node] ; lazy[node] = 0 ; } void updateRange(int node , int b , int e , int i , int j , int val) { if(i > e || j < b)return; if(i <= b && e <= j) { sTree[node] += (e - b + 1) * val ; lazy[node] += val ; return; } int mid = b + e >> 1 ; push(node , b , e , mid) ; updateRange(node << 1 , b , mid , i , j , val); updateRange(node << 1 | 1 , mid + 1 , e , i , j , val); sTree[node] = sTree[node << 1] + sTree[node << 1 | 1] ; } int query(int node , int b , int e , int i , int j) { if(i > e || j < b) return 0 ; if(i <= b && e <= j) return sTree[node] ; int mid = b + e >> 1 ; push(node , b , e , mid); return query(node << 1 , b , mid , i , j) + query(node << 1 | 1 , mid + 1 , e , i , j) ; } } class Compressor { TreeSet<Integer> set = new TreeSet<>() ; TreeMap<Integer ,Integer> map = new TreeMap<>() ; void add(int x) { set.add(x) ; } void fix() { for(int x : set) map.put(x , map.size() + 1) ; } int get(int x) { return map.get(x) ; } } class Scanner { BufferedReader br ; StringTokenizer st ; Scanner(InputStream in) { br = new BufferedReader(new InputStreamReader(in)) ; } String next() throws Exception { while (st == null || !st.hasMoreTokens()) st = new StringTokenizer(br.readLine()) ; return st.nextToken() ; } int nextInt() throws Exception { return Integer.parseInt(next()) ; } long nextLong() throws Exception { return Long.parseLong(next()) ; } double nextDouble() throws Exception { return Double.parseDouble(next()) ; } } public static void main (String [] args) throws Exception {(new D()).main();} } </CODE> <EVALUATION_RUBRIC> - O(1): The execution time is unaffected by the size of the input n. - O(n): The execution time ascends in a one-to-one ratio with the input size n. - O(n^2): The execution time ascends in proportion to the square of the input size n. - O(n^3): The execution time ascends in proportion to the cube of the input size n. - O(log(n)): The execution time ascends in proportion to the logarithm of the input size n. - O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially. - others: The time complexity does not fit to any of the given categories or is ambiguous. - non-polynomial: The running time increases non-polynomially with input size n, typically exponentially. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
1,301
2,648
788
import java.util.*; import java.io.*; public class C { public static void main(String[] args) throws IOException { BufferedReader in = new BufferedReader(new InputStreamReader(System.in)); int n = Integer.parseInt(in.readLine()); char[] ps = in.readLine().toCharArray(); HashMap<Character, TreeSet<Integer>> locs = new HashMap<Character, TreeSet<Integer>>(); HashSet<Character> poks = new HashSet<Character>(); int lastNew = n; for (int i = 0; i < n; i++) { if (!poks.contains(ps[i])) { poks.add(ps[i]); locs.put(ps[i], new TreeSet<Integer>()); lastNew = i; } locs.get(ps[i]).add(i); } int max = lastNew; int minRange = max+1; for (int min = 0; min < n; min++) { char pAtMin = ps[min]; Integer nextInd = locs.get(pAtMin).higher(min); if (nextInd == null) break; max = Math.max(max, nextInd); minRange = Math.min(minRange, max-min); } System.out.println(minRange); } }
O(n)
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Determine the worst-case time complexity category of a given Java code based on input size n. </TASK> <CODE> import java.util.*; import java.io.*; public class C { public static void main(String[] args) throws IOException { BufferedReader in = new BufferedReader(new InputStreamReader(System.in)); int n = Integer.parseInt(in.readLine()); char[] ps = in.readLine().toCharArray(); HashMap<Character, TreeSet<Integer>> locs = new HashMap<Character, TreeSet<Integer>>(); HashSet<Character> poks = new HashSet<Character>(); int lastNew = n; for (int i = 0; i < n; i++) { if (!poks.contains(ps[i])) { poks.add(ps[i]); locs.put(ps[i], new TreeSet<Integer>()); lastNew = i; } locs.get(ps[i]).add(i); } int max = lastNew; int minRange = max+1; for (int min = 0; min < n; min++) { char pAtMin = ps[min]; Integer nextInd = locs.get(pAtMin).higher(min); if (nextInd == null) break; max = Math.max(max, nextInd); minRange = Math.min(minRange, max-min); } System.out.println(minRange); } } </CODE> <EVALUATION_RUBRIC> - O(1): The time complexity is constant to the input size n. - O(n): The time complexity increases proportionally to the input size n in a linear manner. - non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially. - O(log(n)): The time complexity increases logarithmically in relation to the input size. - O(n^3): The time complexity scales proportionally to the cube of the input size. - O(nlog(n)): The time complexity combines linear and logarithmic growth factors. - O(n^2): The time complexity grows proportionally to the square of the input size. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n. </TASK> <CODE> import java.util.*; import java.io.*; public class C { public static void main(String[] args) throws IOException { BufferedReader in = new BufferedReader(new InputStreamReader(System.in)); int n = Integer.parseInt(in.readLine()); char[] ps = in.readLine().toCharArray(); HashMap<Character, TreeSet<Integer>> locs = new HashMap<Character, TreeSet<Integer>>(); HashSet<Character> poks = new HashSet<Character>(); int lastNew = n; for (int i = 0; i < n; i++) { if (!poks.contains(ps[i])) { poks.add(ps[i]); locs.put(ps[i], new TreeSet<Integer>()); lastNew = i; } locs.get(ps[i]).add(i); } int max = lastNew; int minRange = max+1; for (int min = 0; min < n; min++) { char pAtMin = ps[min]; Integer nextInd = locs.get(pAtMin).higher(min); if (nextInd == null) break; max = Math.max(max, nextInd); minRange = Math.min(minRange, max-min); } System.out.println(minRange); } } </CODE> <EVALUATION_RUBRIC> - non-polynomial: The running time increases non-polynomially with input size n, typically exponentially. - O(n^3): The execution time ascends in proportion to the cube of the input size n. - O(log(n)): The execution time ascends in proportion to the logarithm of the input size n. - O(1): The execution time is unaffected by the size of the input n. - O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially. - others: The time complexity does not fit to any of the given categories or is ambiguous. - O(n^2): The execution time ascends in proportion to the square of the input size n. - O(n): The execution time ascends in a one-to-one ratio with the input size n. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
575
787
1,404
import java.util.Scanner; public class Main { public static void main(String[] args) { Scanner sc = new Scanner(System.in); String s = sc.nextLine(); String[] info = s.split(" "); long n = Long.parseLong(info[0]); long k = Long.parseLong(info[1]); sc.close(); long maximum = k * (k - 1) / 2 + 1; if (n == 1) System.out.println(0); else if (n > maximum) System.out.println(-1); else { long left = 0, right = k - 1; while (left + 1 < right) { long mid = (right + left) / 2; if (mid * (k - 1 + k - mid) / 2 + 1 >= n) right = mid; else left = mid; } System.out.println(right); } } }
O(log(n))
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Classify the following Java code's worst-case time complexity according to its relationship to the input size n. </TASK> <CODE> import java.util.Scanner; public class Main { public static void main(String[] args) { Scanner sc = new Scanner(System.in); String s = sc.nextLine(); String[] info = s.split(" "); long n = Long.parseLong(info[0]); long k = Long.parseLong(info[1]); sc.close(); long maximum = k * (k - 1) / 2 + 1; if (n == 1) System.out.println(0); else if (n > maximum) System.out.println(-1); else { long left = 0, right = k - 1; while (left + 1 < right) { long mid = (right + left) / 2; if (mid * (k - 1 + k - mid) / 2 + 1 >= n) right = mid; else left = mid; } System.out.println(right); } } } </CODE> <EVALUATION_RUBRIC> - O(1): The running time does not change regardless of the input size n. - O(log(n)): The running time increases with the logarithm of the input size n. - O(n^3): The running time increases with the cube of the input size n. - O(nlog(n)): The running time increases with the product of n and logarithm of n. - O(n): The running time grows linearly with the input size n. - non-polynomial: The running time increases non-polynomially with input size n, typically exponentially. - O(n^2): The running time increases with the square of the input size n. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n. </TASK> <CODE> import java.util.Scanner; public class Main { public static void main(String[] args) { Scanner sc = new Scanner(System.in); String s = sc.nextLine(); String[] info = s.split(" "); long n = Long.parseLong(info[0]); long k = Long.parseLong(info[1]); sc.close(); long maximum = k * (k - 1) / 2 + 1; if (n == 1) System.out.println(0); else if (n > maximum) System.out.println(-1); else { long left = 0, right = k - 1; while (left + 1 < right) { long mid = (right + left) / 2; if (mid * (k - 1 + k - mid) / 2 + 1 >= n) right = mid; else left = mid; } System.out.println(right); } } } </CODE> <EVALUATION_RUBRIC> - O(1): The execution time is unaffected by the size of the input n. - non-polynomial: The running time increases non-polynomially with input size n, typically exponentially. - others: The time complexity does not fit to any of the given categories or is ambiguous. - O(n^2): The execution time ascends in proportion to the square of the input size n. - O(log(n)): The execution time ascends in proportion to the logarithm of the input size n. - O(n^3): The execution time ascends in proportion to the cube of the input size n. - O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially. - O(n): The execution time ascends in a one-to-one ratio with the input size n. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
540
1,402
3,838
//I'm Whiplash99 import java.io.*; import java.util.*; public class C { public static void main(String[] args) throws Exception { BufferedReader br=new BufferedReader(new InputStreamReader(System.in)); int i,N; int T=Integer.parseInt(br.readLine().trim()); StringBuilder sb=new StringBuilder(); while (T-->0) { N=Integer.parseInt(br.readLine().trim()); int[] a=new int[N]; for(i=0;i<N;i++) a[i]=Integer.parseInt(br.readLine().trim()); int end=1; int[][] ans=new int[N][N+10]; ans[0][0]=1; for(i=1;i<N;i++) { while (true) { if(ans[i-1][end]==a[i]-1) break; end--; } for(int j=0;j<end;j++) ans[i][j]=ans[i-1][j]; ans[i][end]=a[i]; end++; } for(i=0;i<N;i++) { for(int j=0;j<N&&ans[i][j]!=0;j++) { sb.append(ans[i][j]); if(ans[i][j+1]!=0) sb.append('.'); } sb.append("\n"); } } System.out.println(sb); } }
O(n^3)
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Classify the following Java code's worst-case time complexity according to its relationship to the input size n. </TASK> <CODE> //I'm Whiplash99 import java.io.*; import java.util.*; public class C { public static void main(String[] args) throws Exception { BufferedReader br=new BufferedReader(new InputStreamReader(System.in)); int i,N; int T=Integer.parseInt(br.readLine().trim()); StringBuilder sb=new StringBuilder(); while (T-->0) { N=Integer.parseInt(br.readLine().trim()); int[] a=new int[N]; for(i=0;i<N;i++) a[i]=Integer.parseInt(br.readLine().trim()); int end=1; int[][] ans=new int[N][N+10]; ans[0][0]=1; for(i=1;i<N;i++) { while (true) { if(ans[i-1][end]==a[i]-1) break; end--; } for(int j=0;j<end;j++) ans[i][j]=ans[i-1][j]; ans[i][end]=a[i]; end++; } for(i=0;i<N;i++) { for(int j=0;j<N&&ans[i][j]!=0;j++) { sb.append(ans[i][j]); if(ans[i][j+1]!=0) sb.append('.'); } sb.append("\n"); } } System.out.println(sb); } } </CODE> <EVALUATION_RUBRIC> - O(n^3): The running time increases with the cube of the input size n. - O(n): The running time grows linearly with the input size n. - O(nlog(n)): The running time increases with the product of n and logarithm of n. - O(1): The running time does not change regardless of the input size n. - non-polynomial: The running time increases non-polynomially with input size n, typically exponentially. - O(n^2): The running time increases with the square of the input size n. - O(log(n)): The running time increases with the logarithm of the input size n. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Determine the worst-case time complexity category of a given Java code based on input size n. </TASK> <CODE> //I'm Whiplash99 import java.io.*; import java.util.*; public class C { public static void main(String[] args) throws Exception { BufferedReader br=new BufferedReader(new InputStreamReader(System.in)); int i,N; int T=Integer.parseInt(br.readLine().trim()); StringBuilder sb=new StringBuilder(); while (T-->0) { N=Integer.parseInt(br.readLine().trim()); int[] a=new int[N]; for(i=0;i<N;i++) a[i]=Integer.parseInt(br.readLine().trim()); int end=1; int[][] ans=new int[N][N+10]; ans[0][0]=1; for(i=1;i<N;i++) { while (true) { if(ans[i-1][end]==a[i]-1) break; end--; } for(int j=0;j<end;j++) ans[i][j]=ans[i-1][j]; ans[i][end]=a[i]; end++; } for(i=0;i<N;i++) { for(int j=0;j<N&&ans[i][j]!=0;j++) { sb.append(ans[i][j]); if(ans[i][j+1]!=0) sb.append('.'); } sb.append("\n"); } } System.out.println(sb); } } </CODE> <EVALUATION_RUBRIC> - O(1): The time complexity is constant to the input size n. - O(n^3): The time complexity scales proportionally to the cube of the input size. - O(n^2): The time complexity grows proportionally to the square of the input size. - others: The time complexity does not fit any of the above categories or cannot be clearly classified. - non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially. - O(log(n)): The time complexity increases logarithmically in relation to the input size. - O(n): The time complexity increases proportionally to the input size n in a linear manner. - O(nlog(n)): The time complexity combines linear and logarithmic growth factors. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
