id
int64 0
4.52k
| code
stringlengths 142
31.2k
| answer
stringclasses 7
values | prompt
stringlengths 1.64k
32.6k
| test_prompt
stringlengths 1.7k
32.7k
| token_length
int64 373
7.8k
| __index_level_0__
int64 0
4.5k
|
|---|---|---|---|---|---|---|
432
|
import java.util.*;
import java.io.*;
public class Solution{
public static long page(long p,long k){
return (p-1)/k;
}
public static void main(String[] args) throws Exception {
Scanner sc = new Scanner(System.in);
long n = sc.nextLong();
int m = sc.nextInt();
long k = sc.nextLong();
long[] p = new long[m];
long del = 0;
long nb = 1;
int op = 0;
for(int i=0;i<m;i++) p[i] = sc.nextLong();
for(int i=1;i<m;i++){
if(page(p[i]-del,k)!=page(p[i-1]-del,k)){
del += nb;
nb = 1;
op++;
}else{
nb++;
}
}
if(nb!=0) op++;
System.out.println(op);
}
}
|
O(n)
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n.
</TASK>
<CODE>
import java.util.*;
import java.io.*;
public class Solution{
public static long page(long p,long k){
return (p-1)/k;
}
public static void main(String[] args) throws Exception {
Scanner sc = new Scanner(System.in);
long n = sc.nextLong();
int m = sc.nextInt();
long k = sc.nextLong();
long[] p = new long[m];
long del = 0;
long nb = 1;
int op = 0;
for(int i=0;i<m;i++) p[i] = sc.nextLong();
for(int i=1;i<m;i++){
if(page(p[i]-del,k)!=page(p[i-1]-del,k)){
del += nb;
nb = 1;
op++;
}else{
nb++;
}
}
if(nb!=0) op++;
System.out.println(op);
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(log(n)): The execution time ascends in proportion to the logarithm of the input size n.
- O(n): The execution time ascends in a one-to-one ratio with the input size n.
- O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- O(n^3): The execution time ascends in proportion to the cube of the input size n.
- O(1): The execution time is unaffected by the size of the input n.
- O(n^2): The execution time ascends in proportion to the square of the input size n.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Classify the following Java code's worst-case time complexity according to its relationship to the input size n.
</TASK>
<CODE>
import java.util.*;
import java.io.*;
public class Solution{
public static long page(long p,long k){
return (p-1)/k;
}
public static void main(String[] args) throws Exception {
Scanner sc = new Scanner(System.in);
long n = sc.nextLong();
int m = sc.nextInt();
long k = sc.nextLong();
long[] p = new long[m];
long del = 0;
long nb = 1;
int op = 0;
for(int i=0;i<m;i++) p[i] = sc.nextLong();
for(int i=1;i<m;i++){
if(page(p[i]-del,k)!=page(p[i-1]-del,k)){
del += nb;
nb = 1;
op++;
}else{
nb++;
}
}
if(nb!=0) op++;
System.out.println(op);
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(log(n)): The running time increases with the logarithm of the input size n.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- O(n^2): The running time increases with the square of the input size n.
- O(1): The running time does not change regardless of the input size n.
- O(n): The running time grows linearly with the input size n.
- others: The code does not clearly correspond to the listed classes or has an unclassified time complexity.
- O(nlog(n)): The running time increases with the product of n and logarithm of n.
- O(n^3): The running time increases with the cube of the input size n.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
| 557
| 431
|
4,393
|
import java.util.*;
public class Main {
public static void main(String[] args) {
Scanner sc = new Scanner(System.in);
while ( sc.hasNextInt() ) {
int n = sc.nextInt();
long m = sc.nextInt();
boolean edge[][] = new boolean[n][n];
long dp[][] = new long[1<<n][n];
for ( long i = 1 ; i<=m ; ++i ) {
int u = sc.nextInt();
int v = sc.nextInt();
-- u;
-- v;
edge[u][v] = edge[v][u] = true;
}
for ( int i = 0 ; i<n ; ++i ) {
dp[1<<i][i] = 1;
}
long res = 0;
for ( int i = 1 ; i<(1<<n) ; ++i ) {
int first = cal(i);
for ( int j = 0 ; j<n ; ++j ) {
if ( dp[i][j]==0 ) {
continue;
}
for ( int k = first ; k<n ; ++k ) {
if ( j==k || !edge[j][k] ) {
continue;
}
if ( k==first && (i&(1<<k))!=0 ) {
res += dp[i][j];
}
if ( (i&(1<<k))==0 ) {
dp[i|(1<<k)][k] += dp[i][j];
}
}
}
}
res -= m;
System.out.println(res/2);
}
}
public static int cal( int x ) {
int ord = 0;
while ( true ) {
if ( (x&(1<<ord))!=0 ) {
break;
}
++ ord;
}
return ord;
}
public static boolean judge( int x ) {
int cnt = 0;
while ( x>=1 ) {
if ( (x&1)==1 ) {
++ cnt;
}
x >>= 1;
}
return cnt >= 3;
}
}
|
non-polynomial
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n.
</TASK>
<CODE>
import java.util.*;
public class Main {
public static void main(String[] args) {
Scanner sc = new Scanner(System.in);
while ( sc.hasNextInt() ) {
int n = sc.nextInt();
long m = sc.nextInt();
boolean edge[][] = new boolean[n][n];
long dp[][] = new long[1<<n][n];
for ( long i = 1 ; i<=m ; ++i ) {
int u = sc.nextInt();
int v = sc.nextInt();
-- u;
-- v;
edge[u][v] = edge[v][u] = true;
}
for ( int i = 0 ; i<n ; ++i ) {
dp[1<<i][i] = 1;
}
long res = 0;
for ( int i = 1 ; i<(1<<n) ; ++i ) {
int first = cal(i);
for ( int j = 0 ; j<n ; ++j ) {
if ( dp[i][j]==0 ) {
continue;
}
for ( int k = first ; k<n ; ++k ) {
if ( j==k || !edge[j][k] ) {
continue;
}
if ( k==first && (i&(1<<k))!=0 ) {
res += dp[i][j];
}
if ( (i&(1<<k))==0 ) {
dp[i|(1<<k)][k] += dp[i][j];
}
}
}
}
res -= m;
System.out.println(res/2);
}
}
public static int cal( int x ) {
int ord = 0;
while ( true ) {
if ( (x&(1<<ord))!=0 ) {
break;
}
++ ord;
}
return ord;
}
public static boolean judge( int x ) {
int cnt = 0;
while ( x>=1 ) {
if ( (x&1)==1 ) {
++ cnt;
}
x >>= 1;
}
return cnt >= 3;
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(n): The execution time ascends in a one-to-one ratio with the input size n.
- O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- O(log(n)): The execution time ascends in proportion to the logarithm of the input size n.
- O(1): The execution time is unaffected by the size of the input n.
- O(n^2): The execution time ascends in proportion to the square of the input size n.
- O(n^3): The execution time ascends in proportion to the cube of the input size n.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Determine the worst-case time complexity category of a given Java code based on input size n.
</TASK>
<CODE>
import java.util.*;
public class Main {
public static void main(String[] args) {
Scanner sc = new Scanner(System.in);
while ( sc.hasNextInt() ) {
int n = sc.nextInt();
long m = sc.nextInt();
boolean edge[][] = new boolean[n][n];
long dp[][] = new long[1<<n][n];
for ( long i = 1 ; i<=m ; ++i ) {
int u = sc.nextInt();
int v = sc.nextInt();
-- u;
-- v;
edge[u][v] = edge[v][u] = true;
}
for ( int i = 0 ; i<n ; ++i ) {
dp[1<<i][i] = 1;
}
long res = 0;
for ( int i = 1 ; i<(1<<n) ; ++i ) {
int first = cal(i);
for ( int j = 0 ; j<n ; ++j ) {
if ( dp[i][j]==0 ) {
continue;
}
for ( int k = first ; k<n ; ++k ) {
if ( j==k || !edge[j][k] ) {
continue;
}
if ( k==first && (i&(1<<k))!=0 ) {
res += dp[i][j];
}
if ( (i&(1<<k))==0 ) {
dp[i|(1<<k)][k] += dp[i][j];
}
}
}
}
res -= m;
System.out.println(res/2);
}
}
public static int cal( int x ) {
int ord = 0;
while ( true ) {
if ( (x&(1<<ord))!=0 ) {
break;
}
++ ord;
}
return ord;
}
public static boolean judge( int x ) {
int cnt = 0;
while ( x>=1 ) {
if ( (x&1)==1 ) {
++ cnt;
}
x >>= 1;
}
return cnt >= 3;
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(n^2): The time complexity grows proportionally to the square of the input size.
- O(n): The time complexity increases proportionally to the input size n in a linear manner.
- O(log(n)): The time complexity increases logarithmically in relation to the input size.
- non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially.
- O(n^3): The time complexity scales proportionally to the cube of the input size.
- O(nlog(n)): The time complexity combines linear and logarithmic growth factors.
- O(1): The time complexity is constant to the input size n.
- others: The time complexity does not fit any of the above categories or cannot be clearly classified.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
| 828
| 4,382
|
1,091
|
/*
If you want to aim high, aim high
Don't let that studying and grades consume you
Just live life young
******************************
What do you think? What do you think?
1st on Billboard, what do you think of it
Next is a Grammy, what do you think of it
However you think, I’m sorry, but shit, I have no fcking interest
*******************************
I'm standing on top of my Monopoly board
That means I'm on top of my game and it don't stop
til my hip don't hop anymore
https://www.a2oj.com/Ladder16.html
*******************************
300iq as writer = Sad!
*/
import java.util.*;
import java.io.*;
import java.math.*;
public class x1080D
{
public static void main(String hi[]) throws Exception
{
long[] dp = new long[32];
for(int i=1; i <= 31; i++)
dp[i] = 1+4*dp[i-1];
BufferedReader infile = new BufferedReader(new InputStreamReader(System.in));
StringTokenizer st = new StringTokenizer(infile.readLine());
int T = Integer.parseInt(st.nextToken());
StringBuilder sb = new StringBuilder();
matcha:while(T-->0)
{
st = new StringTokenizer(infile.readLine());
int N = Integer.parseInt(st.nextToken());
long K = Long.parseLong(st.nextToken());
if(N >= 32 || K == 1)
sb.append("YES "+(N-1)+"\n");
else if(dp[N] == K)
sb.append("YES 0\n");
else if(dp[N] < K)
sb.append("NO\n");
else
{
long total = 3L;
long length = 2;
for(int res=N-1; res >= 0; res--)
{
long min = 1+3*dp[N-1-res];
long max = min+dp[N-1];
long cansplit = total-2*length+1;
max += dp[res]*cansplit;
if(min <= K && K <= max)
{
sb.append("YES "+res+"\n");
continue matcha;
}
length <<= 1;
total *= 4;
}
sb.append("NO\n");
}
}
System.out.print(sb);
}
}
|
O(log(n))
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Determine the worst-case time complexity category of a given Java code based on input size n.
</TASK>
<CODE>
/*
If you want to aim high, aim high
Don't let that studying and grades consume you
Just live life young
******************************
What do you think? What do you think?
1st on Billboard, what do you think of it
Next is a Grammy, what do you think of it
However you think, I’m sorry, but shit, I have no fcking interest
*******************************
I'm standing on top of my Monopoly board
That means I'm on top of my game and it don't stop
til my hip don't hop anymore
https://www.a2oj.com/Ladder16.html
*******************************
300iq as writer = Sad!
*/
import java.util.*;
import java.io.*;
import java.math.*;
public class x1080D
{
public static void main(String hi[]) throws Exception
{
long[] dp = new long[32];
for(int i=1; i <= 31; i++)
dp[i] = 1+4*dp[i-1];
BufferedReader infile = new BufferedReader(new InputStreamReader(System.in));
StringTokenizer st = new StringTokenizer(infile.readLine());
int T = Integer.parseInt(st.nextToken());
StringBuilder sb = new StringBuilder();
matcha:while(T-->0)
{
st = new StringTokenizer(infile.readLine());
int N = Integer.parseInt(st.nextToken());
long K = Long.parseLong(st.nextToken());
if(N >= 32 || K == 1)
sb.append("YES "+(N-1)+"\n");
else if(dp[N] == K)
sb.append("YES 0\n");
else if(dp[N] < K)
sb.append("NO\n");
else
{
long total = 3L;
long length = 2;
for(int res=N-1; res >= 0; res--)
{
long min = 1+3*dp[N-1-res];
long max = min+dp[N-1];
long cansplit = total-2*length+1;
max += dp[res]*cansplit;
if(min <= K && K <= max)
{
sb.append("YES "+res+"\n");
continue matcha;
}
length <<= 1;
total *= 4;
}
sb.append("NO\n");
}
}
System.out.print(sb);
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(n): The time complexity increases proportionally to the input size n in a linear manner.
- O(n^2): The time complexity grows proportionally to the square of the input size.
- O(log(n)): The time complexity increases logarithmically in relation to the input size.
- O(nlog(n)): The time complexity combines linear and logarithmic growth factors.
- O(n^3): The time complexity scales proportionally to the cube of the input size.
- non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially.
- O(1): The time complexity is constant to the input size n.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Determine the worst-case time complexity category of a given Java code based on input size n.
</TASK>
<CODE>
/*
If you want to aim high, aim high
Don't let that studying and grades consume you
Just live life young
******************************
What do you think? What do you think?
1st on Billboard, what do you think of it
Next is a Grammy, what do you think of it
However you think, I’m sorry, but shit, I have no fcking interest
*******************************
I'm standing on top of my Monopoly board
That means I'm on top of my game and it don't stop
til my hip don't hop anymore
https://www.a2oj.com/Ladder16.html
*******************************
300iq as writer = Sad!
*/
import java.util.*;
import java.io.*;
import java.math.*;
public class x1080D
{
public static void main(String hi[]) throws Exception
{
long[] dp = new long[32];
for(int i=1; i <= 31; i++)
dp[i] = 1+4*dp[i-1];
BufferedReader infile = new BufferedReader(new InputStreamReader(System.in));
StringTokenizer st = new StringTokenizer(infile.readLine());
int T = Integer.parseInt(st.nextToken());
StringBuilder sb = new StringBuilder();
matcha:while(T-->0)
{
st = new StringTokenizer(infile.readLine());
int N = Integer.parseInt(st.nextToken());
long K = Long.parseLong(st.nextToken());
if(N >= 32 || K == 1)
sb.append("YES "+(N-1)+"\n");
else if(dp[N] == K)
sb.append("YES 0\n");
else if(dp[N] < K)
sb.append("NO\n");
else
{
long total = 3L;
long length = 2;
for(int res=N-1; res >= 0; res--)
{
long min = 1+3*dp[N-1-res];
long max = min+dp[N-1];
long cansplit = total-2*length+1;
max += dp[res]*cansplit;
if(min <= K && K <= max)
{
sb.append("YES "+res+"\n");
continue matcha;
}
length <<= 1;
total *= 4;
}
sb.append("NO\n");
}
}
System.out.print(sb);
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(1): The time complexity is constant to the input size n.
- non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially.
- others: The time complexity does not fit any of the above categories or cannot be clearly classified.
- O(n): The time complexity increases proportionally to the input size n in a linear manner.
- O(n^2): The time complexity grows proportionally to the square of the input size.
- O(log(n)): The time complexity increases logarithmically in relation to the input size.
- O(nlog(n)): The time complexity combines linear and logarithmic growth factors.
- O(n^3): The time complexity scales proportionally to the cube of the input size.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
| 833
| 1,090
|
2,619
|
import java.util.*;
/**
* https://codeforces.com/contests
*/
public class TaskA {
public static void main(String[] args) {
Scanner sc = new Scanner(System.in);
int n = sc.nextInt();
Set<Integer> set = new HashSet<>();
for (int i = 0; i < n; i++) {
int a = sc.nextInt();
boolean flag = false; // true = не нужно добавлять
List<Integer> toRemove = new ArrayList<>();
for (int b : set) {
if (a % b == 0) {
flag = true;
break;
} else if (b % a == 0 && a < b) {
toRemove.add(b);
}
}
for (int r: toRemove) {
set.remove(r);
}
if (!flag) {
set.add(a);
}
}
System.out.println(set.size());
}
}
|
O(n^2)
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n.
</TASK>
<CODE>
import java.util.*;
/**
* https://codeforces.com/contests
*/
public class TaskA {
public static void main(String[] args) {
Scanner sc = new Scanner(System.in);
int n = sc.nextInt();
Set<Integer> set = new HashSet<>();
for (int i = 0; i < n; i++) {
int a = sc.nextInt();
boolean flag = false; // true = не нужно добавлять
List<Integer> toRemove = new ArrayList<>();
for (int b : set) {
if (a % b == 0) {
flag = true;
break;
} else if (b % a == 0 && a < b) {
toRemove.add(b);
}
}
for (int r: toRemove) {
set.remove(r);
}
if (!flag) {
set.add(a);
}
}
System.out.println(set.size());
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(1): The execution time is unaffected by the size of the input n.
- O(n^2): The execution time ascends in proportion to the square of the input size n.
- O(log(n)): The execution time ascends in proportion to the logarithm of the input size n.
- O(n): The execution time ascends in a one-to-one ratio with the input size n.
- O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- O(n^3): The execution time ascends in proportion to the cube of the input size n.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Determine the worst-case time complexity category of a given Java code based on input size n.
</TASK>
<CODE>
import java.util.*;
/**
* https://codeforces.com/contests
*/
public class TaskA {
public static void main(String[] args) {
Scanner sc = new Scanner(System.in);
int n = sc.nextInt();
Set<Integer> set = new HashSet<>();
for (int i = 0; i < n; i++) {
int a = sc.nextInt();
boolean flag = false; // true = не нужно добавлять
List<Integer> toRemove = new ArrayList<>();
for (int b : set) {
if (a % b == 0) {
flag = true;
break;
} else if (b % a == 0 && a < b) {
toRemove.add(b);
}
}
for (int r: toRemove) {
set.remove(r);
}
if (!flag) {
set.add(a);
}
}
System.out.println(set.size());
}
}
</CODE>
<EVALUATION_RUBRIC>
- non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially.
- O(n): The time complexity increases proportionally to the input size n in a linear manner.
- others: The time complexity does not fit any of the above categories or cannot be clearly classified.
- O(nlog(n)): The time complexity combines linear and logarithmic growth factors.
- O(log(n)): The time complexity increases logarithmically in relation to the input size.
- O(n^3): The time complexity scales proportionally to the cube of the input size.
- O(n^2): The time complexity grows proportionally to the square of the input size.
- O(1): The time complexity is constant to the input size n.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
| 550
| 2,613
|
335
|
import java.io.BufferedReader;
import java.io.IOException;
import java.io.InputStreamReader;
import java.io.PrintWriter;
import java.util.StringTokenizer;
public class Homyak implements Runnable {
private void solve() throws IOException {
int n = nextInt();
String seq = nextToken();
int nh = 0;
int nt = 0;
for (int i = 0; i < n; ++i)
if (seq.charAt(i) == 'H')
++nh;
else
++nt;
int res = n;
for (int delta = 0; delta < n; ++delta) {
int changed = 0;
int at = delta;
for (int i = 0; i < nh; ++i) {
if (seq.charAt(at) != 'H')
++changed;
++at;
if (at >= n)
at = 0;
}
for (int i = 0; i < nt; ++i) {
if (seq.charAt(at) != 'T')
++changed;
++at;
if (at >= n)
at = 0;
}
res = Math.min(res, changed / 2);
}
writer.println(res);
}
public static void main(String[] args) {
new Homyak().run();
}
BufferedReader reader;
StringTokenizer tokenizer;
PrintWriter writer;
public void run() {
try {
reader = new BufferedReader(new InputStreamReader(System.in));
tokenizer = null;
writer = new PrintWriter(System.out);
solve();
reader.close();
writer.close();
} catch (Exception e) {
e.printStackTrace();
System.exit(1);
}
}
int nextInt() throws IOException {
return Integer.parseInt(nextToken());
}
long nextLong() throws IOException {
return Long.parseLong(nextToken());
}
double nextDouble() throws IOException {
return Double.parseDouble(nextToken());
}
String nextToken() throws IOException {
while (tokenizer == null || !tokenizer.hasMoreTokens()) {
tokenizer = new StringTokenizer(reader.readLine());
}
return tokenizer.nextToken();
}
}
|
O(n)
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Classify the following Java code's worst-case time complexity according to its relationship to the input size n.
</TASK>
<CODE>
import java.io.BufferedReader;
import java.io.IOException;
import java.io.InputStreamReader;
import java.io.PrintWriter;
import java.util.StringTokenizer;
public class Homyak implements Runnable {
private void solve() throws IOException {
int n = nextInt();
String seq = nextToken();
int nh = 0;
int nt = 0;
for (int i = 0; i < n; ++i)
if (seq.charAt(i) == 'H')
++nh;
else
++nt;
int res = n;
for (int delta = 0; delta < n; ++delta) {
int changed = 0;
int at = delta;
for (int i = 0; i < nh; ++i) {
if (seq.charAt(at) != 'H')
++changed;
++at;
if (at >= n)
at = 0;
}
for (int i = 0; i < nt; ++i) {
if (seq.charAt(at) != 'T')
++changed;
++at;
if (at >= n)
at = 0;
}
res = Math.min(res, changed / 2);
}
writer.println(res);
}
public static void main(String[] args) {
new Homyak().run();
}
BufferedReader reader;
StringTokenizer tokenizer;
PrintWriter writer;
public void run() {
try {
reader = new BufferedReader(new InputStreamReader(System.in));
tokenizer = null;
writer = new PrintWriter(System.out);
solve();
reader.close();
writer.close();
} catch (Exception e) {
e.printStackTrace();
System.exit(1);
}
}
int nextInt() throws IOException {
return Integer.parseInt(nextToken());
}
long nextLong() throws IOException {
return Long.parseLong(nextToken());
}
double nextDouble() throws IOException {
return Double.parseDouble(nextToken());
}
String nextToken() throws IOException {
while (tokenizer == null || !tokenizer.hasMoreTokens()) {
tokenizer = new StringTokenizer(reader.readLine());
}
return tokenizer.nextToken();
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(log(n)): The running time increases with the logarithm of the input size n.
- O(n): The running time grows linearly with the input size n.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- O(1): The running time does not change regardless of the input size n.
- O(n^2): The running time increases with the square of the input size n.
- O(nlog(n)): The running time increases with the product of n and logarithm of n.
- O(n^3): The running time increases with the cube of the input size n.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Classify the following Java code's worst-case time complexity according to its relationship to the input size n.
</TASK>
<CODE>
import java.io.BufferedReader;
import java.io.IOException;
import java.io.InputStreamReader;
import java.io.PrintWriter;
import java.util.StringTokenizer;
public class Homyak implements Runnable {
private void solve() throws IOException {
int n = nextInt();
String seq = nextToken();
int nh = 0;
int nt = 0;
for (int i = 0; i < n; ++i)
if (seq.charAt(i) == 'H')
++nh;
else
++nt;
int res = n;
for (int delta = 0; delta < n; ++delta) {
int changed = 0;
int at = delta;
for (int i = 0; i < nh; ++i) {
if (seq.charAt(at) != 'H')
++changed;
++at;
if (at >= n)
at = 0;
}
for (int i = 0; i < nt; ++i) {
if (seq.charAt(at) != 'T')
++changed;
++at;
if (at >= n)
at = 0;
}
res = Math.min(res, changed / 2);
}
writer.println(res);
}
public static void main(String[] args) {
new Homyak().run();
}
BufferedReader reader;
StringTokenizer tokenizer;
PrintWriter writer;
public void run() {
try {
reader = new BufferedReader(new InputStreamReader(System.in));
tokenizer = null;
writer = new PrintWriter(System.out);
solve();
reader.close();
writer.close();
} catch (Exception e) {
e.printStackTrace();
System.exit(1);
}
}
int nextInt() throws IOException {
return Integer.parseInt(nextToken());
}
long nextLong() throws IOException {
return Long.parseLong(nextToken());
}
double nextDouble() throws IOException {
return Double.parseDouble(nextToken());
}
String nextToken() throws IOException {
while (tokenizer == null || !tokenizer.hasMoreTokens()) {
tokenizer = new StringTokenizer(reader.readLine());
}
return tokenizer.nextToken();
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(n): The running time grows linearly with the input size n.
- others: The code does not clearly correspond to the listed classes or has an unclassified time complexity.
- O(nlog(n)): The running time increases with the product of n and logarithm of n.
- O(n^2): The running time increases with the square of the input size n.
- O(1): The running time does not change regardless of the input size n.
- O(log(n)): The running time increases with the logarithm of the input size n.
- O(n^3): The running time increases with the cube of the input size n.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
| 786
| 334
|
2,286
|
import java.util.*;
import java.io.*;
import java.math.*;
public class A{
void solve(){
int n=ni();
s=new char[n+1];
s[0]='.';
for(int i=1;i<=n;i++) s[i]=ns().charAt(0);
dp=new long[5001][5001];
dp[1][0]=1;
long sum[]=new long[n+2];
sum[0]=1;
for(int i=2;i<=n;i++){
for(int j=0;j<=n;j++) {
if (s[i - 1] == 'f') {
if(j-1>=0) dp[i][j]=dp[i-1][j-1];
else dp[i][j]=0;
}else {
dp[i][j]=sum[j];
}
}
for(int j=n;j>=0;j--){
sum[j]=(sum[j+1]+dp[i][j])%M;
}
}
long ans=0;
for(int i=0;i<=n;i++){
ans+=dp[n][i];
if(ans>=M) ans%=M;
}
pw.println(ans);
}
char s[];
long dp[][];
long go(int x,int cnt,int n){
// pw.println(x+" "+cnt);
if(x>n) return 1;
long cc=0;
if(dp[x][cnt]!=-1) return dp[x][cnt];
if(s[x]=='f'){
cc=(cc+go(x+1,cnt+1,n))%M;
}else {
for(int j=cnt;j>=0;j--) cc=(cc+go(x+1,j,n))%M;
if(x==n) cc=(cc-cnt+M)%M;
}
cc%=M;
dp[x][cnt]=cc;
return cc;
}
long M=(long)1e9+7;
InputStream is;
PrintWriter pw;
String INPUT = "";
void run() throws Exception {
is = INPUT.isEmpty() ? System.in : new ByteArrayInputStream(INPUT.getBytes());
pw = new PrintWriter(System.out);
long s = System.currentTimeMillis();
solve();
pw.flush();
if(!INPUT.isEmpty())tr(System.currentTimeMillis()-s+"ms");
}
public static void main(String[] args) throws Exception { new A().run(); }
private byte[] inbuf = new byte[1024];
public int lenbuf = 0, ptrbuf = 0;
private int readByte() {
if(lenbuf == -1)throw new InputMismatchException();
if(ptrbuf >= lenbuf){
ptrbuf = 0;
try { lenbuf = is.read(inbuf); } catch (IOException e) { throw new InputMismatchException(); }
if(lenbuf <= 0)return -1;
}
return inbuf[ptrbuf++];
}
private boolean isSpaceChar(int c) { return !(c >= 33 && c <= 126); }
private int skip() { int b; while((b = readByte()) != -1 && isSpaceChar(b)); return b; }
private double nd() { return Double.parseDouble(ns()); }
private char nc() { return (char)skip(); }
private String ns() {
int b = skip();
StringBuilder sb = new StringBuilder();
while(!(isSpaceChar(b))){ // when nextLine, (isSpaceChar(b) && b != ' ')
sb.appendCodePoint(b);
b = readByte();
}
return sb.toString();
}
private char[] ns(int n) {
char[] buf = new char[n];
int b = skip(), p = 0;
while(p < n && !(isSpaceChar(b))){
buf[p++] = (char)b;
b = readByte();
}
return n == p ? buf : Arrays.copyOf(buf, p);
}
private char[][] nm(int n, int m) {
char[][] map = new char[n][];
for(int i = 0;i < n;i++)map[i] = ns(m);
return map;
}
private int[] na(int n) {
int[] a = new int[n];
for(int i = 0;i < n;i++)a[i] = ni();
return a;
}
private int ni() {
int num = 0, b;
boolean minus = false;
while((b = readByte()) != -1 && !((b >= '0' && b <= '9') || b == '-'));
if(b == '-'){
minus = true;
b = readByte();
}
while(true){
if(b >= '0' && b <= '9'){
num = num * 10 + (b - '0');
}else{
return minus ? -num : num;
}
b = readByte();
}
}
private long nl() {
long num = 0;
int b;
boolean minus = false;
while((b = readByte()) != -1 && !((b >= '0' && b <= '9') || b == '-'));
if(b == '-'){
minus = true;
b = readByte();
}
while(true){
if(b >= '0' && b <= '9'){
num = num * 10 + (b - '0');
}else{
return minus ? -num : num;
}
b = readByte();
}
}
private void tr(Object... o) { if(INPUT.length() > 0)System.out.println(Arrays.deepToString(o)); }
}
|
O(n^2)
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n.
</TASK>
<CODE>
import java.util.*;
import java.io.*;
import java.math.*;
public class A{
void solve(){
int n=ni();
s=new char[n+1];
s[0]='.';
for(int i=1;i<=n;i++) s[i]=ns().charAt(0);
dp=new long[5001][5001];
dp[1][0]=1;
long sum[]=new long[n+2];
sum[0]=1;
for(int i=2;i<=n;i++){
for(int j=0;j<=n;j++) {
if (s[i - 1] == 'f') {
if(j-1>=0) dp[i][j]=dp[i-1][j-1];
else dp[i][j]=0;
}else {
dp[i][j]=sum[j];
}
}
for(int j=n;j>=0;j--){
sum[j]=(sum[j+1]+dp[i][j])%M;
}
}
long ans=0;
for(int i=0;i<=n;i++){
ans+=dp[n][i];
if(ans>=M) ans%=M;
}
pw.println(ans);
}
char s[];
long dp[][];
long go(int x,int cnt,int n){
// pw.println(x+" "+cnt);
if(x>n) return 1;
long cc=0;
if(dp[x][cnt]!=-1) return dp[x][cnt];
if(s[x]=='f'){
cc=(cc+go(x+1,cnt+1,n))%M;
}else {
for(int j=cnt;j>=0;j--) cc=(cc+go(x+1,j,n))%M;
if(x==n) cc=(cc-cnt+M)%M;
}
cc%=M;
dp[x][cnt]=cc;
return cc;
}
long M=(long)1e9+7;
InputStream is;
PrintWriter pw;
String INPUT = "";
void run() throws Exception {
is = INPUT.isEmpty() ? System.in : new ByteArrayInputStream(INPUT.getBytes());
pw = new PrintWriter(System.out);
long s = System.currentTimeMillis();
solve();
pw.flush();
if(!INPUT.isEmpty())tr(System.currentTimeMillis()-s+"ms");
}
public static void main(String[] args) throws Exception { new A().run(); }
private byte[] inbuf = new byte[1024];
public int lenbuf = 0, ptrbuf = 0;
private int readByte() {
if(lenbuf == -1)throw new InputMismatchException();
if(ptrbuf >= lenbuf){
ptrbuf = 0;
try { lenbuf = is.read(inbuf); } catch (IOException e) { throw new InputMismatchException(); }
if(lenbuf <= 0)return -1;
}
return inbuf[ptrbuf++];
}
private boolean isSpaceChar(int c) { return !(c >= 33 && c <= 126); }
private int skip() { int b; while((b = readByte()) != -1 && isSpaceChar(b)); return b; }
private double nd() { return Double.parseDouble(ns()); }
private char nc() { return (char)skip(); }
private String ns() {
int b = skip();
StringBuilder sb = new StringBuilder();
while(!(isSpaceChar(b))){ // when nextLine, (isSpaceChar(b) && b != ' ')
sb.appendCodePoint(b);
b = readByte();
}
return sb.toString();
}
private char[] ns(int n) {
char[] buf = new char[n];
int b = skip(), p = 0;
while(p < n && !(isSpaceChar(b))){
buf[p++] = (char)b;
b = readByte();
}
return n == p ? buf : Arrays.copyOf(buf, p);
}
private char[][] nm(int n, int m) {
char[][] map = new char[n][];
for(int i = 0;i < n;i++)map[i] = ns(m);
return map;
}
private int[] na(int n) {
int[] a = new int[n];
for(int i = 0;i < n;i++)a[i] = ni();
return a;
}
private int ni() {
int num = 0, b;
boolean minus = false;
while((b = readByte()) != -1 && !((b >= '0' && b <= '9') || b == '-'));
if(b == '-'){
minus = true;
b = readByte();
}
while(true){
if(b >= '0' && b <= '9'){
num = num * 10 + (b - '0');
}else{
return minus ? -num : num;
}
b = readByte();
}
}
private long nl() {
long num = 0;
int b;
boolean minus = false;
while((b = readByte()) != -1 && !((b >= '0' && b <= '9') || b == '-'));
if(b == '-'){
minus = true;
b = readByte();
}
while(true){
if(b >= '0' && b <= '9'){
num = num * 10 + (b - '0');
}else{
return minus ? -num : num;
}
b = readByte();
}
}
private void tr(Object... o) { if(INPUT.length() > 0)System.out.println(Arrays.deepToString(o)); }
}
</CODE>
<EVALUATION_RUBRIC>
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- O(n^3): The execution time ascends in proportion to the cube of the input size n.
- O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially.
- O(1): The execution time is unaffected by the size of the input n.
- O(n^2): The execution time ascends in proportion to the square of the input size n.
- O(n): The execution time ascends in a one-to-one ratio with the input size n.
- O(log(n)): The execution time ascends in proportion to the logarithm of the input size n.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Determine the worst-case time complexity category of a given Java code based on input size n.
</TASK>
<CODE>
import java.util.*;
import java.io.*;
import java.math.*;
public class A{
void solve(){
int n=ni();
s=new char[n+1];
s[0]='.';
for(int i=1;i<=n;i++) s[i]=ns().charAt(0);
dp=new long[5001][5001];
dp[1][0]=1;
long sum[]=new long[n+2];
sum[0]=1;
for(int i=2;i<=n;i++){
for(int j=0;j<=n;j++) {
if (s[i - 1] == 'f') {
if(j-1>=0) dp[i][j]=dp[i-1][j-1];
else dp[i][j]=0;
}else {
dp[i][j]=sum[j];
}
}
for(int j=n;j>=0;j--){
sum[j]=(sum[j+1]+dp[i][j])%M;
}
}
long ans=0;
for(int i=0;i<=n;i++){
ans+=dp[n][i];
if(ans>=M) ans%=M;
}
pw.println(ans);
}
char s[];
long dp[][];
long go(int x,int cnt,int n){
// pw.println(x+" "+cnt);
if(x>n) return 1;
long cc=0;
if(dp[x][cnt]!=-1) return dp[x][cnt];
if(s[x]=='f'){
cc=(cc+go(x+1,cnt+1,n))%M;
}else {
for(int j=cnt;j>=0;j--) cc=(cc+go(x+1,j,n))%M;
if(x==n) cc=(cc-cnt+M)%M;
}
cc%=M;
dp[x][cnt]=cc;
return cc;
}
long M=(long)1e9+7;
InputStream is;
PrintWriter pw;
String INPUT = "";
void run() throws Exception {
is = INPUT.isEmpty() ? System.in : new ByteArrayInputStream(INPUT.getBytes());
pw = new PrintWriter(System.out);
long s = System.currentTimeMillis();
solve();
pw.flush();
if(!INPUT.isEmpty())tr(System.currentTimeMillis()-s+"ms");
}
public static void main(String[] args) throws Exception { new A().run(); }
private byte[] inbuf = new byte[1024];
public int lenbuf = 0, ptrbuf = 0;
private int readByte() {
if(lenbuf == -1)throw new InputMismatchException();
if(ptrbuf >= lenbuf){
ptrbuf = 0;
try { lenbuf = is.read(inbuf); } catch (IOException e) { throw new InputMismatchException(); }
if(lenbuf <= 0)return -1;
}
return inbuf[ptrbuf++];
}
private boolean isSpaceChar(int c) { return !(c >= 33 && c <= 126); }
private int skip() { int b; while((b = readByte()) != -1 && isSpaceChar(b)); return b; }
private double nd() { return Double.parseDouble(ns()); }
private char nc() { return (char)skip(); }
private String ns() {
int b = skip();
StringBuilder sb = new StringBuilder();
while(!(isSpaceChar(b))){ // when nextLine, (isSpaceChar(b) && b != ' ')
sb.appendCodePoint(b);
b = readByte();
}
return sb.toString();
}
private char[] ns(int n) {
char[] buf = new char[n];
int b = skip(), p = 0;
while(p < n && !(isSpaceChar(b))){
buf[p++] = (char)b;
b = readByte();
}
return n == p ? buf : Arrays.copyOf(buf, p);
}
private char[][] nm(int n, int m) {
char[][] map = new char[n][];
for(int i = 0;i < n;i++)map[i] = ns(m);
return map;
}
private int[] na(int n) {
int[] a = new int[n];
for(int i = 0;i < n;i++)a[i] = ni();
return a;
}
private int ni() {
int num = 0, b;
boolean minus = false;
while((b = readByte()) != -1 && !((b >= '0' && b <= '9') || b == '-'));
if(b == '-'){
minus = true;
b = readByte();
}
while(true){
if(b >= '0' && b <= '9'){
num = num * 10 + (b - '0');
}else{
return minus ? -num : num;
}
b = readByte();
}
}
private long nl() {
long num = 0;
int b;
boolean minus = false;
while((b = readByte()) != -1 && !((b >= '0' && b <= '9') || b == '-'));
if(b == '-'){
minus = true;
b = readByte();
}
while(true){
if(b >= '0' && b <= '9'){
num = num * 10 + (b - '0');
}else{
return minus ? -num : num;
}
b = readByte();
}
}
private void tr(Object... o) { if(INPUT.length() > 0)System.out.println(Arrays.deepToString(o)); }
}
</CODE>
<EVALUATION_RUBRIC>
- others: The time complexity does not fit any of the above categories or cannot be clearly classified.
- O(n): The time complexity increases proportionally to the input size n in a linear manner.
- O(1): The time complexity is constant to the input size n.
- O(log(n)): The time complexity increases logarithmically in relation to the input size.
- O(n^2): The time complexity grows proportionally to the square of the input size.
- non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially.
- O(n^3): The time complexity scales proportionally to the cube of the input size.
- O(nlog(n)): The time complexity combines linear and logarithmic growth factors.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
| 1,572
| 2,281
|
942
|
import java.io.BufferedReader;
import java.io.IOException;
import java.io.InputStreamReader;
import java.io.PrintWriter;
import java.util.List;
import java.util.StringTokenizer;
public class B {
final int INF = 1_000_000_000;
void solve() {
int n = readInt();
int k = readInt();
long l = 0;
long r = INF;
while(r - l > 1){
long m = (r + l) >> 1;
if(m * (m + 1) / 2 + m >= k + n) r = m;
else l = m;
}
out.print(n - r);
}
public static void main(String[] args) {
new B().run();
}
private void run() {
try {
init();
solve();
out.close();
} catch (Exception e) {
e.printStackTrace();
System.exit(-1);
}
}
private BufferedReader in;
private StringTokenizer tok = new StringTokenizer("");
private PrintWriter out;
private void init() {
in = new BufferedReader(new InputStreamReader(System.in));
out = new PrintWriter(System.out);
// try {
// in = new BufferedReader(new FileReader("absum.in"));
// out = new PrintWriter(new File("absum.out"));
// } catch (FileNotFoundException e) {
// e.printStackTrace();
// }
}
private String readLine() {
try {
return in.readLine();
} catch (IOException e) {
throw new RuntimeException(e);
}
}
private String readString() {
while (!tok.hasMoreTokens()) {
String nextLine = readLine();
if (nextLine == null) return null;
tok = new StringTokenizer(nextLine);
}
return tok.nextToken();
}
private int readInt() {
return Integer.parseInt(readString());
}
private long readLong() {
return Long.parseLong(readString());
}
int[] readIntArray(int n){
int[] res = new int[n];
for(int i = 0;i<n;i++){
res[i] = readInt();
}
return res;
}
long[] readLongArray(int n){
long[] res = new long[n];
for(int i = 0;i<n;i++){
res[i] = readLong();
}
return res;
}
int[] castInt(List<Integer> list){
int[] res = new int[list.size()];
for(int i = 0;i<list.size();i++){
res[i] = list.get(i);
}
return res;
}
}
|
O(log(n))
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Classify the following Java code's worst-case time complexity according to its relationship to the input size n.
</TASK>
<CODE>
import java.io.BufferedReader;
import java.io.IOException;
import java.io.InputStreamReader;
import java.io.PrintWriter;
import java.util.List;
import java.util.StringTokenizer;
public class B {
final int INF = 1_000_000_000;
void solve() {
int n = readInt();
int k = readInt();
long l = 0;
long r = INF;
while(r - l > 1){
long m = (r + l) >> 1;
if(m * (m + 1) / 2 + m >= k + n) r = m;
else l = m;
}
out.print(n - r);
}
public static void main(String[] args) {
new B().run();
}
private void run() {
try {
init();
solve();
out.close();
} catch (Exception e) {
e.printStackTrace();
System.exit(-1);
}
}
private BufferedReader in;
private StringTokenizer tok = new StringTokenizer("");
private PrintWriter out;
private void init() {
in = new BufferedReader(new InputStreamReader(System.in));
out = new PrintWriter(System.out);
// try {
// in = new BufferedReader(new FileReader("absum.in"));
// out = new PrintWriter(new File("absum.out"));
// } catch (FileNotFoundException e) {
// e.printStackTrace();
// }
}
private String readLine() {
try {
return in.readLine();
} catch (IOException e) {
throw new RuntimeException(e);
}
}
private String readString() {
while (!tok.hasMoreTokens()) {
String nextLine = readLine();
if (nextLine == null) return null;
tok = new StringTokenizer(nextLine);
}
return tok.nextToken();
}
private int readInt() {
return Integer.parseInt(readString());
}
private long readLong() {
return Long.parseLong(readString());
}
int[] readIntArray(int n){
int[] res = new int[n];
for(int i = 0;i<n;i++){
res[i] = readInt();
}
return res;
}
long[] readLongArray(int n){
long[] res = new long[n];
for(int i = 0;i<n;i++){
res[i] = readLong();
}
return res;
}
int[] castInt(List<Integer> list){
int[] res = new int[list.size()];
for(int i = 0;i<list.size();i++){
res[i] = list.get(i);
}
return res;
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(n): The running time grows linearly with the input size n.
- O(log(n)): The running time increases with the logarithm of the input size n.
- O(1): The running time does not change regardless of the input size n.
- O(n^2): The running time increases with the square of the input size n.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- O(n^3): The running time increases with the cube of the input size n.
- O(nlog(n)): The running time increases with the product of n and logarithm of n.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n.
</TASK>
<CODE>
import java.io.BufferedReader;
import java.io.IOException;
import java.io.InputStreamReader;
import java.io.PrintWriter;
import java.util.List;
import java.util.StringTokenizer;
public class B {
final int INF = 1_000_000_000;
void solve() {
int n = readInt();
int k = readInt();
long l = 0;
long r = INF;
while(r - l > 1){
long m = (r + l) >> 1;
if(m * (m + 1) / 2 + m >= k + n) r = m;
else l = m;
}
out.print(n - r);
}
public static void main(String[] args) {
new B().run();
}
private void run() {
try {
init();
solve();
out.close();
} catch (Exception e) {
e.printStackTrace();
System.exit(-1);
}
}
private BufferedReader in;
private StringTokenizer tok = new StringTokenizer("");
private PrintWriter out;
private void init() {
in = new BufferedReader(new InputStreamReader(System.in));
out = new PrintWriter(System.out);
// try {
// in = new BufferedReader(new FileReader("absum.in"));
// out = new PrintWriter(new File("absum.out"));
// } catch (FileNotFoundException e) {
// e.printStackTrace();
// }
}
private String readLine() {
try {
return in.readLine();
} catch (IOException e) {
throw new RuntimeException(e);
}
}
private String readString() {
while (!tok.hasMoreTokens()) {
String nextLine = readLine();
if (nextLine == null) return null;
tok = new StringTokenizer(nextLine);
}
return tok.nextToken();
}
private int readInt() {
return Integer.parseInt(readString());
}
private long readLong() {
return Long.parseLong(readString());
}
int[] readIntArray(int n){
int[] res = new int[n];
for(int i = 0;i<n;i++){
res[i] = readInt();
}
return res;
}
long[] readLongArray(int n){
long[] res = new long[n];
for(int i = 0;i<n;i++){
res[i] = readLong();
}
return res;
}
int[] castInt(List<Integer> list){
int[] res = new int[list.size()];
for(int i = 0;i<list.size();i++){
res[i] = list.get(i);
}
return res;
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(n^2): The execution time ascends in proportion to the square of the input size n.
- O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- O(n^3): The execution time ascends in proportion to the cube of the input size n.
- O(n): The execution time ascends in a one-to-one ratio with the input size n.
- O(log(n)): The execution time ascends in proportion to the logarithm of the input size n.
- others: The time complexity does not fit to any of the given categories or is ambiguous.
- O(1): The execution time is unaffected by the size of the input n.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
| 889
| 941
|
3,119
|
import java.util.*;
import static java.lang.Math.*;
public final class FollowTrafficRules {
private static double[] acce(double i, double a, double v) {
double[] r = new double[2];
r[0] = (v - i)/a;
r[1] = 1d/2d * a * pow(r[0], 2) + i * r[0];
return r;
}
private static double solve(double i, double a, double l) {
double e = sqrt(pow(i, 2) + 2d * a * l);
e = a > 0 ? e : -1d * e;
return (e - i)/a;
}
private static double time(double i, double a, double v, double l) {
double[] r = acce(i, a, v);
if (r[1] >= l) return solve(i, a, l);
return r[0] + (l - r[1])/v;
}
public static void main(String[] args) {
Scanner sc = new Scanner(System.in);
double a = sc.nextDouble();
double v = sc.nextDouble();
double l = sc.nextDouble();
double d = sc.nextDouble();
double w = sc.nextDouble();
double t = 0d;
double[] r = acce(0, a, w);
if (v <= w || r[1] >= d) t = time(0, a, v, l);
else {
t += r[0];
t += 2d * time(w, a, v, (d - r[1])/2d);
t += time(w, a, v, l - d);
}
System.out.println(t);
}
}
|
O(1)
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Determine the worst-case time complexity category of a given Java code based on input size n.
</TASK>
<CODE>
import java.util.*;
import static java.lang.Math.*;
public final class FollowTrafficRules {
private static double[] acce(double i, double a, double v) {
double[] r = new double[2];
r[0] = (v - i)/a;
r[1] = 1d/2d * a * pow(r[0], 2) + i * r[0];
return r;
}
private static double solve(double i, double a, double l) {
double e = sqrt(pow(i, 2) + 2d * a * l);
e = a > 0 ? e : -1d * e;
return (e - i)/a;
}
private static double time(double i, double a, double v, double l) {
double[] r = acce(i, a, v);
if (r[1] >= l) return solve(i, a, l);
return r[0] + (l - r[1])/v;
}
public static void main(String[] args) {
Scanner sc = new Scanner(System.in);
double a = sc.nextDouble();
double v = sc.nextDouble();
double l = sc.nextDouble();
double d = sc.nextDouble();
double w = sc.nextDouble();
double t = 0d;
double[] r = acce(0, a, w);
if (v <= w || r[1] >= d) t = time(0, a, v, l);
else {
t += r[0];
t += 2d * time(w, a, v, (d - r[1])/2d);
t += time(w, a, v, l - d);
}
System.out.println(t);
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(n^3): The time complexity scales proportionally to the cube of the input size.
- O(log(n)): The time complexity increases logarithmically in relation to the input size.
- O(n^2): The time complexity grows proportionally to the square of the input size.
- O(nlog(n)): The time complexity combines linear and logarithmic growth factors.
- O(1): The time complexity is constant to the input size n.
- O(n): The time complexity increases proportionally to the input size n in a linear manner.
- non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Determine the worst-case time complexity category of a given Java code based on input size n.
</TASK>
<CODE>
import java.util.*;
import static java.lang.Math.*;
public final class FollowTrafficRules {
private static double[] acce(double i, double a, double v) {
double[] r = new double[2];
r[0] = (v - i)/a;
r[1] = 1d/2d * a * pow(r[0], 2) + i * r[0];
return r;
}
private static double solve(double i, double a, double l) {
double e = sqrt(pow(i, 2) + 2d * a * l);
e = a > 0 ? e : -1d * e;
return (e - i)/a;
}
private static double time(double i, double a, double v, double l) {
double[] r = acce(i, a, v);
if (r[1] >= l) return solve(i, a, l);
return r[0] + (l - r[1])/v;
}
public static void main(String[] args) {
Scanner sc = new Scanner(System.in);
double a = sc.nextDouble();
double v = sc.nextDouble();
double l = sc.nextDouble();
double d = sc.nextDouble();
double w = sc.nextDouble();
double t = 0d;
double[] r = acce(0, a, w);
if (v <= w || r[1] >= d) t = time(0, a, v, l);
else {
t += r[0];
t += 2d * time(w, a, v, (d - r[1])/2d);
t += time(w, a, v, l - d);
}
System.out.println(t);
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(1): The time complexity is constant to the input size n.
- O(n^2): The time complexity grows proportionally to the square of the input size.
- non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially.
- O(log(n)): The time complexity increases logarithmically in relation to the input size.
- O(n): The time complexity increases proportionally to the input size n in a linear manner.
- O(nlog(n)): The time complexity combines linear and logarithmic growth factors.
- O(n^3): The time complexity scales proportionally to the cube of the input size.