621
3,828
1,107
import java.util.*; import java.io.*; import java.math.*; public class Main { static class Reader { private InputStream mIs;private byte[] buf = new byte[1024];private int curChar,numChars;public Reader() { this(System.in); }public Reader(InputStream is) { mIs = is;} public int read() {if (numChars == -1) throw new InputMismatchException();if (curChar >= numChars) {curChar = 0;try { numChars = mIs.read(buf);} catch (IOException e) { throw new InputMismatchException();}if (numChars <= 0) return -1; }return buf[curChar++];} public String nextLine(){int c = read();while (isSpaceChar(c)) c = read();StringBuilder res = new StringBuilder();do {res.appendCodePoint(c);c = read();}while (!isEndOfLine(c));return res.toString() ;} public String s(){int c = read();while (isSpaceChar(c)) c = read();StringBuilder res = new StringBuilder();do {res.appendCodePoint(c);c = read();}while (!isSpaceChar(c));return res.toString();} public long l(){int c = read();while (isSpaceChar(c)) c = read();int sgn = 1;if (c == '-') { sgn = -1 ; c = read() ; }long res = 0; do{ if (c < '0' || c > '9') throw new InputMismatchException();res *= 10 ; res += c - '0' ; c = read();}while(!isSpaceChar(c));return res * sgn;} public int i(){int c = read() ;while (isSpaceChar(c)) c = read();int sgn = 1;if (c == '-') { sgn = -1 ; c = read() ; }int res = 0;do{if (c < '0' || c > '9') throw new InputMismatchException();res *= 10 ; res += c - '0' ; c = read() ;}while(!isSpaceChar(c));return res * sgn;} public double d() throws IOException {return Double.parseDouble(s()) ;} public boolean isSpaceChar(int c) { return c == ' ' || c == '\n' || c == '\r' || c == '\t' || c == -1; } public boolean isEndOfLine(int c) { return c == '\n' || c == '\r' || c == -1; } public int[] arr(int n){int[] ret = new int[n];for (int i = 0; i < n; i++) {ret[i] = i();}return ret;} } // |----| /\ | | ----- | // | / / \ | | | | // |--/ /----\ |----| | | // | \ / \ | | | | // | \ / \ | | ----- ------- public static void main(String[] args)throws IOException { PrintWriter out= new PrintWriter(System.out); Reader sc=new Reader(); int n=sc.i(); System.out.println("? "+1); int a=sc.i(); System.out.println("? "+(1+n/2)); int b=sc.i(); if(a==b) { System.out.println("! "+1); System.exit(0); } int inv=0; if(a>b) inv=1; int low=2; int high=n/2; int q=0; while(low<=high) { if(q==60) break; int mid=(low+high)/2; System.out.println("? "+mid); a=sc.i(); System.out.println("? "+(mid+n/2)); b=sc.i(); if(a==b) { System.out.println("! "+mid); System.exit(0); } else if(a<b) { if(inv==0) low=mid+1; else high=mid-1; } else { if(inv==0) high=mid-1; else low=mid+1; } q++; } System.out.println("! -1"); out.flush(); } }
O(log(n))
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Classify the following Java code's worst-case time complexity according to its relationship to the input size n. </TASK> <CODE> import java.util.*; import java.io.*; import java.math.*; public class Main { static class Reader { private InputStream mIs;private byte[] buf = new byte[1024];private int curChar,numChars;public Reader() { this(System.in); }public Reader(InputStream is) { mIs = is;} public int read() {if (numChars == -1) throw new InputMismatchException();if (curChar >= numChars) {curChar = 0;try { numChars = mIs.read(buf);} catch (IOException e) { throw new InputMismatchException();}if (numChars <= 0) return -1; }return buf[curChar++];} public String nextLine(){int c = read();while (isSpaceChar(c)) c = read();StringBuilder res = new StringBuilder();do {res.appendCodePoint(c);c = read();}while (!isEndOfLine(c));return res.toString() ;} public String s(){int c = read();while (isSpaceChar(c)) c = read();StringBuilder res = new StringBuilder();do {res.appendCodePoint(c);c = read();}while (!isSpaceChar(c));return res.toString();} public long l(){int c = read();while (isSpaceChar(c)) c = read();int sgn = 1;if (c == '-') { sgn = -1 ; c = read() ; }long res = 0; do{ if (c < '0' || c > '9') throw new InputMismatchException();res *= 10 ; res += c - '0' ; c = read();}while(!isSpaceChar(c));return res * sgn;} public int i(){int c = read() ;while (isSpaceChar(c)) c = read();int sgn = 1;if (c == '-') { sgn = -1 ; c = read() ; }int res = 0;do{if (c < '0' || c > '9') throw new InputMismatchException();res *= 10 ; res += c - '0' ; c = read() ;}while(!isSpaceChar(c));return res * sgn;} public double d() throws IOException {return Double.parseDouble(s()) ;} public boolean isSpaceChar(int c) { return c == ' ' || c == '\n' || c == '\r' || c == '\t' || c == -1; } public boolean isEndOfLine(int c) { return c == '\n' || c == '\r' || c == -1; } public int[] arr(int n){int[] ret = new int[n];for (int i = 0; i < n; i++) {ret[i] = i();}return ret;} } // |----| /\ | | ----- | // | / / \ | | | | // |--/ /----\ |----| | | // | \ / \ | | | | // | \ / \ | | ----- ------- public static void main(String[] args)throws IOException { PrintWriter out= new PrintWriter(System.out); Reader sc=new Reader(); int n=sc.i(); System.out.println("? "+1); int a=sc.i(); System.out.println("? "+(1+n/2)); int b=sc.i(); if(a==b) { System.out.println("! "+1); System.exit(0); } int inv=0; if(a>b) inv=1; int low=2; int high=n/2; int q=0; while(low<=high) { if(q==60) break; int mid=(low+high)/2; System.out.println("? "+mid); a=sc.i(); System.out.println("? "+(mid+n/2)); b=sc.i(); if(a==b) { System.out.println("! "+mid); System.exit(0); } else if(a<b) { if(inv==0) low=mid+1; else high=mid-1; } else { if(inv==0) high=mid-1; else low=mid+1; } q++; } System.out.println("! -1"); out.flush(); } } </CODE> <EVALUATION_RUBRIC> - O(n): The running time grows linearly with the input size n. - O(nlog(n)): The running time increases with the product of n and logarithm of n. - non-polynomial: The running time increases non-polynomially with input size n, typically exponentially. - O(log(n)): The running time increases with the logarithm of the input size n. - O(n^2): The running time increases with the square of the input size n. - O(n^3): The running time increases with the cube of the input size n. - O(1): The running time does not change regardless of the input size n. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Classify the following Java code's worst-case time complexity according to its relationship to the input size n. </TASK> <CODE> import java.util.*; import java.io.*; import java.math.*; public class Main { static class Reader { private InputStream mIs;private byte[] buf = new byte[1024];private int curChar,numChars;public Reader() { this(System.in); }public Reader(InputStream is) { mIs = is;} public int read() {if (numChars == -1) throw new InputMismatchException();if (curChar >= numChars) {curChar = 0;try { numChars = mIs.read(buf);} catch (IOException e) { throw new InputMismatchException();}if (numChars <= 0) return -1; }return buf[curChar++];} public String nextLine(){int c = read();while (isSpaceChar(c)) c = read();StringBuilder res = new StringBuilder();do {res.appendCodePoint(c);c = read();}while (!isEndOfLine(c));return res.toString() ;} public String s(){int c = read();while (isSpaceChar(c)) c = read();StringBuilder res = new StringBuilder();do {res.appendCodePoint(c);c = read();}while (!isSpaceChar(c));return res.toString();} public long l(){int c = read();while (isSpaceChar(c)) c = read();int sgn = 1;if (c == '-') { sgn = -1 ; c = read() ; }long res = 0; do{ if (c < '0' || c > '9') throw new InputMismatchException();res *= 10 ; res += c - '0' ; c = read();}while(!isSpaceChar(c));return res * sgn;} public int i(){int c = read() ;while (isSpaceChar(c)) c = read();int sgn = 1;if (c == '-') { sgn = -1 ; c = read() ; }int res = 0;do{if (c < '0' || c > '9') throw new InputMismatchException();res *= 10 ; res += c - '0' ; c = read() ;}while(!isSpaceChar(c));return res * sgn;} public double d() throws IOException {return Double.parseDouble(s()) ;} public boolean isSpaceChar(int c) { return c == ' ' || c == '\n' || c == '\r' || c == '\t' || c == -1; } public boolean isEndOfLine(int c) { return c == '\n' || c == '\r' || c == -1; } public int[] arr(int n){int[] ret = new int[n];for (int i = 0; i < n; i++) {ret[i] = i();}return ret;} } // |----| /\ | | ----- | // | / / \ | | | | // |--/ /----\ |----| | | // | \ / \ | | | | // | \ / \ | | ----- ------- public static void main(String[] args)throws IOException { PrintWriter out= new PrintWriter(System.out); Reader sc=new Reader(); int n=sc.i(); System.out.println("? "+1); int a=sc.i(); System.out.println("? "+(1+n/2)); int b=sc.i(); if(a==b) { System.out.println("! "+1); System.exit(0); } int inv=0; if(a>b) inv=1; int low=2; int high=n/2; int q=0; while(low<=high) { if(q==60) break; int mid=(low+high)/2; System.out.println("? "+mid); a=sc.i(); System.out.println("? "+(mid+n/2)); b=sc.i(); if(a==b) { System.out.println("! "+mid); System.exit(0); } else if(a<b) { if(inv==0) low=mid+1; else high=mid-1; } else { if(inv==0) high=mid-1; else low=mid+1; } q++; } System.out.println("! -1"); out.flush(); } } </CODE> <EVALUATION_RUBRIC> - O(log(n)): The running time increases with the logarithm of the input size n. - O(1): The running time does not change regardless of the input size n. - O(n^2): The running time increases with the square of the input size n. - others: The code does not clearly correspond to the listed classes or has an unclassified time complexity. - O(nlog(n)): The running time increases with the product of n and logarithm of n. - O(n): The running time grows linearly with the input size n. - O(n^3): The running time increases with the cube of the input size n. - non-polynomial: The running time increases non-polynomially with input size n, typically exponentially. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
1,316
1,106
102
import java.util.*; public class Pizza { public static void main(String[] args) { Scanner sc = new Scanner(System.in); long num = sc.nextLong() + 1; sc.close(); System.out.println(num % 2 == 0 || num == 1 ? num / 2 : num); } }
O(1)
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n. </TASK> <CODE> import java.util.*; public class Pizza { public static void main(String[] args) { Scanner sc = new Scanner(System.in); long num = sc.nextLong() + 1; sc.close(); System.out.println(num % 2 == 0 || num == 1 ? num / 2 : num); } } </CODE> <EVALUATION_RUBRIC> - O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially. - O(log(n)): The execution time ascends in proportion to the logarithm of the input size n. - O(1): The execution time is unaffected by the size of the input n. - O(n^2): The execution time ascends in proportion to the square of the input size n. - O(n^3): The execution time ascends in proportion to the cube of the input size n. - non-polynomial: The running time increases non-polynomially with input size n, typically exponentially. - O(n): The execution time ascends in a one-to-one ratio with the input size n. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Classify the following Java code's worst-case time complexity according to its relationship to the input size n. </TASK> <CODE> import java.util.*; public class Pizza { public static void main(String[] args) { Scanner sc = new Scanner(System.in); long num = sc.nextLong() + 1; sc.close(); System.out.println(num % 2 == 0 || num == 1 ? num / 2 : num); } } </CODE> <EVALUATION_RUBRIC> - O(n): The running time grows linearly with the input size n. - O(n^3): The running time increases with the cube of the input size n. - non-polynomial: The running time increases non-polynomially with input size n, typically exponentially. - O(nlog(n)): The running time increases with the product of n and logarithm of n. - O(log(n)): The running time increases with the logarithm of the input size n. - others: The code does not clearly correspond to the listed classes or has an unclassified time complexity. - O(1): The running time does not change regardless of the input size n. - O(n^2): The running time increases with the square of the input size n. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
422
102
679
import java.util.Scanner; //import java.util.Scanner; public class SingleWildcard { public static void main(String[] args) { // TODO Auto-generated method stub Scanner input =new Scanner(System.in); int a = input.nextInt(); int b = input.nextInt(); char[] s1 =new char[a]; s1 = input.next().toCharArray(); char[] s2 = new char[b]; s2 = input.next().toCharArray(); boolean condition = false; for(int i=0; i<a;i++){ if(s1[i]=='*'){ condition= true; break; } } if(!condition){ if(match(s1,s2)){ System.out.println("YES"); } else System.out.println("NO"); return; } else{ int i=0; if(s1.length-1>s2.length){ System.out.println("NO"); return; } while(i<s1.length && i<s2.length && s1[i]==s2[i]){ i++; } int j=s2.length-1; int k = s1.length-1; while(j>=0 && k>=0 && s1[k]==s2[j] && i<=j){ j--; k--; } //System.out.println(i); if(i==k && i>=0 && i<s1.length && s1[i]=='*' ){ System.out.println("YES"); return; } System.out.println("NO"); } } static boolean match(char[] s1,char[] s2){ if(s1.length!=s2.length)return false; for(int i=0; i<s1.length;i++){ if(s1[i]!=s2[i])return false; } return true; } }
O(n)
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n. </TASK> <CODE> import java.util.Scanner; //import java.util.Scanner; public class SingleWildcard { public static void main(String[] args) { // TODO Auto-generated method stub Scanner input =new Scanner(System.in); int a = input.nextInt(); int b = input.nextInt(); char[] s1 =new char[a]; s1 = input.next().toCharArray(); char[] s2 = new char[b]; s2 = input.next().toCharArray(); boolean condition = false; for(int i=0; i<a;i++){ if(s1[i]=='*'){ condition= true; break; } } if(!condition){ if(match(s1,s2)){ System.out.println("YES"); } else System.out.println("NO"); return; } else{ int i=0; if(s1.length-1>s2.length){ System.out.println("NO"); return; } while(i<s1.length && i<s2.length && s1[i]==s2[i]){ i++; } int j=s2.length-1; int k = s1.length-1; while(j>=0 && k>=0 && s1[k]==s2[j] && i<=j){ j--; k--; } //System.out.println(i); if(i==k && i>=0 && i<s1.length && s1[i]=='*' ){ System.out.println("YES"); return; } System.out.println("NO"); } } static boolean match(char[] s1,char[] s2){ if(s1.length!=s2.length)return false; for(int i=0; i<s1.length;i++){ if(s1[i]!=s2[i])return false; } return true; } } </CODE> <EVALUATION_RUBRIC> - O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially. - non-polynomial: The running time increases non-polynomially with input size n, typically exponentially. - O(n^3): The execution time ascends in proportion to the cube of the input size n. - O(log(n)): The execution time ascends in proportion to the logarithm of the input size n. - O(n): The execution time ascends in a one-to-one ratio with the input size n. - O(1): The execution time is unaffected by the size of the input n. - O(n^2): The execution time ascends in proportion to the square of the input size n. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Classify the following Java code's worst-case time complexity according to its relationship to the input size n. </TASK> <CODE> import java.util.Scanner; //import java.util.Scanner; public class SingleWildcard { public static void main(String[] args) { // TODO Auto-generated method stub Scanner input =new Scanner(System.in); int a = input.nextInt(); int b = input.nextInt(); char[] s1 =new char[a]; s1 = input.next().toCharArray(); char[] s2 = new char[b]; s2 = input.next().toCharArray(); boolean condition = false; for(int i=0; i<a;i++){ if(s1[i]=='*'){ condition= true; break; } } if(!condition){ if(match(s1,s2)){ System.out.println("YES"); } else System.out.println("NO"); return; } else{ int i=0; if(s1.length-1>s2.length){ System.out.println("NO"); return; } while(i<s1.length && i<s2.length && s1[i]==s2[i]){ i++; } int j=s2.length-1; int k = s1.length-1; while(j>=0 && k>=0 && s1[k]==s2[j] && i<=j){ j--; k--; } //System.out.println(i); if(i==k && i>=0 && i<s1.length && s1[i]=='*' ){ System.out.println("YES"); return; } System.out.println("NO"); } } static boolean match(char[] s1,char[] s2){ if(s1.length!=s2.length)return false; for(int i=0; i<s1.length;i++){ if(s1[i]!=s2[i])return false; } return true; } } </CODE> <EVALUATION_RUBRIC> - non-polynomial: The running time increases non-polynomially with input size n, typically exponentially. - O(nlog(n)): The running time increases with the product of n and logarithm of n. - O(log(n)): The running time increases with the logarithm of the input size n. - O(n^3): The running time increases with the cube of the input size n. - others: The code does not clearly correspond to the listed classes or has an unclassified time complexity. - O(1): The running time does not change regardless of the input size n. - O(n): The running time grows linearly with the input size n. - O(n^2): The running time increases with the square of the input size n. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
756
678
2,873
import java.util.Scanner; public class K603 { public static void main(String[] args) { Scanner sc=new Scanner(System.in); long a=sc.nextLong(); long b=sc.nextLong(); if(b-a<2){ System.out.println(-1); }else if(b-a==2 && a%2==1){ System.out.println(-1); }else if(b-a==2 && a%2==0){ System.out.println(a+" "+(a+1)+" "+(a+2)); }else{ if(a%2==0){ System.out.println(a+" "+(a+1)+" "+(a+2)); }else{ System.out.println((a+1)+" "+(a+2)+" "+(a+3)); } } } }
O(1)
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n. </TASK> <CODE> import java.util.Scanner; public class K603 { public static void main(String[] args) { Scanner sc=new Scanner(System.in); long a=sc.nextLong(); long b=sc.nextLong(); if(b-a<2){ System.out.println(-1); }else if(b-a==2 && a%2==1){ System.out.println(-1); }else if(b-a==2 && a%2==0){ System.out.println(a+" "+(a+1)+" "+(a+2)); }else{ if(a%2==0){ System.out.println(a+" "+(a+1)+" "+(a+2)); }else{ System.out.println((a+1)+" "+(a+2)+" "+(a+3)); } } } } </CODE> <EVALUATION_RUBRIC> - O(1): The execution time is unaffected by the size of the input n. - O(n): The execution time ascends in a one-to-one ratio with the input size n. - non-polynomial: The running time increases non-polynomially with input size n, typically exponentially. - O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially. - O(n^3): The execution time ascends in proportion to the cube of the input size n. - O(log(n)): The execution time ascends in proportion to the logarithm of the input size n. - O(n^2): The execution time ascends in proportion to the square of the input size n. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Determine the worst-case time complexity category of a given Java code based on input size n. </TASK> <CODE> import java.util.Scanner; public class K603 { public static void main(String[] args) { Scanner sc=new Scanner(System.in); long a=sc.nextLong(); long b=sc.nextLong(); if(b-a<2){ System.out.println(-1); }else if(b-a==2 && a%2==1){ System.out.println(-1); }else if(b-a==2 && a%2==0){ System.out.println(a+" "+(a+1)+" "+(a+2)); }else{ if(a%2==0){ System.out.println(a+" "+(a+1)+" "+(a+2)); }else{ System.out.println((a+1)+" "+(a+2)+" "+(a+3)); } } } } </CODE> <EVALUATION_RUBRIC> - O(n^2): The time complexity grows proportionally to the square of the input size. - others: The time complexity does not fit any of the above categories or cannot be clearly classified. - O(n^3): The time complexity scales proportionally to the cube of the input size. - O(log(n)): The time complexity increases logarithmically in relation to the input size. - O(n): The time complexity increases proportionally to the input size n in a linear manner. - non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially. - O(nlog(n)): The time complexity combines linear and logarithmic growth factors. - O(1): The time complexity is constant to the input size n. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
528
2,867
1,870
import java.io.*; import java.math.BigInteger; import java.util.*; public class main { private InputStream stream; private byte[] buf = new byte[1024]; private int curChar; private int numChars; private SpaceCharFilter filter; private PrintWriter pw; private long mod = 1000000000 + 7; private StringBuilder ans_sb; private ArrayList<Integer> primes; private long ans; private void soln() { int n = nextInt(); long[] arr = new long[n]; for (int i = 0; i < n; i++) arr[i] = nextLong(); Segment tree = new Segment(n, arr); long[] ans = new long[n]; BigInteger fa = BigInteger.ZERO; HashMap<Long, Integer> map = new HashMap<>(); for (int i = 0; i < n; i++) { ans[i] = ((long) i + 1) * arr[i] - tree.query(0, i); if (map.containsKey(arr[i] - 1)) { long tmp = map.get(arr[i] - 1); ans[i] -= tmp; } if (map.containsKey(arr[i] + 1)) { long tmp = map.get(arr[i] + 1); ans[i] += tmp; } if (!map.containsKey(arr[i])) map.put(arr[i], 0); map.put(arr[i], map.get(arr[i]) + 1); fa = fa.add(new BigInteger(Long.toString(ans[i]))); } // debug(ans); /* * Node[] nn = new Node[n]; for(int i=0;i<n;i++) { nn[i] = new Node(); * nn[i].node = i; nn[i].dist = arr[i]; } //debug(fa); Arrays.sort(nn); * //debug(nn); for(int i=0;i<n-1;i++) { if(nn[i].dist + 1 == nn[i+1].dist) { * System.out.println(nn[i].node +" "+nn[i+1].node); if(nn[i].node > * nn[i+1].node) { fa++; }else fa--; } } */ pw.println(fa.toString()); // int k = nextInt(); // int n = nextInt(); // String[] arr = new String[k]; // for(int i=0;i<k;i++) // arr[i] = nextLine(); // HashSet<String> set1 = new HashSet<>(); // for(int i=0;i<k;i++) // set1.add(arr[i]); // if(set1.size() == 1) { // String s = arr[0]; // pw.print(s.charAt(1)); // pw.print(s.charAt(0)); // for(int i=2;i<n;i++) // pw.print(s.charAt(i)); // }else { // String s1 = arr[0]; // set1.remove(arr[0]); // HashSet<Integer>[] aa = new HashSet[set1.size()]; // ArrayList<String> set = new ArrayList<>(); // for(String s:set1) // set.add(s); // int k1 = 0; // boolean f1 = false; // for(String s:set) { // aa[k1] = new HashSet<>(); // for(int i=0;i<n;i++) // if(s1.charAt(i) != s.charAt(i)) // aa[k1].add(i); // if(aa[k1].size() > 4) { // pw.println(-1); // f1 = true; // } // k1++; // } // //debug(set); // char[] ch = s1.toCharArray(); // // boolean[] f11 = new boolean[set.size()]; // int k2 = 0; // for(String s:set) { // int[] freq = new int[26]; // for(int i=0;i<n;i++) // freq[s.charAt(i)-'a']++; // boolean kuu = false; // for(int i=0;i<26;i++) // if(freq[i] >= 2) { // kuu = true; // break; // } // f11[k2] = true; // k2++; // } // // debug(f11); // // for(int i=0;i<n;i++) { // if(f1) // break; // for(int j=i+1;j<n;j++) { // if(f1) // break; // //System.out.println(i+" "+j); // char tmp = ch[i]; // ch[i] = ch[j]; // ch[j] = tmp; // k1 = 0; // HashSet<Integer> haha = new HashSet<>(); // boolean f = true; // for(String s:set) { // HashSet<Integer> indi = aa[k1]; // boolean h1 = false; // boolean h2 = false; // if(!indi.contains(i)) { // indi.add(i); // h1 = true; // } // if(!indi.contains(j)) { // indi.add(j); // h2 = true; // } // int cnt = 0; // for(int ii:indi) { // if(s.charAt(ii) != ch[ii]) // cnt++; // } // /*if(i==1 && j==3) { // System.out.println(cnt+" "+i+" "+j+" "+s); // debug(indi); // }*/ // if(cnt > 2 ) { // f = false; // break; // } // if(cnt ==1 && !f11[k1]) { // f = false; // break; // } // if(h1) // indi.remove(i); // if(h2) // indi.remove(j); // k1++; // // } // if(f) { // for(int i1=0;i1<n;i1++) { // pw.print(ch[i1]); // } // f1 = true; // break; // } // tmp = ch[i]; // ch[i] = ch[j]; // ch[j] = tmp; // } // } // if(!f1) // pw.println(-1); // } } public class Segment { private Node[] tree; private boolean[] lazy; private int size; private int n; private long[] base; private class Node { private int l; private int r; private long ans; private long ans2; } public Segment(int n, long[] arr) { this.base = arr; int x = (int) (Math.ceil(Math.log(n) / Math.log(2))); size = 2 * (int) Math.pow(2, x) - 1; tree = new Node[size]; lazy = new boolean[size]; this.n = n; // this.set = set1; build(0, 0, n - 1); } public void build(int id, int l, int r) { if (l == r) { tree[id] = new Node(); tree[id].l = l; tree[id].r = r; tree[id].ans = base[l]; return; } int mid = (l + r) / 2; build(2 * id + 1, l, mid); build(2 * id + 2, mid + 1, r); tree[id] = merge(tree[2 * id + 1], tree[2 * id + 2], l, r); // System.out.println(l+" "+r+" "+tree[id].l+" "+tree[id].r+" "+tree[id].ans); } public Node merge(Node n1, Node n2, int l, int r) { Node ret = new Node(); if (n1 == null && n2 == null) return null; else if (n1 == null) { ret.ans = n2.ans; } else if (n2 == null) { ret.ans = n1.ans; } else { ret.ans = n1.ans + n2.ans; } return ret; } public long query(int l, int r) { Node ret = queryUtil(l, r, 0, 0, n - 1); if (ret == null) { return 0; } else return ret.ans; } private Node queryUtil(int x, int y, int id, int l, int r) { if (l > y || x > r) return null; if (x <= l && r <= y) { return