- others: The time complexity does not fit any of the above categories or cannot be clearly classified.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
| 712
| 3,113
|
1,325
|
import java.io.OutputStream;
import java.io.IOException;
import java.io.InputStream;
import java.io.OutputStream;
import java.io.PrintWriter;
import java.io.BufferedWriter;
import java.io.Writer;
import java.io.OutputStreamWriter;
import java.util.InputMismatchException;
import java.io.IOException;
import java.io.InputStream;
/**
* Built using CHelper plug-in
* Actual solution is at the top
*
* @author Rishabhdeep Singh
*/
public class Main {
public static void main(String[] args) {
InputStream inputStream = System.in;
OutputStream outputStream = System.out;
InputReader in = new InputReader(inputStream);
OutputWriter out = new OutputWriter(outputStream);
TaskC solver = new TaskC();
solver.solve(1, in, out);
out.close();
}
static class TaskC {
int MOD = (int) 1e9 + 7;
public void solve(int testNumber, InputReader in, OutputWriter out) {
long x = in.nextLong(), k = in.nextLong();
long res = Utilities.mul(x, Utilities.power(2, k + 1, MOD), MOD) % MOD - Utilities.power(2, k, MOD) + 1;
while (res < 0) res += MOD;
out.println(x == 0 ? 0 : res);
}
}
static class InputReader {
private InputStream stream;
private byte[] buf = new byte[1024];
private int curChar;
private int numChars;
private InputReader.SpaceCharFilter filter;
public InputReader(InputStream stream) {
this.stream = stream;
}
public int read() {
if (numChars == -1) {
throw new InputMismatchException();
}
if (curChar >= numChars) {
curChar = 0;
try {
numChars = stream.read(buf);
} catch (IOException e) {
throw new InputMismatchException();
}
if (numChars <= 0) {
return -1;
}
}
return buf[curChar++];
}
public long nextLong() {
int c = read();
while (isSpaceChar(c)) {
c = read();
}
int sgn = 1;
if (c == '-') {
sgn = -1;
c = read();
}
long res = 0;
do {
if (c < '0' || c > '9') {
throw new InputMismatchException();
}
res *= 10;
res += c - '0';
c = read();
} while (!isSpaceChar(c));
return res * sgn;
}
public boolean isSpaceChar(int c) {
if (filter != null) {
return filter.isSpaceChar(c);
}
return isWhitespace(c);
}
public static boolean isWhitespace(int c) {
return c == ' ' || c == '\n' || c == '\r' || c == '\t' || c == -1;
}
public interface SpaceCharFilter {
public boolean isSpaceChar(int ch);
}
}
static class OutputWriter {
private final PrintWriter writer;
public OutputWriter(OutputStream outputStream) {
writer = new PrintWriter(new BufferedWriter(new OutputStreamWriter(outputStream)));
}
public OutputWriter(Writer writer) {
this.writer = new PrintWriter(writer);
}
public void close() {
writer.close();
}
public void println(long i) {
writer.println(i);
}
}
static class Utilities {
public static long mul(long x, long y, long mod) {
return (x % mod) * (y % mod) % mod;
}
public static long power(long a, long k, long m) {
long res = 1;
while (k > 0) {
if ((k & 1) != 0) {
res = mul(res, a, m);
}
a = mul(a, a, m);
k >>= 1;
}
return res;
}
}
}
|
O(log(n))
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Classify the following Java code's worst-case time complexity according to its relationship to the input size n.
</TASK>
<CODE>
import java.io.OutputStream;
import java.io.IOException;
import java.io.InputStream;
import java.io.OutputStream;
import java.io.PrintWriter;
import java.io.BufferedWriter;
import java.io.Writer;
import java.io.OutputStreamWriter;
import java.util.InputMismatchException;
import java.io.IOException;
import java.io.InputStream;
/**
* Built using CHelper plug-in
* Actual solution is at the top
*
* @author Rishabhdeep Singh
*/
public class Main {
public static void main(String[] args) {
InputStream inputStream = System.in;
OutputStream outputStream = System.out;
InputReader in = new InputReader(inputStream);
OutputWriter out = new OutputWriter(outputStream);
TaskC solver = new TaskC();
solver.solve(1, in, out);
out.close();
}
static class TaskC {
int MOD = (int) 1e9 + 7;
public void solve(int testNumber, InputReader in, OutputWriter out) {
long x = in.nextLong(), k = in.nextLong();
long res = Utilities.mul(x, Utilities.power(2, k + 1, MOD), MOD) % MOD - Utilities.power(2, k, MOD) + 1;
while (res < 0) res += MOD;
out.println(x == 0 ? 0 : res);
}
}
static class InputReader {
private InputStream stream;
private byte[] buf = new byte[1024];
private int curChar;
private int numChars;
private InputReader.SpaceCharFilter filter;
public InputReader(InputStream stream) {
this.stream = stream;
}
public int read() {
if (numChars == -1) {
throw new InputMismatchException();
}
if (curChar >= numChars) {
curChar = 0;
try {
numChars = stream.read(buf);
} catch (IOException e) {
throw new InputMismatchException();
}
if (numChars <= 0) {
return -1;
}
}
return buf[curChar++];
}
public long nextLong() {
int c = read();
while (isSpaceChar(c)) {
c = read();
}
int sgn = 1;
if (c == '-') {
sgn = -1;
c = read();
}
long res = 0;
do {
if (c < '0' || c > '9') {
throw new InputMismatchException();
}
res *= 10;
res += c - '0';
c = read();
} while (!isSpaceChar(c));
return res * sgn;
}
public boolean isSpaceChar(int c) {
if (filter != null) {
return filter.isSpaceChar(c);
}
return isWhitespace(c);
}
public static boolean isWhitespace(int c) {
return c == ' ' || c == '\n' || c == '\r' || c == '\t' || c == -1;
}
public interface SpaceCharFilter {
public boolean isSpaceChar(int ch);
}
}
static class OutputWriter {
private final PrintWriter writer;
public OutputWriter(OutputStream outputStream) {
writer = new PrintWriter(new BufferedWriter(new OutputStreamWriter(outputStream)));
}
public OutputWriter(Writer writer) {
this.writer = new PrintWriter(writer);
}
public void close() {
writer.close();
}
public void println(long i) {
writer.println(i);
}
}
static class Utilities {
public static long mul(long x, long y, long mod) {
return (x % mod) * (y % mod) % mod;
}
public static long power(long a, long k, long m) {
long res = 1;
while (k > 0) {
if ((k & 1) != 0) {
res = mul(res, a, m);
}
a = mul(a, a, m);
k >>= 1;
}
return res;
}
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(n^2): The running time increases with the square of the input size n.
- O(log(n)): The running time increases with the logarithm of the input size n.
- O(nlog(n)): The running time increases with the product of n and logarithm of n.
- O(n^3): The running time increases with the cube of the input size n.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- O(1): The running time does not change regardless of the input size n.
- O(n): The running time grows linearly with the input size n.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Determine the worst-case time complexity category of a given Java code based on input size n.
</TASK>
<CODE>
import java.io.OutputStream;
import java.io.IOException;
import java.io.InputStream;
import java.io.OutputStream;
import java.io.PrintWriter;
import java.io.BufferedWriter;
import java.io.Writer;
import java.io.OutputStreamWriter;
import java.util.InputMismatchException;
import java.io.IOException;
import java.io.InputStream;
/**
* Built using CHelper plug-in
* Actual solution is at the top
*
* @author Rishabhdeep Singh
*/
public class Main {
public static void main(String[] args) {
InputStream inputStream = System.in;
OutputStream outputStream = System.out;
InputReader in = new InputReader(inputStream);
OutputWriter out = new OutputWriter(outputStream);
TaskC solver = new TaskC();
solver.solve(1, in, out);
out.close();
}
static class TaskC {
int MOD = (int) 1e9 + 7;
public void solve(int testNumber, InputReader in, OutputWriter out) {
long x = in.nextLong(), k = in.nextLong();
long res = Utilities.mul(x, Utilities.power(2, k + 1, MOD), MOD) % MOD - Utilities.power(2, k, MOD) + 1;
while (res < 0) res += MOD;
out.println(x == 0 ? 0 : res);
}
}
static class InputReader {
private InputStream stream;
private byte[] buf = new byte[1024];
private int curChar;
private int numChars;
private InputReader.SpaceCharFilter filter;
public InputReader(InputStream stream) {
this.stream = stream;
}
public int read() {
if (numChars == -1) {
throw new InputMismatchException();
}
if (curChar >= numChars) {
curChar = 0;
try {
numChars = stream.read(buf);
} catch (IOException e) {
throw new InputMismatchException();
}
if (numChars <= 0) {
return -1;
}
}
return buf[curChar++];
}
public long nextLong() {
int c = read();
while (isSpaceChar(c)) {
c = read();
}
int sgn = 1;
if (c == '-') {
sgn = -1;
c = read();
}
long res = 0;
do {
if (c < '0' || c > '9') {
throw new InputMismatchException();
}
res *= 10;
res += c - '0';
c = read();
} while (!isSpaceChar(c));
return res * sgn;
}
public boolean isSpaceChar(int c) {
if (filter != null) {
return filter.isSpaceChar(c);
}
return isWhitespace(c);
}
public static boolean isWhitespace(int c) {
return c == ' ' || c == '\n' || c == '\r' || c == '\t' || c == -1;
}
public interface SpaceCharFilter {
public boolean isSpaceChar(int ch);
}
}
static class OutputWriter {
private final PrintWriter writer;
public OutputWriter(OutputStream outputStream) {
writer = new PrintWriter(new BufferedWriter(new OutputStreamWriter(outputStream)));
}
public OutputWriter(Writer writer) {
this.writer = new PrintWriter(writer);
}
public void close() {
writer.close();
}
public void println(long i) {
writer.println(i);
}
}
static class Utilities {
public static long mul(long x, long y, long mod) {
return (x % mod) * (y % mod) % mod;
}
public static long power(long a, long k, long m) {
long res = 1;
while (k > 0) {
if ((k & 1) != 0) {
res = mul(res, a, m);
}
a = mul(a, a, m);
k >>= 1;
}
return res;
}
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(n): The time complexity increases proportionally to the input size n in a linear manner.
- others: The time complexity does not fit any of the above categories or cannot be clearly classified.
- O(log(n)): The time complexity increases logarithmically in relation to the input size.
- O(nlog(n)): The time complexity combines linear and logarithmic growth factors.
- O(n^2): The time complexity grows proportionally to the square of the input size.
- non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially.
- O(1): The time complexity is constant to the input size n.
- O(n^3): The time complexity scales proportionally to the cube of the input size.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
| 1,204
| 1,323
|
2,867
|
import java.util.*;
import java.io.*;
import java.math.*;
public class A {
public static void main(String[] args) {
Scanner sc = new Scanner(System.in);
BigInteger l = sc.nextBigInteger();
BigInteger r = sc.nextBigInteger();
BigInteger a = l.add(BigInteger.ZERO);
while (a.compareTo(r) < 0) {
BigInteger b = a.add(BigInteger.ONE);
while (b.compareTo(r) < 0) {
try {
a.modInverse(b);
} catch (ArithmeticException e) {
b = b.add(BigInteger.ONE);
continue;
}
BigInteger c = b.add(BigInteger.ONE);
while (c.compareTo(r) <= 0) {
try {
b.modInverse(c);
try {
a.modInverse(c);
} catch (ArithmeticException e) {
System.out.printf("%s %s %s\n", a.toString(), b.toString(), c.toString());
return;
}
} catch (ArithmeticException e) {
}
c = c.add(BigInteger.ONE);
}
b = b.add(BigInteger.ONE);
}
a = a.add(BigInteger.ONE);
}
System.out.println("-1");
}
}
|
O(1)
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Classify the following Java code's worst-case time complexity according to its relationship to the input size n.
</TASK>
<CODE>
import java.util.*;
import java.io.*;
import java.math.*;
public class A {
public static void main(String[] args) {
Scanner sc = new Scanner(System.in);
BigInteger l = sc.nextBigInteger();
BigInteger r = sc.nextBigInteger();
BigInteger a = l.add(BigInteger.ZERO);
while (a.compareTo(r) < 0) {
BigInteger b = a.add(BigInteger.ONE);
while (b.compareTo(r) < 0) {
try {
a.modInverse(b);
} catch (ArithmeticException e) {
b = b.add(BigInteger.ONE);
continue;
}
BigInteger c = b.add(BigInteger.ONE);
while (c.compareTo(r) <= 0) {
try {
b.modInverse(c);
try {
a.modInverse(c);
} catch (ArithmeticException e) {
System.out.printf("%s %s %s\n", a.toString(), b.toString(), c.toString());
return;
}
} catch (ArithmeticException e) {
}
c = c.add(BigInteger.ONE);
}
b = b.add(BigInteger.ONE);
}
a = a.add(BigInteger.ONE);
}
System.out.println("-1");
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(n): The running time grows linearly with the input size n.
- O(log(n)): The running time increases with the logarithm of the input size n.
- O(1): The running time does not change regardless of the input size n.
- O(n^3): The running time increases with the cube of the input size n.
- O(n^2): The running time increases with the square of the input size n.
- O(nlog(n)): The running time increases with the product of n and logarithm of n.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Classify the following Java code's worst-case time complexity according to its relationship to the input size n.
</TASK>
<CODE>
import java.util.*;
import java.io.*;
import java.math.*;
public class A {
public static void main(String[] args) {
Scanner sc = new Scanner(System.in);
BigInteger l = sc.nextBigInteger();
BigInteger r = sc.nextBigInteger();
BigInteger a = l.add(BigInteger.ZERO);
while (a.compareTo(r) < 0) {
BigInteger b = a.add(BigInteger.ONE);
while (b.compareTo(r) < 0) {
try {
a.modInverse(b);
} catch (ArithmeticException e) {
b = b.add(BigInteger.ONE);
continue;
}
BigInteger c = b.add(BigInteger.ONE);
while (c.compareTo(r) <= 0) {
try {
b.modInverse(c);
try {
a.modInverse(c);
} catch (ArithmeticException e) {
System.out.printf("%s %s %s\n", a.toString(), b.toString(), c.toString());
return;
}
} catch (ArithmeticException e) {
}
c = c.add(BigInteger.ONE);
}
b = b.add(BigInteger.ONE);
}
a = a.add(BigInteger.ONE);
}
System.out.println("-1");
}
}
</CODE>
<EVALUATION_RUBRIC>
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- O(log(n)): The running time increases with the logarithm of the input size n.
- O(n^2): The running time increases with the square of the input size n.
- O(nlog(n)): The running time increases with the product of n and logarithm of n.
- O(n): The running time grows linearly with the input size n.
- O(n^3): The running time increases with the cube of the input size n.
- O(1): The running time does not change regardless of the input size n.
- others: The code does not clearly correspond to the listed classes or has an unclassified time complexity.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
| 598
| 2,861
|
1,885
|
import java.io.BufferedReader;
import java.io.File;
import java.io.FileNotFoundException;
import java.io.FileReader;
import java.io.IOException;
import java.io.InputStream;
import java.io.InputStreamReader;
import java.io.PrintWriter;
import java.math.BigInteger;
import java.util.HashMap;
import java.util.StringTokenizer;
public class D
{
public static void main(String[] args) throws IOException
{
Scanner sc = new Scanner(System.in);
PrintWriter pw = new PrintWriter(System.out);
BigInteger ans = BigInteger.ZERO;
int n = sc.nextInt();
int arr[] = new int[n];
long cum[] = new long[n];
for (int i = 0; i < n; i++)
arr[i] = sc.nextInt();
// int n=(int)2e5;
// for(int i=0;i<n;i++){
// arr[i]=1;
// if(i>n/2)
// arr[i]=(int)1e9;
// }
for (int i = 0; i < cum.length; i++)
{
cum[i] = arr[i];
if(i > 0)
cum[i] += cum[i-1];
}
for (int i = 0; i < n; i++)
ans = ans.add(BigInteger.valueOf((1l*(i+1)*arr[i] - cum[i])));
HashMap<Integer, Integer> map = new HashMap<Integer, Integer>();
for (int i = 0; i < n; i++)
{
ans = ans.subtract(BigInteger.valueOf(map.getOrDefault(arr[i]-1, 0)));
ans = ans.add(BigInteger.valueOf(map.getOrDefault(arr[i]+1, 0)));
map.put(arr[i], map.getOrDefault(arr[i], 0)+1);
}
pw.println(ans);
pw.flush();
pw.close();
}
static class Scanner
{
StringTokenizer st;
BufferedReader br;
public Scanner(InputStream s)
{
br = new BufferedReader(new InputStreamReader(s));
}
public Scanner(String s) throws FileNotFoundException
{
br = new BufferedReader(new FileReader(new File((s))));
}
public String next() throws IOException
{
while (st == null || !st.hasMoreTokens())
st = new StringTokenizer(br.readLine());
return st.nextToken();
}
public int nextInt() throws IOException
{
return Integer.parseInt(next());
}
public long nextLong() throws IOException
{
return Long.parseLong(next());
}
public String nextLine() throws IOException
{
return br.readLine();
}
public double nextDouble() throws IOException
{
String x = next();
StringBuilder sb = new StringBuilder("0");
double res = 0, f = 1;
boolean dec = false, neg = false;
int start = 0;
if (x.charAt(0) == '-')
{
neg = true;
start++;
}
for (int i = start; i < x.length(); i++)
if (x.charAt(i) == '.')
{
res = Long.parseLong(sb.toString());
sb = new StringBuilder("0");
dec = true;
} else
{
sb.append(x.charAt(i));
if (dec)
f *= 10;
}
res += Long.parseLong(sb.toString()) / f;
return res * (neg ? -1 : 1);
}
public boolean ready() throws IOException
{
return br.ready();
}
}
}
|
O(nlog(n))
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n.
</TASK>
<CODE>
import java.io.BufferedReader;
import java.io.File;
import java.io.FileNotFoundException;
import java.io.FileReader;
import java.io.IOException;
import java.io.InputStream;
import java.io.InputStreamReader;
import java.io.PrintWriter;
import java.math.BigInteger;
import java.util.HashMap;
import java.util.StringTokenizer;
public class D
{
public static void main(String[] args) throws IOException
{
Scanner sc = new Scanner(System.in);
PrintWriter pw = new PrintWriter(System.out);
BigInteger ans = BigInteger.ZERO;
int n = sc.nextInt();
int arr[] = new int[n];
long cum[] = new long[n];
for (int i = 0; i < n; i++)
arr[i] = sc.nextInt();
// int n=(int)2e5;
// for(int i=0;i<n;i++){
// arr[i]=1;
// if(i>n/2)
// arr[i]=(int)1e9;
// }
for (int i = 0; i < cum.length; i++)
{
cum[i] = arr[i];
if(i > 0)
cum[i] += cum[i-1];
}
for (int i = 0; i < n; i++)
ans = ans.add(BigInteger.valueOf((1l*(i+1)*arr[i] - cum[i])));
HashMap<Integer, Integer> map = new HashMap<Integer, Integer>();
for (int i = 0; i < n; i++)
{
ans = ans.subtract(BigInteger.valueOf(map.getOrDefault(arr[i]-1, 0)));
ans = ans.add(BigInteger.valueOf(map.getOrDefault(arr[i]+1, 0)));
map.put(arr[i], map.getOrDefault(arr[i], 0)+1);
}
pw.println(ans);
pw.flush();
pw.close();
}
static class Scanner
{
StringTokenizer st;
BufferedReader br;
public Scanner(InputStream s)
{
br = new BufferedReader(new InputStreamReader(s));
}
public Scanner(String s) throws FileNotFoundException
{
br = new BufferedReader(new FileReader(new File((s))));
}
public String next() throws IOException
{
while (st == null || !st.hasMoreTokens())
st = new StringTokenizer(br.readLine());
return st.nextToken();
}
public int nextInt() throws IOException
{
return Integer.parseInt(next());
}
public long nextLong() throws IOException
{
return Long.parseLong(next());
}
public String nextLine() throws IOException
{
return br.readLine();
}
public double nextDouble() throws IOException
{
String x = next();
StringBuilder sb = new StringBuilder("0");
double res = 0, f = 1;
boolean dec = false, neg = false;
int start = 0;
if (x.charAt(0) == '-')
{
neg = true;
start++;
}
for (int i = start; i < x.length(); i++)
if (x.charAt(i) == '.')
{
res = Long.parseLong(sb.toString());
sb = new StringBuilder("0");
dec = true;
} else
{
sb.append(x.charAt(i));
if (dec)
f *= 10;
}
res += Long.parseLong(sb.toString()) / f;
return res * (neg ? -1 : 1);
}
public boolean ready() throws IOException
{
return br.ready();
}
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(n): The execution time ascends in a one-to-one ratio with the input size n.
- O(log(n)): The execution time ascends in proportion to the logarithm of the input size n.
- O(n^3): The execution time ascends in proportion to the cube of the input size n.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially.
- O(n^2): The execution time ascends in proportion to the square of the input size n.
- O(1): The execution time is unaffected by the size of the input n.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Classify the following Java code's worst-case time complexity according to its relationship to the input size n.
</TASK>
<CODE>
import java.io.BufferedReader;
import java.io.File;
import java.io.FileNotFoundException;
import java.io.FileReader;
import java.io.IOException;
import java.io.InputStream;
import java.io.InputStreamReader;
import java.io.PrintWriter;
import java.math.BigInteger;
import java.util.HashMap;
import java.util.StringTokenizer;
public class D
{
public static void main(String[] args) throws IOException
{
Scanner sc = new Scanner(System.in);
PrintWriter pw = new PrintWriter(System.out);
BigInteger ans = BigInteger.ZERO;
int n = sc.nextInt();
int arr[] = new int[n];
long cum[] = new long[n];
for (int i = 0; i < n; i++)
arr[i] = sc.nextInt();
// int n=(int)2e5;
// for(int i=0;i<n;i++){
// arr[i]=1;
// if(i>n/2)
// arr[i]=(int)1e9;
// }
for (int i = 0; i < cum.length; i++)
{
cum[i] = arr[i];
if(i > 0)
cum[i] += cum[i-1];
}
for (int i = 0; i < n; i++)
ans = ans.add(BigInteger.valueOf((1l*(i+1)*arr[i] - cum[i])));
HashMap<Integer, Integer> map = new HashMap<Integer, Integer>();
for (int i = 0; i < n; i++)
{
ans = ans.subtract(BigInteger.valueOf(map.getOrDefault(arr[i]-1, 0)));
ans = ans.add(BigInteger.valueOf(map.getOrDefault(arr[i]+1, 0)));
map.put(arr[i], map.getOrDefault(arr[i], 0)+1);
}
pw.println(ans);
pw.flush();
pw.close();
}
static class Scanner
{
StringTokenizer st;
BufferedReader br;
public Scanner(InputStream s)
{
br = new BufferedReader(new InputStreamReader(s));
}
public Scanner(String s) throws FileNotFoundException
{
br = new BufferedReader(new FileReader(new File((s))));
}
public String next() throws IOException
{
while (st == null || !st.hasMoreTokens())
st = new StringTokenizer(br.readLine());
return st.nextToken();
}
public int nextInt() throws IOException
{
return Integer.parseInt(next());
}
public long nextLong() throws IOException
{
return Long.parseLong(next());
}
public String nextLine() throws IOException
{
return br.readLine();
}
public double nextDouble() throws IOException
{
String x = next();
StringBuilder sb = new StringBuilder("0");
double res = 0, f = 1;
boolean dec = false, neg = false;
int start = 0;
if (x.charAt(0) == '-')
{
neg = true;
start++;
}
for (int i = start; i < x.length(); i++)
if (x.charAt(i) == '.')
{
res = Long.parseLong(sb.toString());
sb = new StringBuilder("0");
dec = true;
} else
{
sb.append(x.charAt(i));
if (dec)
f *= 10;
}
res += Long.parseLong(sb.toString()) / f;
return res * (neg ? -1 : 1);
}
public boolean ready() throws IOException
{
return br.ready();
}
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(n^2): The running time increases with the square of the input size n.
- others: The code does not clearly correspond to the listed classes or has an unclassified time complexity.
- O(n^3): The running time increases with the cube of the input size n.
- O(nlog(n)): The running time increases with the product of n and logarithm of n.
- O(n): The running time grows linearly with the input size n.
- O(log(n)): The running time increases with the logarithm of the input size n.
- O(1): The running time does not change regardless of the input size n.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
| 1,124
| 1,881
|
2,803
|
import java.util.*;
import java.io.*;
public class Subtractions
{
/************************ SOLUTION STARTS HERE ***********************/
static long modifiedEuclidGCD(int a , int b) {
return b == 0 ? 0 : (a / b) + modifiedEuclidGCD(b, a % b);
}
private static void solve(FastScanner s1, PrintWriter out){
int T = s1.nextInt();
while(T-->0)
out.println(modifiedEuclidGCD(s1.nextInt(), s1.nextInt()));
}
/************************ SOLUTION ENDS HERE ************************/
/************************ TEMPLATE STARTS HERE *********************/
public static void main(String []args) throws IOException {
FastScanner in = new FastScanner(System.in);
PrintWriter out =
new PrintWriter(new BufferedWriter(new OutputStreamWriter(System.out)), false);
solve(in, out);
in.close();
out.close();
}
static class FastScanner{
BufferedReader reader;
StringTokenizer st;
FastScanner(InputStream stream){reader=new BufferedReader(new InputStreamReader(stream));st=null;}
String next()
{while(st == null || !st.hasMoreTokens()){try{String line = reader.readLine();if(line == null){return null;}
st = new StringTokenizer(line);}catch (Exception e){throw new RuntimeException();}}return st.nextToken();}
String nextLine() {String s=null;try{s=reader.readLine();}catch(IOException e){e.printStackTrace();}return s;}
int nextInt() {return Integer.parseInt(next());}
long nextLong() {return Long.parseLong(next());}
double nextDouble(){return Double.parseDouble(next());}
char nextChar() {return next().charAt(0);}
int[] nextIntArray(int n) {int[] a= new int[n]; int i=0;while(i<n){a[i++]=nextInt();} return a;}
long[] nextLongArray(int n) {long[]a= new long[n]; int i=0;while(i<n){a[i++]=nextLong();} return a;}
int[] nextIntArrayOneBased(int n) {int[] a= new int[n+1]; int i=1;while(i<=n){a[i++]=nextInt();} return a;}
long[] nextLongArrayOneBased(int n){long[]a= new long[n+1];int i=1;while(i<=n){a[i++]=nextLong();}return a;}
void close(){try{reader.close();}catch(IOException e){e.printStackTrace();}}
}
/************************ TEMPLATE ENDS HERE ************************/
}
|
O(1)
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Determine the worst-case time complexity category of a given Java code based on input size n.
</TASK>
<CODE>
import java.util.*;
import java.io.*;
public class Subtractions
{
/************************ SOLUTION STARTS HERE ***********************/
static long modifiedEuclidGCD(int a , int b) {
return b == 0 ? 0 : (a / b) + modifiedEuclidGCD(b, a % b);
}
private static void solve(FastScanner s1, PrintWriter out){
int T = s1.nextInt();
while(T-->0)
out.println(modifiedEuclidGCD(s1.nextInt(), s1.nextInt()));
}
/************************ SOLUTION ENDS HERE ************************/
/************************ TEMPLATE STARTS HERE *********************/
public static void main(String []args) throws IOException {
FastScanner in = new FastScanner(System.in);
PrintWriter out =
new PrintWriter(new BufferedWriter(new OutputStreamWriter(System.out)), false);
solve(in, out);
in.close();
out.close();
}
static class FastScanner{
BufferedReader reader;
StringTokenizer st;
FastScanner(InputStream stream){reader=new BufferedReader(new InputStreamReader(stream));st=null;}
String next()
{while(st == null || !st.hasMoreTokens()){try{String line = reader.readLine();if(line == null){return null;}
st = new StringTokenizer(line);}catch (Exception e){throw new RuntimeException();}}return st.nextToken();}
String nextLine() {String s=null;try{s=reader.readLine();}catch(IOException e){e.printStackTrace();}return s;}
int nextInt() {return Integer.parseInt(next());}
long nextLong() {return Long.parseLong(next());}
double nextDouble(){return Double.parseDouble(next());}
char nextChar() {return next().charAt(0);}
int[] nextIntArray(int n) {int[] a= new int[n]; int i=0;while(i<n){a[i++]=nextInt();} return a;}
long[] nextLongArray(int n) {long[]a= new long[n]; int i=0;while(i<n){a[i++]=nextLong();} return a;}
int[] nextIntArrayOneBased(int n) {int[] a= new int[n+1]; int i=1;while(i<=n){a[i++]=nextInt();} return a;}
long[] nextLongArrayOneBased(int n){long[]a= new long[n+1];int i=1;while(i<=n){a[i++]=nextLong();}return a;}
void close(){try{reader.close();}catch(IOException e){e.printStackTrace();}}
}
/************************ TEMPLATE ENDS HERE ************************/
}
</CODE>
<EVALUATION_RUBRIC>
- O(n^3): The time complexity scales proportionally to the cube of the input size.
- O(1): The time complexity is constant to the input size n.
- O(log(n)): The time complexity increases logarithmically in relation to the input size.
- non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially.
- O(n): The time complexity increases proportionally to the input size n in a linear manner.
- O(n^2): The time complexity grows proportionally to the square of the input size.
- O(nlog(n)): The time complexity combines linear and logarithmic growth factors.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Determine the worst-case time complexity category of a given Java code based on input size n.
</TASK>
<CODE>
import java.util.*;
import java.io.*;
public class Subtractions
{
/************************ SOLUTION STARTS HERE ***********************/
static long modifiedEuclidGCD(int a , int b) {
return b == 0 ? 0 : (a / b) + modifiedEuclidGCD(b, a % b);
}
private static void solve(FastScanner s1, PrintWriter out){
int T = s1.nextInt();
while(T-->0)
out.println(modifiedEuclidGCD(s1.nextInt(), s1.nextInt()));
}
/************************ SOLUTION ENDS HERE ************************/
/************************ TEMPLATE STARTS HERE *********************/
public static void main(String []args) throws IOException {
FastScanner in = new FastScanner(System.in);
PrintWriter out =
new PrintWriter(new BufferedWriter(new OutputStreamWriter(System.out)), false);
solve(in, out);
in.close();
out.close();
}
static class FastScanner{
BufferedReader reader;
StringTokenizer st;
FastScanner(InputStream stream){reader=new BufferedReader(new InputStreamReader(stream));st=null;}
String next()
{while(st == null || !st.hasMoreTokens()){try{String line = reader.readLine();if(line == null){return null;}
st = new StringTokenizer(line);}catch (Exception e){throw new RuntimeException();}}return st.nextToken();}
String nextLine() {String s=null;try{s=reader.readLine();}catch(IOException e){e.printStackTrace();}return s;}
int nextInt() {return Integer.parseInt(next());}
long nextLong() {return Long.parseLong(next());}
double nextDouble(){return Double.parseDouble(next());}
char nextChar() {return next().charAt(0);}
int[] nextIntArray(int n) {int[] a= new int[n]; int i=0;while(i<n){a[i++]=nextInt();} return a;}
long[] nextLongArray(int n) {long[]a= new long[n]; int i=0;while(i<n){a[i++]=nextLong();} return a;}
int[] nextIntArrayOneBased(int n) {int[] a= new int[n+1]; int i=1;while(i<=n){a[i++]=nextInt();} return a;}
long[] nextLongArrayOneBased(int n){long[]a= new long[n+1];int i=1;while(i<=n){a[i++]=nextLong();}return a;}
void close(){try{reader.close();}catch(IOException e){e.printStackTrace();}}
}
/************************ TEMPLATE ENDS HERE ************************/
}
</CODE>
<EVALUATION_RUBRIC>
- O(n^3): The time complexity scales proportionally to the cube of the input size.
- non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially.
- others: The time complexity does not fit any of the above categories or cannot be clearly classified.
- O(nlog(n)): The time complexity combines linear and logarithmic growth factors.
- O(1): The time complexity is constant to the input size n.
- O(n^2): The time complexity grows proportionally to the square of the input size.
- O(n): The time complexity increases proportionally to the input size n in a linear manner.
- O(log(n)): The time complexity increases logarithmically in relation to the input size.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
| 900
| 2,797
|
2,903
|
import java.util.*;
public class A {
public static void main(String[] args)
{
Scanner s = new Scanner(System.in);
int n = s.nextInt();
s.close();
if (n % 2 == 0)
System.out.print("4 " + (n-4));
else
System.out.print("9 " + (n-9));
}
}
|
O(1)
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Determine the worst-case time complexity category of a given Java code based on input size n.
</TASK>
<CODE>
import java.util.*;
public class A {
public static void main(String[] args)
{
Scanner s = new Scanner(System.in);
int n = s.nextInt();
s.close();
if (n % 2 == 0)
System.out.print("4 " + (n-4));
else
System.out.print("9 " + (n-9));
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(log(n)): The time complexity increases logarithmically in relation to the input size.
- O(n^2): The time complexity grows proportionally to the square of the input size.
- O(n): The time complexity increases proportionally to the input size n in a linear manner.
- O(n^3): The time complexity scales proportionally to the cube of the input size.
- O(nlog(n)): The time complexity combines linear and logarithmic growth factors.
- O(1): The time complexity is constant to the input size n.
- non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n.
</TASK>
<CODE>
import java.util.*;
public class A {
public static void main(String[] args)
{
Scanner s = new Scanner(System.in);
int n = s.nextInt();
s.close();
if (n % 2 == 0)
System.out.print("4 " + (n-4));
else
System.out.print("9 " + (n-9));
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(n^3): The execution time ascends in proportion to the cube of the input size n.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially.
- O(1): The execution time is unaffected by the size of the input n.
- O(n): The execution time ascends in a one-to-one ratio with the input size n.
- O(n^2): The execution time ascends in proportion to the square of the input size n.
- others: The time complexity does not fit to any of the given categories or is ambiguous.
- O(log(n)): The execution time ascends in proportion to the logarithm of the input size n.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
| 412
| 2,897
|
3,893
|
import java.lang.*;
import java.util.*;
import java.io.*;
public class Main {
static void deal(int n,int[] arr) {
int[] a = new int[n];
a[0] = 1;
int l = 1;
out.println(toString(a,l));
for(int i=1;i<n;i++) {
if(arr[i] == 1) {
a[l] = 1;
l++;
} else {
int index = l-1;
while(index>=0 && a[index] != arr[i]-1) {
index--;
}
a[index]++;
l = index+1;
}
out.println(toString(a,l));
}
}
static String toString(int[] arr,int l) {
StringBuilder sb = new StringBuilder();
for(int i=0;i<l-1;i++) {
sb.append(arr[i]);
sb.append('.');
}
sb.append(arr[l-1]);
return sb.toString();
}
public static void main(String[] args) {
MyScanner sc = new MyScanner();
out = new PrintWriter(new BufferedOutputStream(System.out));
int t = sc.nextInt();
for(int i=0;i<t;i++) {
int n = sc.nextInt();
int[] arr = new int[n];
for(int j=0;j<n;j++) arr[j] = sc.nextInt();
deal(n,arr);
}
out.close();
}
//-----------PrintWriter for faster output---------------------------------
public static PrintWriter out;
//-----------MyScanner class for faster input----------
public static class MyScanner {
BufferedReader br;
StringTokenizer st;
public MyScanner() {
br = new BufferedReader(new InputStreamReader(System.in));
}
String next() {
while (st == null || !st.hasMoreElements()) {
try {
st = new StringTokenizer(br.readLine());
} catch (IOException e) {
e.printStackTrace();
}
}
return st.nextToken();
}
int nextInt() {
return Integer.parseInt(next());
}
long nextLong() {
return Long.parseLong(next());
}
double nextDouble() {
return Double.parseDouble(next());
}
String nextLine(){
String str = "";
try {
str = br.readLine();
} catch (IOException e) {
e.printStackTrace();
}
return str;
}
}
}
|
O(n^3)
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Determine the worst-case time complexity category of a given Java code based on input size n.
</TASK>
<CODE>
import java.lang.*;
import java.util.*;
import java.io.*;
public class Main {
static void deal(int n,int[] arr) {
int[] a = new int[n];
a[0] = 1;
int l = 1;
out.println(toString(a,l));
for(int i=1;i<n;i++) {
if(arr[i] == 1) {
a[l] = 1;
l++;
} else {
int index = l-1;
while(index>=0 && a[index] != arr[i]-1) {
index--;
}
a[index]++;
l = index+1;
}
out.println(toString(a,l));
}
}
static String toString(int[] arr,int l) {
StringBuilder sb = new StringBuilder();
for(int i=0;i<l-1;i++) {
sb.append(arr[i]);
sb.append('.');
}
sb.append(arr[l-1]);
return sb.toString();
}
public static void main(String[] args) {
MyScanner sc = new MyScanner();
out = new PrintWriter(new BufferedOutputStream(System.out));
int t = sc.nextInt();
for(int i=0;i<t;i++) {
int n = sc.nextInt();
int[] arr = new int[n];
for(int j=0;j<n;j++) arr[j] = sc.nextInt();
deal(n,arr);
}
out.close();
}
//-----------PrintWriter for faster output---------------------------------
public static PrintWriter out;
//-----------MyScanner class for faster input----------
public static class MyScanner {
BufferedReader br;
StringTokenizer st;
public MyScanner() {
br = new BufferedReader(new InputStreamReader(System.in));
}
String next() {
while (st == null || !st.hasMoreElements()) {
try {
st = new StringTokenizer(br.readLine());
} catch (IOException e) {
e.printStackTrace();
}
}
return st.nextToken();
}
int nextInt() {
return Integer.parseInt(next());
}
long nextLong() {
return Long.parseLong(next());
}
double nextDouble() {
return Double.parseDouble(next());
}
String nextLine(){
String str = "";
try {
str = br.readLine();
} catch (IOException e) {
e.printStackTrace();
}
return str;
}
}
}
</CODE>
<EVALUATION_RUBRIC>
- non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially.
- O(1): The time complexity is constant to the input size n.
- O(log(n)): The time complexity increases logarithmically in relation to the input size.
- O(n^3): The time complexity scales proportionally to the cube of the input size.
- O(n): The time complexity increases proportionally to the input size n in a linear manner.
- O(n^2): The time complexity grows proportionally to the square of the input size.
- O(nlog(n)): The time complexity combines linear and logarithmic growth factors.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Classify the following Java code's worst-case time complexity according to its relationship to the input size n.
</TASK>
<CODE>
import java.lang.*;
import java.util.*;
import java.io.*;
public class Main {
static void deal(int n,int[] arr) {
int[] a = new int[n];
a[0] = 1;
int l = 1;
out.println(toString(a,l));
for(int i=1;i<n;i++) {
if(arr[i] == 1) {
a[l] = 1;
l++;
} else {
int index = l-1;
while(index>=0 && a[index] != arr[i]-1) {
index--;
}
a[index]++;
l = index+1;
}
out.println(toString(a,l));
}
}
static String toString(int[] arr,int l) {
StringBuilder sb = new StringBuilder();
for(int i=0;i<l-1;i++) {
sb.append(arr[i]);
sb.append('.');
}
sb.append(arr[l-1]);
return sb.toString();
}
public static void main(String[] args) {
MyScanner sc = new MyScanner();
out = new PrintWriter(new BufferedOutputStream(System.out));
int t = sc.nextInt();
for(int i=0;i<t;i++) {
int n = sc.nextInt();
int[] arr = new int[n];
for(int j=0;j<n;j++) arr[j] = sc.nextInt();
deal(n,arr);
}
out.close();
}
//-----------PrintWriter for faster output---------------------------------
public static PrintWriter out;
//-----------MyScanner class for faster input----------
public static class MyScanner {
BufferedReader br;
StringTokenizer st;
public MyScanner() {
br = new BufferedReader(new InputStreamReader(System.in));
}
String next() {
while (st == null || !st.hasMoreElements()) {
try {
st = new StringTokenizer(br.readLine());
} catch (IOException e) {
e.printStackTrace();
}
}
return st.nextToken();
}
int nextInt() {
return Integer.parseInt(next());
}
long nextLong() {
return Long.parseLong(next());
}
double nextDouble() {
return Double.parseDouble(next());
}
String nextLine(){
String str = "";
try {
str = br.readLine();
} catch (IOException e) {
e.printStackTrace();
}
return str;
}
}
}
</CODE>
<EVALUATION_RUBRIC>
- others: The code does not clearly correspond to the listed classes or has an unclassified time complexity.
- O(log(n)): The running time increases with the logarithm of the input size n.
- O(1): The running time does not change regardless of the input size n.
- O(n^3): The running time increases with the cube of the input size n.
- O(n): The running time grows linearly with the input size n.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- O(nlog(n)): The running time increases with the product of n and logarithm of n.
- O(n^2): The running time increases with the square of the input size n.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
| 837
| 3,883
|
3,637
|
import java.io.*;
import java.util.*;
import static java.lang.Math.*;
public class incendio {
void dbg(Object...os) { System.err.println(Arrays.deepToString(os)); }
static StringTokenizer _stk; static BufferedReader input; static PrintWriter output;
static String next(){return _stk.nextToken();} static int nextInt(){return Integer.parseInt(next());}
static String readln()throws IOException {String l=input.readLine();_stk=l==null?null:new StringTokenizer(l," ");return l;}
public static void main(String[] args) throws IOException {
input = new BufferedReader(new FileReader("input.txt"));
output = new PrintWriter(new BufferedWriter(new FileWriter("output.txt")));
new incendio();
output.close();
}
incendio() throws IOException {
readln();
M = nextInt(); N = nextInt();
readln();
final int K = nextInt();
int xf[]=new int[K], yf[]=new int[K];
readln();
for(int i=0; i<K; i++) {
xf[i]=nextInt();
yf[i]=nextInt();
}
int best=-1, xbest=0, ybest=0;
for(int i=1; i<=M; i++) {
for(int j=1; j<=N; j++) {
int dist=Integer.MAX_VALUE;
for(int k=0; k<K; k++) {
dist = Math.min(dist, Math.abs(i-xf[k])+Math.abs(j-yf[k]));
}
if(dist>best) {
best=dist;
xbest=i;
ybest=j;
}
}
}
output.println(xbest+" "+ybest);
}
int M, N;
}
|
O(n^3)
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Determine the worst-case time complexity category of a given Java code based on input size n.
</TASK>
<CODE>
import java.io.*;
import java.util.*;
import static java.lang.Math.*;
public class incendio {
void dbg(Object...os) { System.err.println(Arrays.deepToString(os)); }
static StringTokenizer _stk; static BufferedReader input; static PrintWriter output;
static String next(){return _stk.nextToken();} static int nextInt(){return Integer.parseInt(next());}
static String readln()throws IOException {String l=input.readLine();_stk=l==null?null:new StringTokenizer(l," ");return l;}
public static void main(String[] args) throws IOException {
input = new BufferedReader(new FileReader("input.txt"));
output = new PrintWriter(new BufferedWriter(new FileWriter("output.txt")));
new incendio();
output.close();
}
incendio() throws IOException {
readln();
M = nextInt(); N = nextInt();
readln();
final int K = nextInt();
int xf[]=new int[K], yf[]=new int[K];
readln();
for(int i=0; i<K; i++) {
xf[i]=nextInt();
yf[i]=nextInt();
}
int best=-1, xbest=0, ybest=0;
for(int i=1; i<=M; i++) {
for(int j=1; j<=N; j++) {
int dist=Integer.MAX_VALUE;
for(int k=0; k<K; k++) {
dist = Math.min(dist, Math.abs(i-xf[k])+Math.abs(j-yf[k]));
}
if(dist>best) {
best=dist;
xbest=i;
ybest=j;
}
}
}
output.println(xbest+" "+ybest);
}
int M, N;
}
</CODE>
<EVALUATION_RUBRIC>
- non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially.
- O(nlog(n)): The time complexity combines linear and logarithmic growth factors.
- O(n^2): The time complexity grows proportionally to the square of the input size.
- O(1): The time complexity is constant to the input size n.
- O(n): The time complexity increases proportionally to the input size n in a linear manner.
- O(log(n)): The time complexity increases logarithmically in relation to the input size.
- O(n^3): The time complexity scales proportionally to the cube of the input size.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Classify the following Java code's worst-case time complexity according to its relationship to the input size n.
</TASK>
<CODE>
import java.io.*;
import java.util.*;
import static java.lang.Math.*;
public class incendio {
void dbg(Object...os) { System.err.println(Arrays.deepToString(os)); }
static StringTokenizer _stk; static BufferedReader input; static PrintWriter output;
static String next(){return _stk.nextToken();} static int nextInt(){return Integer.parseInt(next());}
static String readln()throws IOException {String l=input.readLine();_stk=l==null?null:new StringTokenizer(l," ");return l;}
public static void main(String[] args) throws IOException {
input = new BufferedReader(new FileReader("input.txt"));
output = new PrintWriter(new BufferedWriter(new FileWriter("output.txt")));
new incendio();
output.close();
}
incendio() throws IOException {
readln();
M = nextInt(); N = nextInt();
readln();
final int K = nextInt();
int xf[]=new int[K], yf[]=new int[K];
readln();
for(int i=0; i<K; i++) {
xf[i]=nextInt();
yf[i]=nextInt();
}
int best=-1, xbest=0, ybest=0;
for(int i=1; i<=M; i++) {
for(int j=1; j<=N; j++) {
int dist=Integer.MAX_VALUE;
for(int k=0; k<K; k++) {
dist = Math.min(dist, Math.abs(i-xf[k])+Math.abs(j-yf[k]));
}
if(dist>best) {
best=dist;
xbest=i;
ybest=j;
}
}
}
output.println(xbest+" "+ybest);
}
int M, N;
}
</CODE>
<EVALUATION_RUBRIC>
- O(n^3): The running time increases with the cube of the input size n.
- O(n^2): The running time increases with the square of the input size n.
- O(log(n)): The running time increases with the logarithm of the input size n.
- O(n): The running time grows linearly with the input size n.
- others: The code does not clearly correspond to the listed classes or has an unclassified time complexity.
- O(nlog(n)): The running time increases with the product of n and logarithm of n.
- O(1): The running time does not change regardless of the input size n.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
| 700
| 3,629
|
4,516
|
import java.io.*;
import java.util.*;
import static java.lang.Math.*;
import static java.util.Arrays.*;
// editorial sol
public class cf1238e {
public static void main(String[] args) throws IOException {
int n = rni(), m = ni(), cnt[][] = new int[m][m], dp[] = new int[1 << m], all = (1 << m) - 1;
char[] s = rcha();
for (int i = 1; i < n; ++i) {
++cnt[s[i] - 'a'][s[i - 1] - 'a'];
++cnt[s[i - 1] - 'a'][s[i] - 'a'];
}
fill(dp, IBIG);
dp[0] = 0;
int cnt_bit[] = new int[1 << m], min_bit[] = new int[1 << m], d[][] = new int[1 << m][m];
for (int mask = 1; mask <= all; ++mask) {
cnt_bit[mask] = 1 + cnt_bit[mask & (mask - 1)];
for (int i = 0; i < n; ++i) {
if ((mask & (1 << i)) > 0) {
min_bit[mask] = i;
break;
}
}
}
for (int mask = 1; mask <= all; ++mask) {
for (int i = 0; i < m; ++i) {
d[mask][i] = d[mask ^ (1 << min_bit[mask])][i] + cnt[i][min_bit[mask]];
}
}
for (int mask = 0; mask <= all; ++mask) {
for (int i = 0; i < m; ++i) {
if ((mask & (1 << i)) > 0) {
continue;
}
int pos = cnt_bit[mask], next = mask | (1 << i);
dp[next] = min(dp[next], dp[mask] + pos * (d[mask][i] - d[all ^ next][i]));
}
}
prln(dp[all]);
close();
}
static BufferedReader __in = new BufferedReader(new InputStreamReader(System.in));
static PrintWriter __out = new PrintWriter(new OutputStreamWriter(System.out));
static StringTokenizer input;
static Random __rand = new Random();
// references
// IBIG = 1e9 + 7
// IMAX ~= 2e9
// LMAX ~= 9e18
// constants
static final int IBIG = 1000000007;
static final int IMAX = 2147483647;
static final int IMIN = -2147483648;
static final long LMAX = 9223372036854775807L;
static final long LMIN = -9223372036854775808L;
// math util
static int minof(int a, int b, int c) {return min(a, min(b, c));}
static int minof(int... x) {if (x.length == 1) return x[0]; if (x.length == 2) return min(x[0], x[1]); if (x.length == 3) return min(x[0], min(x[1], x[2])); int min = x[0]; for (int i = 1; i < x.length; ++i) if (x[i] < min) min = x[i]; return min;}
static long minof(long a, long b, long c) {return min(a, min(b, c));}
static long minof(long... x) {if (x.length == 1) return x[0]; if (x.length == 2) return min(x[0], x[1]); if (x.length == 3) return min(x[0], min(x[1], x[2])); long min = x[0]; for (int i = 1; i < x.length; ++i) if (x[i] < min) min = x[i]; return min;}
static int maxof(int a, int b, int c) {return max(a, max(b, c));}
static int maxof(int... x) {if (x.length == 1) return x[0]; if (x.length == 2) return max(x[0], x[1]); if (x.length == 3) return max(x[0], max(x[1], x[2])); int max = x[0]; for (int i = 1; i < x.length; ++i) if (x[i] > max) max = x[i]; return max;}
static long maxof(long a, long b, long c) {return max(a, max(b, c));}
static long maxof(long... x) {if (x.length == 1) return x[0]; if (x.length == 2) return max(x[0], x[1]); if (x.length == 3) return max(x[0], max(x[1], x[2])); long max = x[0]; for (int i = 1; i < x.length; ++i) if (x[i] > max) max = x[i]; return max;}
static int powi(int a, int b) {if (a == 0) return 0; int ans = 1; while (b > 0) {if ((b & 1) > 0) ans *= a; a *= a; b >>= 1;} return ans;}
static long powl(long a, int b) {if (a == 0) return 0; long ans = 1; while (b > 0) {if ((b & 1) > 0) ans *= a; a *= a; b >>= 1;} return ans;}
static int fli(double d) {return (int) d;}
static int cei(double d) {return (int) ceil(d);}
static long fll(double d) {return (long) d;}
static long cel(double d) {return (long) ceil(d);}
static int gcf(int a, int b) {return b == 0 ? a : gcf(b, a % b);}
static long gcf(long a, long b) {return b == 0 ? a : gcf(b, a % b);}
static int lcm(int a, int b) {return a * b / gcf(a, b);}
static long lcm(long a, long b) {return a * b / gcf(a, b);}
static int randInt(int min, int max) {return __rand.nextInt(max - min + 1) + min;}
static long mix(long x) {x += 0x9e3779b97f4a7c15L; x = (x ^ (x >> 30)) * 0xbf58476d1ce4e5b9L; x = (x ^ (x >> 27)) * 0x94d049bb133111ebL; return x ^ (x >> 31);}
// array util
static void reverse(int[] a) {for (int i = 0, n = a.length, half = n / 2; i < half; ++i) {int swap = a[i]; a[i] = a[n - i - 1]; a[n - i - 1] = swap;}}
static void reverse(long[] a) {for (int i = 0, n = a.length, half = n / 2; i < half; ++i) {long swap = a[i]; a[i] = a[n - i - 1]; a[n - i - 1] = swap;}}
static void reverse(double[] a) {for (int i = 0, n = a.length, half = n / 2; i < half; ++i) {double swap = a[i]; a[i] = a[n - i - 1]; a[n - i - 1] = swap;}}
static void reverse(char[] a) {for (int i = 0, n = a.length, half = n / 2; i < half; ++i) {char swap = a[i]; a[i] = a[n - i - 1]; a[n - i - 1] = swap;}}
static void shuffle(int[] a) {int n = a.length - 1; for (int i = 0; i < n; ++i) {int ind = randInt(i, n); int swap = a[i]; a[i] = a[ind]; a[ind] = swap;}}
static void shuffle(long[] a) {int n = a.length - 1; for (int i = 0; i < n; ++i) {int ind = randInt(i, n); long swap = a[i]; a[i] = a[ind]; a[ind] = swap;}}
static void shuffle(double[] a) {int n = a.length - 1; for (int i = 0; i < n; ++i) {int ind = randInt(i, n); double swap = a[i]; a[i] = a[ind]; a[ind] = swap;}}
static void rsort(int[] a) {shuffle(a); sort(a);}
static void rsort(long[] a) {shuffle(a); sort(a);}
static void rsort(double[] a) {shuffle(a); sort(a);}
static int[] copy(int[] a) {int[] ans = new int[a.length]; for (int i = 0; i < a.length; ++i) ans[i] = a[i]; return ans;}
static long[] copy(long[] a) {long[] ans = new long[a.length]; for (int i = 0; i < a.length; ++i) ans[i] = a[i]; return ans;}
static double[] copy(double[] a) {double[] ans = new double[a.length]; for (int i = 0; i < a.length; ++i) ans[i] = a[i]; return ans;}
static char[] copy(char[] a) {char[] ans = new char[a.length]; for (int i = 0; i < a.length; ++i) ans[i] = a[i]; return ans;}
// graph util
static List<List<Integer>> g(int n) {List<List<Integer>> g = new ArrayList<>(); for (int i = 0; i < n; ++i) g.add(new ArrayList<>()); return g;}
static List<Set<Integer>> sg(int n) {List<Set<Integer>> g = new ArrayList<>(); for (int i = 0; i < n; ++i) g.add(new HashSet<>()); return g;}
static void c(List<? extends Collection<Integer>> g, int u, int v) {g.get(u).add(v); g.get(v).add(u);}
static void cto(List<? extends Collection<Integer>> g, int u, int v) {g.get(u).add(v);}
static void dc(List<? extends Collection<Integer>> g, int u, int v) {g.get(u).remove(v); g.get(v).remove(u);}
static void dcto(List<? extends Collection<Integer>> g, int u, int v) {g.get(u).remove(v);}
// input
static void r() throws IOException {input = new StringTokenizer(rline());}
static int ri() throws IOException {return Integer.parseInt(rline());}
static long rl() throws IOException {return Long.parseLong(rline());}
static double rd() throws IOException {return Double.parseDouble(rline());}
static int[] ria(int n) throws IOException {int[] a = new int[n]; r(); for (int i = 0; i < n; ++i) a[i] = ni(); return a;}
static int[] riam1(int n) throws IOException {int[] a = new int[n]; r(); for (int i = 0; i < n; ++i) a[i] = ni() - 1; return a;}
static long[] rla(int n) throws IOException {long[] a = new long[n]; r(); for (int i = 0; i < n; ++i) a[i] = nl(); return a;}
static double[] rda(int n) throws IOException {double[] a = new double[n]; r(); for (int i = 0; i < n; ++i) a[i] = nd(); return a;}
static char[] rcha() throws IOException {return rline().toCharArray();}
static String rline() throws IOException {return __in.readLine();}
static String n() {return input.nextToken();}
static int rni() throws IOException {r(); return ni();}
static int ni() {return Integer.parseInt(n());}
static long rnl() throws IOException {r(); return nl();}
static long nl() {return Long.parseLong(n());}
static double rnd() throws IOException {r(); return nd();}
static double nd() {return Double.parseDouble(n());}
static List<List<Integer>> rg(int n, int m) throws IOException {List<List<Integer>> g = g(n); for (int i = 0; i < m; ++i) c(g, rni() - 1, ni() - 1); return g;}
static void rg(List<List<Integer>> g, int m) throws IOException {for (int i = 0; i < m; ++i) c(g, rni() - 1, ni() - 1);}
static List<List<Integer>> rdg(int n, int m) throws IOException {List<List<Integer>> g = g(n); for (int i = 0; i < m; ++i) cto(g, rni() - 1, ni() - 1); return g;}
static void rdg(List<List<Integer>> g, int m) throws IOException {for (int i = 0; i < m; ++i) cto(g, rni() - 1, ni() - 1);}
static List<Set<Integer>> rsg(int n, int m) throws IOException {List<Set<Integer>> g = sg(n); for (int i = 0; i < m; ++i) c(g, rni() - 1, ni() - 1); return g;}
static void rsg(List<Set<Integer>> g, int m) throws IOException {for (int i = 0; i < m; ++i) c(g, rni() - 1, ni() - 1);}
static List<Set<Integer>> rdsg(int n, int m) throws IOException {List<Set<Integer>> g = sg(n); for (int i = 0; i < m; ++i) cto(g, rni() - 1, ni() - 1); return g;}
static void rdsg(List<Set<Integer>> g, int m) throws IOException {for (int i = 0; i < m; ++i) cto(g, rni() - 1, ni() - 1);}
// output
static void pr(int i) {__out.print(i);}
static void prln(int i) {__out.println(i);}
static void pr(long l) {__out.print(l);}
static void prln(long l) {__out.println(l);}
static void pr(double d) {__out.print(d);}
static void prln(double d) {__out.println(d);}
static void pr(char c) {__out.print(c);}
static void prln(char c) {__out.println(c);}
static void pr(char[] s) {__out.print(new String(s));}
static void prln(char[] s) {__out.println(new String(s));}
static void pr(String s) {__out.print(s);}
static void prln(String s) {__out.println(s);}
static void pr(Object o) {__out.print(o);}
static void prln(Object o) {__out.println(o);}
static void prln() {__out.println();}
static void pryes() {prln("yes");}
static void pry() {prln("Yes");}
static void prY() {prln("YES");}
static void prno() {prln("no");}
static void prn() {prln("No");}
static void prN() {prln("NO");}
static void pryesno(boolean b) {prln(b ? "yes" : "no");};
static void pryn(boolean b) {prln(b ? "Yes" : "No");}
static void prYN(boolean b) {prln(b ? "YES" : "NO");}
static void prln(int... a) {for (int i = 0, len = a.length - 1; i < len; pr(a[i]), pr(' '), ++i); if (a.length > 0) prln(a[a.length - 1]); else prln();}
static void prln(long... a) {for (int i = 0, len = a.length - 1; i < len; pr(a[i]), pr(' '), ++i); if (a.length > 0) prln(a[a.length - 1]); else prln();}
static void prln(double... a) {for (int i = 0, len = a.length - 1; i < len; pr(a[i]), pr(' '), ++i); if (a.length > 0) prln(a[a.length - 1]); else prln();}
static <T> void prln(Collection<T> c) {int n = c.size() - 1; Iterator<T> iter = c.iterator(); for (int i = 0; i < n; pr(iter.next()), pr(' '), ++i); if (n >= 0) prln(iter.next()); else prln();}
static void h() {prln("hlfd"); flush();}
static void flush() {__out.flush();}
static void close() {__out.close();}}
|
non-polynomial
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n.
</TASK>
<CODE>
import java.io.*;
import java.util.*;
import static java.lang.Math.*;
import static java.util.Arrays.*;
// editorial sol
public class cf1238e {
public static void main(String[] args) throws IOException {
int n = rni(), m = ni(), cnt[][] = new int[m][m], dp[] = new int[1 << m], all = (1 << m) - 1;
char[] s = rcha();
for (int i = 1; i < n; ++i) {
++cnt[s[i] - 'a'][s[i - 1] - 'a'];
++cnt[s[i - 1] - 'a'][s[i] - 'a'];
}
fill(dp, IBIG);
dp[0] = 0;
int cnt_bit[] = new int[1 << m], min_bit[] = new int[1 << m], d[][] = new int[1 << m][m];
for (int mask = 1; mask <= all; ++mask) {
cnt_bit[mask] = 1 + cnt_bit[mask & (mask - 1)];
for (int i = 0; i < n; ++i) {
if ((mask & (1 << i)) > 0) {
min_bit[mask] = i;
break;
}
}
}
for (int mask = 1; mask <= all; ++mask) {
for (int i = 0; i < m; ++i) {
d[mask][i] = d[mask ^ (1 << min_bit[mask])][i] + cnt[i][min_bit[mask]];
}
}
for (int mask = 0; mask <= all; ++mask) {
for (int i = 0; i < m; ++i) {
if ((mask & (1 << i)) > 0) {
continue;
}
int pos = cnt_bit[mask], next = mask | (1 << i);
dp[next] = min(dp[next], dp[mask] + pos * (d[mask][i] - d[all ^ next][i]));
}
}
prln(dp[all]);
close();
}
static BufferedReader __in = new BufferedReader(new InputStreamReader(System.in));
static PrintWriter __out = new PrintWriter(new OutputStreamWriter(System.out));
static StringTokenizer input;
static Random __rand = new Random();
// references
// IBIG = 1e9 + 7
// IMAX ~= 2e9
// LMAX ~= 9e18
// constants
static final int IBIG = 1000000007;
static final int IMAX = 2147483647;
static final int IMIN = -2147483648;
static final long LMAX = 9223372036854775807L;
static final long LMIN = -9223372036854775808L;
// math util
static int minof(int a, int b, int c) {return min(a, min(b, c));}
static int minof(int... x) {if (x.length == 1) return x[0]; if (x.length == 2) return min(x[0], x[1]); if (x.length == 3) return min(x[0], min(x[1], x[2])); int min = x[0]; for (int i = 1; i < x.length; ++i) if (x[i] < min) min = x[i]; return min;}
static long minof(long a, long b, long c) {return min(a, min(b, c));}
static long minof(long... x) {if (x.length == 1) return x[0]; if (x.length == 2) return min(x[0], x[1]); if (x.length == 3) return min(x[0], min(x[1], x[2])); long min = x[0]; for (int i = 1; i < x.length; ++i) if (x[i] < min) min = x[i]; return min;}
static int maxof(int a, int b, int c) {return max(a, max(b, c));}
static int maxof(int... x) {if (x.length == 1) return x[0]; if (x.length == 2) return max(x[0], x[1]); if (x.length == 3) return max(x[0], max(x[1], x[2])); int max = x[0]; for (int i = 1; i < x.length; ++i) if (x[i] > max) max = x[i]; return max;}
static long maxof(long a, long b, long c) {return max(a, max(b, c));}
static long maxof(long... x) {if (x.length == 1) return x[0]; if (x.length == 2) return max(x[0], x[1]); if (x.length == 3) return max(x[0], max(x[1], x[2])); long max = x[0]; for (int i = 1; i < x.length; ++i) if (x[i] > max) max = x[i]; return max;}
static int powi(int a, int b) {if (a == 0) return 0; int ans = 1; while (b > 0) {if ((b & 1) > 0) ans *= a; a *= a; b >>= 1;} return ans;}
static long powl(long a, int b) {if (a == 0) return 0; long ans = 1; while (b > 0) {if ((b & 1) > 0) ans *= a; a *= a; b >>= 1;} return ans;}
static int fli(double d) {return (int) d;}
static int cei(double d) {return (int) ceil(d);}
static long fll(double d) {return (long) d;}
static long cel(double d) {return (long) ceil(d);}
static int gcf(int a, int b) {return b == 0 ? a : gcf(b, a % b);}
static long gcf(long a, long b) {return b == 0 ? a : gcf(b, a % b);}
static int lcm(int a, int b) {return a * b / gcf(a, b);}
static long lcm(long a, long b) {return a * b / gcf(a, b);}
static int randInt(int min, int max) {return __rand.nextInt(max - min + 1) + min;}
static long mix(long x) {x += 0x9e3779b97f4a7c15L; x = (x ^ (x >> 30)) * 0xbf58476d1ce4e5b9L; x = (x ^ (x >> 27)) * 0x94d049bb133111ebL; return x ^ (x >> 31);}
// array util
static void reverse(int[] a) {for (int i = 0, n = a.length, half = n / 2; i < half; ++i) {int swap = a[i]; a[i] = a[n - i - 1]; a[n - i - 1] = swap;}}
static void reverse(long[] a) {for (int i = 0, n = a.length, half = n / 2; i < half; ++i) {long swap = a[i]; a[i] = a[n - i - 1]; a[n - i - 1] = swap;}}
static void reverse(double[] a) {for (int i = 0, n = a.length, half = n / 2; i < half; ++i) {double swap = a[i]; a[i] = a[n - i - 1]; a[n - i - 1] = swap;}}
static void reverse(char[] a) {for (int i = 0, n = a.length, half = n / 2; i < half; ++i) {char swap = a[i]; a[i] = a[n - i - 1]; a[n - i - 1] = swap;}}
static void shuffle(int[] a) {int n = a.length - 1; for (int i = 0; i < n; ++i) {int ind = randInt(i, n); int swap = a[i]; a[i] = a[ind]; a[ind] = swap;}}
static void shuffle(long[] a) {int n = a.length - 1; for (int i = 0; i < n; ++i) {int ind = randInt(i, n); long swap = a[i]; a[i] = a[ind]; a[ind] = swap;}}
static void shuffle(double[] a) {int n = a.length - 1; for (int i = 0; i < n; ++i) {int ind = randInt(i, n); double swap = a[i]; a[i] = a[ind]; a[ind] = swap;}}
static void rsort(int[] a) {shuffle(a); sort(a);}
static void rsort(long[] a) {shuffle(a); sort(a);}
static void rsort(double[] a) {shuffle(a); sort(a);}
static int[] copy(int[] a) {int[] ans = new int[a.length]; for (int i = 0; i < a.length; ++i) ans[i] = a[i]; return ans;}
static long[] copy(long[] a) {long[] ans = new long[a.length]; for (int i = 0; i < a.length; ++i) ans[i] = a[i]; return ans;}
static double[] copy(double[] a) {double[] ans = new double[a.length]; for (int i = 0; i < a.length; ++i) ans[i] = a[i]; return ans;}
static char[] copy(char[] a) {char[] ans = new char[a.length]; for (int i = 0; i < a.length; ++i) ans[i] = a[i]; return ans;}
// graph util
static List<List<Integer>> g(int n) {List<List<Integer>> g = new ArrayList<>(); for (int i = 0; i < n; ++i) g.add(new ArrayList<>()); return g;}
static List<Set<Integer>> sg(int n) {List<Set<Integer>> g = new ArrayList<>(); for (int i = 0; i < n; ++i) g.add(new HashSet<>()); return g;}
static void c(List<? extends Collection<Integer>> g, int u, int v) {g.get(u).add(v); g.get(v).add(u);}
static void cto(List<? extends Collection<Integer>> g, int u, int v) {g.get(u).add(v);}
static void dc(List<? extends Collection<Integer>> g, int u, int v) {g.get(u).remove(v); g.get(v).remove(u);}
static void dcto(List<? extends Collection<Integer>> g, int u, int v) {g.get(u).remove(v);}
// input
static void r() throws IOException {input = new StringTokenizer(rline());}
static int ri() throws IOException {return Integer.parseInt(rline());}
static long rl() throws IOException {return Long.parseLong(rline());}
static double rd() throws IOException {return Double.parseDouble(rline());}
static int[] ria(int n) throws IOException {int[] a = new int[n]; r(); for (int i = 0; i < n; ++i) a[i] = ni(); return a;}
static int[] riam1(int n) throws IOException {int[] a = new int[n]; r(); for (int i = 0; i < n; ++i) a[i] = ni() - 1; return a;}
static long[] rla(int n) throws IOException {long[] a = new long[n]; r(); for (int i = 0; i < n; ++i) a[i] = nl(); return a;}
static double[] rda(int n) throws IOException {double[] a = new double[n]; r(); for (int i = 0; i < n; ++i) a[i] = nd(); return a;}
static char[] rcha() throws IOException {return rline().toCharArray();}
static String rline() throws IOException {return __in.readLine();}
static String n() {return input.nextToken();}
static int rni() throws IOException {r(); return ni();}
static int ni() {return Integer.parseInt(n());}
static long rnl() throws IOException {r(); return nl();}
static long nl() {return Long.parseLong(n());}
static double rnd() throws IOException {r(); return nd();}
static double nd() {return Double.parseDouble(n());}
static List<List<Integer>> rg(int n, int m) throws IOException {List<List<Integer>> g = g(n); for (int i = 0; i < m; ++i) c(g, rni() - 1, ni() - 1); return g;}
static void rg(List<List<Integer>> g, int m) throws IOException {for (int i = 0; i < m; ++i) c(g, rni() - 1, ni() - 1);}
static List<List<Integer>> rdg(int n, int m) throws IOException {List<List<Integer>> g = g(n); for (int i = 0; i < m; ++i) cto(g, rni() - 1, ni() - 1); return g;}
static void rdg(List<List<Integer>> g, int m) throws IOException {for (int i = 0; i < m; ++i) cto(g, rni() - 1, ni() - 1);}
static List<Set<Integer>> rsg(int n, int m) throws IOException {List<Set<Integer>> g = sg(n); for (int i = 0; i < m; ++i) c(g, rni() - 1, ni() - 1); return g;}
static void rsg(List<Set<Integer>> g, int m) throws IOException {for (int i = 0; i < m; ++i) c(g, rni() - 1, ni() - 1);}
static List<Set<Integer>> rdsg(int n, int m) throws IOException {List<Set<Integer>> g = sg(n); for (int i = 0; i < m; ++i) cto(g, rni() - 1, ni() - 1); return g;}
static void rdsg(List<Set<Integer>> g, int m) throws IOException {for (int i = 0; i < m; ++i) cto(g, rni() - 1, ni() - 1);}
// output
static void pr(int i) {__out.print(i);}
static void prln(int i) {__out.println(i);}
static void pr(long l) {__out.print(l);}
static void prln(long l) {__out.println(l);}
static void pr(double d) {__out.print(d);}
static void prln(double d) {__out.println(d);}
static void pr(char c) {__out.print(c);}
static void prln(char c) {__out.println(c);}
static void pr(char[] s) {__out.print(new String(s));}
static void prln(char[] s) {__out.println(new String(s));}
static void pr(String s) {__out.print(s);}
static void prln(String s) {__out.println(s);}
static void pr(Object o) {__out.print(o);}
static void prln(Object o) {__out.println(o);}
static void prln() {__out.println();}
static void pryes() {prln("yes");}
static void pry() {prln("Yes");}
static void prY() {prln("YES");}
static void prno() {prln("no");}
static void prn() {prln("No");}
static void prN() {prln("NO");}
static void pryesno(boolean b) {prln(b ? "yes" : "no");};
static void pryn(boolean b) {prln(b ? "Yes" : "No");}
static void prYN(boolean b) {prln(b ? "YES" : "NO");}
static void prln(int... a) {for (int i = 0, len = a.length - 1; i < len; pr(a[i]), pr(' '), ++i); if (a.length > 0) prln(a[a.length - 1]); else prln();}
static void prln(long... a) {for (int i = 0, len = a.length - 1; i < len; pr(a[i]), pr(' '), ++i); if (a.length > 0) prln(a[a.length - 1]); else prln();}
static void prln(double... a) {for (int i = 0, len = a.length - 1; i < len; pr(a[i]), pr(' '), ++i); if (a.length > 0) prln(a[a.length - 1]); else prln();}
static <T> void prln(Collection<T> c) {int n = c.size() - 1; Iterator<T> iter = c.iterator(); for (int i = 0; i < n; pr(iter.next()), pr(' '), ++i); if (n >= 0) prln(iter.next()); else prln();}
static void h() {prln("hlfd"); flush();}
static void flush() {__out.flush();}
static void close() {__out.close();}}
</CODE>
<EVALUATION_RUBRIC>
- O(log(n)): The execution time ascends in proportion to the logarithm of the input size n.
- O(n): The execution time ascends in a one-to-one ratio with the input size n.
- O(1): The execution time is unaffected by the size of the input n.
- O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- O(n^2): The execution time ascends in proportion to the square of the input size n.
- O(n^3): The execution time ascends in proportion to the cube of the input size n.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Determine the worst-case time complexity category of a given Java code based on input size n.
</TASK>
<CODE>
import java.io.*;
import java.util.*;
import static java.lang.Math.*;
import static java.util.Arrays.*;
// editorial sol
public class cf1238e {
public static void main(String[] args) throws IOException {
int n = rni(), m = ni(), cnt[][] = new int[m][m], dp[] = new int[1 << m], all = (1 << m) - 1;
char[] s = rcha();
for (int i = 1; i < n; ++i) {
++cnt[s[i] - 'a'][s[i - 1] - 'a'];
++cnt[s[i - 1] - 'a'][s[i] - 'a'];
}
fill(dp, IBIG);
dp[0] = 0;
int cnt_bit[] = new int[1 << m], min_bit[] = new int[1 << m], d[][] = new int[1 << m][m];
for (int mask = 1; mask <= all; ++mask) {
cnt_bit[mask] = 1 + cnt_bit[mask & (mask - 1)];
for (int i = 0; i < n; ++i) {
if ((mask & (1 << i)) > 0) {
min_bit[mask] = i;
break;
}
}
}
for (int mask = 1; mask <= all; ++mask) {
for (int i = 0; i < m; ++i) {
d[mask][i] = d[mask ^ (1 << min_bit[mask])][i] + cnt[i][min_bit[mask]];
}
}
for (int mask = 0; mask <= all; ++mask) {
for (int i = 0; i < m; ++i) {
if ((mask & (1 << i)) > 0) {
continue;
}
int pos = cnt_bit[mask], next = mask | (1 << i);
dp[next] = min(dp[next], dp[mask] + pos * (d[mask][i] - d[all ^ next][i]));
}
}
prln(dp[all]);
close();
}
static BufferedReader __in = new BufferedReader(new InputStreamReader(System.in));
static PrintWriter __out = new PrintWriter(new OutputStreamWriter(System.out));
static StringTokenizer input;
static Random __rand = new Random();
// references
// IBIG = 1e9 + 7
// IMAX ~= 2e9
// LMAX ~= 9e18
// constants
static final int IBIG = 1000000007;
static final int IMAX = 2147483647;
static final int IMIN = -2147483648;
static final long LMAX = 9223372036854775807L;
static final long LMIN = -9223372036854775808L;
// math util
static int minof(int a, int b, int c) {return min(a, min(b, c));}
static int minof(int... x) {if (x.length == 1) return x[0]; if (x.length == 2) return min(x[0], x[1]); if (x.length == 3) return min(x[0], min(x[1], x[2])); int min = x[0]; for (int i = 1; i < x.length; ++i) if (x[i] < min) min = x[i]; return min;}
static long minof(long a, long b, long c) {return min(a, min(b, c));}
static long minof(long... x) {if (x.length == 1) return x[0]; if (x.length == 2) return min(x[0], x[1]); if (x.length == 3) return min(x[0], min(x[1], x[2])); long min = x[0]; for (int i = 1; i < x.length; ++i) if (x[i] < min) min = x[i]; return min;}
static int maxof(int a, int b, int c) {return max(a, max(b, c));}
static int maxof(int... x) {if (x.length == 1) return x[0]; if (x.length == 2) return max(x[0], x[1]); if (x.length == 3) return max(x[0], max(x[1], x[2])); int max = x[0]; for (int i = 1; i < x.length; ++i) if (x[i] > max) max = x[i]; return max;}
static long maxof(long a, long b, long c) {return max(a, max(b, c));}
static long maxof(long... x) {if (x.length == 1) return x[0]; if (x.length == 2) return max(x[0], x[1]); if (x.length == 3) return max(x[0], max(x[1], x[2])); long max = x[0]; for (int i = 1; i < x.length; ++i) if (x[i] > max) max = x[i]; return max;}
static int powi(int a, int b) {if (a == 0) return 0; int ans = 1; while (b > 0) {if ((b & 1) > 0) ans *= a; a *= a; b >>= 1;} return ans;}
static long powl(long a, int b) {if (a == 0) return 0; long ans = 1; while (b > 0) {if ((b & 1) > 0) ans *= a; a *= a; b >>= 1;} return ans;}
static int fli(double d) {return (int) d;}
static int cei(double d) {return (int) ceil(d);}
static long fll(double d) {return (long) d;}
static long cel(double d) {return (long) ceil(d);}
static int gcf(int a, int b) {return b == 0 ? a : gcf(b, a % b);}
static long gcf(long a, long b) {return b == 0 ? a : gcf(b, a % b);}
static int lcm(int a, int b) {return a * b / gcf(a, b);}
static long lcm(long a, long b) {return a * b / gcf(a, b);}
static int randInt(int min, int max) {return __rand.nextInt(max - min + 1) + min;}
static long mix(long x) {x += 0x9e3779b97f4a7c15L; x = (x ^ (x >> 30)) * 0xbf58476d1ce4e5b9L; x = (x ^ (x >> 27)) * 0x94d049bb133111ebL; return x ^ (x >> 31);}
// array util
static void reverse(int[] a) {for (int i = 0, n = a.length, half = n / 2; i < half; ++i) {int swap = a[i]; a[i] = a[n - i - 1]; a[n - i - 1] = swap;}}
static void reverse(long[] a) {for (int i = 0, n = a.length, half = n / 2; i < half; ++i) {long swap = a[i]; a[i] = a[n - i - 1]; a[n - i - 1] = swap;}}
static void reverse(double[] a) {for (int i = 0, n = a.length, half = n / 2; i < half; ++i) {double swap = a[i]; a[i] = a[n - i - 1]; a[n - i - 1] = swap;}}
static void reverse(char[] a) {for (int i = 0, n = a.length, half = n / 2; i < half; ++i) {char swap = a[i]; a[i] = a[n - i - 1]; a[n - i - 1] = swap;}}
static void shuffle(int[] a) {int n = a.length - 1; for (int i = 0; i < n; ++i) {int ind = randInt(i, n); int swap = a[i]; a[i] = a[ind]; a[ind] = swap;}}
static void shuffle(long[] a) {int n = a.length - 1; for (int i = 0; i < n; ++i) {int ind = randInt(i, n); long swap = a[i]; a[i] = a[ind]; a[ind] = swap;}}
static void shuffle(double[] a) {int n = a.length - 1; for (int i = 0; i < n; ++i) {int ind = randInt(i, n); double swap = a[i]; a[i] = a[ind]; a[ind] = swap;}}
static void rsort(int[] a) {shuffle(a); sort(a);}
static void rsort(long[] a) {shuffle(a); sort(a);}
static void rsort(double[] a) {shuffle(a); sort(a);}
static int[] copy(int[] a) {int[] ans = new int[a.length]; for (int i = 0; i < a.length; ++i) ans[i] = a[i]; return ans;}
static long[] copy(long[] a) {long[] ans = new long[a.length]; for (int i = 0; i < a.length; ++i) ans[i] = a[i]; return ans;}
static double[] copy(double[] a) {double[] ans = new double[a.length]; for (int i = 0; i < a.length; ++i) ans[i] = a[i]; return ans;}
static char[] copy(char[] a) {char[] ans = new char[a.length]; for (int i = 0; i < a.length; ++i) ans[i] = a[i]; return ans;}
// graph util
static List<List<Integer>> g(int n) {List<List<Integer>> g = new ArrayList<>(); for (int i = 0; i < n; ++i) g.add(new ArrayList<>()); return g;}
static List<Set<Integer>> sg(int n) {List<Set<Integer>> g = new ArrayList<>(); for (int i = 0; i < n; ++i) g.add(new HashSet<>()); return g;}
static void c(List<? extends Collection<Integer>> g, int u, int v) {g.get(u).add(v); g.get(v).add(u);}
static void cto(List<? extends Collection<Integer>> g, int u, int v) {g.get(u).add(v);}
static void dc(List<? extends Collection<Integer>> g, int u, int v) {g.get(u).remove(v); g.get(v).remove(u);}
static void dcto(List<? extends Collection<Integer>> g, int u, int v) {g.get(u).remove(v);}
// input
static void r() throws IOException {input = new StringTokenizer(rline());}
static int ri() throws IOException {return Integer.parseInt(rline());}
static long rl() throws IOException {return Long.parseLong(rline());}
static double rd() throws IOException {return Double.parseDouble(rline());}
static int[] ria(int n) throws IOException {int[] a = new int[n]; r(); for (int i = 0; i < n; ++i) a[i] = ni(); return a;}
static int[] riam1(int n) throws IOException {int[] a = new int[n]; r(); for (int i = 0; i < n; ++i) a[i] = ni() - 1; return a;}
static long[] rla(int n) throws IOException {long[] a = new long[n]; r(); for (int i = 0; i < n; ++i) a[i] = nl(); return a;}
static double[] rda(int n) throws IOException {double[] a = new double[n]; r(); for (int i = 0; i < n; ++i) a[i] = nd(); return a;}
static char[] rcha() throws IOException {return rline().toCharArray();}
static String rline() throws IOException {return __in.readLine();}
static String n() {return input.nextToken();}
static int rni() throws IOException {r(); return ni();}
static int ni() {return Integer.parseInt(n());}
static long rnl() throws IOException {r(); return nl();}
static long nl() {return Long.parseLong(n());}
static double rnd() throws IOException {r(); return nd();}
static double nd() {return Double.parseDouble(n());}
static List<List<Integer>> rg(int n, int m) throws IOException {List<List<Integer>> g = g(n); for (int i = 0; i < m; ++i) c(g, rni() - 1, ni() - 1); return g;}
static void rg(List<List<Integer>> g, int m) throws IOException {for (int i = 0; i < m; ++i) c(g, rni() - 1, ni() - 1);}
static List<List<Integer>> rdg(int n, int m) throws IOException {List<List<Integer>> g = g(n); for (int i = 0; i < m; ++i) cto(g, rni() - 1, ni() - 1); return g;}
static void rdg(List<List<Integer>> g, int m) throws IOException {for (int i = 0; i < m; ++i) cto(g, rni() - 1, ni() - 1);}
static List<Set<Integer>> rsg(int n, int m) throws IOException {List<Set<Integer>> g = sg(n); for (int i = 0; i < m; ++i) c(g, rni() - 1, ni() - 1); return g;}
static void rsg(List<Set<Integer>> g, int m) throws IOException {for (int i = 0; i < m; ++i) c(g, rni() - 1, ni() - 1);}
static List<Set<Integer>> rdsg(int n, int m) throws IOException {List<Set<Integer>> g = sg(n); for (int i = 0; i < m; ++i) cto(g, rni() - 1, ni() - 1); return g;}
static void rdsg(List<Set<Integer>> g, int m) throws IOException {for (int i = 0; i < m; ++i) cto(g, rni() - 1, ni() - 1);}
// output
static void pr(int i) {__out.print(i);}
static void prln(int i) {__out.println(i);}
static void pr(long l) {__out.print(l);}
static void prln(long l) {__out.println(l);}
static void pr(double d) {__out.print(d);}
static void prln(double d) {__out.println(d);}
static void pr(char c) {__out.print(c);}
static void prln(char c) {__out.println(c);}
static void pr(char[] s) {__out.print(new String(s));}
static void prln(char[] s) {__out.println(new String(s));}
static void pr(String s) {__out.print(s);}
static void prln(String s) {__out.println(s);}
static void pr(Object o) {__out.print(o);}
static void prln(Object o) {__out.println(o);}
static void prln() {__out.println();}
static void pryes() {prln("yes");}
static void pry() {prln("Yes");}
static void prY() {prln("YES");}
static void prno() {prln("no");}
static void prn() {prln("No");}
static void prN() {prln("NO");}
static void pryesno(boolean b) {prln(b ? "yes" : "no");};
static void pryn(boolean b) {prln(b ? "Yes" : "No");}
static void prYN(boolean b) {prln(b ? "YES" : "NO");}
static void prln(int... a) {for (int i = 0, len = a.length - 1; i < len; pr(a[i]), pr(' '), ++i); if (a.length > 0) prln(a[a.length - 1]); else prln();}
static void prln(long... a) {for (int i = 0, len = a.length - 1; i < len; pr(a[i]), pr(' '), ++i); if (a.length > 0) prln(a[a.length - 1]); else prln();}
static void prln(double... a) {for (int i = 0, len = a.length - 1; i < len; pr(a[i]), pr(' '), ++i); if (a.length > 0) prln(a[a.length - 1]); else prln();}
static <T> void prln(Collection<T> c) {int n = c.size() - 1; Iterator<T> iter = c.iterator(); for (int i = 0; i < n; pr(iter.next()), pr(' '), ++i); if (n >= 0) prln(iter.next()); else prln();}
static void h() {prln("hlfd"); flush();}
static void flush() {__out.flush();}
static void close() {__out.close();}}
</CODE>
<EVALUATION_RUBRIC>
- O(log(n)): The time complexity increases logarithmically in relation to the input size.
- others: The time complexity does not fit any of the above categories or cannot be clearly classified.
- O(nlog(n)): The time complexity combines linear and logarithmic growth factors.
- O(n): The time complexity increases proportionally to the input size n in a linear manner.
- non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially.
- O(n^2): The time complexity grows proportionally to the square of the input size.
- O(1): The time complexity is constant to the input size n.
- O(n^3): The time complexity scales proportionally to the cube of the input size.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
| 4,310
| 4,504
|
4,266
|
import java.util.*;
import java.io.*;
import java.text.*;
public class Main{
//SOLUTION BEGIN
//Into the Hardware Mode
void pre() throws Exception{}
void solve(int TC)throws Exception{
int n = ni(), m = ni();
long[][] a = new long[n][m];
long[] col = new long[m];
for(int i = 0; i< n; i++){
for(int j = 0; j< m; j++){
a[i][j] = nl();
col[j] = Math.max(a[i][j], col[j]);
}
}
Integer[] p = new Integer[m];
for(int i = 0; i< m; i++)p[i] = i;
Arrays.sort(p, (Integer i1, Integer i2) -> Long.compare(col[i2], col[i1]));
long[][] mat = new long[n][Math.min(m, 6)];
for(int i = 0; i< Math.min(m, 6); i++){
for(int j = 0; j< n; j++)mat[j][i] = a[j][p[i]];
}
long pow = 1;
for(int i = 0; i< Math.min(m, 6); i++)pow *= n;
int[] sh = new int[Math.min(m, 6)];
long ans = 0;
for(int i = 0; i< pow; i++){
int x = i;
for(int j = 0; j< Math.min(m, 6); j++){
sh[j] = x%n;
x/=n;
}
long cur = 0;
for(int ro = 0; ro < n; ro++){
long cR = 0;
for(int j = 0; j < Math.min(m, 6); j++)cR = Math.max(cR, mat[(ro+sh[j])%n][j]);
cur += cR;
}
ans = Math.max(ans, cur);
}
pn(ans);
}
//SOLUTION END
void hold(boolean b)throws Exception{if(!b)throw new Exception("Hold right there, Sparky!");}
void exit(boolean b){if(!b)System.exit(0);}
long IINF = (long)1e18, mod = (long)1e9+7;
final int INF = (int)1e9, MX = (int)2e6+5;
DecimalFormat df = new DecimalFormat("0.00000000");
double PI = 3.141592653589793238462643383279502884197169399, eps = 1e-6;
static boolean multipleTC = true, memory = false, fileIO = false;
FastReader in;PrintWriter out;
void run() throws Exception{
if(fileIO){
in = new FastReader("input.txt");
out = new PrintWriter("output.txt");
}else {
in = new FastReader();
out = new PrintWriter(System.out);
}
//Solution Credits: Taranpreet Singh
int T = (multipleTC)?ni():1;
pre();
for(int t = 1; t<= T; t++)solve(t);
out.flush();
out.close();
}
public static void main(String[] args) throws Exception{
if(memory)new Thread(null, new Runnable() {public void run(){try{new Main().run();}catch(Exception e){e.printStackTrace();}}}, "1", 1 << 28).start();
else new Main().run();
}
int digit(long s){int ans = 0;while(s>0){s/=10;ans++;}return ans;}
long gcd(long a, long b){return (b==0)?a:gcd(b,a%b);}
int gcd(int a, int b){return (b==0)?a:gcd(b,a%b);}
int bit(long n){return (n==0)?0:(1+bit(n&(n-1)));}
void p(Object o){out.print(o);}
void pn(Object o){out.println(o);}
void pni(Object o){out.println(o);out.flush();}
String n()throws Exception{return in.next();}
String nln()throws Exception{return in.nextLine();}
int ni()throws Exception{return Integer.parseInt(in.next());}
long nl()throws Exception{return Long.parseLong(in.next());}
double nd()throws Exception{return Double.parseDouble(in.next());}
class FastReader{
BufferedReader br;
StringTokenizer st;
public FastReader(){
br = new BufferedReader(new InputStreamReader(System.in));
}
public FastReader(String s) throws Exception{
br = new BufferedReader(new FileReader(s));
}
String next() throws Exception{
while (st == null || !st.hasMoreElements()){
try{
st = new StringTokenizer(br.readLine());
}catch (IOException e){
throw new Exception(e.toString());
}
}
return st.nextToken();
}
String nextLine() throws Exception{
String str = "";
try{
str = br.readLine();
}catch (IOException e){
throw new Exception(e.toString());
}
return str;
}
}
}
|
non-polynomial
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Determine the worst-case time complexity category of a given Java code based on input size n.
</TASK>
<CODE>
import java.util.*;
import java.io.*;
import java.text.*;
public class Main{
//SOLUTION BEGIN
//Into the Hardware Mode
void pre() throws Exception{}
void solve(int TC)throws Exception{
int n = ni(), m = ni();
long[][] a = new long[n][m];
long[] col = new long[m];
for(int i = 0; i< n; i++){
for(int j = 0; j< m; j++){
a[i][j] = nl();
col[j] = Math.max(a[i][j], col[j]);
}
}
Integer[] p = new Integer[m];
for(int i = 0; i< m; i++)p[i] = i;
Arrays.sort(p, (Integer i1, Integer i2) -> Long.compare(col[i2], col[i1]));
long[][] mat = new long[n][Math.min(m, 6)];
for(int i = 0; i< Math.min(m, 6); i++){
for(int j = 0; j< n; j++)mat[j][i] = a[j][p[i]];
}
long pow = 1;
for(int i = 0; i< Math.min(m, 6); i++)pow *= n;
int[] sh = new int[Math.min(m, 6)];
long ans = 0;
for(int i = 0; i< pow; i++){
int x = i;
for(int j = 0; j< Math.min(m, 6); j++){
sh[j] = x%n;
x/=n;
}
long cur = 0;
for(int ro = 0; ro < n; ro++){
long cR = 0;
for(int j = 0; j < Math.min(m, 6); j++)cR = Math.max(cR, mat[(ro+sh[j])%n][j]);
cur += cR;
}
ans = Math.max(ans, cur);
}
pn(ans);
}
//SOLUTION END
void hold(boolean b)throws Exception{if(!b)throw new Exception("Hold right there, Sparky!");}
void exit(boolean b){if(!b)System.exit(0);}
long IINF = (long)1e18, mod = (long)1e9+7;
final int INF = (int)1e9, MX = (int)2e6+5;
DecimalFormat df = new DecimalFormat("0.00000000");
double PI = 3.141592653589793238462643383279502884197169399, eps = 1e-6;
static boolean multipleTC = true, memory = false, fileIO = false;
FastReader in;PrintWriter out;
void run() throws Exception{
if(fileIO){
in = new FastReader("input.txt");
out = new PrintWriter("output.txt");
}else {
in = new FastReader();
out = new PrintWriter(System.out);
}
//Solution Credits: Taranpreet Singh
int T = (multipleTC)?ni():1;
pre();
for(int t = 1; t<= T; t++)solve(t);
out.flush();
out.close();
}
public static void main(String[] args) throws Exception{
if(memory)new Thread(null, new Runnable() {public void run(){try{new Main().run();}catch(Exception e){e.printStackTrace();}}}, "1", 1 << 28).start();
else new Main().run();
}
int digit(long s){int ans = 0;while(s>0){s/=10;ans++;}return ans;}
long gcd(long a, long b){return (b==0)?a:gcd(b,a%b);}
int gcd(int a, int b){return (b==0)?a:gcd(b,a%b);}
int bit(long n){return (n==0)?0:(1+bit(n&(n-1)));}
void p(Object o){out.print(o);}
void pn(Object o){out.println(o);}
void pni(Object o){out.println(o);out.flush();}
String n()throws Exception{return in.next();}
String nln()throws Exception{return in.nextLine();}
int ni()throws Exception{return Integer.parseInt(in.next());}
long nl()throws Exception{return Long.parseLong(in.next());}
double nd()throws Exception{return Double.parseDouble(in.next());}
class FastReader{
BufferedReader br;
StringTokenizer st;
public FastReader(){
br = new BufferedReader(new InputStreamReader(System.in));
}
public FastReader(String s) throws Exception{
br = new BufferedReader(new FileReader(s));
}
String next() throws Exception{
while (st == null || !st.hasMoreElements()){
try{
st = new StringTokenizer(br.readLine());
}catch (IOException e){
throw new Exception(e.toString());
}
}
return st.nextToken();
}
String nextLine() throws Exception{
String str = "";
try{
str = br.readLine();
}catch (IOException e){
throw new Exception(e.toString());
}
return str;
}
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(1): The time complexity is constant to the input size n.
- O(n): The time complexity increases proportionally to the input size n in a linear manner.
- non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially.
- O(n^2): The time complexity grows proportionally to the square of the input size.
- O(n^3): The time complexity scales proportionally to the cube of the input size.
- O(log(n)): The time complexity increases logarithmically in relation to the input size.
- O(nlog(n)): The time complexity combines linear and logarithmic growth factors.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n.
</TASK>
<CODE>
import java.util.*;
import java.io.*;
import java.text.*;
public class Main{
//SOLUTION BEGIN
//Into the Hardware Mode
void pre() throws Exception{}
void solve(int TC)throws Exception{
int n = ni(), m = ni();
long[][] a = new long[n][m];
long[] col = new long[m];
for(int i = 0; i< n; i++){
for(int j = 0; j< m; j++){
a[i][j] = nl();
col[j] = Math.max(a[i][j], col[j]);
}
}
Integer[] p = new Integer[m];
for(int i = 0; i< m; i++)p[i] = i;
Arrays.sort(p, (Integer i1, Integer i2) -> Long.compare(col[i2], col[i1]));
long[][] mat = new long[n][Math.min(m, 6)];
for(int i = 0; i< Math.min(m, 6); i++){
for(int j = 0; j< n; j++)mat[j][i] = a[j][p[i]];
}
long pow = 1;
for(int i = 0; i< Math.min(m, 6); i++)pow *= n;
int[] sh = new int[Math.min(m, 6)];
long ans = 0;
for(int i = 0; i< pow; i++){
int x = i;
for(int j = 0; j< Math.min(m, 6); j++){
sh[j] = x%n;
x/=n;
}
long cur = 0;
for(int ro = 0; ro < n; ro++){
long cR = 0;
for(int j = 0; j < Math.min(m, 6); j++)cR = Math.max(cR, mat[(ro+sh[j])%n][j]);
cur += cR;
}
ans = Math.max(ans, cur);
}
pn(ans);
}
//SOLUTION END
void hold(boolean b)throws Exception{if(!b)throw new Exception("Hold right there, Sparky!");}
void exit(boolean b){if(!b)System.exit(0);}
long IINF = (long)1e18, mod = (long)1e9+7;
final int INF = (int)1e9, MX = (int)2e6+5;
DecimalFormat df = new DecimalFormat("0.00000000");
double PI = 3.141592653589793238462643383279502884197169399, eps = 1e-6;
static boolean multipleTC = true, memory = false, fileIO = false;
FastReader in;PrintWriter out;
void run() throws Exception{
if(fileIO){
in = new FastReader("input.txt");
out = new PrintWriter("output.txt");
}else {
in = new FastReader();
out = new PrintWriter(System.out);
}
//Solution Credits: Taranpreet Singh
int T = (multipleTC)?ni():1;
pre();
for(int t = 1; t<= T; t++)solve(t);
out.flush();
out.close();
}
public static void main(String[] args) throws Exception{
if(memory)new Thread(null, new Runnable() {public void run(){try{new Main().run();}catch(Exception e){e.printStackTrace();}}}, "1", 1 << 28).start();
else new Main().run();
}
int digit(long s){int ans = 0;while(s>0){s/=10;ans++;}return ans;}
long gcd(long a, long b){return (b==0)?a:gcd(b,a%b);}
int gcd(int a, int b){return (b==0)?a:gcd(b,a%b);}
int bit(long n){return (n==0)?0:(1+bit(n&(n-1)));}
void p(Object o){out.print(o);}
void pn(Object o){out.println(o);}
void pni(Object o){out.println(o);out.flush();}
String n()throws Exception{return in.next();}
String nln()throws Exception{return in.nextLine();}
int ni()throws Exception{return Integer.parseInt(in.next());}
long nl()throws Exception{return Long.parseLong(in.next());}
double nd()throws Exception{return Double.parseDouble(in.next());}
class FastReader{
BufferedReader br;
StringTokenizer st;
public FastReader(){
br = new BufferedReader(new InputStreamReader(System.in));
}
public FastReader(String s) throws Exception{
br = new BufferedReader(new FileReader(s));
}
String next() throws Exception{
while (st == null || !st.hasMoreElements()){
try{
st = new StringTokenizer(br.readLine());
}catch (IOException e){
throw new Exception(e.toString());
}
}
return st.nextToken();
}
String nextLine() throws Exception{
String str = "";
try{
str = br.readLine();
}catch (IOException e){
throw new Exception(e.toString());
}
return str;
}
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(n^2): The execution time ascends in proportion to the square of the input size n.
- O(n): The execution time ascends in a one-to-one ratio with the input size n.
- O(1): The execution time is unaffected by the size of the input n.
- others: The time complexity does not fit to any of the given categories or is ambiguous.
- O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially.
- O(n^3): The execution time ascends in proportion to the cube of the input size n.
- O(log(n)): The execution time ascends in proportion to the logarithm of the input size n.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
| 1,494
| 4,255
|
2,820
|
import java.io.*;
import java.util.*;
import java.lang.*;
public class file{
public static void main(String []args) {
Scanner sc=new Scanner(System.in);
int n=sc.nextInt();
while(n-->0)
{
int a=sc.nextInt();
int b=sc.nextInt();
int ans=f(a,b);
System.out.println(ans);
}
}
public static int f(int a,int b)
{
if(a==0||b==0)
return 0;
if(a>b)
{
return a/b + f(b,a%b);
}
else
return b/a + f(a,b%a);
}
}
|
O(1)
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n.
</TASK>
<CODE>
import java.io.*;
import java.util.*;
import java.lang.*;
public class file{
public static void main(String []args) {
Scanner sc=new Scanner(System.in);
int n=sc.nextInt();
while(n-->0)
{
int a=sc.nextInt();
int b=sc.nextInt();
int ans=f(a,b);
System.out.println(ans);
}
}
public static int f(int a,int b)
{
if(a==0||b==0)
return 0;
if(a>b)
{
return a/b + f(b,a%b);
}
else
return b/a + f(a,b%a);
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(n^2): The execution time ascends in proportion to the square of the input size n.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- O(n^3): The execution time ascends in proportion to the cube of the input size n.
- O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially.
- O(log(n)): The execution time ascends in proportion to the logarithm of the input size n.
- O(n): The execution time ascends in a one-to-one ratio with the input size n.
- O(1): The execution time is unaffected by the size of the input n.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Classify the following Java code's worst-case time complexity according to its relationship to the input size n.
</TASK>
<CODE>
import java.io.*;
import java.util.*;
import java.lang.*;
public class file{
public static void main(String []args) {
Scanner sc=new Scanner(System.in);
int n=sc.nextInt();
while(n-->0)
{
int a=sc.nextInt();
int b=sc.nextInt();
int ans=f(a,b);
System.out.println(ans);
}
}
public static int f(int a,int b)
{
if(a==0||b==0)
return 0;
if(a>b)
{
return a/b + f(b,a%b);
}
else
return b/a + f(a,b%a);
}
}
</CODE>
<EVALUATION_RUBRIC>
- others: The code does not clearly correspond to the listed classes or has an unclassified time complexity.
- O(n^2): The running time increases with the square of the input size n.
- O(n): The running time grows linearly with the input size n.
- O(log(n)): The running time increases with the logarithm of the input size n.
- O(n^3): The running time increases with the cube of the input size n.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- O(nlog(n)): The running time increases with the product of n and logarithm of n.
- O(1): The running time does not change regardless of the input size n.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
| 492
| 2,814
|
2,266
|
import java.io.*;
import java.util.*;
import java.math.*;
public class Main {
public static void main(String[] args) throws IOException
{
// StreamTokenizer in = new StreamTokenizer(new BufferedReader(new InputStreamReader(System.in)));
PrintWriter out = new PrintWriter(new OutputStreamWriter(System.out));
FastScanner sc = new FastScanner();
int dp[][]=new int[6000][6000];
char a[]=new char[6000];
final int n=sc.nextInt();
boolean flag=false;
int cnt=0;
char pre='f';
for(int i=1;i<=n;i++)
{
a[i]=sc.next().charAt(0);
}
dp[1][1]=1;
final int mod=(int)1e9+7;
dp[1][1]=1;
for(int i=2;i<=n;i++)
{
if(a[i-1]=='s')
{
int now=0;
for(int j=5050;j>=1;j--)
{
now=(now+dp[i-1][j])%mod;
dp[i][j]=now;
}
}
else
{
for(int j=5050;j>=1;j--)
{
dp[i][j]=dp[i-1][j-1]%mod;
}
}
}
int ans=0;
for(int i=0;i<=5050;i++)
{
ans+= dp[n][i]%mod;
ans%=mod;
}
out.println(ans%mod);
out.flush();
}
/*
6
f
s
f
s
f
s
*/
static class FastScanner {
BufferedReader br;
StringTokenizer st;
private FastScanner() {
try {
br = new BufferedReader(new InputStreamReader(System.in));
st = new StringTokenizer(br.readLine());
} catch (Exception e){e.printStackTrace();}
}
private boolean hasNextToken()
{
if(st.countTokens()!=StreamTokenizer.TT_EOF)
{
return true;
}
else
return false;
}
private String next() {
if (st.hasMoreTokens()) return st.nextToken();
try {st = new StringTokenizer(br.readLine());}
catch (Exception e) {e.printStackTrace();}
return st.nextToken();
}
private BigInteger nextBigInteger(){return new BigInteger(next());}
private BigDecimal nextBigDecimal(){return new BigDecimal(next());}
private int nextInt() {return Integer.parseInt(next());}
private long nextLong() {return Long.parseLong(next());}
private double nextDouble() {return Double.parseDouble(next());}
private String nextLine() {
String line = "";
if(st.hasMoreTokens()) line = st.nextToken();
else try {return br.readLine();}catch(IOException e){e.printStackTrace();}
while(st.hasMoreTokens()) line += " "+st.nextToken();
return line;
}
private int[] nextIntArray(int n) {
int[] a = new int[n];
for(int i = 0; i < n; i++) a[i] = nextInt();
return a;
}
private long[] nextLongArray(int n){
long[] a = new long[n];
for(int i = 0; i < n; i++) a[i] = nextLong();
return a;
}
private double[] nextDoubleArray(int n){
double[] a = new double[n];
for(int i = 0; i < n; i++) a[i] = nextDouble();
return a;
}
private char[][] nextGrid(int n, int m){
char[][] grid = new char[n][m];
for(int i = 0; i < n; i++) grid[i] = next().toCharArray();
return grid;
}
private void sort(int arr[])
{
int cnt[]=new int[(1<<16)+1];
int ys[]=new int[arr.length];
for(int j=0;j<=16;j+=16){
Arrays.fill(cnt,0);
for(int x:arr){cnt[(x>>j&0xFFFF)+1]++;}
for(int i=1;i<cnt.length;i++){cnt[i]+=cnt[i-1];}
for(int x:arr){ys[cnt[x>>j&0xFFFF]++]=x;}
{ final int t[]=arr;arr=ys;ys=t;}
}
if(arr[0]<0||arr[arr.length-1]>=0)return;
int i,j,c;
for(i=arr.length-1,c=0;arr[i]<0;i--,c++){ys[c]=arr[i];}
for(j=arr.length-1;i>=0;i--,j--){arr[j]=arr[i];}
for(i=c-1;i>=0;i--){arr[i]=ys[c-1-i];}
}
}
}
|
O(n^2)
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n.