tree[id]; } int mid = l + (r - l) / 2; // shift(id); Node q1 = queryUtil(x, y, 2 * id + 1, l, mid); Node q2 = queryUtil(x, y, 2 * id + 2, mid + 1, r); return merge(q1, q2, Math.max(l, x), Math.min(r, y)); } public void update(int x, int y, int c) { update1(x, y, c, 0, 0, n - 1); } private void update1(int x, int y, int colour, int id, int l, int r) { // System.out.println(l+" "+r+" "+x); if (x > r || y < l) return; if (x <= l && r <= y) { if (colour != -1) { tree[id] = new Node(); tree[id].ans = 1; } else tree[id] = null; return; } int mid = l + (r - l) / 2; // shift(id); if (y <= mid) update1(x, y, colour, 2 * id + 1, l, mid); else if (x > mid) update1(x, y, colour, 2 * id + 2, mid + 1, r); else { update1(x, y, colour, 2 * id + 1, l, mid); update1(x, y, colour, 2 * id + 2, mid + 1, r); } tree[id] = merge(tree[2 * id + 1], tree[2 * id + 2], l, r); } public void print(int l, int r, int id) { if (l == r) { if (tree[id] != null) System.out.println(l + " " + r + " " + tree[id].l + " " + tree[id].r + " " + tree[id].ans + " " + tree[id].ans2); return; } int mid = l + (r - l) / 2; print(l, mid, 2 * id + 1); print(mid + 1, r, 2 * id + 2); if (tree[id] != null) System.out.println( l + " " + r + " " + tree[id].l + " " + tree[id].r + " " + tree[id].ans + " " + tree[id].ans2); } public void shift(int id) { } } private class Node implements Comparable<Node> { int node; long dist; @Override public int compareTo(Node arg0) { if (this.dist != arg0.dist) return (int) (this.dist - arg0.dist); return this.node - arg0.node; } public boolean equals(Object o) { if (o instanceof Node) { Node c = (Node) o; return this.node == c.node && this.dist == c.dist; } return false; } public String toString() { return this.node + ", " + this.dist; } } private void debug(Object... o) { System.out.println(Arrays.deepToString(o)); } private long pow(long a, long b, long c) { if (b == 0) return 1; long p = pow(a, b / 2, c); p = (p * p) % c; return (b % 2 == 0) ? p : (a * p) % c; } private long gcd(long n, long l) { if (l == 0) return n; return gcd(l, n % l); } public static void main(String[] args) throws Exception { new Thread(null, new Runnable() { @Override public void run() { new main().solve(); } }, "1", 1 << 26).start(); } public StringBuilder solve() { InputReader(System.in); /* * try { InputReader(new FileInputStream("C:\\Users\\hardik\\Desktop\\in.txt")); * } catch(FileNotFoundException e) {} */ pw = new PrintWriter(System.out); ans_sb = new StringBuilder(); soln(); pw.close(); // System.out.println(ans_sb); return ans_sb; } public void InputReader(InputStream stream1) { stream = stream1; } private boolean isWhitespace(int c) { return c == ' ' || c == '\n' || c == '\r' || c == '\t' || c == -1; } private boolean isEndOfLine(int c) { return c == '\n' || c == '\r' || c == -1; } private int read() { if (numChars == -1) throw new InputMismatchException(); if (curChar >= numChars) { curChar = 0; try { numChars = stream.read(buf); } catch (IOException e) { throw new InputMismatchException(); } if (numChars <= 0) return -1; } return buf[curChar++]; } private int nextInt() { int c = read(); while (isSpaceChar(c)) c = read(); int sgn = 1; if (c == '-') { sgn = -1; c = read(); } int res = 0; do { if (c < '0' || c > '9') throw new InputMismatchException(); res *= 10; res += c - '0'; c = read(); } while (!isSpaceChar(c)); return res * sgn; } private long nextLong() { int c = read(); while (isSpaceChar(c)) c = read(); int sgn = 1; if (c == '-') { sgn = -1; c = read(); } long res = 0; do { if (c < '0' || c > '9') throw new InputMismatchException(); res *= 10; res += c - '0'; c = read(); } while (!isSpaceChar(c)); return res * sgn; } private String nextToken() { int c = read(); while (isSpaceChar(c)) c = read(); StringBuilder res = new StringBuilder(); do { res.appendCodePoint(c); c = read(); } while (!isSpaceChar(c)); return res.toString(); } private String nextLine() { int c = read(); while (isSpaceChar(c)) c = read(); StringBuilder res = new StringBuilder(); do { res.appendCodePoint(c); c = read(); } while (!isEndOfLine(c)); return res.toString(); } private int[] nextIntArray(int n) { int[] arr = new int[n]; for (int i = 0; i < n; i++) { arr[i] = nextInt(); } return arr; } private long[] nextLongArray(int n) { long[] arr = new long[n]; for (int i = 0; i < n; i++) { arr[i] = nextLong(); } return arr; } private void pArray(int[] arr) { for (int i = 0; i < arr.length; i++) { System.out.print(arr[i] + " "); } System.out.println(); return; } private void pArray(long[] arr) { for (int i = 0; i < arr.length; i++) { System.out.print(arr[i] + " "); } System.out.println(); return; } private boolean isSpaceChar(int c) { if (filter != null) return filter.isSpaceChar(c); return isWhitespace(c); } private char nextChar() { int c = read(); while (isSpaceChar(c)) c = read(); char c1 = (char) c; while (!isSpaceChar(c)) c = read(); return c1; } private interface SpaceCharFilter { public boolean isSpaceChar(int ch); } }
O(nlog(n))
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Classify the following Java code's worst-case time complexity according to its relationship to the input size n. </TASK> <CODE> import java.io.*; import java.math.BigInteger; import java.util.*; public class main { private InputStream stream; private byte[] buf = new byte[1024]; private int curChar; private int numChars; private SpaceCharFilter filter; private PrintWriter pw; private long mod = 1000000000 + 7; private StringBuilder ans_sb; private ArrayList<Integer> primes; private long ans; private void soln() { int n = nextInt(); long[] arr = new long[n]; for (int i = 0; i < n; i++) arr[i] = nextLong(); Segment tree = new Segment(n, arr); long[] ans = new long[n]; BigInteger fa = BigInteger.ZERO; HashMap<Long, Integer> map = new HashMap<>(); for (int i = 0; i < n; i++) { ans[i] = ((long) i + 1) * arr[i] - tree.query(0, i); if (map.containsKey(arr[i] - 1)) { long tmp = map.get(arr[i] - 1); ans[i] -= tmp; } if (map.containsKey(arr[i] + 1)) { long tmp = map.get(arr[i] + 1); ans[i] += tmp; } if (!map.containsKey(arr[i])) map.put(arr[i], 0); map.put(arr[i], map.get(arr[i]) + 1); fa = fa.add(new BigInteger(Long.toString(ans[i]))); } // debug(ans); /* * Node[] nn = new Node[n]; for(int i=0;i<n;i++) { nn[i] = new Node(); * nn[i].node = i; nn[i].dist = arr[i]; } //debug(fa); Arrays.sort(nn); * //debug(nn); for(int i=0;i<n-1;i++) { if(nn[i].dist + 1 == nn[i+1].dist) { * System.out.println(nn[i].node +" "+nn[i+1].node); if(nn[i].node > * nn[i+1].node) { fa++; }else fa--; } } */ pw.println(fa.toString()); // int k = nextInt(); // int n = nextInt(); // String[] arr = new String[k]; // for(int i=0;i<k;i++) // arr[i] = nextLine(); // HashSet<String> set1 = new HashSet<>(); // for(int i=0;i<k;i++) // set1.add(arr[i]); // if(set1.size() == 1) { // String s = arr[0]; // pw.print(s.charAt(1)); // pw.print(s.charAt(0)); // for(int i=2;i<n;i++) // pw.print(s.charAt(i)); // }else { // String s1 = arr[0]; // set1.remove(arr[0]); // HashSet<Integer>[] aa = new HashSet[set1.size()]; // ArrayList<String> set = new ArrayList<>(); // for(String s:set1) // set.add(s); // int k1 = 0; // boolean f1 = false; // for(String s:set) { // aa[k1] = new HashSet<>(); // for(int i=0;i<n;i++) // if(s1.charAt(i) != s.charAt(i)) // aa[k1].add(i); // if(aa[k1].size() > 4) { // pw.println(-1); // f1 = true; // } // k1++; // } // //debug(set); // char[] ch = s1.toCharArray(); // // boolean[] f11 = new boolean[set.size()]; // int k2 = 0; // for(String s:set) { // int[] freq = new int[26]; // for(int i=0;i<n;i++) // freq[s.charAt(i)-'a']++; // boolean kuu = false; // for(int i=0;i<26;i++) // if(freq[i] >= 2) { // kuu = true; // break; // } // f11[k2] = true; // k2++; // } // // debug(f11); // // for(int i=0;i<n;i++) { // if(f1) // break; // for(int j=i+1;j<n;j++) { // if(f1) // break; // //System.out.println(i+" "+j); // char tmp = ch[i]; // ch[i] = ch[j]; // ch[j] = tmp; // k1 = 0; // HashSet<Integer> haha = new HashSet<>(); // boolean f = true; // for(String s:set) { // HashSet<Integer> indi = aa[k1]; // boolean h1 = false; // boolean h2 = false; // if(!indi.contains(i)) { // indi.add(i); // h1 = true; // } // if(!indi.contains(j)) { // indi.add(j); // h2 = true; // } // int cnt = 0; // for(int ii:indi) { // if(s.charAt(ii) != ch[ii]) // cnt++; // } // /*if(i==1 && j==3) { // System.out.println(cnt+" "+i+" "+j+" "+s); // debug(indi); // }*/ // if(cnt > 2 ) { // f = false; // break; // } // if(cnt ==1 && !f11[k1]) { // f = false; // break; // } // if(h1) // indi.remove(i); // if(h2) // indi.remove(j); // k1++; // // } // if(f) { // for(int i1=0;i1<n;i1++) { // pw.print(ch[i1]); // } // f1 = true; // break; // } // tmp = ch[i]; // ch[i] = ch[j]; // ch[j] = tmp; // } // } // if(!f1) // pw.println(-1); // } } public class Segment { private Node[] tree; private boolean[] lazy; private int size; private int n; private long[] base; private class Node { private int l; private int r; private long ans; private long ans2; } public Segment(int n, long[] arr) { this.base = arr; int x = (int) (Math.ceil(Math.log(n) / Math.log(2))); size = 2 * (int) Math.pow(2, x) - 1; tree = new Node[size]; lazy = new boolean[size]; this.n = n; // this.set = set1; build(0, 0, n - 1); } public void build(int id, int l, int r) { if (l == r) { tree[id] = new Node(); tree[id].l = l; tree[id].r = r; tree[id].ans = base[l]; return; } int mid = (l + r) / 2; build(2 * id + 1, l, mid); build(2 * id + 2, mid + 1, r); tree[id] = merge(tree[2 * id + 1], tree[2 * id + 2], l, r); // System.out.println(l+" "+r+" "+tree[id].l+" "+tree[id].r+" "+tree[id].ans); } public Node merge(Node n1, Node n2, int l, int r) { Node ret = new Node(); if (n1 == null && n2 == null) return null; else if (n1 == null) { ret.ans = n2.ans; } else if (n2 == null) { ret.ans = n1.ans; } else { ret.ans = n1.ans + n2.ans; } return ret; } public long query(int l, int r) { Node ret = queryUtil(l, r, 0, 0, n - 1); if (ret == null) { return 0; } else return ret.ans; } private Node queryUtil(int x, int y, int id, int l, int r) { if (l > y || x > r) return null; if (x <= l && r <= y) { return tree[id]; } int mid = l + (r - l) / 2; // shift(id); Node q1 = queryUtil(x, y, 2 * id + 1, l, mid); Node q2 = queryUtil(x, y, 2 * id + 2, mid + 1, r); return merge(q1, q2, Math.max(l, x), Math.min(r, y)); } public void update(int x, int y, int c) { update1(x, y, c, 0, 0, n - 1); } private void update1(int x, int y, int colour, int id, int l, int r) { // System.out.println(l+" "+r+" "+x); if (x > r || y < l) return; if (x <= l && r <= y) { if (colour != -1) { tree[id] = new Node(); tree[id].ans = 1; } else tree[id] = null; return; } int mid = l + (r - l) / 2; // shift(id); if (y <= mid) update1(x, y, colour, 2 * id + 1, l, mid); else if (x > mid) update1(x, y, colour, 2 * id + 2, mid + 1, r); else { update1(x, y, colour, 2 * id + 1, l, mid); update1(x, y, colour, 2 * id + 2, mid + 1, r); } tree[id] = merge(tree[2 * id + 1], tree[2 * id + 2], l, r); } public void print(int l, int r, int id) { if (l == r) { if (tree[id] != null) System.out.println(l + " " + r + " " + tree[id].l + " " + tree[id].r + " " + tree[id].ans + " " + tree[id].ans2); return; } int mid = l + (r - l) / 2; print(l, mid, 2 * id + 1); print(mid + 1, r, 2 * id + 2); if (tree[id] != null) System.out.println( l + " " + r + " " + tree[id].l + " " + tree[id].r + " " + tree[id].ans + " " + tree[id].ans2); } public void shift(int id) { } } private class Node implements Comparable<Node> { int node; long dist; @Override public int compareTo(Node arg0) { if (this.dist != arg0.dist) return (int) (this.dist - arg0.dist); return this.node - arg0.node; } public boolean equals(Object o) { if (o instanceof Node) { Node c = (Node) o; return this.node == c.node && this.dist == c.dist; } return false; } public String toString() { return this.node + ", " + this.dist; } } private void debug(Object... o) { System.out.println(Arrays.deepToString(o)); } private long pow(long a, long b, long c) { if (b == 0) return 1; long p = pow(a, b / 2, c); p = (p * p) % c; return (b % 2 == 0) ? p : (a * p) % c; } private long gcd(long n, long l) { if (l == 0) return n; return gcd(l, n % l); } public static void main(String[] args) throws Exception { new Thread(null, new Runnable() { @Override public void run() { new main().solve(); } }, "1", 1 << 26).start(); } public StringBuilder solve() { InputReader(System.in); /* * try { InputReader(new FileInputStream("C:\\Users\\hardik\\Desktop\\in.txt")); * } catch(FileNotFoundException e) {} */ pw = new PrintWriter(System.out); ans_sb = new StringBuilder(); soln(); pw.close(); // System.out.println(ans_sb); return ans_sb; } public void InputReader(InputStream stream1) { stream = stream1; } private boolean isWhitespace(int c) { return c == ' ' || c == '\n' || c == '\r' || c == '\t' || c == -1; } private boolean isEndOfLine(int c) { return c == '\n' || c == '\r' || c == -1; } private int read() { if (numChars == -1) throw new InputMismatchException(); if (curChar >= numChars) { curChar = 0; try { numChars = stream.read(buf); } catch (IOException e) { throw new InputMismatchException(); } if (numChars <= 0) return -1; } return buf[curChar++]; } private int nextInt() { int c = read(); while (isSpaceChar(c)) c = read(); int sgn = 1; if (c == '-') { sgn = -1; c = read(); } int res = 0; do { if (c < '0' || c > '9') throw new InputMismatchException(); res *= 10; res += c - '0'; c = read(); } while (!isSpaceChar(c)); return res * sgn; } private long nextLong() { int c = read(); while (isSpaceChar(c)) c = read(); int sgn = 1; if (c == '-') { sgn = -1; c = read(); } long res = 0; do { if (c < '0' || c > '9') throw new InputMismatchException(); res *= 10; res += c - '0'; c = read(); } while (!isSpaceChar(c)); return res * sgn; } private String nextToken() { int c = read(); while (isSpaceChar(c)) c = read(); StringBuilder res = new StringBuilder(); do { res.appendCodePoint(c); c = read(); } while (!isSpaceChar(c)); return res.toString(); } private String nextLine() { int c = read(); while (isSpaceChar(c)) c = read(); StringBuilder res = new StringBuilder(); do { res.appendCodePoint(c); c = read(); } while (!isEndOfLine(c)); return res.toString(); } private int[] nextIntArray(int n) { int[] arr = new int[n]; for (int i = 0; i < n; i++) { arr[i] = nextInt(); } return arr; } private long[] nextLongArray(int n) { long[] arr = new long[n]; for (int i = 0; i < n; i++) { arr[i] = nextLong(); } return arr; } private void pArray(int[] arr) { for (int i = 0; i < arr.length; i++) { System.out.print(arr[i] + " "); } System.out.println(); return; } private void pArray(long[] arr) { for (int i = 0; i < arr.length; i++) { System.out.print(arr[i] + " "); } System.out.println(); return; } private boolean isSpaceChar(int c) { if (filter != null) return filter.isSpaceChar(c); return isWhitespace(c); } private char nextChar() { int c = read(); while (isSpaceChar(c)) c = read(); char c1 = (char) c; while (!isSpaceChar(c)) c = read(); return c1; } private interface SpaceCharFilter { public boolean isSpaceChar(int ch); } } </CODE> <EVALUATION_RUBRIC> - O(nlog(n)): The running time increases with the product of n and logarithm of n. - O(log(n)): The running time increases with the logarithm of the input size n. - O(n^2): The running time increases with the square of the input size n. - O(n): The running time grows linearly with the input size n. - O(1): The running time does not change regardless of the input size n. - non-polynomial: The running time increases non-polynomially with input size n, typically exponentially. - O(n^3): The running time increases with the cube of the input size n. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Determine the worst-case time complexity category of a given Java code based on input size n. </TASK> <CODE> import java.io.*; import java.math.BigInteger; import java.util.*; public class main { private InputStream stream; private byte[] buf = new byte[1024]; private int curChar; private int numChars; private SpaceCharFilter filter; private PrintWriter pw; private long mod = 1000000000 + 7; private StringBuilder ans_sb; private ArrayList<Integer> primes; private long ans; private void soln() { int n = nextInt(); long[] arr = new long[n]; for (int i = 0; i < n; i++) arr[i] = nextLong(); Segment tree = new Segment(n, arr); long[] ans = new long[n]; BigInteger fa = BigInteger.ZERO; HashMap<Long, Integer> map = new HashMap<>(); for (int i = 0; i < n; i++) { ans[i] = ((long) i + 1) * arr[i] - tree.query(0, i); if (map.containsKey(arr[i] - 1)) { long tmp = map.get(arr[i] - 1); ans[i] -= tmp; } if (map.containsKey(arr[i] + 1)) { long tmp = map.get(arr[i] + 1); ans[i] += tmp; } if (!map.containsKey(arr[i])) map.put(arr[i], 0); map.put(arr[i], map.get(arr[i]) + 1); fa = fa.add(new BigInteger(Long.toString(ans[i]))); } // debug(ans); /* * Node[] nn = new Node[n]; for(int i=0;i<n;i++) { nn[i] = new Node(); * nn[i].node = i; nn[i].dist = arr[i]; } //debug(fa); Arrays.sort(nn); * //debug(nn); for(int i=0;i<n-1;i++) { if(nn[i].dist + 1 == nn[i+1].dist) { * System.out.println(nn[i].node +" "+nn[i+1].node); if(nn[i].node > * nn[i+1].node) { fa++; }else fa--; } } */ pw.println(fa.toString()); // int k = nextInt(); // int n = nextInt(); // String[] arr = new String[k]; // for(int i=0;i<k;i++) // arr[i] = nextLine(); // HashSet<String> set1 = new HashSet<>(); // for(int i=0;i<k;i++) // set1.add(arr[i]); // if(set1.size() == 1) { // String s = arr[0]; // pw.print(s.charAt(1)); // pw.print(s.charAt(0)); // for(int i=2;i<n;i++) // pw.print(s.charAt(i)); // }else { // String s1 = arr[0]; // set1.remove(arr[0]); // HashSet<Integer>[] aa = new HashSet[set1.size()]; // ArrayList<String> set = new ArrayList<>(); // for(String s:set1) // set.add(s); // int k1 = 0; // boolean f1 = false; // for(String s:set) { // aa[k1] = new HashSet<>(); // for(int i=0;i<n;i++) // if(s1.charAt(i) != s.charAt(i)) // aa[k1].add(i); // if(aa[k1].size() > 4) { // pw.println(-1); // f1 = true; // } // k1++; // } // //debug(set); // char[] ch = s1.toCharArray(); // // boolean[] f11 = new boolean[set.size()]; // int k2 = 0; // for(String s:set) { // int[] freq = new int[26]; // for(int i=0;i<n;i++) // freq[s.charAt(i)-'a']++; // boolean kuu = false; // for(int i=0;i<26;i++) // if(freq[i] >= 2) { // kuu = true; // break; // } // f11[k2] = true; // k2++; // } // // debug(f11); // // for(int i=0;i<n;i++) { // if(f1) // break; // for(int j=i+1;j<n;j++) { // if(f1) // break; // //System.out.println(i+" "+j); // char tmp = ch[i]; // ch[i] = ch[j]; // ch[j] = tmp; // k1 = 0; // HashSet<Integer> haha = new HashSet<>(); // boolean f = true; // for(String s:set) { // HashSet<Integer> indi = aa[k1]; // boolean h1 = false; // boolean h2 = false; // if(!indi.contains(i)) { // indi.add(i); // h1 = true; // } // if(!indi.contains(j)) { // indi.add(j); // h2 = true; // } // int cnt = 0; // for(int ii:indi) { // if(s.charAt(ii) != ch[ii]) // cnt++; // } // /*if(i==1 && j==3) { // System.out.println(cnt+" "+i+" "+j+" "+s); // debug(indi); // }*/ // if(cnt > 2 ) { // f = false; // break; // } // if(cnt ==1 && !f11[k1]) { // f = false; // break; // } // if(h1) // indi.remove(i); // if(h2) // indi.remove(j); // k1++; // // } // if(f) { // for(int i1=0;i1<n;i1++) { // pw.print(ch[i1]); // } // f1 = true; // break; // } // tmp = ch[i]; // ch[i] = ch[j]; // ch[j] = tmp; // } // } // if(!f1) // pw.println(-1); // } } public class Segment { private Node[] tree; private boolean[] lazy; private int size; private int n; private long[] base; private class Node { private int l; private int r; private long ans; private long ans2; } public Segment(int n, long[] arr) { this.base = arr; int x = (int) (Math.ceil(Math.log(n) / Math.log(2))); size = 2 * (int) Math.pow(2, x) - 1; tree = new Node[size]; lazy = new boolean[size]; this.n = n; // this.set = set1; build(0, 0, n - 1); } public void build(int id, int l, int r) { if (l == r) { tree[id] = new Node(); tree[id].l = l; tree[id].r = r; tree[id].ans = base[l]; return; } int mid = (l + r) / 2; build(2 * id + 1, l, mid); build(2 * id + 2, mid + 1, r); tree[id] = merge(tree[2 * id + 1], tree[2 * id + 2], l, r); // System.out.println(l+" "+r+" "+tree[id].l+" "+tree[id].r+" "+tree[id].ans); } public Node merge(Node n1, Node n2, int l, int r) { Node ret = new Node(); if (n1 == null && n2 == null) return null; else if (n1 == null) { ret.ans = n2.ans; } else if (n2 == null) { ret.ans = n1.ans; } else { ret.ans = n1.ans + n2.ans; } return ret; } public long query(int l, int r) { Node ret = queryUtil(l, r, 0, 0, n - 1); if (ret == null) { return 0; } else return ret.ans; } private Node queryUtil(int x, int y, int id, int l, int r) { if (l > y || x > r) return null; if (x <= l && r <= y) { return tree[id]; } int mid = l + (r - l) / 2; // shift(id); Node q1 = queryUtil(x, y, 2 * id + 1, l, mid); Node q2 = queryUtil(x, y, 2 * id + 2, mid + 1, r); return merge(q1, q2, Math.max(l, x), Math.min(r, y)); } public void update(int x, int y, int c) { update1(x, y, c, 0, 0, n - 1); } private void update1(int x, int y, int colour, int id, int l, int r) { // System.out.println(l+" "+r+" "+x); if (x > r || y < l) return; if (x <= l && r <= y) { if (colour != -1) { tree[id] = new Node(); tree[id].ans = 1; } else tree[id] = null; return; } int mid = l + (r - l) / 2; // shift(id); if (y <= mid) update1(x, y, colour, 2 * id + 1, l, mid); else if (x > mid) update1(x, y, colour, 2 * id + 2, mid + 1, r); else { update1(x, y, colour, 2 * id + 1, l, mid); update1(x, y, colour, 2 * id + 2, mid + 1, r); } tree[id] = merge(tree[2 * id + 1], tree[2 * id + 2], l, r); } public void print(int l, int r, int id) { if (l == r) { if (tree[id] != null) System.out.println(l + " " + r + " " + tree[id].l + " " + tree[id].r + " " + tree[id].ans + " " + tree[id].ans2); return; } int mid = l + (r - l) / 2; print(l, mid, 2 * id + 1); print(mid + 1, r, 2 * id + 2); if (tree[id] != null) System.out.println( l + " " + r + " " + tree[id].l + " " + tree[id].r + " " + tree[id].ans + " " + tree[id].ans2); } public void shift(int id) { } } private class Node implements Comparable<Node> { int node; long dist; @Override public int compareTo(Node arg0) { if (this.dist != arg0.dist) return (int) (this.dist - arg0.dist); return this.node - arg0.node; } public boolean equals(Object o) { if (o instanceof Node) { Node c = (Node) o; return this.node == c.node && this.dist == c.dist; } return false; } public String toString() { return this.node + ", " + this.dist; } } private void debug(Object... o) { System.out.println(Arrays.deepToString(o)); } private long pow(long a, long b, long c) { if (b == 0) return 1; long p = pow(a, b / 2, c); p = (p * p) % c; return (b % 2 == 0) ? p : (a * p) % c; } private long gcd(long n, long l) { if (l == 0) return n; return gcd(l, n % l); } public static void main(String[] args) throws Exception { new Thread(null, new Runnable() { @Override public void run() { new main().solve(); } }, "1", 1 << 26).start(); } public StringBuilder solve() { InputReader(System.in); /* * try { InputReader(new FileInputStream("C:\\Users\\hardik\\Desktop\\in.txt")); * } catch(FileNotFoundException e) {} */ pw = new PrintWriter(System.out); ans_sb = new StringBuilder(); soln(); pw.close(); // System.out.println(ans_sb); return ans_sb; } public void InputReader(InputStream stream1) { stream = stream1; } private boolean isWhitespace(int c) { return c == ' ' || c == '\n' || c == '\r' || c == '\t' || c == -1; } private boolean isEndOfLine(int c) { return c == '\n' || c == '\r' || c == -1; } private int read() { if (numChars == -1) throw new InputMismatchException(); if (curChar >= numChars) { curChar = 0; try { numChars = stream.read(buf); } catch (IOException e) { throw new InputMismatchException(); } if (numChars <= 0) return -1; } return buf[curChar++]; } private int nextInt() { int c = read(); while (isSpaceChar(c)) c = read(); int sgn = 1; if (c == '-') { sgn = -1; c = read(); } int res = 0; do { if (c < '0' || c > '9') throw new InputMismatchException(); res *= 10; res += c - '0'; c = read(); } while (!isSpaceChar(c)); return res * sgn; } private long nextLong() { int c = read(); while (isSpaceChar(c)) c = read(); int sgn = 1; if (c == '-') { sgn = -1; c = read(); } long res = 0; do { if (c < '0' || c > '9') throw new InputMismatchException(); res *= 10; res += c - '0'; c = read(); } while (!isSpaceChar(c)); return res * sgn; } private String nextToken() { int c = read(); while (isSpaceChar(c)) c = read(); StringBuilder res = new StringBuilder(); do { res.appendCodePoint(c); c = read(); } while (!isSpaceChar(c)); return res.toString(); } private String nextLine() { int c = read(); while (isSpaceChar(c)) c = read(); StringBuilder res = new StringBuilder(); do { res.appendCodePoint(c); c = read(); } while (!isEndOfLine(c)); return res.toString(); } private int[] nextIntArray(int n) { int[] arr = new int[n]; for (int i = 0; i < n; i++) { arr[i] = nextInt(); } return arr; } private long[] nextLongArray(int n) { long[] arr = new long[n]; for (int i = 0; i < n; i++) { arr[i] = nextLong(); } return arr; } private void pArray(int[] arr) { for (int i = 0; i < arr.length; i++) { System.out.print(arr[i] + " "); } System.out.println(); return; } private void pArray(long[] arr) { for (int i = 0; i < arr.length; i++) { System.out.print(arr[i] + " "); } System.out.println(); return; } private boolean isSpaceChar(int c) { if (filter != null) return filter.isSpaceChar(c); return isWhitespace(c); } private char nextChar() { int c = read(); while (isSpaceChar(c)) c = read(); char c1 = (char) c; while (!isSpaceChar(c)) c = read(); return c1; } private interface SpaceCharFilter { public boolean isSpaceChar(int ch); } } </CODE> <EVALUATION_RUBRIC> - O(n^3): The time complexity scales proportionally to the cube of the input size. - O(log(n)): The time complexity increases logarithmically in relation to the input size. - O(n^2): The time complexity grows proportionally to the square of the input size. - O(1): The time complexity is constant to the input size n. - O(nlog(n)): The time complexity combines linear and logarithmic growth factors. - non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially. - others: The time complexity does not fit any of the above categories or cannot be clearly classified. - O(n): The time complexity increases proportionally to the input size n in a linear manner. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