</TASK>
<CODE>
import java.io.*;
import java.util.*;
import java.math.*;
public class Main {
public static void main(String[] args) throws IOException
{
// StreamTokenizer in = new StreamTokenizer(new BufferedReader(new InputStreamReader(System.in)));
PrintWriter out = new PrintWriter(new OutputStreamWriter(System.out));
FastScanner sc = new FastScanner();
int dp[][]=new int[6000][6000];
char a[]=new char[6000];
final int n=sc.nextInt();
boolean flag=false;
int cnt=0;
char pre='f';
for(int i=1;i<=n;i++)
{
a[i]=sc.next().charAt(0);
}
dp[1][1]=1;
final int mod=(int)1e9+7;
dp[1][1]=1;
for(int i=2;i<=n;i++)
{
if(a[i-1]=='s')
{
int now=0;
for(int j=5050;j>=1;j--)
{
now=(now+dp[i-1][j])%mod;
dp[i][j]=now;
}
}
else
{
for(int j=5050;j>=1;j--)
{
dp[i][j]=dp[i-1][j-1]%mod;
}
}
}
int ans=0;
for(int i=0;i<=5050;i++)
{
ans+= dp[n][i]%mod;
ans%=mod;
}
out.println(ans%mod);
out.flush();
}
/*
6
f
s
f
s
f
s
*/
static class FastScanner {
BufferedReader br;
StringTokenizer st;
private FastScanner() {
try {
br = new BufferedReader(new InputStreamReader(System.in));
st = new StringTokenizer(br.readLine());
} catch (Exception e){e.printStackTrace();}
}
private boolean hasNextToken()
{
if(st.countTokens()!=StreamTokenizer.TT_EOF)
{
return true;
}
else
return false;
}
private String next() {
if (st.hasMoreTokens()) return st.nextToken();
try {st = new StringTokenizer(br.readLine());}
catch (Exception e) {e.printStackTrace();}
return st.nextToken();
}
private BigInteger nextBigInteger(){return new BigInteger(next());}
private BigDecimal nextBigDecimal(){return new BigDecimal(next());}
private int nextInt() {return Integer.parseInt(next());}
private long nextLong() {return Long.parseLong(next());}
private double nextDouble() {return Double.parseDouble(next());}
private String nextLine() {
String line = "";
if(st.hasMoreTokens()) line = st.nextToken();
else try {return br.readLine();}catch(IOException e){e.printStackTrace();}
while(st.hasMoreTokens()) line += " "+st.nextToken();
return line;
}
private int[] nextIntArray(int n) {
int[] a = new int[n];
for(int i = 0; i < n; i++) a[i] = nextInt();
return a;
}
private long[] nextLongArray(int n){
long[] a = new long[n];
for(int i = 0; i < n; i++) a[i] = nextLong();
return a;
}
private double[] nextDoubleArray(int n){
double[] a = new double[n];
for(int i = 0; i < n; i++) a[i] = nextDouble();
return a;
}
private char[][] nextGrid(int n, int m){
char[][] grid = new char[n][m];
for(int i = 0; i < n; i++) grid[i] = next().toCharArray();
return grid;
}
private void sort(int arr[])
{
int cnt[]=new int[(1<<16)+1];
int ys[]=new int[arr.length];
for(int j=0;j<=16;j+=16){
Arrays.fill(cnt,0);
for(int x:arr){cnt[(x>>j&0xFFFF)+1]++;}
for(int i=1;i<cnt.length;i++){cnt[i]+=cnt[i-1];}
for(int x:arr){ys[cnt[x>>j&0xFFFF]++]=x;}
{ final int t[]=arr;arr=ys;ys=t;}
}
if(arr[0]<0||arr[arr.length-1]>=0)return;
int i,j,c;
for(i=arr.length-1,c=0;arr[i]<0;i--,c++){ys[c]=arr[i];}
for(j=arr.length-1;i>=0;i--,j--){arr[j]=arr[i];}
for(i=c-1;i>=0;i--){arr[i]=ys[c-1-i];}
}
}
}
</CODE>
<EVALUATION_RUBRIC>
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- O(n): The execution time ascends in a one-to-one ratio with the input size n.
- O(n^3): The execution time ascends in proportion to the cube of the input size n.
- O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially.
- O(log(n)): The execution time ascends in proportion to the logarithm of the input size n.
- O(n^2): The execution time ascends in proportion to the square of the input size n.
- O(1): The execution time is unaffected by the size of the input n.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n.
</TASK>
<CODE>
import java.io.*;
import java.util.*;
import java.math.*;
public class Main {
public static void main(String[] args) throws IOException
{
// StreamTokenizer in = new StreamTokenizer(new BufferedReader(new InputStreamReader(System.in)));
PrintWriter out = new PrintWriter(new OutputStreamWriter(System.out));
FastScanner sc = new FastScanner();
int dp[][]=new int[6000][6000];
char a[]=new char[6000];
final int n=sc.nextInt();
boolean flag=false;
int cnt=0;
char pre='f';
for(int i=1;i<=n;i++)
{
a[i]=sc.next().charAt(0);
}
dp[1][1]=1;
final int mod=(int)1e9+7;
dp[1][1]=1;
for(int i=2;i<=n;i++)
{
if(a[i-1]=='s')
{
int now=0;
for(int j=5050;j>=1;j--)
{
now=(now+dp[i-1][j])%mod;
dp[i][j]=now;
}
}
else
{
for(int j=5050;j>=1;j--)
{
dp[i][j]=dp[i-1][j-1]%mod;
}
}
}
int ans=0;
for(int i=0;i<=5050;i++)
{
ans+= dp[n][i]%mod;
ans%=mod;
}
out.println(ans%mod);
out.flush();
}
/*
6
f
s
f
s
f
s
*/
static class FastScanner {
BufferedReader br;
StringTokenizer st;
private FastScanner() {
try {
br = new BufferedReader(new InputStreamReader(System.in));
st = new StringTokenizer(br.readLine());
} catch (Exception e){e.printStackTrace();}
}
private boolean hasNextToken()
{
if(st.countTokens()!=StreamTokenizer.TT_EOF)
{
return true;
}
else
return false;
}
private String next() {
if (st.hasMoreTokens()) return st.nextToken();
try {st = new StringTokenizer(br.readLine());}
catch (Exception e) {e.printStackTrace();}
return st.nextToken();
}
private BigInteger nextBigInteger(){return new BigInteger(next());}
private BigDecimal nextBigDecimal(){return new BigDecimal(next());}
private int nextInt() {return Integer.parseInt(next());}
private long nextLong() {return Long.parseLong(next());}
private double nextDouble() {return Double.parseDouble(next());}
private String nextLine() {
String line = "";
if(st.hasMoreTokens()) line = st.nextToken();
else try {return br.readLine();}catch(IOException e){e.printStackTrace();}
while(st.hasMoreTokens()) line += " "+st.nextToken();
return line;
}
private int[] nextIntArray(int n) {
int[] a = new int[n];
for(int i = 0; i < n; i++) a[i] = nextInt();
return a;
}
private long[] nextLongArray(int n){
long[] a = new long[n];
for(int i = 0; i < n; i++) a[i] = nextLong();
return a;
}
private double[] nextDoubleArray(int n){
double[] a = new double[n];
for(int i = 0; i < n; i++) a[i] = nextDouble();
return a;
}
private char[][] nextGrid(int n, int m){
char[][] grid = new char[n][m];
for(int i = 0; i < n; i++) grid[i] = next().toCharArray();
return grid;
}
private void sort(int arr[])
{
int cnt[]=new int[(1<<16)+1];
int ys[]=new int[arr.length];
for(int j=0;j<=16;j+=16){
Arrays.fill(cnt,0);
for(int x:arr){cnt[(x>>j&0xFFFF)+1]++;}
for(int i=1;i<cnt.length;i++){cnt[i]+=cnt[i-1];}
for(int x:arr){ys[cnt[x>>j&0xFFFF]++]=x;}
{ final int t[]=arr;arr=ys;ys=t;}
}
if(arr[0]<0||arr[arr.length-1]>=0)return;
int i,j,c;
for(i=arr.length-1,c=0;arr[i]<0;i--,c++){ys[c]=arr[i];}
for(j=arr.length-1;i>=0;i--,j--){arr[j]=arr[i];}
for(i=c-1;i>=0;i--){arr[i]=ys[c-1-i];}
}
}
}
</CODE>
<EVALUATION_RUBRIC>
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- O(n): The execution time ascends in a one-to-one ratio with the input size n.
- O(1): The execution time is unaffected by the size of the input n.
- others: The time complexity does not fit to any of the given categories or is ambiguous.
- O(n^3): The execution time ascends in proportion to the cube of the input size n.
- O(log(n)): The execution time ascends in proportion to the logarithm of the input size n.
- O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially.
- O(n^2): The execution time ascends in proportion to the square of the input size n.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
| 1,428
| 2,261
|
3,861
|
import java.io.*;
import java.util.*;
public class C{
public static void main(String[] args) throws IOException {
// br = new BufferedReader(new FileReader(".in"));
// out = new PrintWriter(new FileWriter(".out"));
//new Thread(null, new (), "peepee", 1<<28).start();
read();
int t= RI();
while(t-->0) {
read();
int n = RI();
List<Integer> cur = new ArrayList<Integer>();
int[] lvl = new int[n+10];
while(n-->0) {
read();
int x = RI();
if (cur.size() == 0) {
cur.add(x);
lvl[cur.size()]=x;
}
else {
while (!cur.isEmpty()) {
if (x == 1+lvl[cur.size()]) {
int size = cur.size();
cur.remove(size-1);
cur.add(1+lvl[size]);
lvl[size] = x;
break;
}
else {
// Either add to a new level or go to existing one.
if (x == 1) {
// add
cur.add(x);
lvl[cur.size()] = x;
break;
}
else {
lvl[cur.size()] = 0;
cur.remove(cur.size()-1);
}
}
}
if (cur.size() == 0) {
cur.add(x);
lvl[cur.size()]=x;
}
}
for (int i = 0; i < cur.size(); i++) {
out.print(cur.get(i));
if (i != cur.size()-1) out.print(".");
}
out.println();
}
}
out.close();
}
static BufferedReader br = new BufferedReader(new InputStreamReader(System.in));
static PrintWriter out = new PrintWriter(new BufferedOutputStream(System.out));
static StringTokenizer st;
static void read() throws IOException{st = new StringTokenizer(br.readLine());}
static int RI() throws IOException{return Integer.parseInt(st.nextToken());}
static long RL() throws IOException{return Long.parseLong(st.nextToken());}
static double RD() throws IOException{return Double.parseDouble(st.nextToken());}
}
|
O(n^3)
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Classify the following Java code's worst-case time complexity according to its relationship to the input size n.
</TASK>
<CODE>
import java.io.*;
import java.util.*;
public class C{
public static void main(String[] args) throws IOException {
// br = new BufferedReader(new FileReader(".in"));
// out = new PrintWriter(new FileWriter(".out"));
//new Thread(null, new (), "peepee", 1<<28).start();
read();
int t= RI();
while(t-->0) {
read();
int n = RI();
List<Integer> cur = new ArrayList<Integer>();
int[] lvl = new int[n+10];
while(n-->0) {
read();
int x = RI();
if (cur.size() == 0) {
cur.add(x);
lvl[cur.size()]=x;
}
else {
while (!cur.isEmpty()) {
if (x == 1+lvl[cur.size()]) {
int size = cur.size();
cur.remove(size-1);
cur.add(1+lvl[size]);
lvl[size] = x;
break;
}
else {
// Either add to a new level or go to existing one.
if (x == 1) {
// add
cur.add(x);
lvl[cur.size()] = x;
break;
}
else {
lvl[cur.size()] = 0;
cur.remove(cur.size()-1);
}
}
}
if (cur.size() == 0) {
cur.add(x);
lvl[cur.size()]=x;
}
}
for (int i = 0; i < cur.size(); i++) {
out.print(cur.get(i));
if (i != cur.size()-1) out.print(".");
}
out.println();
}
}
out.close();
}
static BufferedReader br = new BufferedReader(new InputStreamReader(System.in));
static PrintWriter out = new PrintWriter(new BufferedOutputStream(System.out));
static StringTokenizer st;
static void read() throws IOException{st = new StringTokenizer(br.readLine());}
static int RI() throws IOException{return Integer.parseInt(st.nextToken());}
static long RL() throws IOException{return Long.parseLong(st.nextToken());}
static double RD() throws IOException{return Double.parseDouble(st.nextToken());}
}
</CODE>
<EVALUATION_RUBRIC>
- O(nlog(n)): The running time increases with the product of n and logarithm of n.
- O(n^2): The running time increases with the square of the input size n.
- O(n): The running time grows linearly with the input size n.
- O(log(n)): The running time increases with the logarithm of the input size n.
- O(1): The running time does not change regardless of the input size n.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- O(n^3): The running time increases with the cube of the input size n.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n.
</TASK>
<CODE>
import java.io.*;
import java.util.*;
public class C{
public static void main(String[] args) throws IOException {
// br = new BufferedReader(new FileReader(".in"));
// out = new PrintWriter(new FileWriter(".out"));
//new Thread(null, new (), "peepee", 1<<28).start();
read();
int t= RI();
while(t-->0) {
read();
int n = RI();
List<Integer> cur = new ArrayList<Integer>();
int[] lvl = new int[n+10];
while(n-->0) {
read();
int x = RI();
if (cur.size() == 0) {
cur.add(x);
lvl[cur.size()]=x;
}
else {
while (!cur.isEmpty()) {
if (x == 1+lvl[cur.size()]) {
int size = cur.size();
cur.remove(size-1);
cur.add(1+lvl[size]);
lvl[size] = x;
break;
}
else {
// Either add to a new level or go to existing one.
if (x == 1) {
// add
cur.add(x);
lvl[cur.size()] = x;
break;
}
else {
lvl[cur.size()] = 0;
cur.remove(cur.size()-1);
}
}
}
if (cur.size() == 0) {
cur.add(x);
lvl[cur.size()]=x;
}
}
for (int i = 0; i < cur.size(); i++) {
out.print(cur.get(i));
if (i != cur.size()-1) out.print(".");
}
out.println();
}
}
out.close();
}
static BufferedReader br = new BufferedReader(new InputStreamReader(System.in));
static PrintWriter out = new PrintWriter(new BufferedOutputStream(System.out));
static StringTokenizer st;
static void read() throws IOException{st = new StringTokenizer(br.readLine());}
static int RI() throws IOException{return Integer.parseInt(st.nextToken());}
static long RL() throws IOException{return Long.parseLong(st.nextToken());}
static double RD() throws IOException{return Double.parseDouble(st.nextToken());}
}
</CODE>
<EVALUATION_RUBRIC>
- O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially.
- others: The time complexity does not fit to any of the given categories or is ambiguous.
- O(1): The execution time is unaffected by the size of the input n.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- O(log(n)): The execution time ascends in proportion to the logarithm of the input size n.
- O(n^2): The execution time ascends in proportion to the square of the input size n.
- O(n^3): The execution time ascends in proportion to the cube of the input size n.
- O(n): The execution time ascends in a one-to-one ratio with the input size n.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
| 809
| 3,851
|
199
|
import java.io.*;
import java.lang.*;
import java.util.*;
import static java.lang.Integer.*;
import static java.lang.Long.*;
import static java.lang.Math.*;
import static java.lang.System.*;
import static java.util.Arrays.*;
import static java.util.Collections.*;
public class Main {
Main() throws IOException {
String a = nextLine();
String b = nextLine();
long ans = 0;
int s = 0;
for (int i = 0; i < b.length() - a.length(); ++i) {
s += b.charAt(i) == '1' ? 1 : 0;
}
for (int i = 0; i < a.length(); ++i) {
s += b.charAt(i + b.length() - a.length()) == '1' ? 1 : 0;
ans += a.charAt(i) == '1' ? b.length() - a.length() + 1 - s : s;
s -= b.charAt(i) == '1' ? 1 : 0;
}
out.println(ans);
}
//////////////////////////////
PrintWriter out = new PrintWriter(System.out, false);
BufferedReader in = new BufferedReader(new InputStreamReader(System.in));
StringTokenizer stok = null;
String nextLine() throws IOException {
while (stok == null || !stok.hasMoreTokens()) {
stok = new StringTokenizer(in.readLine());
}
return stok.nextToken();
}
public static void main(String args[]) throws IOException {
if (args.length > 0) {
setIn(new FileInputStream(args[0] + ".inp"));
setOut(new PrintStream(args[0] + ".out"));
}
Main solver = new Main();
solver.out.flush(); // could be replace with a method, but nah, this is just competitive programming :p
}
}
|
O(n)
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n.
</TASK>
<CODE>
import java.io.*;
import java.lang.*;
import java.util.*;
import static java.lang.Integer.*;
import static java.lang.Long.*;
import static java.lang.Math.*;
import static java.lang.System.*;
import static java.util.Arrays.*;
import static java.util.Collections.*;
public class Main {
Main() throws IOException {
String a = nextLine();
String b = nextLine();
long ans = 0;
int s = 0;
for (int i = 0; i < b.length() - a.length(); ++i) {
s += b.charAt(i) == '1' ? 1 : 0;
}
for (int i = 0; i < a.length(); ++i) {
s += b.charAt(i + b.length() - a.length()) == '1' ? 1 : 0;
ans += a.charAt(i) == '1' ? b.length() - a.length() + 1 - s : s;
s -= b.charAt(i) == '1' ? 1 : 0;
}
out.println(ans);
}
//////////////////////////////
PrintWriter out = new PrintWriter(System.out, false);
BufferedReader in = new BufferedReader(new InputStreamReader(System.in));
StringTokenizer stok = null;
String nextLine() throws IOException {
while (stok == null || !stok.hasMoreTokens()) {
stok = new StringTokenizer(in.readLine());
}
return stok.nextToken();
}
public static void main(String args[]) throws IOException {
if (args.length > 0) {
setIn(new FileInputStream(args[0] + ".inp"));
setOut(new PrintStream(args[0] + ".out"));
}
Main solver = new Main();
solver.out.flush(); // could be replace with a method, but nah, this is just competitive programming :p
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(n): The execution time ascends in a one-to-one ratio with the input size n.
- O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially.
- O(1): The execution time is unaffected by the size of the input n.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- O(log(n)): The execution time ascends in proportion to the logarithm of the input size n.
- O(n^3): The execution time ascends in proportion to the cube of the input size n.
- O(n^2): The execution time ascends in proportion to the square of the input size n.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Classify the following Java code's worst-case time complexity according to its relationship to the input size n.
</TASK>
<CODE>
import java.io.*;
import java.lang.*;
import java.util.*;
import static java.lang.Integer.*;
import static java.lang.Long.*;
import static java.lang.Math.*;
import static java.lang.System.*;
import static java.util.Arrays.*;
import static java.util.Collections.*;
public class Main {
Main() throws IOException {
String a = nextLine();
String b = nextLine();
long ans = 0;
int s = 0;
for (int i = 0; i < b.length() - a.length(); ++i) {
s += b.charAt(i) == '1' ? 1 : 0;
}
for (int i = 0; i < a.length(); ++i) {
s += b.charAt(i + b.length() - a.length()) == '1' ? 1 : 0;
ans += a.charAt(i) == '1' ? b.length() - a.length() + 1 - s : s;
s -= b.charAt(i) == '1' ? 1 : 0;
}
out.println(ans);
}
//////////////////////////////
PrintWriter out = new PrintWriter(System.out, false);
BufferedReader in = new BufferedReader(new InputStreamReader(System.in));
StringTokenizer stok = null;
String nextLine() throws IOException {
while (stok == null || !stok.hasMoreTokens()) {
stok = new StringTokenizer(in.readLine());
}
return stok.nextToken();
}
public static void main(String args[]) throws IOException {
if (args.length > 0) {
setIn(new FileInputStream(args[0] + ".inp"));
setOut(new PrintStream(args[0] + ".out"));
}
Main solver = new Main();
solver.out.flush(); // could be replace with a method, but nah, this is just competitive programming :p
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(n): The running time grows linearly with the input size n.
- others: The code does not clearly correspond to the listed classes or has an unclassified time complexity.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- O(n^3): The running time increases with the cube of the input size n.
- O(log(n)): The running time increases with the logarithm of the input size n.
- O(n^2): The running time increases with the square of the input size n.
- O(1): The running time does not change regardless of the input size n.
- O(nlog(n)): The running time increases with the product of n and logarithm of n.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
| 737
| 199
|
2,253
|
import java.io.* ;
import java.util.* ;
import java.text.* ;
import java.math.* ;
import static java.lang.Math.min ;
import static java.lang.Math.max ;
public class Codeshefcode{
public static void main(String[] args) throws IOException{
Solver Machine = new Solver() ;
Machine.Solve() ;
Machine.Finish() ;
// new Thread(null,new Runnable(){
// public void run(){
// Solver Machine = new Solver() ;
// try{
// Machine.Solve() ;
// Machine.Finish() ;
// }catch(Exception e){
// e.printStackTrace() ;
// System.out.flush() ;
// System.exit(-1) ;
// }catch(Error e){
// e.printStackTrace() ;
// System.out.flush() ;
// System.exit(-1) ;
// }
// }
// },"Solver",1l<<27).start() ;
}
}
class Mod{
static long mod=1000000007 ;
static long d(long a,long b){ return (a*MI(b))%mod ; }
static long m(long a,long b){ return (a*b)%mod ; }
static private long MI(long a){ return pow(a,mod-2) ; }
static long pow(long a,long b){
if(b<0) return pow(MI(a),-b) ;
long val=a ; long ans=1 ;
while(b!=0){
if((b&1)==1) ans = (ans*val)%mod ;
val = (val*val)%mod ;
b/=2 ;
}
return ans ;
}
}
class pair implements Comparable<pair>{
int x ; int y ;
pair(int x,int y){ this.x=x ; this.y=y ;}
public int compareTo(pair p){
return (this.x<p.x ? -1 : (this.x>p.x ? 1 : (this.y<p.y ? -1 : (this.y>p.y ? 1 : 0)))) ;
}
}
class Solver{
Reader ip = new Reader(System.in) ;
PrintWriter op = new PrintWriter(System.out) ;
long dp[][] ;
public void Solve() throws IOException{
int n = ip.i() ;
int arr[] = new int[n] ;
dp = new long[n][n] ;
for(int i=0 ; i<n ; i++)
for(int j=0 ; j<n ; j++)
dp[i][j]=-1 ;
for(int i=0 ; i<n ; i++){
String s = ip.s() ;
if(s.compareTo("s")==0) arr[i]=0 ;
else if(s.compareTo("f")==0) arr[i]=1 ;
else throw new IOException() ;
}
for(int j=0 ; j<n ; j++) dp[n-1][j] = 1 ;
for(int i=(n-2) ; i>=0 ; i--){
long cuml[] = new long[n] ;
for(int j=0 ; j<n ; j++) cuml[j] = (dp[i+1][j]+(j==0 ? 0 : cuml[j-1]))%Mod.mod ;
for(int j=0 ; j<n ; j++)
dp[i][j] = (arr[i]==0 ? cuml[j] : (j==(n-1) ? -1 : dp[i+1][j+1])) ;
}
pln(dp[0][0]) ;
}
void Finish(){
op.flush();
op.close();
}
void p(Object o){
op.print(o) ;
}
void pln(Object o){
op.println(o) ;
}
}
class mylist extends ArrayList<String>{}
class myset extends TreeSet<Integer>{}
class mystack extends Stack<Integer>{}
class mymap extends TreeMap<Long,Integer>{}
class Reader {
BufferedReader reader;
StringTokenizer tokenizer;
Reader(InputStream input) {
reader = new BufferedReader(
new InputStreamReader(input) );
tokenizer = new StringTokenizer("") ;
}
String s() throws IOException {
while (!tokenizer.hasMoreTokens()){
tokenizer = new StringTokenizer(
reader.readLine()) ;
}
return tokenizer.nextToken();
}
int i() throws IOException {
return Integer.parseInt(s()) ;
}
long l() throws IOException{
return Long.parseLong(s()) ;
}
double d() throws IOException {
return Double.parseDouble(s()) ;
}
}
|
O(n^2)
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n.
</TASK>
<CODE>
import java.io.* ;
import java.util.* ;
import java.text.* ;
import java.math.* ;
import static java.lang.Math.min ;
import static java.lang.Math.max ;
public class Codeshefcode{
public static void main(String[] args) throws IOException{
Solver Machine = new Solver() ;
Machine.Solve() ;
Machine.Finish() ;
// new Thread(null,new Runnable(){
// public void run(){
// Solver Machine = new Solver() ;
// try{
// Machine.Solve() ;
// Machine.Finish() ;
// }catch(Exception e){
// e.printStackTrace() ;
// System.out.flush() ;
// System.exit(-1) ;
// }catch(Error e){
// e.printStackTrace() ;
// System.out.flush() ;
// System.exit(-1) ;
// }
// }
// },"Solver",1l<<27).start() ;
}
}
class Mod{
static long mod=1000000007 ;
static long d(long a,long b){ return (a*MI(b))%mod ; }
static long m(long a,long b){ return (a*b)%mod ; }
static private long MI(long a){ return pow(a,mod-2) ; }
static long pow(long a,long b){
if(b<0) return pow(MI(a),-b) ;
long val=a ; long ans=1 ;
while(b!=0){
if((b&1)==1) ans = (ans*val)%mod ;
val = (val*val)%mod ;
b/=2 ;
}
return ans ;
}
}
class pair implements Comparable<pair>{
int x ; int y ;
pair(int x,int y){ this.x=x ; this.y=y ;}
public int compareTo(pair p){
return (this.x<p.x ? -1 : (this.x>p.x ? 1 : (this.y<p.y ? -1 : (this.y>p.y ? 1 : 0)))) ;
}
}
class Solver{
Reader ip = new Reader(System.in) ;
PrintWriter op = new PrintWriter(System.out) ;
long dp[][] ;
public void Solve() throws IOException{
int n = ip.i() ;
int arr[] = new int[n] ;
dp = new long[n][n] ;
for(int i=0 ; i<n ; i++)
for(int j=0 ; j<n ; j++)
dp[i][j]=-1 ;
for(int i=0 ; i<n ; i++){
String s = ip.s() ;
if(s.compareTo("s")==0) arr[i]=0 ;
else if(s.compareTo("f")==0) arr[i]=1 ;
else throw new IOException() ;
}
for(int j=0 ; j<n ; j++) dp[n-1][j] = 1 ;
for(int i=(n-2) ; i>=0 ; i--){
long cuml[] = new long[n] ;
for(int j=0 ; j<n ; j++) cuml[j] = (dp[i+1][j]+(j==0 ? 0 : cuml[j-1]))%Mod.mod ;
for(int j=0 ; j<n ; j++)
dp[i][j] = (arr[i]==0 ? cuml[j] : (j==(n-1) ? -1 : dp[i+1][j+1])) ;
}
pln(dp[0][0]) ;
}
void Finish(){
op.flush();
op.close();
}
void p(Object o){
op.print(o) ;
}
void pln(Object o){
op.println(o) ;
}
}
class mylist extends ArrayList<String>{}
class myset extends TreeSet<Integer>{}
class mystack extends Stack<Integer>{}
class mymap extends TreeMap<Long,Integer>{}
class Reader {
BufferedReader reader;
StringTokenizer tokenizer;
Reader(InputStream input) {
reader = new BufferedReader(
new InputStreamReader(input) );
tokenizer = new StringTokenizer("") ;
}
String s() throws IOException {
while (!tokenizer.hasMoreTokens()){
tokenizer = new StringTokenizer(
reader.readLine()) ;
}
return tokenizer.nextToken();
}
int i() throws IOException {
return Integer.parseInt(s()) ;
}
long l() throws IOException{
return Long.parseLong(s()) ;
}
double d() throws IOException {
return Double.parseDouble(s()) ;
}
}
</CODE>
<EVALUATION_RUBRIC>
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- O(1): The execution time is unaffected by the size of the input n.
- O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially.
- O(n^3): The execution time ascends in proportion to the cube of the input size n.
- O(n^2): The execution time ascends in proportion to the square of the input size n.
- O(n): The execution time ascends in a one-to-one ratio with the input size n.
- O(log(n)): The execution time ascends in proportion to the logarithm of the input size n.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Classify the following Java code's worst-case time complexity according to its relationship to the input size n.
</TASK>
<CODE>
import java.io.* ;
import java.util.* ;
import java.text.* ;
import java.math.* ;
import static java.lang.Math.min ;
import static java.lang.Math.max ;
public class Codeshefcode{
public static void main(String[] args) throws IOException{
Solver Machine = new Solver() ;
Machine.Solve() ;
Machine.Finish() ;
// new Thread(null,new Runnable(){
// public void run(){
// Solver Machine = new Solver() ;
// try{
// Machine.Solve() ;
// Machine.Finish() ;
// }catch(Exception e){
// e.printStackTrace() ;
// System.out.flush() ;
// System.exit(-1) ;
// }catch(Error e){
// e.printStackTrace() ;
// System.out.flush() ;
// System.exit(-1) ;
// }
// }
// },"Solver",1l<<27).start() ;
}
}
class Mod{
static long mod=1000000007 ;
static long d(long a,long b){ return (a*MI(b))%mod ; }
static long m(long a,long b){ return (a*b)%mod ; }
static private long MI(long a){ return pow(a,mod-2) ; }
static long pow(long a,long b){
if(b<0) return pow(MI(a),-b) ;
long val=a ; long ans=1 ;
while(b!=0){
if((b&1)==1) ans = (ans*val)%mod ;
val = (val*val)%mod ;
b/=2 ;
}
return ans ;
}
}
class pair implements Comparable<pair>{
int x ; int y ;
pair(int x,int y){ this.x=x ; this.y=y ;}
public int compareTo(pair p){
return (this.x<p.x ? -1 : (this.x>p.x ? 1 : (this.y<p.y ? -1 : (this.y>p.y ? 1 : 0)))) ;
}
}
class Solver{
Reader ip = new Reader(System.in) ;
PrintWriter op = new PrintWriter(System.out) ;
long dp[][] ;
public void Solve() throws IOException{
int n = ip.i() ;
int arr[] = new int[n] ;
dp = new long[n][n] ;
for(int i=0 ; i<n ; i++)
for(int j=0 ; j<n ; j++)
dp[i][j]=-1 ;
for(int i=0 ; i<n ; i++){
String s = ip.s() ;
if(s.compareTo("s")==0) arr[i]=0 ;
else if(s.compareTo("f")==0) arr[i]=1 ;
else throw new IOException() ;
}
for(int j=0 ; j<n ; j++) dp[n-1][j] = 1 ;
for(int i=(n-2) ; i>=0 ; i--){
long cuml[] = new long[n] ;
for(int j=0 ; j<n ; j++) cuml[j] = (dp[i+1][j]+(j==0 ? 0 : cuml[j-1]))%Mod.mod ;
for(int j=0 ; j<n ; j++)
dp[i][j] = (arr[i]==0 ? cuml[j] : (j==(n-1) ? -1 : dp[i+1][j+1])) ;
}
pln(dp[0][0]) ;
}
void Finish(){
op.flush();
op.close();
}
void p(Object o){
op.print(o) ;
}
void pln(Object o){
op.println(o) ;
}
}
class mylist extends ArrayList<String>{}
class myset extends TreeSet<Integer>{}
class mystack extends Stack<Integer>{}
class mymap extends TreeMap<Long,Integer>{}
class Reader {
BufferedReader reader;
StringTokenizer tokenizer;
Reader(InputStream input) {
reader = new BufferedReader(
new InputStreamReader(input) );
tokenizer = new StringTokenizer("") ;
}
String s() throws IOException {
while (!tokenizer.hasMoreTokens()){
tokenizer = new StringTokenizer(
reader.readLine()) ;
}
return tokenizer.nextToken();
}
int i() throws IOException {
return Integer.parseInt(s()) ;
}
long l() throws IOException{
return Long.parseLong(s()) ;
}
double d() throws IOException {
return Double.parseDouble(s()) ;
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(nlog(n)): The running time increases with the product of n and logarithm of n.
- others: The code does not clearly correspond to the listed classes or has an unclassified time complexity.
- O(log(n)): The running time increases with the logarithm of the input size n.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- O(1): The running time does not change regardless of the input size n.
- O(n): The running time grows linearly with the input size n.
- O(n^2): The running time increases with the square of the input size n.
- O(n^3): The running time increases with the cube of the input size n.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
| 1,328
| 2,248
|
3,663
|
import java.io.File;
import java.io.FileNotFoundException;
import java.io.PrintWriter;
import java.util.Arrays;
import java.util.PriorityQueue;
import java.util.Queue;
import java.util.Scanner;
public class R035C {
public void debug(Object... objects) { System.err.println(Arrays.deepToString(objects)); }
public static final int INF = 987654321;
public static final long LINF = 987654321987654321L;
public static final double EPS = 1e-9;
Scanner scanner;
PrintWriter out;
int[][] iss;
public R035C() {
try {
this.scanner = new Scanner(new File("input.txt"));
this.out = new PrintWriter("output.txt");
} catch(FileNotFoundException ex) { ex.printStackTrace(); }
}
class Point implements Comparable<Point> {
int x, y, count;
Point(int x, int y) { this.x = x; this.y = y; }
public int hashCode() { return x * 17 + y; }
public boolean equals(Object o) {
if(!(o instanceof Point)) return false;
Point that = (Point)o;
return this.x == that.x && this.y == that.y;
}
public int compareTo(Point that) { return this.count - that.count; }
public String toString() { return "(" + x + ", " + y + ":" + count + ")"; }
}
int[] dx = new int[] { 0, 0, -1, 1 };
int[] dy= new int[] { -1, 1, 0, 0 };
int n, m;
Queue<Point> q;
Point bfs() {
int max = -INF;
Point p = null;
while(!q.isEmpty()) {
Point cur = q.remove();
if(max < cur.count) { max = cur.count; p = cur; }
for(int i=0; i<dx.length; i++) {
int nx = cur.x + dx[i];
int ny = cur.y + dy[i];
if(nx < 0 || nx >= n) { continue; }
if(ny < 0 || ny >= m) { continue; }
Point np = new Point(nx, ny);
if(iss[nx][ny] != 0) { continue; }
np.count = cur.count+1;
iss[nx][ny] = np.count;
q.add(np);
}
}
return p;
}
private void solve() {
this.n = scanner.nextInt();
this.m = scanner.nextInt();
this.iss = new int[n][m];
int k = scanner.nextInt();
q = new PriorityQueue<Point>();
for(int i=0; i<k; i++) {
int x = scanner.nextInt() - 1;
int y = scanner.nextInt() - 1;
Point init = new Point(x, y);
init.count = 1;
q.add(init);
iss[x][y] = 1;
}
Point p = bfs();
out.println((p.x+1) + " " + (p.y+1));
}
private void finish() { this.out.close(); }
public static void main(String[] args) {
R035C obj = new R035C();
obj.solve();
obj.finish();
}
}
|
O(n^3)
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n.
</TASK>
<CODE>
import java.io.File;
import java.io.FileNotFoundException;
import java.io.PrintWriter;
import java.util.Arrays;
import java.util.PriorityQueue;
import java.util.Queue;
import java.util.Scanner;
public class R035C {
public void debug(Object... objects) { System.err.println(Arrays.deepToString(objects)); }
public static final int INF = 987654321;
public static final long LINF = 987654321987654321L;
public static final double EPS = 1e-9;
Scanner scanner;
PrintWriter out;
int[][] iss;
public R035C() {
try {
this.scanner = new Scanner(new File("input.txt"));
this.out = new PrintWriter("output.txt");
} catch(FileNotFoundException ex) { ex.printStackTrace(); }
}
class Point implements Comparable<Point> {
int x, y, count;
Point(int x, int y) { this.x = x; this.y = y; }
public int hashCode() { return x * 17 + y; }
public boolean equals(Object o) {
if(!(o instanceof Point)) return false;
Point that = (Point)o;
return this.x == that.x && this.y == that.y;
}
public int compareTo(Point that) { return this.count - that.count; }
public String toString() { return "(" + x + ", " + y + ":" + count + ")"; }
}
int[] dx = new int[] { 0, 0, -1, 1 };
int[] dy= new int[] { -1, 1, 0, 0 };
int n, m;
Queue<Point> q;
Point bfs() {
int max = -INF;
Point p = null;
while(!q.isEmpty()) {
Point cur = q.remove();
if(max < cur.count) { max = cur.count; p = cur; }
for(int i=0; i<dx.length; i++) {
int nx = cur.x + dx[i];
int ny = cur.y + dy[i];
if(nx < 0 || nx >= n) { continue; }
if(ny < 0 || ny >= m) { continue; }
Point np = new Point(nx, ny);
if(iss[nx][ny] != 0) { continue; }
np.count = cur.count+1;
iss[nx][ny] = np.count;
q.add(np);
}
}
return p;
}
private void solve() {
this.n = scanner.nextInt();
this.m = scanner.nextInt();
this.iss = new int[n][m];
int k = scanner.nextInt();
q = new PriorityQueue<Point>();
for(int i=0; i<k; i++) {
int x = scanner.nextInt() - 1;
int y = scanner.nextInt() - 1;
Point init = new Point(x, y);
init.count = 1;
q.add(init);
iss[x][y] = 1;
}
Point p = bfs();
out.println((p.x+1) + " " + (p.y+1));
}
private void finish() { this.out.close(); }
public static void main(String[] args) {
R035C obj = new R035C();
obj.solve();
obj.finish();
}
}
</CODE>
<EVALUATION_RUBRIC>
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- O(log(n)): The execution time ascends in proportion to the logarithm of the input size n.
- O(n^3): The execution time ascends in proportion to the cube of the input size n.
- O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially.
- O(1): The execution time is unaffected by the size of the input n.
- O(n^2): The execution time ascends in proportion to the square of the input size n.
- O(n): The execution time ascends in a one-to-one ratio with the input size n.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Classify the following Java code's worst-case time complexity according to its relationship to the input size n.
</TASK>
<CODE>
import java.io.File;
import java.io.FileNotFoundException;
import java.io.PrintWriter;
import java.util.Arrays;
import java.util.PriorityQueue;
import java.util.Queue;
import java.util.Scanner;
public class R035C {
public void debug(Object... objects) { System.err.println(Arrays.deepToString(objects)); }
public static final int INF = 987654321;
public static final long LINF = 987654321987654321L;
public static final double EPS = 1e-9;
Scanner scanner;
PrintWriter out;
int[][] iss;
public R035C() {
try {
this.scanner = new Scanner(new File("input.txt"));
this.out = new PrintWriter("output.txt");
} catch(FileNotFoundException ex) { ex.printStackTrace(); }
}
class Point implements Comparable<Point> {
int x, y, count;
Point(int x, int y) { this.x = x; this.y = y; }
public int hashCode() { return x * 17 + y; }
public boolean equals(Object o) {
if(!(o instanceof Point)) return false;
Point that = (Point)o;
return this.x == that.x && this.y == that.y;
}
public int compareTo(Point that) { return this.count - that.count; }
public String toString() { return "(" + x + ", " + y + ":" + count + ")"; }
}
int[] dx = new int[] { 0, 0, -1, 1 };
int[] dy= new int[] { -1, 1, 0, 0 };
int n, m;
Queue<Point> q;
Point bfs() {
int max = -INF;
Point p = null;
while(!q.isEmpty()) {
Point cur = q.remove();
if(max < cur.count) { max = cur.count; p = cur; }
for(int i=0; i<dx.length; i++) {
int nx = cur.x + dx[i];
int ny = cur.y + dy[i];
if(nx < 0 || nx >= n) { continue; }
if(ny < 0 || ny >= m) { continue; }
Point np = new Point(nx, ny);
if(iss[nx][ny] != 0) { continue; }
np.count = cur.count+1;
iss[nx][ny] = np.count;
q.add(np);
}
}
return p;
}
private void solve() {
this.n = scanner.nextInt();
this.m = scanner.nextInt();
this.iss = new int[n][m];
int k = scanner.nextInt();
q = new PriorityQueue<Point>();
for(int i=0; i<k; i++) {
int x = scanner.nextInt() - 1;
int y = scanner.nextInt() - 1;
Point init = new Point(x, y);
init.count = 1;
q.add(init);
iss[x][y] = 1;
}
Point p = bfs();
out.println((p.x+1) + " " + (p.y+1));
}
private void finish() { this.out.close(); }
public static void main(String[] args) {
R035C obj = new R035C();
obj.solve();
obj.finish();
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(1): The running time does not change regardless of the input size n.
- others: The code does not clearly correspond to the listed classes or has an unclassified time complexity.
- O(log(n)): The running time increases with the logarithm of the input size n.
- O(n^2): The running time increases with the square of the input size n.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- O(nlog(n)): The running time increases with the product of n and logarithm of n.
- O(n^3): The running time increases with the cube of the input size n.
- O(n): The running time grows linearly with the input size n.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
| 1,105
| 3,655
|
3,962
|
import java.io.BufferedReader;
import java.io.InputStreamReader;
import java.io.PrintWriter;
import java.io.Reader;
import java.io.IOException;
import java.util.StringTokenizer;
/*
* @author Tnascimento
*/
public class MaeDosDragoes {
public static PrintWriter saida = new PrintWriter(System.out, false);
public static class Escanear {
BufferedReader reader;
StringTokenizer tokenizer;
public Escanear() {
this(new InputStreamReader(System.in));
}
public Escanear(Reader in) {
reader = new BufferedReader(in);
}
String proximo() {
if (tokenizer == null || !tokenizer.hasMoreElements()) {
try {
tokenizer = new StringTokenizer(reader.readLine());
} catch (IOException e) {
e.printStackTrace();
}
}
return tokenizer.nextToken();
}
int proximoNum() {
return Integer.parseInt(proximo());
}
}
public static void main(String[] args) {
Escanear escanear = new Escanear();
int proximoInt = escanear.proximoNum();
long[] aux = new long[proximoInt];
double proximoDouble = escanear.proximoNum();
for(Integer i = 0; i < proximoInt; i++) {
for(Integer j =0; j < proximoInt; j++) {
Integer val = escanear.proximoNum();
if (val.equals(1) || i.equals(j)) {
aux[i] |= 1L << j;
}
}
}
int esquerda = proximoInt/2;
int direita = proximoInt - esquerda;
int maiorMascara = 1 << esquerda;
int[] depois = new int[1 << esquerda];
Integer mascara = 1;
while (mascara < maiorMascara) {
int mascaraAtual = mascara;
for(int j = 0; j < esquerda; j++) {
if (((1 << j) & mascara) > 0) {
mascaraAtual &= aux[j + direita] >> direita;
depois[mascara] = Math.max(depois[mascara], depois[mascara ^ (1 << j)]);
}
}
if (mascara.equals(mascaraAtual)) {
depois[mascara] = Math.max(depois[mascara],Integer.bitCount(mascara));
}
mascara++;
}
// for(int mascara = 1; mascara < maiorMascara; mascara++) {
// int mascaraAtual = mascara;
// for(int j = 0; j < esquerda; j++) {
// if (((1 << j) & mascara) > 0) {
// mascaraAtual &= aux[j + direita] >> direita;
// depois[mascara] = Math.max(depois[mascara], depois[mascara ^ (1 << j)]);
// }
// }
// if (mascara == mascaraAtual) {
// depois[mascara] = Math.max(depois[mascara],Integer.bitCount(mascara));
// }
// }
int auxiliar = 0;
int mascaraMaxima = 1 << direita;
for(int masc = 0; masc < mascaraMaxima; masc++) {
int mascaraCorrente = masc;
int mascaraValor = maiorMascara -1;
for(int j = 0; j < direita; j++) {
if (((1 << j) & masc) > 0) {
mascaraCorrente &= (aux[j] & (mascaraMaxima-1));
mascaraValor &= aux[j] >> direita;
}
}
if (mascaraCorrente != masc) continue;
auxiliar = Math.max(auxiliar, Integer.bitCount(masc) + depois[mascaraValor]);
}
proximoDouble/=auxiliar;
saida.println(proximoDouble * proximoDouble * (auxiliar * (auxiliar-1))/2);
saida.flush();
}
}
|
non-polynomial
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Classify the following Java code's worst-case time complexity according to its relationship to the input size n.
</TASK>
<CODE>
import java.io.BufferedReader;
import java.io.InputStreamReader;
import java.io.PrintWriter;
import java.io.Reader;
import java.io.IOException;
import java.util.StringTokenizer;
/*
* @author Tnascimento
*/
public class MaeDosDragoes {
public static PrintWriter saida = new PrintWriter(System.out, false);
public static class Escanear {
BufferedReader reader;
StringTokenizer tokenizer;
public Escanear() {
this(new InputStreamReader(System.in));
}
public Escanear(Reader in) {
reader = new BufferedReader(in);
}
String proximo() {
if (tokenizer == null || !tokenizer.hasMoreElements()) {
try {
tokenizer = new StringTokenizer(reader.readLine());
} catch (IOException e) {
e.printStackTrace();
}
}
return tokenizer.nextToken();
}
int proximoNum() {
return Integer.parseInt(proximo());
}
}
public static void main(String[] args) {
Escanear escanear = new Escanear();
int proximoInt = escanear.proximoNum();
long[] aux = new long[proximoInt];
double proximoDouble = escanear.proximoNum();
for(Integer i = 0; i < proximoInt; i++) {
for(Integer j =0; j < proximoInt; j++) {
Integer val = escanear.proximoNum();
if (val.equals(1) || i.equals(j)) {
aux[i] |= 1L << j;
}
}
}
int esquerda = proximoInt/2;
int direita = proximoInt - esquerda;
int maiorMascara = 1 << esquerda;
int[] depois = new int[1 << esquerda];
Integer mascara = 1;
while (mascara < maiorMascara) {
int mascaraAtual = mascara;
for(int j = 0; j < esquerda; j++) {
if (((1 << j) & mascara) > 0) {
mascaraAtual &= aux[j + direita] >> direita;
depois[mascara] = Math.max(depois[mascara], depois[mascara ^ (1 << j)]);
}
}
if (mascara.equals(mascaraAtual)) {
depois[mascara] = Math.max(depois[mascara],Integer.bitCount(mascara));
}
mascara++;
}
// for(int mascara = 1; mascara < maiorMascara; mascara++) {
// int mascaraAtual = mascara;
// for(int j = 0; j < esquerda; j++) {
// if (((1 << j) & mascara) > 0) {
// mascaraAtual &= aux[j + direita] >> direita;
// depois[mascara] = Math.max(depois[mascara], depois[mascara ^ (1 << j)]);
// }
// }
// if (mascara == mascaraAtual) {
// depois[mascara] = Math.max(depois[mascara],Integer.bitCount(mascara));
// }
// }
int auxiliar = 0;
int mascaraMaxima = 1 << direita;
for(int masc = 0; masc < mascaraMaxima; masc++) {
int mascaraCorrente = masc;
int mascaraValor = maiorMascara -1;
for(int j = 0; j < direita; j++) {
if (((1 << j) & masc) > 0) {
mascaraCorrente &= (aux[j] & (mascaraMaxima-1));
mascaraValor &= aux[j] >> direita;
}
}
if (mascaraCorrente != masc) continue;
auxiliar = Math.max(auxiliar, Integer.bitCount(masc) + depois[mascaraValor]);
}
proximoDouble/=auxiliar;
saida.println(proximoDouble * proximoDouble * (auxiliar * (auxiliar-1))/2);
saida.flush();
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(1): The running time does not change regardless of the input size n.
- O(n^3): The running time increases with the cube of the input size n.
- O(log(n)): The running time increases with the logarithm of the input size n.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- O(n^2): The running time increases with the square of the input size n.
- O(nlog(n)): The running time increases with the product of n and logarithm of n.
- O(n): The running time grows linearly with the input size n.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Classify the following Java code's worst-case time complexity according to its relationship to the input size n.
</TASK>
<CODE>
import java.io.BufferedReader;
import java.io.InputStreamReader;
import java.io.PrintWriter;
import java.io.Reader;
import java.io.IOException;
import java.util.StringTokenizer;
/*
* @author Tnascimento
*/
public class MaeDosDragoes {
public static PrintWriter saida = new PrintWriter(System.out, false);
public static class Escanear {
BufferedReader reader;
StringTokenizer tokenizer;
public Escanear() {
this(new InputStreamReader(System.in));
}
public Escanear(Reader in) {
reader = new BufferedReader(in);
}
String proximo() {
if (tokenizer == null || !tokenizer.hasMoreElements()) {
try {
tokenizer = new StringTokenizer(reader.readLine());
} catch (IOException e) {
e.printStackTrace();
}
}
return tokenizer.nextToken();
}
int proximoNum() {
return Integer.parseInt(proximo());
}
}
public static void main(String[] args) {
Escanear escanear = new Escanear();
int proximoInt = escanear.proximoNum();
long[] aux = new long[proximoInt];
double proximoDouble = escanear.proximoNum();
for(Integer i = 0; i < proximoInt; i++) {
for(Integer j =0; j < proximoInt; j++) {
Integer val = escanear.proximoNum();
if (val.equals(1) || i.equals(j)) {
aux[i] |= 1L << j;
}
}
}
int esquerda = proximoInt/2;
int direita = proximoInt - esquerda;
int maiorMascara = 1 << esquerda;
int[] depois = new int[1 << esquerda];
Integer mascara = 1;
while (mascara < maiorMascara) {
int mascaraAtual = mascara;
for(int j = 0; j < esquerda; j++) {
if (((1 << j) & mascara) > 0) {
mascaraAtual &= aux[j + direita] >> direita;
depois[mascara] = Math.max(depois[mascara], depois[mascara ^ (1 << j)]);
}
}
if (mascara.equals(mascaraAtual)) {
depois[mascara] = Math.max(depois[mascara],Integer.bitCount(mascara));
}
mascara++;
}
// for(int mascara = 1; mascara < maiorMascara; mascara++) {
// int mascaraAtual = mascara;
// for(int j = 0; j < esquerda; j++) {
// if (((1 << j) & mascara) > 0) {
// mascaraAtual &= aux[j + direita] >> direita;
// depois[mascara] = Math.max(depois[mascara], depois[mascara ^ (1 << j)]);
// }
// }
// if (mascara == mascaraAtual) {
// depois[mascara] = Math.max(depois[mascara],Integer.bitCount(mascara));
// }
// }
int auxiliar = 0;
int mascaraMaxima = 1 << direita;
for(int masc = 0; masc < mascaraMaxima; masc++) {
int mascaraCorrente = masc;
int mascaraValor = maiorMascara -1;
for(int j = 0; j < direita; j++) {
if (((1 << j) & masc) > 0) {
mascaraCorrente &= (aux[j] & (mascaraMaxima-1));
mascaraValor &= aux[j] >> direita;
}
}
if (mascaraCorrente != masc) continue;
auxiliar = Math.max(auxiliar, Integer.bitCount(masc) + depois[mascaraValor]);
}
proximoDouble/=auxiliar;
saida.println(proximoDouble * proximoDouble * (auxiliar * (auxiliar-1))/2);
saida.flush();
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(nlog(n)): The running time increases with the product of n and logarithm of n.
- O(1): The running time does not change regardless of the input size n.
- O(n^3): The running time increases with the cube of the input size n.
- O(log(n)): The running time increases with the logarithm of the input size n.
- others: The code does not clearly correspond to the listed classes or has an unclassified time complexity.
- O(n^2): The running time increases with the square of the input size n.
- O(n): The running time grows linearly with the input size n.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
| 1,214
| 3,951
|
2,890
|
import java.util.Scanner;
public class A {
public static void main(String[] args) {
Scanner x=new Scanner(System.in);
int n=x.nextInt();
if(n%2==0){
System.out.println((n-4)+" "+"4");
}
else{
System.out.println((n-9)+" "+"9");
}
}
}
|
O(1)
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Determine the worst-case time complexity category of a given Java code based on input size n.
</TASK>
<CODE>
import java.util.Scanner;
public class A {
public static void main(String[] args) {
Scanner x=new Scanner(System.in);
int n=x.nextInt();
if(n%2==0){
System.out.println((n-4)+" "+"4");
}
else{
System.out.println((n-9)+" "+"9");
}
}
}
</CODE>
<EVALUATION_RUBRIC>
- non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially.
- O(nlog(n)): The time complexity combines linear and logarithmic growth factors.
- O(n^3): The time complexity scales proportionally to the cube of the input size.
- O(n^2): The time complexity grows proportionally to the square of the input size.
- O(log(n)): The time complexity increases logarithmically in relation to the input size.
- O(1): The time complexity is constant to the input size n.
- O(n): The time complexity increases proportionally to the input size n in a linear manner.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Determine the worst-case time complexity category of a given Java code based on input size n.
</TASK>
<CODE>
import java.util.Scanner;
public class A {
public static void main(String[] args) {
Scanner x=new Scanner(System.in);
int n=x.nextInt();
if(n%2==0){
System.out.println((n-4)+" "+"4");
}
else{
System.out.println((n-9)+" "+"9");
}
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(1): The time complexity is constant to the input size n.
- non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially.
- O(n): The time complexity increases proportionally to the input size n in a linear manner.
- O(n^2): The time complexity grows proportionally to the square of the input size.
- O(n^3): The time complexity scales proportionally to the cube of the input size.
- O(nlog(n)): The time complexity combines linear and logarithmic growth factors.
- others: The time complexity does not fit any of the above categories or cannot be clearly classified.
- O(log(n)): The time complexity increases logarithmically in relation to the input size.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
| 412
| 2,884
|
1,225
|
import java.io.*;
import java.util.*;
public class A {
long mod = (long)(1e+9+9);
long pow(long a,long b) {
long mul = a;
long res = 1;
while (b > 0) {
if (b %2 == 1) {
res = (res*mul)%mod;
}
mul = (mul*mul)%mod;
b/=2;
}
return res;
}
void solve() throws IOException {
long n = nextLong();
long m = nextLong();
long k = nextLong();
long l = -1;
long r = m / k;
while (l < r - 1) {
long mid = (l+r)/2;
long leftOk = m - mid*k;
long leftPos = n - mid*k;
long cgroups = (leftOk + (k-2)) / (k-1);
long positions = leftOk+cgroups-1;
if (positions <= leftPos) {
r = mid;
} else {
l = mid;
}
}
long res = pow(2,r+1);
res = (res - 2 + mod) %mod;
res = (res*k) % mod;
res = (res+m-r*k) %mod;
out.println(res);
}
void run() throws IOException {
in = new BufferedReader(new InputStreamReader(System.in));
out = new PrintWriter(System.out);
solve();
out.close();
}
public static void main(String[] args) throws IOException {
new A().run();
}
BufferedReader in;
PrintWriter out;
StringTokenizer st;
String next() throws IOException {
while (st == null || !st.hasMoreTokens()) {
String temp = in.readLine();
if (temp == null) {
return null;
}
st = new StringTokenizer(temp);
}
return st.nextToken();
}
int nextInt() throws IOException {
return Integer.parseInt(next());
}
double nextDouble() throws IOException {
return Double.parseDouble(next());
}
long nextLong() throws IOException {
return Long.parseLong(next());
}
}
|
O(log(n))
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n.
</TASK>
<CODE>
import java.io.*;
import java.util.*;
public class A {
long mod = (long)(1e+9+9);
long pow(long a,long b) {
long mul = a;
long res = 1;
while (b > 0) {
if (b %2 == 1) {
res = (res*mul)%mod;
}
mul = (mul*mul)%mod;
b/=2;
}
return res;
}
void solve() throws IOException {
long n = nextLong();
long m = nextLong();
long k = nextLong();
long l = -1;
long r = m / k;
while (l < r - 1) {
long mid = (l+r)/2;
long leftOk = m - mid*k;
long leftPos = n - mid*k;
long cgroups = (leftOk + (k-2)) / (k-1);
long positions = leftOk+cgroups-1;
if (positions <= leftPos) {
r = mid;
} else {
l = mid;
}
}
long res = pow(2,r+1);
res = (res - 2 + mod) %mod;
res = (res*k) % mod;
res = (res+m-r*k) %mod;
out.println(res);
}
void run() throws IOException {
in = new BufferedReader(new InputStreamReader(System.in));
out = new PrintWriter(System.out);
solve();
out.close();
}
public static void main(String[] args) throws IOException {
new A().run();
}
BufferedReader in;
PrintWriter out;
StringTokenizer st;
String next() throws IOException {
while (st == null || !st.hasMoreTokens()) {
String temp = in.readLine();
if (temp == null) {
return null;
}
st = new StringTokenizer(temp);
}
return st.nextToken();
}
int nextInt() throws IOException {
return Integer.parseInt(next());
}
double nextDouble() throws IOException {
return Double.parseDouble(next());
}
long nextLong() throws IOException {
return Long.parseLong(next());
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(n^3): The execution time ascends in proportion to the cube of the input size n.
- O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially.
- O(log(n)): The execution time ascends in proportion to the logarithm of the input size n.
- O(1): The execution time is unaffected by the size of the input n.
- O(n): The execution time ascends in a one-to-one ratio with the input size n.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- O(n^2): The execution time ascends in proportion to the square of the input size n.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Determine the worst-case time complexity category of a given Java code based on input size n.
</TASK>
<CODE>
import java.io.*;
import java.util.*;
public class A {
long mod = (long)(1e+9+9);
long pow(long a,long b) {
long mul = a;
long res = 1;
while (b > 0) {
if (b %2 == 1) {
res = (res*mul)%mod;
}
mul = (mul*mul)%mod;
b/=2;
}
return res;
}
void solve() throws IOException {
long n = nextLong();
long m = nextLong();
long k = nextLong();
long l = -1;
long r = m / k;
while (l < r - 1) {
long mid = (l+r)/2;
long leftOk = m - mid*k;
long leftPos = n - mid*k;
long cgroups = (leftOk + (k-2)) / (k-1);
long positions = leftOk+cgroups-1;
if (positions <= leftPos) {
r = mid;
} else {
l = mid;
}
}
long res = pow(2,r+1);
res = (res - 2 + mod) %mod;
res = (res*k) % mod;
res = (res+m-r*k) %mod;
out.println(res);
}
void run() throws IOException {
in = new BufferedReader(new InputStreamReader(System.in));
out = new PrintWriter(System.out);
solve();
out.close();
}
public static void main(String[] args) throws IOException {
new A().run();
}
BufferedReader in;
PrintWriter out;
StringTokenizer st;
String next() throws IOException {
while (st == null || !st.hasMoreTokens()) {
String temp = in.readLine();
if (temp == null) {
return null;
}
st = new StringTokenizer(temp);
}
return st.nextToken();
}
int nextInt() throws IOException {
return Integer.parseInt(next());
}
double nextDouble() throws IOException {
return Double.parseDouble(next());
}
long nextLong() throws IOException {
return Long.parseLong(next());
}
}
</CODE>
<EVALUATION_RUBRIC>
- non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially.
- others: The time complexity does not fit any of the above categories or cannot be clearly classified.
- O(nlog(n)): The time complexity combines linear and logarithmic growth factors.
- O(n): The time complexity increases proportionally to the input size n in a linear manner.
- O(log(n)): The time complexity increases logarithmically in relation to the input size.
- O(1): The time complexity is constant to the input size n.
- O(n^3): The time complexity scales proportionally to the cube of the input size.
- O(n^2): The time complexity grows proportionally to the square of the input size.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
| 823
| 1,224
|
2,991
|
import java.util.*;
import java.io.*;
public class programA {
public static void main(String[] args) throws IOException {
BufferedReader br = new BufferedReader(new InputStreamReader(System.in));
int n = Integer.parseInt(br.readLine());
if(n%2 == 0)System.out.println(n/2 +1);
else System.out.println((int)Math.ceil((double)n/2));
}
}
|
O(1)
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Classify the following Java code's worst-case time complexity according to its relationship to the input size n.
</TASK>
<CODE>
import java.util.*;
import java.io.*;
public class programA {
public static void main(String[] args) throws IOException {
BufferedReader br = new BufferedReader(new InputStreamReader(System.in));
int n = Integer.parseInt(br.readLine());
if(n%2 == 0)System.out.println(n/2 +1);
else System.out.println((int)Math.ceil((double)n/2));
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(n^2): The running time increases with the square of the input size n.
- O(nlog(n)): The running time increases with the product of n and logarithm of n.
- O(n^3): The running time increases with the cube of the input size n.
- O(n): The running time grows linearly with the input size n.
- O(log(n)): The running time increases with the logarithm of the input size n.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- O(1): The running time does not change regardless of the input size n.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Classify the following Java code's worst-case time complexity according to its relationship to the input size n.
</TASK>
<CODE>
import java.util.*;
import java.io.*;
public class programA {
public static void main(String[] args) throws IOException {
BufferedReader br = new BufferedReader(new InputStreamReader(System.in));
int n = Integer.parseInt(br.readLine());
if(n%2 == 0)System.out.println(n/2 +1);
else System.out.println((int)Math.ceil((double)n/2));
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(1): The running time does not change regardless of the input size n.
- O(n^3): The running time increases with the cube of the input size n.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- O(nlog(n)): The running time increases with the product of n and logarithm of n.
- others: The code does not clearly correspond to the listed classes or has an unclassified time complexity.
- O(log(n)): The running time increases with the logarithm of the input size n.
- O(n^2): The running time increases with the square of the input size n.
- O(n): The running time grows linearly with the input size n.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
| 412
| 2,985
|
500
|
import java.util.*;
public class algo121
{
public static void main(String args[])
{
Scanner ex=new Scanner(System.in);
int n=ex.nextInt();
String a[]=new String[n];
String b[]=new String[n];
for(int i=0;i<n;i++)
a[i]=ex.next();
for(int i=0;i<n;i++)
b[i]=ex.next();
String valid[]={"S","M","L","XS","XL","XXS","XXL","XXXS","XXXL"};
int ai[]=new int[9];
int bi[]=new int[9];
for(int i=0;i<n;i++)
{
for(int j=0;j<9;j++)
{
if(a[i].equals(valid[j]))
ai[j]++;
if(b[i].equals(valid[j]))
bi[j]++;
}
}
int ans=0;
for(int i=0;i<9;i++)
{
if(ai[i]>bi[i])
ans=ans+ai[i]-bi[i];
}
System.out.println(ans);
}
}
|
O(n)
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n.
</TASK>
<CODE>
import java.util.*;
public class algo121
{
public static void main(String args[])
{
Scanner ex=new Scanner(System.in);
int n=ex.nextInt();
String a[]=new String[n];
String b[]=new String[n];
for(int i=0;i<n;i++)
a[i]=ex.next();
for(int i=0;i<n;i++)
b[i]=ex.next();
String valid[]={"S","M","L","XS","XL","XXS","XXL","XXXS","XXXL"};
int ai[]=new int[9];
int bi[]=new int[9];
for(int i=0;i<n;i++)
{
for(int j=0;j<9;j++)
{
if(a[i].equals(valid[j]))
ai[j]++;
if(b[i].equals(valid[j]))
bi[j]++;
}
}
int ans=0;
for(int i=0;i<9;i++)
{
if(ai[i]>bi[i])
ans=ans+ai[i]-bi[i];
}
System.out.println(ans);
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(log(n)): The execution time ascends in proportion to the logarithm of the input size n.
- O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially.
- O(n^2): The execution time ascends in proportion to the square of the input size n.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- O(n): The execution time ascends in a one-to-one ratio with the input size n.
- O(n^3): The execution time ascends in proportion to the cube of the input size n.
- O(1): The execution time is unaffected by the size of the input n.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n.
</TASK>
<CODE>
import java.util.*;
public class algo121
{
public static void main(String args[])
{
Scanner ex=new Scanner(System.in);
int n=ex.nextInt();
String a[]=new String[n];
String b[]=new String[n];
for(int i=0;i<n;i++)
a[i]=ex.next();
for(int i=0;i<n;i++)
b[i]=ex.next();
String valid[]={"S","M","L","XS","XL","XXS","XXL","XXXS","XXXL"};
int ai[]=new int[9];
int bi[]=new int[9];
for(int i=0;i<n;i++)
{
for(int j=0;j<9;j++)
{
if(a[i].equals(valid[j]))
ai[j]++;
if(b[i].equals(valid[j]))
bi[j]++;
}
}
int ans=0;
for(int i=0;i<9;i++)
{
if(ai[i]>bi[i])
ans=ans+ai[i]-bi[i];
}
System.out.println(ans);
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(log(n)): The execution time ascends in proportion to the logarithm of the input size n.
- O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially.
- O(n^2): The execution time ascends in proportion to the square of the input size n.
- others: The time complexity does not fit to any of the given categories or is ambiguous.
- O(n^3): The execution time ascends in proportion to the cube of the input size n.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- O(n): The execution time ascends in a one-to-one ratio with the input size n.
- O(1): The execution time is unaffected by the size of the input n.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
| 587
| 499
|
1,415
|
import java.util.Locale;
import java.util.Scanner;
public class PipelineSolver {
private long n;
private long k;
public static void main(String[] args) {
PipelineSolver solver = new PipelineSolver();
solver.readData();
int solution = solver.solve();
solver.print(solution);
}
private int gcd(int a, int b) {
return b == 0 ? a : gcd(b, a % b);
}
private int lcm(int a, int b) {
return a * b / gcd(a, b);
}
private void print(int[] values) {
StringBuilder builder = new StringBuilder();
for (int value : values) {
builder.append(value);
builder.append(" ");
}
print(builder);
}
private void print(Object value) {
System.out.println(value);
}
private void print(boolean value) {
System.out.println(value ? "YES" : "NO");
}
private void print(int value) {
System.out.println(value);
}
private void print(long value) {
System.out.println(value);
}
private void print(double value) {
System.out.printf(Locale.ENGLISH, "%.10f", value);
}
private int[] getDigits(int number) {
int[] digits = new int[10];
int index = digits.length - 1;
int digitsCount = 0;
while (number > 0) {
digits[index] = number % 10;
number /= 10;
index--;
digitsCount++;
}
int[] result = new int[digitsCount];
System.arraycopy(digits, digits.length - digitsCount, result, 0, digitsCount);
return result;
}
private int[] readArray(Scanner scanner, int size) {
int[] result = new int[size];
for (int i = 0; i < size; i++) {
result[i] = scanner.nextInt();
}
return result;
}
private void readData() {
Scanner scanner = new Scanner(System.in);
n = scanner.nextLong();
k = scanner.nextLong();
}
private int solve() {
if (n == 1) {
return 0;
}
if (n <= k) {
return 1;
}
int result;
long l;
long d = (5 - 2 * k) * (5 - 2 * k) - 4 * (2 * n - 4 * k + 4);
if (d < 0)
{
result = -1;
} else {
l = Math.min(Math.max((int)((2 * k - 3 - Math.sqrt(d)) / 2), 0), Math.max((int)((2 * k - 3 + Math.sqrt(d)) / 2), 0));
long difference = n - k * (l + 1) + l * (l + 3) / 2;
if (l > k - 2) {
result = -1;
} else if (l == k - 2) {
result = difference == 0 ? (int) (l + 1) : -1;
} else {
result = (int) (l + 1 + (difference == 0 ? 0 : 1));
}
}
return result;
}
}
|
O(log(n))
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Determine the worst-case time complexity category of a given Java code based on input size n.
</TASK>
<CODE>
import java.util.Locale;
import java.util.Scanner;
public class PipelineSolver {
private long n;
private long k;
public static void main(String[] args) {
PipelineSolver solver = new PipelineSolver();
solver.readData();
int solution = solver.solve();
solver.print(solution);
}
private int gcd(int a, int b) {
return b == 0 ? a : gcd(b, a % b);
}
private int lcm(int a, int b) {
return a * b / gcd(a, b);
}
private void print(int[] values) {
StringBuilder builder = new StringBuilder();
for (int value : values) {
builder.append(value);
builder.append(" ");
}
print(builder);
}
private void print(Object value) {
System.out.println(value);
}
private void print(boolean value) {
System.out.println(value ? "YES" : "NO");
}
private void print(int value) {
System.out.println(value);
}
private void print(long value) {
System.out.println(value);
}
private void print(double value) {
System.out.printf(Locale.ENGLISH, "%.10f", value);
}
private int[] getDigits(int number) {
int[] digits = new int[10];
int index = digits.length - 1;
int digitsCount = 0;
while (number > 0) {
digits[index] = number % 10;
number /= 10;
index--;
digitsCount++;
}
int[] result = new int[digitsCount];
System.arraycopy(digits, digits.length - digitsCount, result, 0, digitsCount);
return result;
}
private int[] readArray(Scanner scanner, int size) {
int[] result = new int[size];
for (int i = 0; i < size; i++) {
result[i] = scanner.nextInt();
}
return result;
}
private void readData() {
Scanner scanner = new Scanner(System.in);
n = scanner.nextLong();
k = scanner.nextLong();
}
private int solve() {
if (n == 1) {
return 0;
}
if (n <= k) {
return 1;
}
int result;
long l;
long d = (5 - 2 * k) * (5 - 2 * k) - 4 * (2 * n - 4 * k + 4);
if (d < 0)
{
result = -1;
} else {
l = Math.min(Math.max((int)((2 * k - 3 - Math.sqrt(d)) / 2), 0), Math.max((int)((2 * k - 3 + Math.sqrt(d)) / 2), 0));
long difference = n - k * (l + 1) + l * (l + 3) / 2;
if (l > k - 2) {
result = -1;
} else if (l == k - 2) {
result = difference == 0 ? (int) (l + 1) : -1;
} else {
result = (int) (l + 1 + (difference == 0 ? 0 : 1));
}
}
return result;
}
}
</CODE>
<EVALUATION_RUBRIC>
- non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially.
- O(n^3): The time complexity scales proportionally to the cube of the input size.
- O(n): The time complexity increases proportionally to the input size n in a linear manner.
- O(nlog(n)): The time complexity combines linear and logarithmic growth factors.
- O(n^2): The time complexity grows proportionally to the square of the input size.
- O(log(n)): The time complexity increases logarithmically in relation to the input size.
- O(1): The time complexity is constant to the input size n.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n.
</TASK>
<CODE>
import java.util.Locale;
import java.util.Scanner;
public class PipelineSolver {
private long n;
private long k;
public static void main(String[] args) {
PipelineSolver solver = new PipelineSolver();
solver.readData();
int solution = solver.solve();
solver.print(solution);
}
private int gcd(int a, int b) {
return b == 0 ? a : gcd(b, a % b);
}
private int lcm(int a, int b) {
return a * b / gcd(a, b);
}
private void print(int[] values) {
StringBuilder builder = new StringBuilder();
for (int value : values) {
builder.append(value);
builder.append(" ");
}
print(builder);
}
private void print(Object value) {
System.out.println(value);
}
private void print(boolean value) {
System.out.println(value ? "YES" : "NO");
}
private void print(int value) {
System.out.println(value);
}
private void print(long value) {
System.out.println(value);
}
private void print(double value) {
System.out.printf(Locale.ENGLISH, "%.10f", value);
}
private int[] getDigits(int number) {
int[] digits = new int[10];
int index = digits.length - 1;
int digitsCount = 0;
while (number > 0) {
digits[index] = number % 10;
number /= 10;
index--;
digitsCount++;
}
int[] result = new int[digitsCount];
System.arraycopy(digits, digits.length - digitsCount, result, 0, digitsCount);
return result;
}
private int[] readArray(Scanner scanner, int size) {
int[] result = new int[size];
for (int i = 0; i < size; i++) {
result[i] = scanner.nextInt();
}
return result;
}
private void readData() {
Scanner scanner = new Scanner(System.in);
n = scanner.nextLong();
k = scanner.nextLong();
}
private int solve() {
if (n == 1) {
return 0;
}
if (n <= k) {
return 1;
}
int result;
long l;
long d = (5 - 2 * k) * (5 - 2 * k) - 4 * (2 * n - 4 * k + 4);
if (d < 0)
{
result = -1;
} else {
l = Math.min(Math.max((int)((2 * k - 3 - Math.sqrt(d)) / 2), 0), Math.max((int)((2 * k - 3 + Math.sqrt(d)) / 2), 0));
long difference = n - k * (l + 1) + l * (l + 3) / 2;
if (l > k - 2) {
result = -1;
} else if (l == k - 2) {
result = difference == 0 ? (int) (l + 1) : -1;
} else {
result = (int) (l + 1 + (difference == 0 ? 0 : 1));
}
}
return result;
}
}
</CODE>
<EVALUATION_RUBRIC>
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- O(n^2): The execution time ascends in proportion to the square of the input size n.
- others: The time complexity does not fit to any of the given categories or is ambiguous.
- O(1): The execution time is unaffected by the size of the input n.
- O(n^3): The execution time ascends in proportion to the cube of the input size n.
- O(n): The execution time ascends in a one-to-one ratio with the input size n.
- O(log(n)): The execution time ascends in proportion to the logarithm of the input size n.
- O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
| 1,053
| 1,413
|
4,431
|
import java.io.OutputStream;
import java.io.IOException;
import java.io.InputStream;
import java.io.PrintWriter;
import java.io.FilterInputStream;
import java.io.BufferedInputStream;
import java.io.InputStream;
/**
* @author khokharnikunj8
*/
public class Main {
public static void main(String[] args) {
new Thread(null, new Runnable() {
public void run() {
new Main().solve();
}
}, "1", 1 << 26).start();
}
void solve() {
InputStream inputStream = System.in;
OutputStream outputStream = System.out;
ScanReader in = new ScanReader(inputStream);
PrintWriter out = new PrintWriter(outputStream);
FElongatedMatrix solver = new FElongatedMatrix();
solver.solve(1, in, out);
out.close();
}
static class FElongatedMatrix {
int[][] G;
int[][] G1;
public int findIt(int[] map, int n, int start) {
int[][] mask = new int[1 << n][n];
for (int i = 0; i < n; i++) mask[(1 << i)][i] = G[start][map[i]];
for (int i = 1; i < (1 << n); i++) {
for (int j = 0; j < n; j++) {
for (int k = 0; k < n; k++) {
if (k != j && (i & (1 << k)) == 0 && (i & (1 << j)) != 0) {
mask[(i | (1 << k))][k] = Math.max(mask[(i | (1 << k))][k], Math.min(mask[i][j], G[map[j]][map[k]]));
}
}
}
}
int ans = 0;
for (int i = 0; i < n; i++) ans = Math.max(ans, Math.min(mask[(1 << n) - 1][i], G1[start][map[i]]));
return ans;
}
public void solve(int testNumber, ScanReader in, PrintWriter out) {
int n = in.scanInt();
int m = in.scanInt();
G = new int[n][n];
G1 = new int[n][n];
int[][] ar = new int[n][m];
for (int i = 0; i < n; i++) {
for (int j = 0; j < m; j++) {
ar[i][j] = in.scanInt();
}
}
if (n == 1) {
int ans = Integer.MAX_VALUE;
for (int i = 0; i < m - 1; i++) ans = Math.min(ans, Math.abs(ar[0][i] - ar[0][i + 1]));
out.println(ans);
return;
}
for (int i = 0; i < n; i++) {
for (int j = i + 1; j < n; j++) {
int min = Integer.MAX_VALUE;
for (int k = 0; k < m; k++) min = Math.min(min, Math.abs(ar[i][k] - ar[j][k]));
G[i][j] = G[j][i] = min;
}
}
for (int i = 0; i < n; i++) {
for (int j = 0; j < n; j++) {
if (i == j) continue;
int min = Integer.MAX_VALUE;
for (int k = 1; k < m; k++) min = Math.min(min, Math.abs(ar[i][k] - ar[j][k - 1]));
G1[i][j] = min;
}
}
int[] map;
int ans = 0;
for (int i = 0; i < n; i++) {
map = new int[n - 1];
int tl = 0;
for (int temp = 0; temp < n; temp++) {
if (temp == i) continue;
map[tl++] = temp;
}
ans = Math.max(ans, findIt(map, n - 1, i));
}
out.println(ans);
}
}
static class ScanReader {
private byte[] buf = new byte[4 * 1024];
private int index;
private BufferedInputStream in;
private int total;
public ScanReader(InputStream inputStream) {
in = new BufferedInputStream(inputStream);
}
private int scan() {
if (index >= total) {
index = 0;
try {
total = in.read(buf);
} catch (Exception e) {
e.printStackTrace();
}
if (total <= 0) return -1;
}
return buf[index++];
}
public int scanInt() {
int integer = 0;
int n = scan();
while (isWhiteSpace(n)) n = scan();
int neg = 1;
if (n == '-') {
neg = -1;
n = scan();
}
while (!isWhiteSpace(n)) {
if (n >= '0' && n <= '9') {
integer *= 10;
integer += n - '0';
n = scan();
}
}
return neg * integer;
}
private boolean isWhiteSpace(int n) {
if (n == ' ' || n == '\n' || n == '\r' || n == '\t' || n == -1) return true;
else return false;
}
}
}
|
non-polynomial
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Classify the following Java code's worst-case time complexity according to its relationship to the input size n.
</TASK>
<CODE>
import java.io.OutputStream;
import java.io.IOException;
import java.io.InputStream;
import java.io.PrintWriter;
import java.io.FilterInputStream;
import java.io.BufferedInputStream;
import java.io.InputStream;
/**
* @author khokharnikunj8
*/
public class Main {
public static void main(String[] args) {
new Thread(null, new Runnable() {
public void run() {
new Main().solve();
}
}, "1", 1 << 26).start();
}
void solve() {
InputStream inputStream = System.in;
OutputStream outputStream = System.out;
ScanReader in = new ScanReader(inputStream);
PrintWriter out = new PrintWriter(outputStream);
FElongatedMatrix solver = new FElongatedMatrix();
solver.solve(1, in, out);
out.close();
}
static class FElongatedMatrix {
int[][] G;
int[][] G1;
public int findIt(int[] map, int n, int start) {
int[][] mask = new int[1 << n][n];
for (int i = 0; i < n; i++) mask[(1 << i)][i] = G[start][map[i]];
for (int i = 1; i < (1 << n); i++) {
for (int j = 0; j < n; j++) {
for (int k = 0; k < n; k++) {
if (k != j && (i & (1 << k)) == 0 && (i & (1 << j)) != 0) {
mask[(i | (1 << k))][k] = Math.max(mask[(i | (1 << k))][k], Math.min(mask[i][j], G[map[j]][map[k]]));
}
}
}
}
int ans = 0;
for (int i = 0; i < n; i++) ans = Math.max(ans, Math.min(mask[(1 << n) - 1][i], G1[start][map[i]]));
return ans;
}
public void solve(int testNumber, ScanReader in, PrintWriter out) {
int n = in.scanInt();
int m = in.scanInt();
G = new int[n][n];
G1 = new int[n][n];
int[][] ar = new int[n][m];
for (int i = 0; i < n; i++) {
for (int j = 0; j < m; j++) {
ar[i][j] = in.scanInt();
}
}
if (n == 1) {
int ans = Integer.MAX_VALUE;
for (int i = 0; i < m - 1; i++) ans = Math.min(ans, Math.abs(ar[0][i] - ar[0][i + 1]));
out.println(ans);
return;
}
for (int i = 0; i < n; i++) {
for (int j = i + 1; j < n; j++) {
int min = Integer.MAX_VALUE;
for (int k = 0; k < m; k++) min = Math.min(min, Math.abs(ar[i][k] - ar[j][k]));
G[i][j] = G[j][i] = min;
}
}
for (int i = 0; i < n; i++) {
for (int j = 0; j < n; j++) {
if (i == j) continue;
int min = Integer.MAX_VALUE;
for (int k = 1; k < m; k++) min = Math.min(min, Math.abs(ar[i][k] - ar[j][k - 1]));
G1[i][j] = min;
}
}
int[] map;
int ans = 0;
for (int i = 0; i < n; i++) {
map = new int[n - 1];
int tl = 0;
for (int temp = 0; temp < n; temp++) {
if (temp == i) continue;
map[tl++] = temp;
}
ans = Math.max(ans, findIt(map, n - 1, i));
}
out.println(ans);
}
}
static class ScanReader {
private byte[] buf = new byte[4 * 1024];
private int index;
private BufferedInputStream in;
private int total;
public ScanReader(InputStream inputStream) {
in = new BufferedInputStream(inputStream);
}
private int scan() {
if (index >= total) {
index = 0;
try {
total = in.read(buf);
} catch (Exception e) {
e.printStackTrace();
}
if (total <= 0) return -1;
}
return buf[index++];
}
public int scanInt() {
int integer = 0;
int n = scan();
while (isWhiteSpace(n)) n = scan();
int neg = 1;
if (n == '-') {
neg = -1;
n = scan();
}
while (!isWhiteSpace(n)) {
if (n >= '0' && n <= '9') {
integer *= 10;
integer += n - '0';
n = scan();
}
}
return neg * integer;
}
private boolean isWhiteSpace(int n) {
if (n == ' ' || n == '\n' || n == '\r' || n == '\t' || n == -1) return true;
else return false;
}
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(n^2): The running time increases with the square of the input size n.
- O(n^3): The running time increases with the cube of the input size n.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- O(log(n)): The running time increases with the logarithm of the input size n.
- O(n): The running time grows linearly with the input size n.
- O(nlog(n)): The running time increases with the product of n and logarithm of n.
- O(1): The running time does not change regardless of the input size n.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Determine the worst-case time complexity category of a given Java code based on input size n.
</TASK>
<CODE>
import java.io.OutputStream;
import java.io.IOException;
import java.io.InputStream;
import java.io.PrintWriter;
import java.io.FilterInputStream;
import java.io.BufferedInputStream;
import java.io.InputStream;
/**
* @author khokharnikunj8
*/
public class Main {
public static void main(String[] args) {
new Thread(null, new Runnable() {
public void run() {
new Main().solve();
}
}, "1", 1 << 26).start();
}
void solve() {
InputStream inputStream = System.in;
OutputStream outputStream = System.out;
ScanReader in = new ScanReader(inputStream);
PrintWriter out = new PrintWriter(outputStream);
FElongatedMatrix solver = new FElongatedMatrix();
solver.solve(1, in, out);
out.close();
}
static class FElongatedMatrix {
int[][] G;
int[][] G1;
public int findIt(int[] map, int n, int start) {
int[][] mask = new int[1 << n][n];
for (int i = 0; i < n; i++) mask[(1 << i)][i] = G[start][map[i]];
for (int i = 1; i < (1 << n); i++) {
for (int j = 0; j < n; j++) {
for (int k = 0; k < n; k++) {
if (k != j && (i & (1 << k)) == 0 && (i & (1 << j)) != 0) {
mask[(i | (1 << k))][k] = Math.max(mask[(i | (1 << k))][k], Math.min(mask[i][j], G[map[j]][map[k]]));
}
}
}
}
int ans = 0;
for (int i = 0; i < n; i++) ans = Math.max(ans, Math.min(mask[(1 << n) - 1][i], G1[start][map[i]]));
return ans;
}
public void solve(int testNumber, ScanReader in, PrintWriter out) {
int n = in.scanInt();
int m = in.scanInt();
G = new int[n][n];
G1 = new int[n][n];
int[][] ar = new int[n][m];
for (int i = 0; i < n; i++) {
for (int j = 0; j < m; j++) {
ar[i][j] = in.scanInt();
}
}
if (n == 1) {
int ans = Integer.MAX_VALUE;
for (int i = 0; i < m - 1; i++) ans = Math.min(ans, Math.abs(ar[0][i] - ar[0][i + 1]));
out.println(ans);
return;
}
for (int i = 0; i < n; i++) {
for (int j = i + 1; j < n; j++) {
int min = Integer.MAX_VALUE;
for (int k = 0; k < m; k++) min = Math.min(min, Math.abs(ar[i][k] - ar[j][k]));
G[i][j] = G[j][i] = min;
}
}
for (int i = 0; i < n; i++) {
for (int j = 0; j < n; j++) {
if (i == j) continue;
int min = Integer.MAX_VALUE;
for (int k = 1; k < m; k++) min = Math.min(min, Math.abs(ar[i][k] - ar[j][k - 1]));
G1[i][j] = min;
}
}
int[] map;
int ans = 0;
for (int i = 0; i < n; i++) {
map = new int[n - 1];
int tl = 0;
for (int temp = 0; temp < n; temp++) {
if (temp == i) continue;
map[tl++] = temp;
}
ans = Math.max(ans, findIt(map, n - 1, i));
}
out.println(ans);
}
}
static class ScanReader {
private byte[] buf = new byte[4 * 1024];
private int index;
private BufferedInputStream in;
private int total;
public ScanReader(InputStream inputStream) {
in = new BufferedInputStream(inputStream);
}
private int scan() {
if (index >= total) {
index = 0;
try {
total = in.read(buf);
} catch (Exception e) {
e.printStackTrace();
}
if (total <= 0) return -1;
}
return buf[index++];
}
public int scanInt() {
int integer = 0;
int n = scan();
while (isWhiteSpace(n)) n = scan();
int neg = 1;
if (n == '-') {
neg = -1;
n = scan();
}
while (!isWhiteSpace(n)) {
if (n >= '0' && n <= '9') {
integer *= 10;
integer += n - '0';
n = scan();
}
}
return neg * integer;
}
private boolean isWhiteSpace(int n) {
if (n == ' ' || n == '\n' || n == '\r' || n == '\t' || n == -1) return true;
else return false;
}
}
}
</CODE>
<EVALUATION_RUBRIC>
- others: The time complexity does not fit any of the above categories or cannot be clearly classified.
- O(n^2): The time complexity grows proportionally to the square of the input size.
- O(1): The time complexity is constant to the input size n.
- non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially.
- O(n^3): The time complexity scales proportionally to the cube of the input size.
- O(n): The time complexity increases proportionally to the input size n in a linear manner.
- O(log(n)): The time complexity increases logarithmically in relation to the input size.
- O(nlog(n)): The time complexity combines linear and logarithmic growth factors.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
| 1,542
| 4,420
|
2,920
|
import java.io.*;
import java.util.*;
public class Main {
// main
public static void main(String [] args) throws IOException {
// makes the reader and writer
BufferedReader f = new BufferedReader(new InputStreamReader(System.in));
PrintWriter out = new PrintWriter(new BufferedOutputStream(System.out));
// read in N
int N = Integer.parseInt(f.readLine());
// write to out
if (N%2==0) out.println("4 "+(N-4));
if (N%2==1) out.println("9 "+(N-9));
// cleanup
out.close();
System.exit(0);
}
}
|
O(1)
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Determine the worst-case time complexity category of a given Java code based on input size n.
</TASK>
<CODE>
import java.io.*;
import java.util.*;
public class Main {
// main
public static void main(String [] args) throws IOException {
// makes the reader and writer
BufferedReader f = new BufferedReader(new InputStreamReader(System.in));
PrintWriter out = new PrintWriter(new BufferedOutputStream(System.out));
// read in N
int N = Integer.parseInt(f.readLine());
// write to out
if (N%2==0) out.println("4 "+(N-4));
if (N%2==1) out.println("9 "+(N-9));
// cleanup
out.close();
System.exit(0);
}
}
</CODE>
<EVALUATION_RUBRIC>
- non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially.
- O(1): The time complexity is constant to the input size n.
- O(nlog(n)): The time complexity combines linear and logarithmic growth factors.
- O(n^2): The time complexity grows proportionally to the square of the input size.
- O(n): The time complexity increases proportionally to the input size n in a linear manner.
- O(log(n)): The time complexity increases logarithmically in relation to the input size.
- O(n^3): The time complexity scales proportionally to the cube of the input size.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n.
</TASK>
<CODE>
import java.io.*;
import java.util.*;
public class Main {
// main
public static void main(String [] args) throws IOException {
// makes the reader and writer
BufferedReader f = new BufferedReader(new InputStreamReader(System.in));
PrintWriter out = new PrintWriter(new BufferedOutputStream(System.out));
// read in N
int N = Integer.parseInt(f.readLine());
// write to out
if (N%2==0) out.println("4 "+(N-4));
if (N%2==1) out.println("9 "+(N-9));
// cleanup
out.close();
System.exit(0);
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(n^2): The execution time ascends in proportion to the square of the input size n.
- O(n): The execution time ascends in a one-to-one ratio with the input size n.
- O(n^3): The execution time ascends in proportion to the cube of the input size n.
- O(log(n)): The execution time ascends in proportion to the logarithm of the input size n.
- others: The time complexity does not fit to any of the given categories or is ambiguous.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially.
- O(1): The execution time is unaffected by the size of the input n.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
| 467
| 2,914
|
2,837
|
import java.io.*;
import java.util.*;
public class A{
public static BufferedReader k;
public static BufferedWriter z;
public static void main(String [] args)throws IOException{
k = new BufferedReader(new InputStreamReader(System.in));
z = new BufferedWriter(new OutputStreamWriter(System.out));
String[] dat = k.readLine().split(" ");
long l = Long.parseLong(dat[0]);
long r = Long.parseLong(dat[1]);
if(r-l<=1){
z.write(-1+"\n");
}
else if(r-l == 2){
if((l&1)!=0){
z.write(-1+"\n");
}
else{
z.write(l+" "+(l+1)+" "+r+"\n");
}
}
else{
if((l&1)==0){
z.write(l+" "+(l+1)+" "+(l+2)+"\n");
}
else{
z.write((l+1)+" "+(l+2)+" "+(l+3)+"\n");
}
}
z.flush();
}
}
|
O(1)
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Determine the worst-case time complexity category of a given Java code based on input size n.
</TASK>
<CODE>
import java.io.*;
import java.util.*;
public class A{
public static BufferedReader k;
public static BufferedWriter z;
public static void main(String [] args)throws IOException{
k = new BufferedReader(new InputStreamReader(System.in));
z = new BufferedWriter(new OutputStreamWriter(System.out));
String[] dat = k.readLine().split(" ");
long l = Long.parseLong(dat[0]);
long r = Long.parseLong(dat[1]);
if(r-l<=1){
z.write(-1+"\n");
}
else if(r-l == 2){
if((l&1)!=0){
z.write(-1+"\n");
}
else{
z.write(l+" "+(l+1)+" "+r+"\n");
}
}
else{
if((l&1)==0){
z.write(l+" "+(l+1)+" "+(l+2)+"\n");
}
else{
z.write((l+1)+" "+(l+2)+" "+(l+3)+"\n");
}
}
z.flush();
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(log(n)): The time complexity increases logarithmically in relation to the input size.
- O(n^3): The time complexity scales proportionally to the cube of the input size.
- O(nlog(n)): The time complexity combines linear and logarithmic growth factors.
- O(n^2): The time complexity grows proportionally to the square of the input size.
- non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially.
- O(n): The time complexity increases proportionally to the input size n in a linear manner.
- O(1): The time complexity is constant to the input size n.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Determine the worst-case time complexity category of a given Java code based on input size n.
</TASK>
<CODE>
import java.io.*;
import java.util.*;
public class A{
public static BufferedReader k;
public static BufferedWriter z;
public static void main(String [] args)throws IOException{
k = new BufferedReader(new InputStreamReader(System.in));
z = new BufferedWriter(new OutputStreamWriter(System.out));
String[] dat = k.readLine().split(" ");
long l = Long.parseLong(dat[0]);
long r = Long.parseLong(dat[1]);
if(r-l<=1){
z.write(-1+"\n");
}
else if(r-l == 2){
if((l&1)!=0){
z.write(-1+"\n");
}
else{
z.write(l+" "+(l+1)+" "+r+"\n");
}
}
else{
if((l&1)==0){
z.write(l+" "+(l+1)+" "+(l+2)+"\n");
}
else{
z.write((l+1)+" "+(l+2)+" "+(l+3)+"\n");
}
}
z.flush();
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(nlog(n)): The time complexity combines linear and logarithmic growth factors.
- others: The time complexity does not fit any of the above categories or cannot be clearly classified.
- O(log(n)): The time complexity increases logarithmically in relation to the input size.
- non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially.
- O(n^3): The time complexity scales proportionally to the cube of the input size.
- O(n^2): The time complexity grows proportionally to the square of the input size.
- O(1): The time complexity is constant to the input size n.
- O(n): The time complexity increases proportionally to the input size n in a linear manner.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
| 568
| 2,831
|
4,361
|
import java.io.*;
import java.util.StringTokenizer;
public class Main {
private FastScanner in;
private PrintWriter out;
public void solve() throws IOException {
int N = in.nextInt();
int M = in.nextInt();
int[][] edges = new int[N][N];
for (int i = 0; i < M; i++) {
int a = in.nextInt() - 1;
int b = in.nextInt() - 1;
edges[a][b] = 1;
edges[b][a] = 1;
}
int globalCountMasks = 1 << N;
int[][] masks = new int[N + 1][];
int[] countMasks = new int[N + 1];
for (int i = 0; i <= N; i++) {
masks[i] = new int[combinations(N, i)];
}
for (int i = 0; i < globalCountMasks; i++) {
int c = countBit1(i);
masks[c][countMasks[c]] = i;
countMasks[c]++;
}
long globalCountCycles = 0;
long[][] count = new long[globalCountMasks][N];
for (int a = 0; a < N - 2; a++) {
int aBit = 1 << a;
count[aBit][a] = 1;
long countCycles = 0;
for (int i = 2; i <= N; i++) {
for (int m = 0; m < countMasks[i]; m++) {
int mask = masks[i][m];
if ((mask & aBit) == 0)
continue;
if ((mask & (aBit - 1)) > 0)
continue;
count[mask][a] = 0;
for (int v = a + 1; v < N; v++) {
int vBit = 1 << v;
if ((mask & vBit) == 0)
continue;
count[mask][v] = 0;
for (int t = a; t < N; t++) {
if ((mask & (1 << t)) == 0 || t == v
|| edges[v][t] == 0)
continue;
count[mask][v] += count[mask ^ vBit][t];
}
if (edges[a][v] == 1 && mask != (aBit | vBit)) {
countCycles += count[mask][v];
}
}
}
}
globalCountCycles += countCycles / 2;
}
out.println(globalCountCycles);
}
private int countBit1(int k) {
int c = 0;
while (k > 0) {
c += k & 1;
k >>= 1;
}
return c;
}
private int combinations(int n, int k) {
if (k > n || k < 0) {
throw new IllegalArgumentException();
}
int r = 1;
for (int i = 1; i <= k; i++) {
r = r * (n + 1 - i) / i;
}
return r;
}
public void run() {
try {
in = new FastScanner(System.in);
out = new PrintWriter(System.out);
solve();
out.close();
} catch (IOException e) {
e.printStackTrace();
}
}
class FastScanner {
BufferedReader br;
StringTokenizer st;
FastScanner(InputStream is) {
br = new BufferedReader(new InputStreamReader(is));
}
String next() {
while (st == null || !st.hasMoreTokens()) {
try {
st = new StringTokenizer(br.readLine());
} catch (IOException e) {
e.printStackTrace();
}
}
return st.nextToken();
}
int nextInt() {
return Integer.parseInt(next());
}
}
public static void main(String[] arg) {
new Main().run();
}
}
|
non-polynomial
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n.
</TASK>
<CODE>
import java.io.*;
import java.util.StringTokenizer;
public class Main {
private FastScanner in;
private PrintWriter out;
public void solve() throws IOException {
int N = in.nextInt();
int M = in.nextInt();
int[][] edges = new int[N][N];
for (int i = 0; i < M; i++) {
int a = in.nextInt() - 1;
int b = in.nextInt() - 1;
edges[a][b] = 1;
edges[b][a] = 1;
}
int globalCountMasks = 1 << N;
int[][] masks = new int[N + 1][];
int[] countMasks = new int[N + 1];
for (int i = 0; i <= N; i++) {
masks[i] = new int[combinations(N, i)];
}
for (int i = 0; i < globalCountMasks; i++) {
int c = countBit1(i);
masks[c][countMasks[c]] = i;
countMasks[c]++;
}
long globalCountCycles = 0;
long[][] count = new long[globalCountMasks][N];
for (int a = 0; a < N - 2; a++) {
int aBit = 1 << a;
count[aBit][a] = 1;
long countCycles = 0;
for (int i = 2; i <= N; i++) {
for (int m = 0; m < countMasks[i]; m++) {
int mask = masks[i][m];
if ((mask & aBit) == 0)
continue;
if ((mask & (aBit - 1)) > 0)
continue;
count[mask][a] = 0;
for (int v = a + 1; v < N; v++) {
int vBit = 1 << v;
if ((mask & vBit) == 0)
continue;
count[mask][v] = 0;
for (int t = a; t < N; t++) {
if ((mask & (1 << t)) == 0 || t == v
|| edges[v][t] == 0)
continue;
count[mask][v] += count[mask ^ vBit][t];
}
if (edges[a][v] == 1 && mask != (aBit | vBit)) {
countCycles += count[mask][v];
}
}
}
}
globalCountCycles += countCycles / 2;
}
out.println(globalCountCycles);
}
private int countBit1(int k) {
int c = 0;
while (k > 0) {
c += k & 1;
k >>= 1;
}
return c;
}
private int combinations(int n, int k) {
if (k > n || k < 0) {
throw new IllegalArgumentException();
}
int r = 1;
for (int i = 1; i <= k; i++) {
r = r * (n + 1 - i) / i;
}
return r;
}
public void run() {
try {
in = new FastScanner(System.in);
out = new PrintWriter(System.out);
solve();
out.close();
} catch (IOException e) {
e.printStackTrace();
}
}
class FastScanner {
BufferedReader br;
StringTokenizer st;
FastScanner(InputStream is) {
br = new BufferedReader(new InputStreamReader(is));
}
String next() {
while (st == null || !st.hasMoreTokens()) {
try {
st = new StringTokenizer(br.readLine());
} catch (IOException e) {
e.printStackTrace();
}
}
return st.nextToken();
}
int nextInt() {
return Integer.parseInt(next());
}
}
public static void main(String[] arg) {
new Main().run();
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially.
- O(log(n)): The execution time ascends in proportion to the logarithm of the input size n.
- O(n^3): The execution time ascends in proportion to the cube of the input size n.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- O(1): The execution time is unaffected by the size of the input n.
- O(n): The execution time ascends in a one-to-one ratio with the input size n.
- O(n^2): The execution time ascends in proportion to the square of the input size n.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Classify the following Java code's worst-case time complexity according to its relationship to the input size n.
</TASK>
<CODE>
import java.io.*;
import java.util.StringTokenizer;
public class Main {
private FastScanner in;
private PrintWriter out;
public void solve() throws IOException {
int N = in.nextInt();
int M = in.nextInt();
int[][] edges = new int[N][N];
for (int i = 0; i < M; i++) {
int a = in.nextInt() - 1;
int b = in.nextInt() - 1;
edges[a][b] = 1;
edges[b][a] = 1;
}
int globalCountMasks = 1 << N;
int[][] masks = new int[N + 1][];
int[] countMasks = new int[N + 1];
for (int i = 0; i <= N; i++) {
masks[i] = new int[combinations(N, i)];
}
for (int i = 0; i < globalCountMasks; i++) {
int c = countBit1(i);
masks[c][countMasks[c]] = i;
countMasks[c]++;
}
long globalCountCycles = 0;
long[][] count = new long[globalCountMasks][N];
for (int a = 0; a < N - 2; a++) {
int aBit = 1 << a;
count[aBit][a] = 1;
long countCycles = 0;
for (int i = 2; i <= N; i++) {
for (int m = 0; m < countMasks[i]; m++) {
int mask = masks[i][m];
if ((mask & aBit) == 0)
continue;
if ((mask & (aBit - 1)) > 0)
continue;
count[mask][a] = 0;
for (int v = a + 1; v < N; v++) {
int vBit = 1 << v;
if ((mask & vBit) == 0)
continue;
count[mask][v] = 0;
for (int t = a; t < N; t++) {
if ((mask & (1 << t)) == 0 || t == v
|| edges[v][t] == 0)
continue;
count[mask][v] += count[mask ^ vBit][t];
}
if (edges[a][v] == 1 && mask != (aBit | vBit)) {
countCycles += count[mask][v];
}
}
}
}
globalCountCycles += countCycles / 2;
}
out.println(globalCountCycles);
}
private int countBit1(int k) {
int c = 0;
while (k > 0) {
c += k & 1;
k >>= 1;
}
return c;
}
private int combinations(int n, int k) {
if (k > n || k < 0) {
throw new IllegalArgumentException();
}
int r = 1;
for (int i = 1; i <= k; i++) {
r = r * (n + 1 - i) / i;
}
return r;
}
public void run() {
try {
in = new FastScanner(System.in);
out = new PrintWriter(System.out);
solve();
out.close();
} catch (IOException e) {
e.printStackTrace();
}
}
class FastScanner {
BufferedReader br;
StringTokenizer st;
FastScanner(InputStream is) {
br = new BufferedReader(new InputStreamReader(is));
}
String next() {
while (st == null || !st.hasMoreTokens()) {
try {
st = new StringTokenizer(br.readLine());
} catch (IOException e) {
e.printStackTrace();
}
}
return st.nextToken();
}
int nextInt() {
return Integer.parseInt(next());
}
}
public static void main(String[] arg) {
new Main().run();
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(n^3): The running time increases with the cube of the input size n.
- O(nlog(n)): The running time increases with the product of n and logarithm of n.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- O(n^2): The running time increases with the square of the input size n.
- O(log(n)): The running time increases with the logarithm of the input size n.
- others: The code does not clearly correspond to the listed classes or has an unclassified time complexity.
- O(1): The running time does not change regardless of the input size n.
- O(n): The running time grows linearly with the input size n.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
| 1,245
| 4,350
|
2,745
|
import java.util.*;
public class LCM235A
{
public static void main(String[] args)
{
// Set up scanner
Scanner sc = new Scanner(System.in);
// System.out.println("Enter n");
long n = sc.nextLong();
if (n==1)
{
System.out.println(1);
return;
}
if (n==2)
{
System.out.println(2);
return;
}
if (n==3)
{
System.out.println(6);
return;
}
if (n==4)
{
System.out.println(12);
return;
}
if (n%2 ==1) // Odd number easy
{
System.out.println(n*(n-1)*(n-2));
return;
}
// Even number is a bit harder
if (n%3 == 0)
{
System.out.println((n-1)*(n-2)*(n-3));
}
else
{
System.out.println(n*(n-1)*(n-3));
}
}
}
|
O(1)
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Classify the following Java code's worst-case time complexity according to its relationship to the input size n.