4,392
1,866
3,004
import java.util.*; import java.io.*; public class A { ArrayList<Integer> list = new ArrayList<Integer>(); boolean valid(int n) { Queue<Integer> q = new LinkedList<Integer>(); q.add(4); q.add(7); int crnt; while(!q.isEmpty()) { crnt = q.poll(); if(n%crnt == 0) return true; if ( crnt*10 + 4 <= 1000 ) q.add(crnt*10 + 4); if ( crnt*10 + 7 <= 1000 ) q.add(crnt*10 + 7); } return false; } void dfs(int n){ if(n>1000)return; if(n!=0)list.add(n); n = n*10; dfs(n+4); dfs(n+7); } void run() { Scanner s = new Scanner(System.in); int n = s.nextInt(); if (valid(n)) { System.out.println("YES"); } else { System.out.println("NO"); } } public static void main(String[] args) { new A().run(); } }
O(1)
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Classify the following Java code's worst-case time complexity according to its relationship to the input size n. </TASK> <CODE> import java.util.*; import java.io.*; public class A { ArrayList<Integer> list = new ArrayList<Integer>(); boolean valid(int n) { Queue<Integer> q = new LinkedList<Integer>(); q.add(4); q.add(7); int crnt; while(!q.isEmpty()) { crnt = q.poll(); if(n%crnt == 0) return true; if ( crnt*10 + 4 <= 1000 ) q.add(crnt*10 + 4); if ( crnt*10 + 7 <= 1000 ) q.add(crnt*10 + 7); } return false; } void dfs(int n){ if(n>1000)return; if(n!=0)list.add(n); n = n*10; dfs(n+4); dfs(n+7); } void run() { Scanner s = new Scanner(System.in); int n = s.nextInt(); if (valid(n)) { System.out.println("YES"); } else { System.out.println("NO"); } } public static void main(String[] args) { new A().run(); } } </CODE> <EVALUATION_RUBRIC> - O(n): The running time grows linearly with the input size n. - O(nlog(n)): The running time increases with the product of n and logarithm of n. - O(log(n)): The running time increases with the logarithm of the input size n. - O(n^3): The running time increases with the cube of the input size n. - O(n^2): The running time increases with the square of the input size n. - non-polynomial: The running time increases non-polynomially with input size n, typically exponentially. - O(1): The running time does not change regardless of the input size n. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Determine the worst-case time complexity category of a given Java code based on input size n. </TASK> <CODE> import java.util.*; import java.io.*; public class A { ArrayList<Integer> list = new ArrayList<Integer>(); boolean valid(int n) { Queue<Integer> q = new LinkedList<Integer>(); q.add(4); q.add(7); int crnt; while(!q.isEmpty()) { crnt = q.poll(); if(n%crnt == 0) return true; if ( crnt*10 + 4 <= 1000 ) q.add(crnt*10 + 4); if ( crnt*10 + 7 <= 1000 ) q.add(crnt*10 + 7); } return false; } void dfs(int n){ if(n>1000)return; if(n!=0)list.add(n); n = n*10; dfs(n+4); dfs(n+7); } void run() { Scanner s = new Scanner(System.in); int n = s.nextInt(); if (valid(n)) { System.out.println("YES"); } else { System.out.println("NO"); } } public static void main(String[] args) { new A().run(); } } </CODE> <EVALUATION_RUBRIC> - O(nlog(n)): The time complexity combines linear and logarithmic growth factors. - O(n^2): The time complexity grows proportionally to the square of the input size. - O(log(n)): The time complexity increases logarithmically in relation to the input size. - non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially. - O(n^3): The time complexity scales proportionally to the cube of the input size. - O(n): The time complexity increases proportionally to the input size n in a linear manner. - others: The time complexity does not fit any of the above categories or cannot be clearly classified. - O(1): The time complexity is constant to the input size n. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
600
2,998
1,683
import java.util.*; import java.math.*; public class Split { public static void main(String[] args) { Scanner sc = new Scanner(System.in); int n= sc.nextInt(); int k= sc.nextInt(); int a[] = new int[n]; int d[] = new int[n-1]; for(int i=0;i<n;i++) { a[i] = sc.nextInt(); if(i>0) d[i-1] = a[i-1] - a[i]; } Arrays.sort(d); int t = 0; for(int i=0;i<k-1;i++) t += d[i]; System.out.println(a[n-1]-a[0]+t); } }
O(nlog(n))
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Determine the worst-case time complexity category of a given Java code based on input size n. </TASK> <CODE> import java.util.*; import java.math.*; public class Split { public static void main(String[] args) { Scanner sc = new Scanner(System.in); int n= sc.nextInt(); int k= sc.nextInt(); int a[] = new int[n]; int d[] = new int[n-1]; for(int i=0;i<n;i++) { a[i] = sc.nextInt(); if(i>0) d[i-1] = a[i-1] - a[i]; } Arrays.sort(d); int t = 0; for(int i=0;i<k-1;i++) t += d[i]; System.out.println(a[n-1]-a[0]+t); } } </CODE> <EVALUATION_RUBRIC> - O(n): The time complexity increases proportionally to the input size n in a linear manner. - O(log(n)): The time complexity increases logarithmically in relation to the input size. - O(1): The time complexity is constant to the input size n. - O(nlog(n)): The time complexity combines linear and logarithmic growth factors. - non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially. - O(n^3): The time complexity scales proportionally to the cube of the input size. - O(n^2): The time complexity grows proportionally to the square of the input size. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Classify the following Java code's worst-case time complexity according to its relationship to the input size n. </TASK> <CODE> import java.util.*; import java.math.*; public class Split { public static void main(String[] args) { Scanner sc = new Scanner(System.in); int n= sc.nextInt(); int k= sc.nextInt(); int a[] = new int[n]; int d[] = new int[n-1]; for(int i=0;i<n;i++) { a[i] = sc.nextInt(); if(i>0) d[i-1] = a[i-1] - a[i]; } Arrays.sort(d); int t = 0; for(int i=0;i<k-1;i++) t += d[i]; System.out.println(a[n-1]-a[0]+t); } } </CODE> <EVALUATION_RUBRIC> - O(n^2): The running time increases with the square of the input size n. - O(nlog(n)): The running time increases with the product of n and logarithm of n. - non-polynomial: The running time increases non-polynomially with input size n, typically exponentially. - O(log(n)): The running time increases with the logarithm of the input size n. - O(1): The running time does not change regardless of the input size n. - O(n): The running time grows linearly with the input size n. - O(n^3): The running time increases with the cube of the input size n. - others: The code does not clearly correspond to the listed classes or has an unclassified time complexity. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
486
1,680
2,008
import java.util.*; public class A{ public static void main(String[] args){ Scanner sc = new Scanner(System.in); int n = sc.nextInt(); TreeSet<Integer> v = new TreeSet<Integer>(); for(int i=0;i<n;i++) v.add(sc.nextInt()); Iterator<Integer> it = v.iterator(); it.next(); it.remove(); System.out.println(v.isEmpty() ? "NO" : v.iterator().next()); } }
O(nlog(n))
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Classify the following Java code's worst-case time complexity according to its relationship to the input size n. </TASK> <CODE> import java.util.*; public class A{ public static void main(String[] args){ Scanner sc = new Scanner(System.in); int n = sc.nextInt(); TreeSet<Integer> v = new TreeSet<Integer>(); for(int i=0;i<n;i++) v.add(sc.nextInt()); Iterator<Integer> it = v.iterator(); it.next(); it.remove(); System.out.println(v.isEmpty() ? "NO" : v.iterator().next()); } } </CODE> <EVALUATION_RUBRIC> - O(n): The running time grows linearly with the input size n. - O(n^2): The running time increases with the square of the input size n. - non-polynomial: The running time increases non-polynomially with input size n, typically exponentially. - O(nlog(n)): The running time increases with the product of n and logarithm of n. - O(log(n)): The running time increases with the logarithm of the input size n. - O(1): The running time does not change regardless of the input size n. - O(n^3): The running time increases with the cube of the input size n. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Determine the worst-case time complexity category of a given Java code based on input size n. </TASK> <CODE> import java.util.*; public class A{ public static void main(String[] args){ Scanner sc = new Scanner(System.in); int n = sc.nextInt(); TreeSet<Integer> v = new TreeSet<Integer>(); for(int i=0;i<n;i++) v.add(sc.nextInt()); Iterator<Integer> it = v.iterator(); it.next(); it.remove(); System.out.println(v.isEmpty() ? "NO" : v.iterator().next()); } } </CODE> <EVALUATION_RUBRIC> - O(n): The time complexity increases proportionally to the input size n in a linear manner. - non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially. - O(n^2): The time complexity grows proportionally to the square of the input size. - O(nlog(n)): The time complexity combines linear and logarithmic growth factors. - O(n^3): The time complexity scales proportionally to the cube of the input size. - O(1): The time complexity is constant to the input size n. - O(log(n)): The time complexity increases logarithmically in relation to the input size. - others: The time complexity does not fit any of the above categories or cannot be clearly classified. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
427
2,004
2,168
import java.io.BufferedReader; import java.io.IOException; import java.io.InputStream; import java.io.InputStreamReader; import java.io.PrintWriter; import java.util.ArrayList; import java.util.Arrays; import java.util.HashMap; import java.util.HashSet; import java.util.StringTokenizer; public class C { public static void main(String[] args) throws IOException { FastScanner in= new FastScanner(System.in); PrintWriter out= new PrintWriter(System.out); int n= in.nextInt(); int r= in.nextInt(); int [] x= new int[n]; for (int i = 0; i < x.length; i++) { x[i]= in.nextInt(); } double [] res= new double[n]; res[0]= r; for (int i = 1; i < x.length; i++) { boolean found = false; for (int j = 0; j < i; j++) { double dis= Math.abs(x[i]-x[j]); double rr= 4.0*r*r-1.0*dis*dis; if(rr>=0) { double del= Math.sqrt(rr); res[i]= Math.max(res[i], res[j]+del); found= true; } } if(!found) { res[i]= r; } } for (int i = 0; i < res.length; i++) { out.print(res[i]+" "); } out.close(); } static class FastScanner { BufferedReader br; StringTokenizer st; public FastScanner(InputStream in) { br = new BufferedReader(new InputStreamReader(in)); st = new StringTokenizer(""); } public String next() throws IOException { if (!st.hasMoreTokens()) { st = new StringTokenizer(br.readLine()); return next(); } return st.nextToken(); } public int nextInt() throws IOException { return Integer.parseInt(next()); } public double nextDouble() throws NumberFormatException, IOException { return Double.parseDouble(next()); } public long nextLong() throws IOException { return Long.parseLong(next()); } } }
O(n^2)
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n. </TASK> <CODE> import java.io.BufferedReader; import java.io.IOException; import java.io.InputStream; import java.io.InputStreamReader; import java.io.PrintWriter; import java.util.ArrayList; import java.util.Arrays; import java.util.HashMap; import java.util.HashSet; import java.util.StringTokenizer; public class C { public static void main(String[] args) throws IOException { FastScanner in= new FastScanner(System.in); PrintWriter out= new PrintWriter(System.out); int n= in.nextInt(); int r= in.nextInt(); int [] x= new int[n]; for (int i = 0; i < x.length; i++) { x[i]= in.nextInt(); } double [] res= new double[n]; res[0]= r; for (int i = 1; i < x.length; i++) { boolean found = false; for (int j = 0; j < i; j++) { double dis= Math.abs(x[i]-x[j]); double rr= 4.0*r*r-1.0*dis*dis; if(rr>=0) { double del= Math.sqrt(rr); res[i]= Math.max(res[i], res[j]+del); found= true; } } if(!found) { res[i]= r; } } for (int i = 0; i < res.length; i++) { out.print(res[i]+" "); } out.close(); } static class FastScanner { BufferedReader br; StringTokenizer st; public FastScanner(InputStream in) { br = new BufferedReader(new InputStreamReader(in)); st = new StringTokenizer(""); } public String next() throws IOException { if (!st.hasMoreTokens()) { st = new StringTokenizer(br.readLine()); return next(); } return st.nextToken(); } public int nextInt() throws IOException { return Integer.parseInt(next()); } public double nextDouble() throws NumberFormatException, IOException { return Double.parseDouble(next()); } public long nextLong() throws IOException { return Long.parseLong(next()); } } } </CODE> <EVALUATION_RUBRIC> - O(n): The execution time ascends in a one-to-one ratio with the input size n. - O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially. - O(n^3): The execution time ascends in proportion to the cube of the input size n. - O(log(n)): The execution time ascends in proportion to the logarithm of the input size n. - O(1): The execution time is unaffected by the size of the input n. - O(n^2): The execution time ascends in proportion to the square of the input size n. - non-polynomial: The running time increases non-polynomially with input size n, typically exponentially. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Determine the worst-case time complexity category of a given Java code based on input size n. </TASK> <CODE> import java.io.BufferedReader; import java.io.IOException; import java.io.InputStream; import java.io.InputStreamReader; import java.io.PrintWriter; import java.util.ArrayList; import java.util.Arrays; import java.util.HashMap; import java.util.HashSet; import java.util.StringTokenizer; public class C { public static void main(String[] args) throws IOException { FastScanner in= new FastScanner(System.in); PrintWriter out= new PrintWriter(System.out); int n= in.nextInt(); int r= in.nextInt(); int [] x= new int[n]; for (int i = 0; i < x.length; i++) { x[i]= in.nextInt(); } double [] res= new double[n]; res[0]= r; for (int i = 1; i < x.length; i++) { boolean found = false; for (int j = 0; j < i; j++) { double dis= Math.abs(x[i]-x[j]); double rr= 4.0*r*r-1.0*dis*dis; if(rr>=0) { double del= Math.sqrt(rr); res[i]= Math.max(res[i], res[j]+del); found= true; } } if(!found) { res[i]= r; } } for (int i = 0; i < res.length; i++) { out.print(res[i]+" "); } out.close(); } static class FastScanner { BufferedReader br; StringTokenizer st; public FastScanner(InputStream in) { br = new BufferedReader(new InputStreamReader(in)); st = new StringTokenizer(""); } public String next() throws IOException { if (!st.hasMoreTokens()) { st = new StringTokenizer(br.readLine()); return next(); } return st.nextToken(); } public int nextInt() throws IOException { return Integer.parseInt(next()); } public double nextDouble() throws NumberFormatException, IOException { return Double.parseDouble(next()); } public long nextLong() throws IOException { return Long.parseLong(next()); } } } </CODE> <EVALUATION_RUBRIC> - O(nlog(n)): The time complexity combines linear and logarithmic growth factors. - O(n^2): The time complexity grows proportionally to the square of the input size. - O(n): The time complexity increases proportionally to the input size n in a linear manner. - non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially. - O(log(n)): The time complexity increases logarithmically in relation to the input size. - O(n^3): The time complexity scales proportionally to the cube of the input size. - O(1): The time complexity is constant to the input size n. - others: The time complexity does not fit any of the above categories or cannot be clearly classified. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
807
2,164
4,268
import java.io.*; import java.util.*; public class B { int n, k; double A; int[] b, l; double ans; double curAns; void check(boolean[] used) { int cnt = 0; for (boolean t : used) if (t) cnt++; double prob = 1; for (int i = 0; i < n; i++) { if (used[i]) prob *= ((double) l[i]) / ((double) 100); else prob *= 1 - ((double) l[i]) / ((double) 100); } if (2 * cnt > n) { curAns += prob; } else { int level = 0; for (int i = 0; i < n; i++) if (!used[i]) level += b[i]; curAns += prob * ( A / ((double) A + level)); } } void go(int i, boolean[] used) { if (n == i) { check(used); return; } used[i] = true; go(i + 1, used); used[i] = false; go(i + 1, used); } void candies(int k, int i) { if (i == n) { curAns = 0; go(0, new boolean[n]); if (curAns > ans) ans = curAns; return; } candies(k, i + 1); for (int j = 1; j <= k && l[i] + 10 * j <= 100; j++) { l[i] += 10 * j; candies(k - j, i + 1); l[i] -= 10 * j; } } void solve() throws Exception { n = nextInt(); k = nextInt(); A = nextInt(); b = new int[n]; l = new int[n]; for (int i = 0; i < n; i++) { b[i] = nextInt(); l[i] = nextInt(); } ans = 0; candies(k, 0); out.printf("%.12f", ans); } void run() { try { in = new BufferedReader(new InputStreamReader(System.in)); out = new PrintWriter(System.out); // in = new BufferedReader(new FileReader(filename + ".in")); // out = new PrintWriter(filename + ".out"); Locale.setDefault(Locale.US); solve(); out.close(); } catch (Exception e) { e.printStackTrace(); System.exit(1); } } BufferedReader in; StringTokenizer st; PrintWriter out; final String filename = new String("B").toLowerCase(); String nextToken() throws Exception { while (st == null || !st.hasMoreTokens()) st = new StringTokenizer(in.readLine()); return st.nextToken(); } int nextInt() throws Exception { return Integer.parseInt(nextToken()); } long nextLong() throws Exception { return Long.parseLong(nextToken()); } double nextDouble() throws Exception { return Double.parseDouble(nextToken()); } public static void main(String[] args) { new B().run(); } }
non-polynomial
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n. </TASK> <CODE> import java.io.*; import java.util.*; public class B { int n, k; double A; int[] b, l; double ans; double curAns; void check(boolean[] used) { int cnt = 0; for (boolean t : used) if (t) cnt++; double prob = 1; for (int i = 0; i < n; i++) { if (used[i]) prob *= ((double) l[i]) / ((double) 100); else prob *= 1 - ((double) l[i]) / ((double) 100); } if (2 * cnt > n) { curAns += prob; } else { int level = 0; for (int i = 0; i < n; i++) if (!used[i]) level += b[i]; curAns += prob * ( A / ((double) A + level)); } } void go(int i, boolean[] used) { if (n == i) { check(used); return; } used[i] = true; go(i + 1, used); used[i] = false; go(i + 1, used); } void candies(int k, int i) { if (i == n) { curAns = 0; go(0, new boolean[n]); if (curAns > ans) ans = curAns; return; } candies(k, i + 1); for (int j = 1; j <= k && l[i] + 10 * j <= 100; j++) { l[i] += 10 * j; candies(k - j, i + 1); l[i] -= 10 * j; } } void solve() throws Exception { n = nextInt(); k = nextInt(); A = nextInt(); b = new int[n]; l = new int[n]; for (int i = 0; i < n; i++) { b[i] = nextInt(); l[i] = nextInt(); } ans = 0; candies(k, 0); out.printf("%.12f", ans); } void run() { try { in = new BufferedReader(new InputStreamReader(System.in)); out = new PrintWriter(System.out); // in = new BufferedReader(new FileReader(filename + ".in")); // out = new PrintWriter(filename + ".out"); Locale.setDefault(Locale.US); solve(); out.close(); } catch (Exception e) { e.printStackTrace(); System.exit(1); } } BufferedReader in; StringTokenizer st; PrintWriter out; final String filename = new String("B").toLowerCase(); String nextToken() throws Exception { while (st == null || !st.hasMoreTokens()) st = new StringTokenizer(in.readLine()); return st.nextToken(); } int nextInt() throws Exception { return Integer.parseInt(nextToken()); } long nextLong() throws Exception { return Long.parseLong(nextToken()); } double nextDouble() throws Exception { return Double.parseDouble(nextToken()); } public static void main(String[] args) { new B().run(); } } </CODE> <EVALUATION_RUBRIC> - O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially. - O(n): The execution time ascends in a one-to-one ratio with the input size n. - O(n^3): The execution time ascends in proportion to the cube of the input size n. - O(log(n)): The execution time ascends in proportion to the logarithm of the input size n. - O(1): The execution time is unaffected by the size of the input n. - non-polynomial: The running time increases non-polynomially with input size n, typically exponentially. - O(n^2): The execution time ascends in proportion to the square of the input size n. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Classify the following Java code's worst-case time complexity according to its relationship to the input size n. </TASK> <CODE> import java.io.*; import java.util.*; public class B { int n, k; double A; int[] b, l; double ans; double curAns; void check(boolean[] used) { int cnt = 0; for (boolean t : used) if (t) cnt++; double prob = 1; for (int i = 0; i < n; i++) { if (used[i]) prob *= ((double) l[i]) / ((double) 100); else prob *= 1 - ((double) l[i]) / ((double) 100); } if (2 * cnt > n) { curAns += prob; } else { int level = 0; for (int i = 0; i < n; i++) if (!used[i]) level += b[i]; curAns += prob * ( A / ((double) A + level)); } } void go(int i, boolean[] used) { if (n == i) { check(used); return; } used[i] = true; go(i + 1, used); used[i] = false; go(i + 1, used); } void candies(int k, int i) { if (i == n) { curAns = 0; go(0, new boolean[n]); if (curAns > ans) ans = curAns; return; } candies(k, i + 1); for (int j = 1; j <= k && l[i] + 10 * j <= 100; j++) { l[i] += 10 * j; candies(k - j, i + 1); l[i] -= 10 * j; } } void solve() throws Exception { n = nextInt(); k = nextInt(); A = nextInt(); b = new int[n]; l = new int[n]; for (int i = 0; i < n; i++) { b[i] = nextInt(); l[i] = nextInt(); } ans = 0; candies(k, 0); out.printf("%.12f", ans); } void run() { try { in = new BufferedReader(new InputStreamReader(System.in)); out = new PrintWriter(System.out); // in = new BufferedReader(new FileReader(filename + ".in")); // out = new PrintWriter(filename + ".out"); Locale.setDefault(Locale.US); solve(); out.close(); } catch (Exception e) { e.printStackTrace(); System.exit(1); } } BufferedReader in; StringTokenizer st; PrintWriter out; final String filename = new String("B").toLowerCase(); String nextToken() throws Exception { while (st == null || !st.hasMoreTokens()) st = new StringTokenizer(in.readLine()); return st.nextToken(); } int nextInt() throws Exception { return Integer.parseInt(nextToken()); } long nextLong() throws Exception { return Long.parseLong(nextToken()); } double nextDouble() throws Exception { return Double.parseDouble(nextToken()); } public static void main(String[] args) { new B().run(); } } </CODE> <EVALUATION_RUBRIC> - O(log(n)): The running time increases with the logarithm of the input size n. - O(n^3): The running time increases with the cube of the input size n. - O(nlog(n)): The running time increases with the product of n and logarithm of n. - others: The code does not clearly correspond to the listed classes or has an unclassified time complexity. - O(n): The running time grows linearly with the input size n. - O(1): The running time does not change regardless of the input size n. - O(n^2): The running time increases with the square of the input size n. - non-polynomial: The running time increases non-polynomially with input size n, typically exponentially. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
1,085
4,257
3,636
/** * Created by IntelliJ IDEA. * User: Taras_Brzezinsky * Date: 9/16/11 * Time: 1:27 PM * To change this template use File | Settings | File Templates. */ import java.io.*; import java.lang.reflect.Array; import java.util.ArrayDeque; import java.util.HashSet; import java.util.Queue; import java.util.StringTokenizer; public class TaskC extends Thread { public TaskC() { try { this.input = new BufferedReader(new FileReader("input.txt")); this.output = new PrintWriter("output.txt"); this.setPriority(Thread.MAX_PRIORITY); } catch (Throwable e) { System.exit(666); } } private void solve() throws Throwable { int n = nextInt(); int m = nextInt(); int k = nextInt(); Queue<Integer> qX = new ArrayDeque<Integer>(); Queue<Integer> qY = new ArrayDeque<Integer>(); boolean [][]was = new boolean[n][m]; for (int i = 0; i < k; ++i) { int x = nextInt() - 1, y = nextInt() - 1; qX.add(x); qY.add(y); was[x][y] = true; } int lastX = -1, lastY = -1; while (!qX.isEmpty()) { lastX = qX.poll(); lastY = qY.poll(); for (int i = 0; i < dx.length; ++i) { int nextX = lastX + dx[i], nextY = lastY + dy[i]; if (nextX < n && nextY < m && nextX >= 0 && nextY >= 0 && !was[nextX][nextY]) { qX.add(nextX); qY.add(nextY); was[nextX][nextY] = true; } } } ++lastX; ++lastY; output.println(lastX + " " + lastY); } public void run() { try { solve(); } catch (Throwable e) { System.err.println(e.getMessage()); e.printStackTrace(); System.exit(666); } finally { output.flush(); output.close(); } } public static void main(String[] args) { new TaskC().start(); } private int nextInt() throws IOException { return Integer.parseInt(nextToken()); } private long nextLong() throws IOException { return Long.parseLong(nextToken()); } private double nextDouble() throws IOException { return Double.parseDouble(nextToken()); } private String nextToken() throws IOException { while (tokens == null || !tokens.hasMoreTokens()) { tokens = new StringTokenizer(input.readLine()); } return tokens.nextToken(); } static final int PRIME = 3119; static final int[]dx = {1, -1, 0, 0}, dy = {0, 0, -1, 1}; private BufferedReader input; private PrintWriter output; private StringTokenizer tokens = null; }