</TASK>
<CODE>
import java.util.*;
public class LCM235A
{
public static void main(String[] args)
{
// Set up scanner
Scanner sc = new Scanner(System.in);
// System.out.println("Enter n");
long n = sc.nextLong();
if (n==1)
{
System.out.println(1);
return;
}
if (n==2)
{
System.out.println(2);
return;
}
if (n==3)
{
System.out.println(6);
return;
}
if (n==4)
{
System.out.println(12);
return;
}
if (n%2 ==1) // Odd number easy
{
System.out.println(n*(n-1)*(n-2));
return;
}
// Even number is a bit harder
if (n%3 == 0)
{
System.out.println((n-1)*(n-2)*(n-3));
}
else
{
System.out.println(n*(n-1)*(n-3));
}
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(n): The running time grows linearly with the input size n.
- O(nlog(n)): The running time increases with the product of n and logarithm of n.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- O(n^3): The running time increases with the cube of the input size n.
- O(n^2): The running time increases with the square of the input size n.
- O(log(n)): The running time increases with the logarithm of the input size n.
- O(1): The running time does not change regardless of the input size n.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Determine the worst-case time complexity category of a given Java code based on input size n.
</TASK>
<CODE>
import java.util.*;
public class LCM235A
{
public static void main(String[] args)
{
// Set up scanner
Scanner sc = new Scanner(System.in);
// System.out.println("Enter n");
long n = sc.nextLong();
if (n==1)
{
System.out.println(1);
return;
}
if (n==2)
{
System.out.println(2);
return;
}
if (n==3)
{
System.out.println(6);
return;
}
if (n==4)
{
System.out.println(12);
return;
}
if (n%2 ==1) // Odd number easy
{
System.out.println(n*(n-1)*(n-2));
return;
}
// Even number is a bit harder
if (n%3 == 0)
{
System.out.println((n-1)*(n-2)*(n-3));
}
else
{
System.out.println(n*(n-1)*(n-3));
}
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(n^2): The time complexity grows proportionally to the square of the input size.
- O(nlog(n)): The time complexity combines linear and logarithmic growth factors.
- non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially.
- others: The time complexity does not fit any of the above categories or cannot be clearly classified.
- O(n^3): The time complexity scales proportionally to the cube of the input size.
- O(log(n)): The time complexity increases logarithmically in relation to the input size.
- O(1): The time complexity is constant to the input size n.
- O(n): The time complexity increases proportionally to the input size n in a linear manner.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
| 579
| 2,739
|
2,049
|
import java.util.*;
public class Main
{
public static void main(String[] args)
{
Scanner keyboard = new Scanner(System.in);
int size = Integer.parseInt(keyboard.nextLine());
int[] arr = new int[size];
int i = 0;
while( size != 0 )
{
arr[i] = keyboard.nextInt();
size--;
i++;
}
if( arr.length == 1 )
{
System.out.println("NO");
}
else
{
Arrays.sort(arr);
boolean val = false;
int ans = 0;
for ( i = 0; i< arr.length-1 ; i++ )
{
if( arr[i] != arr[i+1] )
{
val = true;
ans = arr[i+1];
System.out.println(ans);
i = arr.length;
}
else if( i == arr.length-2 ) //val == false
{
System.out.println("NO");
}
}
}
}
}
|
O(nlog(n))
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Classify the following Java code's worst-case time complexity according to its relationship to the input size n.
</TASK>
<CODE>
import java.util.*;
public class Main
{
public static void main(String[] args)
{
Scanner keyboard = new Scanner(System.in);
int size = Integer.parseInt(keyboard.nextLine());
int[] arr = new int[size];
int i = 0;
while( size != 0 )
{
arr[i] = keyboard.nextInt();
size--;
i++;
}
if( arr.length == 1 )
{
System.out.println("NO");
}
else
{
Arrays.sort(arr);
boolean val = false;
int ans = 0;
for ( i = 0; i< arr.length-1 ; i++ )
{
if( arr[i] != arr[i+1] )
{
val = true;
ans = arr[i+1];
System.out.println(ans);
i = arr.length;
}
else if( i == arr.length-2 ) //val == false
{
System.out.println("NO");
}
}
}
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(nlog(n)): The running time increases with the product of n and logarithm of n.
- O(n^3): The running time increases with the cube of the input size n.
- O(n): The running time grows linearly with the input size n.
- O(log(n)): The running time increases with the logarithm of the input size n.
- O(1): The running time does not change regardless of the input size n.
- O(n^2): The running time increases with the square of the input size n.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n.
</TASK>
<CODE>
import java.util.*;
public class Main
{
public static void main(String[] args)
{
Scanner keyboard = new Scanner(System.in);
int size = Integer.parseInt(keyboard.nextLine());
int[] arr = new int[size];
int i = 0;
while( size != 0 )
{
arr[i] = keyboard.nextInt();
size--;
i++;
}
if( arr.length == 1 )
{
System.out.println("NO");
}
else
{
Arrays.sort(arr);
boolean val = false;
int ans = 0;
for ( i = 0; i< arr.length-1 ; i++ )
{
if( arr[i] != arr[i+1] )
{
val = true;
ans = arr[i+1];
System.out.println(ans);
i = arr.length;
}
else if( i == arr.length-2 ) //val == false
{
System.out.println("NO");
}
}
}
}
}
</CODE>
<EVALUATION_RUBRIC>
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially.
- O(n^2): The execution time ascends in proportion to the square of the input size n.
- O(n): The execution time ascends in a one-to-one ratio with the input size n.
- others: The time complexity does not fit to any of the given categories or is ambiguous.
- O(n^3): The execution time ascends in proportion to the cube of the input size n.
- O(1): The execution time is unaffected by the size of the input n.
- O(log(n)): The execution time ascends in proportion to the logarithm of the input size n.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
| 587
| 2,045
|
249
|
import java.io.OutputStream;
import java.io.IOException;
import java.io.InputStream;
import java.io.PrintWriter;
import java.util.StringTokenizer;
import java.math.BigInteger;
import java.io.IOException;
import java.io.BufferedReader;
import java.io.InputStreamReader;
import java.io.InputStream;
/**
* Built using CHelper plug-in
* Actual solution is at the top
*
* @author programajor
*/
public class Main {
public static void main(String[] args) {
InputStream inputStream = System.in;
OutputStream outputStream = System.out;
InputReader in = new InputReader(inputStream);
PrintWriter out = new PrintWriter(outputStream);
TaskC solver = new TaskC();
solver.solve(1, in, out);
out.close();
}
static class TaskC {
BigInteger mod = new BigInteger("1000000007");
public void solve(int testNumber, InputReader in, PrintWriter out) {
BigInteger x = new BigInteger(in.next());
BigInteger k = new BigInteger(in.next());
if (x.longValue() == 0) {
out.print(x);
return;
}
BigInteger pow = powerWithMod(new BigInteger("2"), k);
BigInteger current = x.mod(mod).multiply(pow).mod(mod);
BigInteger result = current.multiply(new BigInteger("2")).mod(mod)
.subtract(pow.subtract(new BigInteger("1")).mod(mod))
.mod(mod);
out.print(result);
}
BigInteger powerWithMod(BigInteger base, BigInteger exponent) {
if (exponent.longValue() == 0) {
return new BigInteger("1");
}
BigInteger temp = powerWithMod(base, exponent.divide(new BigInteger("2")));
BigInteger term = temp.mod(mod);
if (exponent.mod(new BigInteger("2")).intValue() == 0) {
return term.multiply(term.mod(mod)).mod(mod);
} else {
return term.multiply(term.mod(mod)).multiply(base.mod(mod)).mod(mod);
}
}
}
static class InputReader {
private BufferedReader reader;
private StringTokenizer tokenizer;
public InputReader(InputStream stream) {
reader = new BufferedReader(new InputStreamReader(stream), 32768);
tokenizer = null;
}
public String next() {
while (tokenizer == null || !tokenizer.hasMoreTokens()) {
try {
tokenizer = new StringTokenizer(reader.readLine());
} catch (IOException e) {
throw new RuntimeException(e);
}
}
return tokenizer.nextToken();
}
}
}
|
O(log(n))
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Determine the worst-case time complexity category of a given Java code based on input size n.
</TASK>
<CODE>
import java.io.OutputStream;
import java.io.IOException;
import java.io.InputStream;
import java.io.PrintWriter;
import java.util.StringTokenizer;
import java.math.BigInteger;
import java.io.IOException;
import java.io.BufferedReader;
import java.io.InputStreamReader;
import java.io.InputStream;
/**
* Built using CHelper plug-in
* Actual solution is at the top
*
* @author programajor
*/
public class Main {
public static void main(String[] args) {
InputStream inputStream = System.in;
OutputStream outputStream = System.out;
InputReader in = new InputReader(inputStream);
PrintWriter out = new PrintWriter(outputStream);
TaskC solver = new TaskC();
solver.solve(1, in, out);
out.close();
}
static class TaskC {
BigInteger mod = new BigInteger("1000000007");
public void solve(int testNumber, InputReader in, PrintWriter out) {
BigInteger x = new BigInteger(in.next());
BigInteger k = new BigInteger(in.next());
if (x.longValue() == 0) {
out.print(x);
return;
}
BigInteger pow = powerWithMod(new BigInteger("2"), k);
BigInteger current = x.mod(mod).multiply(pow).mod(mod);
BigInteger result = current.multiply(new BigInteger("2")).mod(mod)
.subtract(pow.subtract(new BigInteger("1")).mod(mod))
.mod(mod);
out.print(result);
}
BigInteger powerWithMod(BigInteger base, BigInteger exponent) {
if (exponent.longValue() == 0) {
return new BigInteger("1");
}
BigInteger temp = powerWithMod(base, exponent.divide(new BigInteger("2")));
BigInteger term = temp.mod(mod);
if (exponent.mod(new BigInteger("2")).intValue() == 0) {
return term.multiply(term.mod(mod)).mod(mod);
} else {
return term.multiply(term.mod(mod)).multiply(base.mod(mod)).mod(mod);
}
}
}
static class InputReader {
private BufferedReader reader;
private StringTokenizer tokenizer;
public InputReader(InputStream stream) {
reader = new BufferedReader(new InputStreamReader(stream), 32768);
tokenizer = null;
}
public String next() {
while (tokenizer == null || !tokenizer.hasMoreTokens()) {
try {
tokenizer = new StringTokenizer(reader.readLine());
} catch (IOException e) {
throw new RuntimeException(e);
}
}
return tokenizer.nextToken();
}
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(n^3): The time complexity scales proportionally to the cube of the input size.
- non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially.
- O(1): The time complexity is constant to the input size n.
- O(log(n)): The time complexity increases logarithmically in relation to the input size.
- O(n): The time complexity increases proportionally to the input size n in a linear manner.
- O(n^2): The time complexity grows proportionally to the square of the input size.
- O(nlog(n)): The time complexity combines linear and logarithmic growth factors.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Determine the worst-case time complexity category of a given Java code based on input size n.
</TASK>
<CODE>
import java.io.OutputStream;
import java.io.IOException;
import java.io.InputStream;
import java.io.PrintWriter;
import java.util.StringTokenizer;
import java.math.BigInteger;
import java.io.IOException;
import java.io.BufferedReader;
import java.io.InputStreamReader;
import java.io.InputStream;
/**
* Built using CHelper plug-in
* Actual solution is at the top
*
* @author programajor
*/
public class Main {
public static void main(String[] args) {
InputStream inputStream = System.in;
OutputStream outputStream = System.out;
InputReader in = new InputReader(inputStream);
PrintWriter out = new PrintWriter(outputStream);
TaskC solver = new TaskC();
solver.solve(1, in, out);
out.close();
}
static class TaskC {
BigInteger mod = new BigInteger("1000000007");
public void solve(int testNumber, InputReader in, PrintWriter out) {
BigInteger x = new BigInteger(in.next());
BigInteger k = new BigInteger(in.next());
if (x.longValue() == 0) {
out.print(x);
return;
}
BigInteger pow = powerWithMod(new BigInteger("2"), k);
BigInteger current = x.mod(mod).multiply(pow).mod(mod);
BigInteger result = current.multiply(new BigInteger("2")).mod(mod)
.subtract(pow.subtract(new BigInteger("1")).mod(mod))
.mod(mod);
out.print(result);
}
BigInteger powerWithMod(BigInteger base, BigInteger exponent) {
if (exponent.longValue() == 0) {
return new BigInteger("1");
}
BigInteger temp = powerWithMod(base, exponent.divide(new BigInteger("2")));
BigInteger term = temp.mod(mod);
if (exponent.mod(new BigInteger("2")).intValue() == 0) {
return term.multiply(term.mod(mod)).mod(mod);
} else {
return term.multiply(term.mod(mod)).multiply(base.mod(mod)).mod(mod);
}
}
}
static class InputReader {
private BufferedReader reader;
private StringTokenizer tokenizer;
public InputReader(InputStream stream) {
reader = new BufferedReader(new InputStreamReader(stream), 32768);
tokenizer = null;
}
public String next() {
while (tokenizer == null || !tokenizer.hasMoreTokens()) {
try {
tokenizer = new StringTokenizer(reader.readLine());
} catch (IOException e) {
throw new RuntimeException(e);
}
}
return tokenizer.nextToken();
}
}
}
</CODE>
<EVALUATION_RUBRIC>
- others: The time complexity does not fit any of the above categories or cannot be clearly classified.
- O(n^2): The time complexity grows proportionally to the square of the input size.
- O(nlog(n)): The time complexity combines linear and logarithmic growth factors.
- non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially.
- O(n): The time complexity increases proportionally to the input size n in a linear manner.
- O(log(n)): The time complexity increases logarithmically in relation to the input size.
- O(1): The time complexity is constant to the input size n.
- O(n^3): The time complexity scales proportionally to the cube of the input size.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
| 842
| 249
|
2,944
|
import java.io.OutputStream;
import java.io.IOException;
import java.io.PrintWriter;
import java.util.InputMismatchException;
import java.io.InputStream;
/**
* Built using CHelper plug-in
* Actual solution is at the top
* @author George Marcus
*/
public class Main {
public static void main(String[] args) {
InputStream inputStream = System.in;
OutputStream outputStream = System.out;
InputReader in = new InputReader(inputStream);
PrintWriter out = new PrintWriter(outputStream);
TaskA solver = new TaskA();
solver.solve(1, in, out);
out.close();
}
}
class TaskA {
public void solve(int testNumber, InputReader in, PrintWriter out) {
long a = in.nextLong();
long b = in.nextLong();
long res = 0;
while(a > 1 && b > 1) {
if(a < b) {
res += b / a;
b %= a;
}
else {
res += a / b;
a %= b;
}
}
if(a == 1)
res += b;
else
res += a;
out.println(res);
}
}
class InputReader {
private InputStream stream;
private byte[] buf = new byte[1024];
private int curChar;
private int numChars;
public InputReader(InputStream stream) {
this.stream = stream;
}
public int read() {
if (numChars == -1)
throw new InputMismatchException();
if (curChar >= numChars) {
curChar = 0;
try {
numChars = stream.read(buf);
} catch (IOException e) {
throw new InputMismatchException();
}
if (numChars <= 0)
return -1;
}
return buf[curChar++];
}
public long nextLong() {
return Long.parseLong(nextString());
}
public String nextString() {
int c = read();
while (isSpaceChar(c))
c = read();
StringBuffer res = new StringBuffer();
do {
res.appendCodePoint(c);
c = read();
} while (!isSpaceChar(c));
return res.toString();
}
private boolean isSpaceChar(int c) {
return c == ' ' || c == '\n' || c == '\r' || c == '\t' || c == -1;
}
}
|
O(1)
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Determine the worst-case time complexity category of a given Java code based on input size n.
</TASK>
<CODE>
import java.io.OutputStream;
import java.io.IOException;
import java.io.PrintWriter;
import java.util.InputMismatchException;
import java.io.InputStream;
/**
* Built using CHelper plug-in
* Actual solution is at the top
* @author George Marcus
*/
public class Main {
public static void main(String[] args) {
InputStream inputStream = System.in;
OutputStream outputStream = System.out;
InputReader in = new InputReader(inputStream);
PrintWriter out = new PrintWriter(outputStream);
TaskA solver = new TaskA();
solver.solve(1, in, out);
out.close();
}
}
class TaskA {
public void solve(int testNumber, InputReader in, PrintWriter out) {
long a = in.nextLong();
long b = in.nextLong();
long res = 0;
while(a > 1 && b > 1) {
if(a < b) {
res += b / a;
b %= a;
}
else {
res += a / b;
a %= b;
}
}
if(a == 1)
res += b;
else
res += a;
out.println(res);
}
}
class InputReader {
private InputStream stream;
private byte[] buf = new byte[1024];
private int curChar;
private int numChars;
public InputReader(InputStream stream) {
this.stream = stream;
}
public int read() {
if (numChars == -1)
throw new InputMismatchException();
if (curChar >= numChars) {
curChar = 0;
try {
numChars = stream.read(buf);
} catch (IOException e) {
throw new InputMismatchException();
}
if (numChars <= 0)
return -1;
}
return buf[curChar++];
}
public long nextLong() {
return Long.parseLong(nextString());
}
public String nextString() {
int c = read();
while (isSpaceChar(c))
c = read();
StringBuffer res = new StringBuffer();
do {
res.appendCodePoint(c);
c = read();
} while (!isSpaceChar(c));
return res.toString();
}
private boolean isSpaceChar(int c) {
return c == ' ' || c == '\n' || c == '\r' || c == '\t' || c == -1;
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(log(n)): The time complexity increases logarithmically in relation to the input size.
- O(n^2): The time complexity grows proportionally to the square of the input size.
- non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially.
- O(1): The time complexity is constant to the input size n.
- O(n^3): The time complexity scales proportionally to the cube of the input size.
- O(nlog(n)): The time complexity combines linear and logarithmic growth factors.
- O(n): The time complexity increases proportionally to the input size n in a linear manner.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Determine the worst-case time complexity category of a given Java code based on input size n.
</TASK>
<CODE>
import java.io.OutputStream;
import java.io.IOException;
import java.io.PrintWriter;
import java.util.InputMismatchException;
import java.io.InputStream;
/**
* Built using CHelper plug-in
* Actual solution is at the top
* @author George Marcus
*/
public class Main {
public static void main(String[] args) {
InputStream inputStream = System.in;
OutputStream outputStream = System.out;
InputReader in = new InputReader(inputStream);
PrintWriter out = new PrintWriter(outputStream);
TaskA solver = new TaskA();
solver.solve(1, in, out);
out.close();
}
}
class TaskA {
public void solve(int testNumber, InputReader in, PrintWriter out) {
long a = in.nextLong();
long b = in.nextLong();
long res = 0;
while(a > 1 && b > 1) {
if(a < b) {
res += b / a;
b %= a;
}
else {
res += a / b;
a %= b;
}
}
if(a == 1)
res += b;
else
res += a;
out.println(res);
}
}
class InputReader {
private InputStream stream;
private byte[] buf = new byte[1024];
private int curChar;
private int numChars;
public InputReader(InputStream stream) {
this.stream = stream;
}
public int read() {
if (numChars == -1)
throw new InputMismatchException();
if (curChar >= numChars) {
curChar = 0;
try {
numChars = stream.read(buf);
} catch (IOException e) {
throw new InputMismatchException();
}
if (numChars <= 0)
return -1;
}
return buf[curChar++];
}
public long nextLong() {
return Long.parseLong(nextString());
}
public String nextString() {
int c = read();
while (isSpaceChar(c))
c = read();
StringBuffer res = new StringBuffer();
do {
res.appendCodePoint(c);
c = read();
} while (!isSpaceChar(c));
return res.toString();
}
private boolean isSpaceChar(int c) {
return c == ' ' || c == '\n' || c == '\r' || c == '\t' || c == -1;
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(n^2): The time complexity grows proportionally to the square of the input size.
- O(n): The time complexity increases proportionally to the input size n in a linear manner.
- O(1): The time complexity is constant to the input size n.
- others: The time complexity does not fit any of the above categories or cannot be clearly classified.
- non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially.
- O(nlog(n)): The time complexity combines linear and logarithmic growth factors.
- O(log(n)): The time complexity increases logarithmically in relation to the input size.
- O(n^3): The time complexity scales proportionally to the cube of the input size.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
| 845
| 2,938
|
2,378
|
import java.util.Scanner;
public class inversion__count {
public static void main(String[] args) {
Scanner s = new Scanner(System.in);
int n=s.nextInt();
int[] a = new int[n+1];
for(int i=1;i<=n;i++){
a[i]=s.nextInt();
}
int m=s.nextInt();
int count=0;
for(int i=1;i<=n;i++){
for(int j=i+1;j<=n;j++){
if(a[i]>a[j]){
count++;
}
}
}
if(count%2==0){
count=0;
}else{
count=1;
}
//System.out.println(count);
for(int i=0;i<m;i++){
int l=s.nextInt();
int r=s.nextInt();
if(l==r){
if((count&1)==1){
System.out.println("odd");
}else{
System.out.println("even");
}
continue;
}
int d=r-l+1;
int segcount = 0;
int temp = (d*(d-1))/2;
if((temp&1)==1 && (count&1)==1){
count=0;
System.out.println("even");
}else if((temp&1)==1 && (count&1)==0){
count=1;
System.out.println("odd");
}else{
if((count&1)==1){
System.out.println("odd");
}else{
System.out.println("even");
}
}
}
}
}
|
O(n^2)
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Determine the worst-case time complexity category of a given Java code based on input size n.
</TASK>
<CODE>
import java.util.Scanner;
public class inversion__count {
public static void main(String[] args) {
Scanner s = new Scanner(System.in);
int n=s.nextInt();
int[] a = new int[n+1];
for(int i=1;i<=n;i++){
a[i]=s.nextInt();
}
int m=s.nextInt();
int count=0;
for(int i=1;i<=n;i++){
for(int j=i+1;j<=n;j++){
if(a[i]>a[j]){
count++;
}
}
}
if(count%2==0){
count=0;
}else{
count=1;
}
//System.out.println(count);
for(int i=0;i<m;i++){
int l=s.nextInt();
int r=s.nextInt();
if(l==r){
if((count&1)==1){
System.out.println("odd");
}else{
System.out.println("even");
}
continue;
}
int d=r-l+1;
int segcount = 0;
int temp = (d*(d-1))/2;
if((temp&1)==1 && (count&1)==1){
count=0;
System.out.println("even");
}else if((temp&1)==1 && (count&1)==0){
count=1;
System.out.println("odd");
}else{
if((count&1)==1){
System.out.println("odd");
}else{
System.out.println("even");
}
}
}
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(n^2): The time complexity grows proportionally to the square of the input size.
- O(1): The time complexity is constant to the input size n.
- O(log(n)): The time complexity increases logarithmically in relation to the input size.
- non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially.
- O(n): The time complexity increases proportionally to the input size n in a linear manner.
- O(nlog(n)): The time complexity combines linear and logarithmic growth factors.
- O(n^3): The time complexity scales proportionally to the cube of the input size.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Determine the worst-case time complexity category of a given Java code based on input size n.
</TASK>
<CODE>
import java.util.Scanner;
public class inversion__count {
public static void main(String[] args) {
Scanner s = new Scanner(System.in);
int n=s.nextInt();
int[] a = new int[n+1];
for(int i=1;i<=n;i++){
a[i]=s.nextInt();
}
int m=s.nextInt();
int count=0;
for(int i=1;i<=n;i++){
for(int j=i+1;j<=n;j++){
if(a[i]>a[j]){
count++;
}
}
}
if(count%2==0){
count=0;
}else{
count=1;
}
//System.out.println(count);
for(int i=0;i<m;i++){
int l=s.nextInt();
int r=s.nextInt();
if(l==r){
if((count&1)==1){
System.out.println("odd");
}else{
System.out.println("even");
}
continue;
}
int d=r-l+1;
int segcount = 0;
int temp = (d*(d-1))/2;
if((temp&1)==1 && (count&1)==1){
count=0;
System.out.println("even");
}else if((temp&1)==1 && (count&1)==0){
count=1;
System.out.println("odd");
}else{
if((count&1)==1){
System.out.println("odd");
}else{
System.out.println("even");
}
}
}
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(nlog(n)): The time complexity combines linear and logarithmic growth factors.
- O(n): The time complexity increases proportionally to the input size n in a linear manner.
- O(1): The time complexity is constant to the input size n.
- O(log(n)): The time complexity increases logarithmically in relation to the input size.
- others: The time complexity does not fit any of the above categories or cannot be clearly classified.
- O(n^2): The time complexity grows proportionally to the square of the input size.
- O(n^3): The time complexity scales proportionally to the cube of the input size.
- non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
| 694
| 2,373
|
800
|
import java.io.*;
import java.util.*;
public class Main
{
class node{
int data;
node next;
public node(int val){
data=val;
next=null;
}
}
class linkedlist{
node start;
node end;
int size;
int turn;
public linkedlist(){
start=null;
end=null;
size=0;
}
void add(int val){
if(size==0){
node t=new node(val);
start=t;
end=t;
size++;
}
else{
node t=new node(val);
end.next=t;
end=end.next;
size++;
}
}
void myfunc(){
if(start.data>start.next.data){
// System.out.println("me ni hu");
node t=new node(start.next.data);
start.next=start.next.next;
end.next=t;
end=end.next;
}
else{
// System.out.println("me hu");
int t=start.data;
start=start.next;
add(t);
size--;
}
}
int findmax(){
int m=0;
node temp=start;
for(int i=0;i<size;i++){
if(temp.data>m){
m=temp.data;
}
temp=temp.next;
}
return m;
}
void display(){
node temp=start;
for(int i=0;i<size;i++){
System.out.print(temp.data+" ");
temp=temp.next;
}
System.out.println("");
}
}
linkedlist l;
public Main(){
l=new linkedlist();
}
public static void main(String [] argv) throws IOException
{
BufferedReader in=new BufferedReader(new InputStreamReader(System.in));
Main ma=new Main();
String[] l1=in.readLine().split(" ");
int n=Integer.parseInt(l1[0]);
int q=Integer.parseInt(l1[1]);
String[] ar=in.readLine().split(" ");
int a1=Integer.parseInt(ar[0]);
int b1=Integer.parseInt(ar[1]);
for(int i=0;i<n;i++){
ma.l.add(Integer.parseInt(ar[i]));
}
int m=ma.l.findmax();
int[][] pair=new int[n][2];
int t=0;
for(int i=0;i<n;i++){
if(ma.l.start.data==m)
break;
ma.l.myfunc();
pair[t][0]=ma.l.start.data;
pair[t][1]=ma.l.start.next.data;
t++;
}
int rl[]=new int[n];
node temp=ma.l.start;
for(int i=0;i<n;i++){
rl[i]=temp.data;
temp=temp.next;
}
for(int i=0;i<q;i++){
long a=Long.parseLong(in.readLine());
if(a==1){
System.out.println(a1 + " " + b1);
}
else{
if(a<=t+1){
System.out.println(pair[(int)(a-2)][0]+" "+pair[(int)(a-2)][1]);
}
else{
if((a-t)%(n-1)==0){
System.out.println(rl[0]+" "+rl[n-1]);
}
else{
System.out.println(rl[0]+" "+rl[(int)((a-t)%(n-1))]);
}
}
}
}
}
}
|
O(n)
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n.
</TASK>
<CODE>
import java.io.*;
import java.util.*;
public class Main
{
class node{
int data;
node next;
public node(int val){
data=val;
next=null;
}
}
class linkedlist{
node start;
node end;
int size;
int turn;
public linkedlist(){
start=null;
end=null;
size=0;
}
void add(int val){
if(size==0){
node t=new node(val);
start=t;
end=t;
size++;
}
else{
node t=new node(val);
end.next=t;
end=end.next;
size++;
}
}
void myfunc(){
if(start.data>start.next.data){
// System.out.println("me ni hu");
node t=new node(start.next.data);
start.next=start.next.next;
end.next=t;
end=end.next;
}
else{
// System.out.println("me hu");
int t=start.data;
start=start.next;
add(t);
size--;
}
}
int findmax(){
int m=0;
node temp=start;
for(int i=0;i<size;i++){
if(temp.data>m){
m=temp.data;
}
temp=temp.next;
}
return m;
}
void display(){
node temp=start;
for(int i=0;i<size;i++){
System.out.print(temp.data+" ");
temp=temp.next;
}
System.out.println("");
}
}
linkedlist l;
public Main(){
l=new linkedlist();
}
public static void main(String [] argv) throws IOException
{
BufferedReader in=new BufferedReader(new InputStreamReader(System.in));
Main ma=new Main();
String[] l1=in.readLine().split(" ");
int n=Integer.parseInt(l1[0]);
int q=Integer.parseInt(l1[1]);
String[] ar=in.readLine().split(" ");
int a1=Integer.parseInt(ar[0]);
int b1=Integer.parseInt(ar[1]);
for(int i=0;i<n;i++){
ma.l.add(Integer.parseInt(ar[i]));
}
int m=ma.l.findmax();
int[][] pair=new int[n][2];
int t=0;
for(int i=0;i<n;i++){
if(ma.l.start.data==m)
break;
ma.l.myfunc();
pair[t][0]=ma.l.start.data;
pair[t][1]=ma.l.start.next.data;
t++;
}
int rl[]=new int[n];
node temp=ma.l.start;
for(int i=0;i<n;i++){
rl[i]=temp.data;
temp=temp.next;
}
for(int i=0;i<q;i++){
long a=Long.parseLong(in.readLine());
if(a==1){
System.out.println(a1 + " " + b1);
}
else{
if(a<=t+1){
System.out.println(pair[(int)(a-2)][0]+" "+pair[(int)(a-2)][1]);
}
else{
if((a-t)%(n-1)==0){
System.out.println(rl[0]+" "+rl[n-1]);
}
else{
System.out.println(rl[0]+" "+rl[(int)((a-t)%(n-1))]);
}
}
}
}
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(log(n)): The execution time ascends in proportion to the logarithm of the input size n.
- O(n^2): The execution time ascends in proportion to the square of the input size n.
- O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially.
- O(n): The execution time ascends in a one-to-one ratio with the input size n.
- O(n^3): The execution time ascends in proportion to the cube of the input size n.
- O(1): The execution time is unaffected by the size of the input n.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Determine the worst-case time complexity category of a given Java code based on input size n.
</TASK>
<CODE>
import java.io.*;
import java.util.*;
public class Main
{
class node{
int data;
node next;
public node(int val){
data=val;
next=null;
}
}
class linkedlist{
node start;
node end;
int size;
int turn;
public linkedlist(){
start=null;
end=null;
size=0;
}
void add(int val){
if(size==0){
node t=new node(val);
start=t;
end=t;
size++;
}
else{
node t=new node(val);
end.next=t;
end=end.next;
size++;
}
}
void myfunc(){
if(start.data>start.next.data){
// System.out.println("me ni hu");
node t=new node(start.next.data);
start.next=start.next.next;
end.next=t;
end=end.next;
}
else{
// System.out.println("me hu");
int t=start.data;
start=start.next;
add(t);
size--;
}
}
int findmax(){
int m=0;
node temp=start;
for(int i=0;i<size;i++){
if(temp.data>m){
m=temp.data;
}
temp=temp.next;
}
return m;
}
void display(){
node temp=start;
for(int i=0;i<size;i++){
System.out.print(temp.data+" ");
temp=temp.next;
}
System.out.println("");
}
}
linkedlist l;
public Main(){
l=new linkedlist();
}
public static void main(String [] argv) throws IOException
{
BufferedReader in=new BufferedReader(new InputStreamReader(System.in));
Main ma=new Main();
String[] l1=in.readLine().split(" ");
int n=Integer.parseInt(l1[0]);
int q=Integer.parseInt(l1[1]);
String[] ar=in.readLine().split(" ");
int a1=Integer.parseInt(ar[0]);
int b1=Integer.parseInt(ar[1]);
for(int i=0;i<n;i++){
ma.l.add(Integer.parseInt(ar[i]));
}
int m=ma.l.findmax();
int[][] pair=new int[n][2];
int t=0;
for(int i=0;i<n;i++){
if(ma.l.start.data==m)
break;
ma.l.myfunc();
pair[t][0]=ma.l.start.data;
pair[t][1]=ma.l.start.next.data;
t++;
}
int rl[]=new int[n];
node temp=ma.l.start;
for(int i=0;i<n;i++){
rl[i]=temp.data;
temp=temp.next;
}
for(int i=0;i<q;i++){
long a=Long.parseLong(in.readLine());
if(a==1){
System.out.println(a1 + " " + b1);
}
else{
if(a<=t+1){
System.out.println(pair[(int)(a-2)][0]+" "+pair[(int)(a-2)][1]);
}
else{
if((a-t)%(n-1)==0){
System.out.println(rl[0]+" "+rl[n-1]);
}
else{
System.out.println(rl[0]+" "+rl[(int)((a-t)%(n-1))]);
}
}
}
}
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(log(n)): The time complexity increases logarithmically in relation to the input size.
- non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially.
- O(n^2): The time complexity grows proportionally to the square of the input size.
- others: The time complexity does not fit any of the above categories or cannot be clearly classified.
- O(1): The time complexity is constant to the input size n.
- O(nlog(n)): The time complexity combines linear and logarithmic growth factors.
- O(n): The time complexity increases proportionally to the input size n in a linear manner.
- O(n^3): The time complexity scales proportionally to the cube of the input size.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
| 1,104
| 799
|
1,331
|
import java.io.*;
import java.util.*;
import java.math.BigInteger;
import java.util.Map.Entry;
import static java.lang.Math.*;
public class C extends PrintWriter {
final long mod = 1_000_000_007;
long pow(long n, long p) {
long r = 1;
while (p > 0) {
if (p % 2 == 1) {
r = (r * n) % mod;
}
n = (n * n) % mod;
p /= 2;
}
return r;
}
long solve(long n, long k) {
if (k == 0) {
return (2 * n) % mod;
}
if (n == 0) {
return 0;
}
long m = pow(2, k);
long a = 2;
a = (a * n) % mod;
a = (a * m) % mod;
long b = (m + mod - 1) % mod;
return ((a - b + mod) % mod);
}
void run() {
long n = nextLong();
long k = nextLong();
println(solve(n, k));
}
boolean skip() {
while (hasNext()) {
next();
}
return true;
}
int[][] nextMatrix(int n, int m) {
int[][] matrix = new int[n][m];
for (int i = 0; i < n; i++)
for (int j = 0; j < m; j++)
matrix[i][j] = nextInt();
return matrix;
}
String next() {
while (!tokenizer.hasMoreTokens())
tokenizer = new StringTokenizer(nextLine());
return tokenizer.nextToken();
}
boolean hasNext() {
while (!tokenizer.hasMoreTokens()) {
String line = nextLine();
if (line == null) {
return false;
}
tokenizer = new StringTokenizer(line);
}
return true;
}
int[] nextArray(int n) {
int[] array = new int[n];
for (int i = 0; i < n; i++) {
array[i] = nextInt();
}
return array;
}
int nextInt() {
return Integer.parseInt(next());
}
long nextLong() {
return Long.parseLong(next());
}
double nextDouble() {
return Double.parseDouble(next());
}
String nextLine() {
try {
return reader.readLine();
} catch (IOException err) {
return null;
}
}
public C(OutputStream outputStream) {
super(outputStream);
}
static BufferedReader reader;
static StringTokenizer tokenizer = new StringTokenizer("");
static Random rnd = new Random();
static boolean OJ;
public static void main(String[] args) throws IOException {
OJ = System.getProperty("ONLINE_JUDGE") != null;
C solution = new C(System.out);
if (OJ) {
reader = new BufferedReader(new InputStreamReader(System.in));
solution.run();
} else {
reader = new BufferedReader(new FileReader(new File(C.class.getName() + ".txt")));
long timeout = System.currentTimeMillis();
while (solution.hasNext()) {
solution.run();
solution.println();
solution.println("----------------------------------");
}
solution.println("time: " + (System.currentTimeMillis() - timeout));
}
solution.close();
reader.close();
}
}
|
O(log(n))
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Determine the worst-case time complexity category of a given Java code based on input size n.
</TASK>
<CODE>
import java.io.*;
import java.util.*;
import java.math.BigInteger;
import java.util.Map.Entry;
import static java.lang.Math.*;
public class C extends PrintWriter {
final long mod = 1_000_000_007;
long pow(long n, long p) {
long r = 1;
while (p > 0) {
if (p % 2 == 1) {
r = (r * n) % mod;
}
n = (n * n) % mod;
p /= 2;
}
return r;
}
long solve(long n, long k) {
if (k == 0) {
return (2 * n) % mod;
}
if (n == 0) {
return 0;
}
long m = pow(2, k);
long a = 2;
a = (a * n) % mod;
a = (a * m) % mod;
long b = (m + mod - 1) % mod;
return ((a - b + mod) % mod);
}
void run() {
long n = nextLong();
long k = nextLong();
println(solve(n, k));
}
boolean skip() {
while (hasNext()) {
next();
}
return true;
}
int[][] nextMatrix(int n, int m) {
int[][] matrix = new int[n][m];
for (int i = 0; i < n; i++)
for (int j = 0; j < m; j++)
matrix[i][j] = nextInt();
return matrix;
}
String next() {
while (!tokenizer.hasMoreTokens())
tokenizer = new StringTokenizer(nextLine());
return tokenizer.nextToken();
}
boolean hasNext() {
while (!tokenizer.hasMoreTokens()) {
String line = nextLine();
if (line == null) {
return false;
}
tokenizer = new StringTokenizer(line);
}
return true;
}
int[] nextArray(int n) {
int[] array = new int[n];
for (int i = 0; i < n; i++) {
array[i] = nextInt();
}
return array;
}
int nextInt() {
return Integer.parseInt(next());
}
long nextLong() {
return Long.parseLong(next());
}
double nextDouble() {
return Double.parseDouble(next());
}
String nextLine() {
try {
return reader.readLine();
} catch (IOException err) {
return null;
}
}
public C(OutputStream outputStream) {
super(outputStream);
}
static BufferedReader reader;
static StringTokenizer tokenizer = new StringTokenizer("");
static Random rnd = new Random();
static boolean OJ;
public static void main(String[] args) throws IOException {
OJ = System.getProperty("ONLINE_JUDGE") != null;
C solution = new C(System.out);
if (OJ) {
reader = new BufferedReader(new InputStreamReader(System.in));
solution.run();
} else {
reader = new BufferedReader(new FileReader(new File(C.class.getName() + ".txt")));
long timeout = System.currentTimeMillis();
while (solution.hasNext()) {
solution.run();
solution.println();
solution.println("----------------------------------");
}
solution.println("time: " + (System.currentTimeMillis() - timeout));
}
solution.close();
reader.close();
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(1): The time complexity is constant to the input size n.
- O(log(n)): The time complexity increases logarithmically in relation to the input size.
- non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially.
- O(n): The time complexity increases proportionally to the input size n in a linear manner.
- O(n^3): The time complexity scales proportionally to the cube of the input size.
- O(nlog(n)): The time complexity combines linear and logarithmic growth factors.
- O(n^2): The time complexity grows proportionally to the square of the input size.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n.
</TASK>
<CODE>
import java.io.*;
import java.util.*;
import java.math.BigInteger;
import java.util.Map.Entry;
import static java.lang.Math.*;
public class C extends PrintWriter {
final long mod = 1_000_000_007;
long pow(long n, long p) {
long r = 1;
while (p > 0) {
if (p % 2 == 1) {
r = (r * n) % mod;
}
n = (n * n) % mod;
p /= 2;
}
return r;
}
long solve(long n, long k) {
if (k == 0) {
return (2 * n) % mod;
}
if (n == 0) {
return 0;
}
long m = pow(2, k);
long a = 2;
a = (a * n) % mod;
a = (a * m) % mod;
long b = (m + mod - 1) % mod;
return ((a - b + mod) % mod);
}
void run() {
long n = nextLong();
long k = nextLong();
println(solve(n, k));
}
boolean skip() {
while (hasNext()) {
next();
}
return true;
}
int[][] nextMatrix(int n, int m) {
int[][] matrix = new int[n][m];
for (int i = 0; i < n; i++)
for (int j = 0; j < m; j++)
matrix[i][j] = nextInt();
return matrix;
}
String next() {
while (!tokenizer.hasMoreTokens())
tokenizer = new StringTokenizer(nextLine());
return tokenizer.nextToken();
}
boolean hasNext() {
while (!tokenizer.hasMoreTokens()) {
String line = nextLine();
if (line == null) {
return false;
}
tokenizer = new StringTokenizer(line);
}
return true;
}
int[] nextArray(int n) {
int[] array = new int[n];
for (int i = 0; i < n; i++) {
array[i] = nextInt();
}
return array;
}
int nextInt() {
return Integer.parseInt(next());
}
long nextLong() {
return Long.parseLong(next());
}
double nextDouble() {
return Double.parseDouble(next());
}
String nextLine() {
try {
return reader.readLine();
} catch (IOException err) {
return null;
}
}
public C(OutputStream outputStream) {
super(outputStream);
}
static BufferedReader reader;
static StringTokenizer tokenizer = new StringTokenizer("");
static Random rnd = new Random();
static boolean OJ;
public static void main(String[] args) throws IOException {
OJ = System.getProperty("ONLINE_JUDGE") != null;
C solution = new C(System.out);
if (OJ) {
reader = new BufferedReader(new InputStreamReader(System.in));
solution.run();
} else {
reader = new BufferedReader(new FileReader(new File(C.class.getName() + ".txt")));
long timeout = System.currentTimeMillis();
while (solution.hasNext()) {
solution.run();
solution.println();
solution.println("----------------------------------");
}
solution.println("time: " + (System.currentTimeMillis() - timeout));
}
solution.close();
reader.close();
}
}
</CODE>
<EVALUATION_RUBRIC>
- others: The time complexity does not fit to any of the given categories or is ambiguous.
- O(n^3): The execution time ascends in proportion to the cube of the input size n.
- O(1): The execution time is unaffected by the size of the input n.
- O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially.
- O(log(n)): The execution time ascends in proportion to the logarithm of the input size n.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- O(n^2): The execution time ascends in proportion to the square of the input size n.
- O(n): The execution time ascends in a one-to-one ratio with the input size n.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
| 1,068
| 1,329
|
270
|
//package contese_476;
import java.util.*;
public class q1
{
int m=(int)1e9+7;
public class Node
{
int a;
int b;
public void Node(int a,int b)
{
this.a=a;
this.b=b;
}
}
public int mul(int a ,int b)
{
a=a%m;
b=b%m;
return((a*b)%m);
}
public int pow(int a,int b)
{
int x=1;
while(b>0)
{
if(b%2!=0)
x=mul(x,a);
a=mul(a,a);
b=b/2;
}
return x;
}
public static long gcd(long a,long b)
{
if(b==0)
return a;
else
return gcd(b,a%b);
}
public static void main(String[] args)
{
Scanner sc=new Scanner(System.in);
int n=sc.nextInt();
HashMap<Integer,Integer> h=new HashMap();
//HashMap<Integer,Integer> h1=new HashMap();
int[] a=new int[n];
int x=sc.nextInt();
for(int i=0;i<n;i++)
{
a[i]=sc.nextInt();
if(h.get(a[i])==null)
{
h.put(a[i], 1);
//h1.put(a[i],i);
}
else
{
System.out.print(0);
System.exit(0);
}
}
for(int i=0;i<n;i++)
{
int num=a[i]&x;
if(num==a[i])
continue;
if(h.get(num)==null)
continue;
else
{
System.out.print(1);
System.exit(0);
}
}
for(int i=0;i<n;i++)
{
int num=a[i]&x;
if(num==a[i])
continue;
if(h.get(num)==null)
h.put(num, 1);
else
{
System.out.print(2);
System.exit(0);
}
}
System.out.print(-1);
}
}
|
O(n)
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Classify the following Java code's worst-case time complexity according to its relationship to the input size n.
</TASK>
<CODE>
//package contese_476;
import java.util.*;
public class q1
{
int m=(int)1e9+7;
public class Node
{
int a;
int b;
public void Node(int a,int b)
{
this.a=a;
this.b=b;
}
}
public int mul(int a ,int b)
{
a=a%m;
b=b%m;
return((a*b)%m);
}
public int pow(int a,int b)
{
int x=1;
while(b>0)
{
if(b%2!=0)
x=mul(x,a);
a=mul(a,a);
b=b/2;
}
return x;
}
public static long gcd(long a,long b)
{
if(b==0)
return a;
else
return gcd(b,a%b);
}
public static void main(String[] args)
{
Scanner sc=new Scanner(System.in);
int n=sc.nextInt();
HashMap<Integer,Integer> h=new HashMap();
//HashMap<Integer,Integer> h1=new HashMap();
int[] a=new int[n];
int x=sc.nextInt();
for(int i=0;i<n;i++)
{
a[i]=sc.nextInt();
if(h.get(a[i])==null)
{
h.put(a[i], 1);
//h1.put(a[i],i);
}
else
{
System.out.print(0);
System.exit(0);
}
}
for(int i=0;i<n;i++)
{
int num=a[i]&x;
if(num==a[i])
continue;
if(h.get(num)==null)
continue;
else
{
System.out.print(1);
System.exit(0);
}
}
for(int i=0;i<n;i++)
{
int num=a[i]&x;
if(num==a[i])
continue;
if(h.get(num)==null)
h.put(num, 1);
else
{
System.out.print(2);
System.exit(0);
}
}
System.out.print(-1);
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(1): The running time does not change regardless of the input size n.
- O(nlog(n)): The running time increases with the product of n and logarithm of n.
- O(n^3): The running time increases with the cube of the input size n.
- O(log(n)): The running time increases with the logarithm of the input size n.
- O(n): The running time grows linearly with the input size n.
- O(n^2): The running time increases with the square of the input size n.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Classify the following Java code's worst-case time complexity according to its relationship to the input size n.
</TASK>
<CODE>
//package contese_476;
import java.util.*;
public class q1
{
int m=(int)1e9+7;
public class Node
{
int a;
int b;
public void Node(int a,int b)
{
this.a=a;
this.b=b;
}
}
public int mul(int a ,int b)
{
a=a%m;
b=b%m;
return((a*b)%m);
}
public int pow(int a,int b)
{
int x=1;
while(b>0)
{
if(b%2!=0)
x=mul(x,a);
a=mul(a,a);
b=b/2;
}
return x;
}
public static long gcd(long a,long b)
{
if(b==0)
return a;
else
return gcd(b,a%b);
}
public static void main(String[] args)
{
Scanner sc=new Scanner(System.in);
int n=sc.nextInt();
HashMap<Integer,Integer> h=new HashMap();
//HashMap<Integer,Integer> h1=new HashMap();
int[] a=new int[n];
int x=sc.nextInt();
for(int i=0;i<n;i++)
{
a[i]=sc.nextInt();
if(h.get(a[i])==null)
{
h.put(a[i], 1);
//h1.put(a[i],i);
}
else
{
System.out.print(0);
System.exit(0);
}
}
for(int i=0;i<n;i++)
{
int num=a[i]&x;
if(num==a[i])
continue;
if(h.get(num)==null)
continue;
else
{
System.out.print(1);
System.exit(0);
}
}
for(int i=0;i<n;i++)
{
int num=a[i]&x;
if(num==a[i])
continue;
if(h.get(num)==null)
h.put(num, 1);
else
{
System.out.print(2);
System.exit(0);
}
}
System.out.print(-1);
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(n): The running time grows linearly with the input size n.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- others: The code does not clearly correspond to the listed classes or has an unclassified time complexity.
- O(n^3): The running time increases with the cube of the input size n.
- O(log(n)): The running time increases with the logarithm of the input size n.
- O(1): The running time does not change regardless of the input size n.
- O(nlog(n)): The running time increases with the product of n and logarithm of n.
- O(n^2): The running time increases with the square of the input size n.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
| 781
| 270
|
3,364
|
import java.util.Scanner;
/*
* To change this template, choose Tools | Templates
* and open the template in the editor.
*/
/**
*
* @author madi
*/
public class GivenString {
public static void main(String[] args) {
Scanner sc = new Scanner(System.in);
String line = sc.nextLine();
String sub = "";
int count = 0;
int max = 0;
for (int i = 0; i < line.length() - 1; i++) {
sub = line.substring(i, i + 1);
int q = i + 1;
int p;
int r = i;
while (q < line.length() && q > 0) {
p = q;
r = i;
int ind = line.indexOf(sub, p);
count = 0;
if (ind != -1) {
for (int j = ind; j < line.length(); j++) {
if (line.substring(j, j + 1).equalsIgnoreCase(line.substring(r, r + 1))) {
r++;
count++;
} else {
break;
}
}
if (count > max) {
max = count;
}
}
q = ind + 1;
}
}
System.out.println(max);
}
}
|
O(n^3)
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n.
</TASK>
<CODE>
import java.util.Scanner;
/*
* To change this template, choose Tools | Templates
* and open the template in the editor.
*/
/**
*
* @author madi
*/
public class GivenString {
public static void main(String[] args) {
Scanner sc = new Scanner(System.in);
String line = sc.nextLine();
String sub = "";
int count = 0;
int max = 0;
for (int i = 0; i < line.length() - 1; i++) {
sub = line.substring(i, i + 1);
int q = i + 1;
int p;
int r = i;
while (q < line.length() && q > 0) {
p = q;
r = i;
int ind = line.indexOf(sub, p);
count = 0;
if (ind != -1) {
for (int j = ind; j < line.length(); j++) {
if (line.substring(j, j + 1).equalsIgnoreCase(line.substring(r, r + 1))) {
r++;
count++;
} else {
break;
}
}
if (count > max) {
max = count;
}
}
q = ind + 1;
}
}
System.out.println(max);
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially.
- O(1): The execution time is unaffected by the size of the input n.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- O(n^2): The execution time ascends in proportion to the square of the input size n.
- O(n^3): The execution time ascends in proportion to the cube of the input size n.
- O(log(n)): The execution time ascends in proportion to the logarithm of the input size n.
- O(n): The execution time ascends in a one-to-one ratio with the input size n.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Determine the worst-case time complexity category of a given Java code based on input size n.
</TASK>
<CODE>
import java.util.Scanner;
/*
* To change this template, choose Tools | Templates
* and open the template in the editor.
*/
/**
*
* @author madi
*/
public class GivenString {
public static void main(String[] args) {
Scanner sc = new Scanner(System.in);
String line = sc.nextLine();
String sub = "";
int count = 0;
int max = 0;
for (int i = 0; i < line.length() - 1; i++) {
sub = line.substring(i, i + 1);
int q = i + 1;
int p;
int r = i;
while (q < line.length() && q > 0) {
p = q;
r = i;
int ind = line.indexOf(sub, p);
count = 0;
if (ind != -1) {
for (int j = ind; j < line.length(); j++) {
if (line.substring(j, j + 1).equalsIgnoreCase(line.substring(r, r + 1))) {
r++;
count++;
} else {
break;
}
}
if (count > max) {
max = count;
}
}
q = ind + 1;
}
}
System.out.println(max);
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(1): The time complexity is constant to the input size n.
- O(n^2): The time complexity grows proportionally to the square of the input size.
- O(nlog(n)): The time complexity combines linear and logarithmic growth factors.
- O(n^3): The time complexity scales proportionally to the cube of the input size.
- non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially.
- O(n): The time complexity increases proportionally to the input size n in a linear manner.
- O(log(n)): The time complexity increases logarithmically in relation to the input size.
- others: The time complexity does not fit any of the above categories or cannot be clearly classified.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
| 634
| 3,358
|
1,941
|
import java.util.*;
import java.io.*;
public class Main {
public static void main(String[] args) throws IOException {
BufferedReader f = new BufferedReader(new InputStreamReader(System.in));
PrintWriter out = new PrintWriter(new PrintStream(System.out));
StringTokenizer st = new StringTokenizer(f.readLine());
int n = Integer.parseInt(st.nextToken());
int m = Integer.parseInt(st.nextToken());
long[] arrB = new long[n];
long[] arrG = new long[m];
st=new StringTokenizer(f.readLine());
for(int i=0;i<n;i++){
arrB[i]=Long.parseLong(st.nextToken());
}
st=new StringTokenizer(f.readLine());
for(int j=0;j<m;j++){
arrG[j]=Long.parseLong(st.nextToken());
}
Arrays.sort(arrB);
Arrays.sort(arrG);
long ans = 0;
// for (int i = 0; i < n; i++) ans += arrB[i] * m;
// for (int i = 0; i < m - 1; i++) ans += arrG[i] - arrB[0];
// if (arrB[m - 1] != arrB[0]) {
// if (arrB.length == 1) {
// ans=-1;
// }
// else ans += arrG[m - 1] - arrB[1];
// }
// if (arrG[m-1] < arrB[0]) {
// ans=-1;
// }
for(int i=0;i<n;i++){
ans+=arrB[i]*(long)m;
}
for(int i=1;i<m;i++){
ans+=arrG[i]-arrB[n-1];
}
if(arrB[n-1]!=arrG[0]){
if(n==1){
ans=-1;
}
else{
//smallest g goes to second to last
ans+=arrG[0]-arrB[n-2];
}
}
if(arrB[n-1]>arrG[0]){
ans=-1;
}
System.out.println(ans);
f.close();
out.close();
}
}
|
O(nlog(n))
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n.
</TASK>
<CODE>
import java.util.*;
import java.io.*;
public class Main {
public static void main(String[] args) throws IOException {
BufferedReader f = new BufferedReader(new InputStreamReader(System.in));
PrintWriter out = new PrintWriter(new PrintStream(System.out));
StringTokenizer st = new StringTokenizer(f.readLine());
int n = Integer.parseInt(st.nextToken());
int m = Integer.parseInt(st.nextToken());
long[] arrB = new long[n];
long[] arrG = new long[m];
st=new StringTokenizer(f.readLine());
for(int i=0;i<n;i++){
arrB[i]=Long.parseLong(st.nextToken());
}
st=new StringTokenizer(f.readLine());
for(int j=0;j<m;j++){
arrG[j]=Long.parseLong(st.nextToken());
}
Arrays.sort(arrB);
Arrays.sort(arrG);
long ans = 0;
// for (int i = 0; i < n; i++) ans += arrB[i] * m;
// for (int i = 0; i < m - 1; i++) ans += arrG[i] - arrB[0];
// if (arrB[m - 1] != arrB[0]) {
// if (arrB.length == 1) {
// ans=-1;
// }
// else ans += arrG[m - 1] - arrB[1];
// }
// if (arrG[m-1] < arrB[0]) {
// ans=-1;
// }
for(int i=0;i<n;i++){
ans+=arrB[i]*(long)m;
}
for(int i=1;i<m;i++){
ans+=arrG[i]-arrB[n-1];
}
if(arrB[n-1]!=arrG[0]){
if(n==1){
ans=-1;
}
else{
//smallest g goes to second to last
ans+=arrG[0]-arrB[n-2];
}
}
if(arrB[n-1]>arrG[0]){
ans=-1;
}
System.out.println(ans);
f.close();
out.close();
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(n^3): The execution time ascends in proportion to the cube of the input size n.
- O(n): The execution time ascends in a one-to-one ratio with the input size n.
- O(n^2): The execution time ascends in proportion to the square of the input size n.
- O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially.
- O(1): The execution time is unaffected by the size of the input n.
- O(log(n)): The execution time ascends in proportion to the logarithm of the input size n.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Determine the worst-case time complexity category of a given Java code based on input size n.
</TASK>
<CODE>
import java.util.*;
import java.io.*;
public class Main {
public static void main(String[] args) throws IOException {
BufferedReader f = new BufferedReader(new InputStreamReader(System.in));
PrintWriter out = new PrintWriter(new PrintStream(System.out));
StringTokenizer st = new StringTokenizer(f.readLine());
int n = Integer.parseInt(st.nextToken());
int m = Integer.parseInt(st.nextToken());
long[] arrB = new long[n];
long[] arrG = new long[m];
st=new StringTokenizer(f.readLine());
for(int i=0;i<n;i++){
arrB[i]=Long.parseLong(st.nextToken());
}
st=new StringTokenizer(f.readLine());
for(int j=0;j<m;j++){
arrG[j]=Long.parseLong(st.nextToken());
}
Arrays.sort(arrB);
Arrays.sort(arrG);
long ans = 0;
// for (int i = 0; i < n; i++) ans += arrB[i] * m;
// for (int i = 0; i < m - 1; i++) ans += arrG[i] - arrB[0];
// if (arrB[m - 1] != arrB[0]) {
// if (arrB.length == 1) {
// ans=-1;
// }
// else ans += arrG[m - 1] - arrB[1];
// }
// if (arrG[m-1] < arrB[0]) {
// ans=-1;
// }
for(int i=0;i<n;i++){
ans+=arrB[i]*(long)m;
}
for(int i=1;i<m;i++){
ans+=arrG[i]-arrB[n-1];
}
if(arrB[n-1]!=arrG[0]){
if(n==1){
ans=-1;
}
else{
//smallest g goes to second to last
ans+=arrG[0]-arrB[n-2];
}
}
if(arrB[n-1]>arrG[0]){
ans=-1;
}
System.out.println(ans);
f.close();
out.close();
}
}
</CODE>
<EVALUATION_RUBRIC>
- non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially.
- O(n^2): The time complexity grows proportionally to the square of the input size.
- O(n): The time complexity increases proportionally to the input size n in a linear manner.
- O(nlog(n)): The time complexity combines linear and logarithmic growth factors.
- others: The time complexity does not fit any of the above categories or cannot be clearly classified.
- O(1): The time complexity is constant to the input size n.
- O(n^3): The time complexity scales proportionally to the cube of the input size.
- O(log(n)): The time complexity increases logarithmically in relation to the input size.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
| 806
| 1,937
|
3,947
|
import java.io.BufferedReader;
import java.io.File;
import java.io.FileNotFoundException;
import java.io.FileReader;
import java.io.IOException;
import java.io.InputStream;
import java.io.InputStreamReader;
import java.util.StringTokenizer;
// 1 -> n/2 XX n/2 + 1 -> n
public class MotherOfDragons
{
static boolean[][] adjMatrix;
public static void main(String[] args) throws IOException
{
Scanner sc = new Scanner(System.in);
int n = sc.nextInt();
int k = sc.nextInt();
// for (int i = 1; i <= n; i++)
// System.err.printf("%d %.12f\n",i, (k*k*((i-1)/(2.0*i))));
adjMatrix = new boolean[n][n];
for (int i = 0; i < n; i++)
for (int j = 0; j < n; j++)
adjMatrix[i][j] = sc.nextInt() == 1;
long[] edges = new long[n];
for (int i = 0; i < n; i++)
{
long val = 0;
for (int j = 0; j < n; j++)
if(adjMatrix[i][j] || i == j)
val |= 1l<<j;
edges[i] = val;
}
int h = n/2;
int[] cliques = new int[1<<h];
for (int i = 1; i < 1<<h; i++)
{
int nodes = i;
for (int j = 0; j < h; j++)
if((i & (1 << j)) != 0)
nodes &= edges[j];
if(nodes == i)
cliques[i] = Integer.bitCount(i);
}
for (int i = 1; i < 1<<h; i++)
for (int j = 0; j < h; j++)
if((i & (1 << j)) != 0)
cliques[i] = Math.max(cliques[i], cliques[i ^ (1<<j)]);
int max = 0;
for (int i = 0; i < cliques.length; i++)
max = Math.max(max, cliques[i]);
for (int i = 1; i < 1<<(n-h); i++)
{
long all = -1l;
long tmp = (1l*i)<<h;
for (int j = h; j < n; j++)
if((tmp & (1l << j)) != 0)
all &= edges[j];
long node = all&tmp;
if(node != tmp)
continue;
int connected = (int)(all & ((1<<h)-1));
max = Math.max(max, cliques[connected] + Integer.bitCount(i));
}
System.out.printf("%.12f\n", (k*k*((max-1)/(2.0*max))));
}
static class Scanner
{
StringTokenizer st;
BufferedReader br;
public Scanner(InputStream s)
{
br = new BufferedReader(new InputStreamReader(s));
}
public Scanner(String s) throws FileNotFoundException
{
br = new BufferedReader(new FileReader(new File((s))));
}
public String next() throws IOException
{
while (st == null || !st.hasMoreTokens())
st = new StringTokenizer(br.readLine());
return st.nextToken();
}
public int nextInt() throws IOException
{
return Integer.parseInt(next());
}
public long nextLong() throws IOException
{
return Long.parseLong(next());
}
public String nextLine() throws IOException
{
return br.readLine();
}
public double nextDouble() throws IOException
{ return Double.parseDouble(next()); }
}
}
|
non-polynomial
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Classify the following Java code's worst-case time complexity according to its relationship to the input size n.
</TASK>
<CODE>
import java.io.BufferedReader;
import java.io.File;
import java.io.FileNotFoundException;
import java.io.FileReader;
import java.io.IOException;
import java.io.InputStream;
import java.io.InputStreamReader;
import java.util.StringTokenizer;
// 1 -> n/2 XX n/2 + 1 -> n
public class MotherOfDragons
{
static boolean[][] adjMatrix;
public static void main(String[] args) throws IOException
{
Scanner sc = new Scanner(System.in);
int n = sc.nextInt();
int k = sc.nextInt();
// for (int i = 1; i <= n; i++)
// System.err.printf("%d %.12f\n",i, (k*k*((i-1)/(2.0*i))));
adjMatrix = new boolean[n][n];
for (int i = 0; i < n; i++)
for (int j = 0; j < n; j++)
adjMatrix[i][j] = sc.nextInt() == 1;
long[] edges = new long[n];
for (int i = 0; i < n; i++)
{
long val = 0;
for (int j = 0; j < n; j++)
if(adjMatrix[i][j] || i == j)
val |= 1l<<j;
edges[i] = val;
}
int h = n/2;
int[] cliques = new int[1<<h];
for (int i = 1; i < 1<<h; i++)
{
int nodes = i;
for (int j = 0; j < h; j++)
if((i & (1 << j)) != 0)
nodes &= edges[j];
if(nodes == i)
cliques[i] = Integer.bitCount(i);
}
for (int i = 1; i < 1<<h; i++)
for (int j = 0; j < h; j++)
if((i & (1 << j)) != 0)
cliques[i] = Math.max(cliques[i], cliques[i ^ (1<<j)]);
int max = 0;
for (int i = 0; i < cliques.length; i++)
max = Math.max(max, cliques[i]);
for (int i = 1; i < 1<<(n-h); i++)
{
long all = -1l;
long tmp = (1l*i)<<h;
for (int j = h; j < n; j++)
if((tmp & (1l << j)) != 0)
all &= edges[j];
long node = all&tmp;
if(node != tmp)
continue;
int connected = (int)(all & ((1<<h)-1));
max = Math.max(max, cliques[connected] + Integer.bitCount(i));
}
System.out.printf("%.12f\n", (k*k*((max-1)/(2.0*max))));
}
static class Scanner
{
StringTokenizer st;
BufferedReader br;
public Scanner(InputStream s)
{
br = new BufferedReader(new InputStreamReader(s));
}
public Scanner(String s) throws FileNotFoundException
{
br = new BufferedReader(new FileReader(new File((s))));
}
public String next() throws IOException
{
while (st == null || !st.hasMoreTokens())
st = new StringTokenizer(br.readLine());
return st.nextToken();
}
public int nextInt() throws IOException
{
return Integer.parseInt(next());
}
public long nextLong() throws IOException
{
return Long.parseLong(next());
}
public String nextLine() throws IOException
{
return br.readLine();
}
public double nextDouble() throws IOException
{ return Double.parseDouble(next()); }
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(nlog(n)): The running time increases with the product of n and logarithm of n.
- O(n^3): The running time increases with the cube of the input size n.
- O(n^2): The running time increases with the square of the input size n.
- O(log(n)): The running time increases with the logarithm of the input size n.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- O(1): The running time does not change regardless of the input size n.
- O(n): The running time grows linearly with the input size n.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Determine the worst-case time complexity category of a given Java code based on input size n.
</TASK>
<CODE>
import java.io.BufferedReader;
import java.io.File;
import java.io.FileNotFoundException;
import java.io.FileReader;
import java.io.IOException;
import java.io.InputStream;
import java.io.InputStreamReader;
import java.util.StringTokenizer;
// 1 -> n/2 XX n/2 + 1 -> n
public class MotherOfDragons
{
static boolean[][] adjMatrix;
public static void main(String[] args) throws IOException
{
Scanner sc = new Scanner(System.in);
int n = sc.nextInt();
int k = sc.nextInt();
// for (int i = 1; i <= n; i++)
// System.err.printf("%d %.12f\n",i, (k*k*((i-1)/(2.0*i))));
adjMatrix = new boolean[n][n];
for (int i = 0; i < n; i++)
for (int j = 0; j < n; j++)
adjMatrix[i][j] = sc.nextInt() == 1;
long[] edges = new long[n];
for (int i = 0; i < n; i++)
{
long val = 0;
for (int j = 0; j < n; j++)
if(adjMatrix[i][j] || i == j)
val |= 1l<<j;
edges[i] = val;
}
int h = n/2;
int[] cliques = new int[1<<h];
for (int i = 1; i < 1<<h; i++)
{
int nodes = i;
for (int j = 0; j < h; j++)
if((i & (1 << j)) != 0)
nodes &= edges[j];
if(nodes == i)
cliques[i] = Integer.bitCount(i);
}
for (int i = 1; i < 1<<h; i++)
for (int j = 0; j < h; j++)
if((i & (1 << j)) != 0)
cliques[i] = Math.max(cliques[i], cliques[i ^ (1<<j)]);
int max = 0;
for (int i = 0; i < cliques.length; i++)
max = Math.max(max, cliques[i]);
for (int i = 1; i < 1<<(n-h); i++)
{
long all = -1l;
long tmp = (1l*i)<<h;
for (int j = h; j < n; j++)
if((tmp & (1l << j)) != 0)
all &= edges[j];
long node = all&tmp;
if(node != tmp)
continue;
int connected = (int)(all & ((1<<h)-1));
max = Math.max(max, cliques[connected] + Integer.bitCount(i));
}
System.out.printf("%.12f\n", (k*k*((max-1)/(2.0*max))));
}
static class Scanner
{
StringTokenizer st;
BufferedReader br;
public Scanner(InputStream s)
{
br = new BufferedReader(new InputStreamReader(s));
}
public Scanner(String s) throws FileNotFoundException
{
br = new BufferedReader(new FileReader(new File((s))));
}
public String next() throws IOException
{
while (st == null || !st.hasMoreTokens())
st = new StringTokenizer(br.readLine());
return st.nextToken();
}
public int nextInt() throws IOException
{
return Integer.parseInt(next());
}
public long nextLong() throws IOException
{
return Long.parseLong(next());
}
public String nextLine() throws IOException
{
return br.readLine();
}
public double nextDouble() throws IOException
{ return Double.parseDouble(next()); }
}
}
</CODE>
<EVALUATION_RUBRIC>
- others: The time complexity does not fit any of the above categories or cannot be clearly classified.
- non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially.
- O(n^3): The time complexity scales proportionally to the cube of the input size.
- O(1): The time complexity is constant to the input size n.
- O(log(n)): The time complexity increases logarithmically in relation to the input size.
- O(nlog(n)): The time complexity combines linear and logarithmic growth factors.
- O(n^2): The time complexity grows proportionally to the square of the input size.
- O(n): The time complexity increases proportionally to the input size n in a linear manner.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
| 1,179
| 3,936
|
2,230
|
import java.io.*;
import java.util.*;
public class cf908G {
final static int MOD = 1_000_000_007;
public static void main(String[] argv) {
cf908G pro = new cf908G();
InputStream fin = null;
if (System.getProperty("ONLINE_JUDGE") == null) {
try {
fin = new FileInputStream("input.txt");
} catch (FileNotFoundException e) {
e.printStackTrace();
}
} else {
fin = System.in;
}
pro.solve(new Scanner(fin), System.out);
}
private void solve(Scanner scanner, PrintStream out) {
long ans = 0;
String X = scanner.next();
for (int x = 0; x < 9; x++) {
ans = (ans + solve2(x, X)) % MOD;
}
out.println((ans % MOD + MOD) % MOD);
}
private long solve2(int x, String X) {
int[][][] f = new int[X.length() + 1][X.length() + 1][2];
f[0][0][1] = 1;
int n = X.length();
for (int i = 0; i < n; i++) {
for (int j = 0; j <= n; j++) {
for (int u = 0; u < 2; u++) {
int val = f[i][j][u];
if (val == 0) continue;
for (int num = 0; num < 10; num++) {
int Xi = X.charAt(i) - '0';
if (u == 1 && num > Xi) break;
int _i = i + 1;
int _j = num <= x ? j + 1 : j;
int _u = u == 1 && num == Xi ? 1 : 0;
f[_i][_j][_u] = (f[_i][_j][_u] + val) % MOD;
}
}
}
}
long base = 1;
long ret = 0;
for (int i = n; i > 0; i--) {
long t = 0;
for (int j = 0; j < i; j++) {
t = (t + f[n][j][0] + f[n][j][1]) % MOD;
}
ret = (ret + base * t) % MOD;
base = (base * 10) % MOD;
}
return ret;
}
}
|
O(n^2)
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Determine the worst-case time complexity category of a given Java code based on input size n.
</TASK>
<CODE>
import java.io.*;
import java.util.*;
public class cf908G {
final static int MOD = 1_000_000_007;
public static void main(String[] argv) {
cf908G pro = new cf908G();
InputStream fin = null;
if (System.getProperty("ONLINE_JUDGE") == null) {
try {
fin = new FileInputStream("input.txt");
} catch (FileNotFoundException e) {
e.printStackTrace();
}
} else {
fin = System.in;
}
pro.solve(new Scanner(fin), System.out);
}
private void solve(Scanner scanner, PrintStream out) {
long ans = 0;
String X = scanner.next();
for (int x = 0; x < 9; x++) {
ans = (ans + solve2(x, X)) % MOD;
}
out.println((ans % MOD + MOD) % MOD);
}
private long solve2(int x, String X) {
int[][][] f = new int[X.length() + 1][X.length() + 1][2];
f[0][0][1] = 1;
int n = X.length();
for (int i = 0; i < n; i++) {
for (int j = 0; j <= n; j++) {
for (int u = 0; u < 2; u++) {
int val = f[i][j][u];
if (val == 0) continue;
for (int num = 0; num < 10; num++) {
int Xi = X.charAt(i) - '0';
if (u == 1 && num > Xi) break;
int _i = i + 1;
int _j = num <= x ? j + 1 : j;
int _u = u == 1 && num == Xi ? 1 : 0;
f[_i][_j][_u] = (f[_i][_j][_u] + val) % MOD;
}
}
}
}
long base = 1;
long ret = 0;
for (int i = n; i > 0; i--) {
long t = 0;
for (int j = 0; j < i; j++) {
t = (t + f[n][j][0] + f[n][j][1]) % MOD;
}
ret = (ret + base * t) % MOD;
base = (base * 10) % MOD;
}
return ret;
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(log(n)): The time complexity increases logarithmically in relation to the input size.
- O(nlog(n)): The time complexity combines linear and logarithmic growth factors.
- non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially.
- O(n^2): The time complexity grows proportionally to the square of the input size.
- O(1): The time complexity is constant to the input size n.
- O(n): The time complexity increases proportionally to the input size n in a linear manner.
- O(n^3): The time complexity scales proportionally to the cube of the input size.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n.
</TASK>
<CODE>
import java.io.*;
import java.util.*;
public class cf908G {
final static int MOD = 1_000_000_007;
public static void main(String[] argv) {
cf908G pro = new cf908G();
InputStream fin = null;
if (System.getProperty("ONLINE_JUDGE") == null) {
try {
fin = new FileInputStream("input.txt");
} catch (FileNotFoundException e) {
e.printStackTrace();
}
} else {
fin = System.in;
}
pro.solve(new Scanner(fin), System.out);
}
private void solve(Scanner scanner, PrintStream out) {
long ans = 0;
String X = scanner.next();
for (int x = 0; x < 9; x++) {
ans = (ans + solve2(x, X)) % MOD;
}
out.println((ans % MOD + MOD) % MOD);
}
private long solve2(int x, String X) {
int[][][] f = new int[X.length() + 1][X.length() + 1][2];
f[0][0][1] = 1;
int n = X.length();
for (int i = 0; i < n; i++) {
for (int j = 0; j <= n; j++) {
for (int u = 0; u < 2; u++) {
int val = f[i][j][u];
if (val == 0) continue;
for (int num = 0; num < 10; num++) {
int Xi = X.charAt(i) - '0';
if (u == 1 && num > Xi) break;
int _i = i + 1;
int _j = num <= x ? j + 1 : j;
int _u = u == 1 && num == Xi ? 1 : 0;
f[_i][_j][_u] = (f[_i][_j][_u] + val) % MOD;
}
}
}
}
long base = 1;
long ret = 0;
for (int i = n; i > 0; i--) {
long t = 0;
for (int j = 0; j < i; j++) {
t = (t + f[n][j][0] + f[n][j][1]) % MOD;
}
ret = (ret + base * t) % MOD;
base = (base * 10) % MOD;
}
return ret;
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(1): The execution time is unaffected by the size of the input n.
- O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially.
- O(n): The execution time ascends in a one-to-one ratio with the input size n.
- others: The time complexity does not fit to any of the given categories or is ambiguous.
- O(log(n)): The execution time ascends in proportion to the logarithm of the input size n.
- O(n^2): The execution time ascends in proportion to the square of the input size n.
- O(n^3): The execution time ascends in proportion to the cube of the input size n.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
| 921
| 2,226
|
4,352
|
import java.io.*;
import java.util.StringTokenizer;
/**
* Codeforces 11D - A Simple Task
* Created by Darren on 14-10-21.
* O(2^n * n^2) time and O(2^n * n) space.
*
* Tag: dynamic programming, bitmask, graph
*/
public class D {
Reader in = new Reader(System.in);
PrintWriter out = new PrintWriter(System.out);
public static void main(String[] args) throws IOException {
new D().run();
}
int n, m;
boolean[][] adjacency; // Adjacency matrix
void run() throws IOException {
n = in.nextInt();
m = in.nextInt();
adjacency = new boolean[n+1][n];
for (int i = 0; i < m; i++) {
int u = in.nextInt(), v = in.nextInt();
adjacency[u-1][v-1] = adjacency[v-1][u-1] = true; // Converted to 0-based
}
final int MASK_BOUND = (1 << n);
// dp[i][j]: the number of Hamiltonian walks over the subgraph formed by
// the mask i, starting at the smallest vertex and ending at vertex j
// dp[1<<i][i] = 1;
// dp[i][j] = sum_k{dp[i^j][k]} if j is within the mask i and (k,j) is an edge
long[][] dp = new long[MASK_BOUND][n];
for (int i = 0; i < n; i++)
dp[1<<i][i] = 1;
long sum = 0;
for (int mask = 1; mask < MASK_BOUND; mask++) {
int lowestVertex = (int) (Math.log(lowest(mask)) / Math.log(2));
for (int i = 0; i < n; i++) {
if (bit(i, mask) && i != lowestVertex) {
for (int j = 0; j < n; j++) {
if (adjacency[j][i]) {
dp[mask][i] += dp[mask^(1<<i)][j];
}
}
// A simple cycle with length not smaller than 3
if (count(mask) >= 3 && adjacency[lowestVertex][i])
sum += dp[mask][i];
} else {
// dp[mask][i] = 0
}
}
}
out.println(sum / 2); // A cycle is counted twice
out.flush();
}
// Return the number of '1's in the binary representation of the mask
int count(int mask) {
int count = 0;
while (mask > 0) {
if ((mask & 1) == 1)
count++;
mask >>= 1;
}
return count;
}
// Return an integer with only one '1' in its binary form and the position of the
// only '1' is the same with the lowest '1' in mask
int lowest(int mask) {
// mask = x1b where b is a sequence of zeros;
// -mask = x'1b', where x' and b' is formed by reversing digits in x and b;
// mask & (-mask) = 0...010...0, where the only 1 is the lowest 1 in mask
return mask & (-mask);
}
// Check whether the digit at the given index of the mask is '1'
boolean bit(int index, int mask) {
return ((1 << index) & mask) > 0;
}
static class Reader {
BufferedReader reader;
StringTokenizer tokenizer;
public Reader(InputStream input) {
reader = new BufferedReader(new InputStreamReader(input));
tokenizer = new StringTokenizer("");
}
/** get next word */
String nextToken() throws IOException {
while ( ! tokenizer.hasMoreTokens() ) {
//TODO add check for eof if necessary
tokenizer = new StringTokenizer( reader.readLine() );
}
return tokenizer.nextToken();
}
String readLine() throws IOException {
return reader.readLine();
}
int nextInt() throws IOException {
return Integer.parseInt( nextToken() );
}
long nextLong() throws IOException {
return Long.parseLong( nextToken() );
}
double nextDouble() throws IOException {
return Double.parseDouble( nextToken() );
}
}
}
|
non-polynomial
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n.
</TASK>
<CODE>
import java.io.*;
import java.util.StringTokenizer;
/**
* Codeforces 11D - A Simple Task
* Created by Darren on 14-10-21.
* O(2^n * n^2) time and O(2^n * n) space.
*
* Tag: dynamic programming, bitmask, graph
*/
public class D {
Reader in = new Reader(System.in);
PrintWriter out = new PrintWriter(System.out);
public static void main(String[] args) throws IOException {
new D().run();
}
int n, m;
boolean[][] adjacency; // Adjacency matrix
void run() throws IOException {
n = in.nextInt();
m = in.nextInt();
adjacency = new boolean[n+1][n];
for (int i = 0; i < m; i++) {
int u = in.nextInt(), v = in.nextInt();
adjacency[u-1][v-1] = adjacency[v-1][u-1] = true; // Converted to 0-based
}
final int MASK_BOUND = (1 << n);
// dp[i][j]: the number of Hamiltonian walks over the subgraph formed by
// the mask i, starting at the smallest vertex and ending at vertex j
// dp[1<<i][i] = 1;
// dp[i][j] = sum_k{dp[i^j][k]} if j is within the mask i and (k,j) is an edge
long[][] dp = new long[MASK_BOUND][n];
for (int i = 0; i < n; i++)
dp[1<<i][i] = 1;
long sum = 0;
for (int mask = 1; mask < MASK_BOUND; mask++) {
int lowestVertex = (int) (Math.log(lowest(mask)) / Math.log(2));
for (int i = 0; i < n; i++) {
if (bit(i, mask) && i != lowestVertex) {
for (int j = 0; j < n; j++) {
if (adjacency[j][i]) {
dp[mask][i] += dp[mask^(1<<i)][j];
}
}
// A simple cycle with length not smaller than 3
if (count(mask) >= 3 && adjacency[lowestVertex][i])
sum += dp[mask][i];
} else {
// dp[mask][i] = 0
}
}
}
out.println(sum / 2); // A cycle is counted twice
out.flush();
}
// Return the number of '1's in the binary representation of the mask
int count(int mask) {
int count = 0;
while (mask > 0) {
if ((mask & 1) == 1)
count++;
mask >>= 1;
}
return count;
}
// Return an integer with only one '1' in its binary form and the position of the
// only '1' is the same with the lowest '1' in mask
int lowest(int mask) {
// mask = x1b where b is a sequence of zeros;
// -mask = x'1b', where x' and b' is formed by reversing digits in x and b;
// mask & (-mask) = 0...010...0, where the only 1 is the lowest 1 in mask
return mask & (-mask);
}
// Check whether the digit at the given index of the mask is '1'
boolean bit(int index, int mask) {
return ((1 << index) & mask) > 0;
}
static class Reader {
BufferedReader reader;
StringTokenizer tokenizer;
public Reader(InputStream input) {
reader = new BufferedReader(new InputStreamReader(input));
tokenizer = new StringTokenizer("");
}
/** get next word */
String nextToken() throws IOException {
while ( ! tokenizer.hasMoreTokens() ) {
//TODO add check for eof if necessary
tokenizer = new StringTokenizer( reader.readLine() );
}
return tokenizer.nextToken();
}
String readLine() throws IOException {
return reader.readLine();
}
int nextInt() throws IOException {
return Integer.parseInt( nextToken() );
}
long nextLong() throws IOException {
return Long.parseLong( nextToken() );
}
double nextDouble() throws IOException {
return Double.parseDouble( nextToken() );
}
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(log(n)): The execution time ascends in proportion to the logarithm of the input size n.
- O(n^2): The execution time ascends in proportion to the square of the input size n.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- O(n): The execution time ascends in a one-to-one ratio with the input size n.
- O(n^3): The execution time ascends in proportion to the cube of the input size n.
- O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially.
- O(1): The execution time is unaffected by the size of the input n.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Determine the worst-case time complexity category of a given Java code based on input size n.
</TASK>
<CODE>
import java.io.*;
import java.util.StringTokenizer;
/**
* Codeforces 11D - A Simple Task
* Created by Darren on 14-10-21.
* O(2^n * n^2) time and O(2^n * n) space.
*
* Tag: dynamic programming, bitmask, graph
*/
public class D {
Reader in = new Reader(System.in);
PrintWriter out = new PrintWriter(System.out);
public static void main(String[] args) throws IOException {
new D().run();
}
int n, m;
boolean[][] adjacency; // Adjacency matrix
void run() throws IOException {
n = in.nextInt();
m = in.nextInt();
adjacency = new boolean[n+1][n];
for (int i = 0; i < m; i++) {
int u = in.nextInt(), v = in.nextInt();
adjacency[u-1][v-1] = adjacency[v-1][u-1] = true; // Converted to 0-based
}
final int MASK_BOUND = (1 << n);
// dp[i][j]: the number of Hamiltonian walks over the subgraph formed by
// the mask i, starting at the smallest vertex and ending at vertex j
// dp[1<<i][i] = 1;
// dp[i][j] = sum_k{dp[i^j][k]} if j is within the mask i and (k,j) is an edge
long[][] dp = new long[MASK_BOUND][n];
for (int i = 0; i < n; i++)
dp[1<<i][i] = 1;
long sum = 0;
for (int mask = 1; mask < MASK_BOUND; mask++) {
int lowestVertex = (int) (Math.log(lowest(mask)) / Math.log(2));
for (int i = 0; i < n; i++) {
if (bit(i, mask) && i != lowestVertex) {
for (int j = 0; j < n; j++) {
if (adjacency[j][i]) {
dp[mask][i] += dp[mask^(1<<i)][j];
}
}
// A simple cycle with length not smaller than 3
if (count(mask) >= 3 && adjacency[lowestVertex][i])
sum += dp[mask][i];
} else {
// dp[mask][i] = 0
}
}
}
out.println(sum / 2); // A cycle is counted twice
out.flush();
}
// Return the number of '1's in the binary representation of the mask
int count(int mask) {
int count = 0;
while (mask > 0) {
if ((mask & 1) == 1)
count++;
mask >>= 1;
}
return count;
}
// Return an integer with only one '1' in its binary form and the position of the
// only '1' is the same with the lowest '1' in mask
int lowest(int mask) {
// mask = x1b where b is a sequence of zeros;
// -mask = x'1b', where x' and b' is formed by reversing digits in x and b;
// mask & (-mask) = 0...010...0, where the only 1 is the lowest 1 in mask
return mask & (-mask);
}
// Check whether the digit at the given index of the mask is '1'
boolean bit(int index, int mask) {
return ((1 << index) & mask) > 0;
}
static class Reader {
BufferedReader reader;
StringTokenizer tokenizer;
public Reader(InputStream input) {
reader = new BufferedReader(new InputStreamReader(input));
tokenizer = new StringTokenizer("");
}
/** get next word */
String nextToken() throws IOException {
while ( ! tokenizer.hasMoreTokens() ) {
//TODO add check for eof if necessary
tokenizer = new StringTokenizer( reader.readLine() );
}
return tokenizer.nextToken();
}
String readLine() throws IOException {
return reader.readLine();
}
int nextInt() throws IOException {
return Integer.parseInt( nextToken() );
}
long nextLong() throws IOException {
return Long.parseLong( nextToken() );
}
double nextDouble() throws IOException {
return Double.parseDouble( nextToken() );
}
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(log(n)): The time complexity increases logarithmically in relation to the input size.
- O(n^2): The time complexity grows proportionally to the square of the input size.
- O(n^3): The time complexity scales proportionally to the cube of the input size.
- O(n): The time complexity increases proportionally to the input size n in a linear manner.
- others: The time complexity does not fit any of the above categories or cannot be clearly classified.
- O(nlog(n)): The time complexity combines linear and logarithmic growth factors.
- O(1): The time complexity is constant to the input size n.
- non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
| 1,315
| 4,341
|
4,315
|
import java.awt.List;
import java.io.IOException;
import java.io.InputStream;
import java.io.OutputStream;
import java.io.PrintWriter;
import java.math.BigDecimal;
import java.math.BigInteger;
import java.text.DecimalFormat;
import java.util.ArrayList;
import java.util.Arrays;
import java.util.HashMap;
import java.util.InputMismatchException;
import java.util.Locale;
import java.util.TimeZone;
public class Cycle {
public static void main(String[] args) {
Locale.setDefault(Locale.US);
InputStream inputstream = System.in;
OutputStream outputstream = System.out;
FastReader in = new FastReader(inputstream);
PrintWriter out = new PrintWriter(outputstream);
TaskA solver = new TaskA();
// int testcase = in.ni();
for (int i = 0; i < 1; i++)
solver.solve(i, in, out);
out.close();
}
}
class TaskA {
public void solve(int testnumber, FastReader in, PrintWriter out) {
int n = in.ni();
int m = in.ni();
boolean graph[][] = new boolean[n][n];
for (int i = 0; i < m; i++) {
int a = in.ni() - 1;
int b = in.ni() - 1;
graph[a][b] = true;
graph[b][a] = true;
}
/*
* dp[mask][i] be the number of Hamiltonian walks over the subset mask,
* starting at the vertex first(mask) and ending at the vertex i
*/
long dp[][] = new long[1 << n][n];
for (int i = 0; i < n; i++) {
dp[1 << i][i] = 1;
}
long answer = 0;
for (int mask = 1; mask < (1 << n); mask++) {
int start = Integer.numberOfTrailingZeros(mask);
for (int i = 0; i < n; i++) {
if ((mask & (1 << i)) == 0) {
continue;
}
for (int j = start + 1; j < n; j++) {
if (graph[i][j] && (mask & (1 << j)) == 0) {
dp[mask + (1 << j)][j] += dp[mask][i];
}
}
if (graph[i][start]) {
answer += dp[mask][i];
}
}
}
out.println((answer - m) / 2);
}
}
class FastReader {
public InputStream stream;
private byte[] buf = new byte[1024];
private int curChar;
private int numChars;
private SpaceCharFilter filter;
public FastReader(InputStream stream) {
this.stream = stream;
}
public FastReader() {
}
public int read() {
if (numChars == -1) {
throw new InputMismatchException();
}
if (curChar >= numChars) {
curChar = 0;
try {
numChars = stream.read(buf);
} catch (IOException e) {
throw new InputMismatchException();
}
if (numChars <= 0) {
return -1;
}
}
return buf[curChar++];
}
public int ni() {
int c = read();
while (isSpaceChar(c))
c = read();
int sgn = 1;
if (c == '-') {
sgn = -1;
c = read();
}
int res = 0;
do {
if (c < '0' || c > '9') {
throw new InputMismatchException();
}
res *= 10;
res += c - '0';
c = read();
} while (!isSpaceChar(c));
return res * sgn;
}
public String ns() {
int c = read();
while (isSpaceChar(c))
c = read();
StringBuilder res = new StringBuilder();
do {
res.appendCodePoint(c);
c = read();
} while (!isSpaceChar(c));
return res.toString();
}
public boolean isSpaceChar(int c) {
if (filter != null) {
return filter.isSpaceChar(c);
}
return isWhitespace(c);
}
public static boolean isWhitespace(int c) {
return c == ' ' || c == '\n' || c == '\r' || c == '\t' || c == -1;
}
public int[] iArr(int n) {
int a[] = new int[n];
for (int i = 0; i < n; i++) {
a[i] = ni();
}
return a;
}
public String next() {
return ns();
}
public interface SpaceCharFilter {
public boolean isSpaceChar(int ch);
}
}
|
non-polynomial
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Classify the following Java code's worst-case time complexity according to its relationship to the input size n.
</TASK>
<CODE>
import java.awt.List;
import java.io.IOException;
import java.io.InputStream;
import java.io.OutputStream;
import java.io.PrintWriter;
import java.math.BigDecimal;
import java.math.BigInteger;
import java.text.DecimalFormat;
import java.util.ArrayList;
import java.util.Arrays;
import java.util.HashMap;
import java.util.InputMismatchException;
import java.util.Locale;
import java.util.TimeZone;
public class Cycle {
public static void main(String[] args) {
Locale.setDefault(Locale.US);
InputStream inputstream = System.in;
OutputStream outputstream = System.out;
FastReader in = new FastReader(inputstream);
PrintWriter out = new PrintWriter(outputstream);
TaskA solver = new TaskA();
// int testcase = in.ni();
for (int i = 0; i < 1; i++)
solver.solve(i, in, out);
out.close();
}
}
class TaskA {
public void solve(int testnumber, FastReader in, PrintWriter out) {
int n = in.ni();
int m = in.ni();
boolean graph[][] = new boolean[n][n];
for (int i = 0; i < m; i++) {
int a = in.ni() - 1;
int b = in.ni() - 1;
graph[a][b] = true;
graph[b][a] = true;
}
/*
* dp[mask][i] be the number of Hamiltonian walks over the subset mask,
* starting at the vertex first(mask) and ending at the vertex i
*/
long dp[][] = new long[1 << n][n];
for (int i = 0; i < n; i++) {
dp[1 << i][i] = 1;
}
long answer = 0;
for (int mask = 1; mask < (1 << n); mask++) {
int start = Integer.numberOfTrailingZeros(mask);
for (int i = 0; i < n; i++) {
if ((mask & (1 << i)) == 0) {
continue;
}
for (int j = start + 1; j < n; j++) {
if (graph[i][j] && (mask & (1 << j)) == 0) {
dp[mask + (1 << j)][j] += dp[mask][i];
}
}
if (graph[i][start]) {
answer += dp[mask][i];
}
}
}
out.println((answer - m) / 2);
}
}
class FastReader {
public InputStream stream;
private byte[] buf = new byte[1024];
private int curChar;
private int numChars;
private SpaceCharFilter filter;
public FastReader(InputStream stream) {
this.stream = stream;
}
public FastReader() {
}
public int read() {
if (numChars == -1) {
throw new InputMismatchException();
}
if (curChar >= numChars) {
curChar = 0;
try {
numChars = stream.read(buf);
} catch (IOException e) {
throw new InputMismatchException();
}
if (numChars <= 0) {
return -1;
}
}
return buf[curChar++];
}
public int ni() {
int c = read();
while (isSpaceChar(c))
c = read();
int sgn = 1;
if (c == '-') {
sgn = -1;
c = read();
}
int res = 0;
do {
if (c < '0' || c > '9') {
throw new InputMismatchException();
}
res *= 10;
res += c - '0';
c = read();
} while (!isSpaceChar(c));
return res * sgn;
}
public String ns() {
int c = read();
while (isSpaceChar(c))
c = read();
StringBuilder res = new StringBuilder();
do {
res.appendCodePoint(c);
c = read();
} while (!isSpaceChar(c));
return res.toString();
}
public boolean isSpaceChar(int c) {
if (filter != null) {
return filter.isSpaceChar(c);
}
return isWhitespace(c);
}
public static boolean isWhitespace(int c) {
return c == ' ' || c == '\n' || c == '\r' || c == '\t' || c == -1;
}
public int[] iArr(int n) {
int a[] = new int[n];
for (int i = 0; i < n; i++) {
a[i] = ni();
}
return a;
}
public String next() {
return ns();
}
public interface SpaceCharFilter {
public boolean isSpaceChar(int ch);
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(log(n)): The running time increases with the logarithm of the input size n.
- O(1): The running time does not change regardless of the input size n.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- O(n^3): The running time increases with the cube of the input size n.
- O(n): The running time grows linearly with the input size n.
- O(nlog(n)): The running time increases with the product of n and logarithm of n.
- O(n^2): The running time increases with the square of the input size n.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Classify the following Java code's worst-case time complexity according to its relationship to the input size n.
</TASK>
<CODE>
import java.awt.List;
import java.io.IOException;
import java.io.InputStream;
import java.io.OutputStream;
import java.io.PrintWriter;
import java.math.BigDecimal;
import java.math.BigInteger;
import java.text.DecimalFormat;
import java.util.ArrayList;
import java.util.Arrays;
import java.util.HashMap;
import java.util.InputMismatchException;
import java.util.Locale;
import java.util.TimeZone;
public class Cycle {
public static void main(String[] args) {
Locale.setDefault(Locale.US);
InputStream inputstream = System.in;
OutputStream outputstream = System.out;
FastReader in = new FastReader(inputstream);
PrintWriter out = new PrintWriter(outputstream);
TaskA solver = new TaskA();
// int testcase = in.ni();
for (int i = 0; i < 1; i++)
solver.solve(i, in, out);
out.close();
}
}
class TaskA {
public void solve(int testnumber, FastReader in, PrintWriter out) {
int n = in.ni();
int m = in.ni();
boolean graph[][] = new boolean[n][n];
for (int i = 0; i < m; i++) {
int a = in.ni() - 1;
int b = in.ni() - 1;
graph[a][b] = true;
graph[b][a] = true;
}
/*
* dp[mask][i] be the number of Hamiltonian walks over the subset mask,
* starting at the vertex first(mask) and ending at the vertex i
*/
long dp[][] = new long[1 << n][n];
for (int i = 0; i < n; i++) {
dp[1 << i][i] = 1;
}
long answer = 0;
for (int mask = 1; mask < (1 << n); mask++) {
int start = Integer.numberOfTrailingZeros(mask);
for (int i = 0; i < n; i++) {
if ((mask & (1 << i)) == 0) {
continue;
}
for (int j = start + 1; j < n; j++) {
if (graph[i][j] && (mask & (1 << j)) == 0) {
dp[mask + (1 << j)][j] += dp[mask][i];
}
}
if (graph[i][start]) {
answer += dp[mask][i];
}
}
}
out.println((answer - m) / 2);
}
}
class FastReader {
public InputStream stream;
private byte[] buf = new byte[1024];
private int curChar;
private int numChars;
private SpaceCharFilter filter;
public FastReader(InputStream stream) {
this.stream = stream;
}
public FastReader() {
}
public int read() {
if (numChars == -1) {
throw new InputMismatchException();
}
if (curChar >= numChars) {
curChar = 0;
try {
numChars = stream.read(buf);
} catch (IOException e) {
throw new InputMismatchException();
}
if (numChars <= 0) {
return -1;
}
}
return buf[curChar++];
}
public int ni() {
int c = read();
while (isSpaceChar(c))
c = read();
int sgn = 1;
if (c == '-') {
sgn = -1;
c = read();
}
int res = 0;
do {
if (c < '0' || c > '9') {
throw new InputMismatchException();
}
res *= 10;
res += c - '0';
c = read();
} while (!isSpaceChar(c));
return res * sgn;
}
public String ns() {
int c = read();
while (isSpaceChar(c))
c = read();
StringBuilder res = new StringBuilder();
do {
res.appendCodePoint(c);
c = read();
} while (!isSpaceChar(c));
return res.toString();
}
public boolean isSpaceChar(int c) {
if (filter != null) {
return filter.isSpaceChar(c);
}
return isWhitespace(c);
}
public static boolean isWhitespace(int c) {
return c == ' ' || c == '\n' || c == '\r' || c == '\t' || c == -1;
}
public int[] iArr(int n) {
int a[] = new int[n];
for (int i = 0; i < n; i++) {
a[i] = ni();
}
return a;
}
public String next() {
return ns();
}
public interface SpaceCharFilter {
public boolean isSpaceChar(int ch);
}
}
</CODE>
<EVALUATION_RUBRIC>
- others: The code does not clearly correspond to the listed classes or has an unclassified time complexity.
- O(n): The running time grows linearly with the input size n.
- O(1): The running time does not change regardless of the input size n.
- O(n^2): The running time increases with the square of the input size n.
- O(n^3): The running time increases with the cube of the input size n.
- O(log(n)): The running time increases with the logarithm of the input size n.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- O(nlog(n)): The running time increases with the product of n and logarithm of n.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
| 1,460
| 4,304
|
4,151
|
import java.text.DecimalFormat;
import java.util.Scanner;
/**
*
* @author Alvaro
*/
public class Main{
public static int n;
public static double [] dp;
public static double [][] p;
public static void main(String[] args) {
Scanner in = new Scanner(System.in);
n = in.nextInt();
dp = new double[1<<n];
p = new double[n][n];
for (int i = 0; i < n; i++) {
for (int j = 0; j < n; j++) {
p[i][j]= in.nextDouble();
}
}
for (int i = 0; i <(1<<n); i++) {
dp[i] = -1;
}
dp[(1<<n)-1]=1;
DecimalFormat d = new DecimalFormat("0.000000");
System.out.print(d.format(f(1<<0)));
for (int i = 1; i < n; i++) {
System.out.print(" "+d.format(f(1<<i)));
}
}
public static double f(int mask) {
if(dp[mask]>-0.5) return dp[mask];
dp[mask] = 0;
int vivos = 1;
for (int i = 0; i < n; i++)
if((mask>>i)%2==1) vivos++;
double pares = (vivos*(vivos-1))/2;
for (int i = 0; i < n; i++) {
for (int j = 0; j < n; j++) {
if((mask&(1<<i))!=0&&(mask&(1<<j))==0){
dp[mask]+=f(mask|(1<<j))*p[i][j]/pares;
}
}
}
return dp[mask];
}
}
|
non-polynomial
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Classify the following Java code's worst-case time complexity according to its relationship to the input size n.
</TASK>
<CODE>
import java.text.DecimalFormat;
import java.util.Scanner;
/**
*
* @author Alvaro
*/
public class Main{
public static int n;
public static double [] dp;
public static double [][] p;
public static void main(String[] args) {
Scanner in = new Scanner(System.in);
n = in.nextInt();
dp = new double[1<<n];
p = new double[n][n];
for (int i = 0; i < n; i++) {
for (int j = 0; j < n; j++) {
p[i][j]= in.nextDouble();
}
}
for (int i = 0; i <(1<<n); i++) {
dp[i] = -1;
}
dp[(1<<n)-1]=1;
DecimalFormat d = new DecimalFormat("0.000000");
System.out.print(d.format(f(1<<0)));
for (int i = 1; i < n; i++) {
System.out.print(" "+d.format(f(1<<i)));
}
}
public static double f(int mask) {
if(dp[mask]>-0.5) return dp[mask];
dp[mask] = 0;
int vivos = 1;
for (int i = 0; i < n; i++)
if((mask>>i)%2==1) vivos++;
double pares = (vivos*(vivos-1))/2;
for (int i = 0; i < n; i++) {
for (int j = 0; j < n; j++) {
if((mask&(1<<i))!=0&&(mask&(1<<j))==0){
dp[mask]+=f(mask|(1<<j))*p[i][j]/pares;
}
}
}
return dp[mask];
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(n^2): The running time increases with the square of the input size n.
- O(n^3): The running time increases with the cube of the input size n.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- O(log(n)): The running time increases with the logarithm of the input size n.
- O(n): The running time grows linearly with the input size n.
- O(1): The running time does not change regardless of the input size n.
- O(nlog(n)): The running time increases with the product of n and logarithm of n.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Determine the worst-case time complexity category of a given Java code based on input size n.
</TASK>
<CODE>
import java.text.DecimalFormat;
import java.util.Scanner;
/**
*
* @author Alvaro
*/
public class Main{
public static int n;
public static double [] dp;
public static double [][] p;
public static void main(String[] args) {
Scanner in = new Scanner(System.in);
n = in.nextInt();
dp = new double[1<<n];
p = new double[n][n];
for (int i = 0; i < n; i++) {
for (int j = 0; j < n; j++) {
p[i][j]= in.nextDouble();
}
}
for (int i = 0; i <(1<<n); i++) {
dp[i] = -1;
}
dp[(1<<n)-1]=1;
DecimalFormat d = new DecimalFormat("0.000000");
System.out.print(d.format(f(1<<0)));
for (int i = 1; i < n; i++) {
System.out.print(" "+d.format(f(1<<i)));
}
}
public static double f(int mask) {
if(dp[mask]>-0.5) return dp[mask];
dp[mask] = 0;
int vivos = 1;
for (int i = 0; i < n; i++)
if((mask>>i)%2==1) vivos++;
double pares = (vivos*(vivos-1))/2;
for (int i = 0; i < n; i++) {
for (int j = 0; j < n; j++) {
if((mask&(1<<i))!=0&&(mask&(1<<j))==0){
dp[mask]+=f(mask|(1<<j))*p[i][j]/pares;
}
}
}
return dp[mask];
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(n): The time complexity increases proportionally to the input size n in a linear manner.
- O(1): The time complexity is constant to the input size n.
- non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially.
- O(n^3): The time complexity scales proportionally to the cube of the input size.
- others: The time complexity does not fit any of the above categories or cannot be clearly classified.
- O(log(n)): The time complexity increases logarithmically in relation to the input size.
- O(nlog(n)): The time complexity combines linear and logarithmic growth factors.