O(n^3)
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Classify the following Java code's worst-case time complexity according to its relationship to the input size n. </TASK> <CODE> /** * Created by IntelliJ IDEA. * User: Taras_Brzezinsky * Date: 9/16/11 * Time: 1:27 PM * To change this template use File | Settings | File Templates. */ import java.io.*; import java.lang.reflect.Array; import java.util.ArrayDeque; import java.util.HashSet; import java.util.Queue; import java.util.StringTokenizer; public class TaskC extends Thread { public TaskC() { try { this.input = new BufferedReader(new FileReader("input.txt")); this.output = new PrintWriter("output.txt"); this.setPriority(Thread.MAX_PRIORITY); } catch (Throwable e) { System.exit(666); } } private void solve() throws Throwable { int n = nextInt(); int m = nextInt(); int k = nextInt(); Queue<Integer> qX = new ArrayDeque<Integer>(); Queue<Integer> qY = new ArrayDeque<Integer>(); boolean [][]was = new boolean[n][m]; for (int i = 0; i < k; ++i) { int x = nextInt() - 1, y = nextInt() - 1; qX.add(x); qY.add(y); was[x][y] = true; } int lastX = -1, lastY = -1; while (!qX.isEmpty()) { lastX = qX.poll(); lastY = qY.poll(); for (int i = 0; i < dx.length; ++i) { int nextX = lastX + dx[i], nextY = lastY + dy[i]; if (nextX < n && nextY < m && nextX >= 0 && nextY >= 0 && !was[nextX][nextY]) { qX.add(nextX); qY.add(nextY); was[nextX][nextY] = true; } } } ++lastX; ++lastY; output.println(lastX + " " + lastY); } public void run() { try { solve(); } catch (Throwable e) { System.err.println(e.getMessage()); e.printStackTrace(); System.exit(666); } finally { output.flush(); output.close(); } } public static void main(String[] args) { new TaskC().start(); } private int nextInt() throws IOException { return Integer.parseInt(nextToken()); } private long nextLong() throws IOException { return Long.parseLong(nextToken()); } private double nextDouble() throws IOException { return Double.parseDouble(nextToken()); } private String nextToken() throws IOException { while (tokens == null || !tokens.hasMoreTokens()) { tokens = new StringTokenizer(input.readLine()); } return tokens.nextToken(); } static final int PRIME = 3119; static final int[]dx = {1, -1, 0, 0}, dy = {0, 0, -1, 1}; private BufferedReader input; private PrintWriter output; private StringTokenizer tokens = null; } </CODE> <EVALUATION_RUBRIC> - O(log(n)): The running time increases with the logarithm of the input size n. - O(n^2): The running time increases with the square of the input size n. - non-polynomial: The running time increases non-polynomially with input size n, typically exponentially. - O(1): The running time does not change regardless of the input size n. - O(n): The running time grows linearly with the input size n. - O(nlog(n)): The running time increases with the product of n and logarithm of n. - O(n^3): The running time increases with the cube of the input size n. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Determine the worst-case time complexity category of a given Java code based on input size n. </TASK> <CODE> /** * Created by IntelliJ IDEA. * User: Taras_Brzezinsky * Date: 9/16/11 * Time: 1:27 PM * To change this template use File | Settings | File Templates. */ import java.io.*; import java.lang.reflect.Array; import java.util.ArrayDeque; import java.util.HashSet; import java.util.Queue; import java.util.StringTokenizer; public class TaskC extends Thread { public TaskC() { try { this.input = new BufferedReader(new FileReader("input.txt")); this.output = new PrintWriter("output.txt"); this.setPriority(Thread.MAX_PRIORITY); } catch (Throwable e) { System.exit(666); } } private void solve() throws Throwable { int n = nextInt(); int m = nextInt(); int k = nextInt(); Queue<Integer> qX = new ArrayDeque<Integer>(); Queue<Integer> qY = new ArrayDeque<Integer>(); boolean [][]was = new boolean[n][m]; for (int i = 0; i < k; ++i) { int x = nextInt() - 1, y = nextInt() - 1; qX.add(x); qY.add(y); was[x][y] = true; } int lastX = -1, lastY = -1; while (!qX.isEmpty()) { lastX = qX.poll(); lastY = qY.poll(); for (int i = 0; i < dx.length; ++i) { int nextX = lastX + dx[i], nextY = lastY + dy[i]; if (nextX < n && nextY < m && nextX >= 0 && nextY >= 0 && !was[nextX][nextY]) { qX.add(nextX); qY.add(nextY); was[nextX][nextY] = true; } } } ++lastX; ++lastY; output.println(lastX + " " + lastY); } public void run() { try { solve(); } catch (Throwable e) { System.err.println(e.getMessage()); e.printStackTrace(); System.exit(666); } finally { output.flush(); output.close(); } } public static void main(String[] args) { new TaskC().start(); } private int nextInt() throws IOException { return Integer.parseInt(nextToken()); } private long nextLong() throws IOException { return Long.parseLong(nextToken()); } private double nextDouble() throws IOException { return Double.parseDouble(nextToken()); } private String nextToken() throws IOException { while (tokens == null || !tokens.hasMoreTokens()) { tokens = new StringTokenizer(input.readLine()); } return tokens.nextToken(); } static final int PRIME = 3119; static final int[]dx = {1, -1, 0, 0}, dy = {0, 0, -1, 1}; private BufferedReader input; private PrintWriter output; private StringTokenizer tokens = null; } </CODE> <EVALUATION_RUBRIC> - others: The time complexity does not fit any of the above categories or cannot be clearly classified. - O(1): The time complexity is constant to the input size n. - O(n^3): The time complexity scales proportionally to the cube of the input size. - O(nlog(n)): The time complexity combines linear and logarithmic growth factors. - non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially. - O(n^2): The time complexity grows proportionally to the square of the input size. - O(n): The time complexity increases proportionally to the input size n in a linear manner. - O(log(n)): The time complexity increases logarithmically in relation to the input size. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
1,003
3,628
4,106
import java.util.*; public class c8 { static int n; static int[] ds; static int[][] g; public static void main(String[] args) { Scanner input = new Scanner(System.in); int x = input.nextInt(), y = input.nextInt(); int n = input.nextInt(); int[] xs = new int[n], ys = new int[n]; for(int i = 0; i<n; i++) { xs[i] = input.nextInt(); ys[i] = input.nextInt(); } ds = new int[n]; g = new int[n][n]; for(int i = 0; i<n; i++) { ds[i] = (x - xs[i]) * (x - xs[i]) + (y - ys[i]) * (y - ys[i]); for(int j = 0; j<n; j++) { g[i][j] = (xs[i] - xs[j]) * (xs[i] - xs[j]) + (ys[i] - ys[j]) * (ys[i] - ys[j]); } } int[] dp = new int[1<<n]; Arrays.fill(dp, 987654321); dp[0] = 0; for(int i = 0; i<(1<<n); i++) { if(dp[i] == 987654321) continue; for(int a = 0; a<n; a++) { if((i & (1<<a)) > 0) continue; dp[i | (1<<a)] = Math.min(dp[i | (1<<a)], dp[i] + 2*ds[a]); for(int b = a+1; b<n; b++) { if((i & (1<<b)) > 0) continue; dp[i | (1<<a) | (1<<b)] = Math.min(dp[i | (1<<a) | (1<<b)], dp[i] + ds[a] + ds[b] + g[a][b]); } break; } } Stack<Integer> stk = new Stack<Integer>(); stk.add(0); int i = (1<<n) - 1; //System.out.println(Arrays.toString(dp)); trace: while(i > 0) { //System.out.println(i); for(int a = 0; a<n; a++) { if((i & (1<<a)) == 0) continue; if( dp[i] == dp[i - (1<<a)] + 2*ds[a]) { stk.add(a+1); stk.add(0); i -= (1<<a); continue trace; } for(int b = a+1; b<n; b++) { if((i & (1<<b)) == 0) continue; if(dp[i] == dp[i - (1<<a) - (1<<b)] + ds[a] + ds[b] + g[a][b]) { stk.add(a+1); stk.add(b+1); stk.add(0); i -= (1<<a) + (1<<b); continue trace; } } //break; } } System.out.println(dp[(1<<n) - 1]); while(!stk.isEmpty()) System.out.print(stk.pop()+" "); } }
non-polynomial
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n. </TASK> <CODE> import java.util.*; public class c8 { static int n; static int[] ds; static int[][] g; public static void main(String[] args) { Scanner input = new Scanner(System.in); int x = input.nextInt(), y = input.nextInt(); int n = input.nextInt(); int[] xs = new int[n], ys = new int[n]; for(int i = 0; i<n; i++) { xs[i] = input.nextInt(); ys[i] = input.nextInt(); } ds = new int[n]; g = new int[n][n]; for(int i = 0; i<n; i++) { ds[i] = (x - xs[i]) * (x - xs[i]) + (y - ys[i]) * (y - ys[i]); for(int j = 0; j<n; j++) { g[i][j] = (xs[i] - xs[j]) * (xs[i] - xs[j]) + (ys[i] - ys[j]) * (ys[i] - ys[j]); } } int[] dp = new int[1<<n]; Arrays.fill(dp, 987654321); dp[0] = 0; for(int i = 0; i<(1<<n); i++) { if(dp[i] == 987654321) continue; for(int a = 0; a<n; a++) { if((i & (1<<a)) > 0) continue; dp[i | (1<<a)] = Math.min(dp[i | (1<<a)], dp[i] + 2*ds[a]); for(int b = a+1; b<n; b++) { if((i & (1<<b)) > 0) continue; dp[i | (1<<a) | (1<<b)] = Math.min(dp[i | (1<<a) | (1<<b)], dp[i] + ds[a] + ds[b] + g[a][b]); } break; } } Stack<Integer> stk = new Stack<Integer>(); stk.add(0); int i = (1<<n) - 1; //System.out.println(Arrays.toString(dp)); trace: while(i > 0) { //System.out.println(i); for(int a = 0; a<n; a++) { if((i & (1<<a)) == 0) continue; if( dp[i] == dp[i - (1<<a)] + 2*ds[a]) { stk.add(a+1); stk.add(0); i -= (1<<a); continue trace; } for(int b = a+1; b<n; b++) { if((i & (1<<b)) == 0) continue; if(dp[i] == dp[i - (1<<a) - (1<<b)] + ds[a] + ds[b] + g[a][b]) { stk.add(a+1); stk.add(b+1); stk.add(0); i -= (1<<a) + (1<<b); continue trace; } } //break; } } System.out.println(dp[(1<<n) - 1]); while(!stk.isEmpty()) System.out.print(stk.pop()+" "); } } </CODE> <EVALUATION_RUBRIC> - non-polynomial: The running time increases non-polynomially with input size n, typically exponentially. - O(1): The execution time is unaffected by the size of the input n. - O(n^3): The execution time ascends in proportion to the cube of the input size n. - O(n): The execution time ascends in a one-to-one ratio with the input size n. - O(log(n)): The execution time ascends in proportion to the logarithm of the input size n. - O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially. - O(n^2): The execution time ascends in proportion to the square of the input size n. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Determine the worst-case time complexity category of a given Java code based on input size n. </TASK> <CODE> import java.util.*; public class c8 { static int n; static int[] ds; static int[][] g; public static void main(String[] args) { Scanner input = new Scanner(System.in); int x = input.nextInt(), y = input.nextInt(); int n = input.nextInt(); int[] xs = new int[n], ys = new int[n]; for(int i = 0; i<n; i++) { xs[i] = input.nextInt(); ys[i] = input.nextInt(); } ds = new int[n]; g = new int[n][n]; for(int i = 0; i<n; i++) { ds[i] = (x - xs[i]) * (x - xs[i]) + (y - ys[i]) * (y - ys[i]); for(int j = 0; j<n; j++) { g[i][j] = (xs[i] - xs[j]) * (xs[i] - xs[j]) + (ys[i] - ys[j]) * (ys[i] - ys[j]); } } int[] dp = new int[1<<n]; Arrays.fill(dp, 987654321); dp[0] = 0; for(int i = 0; i<(1<<n); i++) { if(dp[i] == 987654321) continue; for(int a = 0; a<n; a++) { if((i & (1<<a)) > 0) continue; dp[i | (1<<a)] = Math.min(dp[i | (1<<a)], dp[i] + 2*ds[a]); for(int b = a+1; b<n; b++) { if((i & (1<<b)) > 0) continue; dp[i | (1<<a) | (1<<b)] = Math.min(dp[i | (1<<a) | (1<<b)], dp[i] + ds[a] + ds[b] + g[a][b]); } break; } } Stack<Integer> stk = new Stack<Integer>(); stk.add(0); int i = (1<<n) - 1; //System.out.println(Arrays.toString(dp)); trace: while(i > 0) { //System.out.println(i); for(int a = 0; a<n; a++) { if((i & (1<<a)) == 0) continue; if( dp[i] == dp[i - (1<<a)] + 2*ds[a]) { stk.add(a+1); stk.add(0); i -= (1<<a); continue trace; } for(int b = a+1; b<n; b++) { if((i & (1<<b)) == 0) continue; if(dp[i] == dp[i - (1<<a) - (1<<b)] + ds[a] + ds[b] + g[a][b]) { stk.add(a+1); stk.add(b+1); stk.add(0); i -= (1<<a) + (1<<b); continue trace; } } //break; } } System.out.println(dp[(1<<n) - 1]); while(!stk.isEmpty()) System.out.print(stk.pop()+" "); } } </CODE> <EVALUATION_RUBRIC> - O(1): The time complexity is constant to the input size n. - O(n): The time complexity increases proportionally to the input size n in a linear manner. - O(log(n)): The time complexity increases logarithmically in relation to the input size. - O(n^2): The time complexity grows proportionally to the square of the input size. - others: The time complexity does not fit any of the above categories or cannot be clearly classified. - O(nlog(n)): The time complexity combines linear and logarithmic growth factors. - O(n^3): The time complexity scales proportionally to the cube of the input size. - non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
1,100
4,095