- O(n^2): The time complexity grows proportionally to the square of the input size.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
| 744
| 4,140
|
4,480
|
import java.io.FileInputStream;
import java.io.IOException;
import java.io.InputStream;
import java.io.OutputStream;
import java.nio.charset.Charset;
import java.util.Arrays;
public class CF1238E {
public static void main(String[] args) throws Exception {
boolean local = System.getSecurityManager() == null;
boolean async = false;
Charset charset = Charset.forName("ascii");
FastIO io = local ? new FastIO(new FileInputStream("D:\\DATABASE\\TESTCASE\\Code.in"), System.out, charset) : new FastIO(System.in, System.out, charset);
Task task = new Task(io, new Debug(local));
if (async) {
Thread t = new Thread(null, task, "dalt", 1 << 27);
t.setPriority(Thread.MAX_PRIORITY);
t.start();
t.join();
} else {
task.run();
}
if (local) {
io.cache.append("\n\n--memory -- \n" + ((Runtime.getRuntime().totalMemory() - Runtime.getRuntime().freeMemory()) >> 20) + "M");
}
io.flush();
}
public static class Task implements Runnable {
final FastIO io;
final Debug debug;
int inf = (int) 1e8;
long lInf = (long) 1e18;
double dInf = 1e50;
public Task(FastIO io, Debug debug) {
this.io = io;
this.debug = debug;
}
@Override
public void run() {
solve();
}
int[][] fee;
int m;
long[] dp;
int mask;
int[][] maskFee;
public void solve() {
int n = io.readInt();
m = io.readInt();
char[] s = new char[n];
io.readString(s, 0);
for (int i = 0; i < n; i++) {
s[i] -= 'a';
}
fee = new int[m][m];
for (int i = 1; i < n; i++) {
fee[s[i]][s[i - 1]]++;
fee[s[i - 1]][s[i]]++;
}
mask = (1 << m) - 1;
maskFee = new int[m][mask + 1];
SubsetGenerator sg = new SubsetGenerator();
for (int i = 0; i < m; i++) {
for (int j = 0; j < m; j++) {
sg.meanings[j] = fee[i][j];
}
for (int j = 0; j <= mask; j++) {
maskFee[i][j] = sg.next();
}
}
dp = new long[mask + 1];
Arrays.fill(dp, -1);
dp[0] = 0;
io.cache.append(dp(mask));
}
BitOperator bo = new BitOperator();
public long dp(int s) {
if (dp[s] == -1) {
long extra = 0;
int remainSet = mask - s;
for (int j = 0; j < m; j++) {
if (bo.bitAt(s, j) == 0) {
continue;
}
extra += maskFee[j][remainSet];
}
dp[s] = lInf;
for (int j = 0; j < m; j++) {
if (bo.bitAt(s, j) == 0) {
continue;
}
int ss = bo.setBit(s, j, false);
dp[s] = Math.min(dp[s], extra + dp(ss));
}
}
return dp[s];
}
}
/**
* Bit operations
*/
public static class BitOperator {
public int bitAt(int x, int i) {
return (x >> i) & 1;
}
public int bitAt(long x, int i) {
return (int) ((x >> i) & 1);
}
public int setBit(int x, int i, boolean v) {
if (v) {
x |= 1 << i;
} else {
x &= ~(1 << i);
}
return x;
}
public long setBit(long x, int i, boolean v) {
if (v) {
x |= 1L << i;
} else {
x &= ~(1L << i);
}
return x;
}
public long swapBit(long x, int i, int j) {
int bi = bitAt(x, i);
int bj = bitAt(x, j);
x = setBit(x, i, bj == 1);
x = setBit(x, j, bi == 1);
return x;
}
public int swapBit(int x, int i, int j) {
int bi = bitAt(x, i);
int bj = bitAt(x, j);
x = setBit(x, i, bj == 1);
x = setBit(x, j, bi == 1);
return x;
}
/**
* Determine whether x is subset of y
*/
public boolean subset(long x, long y) {
return intersect(x, y) == x;
}
/**
* Merge two set
*/
public long merge(long x, long y) {
return x | y;
}
public long intersect(long x, long y) {
return x & y;
}
public long differ(long x, long y) {
return x - intersect(x, y);
}
}
public static class SubsetGenerator {
private int[] meanings = new int[33];
private int[] bits = new int[33];
private int remain;
private int next;
public void setSet(int set) {
int bitCount = 0;
while (set != 0) {
meanings[bitCount] = set & -set;
bits[bitCount] = 0;
set -= meanings[bitCount];
bitCount++;
}
remain = 1 << bitCount;
next = 0;
}
public boolean hasNext() {
return remain > 0;
}
private void consume() {
remain = remain - 1;
int i;
for (i = 0; bits[i] == 1; i++) {
bits[i] = 0;
next -= meanings[i];
}
bits[i] = 1;
next += meanings[i];
}
public int next() {
int returned = next;
consume();
return returned;
}
}
public static class FastIO {
public final StringBuilder cache = new StringBuilder(1 << 13);
private final InputStream is;
private final OutputStream os;
private final Charset charset;
private StringBuilder defaultStringBuf = new StringBuilder(1 << 13);
private byte[] buf = new byte[1 << 13];
private int bufLen;
private int bufOffset;
private int next;
public FastIO(InputStream is, OutputStream os, Charset charset) {
this.is = is;
this.os = os;
this.charset = charset;
}
public FastIO(InputStream is, OutputStream os) {
this(is, os, Charset.forName("ascii"));
}
private int read() {
while (bufLen == bufOffset) {
bufOffset = 0;
try {
bufLen = is.read(buf);
} catch (IOException e) {
throw new RuntimeException(e);
}
if (bufLen == -1) {
return -1;
}
}
return buf[bufOffset++];
}
public void skipBlank() {
while (next >= 0 && next <= 32) {
next = read();
}
}
public int readInt() {
int sign = 1;
skipBlank();
if (next == '+' || next == '-') {
sign = next == '+' ? 1 : -1;
next = read();
}
int val = 0;
if (sign == 1) {
while (next >= '0' && next <= '9') {
val = val * 10 + next - '0';
next = read();
}
} else {
while (next >= '0' && next <= '9') {
val = val * 10 - next + '0';
next = read();
}
}
return val;
}
public long readLong() {
int sign = 1;
skipBlank();
if (next == '+' || next == '-') {
sign = next == '+' ? 1 : -1;
next = read();
}
long val = 0;
if (sign == 1) {
while (next >= '0' && next <= '9') {
val = val * 10 + next - '0';
next = read();
}
} else {
while (next >= '0' && next <= '9') {
val = val * 10 - next + '0';
next = read();
}
}
return val;
}
public double readDouble() {
boolean sign = true;
skipBlank();
if (next == '+' || next == '-') {
sign = next == '+';
next = read();
}
long val = 0;
while (next >= '0' && next <= '9') {
val = val * 10 + next - '0';
next = read();
}
if (next != '.') {
return sign ? val : -val;
}
next = read();
long radix = 1;
long point = 0;
while (next >= '0' && next <= '9') {
point = point * 10 + next - '0';
radix = radix * 10;
next = read();
}
double result = val + (double) point / radix;
return sign ? result : -result;
}
public String readString(StringBuilder builder) {
skipBlank();
while (next > 32) {
builder.append((char) next);
next = read();
}
return builder.toString();
}
public String readString() {
defaultStringBuf.setLength(0);
return readString(defaultStringBuf);
}
public int readLine(char[] data, int offset) {
int originalOffset = offset;
while (next != -1 && next != '\n') {
data[offset++] = (char) next;
next = read();
}
return offset - originalOffset;
}
public int readString(char[] data, int offset) {
skipBlank();
int originalOffset = offset;
while (next > 32) {
data[offset++] = (char) next;
next = read();
}
return offset - originalOffset;
}
public int readString(byte[] data, int offset) {
skipBlank();
int originalOffset = offset;
while (next > 32) {
data[offset++] = (byte) next;
next = read();
}
return offset - originalOffset;
}
public char readChar() {
skipBlank();
char c = (char) next;
next = read();
return c;
}
public void flush() throws IOException {
os.write(cache.toString().getBytes(charset));
os.flush();
cache.setLength(0);
}
public boolean hasMore() {
skipBlank();
return next != -1;
}
}
public static class Debug {
private boolean allowDebug;
public Debug(boolean allowDebug) {
this.allowDebug = allowDebug;
}
public void assertTrue(boolean flag) {
if (!allowDebug) {
return;
}
if (!flag) {
fail();
}
}
public void fail() {
throw new RuntimeException();
}
public void assertFalse(boolean flag) {
if (!allowDebug) {
return;
}
if (flag) {
fail();
}
}
private void outputName(String name) {
System.out.print(name + " = ");
}
public void debug(String name, int x) {
if (!allowDebug) {
return;
}
outputName(name);
System.out.println("" + x);
}
public void debug(String name, long x) {
if (!allowDebug) {
return;
}
outputName(name);
System.out.println("" + x);
}
public void debug(String name, double x) {
if (!allowDebug) {
return;
}
outputName(name);
System.out.println("" + x);
}
public void debug(String name, int[] x) {
if (!allowDebug) {
return;
}
outputName(name);
System.out.println(Arrays.toString(x));
}
public void debug(String name, long[] x) {
if (!allowDebug) {
return;
}
outputName(name);
System.out.println(Arrays.toString(x));
}
public void debug(String name, double[] x) {
if (!allowDebug) {
return;
}
outputName(name);
System.out.println(Arrays.toString(x));
}
public void debug(String name, Object x) {
if (!allowDebug) {
return;
}
outputName(name);
System.out.println("" + x);
}
public void debug(String name, Object... x) {
if (!allowDebug) {
return;
}
outputName(name);
System.out.println(Arrays.deepToString(x));
}
}
}
|
non-polynomial
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Determine the worst-case time complexity category of a given Java code based on input size n.
</TASK>
<CODE>
import java.io.FileInputStream;
import java.io.IOException;
import java.io.InputStream;
import java.io.OutputStream;
import java.nio.charset.Charset;
import java.util.Arrays;
public class CF1238E {
public static void main(String[] args) throws Exception {
boolean local = System.getSecurityManager() == null;
boolean async = false;
Charset charset = Charset.forName("ascii");
FastIO io = local ? new FastIO(new FileInputStream("D:\\DATABASE\\TESTCASE\\Code.in"), System.out, charset) : new FastIO(System.in, System.out, charset);
Task task = new Task(io, new Debug(local));
if (async) {
Thread t = new Thread(null, task, "dalt", 1 << 27);
t.setPriority(Thread.MAX_PRIORITY);
t.start();
t.join();
} else {
task.run();
}
if (local) {
io.cache.append("\n\n--memory -- \n" + ((Runtime.getRuntime().totalMemory() - Runtime.getRuntime().freeMemory()) >> 20) + "M");
}
io.flush();
}
public static class Task implements Runnable {
final FastIO io;
final Debug debug;
int inf = (int) 1e8;
long lInf = (long) 1e18;
double dInf = 1e50;
public Task(FastIO io, Debug debug) {
this.io = io;
this.debug = debug;
}
@Override
public void run() {
solve();
}
int[][] fee;
int m;
long[] dp;
int mask;
int[][] maskFee;
public void solve() {
int n = io.readInt();
m = io.readInt();
char[] s = new char[n];
io.readString(s, 0);
for (int i = 0; i < n; i++) {
s[i] -= 'a';
}
fee = new int[m][m];
for (int i = 1; i < n; i++) {
fee[s[i]][s[i - 1]]++;
fee[s[i - 1]][s[i]]++;
}
mask = (1 << m) - 1;
maskFee = new int[m][mask + 1];
SubsetGenerator sg = new SubsetGenerator();
for (int i = 0; i < m; i++) {
for (int j = 0; j < m; j++) {
sg.meanings[j] = fee[i][j];
}
for (int j = 0; j <= mask; j++) {
maskFee[i][j] = sg.next();
}
}
dp = new long[mask + 1];
Arrays.fill(dp, -1);
dp[0] = 0;
io.cache.append(dp(mask));
}
BitOperator bo = new BitOperator();
public long dp(int s) {
if (dp[s] == -1) {
long extra = 0;
int remainSet = mask - s;
for (int j = 0; j < m; j++) {
if (bo.bitAt(s, j) == 0) {
continue;
}
extra += maskFee[j][remainSet];
}
dp[s] = lInf;
for (int j = 0; j < m; j++) {
if (bo.bitAt(s, j) == 0) {
continue;
}
int ss = bo.setBit(s, j, false);
dp[s] = Math.min(dp[s], extra + dp(ss));
}
}
return dp[s];
}
}
/**
* Bit operations
*/
public static class BitOperator {
public int bitAt(int x, int i) {
return (x >> i) & 1;
}
public int bitAt(long x, int i) {
return (int) ((x >> i) & 1);
}
public int setBit(int x, int i, boolean v) {
if (v) {
x |= 1 << i;
} else {
x &= ~(1 << i);
}
return x;
}
public long setBit(long x, int i, boolean v) {
if (v) {
x |= 1L << i;
} else {
x &= ~(1L << i);
}
return x;
}
public long swapBit(long x, int i, int j) {
int bi = bitAt(x, i);
int bj = bitAt(x, j);
x = setBit(x, i, bj == 1);
x = setBit(x, j, bi == 1);
return x;
}
public int swapBit(int x, int i, int j) {
int bi = bitAt(x, i);
int bj = bitAt(x, j);
x = setBit(x, i, bj == 1);
x = setBit(x, j, bi == 1);
return x;
}
/**
* Determine whether x is subset of y
*/
public boolean subset(long x, long y) {
return intersect(x, y) == x;
}
/**
* Merge two set
*/
public long merge(long x, long y) {
return x | y;
}
public long intersect(long x, long y) {
return x & y;
}
public long differ(long x, long y) {
return x - intersect(x, y);
}
}
public static class SubsetGenerator {
private int[] meanings = new int[33];
private int[] bits = new int[33];
private int remain;
private int next;
public void setSet(int set) {
int bitCount = 0;
while (set != 0) {
meanings[bitCount] = set & -set;
bits[bitCount] = 0;
set -= meanings[bitCount];
bitCount++;
}
remain = 1 << bitCount;
next = 0;
}
public boolean hasNext() {
return remain > 0;
}
private void consume() {
remain = remain - 1;
int i;
for (i = 0; bits[i] == 1; i++) {
bits[i] = 0;
next -= meanings[i];
}
bits[i] = 1;
next += meanings[i];
}
public int next() {
int returned = next;
consume();
return returned;
}
}
public static class FastIO {
public final StringBuilder cache = new StringBuilder(1 << 13);
private final InputStream is;
private final OutputStream os;
private final Charset charset;
private StringBuilder defaultStringBuf = new StringBuilder(1 << 13);
private byte[] buf = new byte[1 << 13];
private int bufLen;
private int bufOffset;
private int next;
public FastIO(InputStream is, OutputStream os, Charset charset) {
this.is = is;
this.os = os;
this.charset = charset;
}
public FastIO(InputStream is, OutputStream os) {
this(is, os, Charset.forName("ascii"));
}
private int read() {
while (bufLen == bufOffset) {
bufOffset = 0;
try {
bufLen = is.read(buf);
} catch (IOException e) {
throw new RuntimeException(e);
}
if (bufLen == -1) {
return -1;
}
}
return buf[bufOffset++];
}
public void skipBlank() {
while (next >= 0 && next <= 32) {
next = read();
}
}
public int readInt() {
int sign = 1;
skipBlank();
if (next == '+' || next == '-') {
sign = next == '+' ? 1 : -1;
next = read();
}
int val = 0;
if (sign == 1) {
while (next >= '0' && next <= '9') {
val = val * 10 + next - '0';
next = read();
}
} else {
while (next >= '0' && next <= '9') {
val = val * 10 - next + '0';
next = read();
}
}
return val;
}
public long readLong() {
int sign = 1;
skipBlank();
if (next == '+' || next == '-') {
sign = next == '+' ? 1 : -1;
next = read();
}
long val = 0;
if (sign == 1) {
while (next >= '0' && next <= '9') {
val = val * 10 + next - '0';
next = read();
}
} else {
while (next >= '0' && next <= '9') {
val = val * 10 - next + '0';
next = read();
}
}
return val;
}
public double readDouble() {
boolean sign = true;
skipBlank();
if (next == '+' || next == '-') {
sign = next == '+';
next = read();
}
long val = 0;
while (next >= '0' && next <= '9') {
val = val * 10 + next - '0';
next = read();
}
if (next != '.') {
return sign ? val : -val;
}
next = read();
long radix = 1;
long point = 0;
while (next >= '0' && next <= '9') {
point = point * 10 + next - '0';
radix = radix * 10;
next = read();
}
double result = val + (double) point / radix;
return sign ? result : -result;
}
public String readString(StringBuilder builder) {
skipBlank();
while (next > 32) {
builder.append((char) next);
next = read();
}
return builder.toString();
}
public String readString() {
defaultStringBuf.setLength(0);
return readString(defaultStringBuf);
}
public int readLine(char[] data, int offset) {
int originalOffset = offset;
while (next != -1 && next != '\n') {
data[offset++] = (char) next;
next = read();
}
return offset - originalOffset;
}
public int readString(char[] data, int offset) {
skipBlank();
int originalOffset = offset;
while (next > 32) {
data[offset++] = (char) next;
next = read();
}
return offset - originalOffset;
}
public int readString(byte[] data, int offset) {
skipBlank();
int originalOffset = offset;
while (next > 32) {
data[offset++] = (byte) next;
next = read();
}
return offset - originalOffset;
}
public char readChar() {
skipBlank();
char c = (char) next;
next = read();
return c;
}
public void flush() throws IOException {
os.write(cache.toString().getBytes(charset));
os.flush();
cache.setLength(0);
}
public boolean hasMore() {
skipBlank();
return next != -1;
}
}
public static class Debug {
private boolean allowDebug;
public Debug(boolean allowDebug) {
this.allowDebug = allowDebug;
}
public void assertTrue(boolean flag) {
if (!allowDebug) {
return;
}
if (!flag) {
fail();
}
}
public void fail() {
throw new RuntimeException();
}
public void assertFalse(boolean flag) {
if (!allowDebug) {
return;
}
if (flag) {
fail();
}
}
private void outputName(String name) {
System.out.print(name + " = ");
}
public void debug(String name, int x) {
if (!allowDebug) {
return;
}
outputName(name);
System.out.println("" + x);
}
public void debug(String name, long x) {
if (!allowDebug) {
return;
}
outputName(name);
System.out.println("" + x);
}
public void debug(String name, double x) {
if (!allowDebug) {
return;
}
outputName(name);
System.out.println("" + x);
}
public void debug(String name, int[] x) {
if (!allowDebug) {
return;
}
outputName(name);
System.out.println(Arrays.toString(x));
}
public void debug(String name, long[] x) {
if (!allowDebug) {
return;
}
outputName(name);
System.out.println(Arrays.toString(x));
}
public void debug(String name, double[] x) {
if (!allowDebug) {
return;
}
outputName(name);
System.out.println(Arrays.toString(x));
}
public void debug(String name, Object x) {
if (!allowDebug) {
return;
}
outputName(name);
System.out.println("" + x);
}
public void debug(String name, Object... x) {
if (!allowDebug) {
return;
}
outputName(name);
System.out.println(Arrays.deepToString(x));
}
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(1): The time complexity is constant to the input size n.
- O(nlog(n)): The time complexity combines linear and logarithmic growth factors.
- non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially.
- O(n^3): The time complexity scales proportionally to the cube of the input size.
- O(log(n)): The time complexity increases logarithmically in relation to the input size.
- O(n): The time complexity increases proportionally to the input size n in a linear manner.
- O(n^2): The time complexity grows proportionally to the square of the input size.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Determine the worst-case time complexity category of a given Java code based on input size n.
</TASK>
<CODE>
import java.io.FileInputStream;
import java.io.IOException;
import java.io.InputStream;
import java.io.OutputStream;
import java.nio.charset.Charset;
import java.util.Arrays;
public class CF1238E {
public static void main(String[] args) throws Exception {
boolean local = System.getSecurityManager() == null;
boolean async = false;
Charset charset = Charset.forName("ascii");
FastIO io = local ? new FastIO(new FileInputStream("D:\\DATABASE\\TESTCASE\\Code.in"), System.out, charset) : new FastIO(System.in, System.out, charset);
Task task = new Task(io, new Debug(local));
if (async) {
Thread t = new Thread(null, task, "dalt", 1 << 27);
t.setPriority(Thread.MAX_PRIORITY);
t.start();
t.join();
} else {
task.run();
}
if (local) {
io.cache.append("\n\n--memory -- \n" + ((Runtime.getRuntime().totalMemory() - Runtime.getRuntime().freeMemory()) >> 20) + "M");
}
io.flush();
}
public static class Task implements Runnable {
final FastIO io;
final Debug debug;
int inf = (int) 1e8;
long lInf = (long) 1e18;
double dInf = 1e50;
public Task(FastIO io, Debug debug) {
this.io = io;
this.debug = debug;
}
@Override
public void run() {
solve();
}
int[][] fee;
int m;
long[] dp;
int mask;
int[][] maskFee;
public void solve() {
int n = io.readInt();
m = io.readInt();
char[] s = new char[n];
io.readString(s, 0);
for (int i = 0; i < n; i++) {
s[i] -= 'a';
}
fee = new int[m][m];
for (int i = 1; i < n; i++) {
fee[s[i]][s[i - 1]]++;
fee[s[i - 1]][s[i]]++;
}
mask = (1 << m) - 1;
maskFee = new int[m][mask + 1];
SubsetGenerator sg = new SubsetGenerator();
for (int i = 0; i < m; i++) {
for (int j = 0; j < m; j++) {
sg.meanings[j] = fee[i][j];
}
for (int j = 0; j <= mask; j++) {
maskFee[i][j] = sg.next();
}
}
dp = new long[mask + 1];
Arrays.fill(dp, -1);
dp[0] = 0;
io.cache.append(dp(mask));
}
BitOperator bo = new BitOperator();
public long dp(int s) {
if (dp[s] == -1) {
long extra = 0;
int remainSet = mask - s;
for (int j = 0; j < m; j++) {
if (bo.bitAt(s, j) == 0) {
continue;
}
extra += maskFee[j][remainSet];
}
dp[s] = lInf;
for (int j = 0; j < m; j++) {
if (bo.bitAt(s, j) == 0) {
continue;
}
int ss = bo.setBit(s, j, false);
dp[s] = Math.min(dp[s], extra + dp(ss));
}
}
return dp[s];
}
}
/**
* Bit operations
*/
public static class BitOperator {
public int bitAt(int x, int i) {
return (x >> i) & 1;
}
public int bitAt(long x, int i) {
return (int) ((x >> i) & 1);
}
public int setBit(int x, int i, boolean v) {
if (v) {
x |= 1 << i;
} else {
x &= ~(1 << i);
}
return x;
}
public long setBit(long x, int i, boolean v) {
if (v) {
x |= 1L << i;
} else {
x &= ~(1L << i);
}
return x;
}
public long swapBit(long x, int i, int j) {
int bi = bitAt(x, i);
int bj = bitAt(x, j);
x = setBit(x, i, bj == 1);
x = setBit(x, j, bi == 1);
return x;
}
public int swapBit(int x, int i, int j) {
int bi = bitAt(x, i);
int bj = bitAt(x, j);
x = setBit(x, i, bj == 1);
x = setBit(x, j, bi == 1);
return x;
}
/**
* Determine whether x is subset of y
*/
public boolean subset(long x, long y) {
return intersect(x, y) == x;
}
/**
* Merge two set
*/
public long merge(long x, long y) {
return x | y;
}
public long intersect(long x, long y) {
return x & y;
}
public long differ(long x, long y) {
return x - intersect(x, y);
}
}
public static class SubsetGenerator {
private int[] meanings = new int[33];
private int[] bits = new int[33];
private int remain;
private int next;
public void setSet(int set) {
int bitCount = 0;
while (set != 0) {
meanings[bitCount] = set & -set;
bits[bitCount] = 0;
set -= meanings[bitCount];
bitCount++;
}
remain = 1 << bitCount;
next = 0;
}
public boolean hasNext() {
return remain > 0;
}
private void consume() {
remain = remain - 1;
int i;
for (i = 0; bits[i] == 1; i++) {
bits[i] = 0;
next -= meanings[i];
}
bits[i] = 1;
next += meanings[i];
}
public int next() {
int returned = next;
consume();
return returned;
}
}
public static class FastIO {
public final StringBuilder cache = new StringBuilder(1 << 13);
private final InputStream is;
private final OutputStream os;
private final Charset charset;
private StringBuilder defaultStringBuf = new StringBuilder(1 << 13);
private byte[] buf = new byte[1 << 13];
private int bufLen;
private int bufOffset;
private int next;
public FastIO(InputStream is, OutputStream os, Charset charset) {
this.is = is;
this.os = os;
this.charset = charset;
}
public FastIO(InputStream is, OutputStream os) {
this(is, os, Charset.forName("ascii"));
}
private int read() {
while (bufLen == bufOffset) {
bufOffset = 0;
try {
bufLen = is.read(buf);
} catch (IOException e) {
throw new RuntimeException(e);
}
if (bufLen == -1) {
return -1;
}
}
return buf[bufOffset++];
}
public void skipBlank() {
while (next >= 0 && next <= 32) {
next = read();
}
}
public int readInt() {
int sign = 1;
skipBlank();
if (next == '+' || next == '-') {
sign = next == '+' ? 1 : -1;
next = read();
}
int val = 0;
if (sign == 1) {
while (next >= '0' && next <= '9') {
val = val * 10 + next - '0';
next = read();
}
} else {
while (next >= '0' && next <= '9') {
val = val * 10 - next + '0';
next = read();
}
}
return val;
}
public long readLong() {
int sign = 1;
skipBlank();
if (next == '+' || next == '-') {
sign = next == '+' ? 1 : -1;
next = read();
}
long val = 0;
if (sign == 1) {
while (next >= '0' && next <= '9') {
val = val * 10 + next - '0';
next = read();
}
} else {
while (next >= '0' && next <= '9') {
val = val * 10 - next + '0';
next = read();
}
}
return val;
}
public double readDouble() {
boolean sign = true;
skipBlank();
if (next == '+' || next == '-') {
sign = next == '+';
next = read();
}
long val = 0;
while (next >= '0' && next <= '9') {
val = val * 10 + next - '0';
next = read();
}
if (next != '.') {
return sign ? val : -val;
}
next = read();
long radix = 1;
long point = 0;
while (next >= '0' && next <= '9') {
point = point * 10 + next - '0';
radix = radix * 10;
next = read();
}
double result = val + (double) point / radix;
return sign ? result : -result;
}
public String readString(StringBuilder builder) {
skipBlank();
while (next > 32) {
builder.append((char) next);
next = read();
}
return builder.toString();
}
public String readString() {
defaultStringBuf.setLength(0);
return readString(defaultStringBuf);
}
public int readLine(char[] data, int offset) {
int originalOffset = offset;
while (next != -1 && next != '\n') {
data[offset++] = (char) next;
next = read();
}
return offset - originalOffset;
}
public int readString(char[] data, int offset) {
skipBlank();
int originalOffset = offset;
while (next > 32) {
data[offset++] = (char) next;
next = read();
}
return offset - originalOffset;
}
public int readString(byte[] data, int offset) {
skipBlank();
int originalOffset = offset;
while (next > 32) {
data[offset++] = (byte) next;
next = read();
}
return offset - originalOffset;
}
public char readChar() {
skipBlank();
char c = (char) next;
next = read();
return c;
}
public void flush() throws IOException {
os.write(cache.toString().getBytes(charset));
os.flush();
cache.setLength(0);
}
public boolean hasMore() {
skipBlank();
return next != -1;
}
}
public static class Debug {
private boolean allowDebug;
public Debug(boolean allowDebug) {
this.allowDebug = allowDebug;
}
public void assertTrue(boolean flag) {
if (!allowDebug) {
return;
}
if (!flag) {
fail();
}
}
public void fail() {
throw new RuntimeException();
}
public void assertFalse(boolean flag) {
if (!allowDebug) {
return;
}
if (flag) {
fail();
}
}
private void outputName(String name) {
System.out.print(name + " = ");
}
public void debug(String name, int x) {
if (!allowDebug) {
return;
}
outputName(name);
System.out.println("" + x);
}
public void debug(String name, long x) {
if (!allowDebug) {
return;
}
outputName(name);
System.out.println("" + x);
}
public void debug(String name, double x) {
if (!allowDebug) {
return;
}
outputName(name);
System.out.println("" + x);
}
public void debug(String name, int[] x) {
if (!allowDebug) {
return;
}
outputName(name);
System.out.println(Arrays.toString(x));
}
public void debug(String name, long[] x) {
if (!allowDebug) {
return;
}
outputName(name);
System.out.println(Arrays.toString(x));
}
public void debug(String name, double[] x) {
if (!allowDebug) {
return;
}
outputName(name);
System.out.println(Arrays.toString(x));
}
public void debug(String name, Object x) {
if (!allowDebug) {
return;
}
outputName(name);
System.out.println("" + x);
}
public void debug(String name, Object... x) {
if (!allowDebug) {
return;
}
outputName(name);
System.out.println(Arrays.deepToString(x));
}
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(nlog(n)): The time complexity combines linear and logarithmic growth factors.
- O(n^2): The time complexity grows proportionally to the square of the input size.
- O(log(n)): The time complexity increases logarithmically in relation to the input size.
- O(n^3): The time complexity scales proportionally to the cube of the input size.
- O(1): The time complexity is constant to the input size n.
- others: The time complexity does not fit any of the above categories or cannot be clearly classified.
- non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially.
- O(n): The time complexity increases proportionally to the input size n in a linear manner.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
| 3,286
| 4,469
|
660
|
import java.util.Scanner;
/**
*
* @author Ronak
*/
public class Main {
/**
* @param args the command line arguments
*/
public static void main(String[] args) {
// TODO code application logic here
Scanner in=new Scanner(System.in);
int n=in.nextInt();
if(n>=3&&n<=100)
{
int num[]=new int[n];
for(int i=0;i<n;i++)
{
num[i]=in.nextInt();
}
int even=0,odd=0,ceven=0,codd=0;
for(int i=0;i<n;i++)
{
if(num[i]%2==0)
{
even++;
ceven=i+1;
}
else
{
odd++;
codd=i+1;
}
}
if(odd==1)
{
System.out.println(""+codd);
}
else
{
System.out.println(""+ceven);
}
}
}
}
|
O(n)
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Determine the worst-case time complexity category of a given Java code based on input size n.
</TASK>
<CODE>
import java.util.Scanner;
/**
*
* @author Ronak
*/
public class Main {
/**
* @param args the command line arguments
*/
public static void main(String[] args) {
// TODO code application logic here
Scanner in=new Scanner(System.in);
int n=in.nextInt();
if(n>=3&&n<=100)
{
int num[]=new int[n];
for(int i=0;i<n;i++)
{
num[i]=in.nextInt();
}
int even=0,odd=0,ceven=0,codd=0;
for(int i=0;i<n;i++)
{
if(num[i]%2==0)
{
even++;
ceven=i+1;
}
else
{
odd++;
codd=i+1;
}
}
if(odd==1)
{
System.out.println(""+codd);
}
else
{
System.out.println(""+ceven);
}
}
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(log(n)): The time complexity increases logarithmically in relation to the input size.
- O(n^3): The time complexity scales proportionally to the cube of the input size.
- non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially.
- O(n): The time complexity increases proportionally to the input size n in a linear manner.
- O(n^2): The time complexity grows proportionally to the square of the input size.
- O(1): The time complexity is constant to the input size n.
- O(nlog(n)): The time complexity combines linear and logarithmic growth factors.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Determine the worst-case time complexity category of a given Java code based on input size n.
</TASK>
<CODE>
import java.util.Scanner;
/**
*
* @author Ronak
*/
public class Main {
/**
* @param args the command line arguments
*/
public static void main(String[] args) {
// TODO code application logic here
Scanner in=new Scanner(System.in);
int n=in.nextInt();
if(n>=3&&n<=100)
{
int num[]=new int[n];
for(int i=0;i<n;i++)
{
num[i]=in.nextInt();
}
int even=0,odd=0,ceven=0,codd=0;
for(int i=0;i<n;i++)
{
if(num[i]%2==0)
{
even++;
ceven=i+1;
}
else
{
odd++;
codd=i+1;
}
}
if(odd==1)
{
System.out.println(""+codd);
}
else
{
System.out.println(""+ceven);
}
}
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(1): The time complexity is constant to the input size n.
- O(nlog(n)): The time complexity combines linear and logarithmic growth factors.
- non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially.
- O(log(n)): The time complexity increases logarithmically in relation to the input size.
- O(n^3): The time complexity scales proportionally to the cube of the input size.
- O(n^2): The time complexity grows proportionally to the square of the input size.
- O(n): The time complexity increases proportionally to the input size n in a linear manner.
- others: The time complexity does not fit any of the above categories or cannot be clearly classified.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
| 551
| 659
|
4,386
|
//package round11;
import java.io.BufferedOutputStream;
import java.io.PrintStream;
import java.io.PrintWriter;
import java.io.StringReader;
import java.util.Arrays;
import java.util.Scanner;
public class D {
private Scanner in;
private PrintWriter out;
private boolean[][] g;
public void solve()
{
n = ni();
int m = ni();
g = new boolean[n][n];
for(int i = 0;i < m;i++){
int f = ni();
int t = ni();
g[f-1][t-1] = true;
g[t-1][f-1] = true;
}
long ret = 0L;
cache = new long[20 << 19];
for(int i = 0;i < n;i++){
start = i;
ret += rec(1 << start, i, 0);
}
out.println(ret/2);
}
private long[] cache;
private int n;
private int start;
private long rec(int passed, int cur, int depth)
{
int code = cur << 19 | passed;
if(cache[code] != 0)return cache[code];
long ret = 0L;
if(g[cur][start] && depth >= 2)ret++;
for(int i = start + 1;i < n;i++){
if((passed & (1 << i)) == 0 && g[cur][i]){
ret += rec(passed | (1 << i), i, depth + 1);
}
}
cache[code] = ret;
return ret;
}
public void run() throws Exception
{
// int m = 19;
// StringBuilder sb = new StringBuilder();
// sb.append(m + " ");
// sb.append((m*(m-1)/2) + " ");
// for(int i = 1;i <= m;i++){
// for(int j = i + 1;j <= m;j++){
// sb.append(i + " " + j + "\n");
// }
// }
//
// in = new Scanner(new StringReader(sb.toString()));
// in = new Scanner(new StringReader("4 6 1 2 1 3 1 4 2 3 2 4 3 4"));
in = new Scanner(System.in);
System.setOut(new PrintStream(new BufferedOutputStream(System.out)));
out = new PrintWriter(System.out);
// int n = in.nextInt();
int n = 1;
for(int i = 1;i <= n;i++){
long t = System.currentTimeMillis();
solve();
out.flush();
System.err.printf("%04d/%04d %7d%n", i, n, System.currentTimeMillis() - t);
}
}
public static void main(String[] args) throws Exception
{
new D().run();
}
private int ni() { return Integer.parseInt(in.next()); }
private static void tr(Object... o) { System.out.println(o.length == 1 ? o[0] : Arrays.toString(o)); }
private void tra(int[] a) {System.out.println(Arrays.toString(a));}
private void tra(int[][] a)
{
for(int[] e : a){
System.out.println(Arrays.toString(e));
}
}
}
|
non-polynomial
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n.
</TASK>
<CODE>
//package round11;
import java.io.BufferedOutputStream;
import java.io.PrintStream;
import java.io.PrintWriter;
import java.io.StringReader;
import java.util.Arrays;
import java.util.Scanner;
public class D {
private Scanner in;
private PrintWriter out;
private boolean[][] g;
public void solve()
{
n = ni();
int m = ni();
g = new boolean[n][n];
for(int i = 0;i < m;i++){
int f = ni();
int t = ni();
g[f-1][t-1] = true;
g[t-1][f-1] = true;
}
long ret = 0L;
cache = new long[20 << 19];
for(int i = 0;i < n;i++){
start = i;
ret += rec(1 << start, i, 0);
}
out.println(ret/2);
}
private long[] cache;
private int n;
private int start;
private long rec(int passed, int cur, int depth)
{
int code = cur << 19 | passed;
if(cache[code] != 0)return cache[code];
long ret = 0L;
if(g[cur][start] && depth >= 2)ret++;
for(int i = start + 1;i < n;i++){
if((passed & (1 << i)) == 0 && g[cur][i]){
ret += rec(passed | (1 << i), i, depth + 1);
}
}
cache[code] = ret;
return ret;
}
public void run() throws Exception
{
// int m = 19;
// StringBuilder sb = new StringBuilder();
// sb.append(m + " ");
// sb.append((m*(m-1)/2) + " ");
// for(int i = 1;i <= m;i++){
// for(int j = i + 1;j <= m;j++){
// sb.append(i + " " + j + "\n");
// }
// }
//
// in = new Scanner(new StringReader(sb.toString()));
// in = new Scanner(new StringReader("4 6 1 2 1 3 1 4 2 3 2 4 3 4"));
in = new Scanner(System.in);
System.setOut(new PrintStream(new BufferedOutputStream(System.out)));
out = new PrintWriter(System.out);
// int n = in.nextInt();
int n = 1;
for(int i = 1;i <= n;i++){
long t = System.currentTimeMillis();
solve();
out.flush();
System.err.printf("%04d/%04d %7d%n", i, n, System.currentTimeMillis() - t);
}
}
public static void main(String[] args) throws Exception
{
new D().run();
}
private int ni() { return Integer.parseInt(in.next()); }
private static void tr(Object... o) { System.out.println(o.length == 1 ? o[0] : Arrays.toString(o)); }
private void tra(int[] a) {System.out.println(Arrays.toString(a));}
private void tra(int[][] a)
{
for(int[] e : a){
System.out.println(Arrays.toString(e));
}
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(n^2): The execution time ascends in proportion to the square of the input size n.
- O(1): The execution time is unaffected by the size of the input n.
- O(n): The execution time ascends in a one-to-one ratio with the input size n.
- O(n^3): The execution time ascends in proportion to the cube of the input size n.
- O(log(n)): The execution time ascends in proportion to the logarithm of the input size n.
- O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Classify the following Java code's worst-case time complexity according to its relationship to the input size n.
</TASK>
<CODE>
//package round11;
import java.io.BufferedOutputStream;
import java.io.PrintStream;
import java.io.PrintWriter;
import java.io.StringReader;
import java.util.Arrays;
import java.util.Scanner;
public class D {
private Scanner in;
private PrintWriter out;
private boolean[][] g;
public void solve()
{
n = ni();
int m = ni();
g = new boolean[n][n];
for(int i = 0;i < m;i++){
int f = ni();
int t = ni();
g[f-1][t-1] = true;
g[t-1][f-1] = true;
}
long ret = 0L;
cache = new long[20 << 19];
for(int i = 0;i < n;i++){
start = i;
ret += rec(1 << start, i, 0);
}
out.println(ret/2);
}
private long[] cache;
private int n;
private int start;
private long rec(int passed, int cur, int depth)
{
int code = cur << 19 | passed;
if(cache[code] != 0)return cache[code];
long ret = 0L;
if(g[cur][start] && depth >= 2)ret++;
for(int i = start + 1;i < n;i++){
if((passed & (1 << i)) == 0 && g[cur][i]){
ret += rec(passed | (1 << i), i, depth + 1);
}
}
cache[code] = ret;
return ret;
}
public void run() throws Exception
{
// int m = 19;
// StringBuilder sb = new StringBuilder();
// sb.append(m + " ");
// sb.append((m*(m-1)/2) + " ");
// for(int i = 1;i <= m;i++){
// for(int j = i + 1;j <= m;j++){
// sb.append(i + " " + j + "\n");
// }
// }
//
// in = new Scanner(new StringReader(sb.toString()));
// in = new Scanner(new StringReader("4 6 1 2 1 3 1 4 2 3 2 4 3 4"));
in = new Scanner(System.in);
System.setOut(new PrintStream(new BufferedOutputStream(System.out)));
out = new PrintWriter(System.out);
// int n = in.nextInt();
int n = 1;
for(int i = 1;i <= n;i++){
long t = System.currentTimeMillis();
solve();
out.flush();
System.err.printf("%04d/%04d %7d%n", i, n, System.currentTimeMillis() - t);
}
}
public static void main(String[] args) throws Exception
{
new D().run();
}
private int ni() { return Integer.parseInt(in.next()); }
private static void tr(Object... o) { System.out.println(o.length == 1 ? o[0] : Arrays.toString(o)); }
private void tra(int[] a) {System.out.println(Arrays.toString(a));}
private void tra(int[][] a)
{
for(int[] e : a){
System.out.println(Arrays.toString(e));
}
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(n): The running time grows linearly with the input size n.
- O(n^3): The running time increases with the cube of the input size n.
- O(1): The running time does not change regardless of the input size n.
- O(nlog(n)): The running time increases with the product of n and logarithm of n.
- O(n^2): The running time increases with the square of the input size n.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- O(log(n)): The running time increases with the logarithm of the input size n.
- others: The code does not clearly correspond to the listed classes or has an unclassified time complexity.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
| 1,070
| 4,375
|
3,370
|
import java.util.*;
import java.io.*;
public class givenstring {
public static void main(String[] args){
Scanner reader = new Scanner(System.in);
String in = reader.next();
int max = 0;
for(int i = 0; i < in.length(); i++){
for(int j = i+1; j < in.length(); j++){
//take this substring
String consider = in.substring(i, j);
for(int k = i+1; k < in.length(); k++){
if(k + consider.length() > in.length())
break;
else if(in.substring(k, k+consider.length()).equals(consider))
max = Math.max(max, consider.length());
}
}
}
System.out.println(max);
}
}
|
O(n^3)
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Classify the following Java code's worst-case time complexity according to its relationship to the input size n.
</TASK>
<CODE>
import java.util.*;
import java.io.*;
public class givenstring {
public static void main(String[] args){
Scanner reader = new Scanner(System.in);
String in = reader.next();
int max = 0;
for(int i = 0; i < in.length(); i++){
for(int j = i+1; j < in.length(); j++){
//take this substring
String consider = in.substring(i, j);
for(int k = i+1; k < in.length(); k++){
if(k + consider.length() > in.length())
break;
else if(in.substring(k, k+consider.length()).equals(consider))
max = Math.max(max, consider.length());
}
}
}
System.out.println(max);
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(n^2): The running time increases with the square of the input size n.
- O(nlog(n)): The running time increases with the product of n and logarithm of n.
- O(1): The running time does not change regardless of the input size n.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- O(n^3): The running time increases with the cube of the input size n.
- O(n): The running time grows linearly with the input size n.
- O(log(n)): The running time increases with the logarithm of the input size n.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Determine the worst-case time complexity category of a given Java code based on input size n.
</TASK>
<CODE>
import java.util.*;
import java.io.*;
public class givenstring {
public static void main(String[] args){
Scanner reader = new Scanner(System.in);
String in = reader.next();
int max = 0;
for(int i = 0; i < in.length(); i++){
for(int j = i+1; j < in.length(); j++){
//take this substring
String consider = in.substring(i, j);
for(int k = i+1; k < in.length(); k++){
if(k + consider.length() > in.length())
break;
else if(in.substring(k, k+consider.length()).equals(consider))
max = Math.max(max, consider.length());
}
}
}
System.out.println(max);
}
}
</CODE>
<EVALUATION_RUBRIC>
- others: The time complexity does not fit any of the above categories or cannot be clearly classified.
- O(1): The time complexity is constant to the input size n.
- O(nlog(n)): The time complexity combines linear and logarithmic growth factors.
- O(n): The time complexity increases proportionally to the input size n in a linear manner.
- non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially.
- O(n^3): The time complexity scales proportionally to the cube of the input size.
- O(n^2): The time complexity grows proportionally to the square of the input size.
- O(log(n)): The time complexity increases logarithmically in relation to the input size.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
| 503
| 3,364
|
2,847
|
import java.util.Scanner;
public class dwl {
public static void main(String[] args) {
Scanner sc = new Scanner(System.in);
String[] lr = sc.nextLine().split(" ");
long l = Long.valueOf(lr[0]);
long r = Long.valueOf(lr[1]);
if (r - l <= 1 || (l == 1 && (r - l) == 2)
|| (l % 2 != 0 && (r - l) < 3))
System.out.println(-1);
else {
if (l == 1)
System.out.println(2 + " " + 3 + " " + 4);
else {
if (l % 2 == 0) {
String res = "";
res += l + " ";
res += (l + 1) + " ";
res += (l + 2) + " ";
res = res.trim();
System.out.println(res);
} else {
String res = "";
res += (l + 1) + " ";
res += (l + 2) + " ";
res += (l + 3) + " ";
res = res.trim();
System.out.println(res);
}
}
}
}
}
|
O(1)
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Determine the worst-case time complexity category of a given Java code based on input size n.
</TASK>
<CODE>
import java.util.Scanner;
public class dwl {
public static void main(String[] args) {
Scanner sc = new Scanner(System.in);
String[] lr = sc.nextLine().split(" ");
long l = Long.valueOf(lr[0]);
long r = Long.valueOf(lr[1]);
if (r - l <= 1 || (l == 1 && (r - l) == 2)
|| (l % 2 != 0 && (r - l) < 3))
System.out.println(-1);
else {
if (l == 1)
System.out.println(2 + " " + 3 + " " + 4);
else {
if (l % 2 == 0) {
String res = "";
res += l + " ";
res += (l + 1) + " ";
res += (l + 2) + " ";
res = res.trim();
System.out.println(res);
} else {
String res = "";
res += (l + 1) + " ";
res += (l + 2) + " ";
res += (l + 3) + " ";
res = res.trim();
System.out.println(res);
}
}
}
}
}
</CODE>
<EVALUATION_RUBRIC>
- non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially.
- O(log(n)): The time complexity increases logarithmically in relation to the input size.
- O(n^2): The time complexity grows proportionally to the square of the input size.
- O(nlog(n)): The time complexity combines linear and logarithmic growth factors.
- O(1): The time complexity is constant to the input size n.
- O(n): The time complexity increases proportionally to the input size n in a linear manner.
- O(n^3): The time complexity scales proportionally to the cube of the input size.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Determine the worst-case time complexity category of a given Java code based on input size n.
</TASK>
<CODE>
import java.util.Scanner;
public class dwl {
public static void main(String[] args) {
Scanner sc = new Scanner(System.in);
String[] lr = sc.nextLine().split(" ");
long l = Long.valueOf(lr[0]);
long r = Long.valueOf(lr[1]);
if (r - l <= 1 || (l == 1 && (r - l) == 2)
|| (l % 2 != 0 && (r - l) < 3))
System.out.println(-1);
else {
if (l == 1)
System.out.println(2 + " " + 3 + " " + 4);
else {
if (l % 2 == 0) {
String res = "";
res += l + " ";
res += (l + 1) + " ";
res += (l + 2) + " ";
res = res.trim();
System.out.println(res);
} else {
String res = "";
res += (l + 1) + " ";
res += (l + 2) + " ";
res += (l + 3) + " ";
res = res.trim();
System.out.println(res);
}
}
}
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(n^3): The time complexity scales proportionally to the cube of the input size.
- O(log(n)): The time complexity increases logarithmically in relation to the input size.
- non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially.
- O(n^2): The time complexity grows proportionally to the square of the input size.
- O(1): The time complexity is constant to the input size n.
- others: The time complexity does not fit any of the above categories or cannot be clearly classified.
- O(nlog(n)): The time complexity combines linear and logarithmic growth factors.
- O(n): The time complexity increases proportionally to the input size n in a linear manner.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
| 604
| 2,841
|
739
|
/**
* Created by Aminul on 3/14/2019.
*/
import java.io.IOException;
import java.io.InputStream;
import java.io.PrintWriter;
import java.util.Arrays;
import java.util.InputMismatchException;
import static java.lang.Math.max;
public class E_2 {
public static void main(String[] args) throws Exception {
FastReader in = new FastReader(System.in);
PrintWriter pw = new PrintWriter(System.out);
int n = in.nextInt(), k = in.nextInt(), N = (int) 5e6 + 1;
int left = 0, right = 0;
int a[] = new int[n + 1];
for (int i = 1; i <= n; i++) {
a[i] = in.nextInt();
if (a[i] == k) left++;
}
int f[] = new int[N + 1];
int ans = 0;
for (int i = n; i >= 1; i--) {
if (a[i] == k) left--;
f[a[i]]++;
f[a[i]] = max(f[a[i]], 1 + right);
ans = max(ans, f[a[i]] + left);
if (a[i] == k) right++;
}
pw.println(ans);
pw.close();
}
static void debug(Object... obj) {
System.err.println(Arrays.deepToString(obj));
}
static class FastReader {
InputStream is;
private byte[] inbuf = new byte[1024];
private int lenbuf = 0, ptrbuf = 0;
public FastReader(InputStream is) {
this.is = is;
}
public int readByte() {
if (lenbuf == -1) throw new InputMismatchException();
if (ptrbuf >= lenbuf) {
ptrbuf = 0;
try {
lenbuf = is.read(inbuf);
} catch (IOException e) {
throw new InputMismatchException();
}
if (lenbuf <= 0) return -1;
}
return inbuf[ptrbuf++];
}
public int nextInt() {
int num = 0, b;
boolean minus = false;
while ((b = readByte()) != -1 && !((b >= '0' && b <= '9') || b == '-')) ;
if (b == '-') {
minus = true;
b = readByte();
}
while (true) {
if (b >= '0' && b <= '9') {
num = (num << 3) + (num << 1) + (b - '0');
} else {
return minus ? -num : num;
}
b = readByte();
}
}
}
}
|
O(n)
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Classify the following Java code's worst-case time complexity according to its relationship to the input size n.
</TASK>
<CODE>
/**
* Created by Aminul on 3/14/2019.
*/
import java.io.IOException;
import java.io.InputStream;
import java.io.PrintWriter;
import java.util.Arrays;
import java.util.InputMismatchException;
import static java.lang.Math.max;
public class E_2 {
public static void main(String[] args) throws Exception {
FastReader in = new FastReader(System.in);
PrintWriter pw = new PrintWriter(System.out);
int n = in.nextInt(), k = in.nextInt(), N = (int) 5e6 + 1;
int left = 0, right = 0;
int a[] = new int[n + 1];
for (int i = 1; i <= n; i++) {
a[i] = in.nextInt();
if (a[i] == k) left++;
}
int f[] = new int[N + 1];
int ans = 0;
for (int i = n; i >= 1; i--) {
if (a[i] == k) left--;
f[a[i]]++;
f[a[i]] = max(f[a[i]], 1 + right);
ans = max(ans, f[a[i]] + left);
if (a[i] == k) right++;
}
pw.println(ans);
pw.close();
}
static void debug(Object... obj) {
System.err.println(Arrays.deepToString(obj));
}
static class FastReader {
InputStream is;
private byte[] inbuf = new byte[1024];
private int lenbuf = 0, ptrbuf = 0;
public FastReader(InputStream is) {
this.is = is;
}
public int readByte() {
if (lenbuf == -1) throw new InputMismatchException();
if (ptrbuf >= lenbuf) {
ptrbuf = 0;
try {
lenbuf = is.read(inbuf);
} catch (IOException e) {
throw new InputMismatchException();
}
if (lenbuf <= 0) return -1;
}
return inbuf[ptrbuf++];
}
public int nextInt() {
int num = 0, b;
boolean minus = false;
while ((b = readByte()) != -1 && !((b >= '0' && b <= '9') || b == '-')) ;
if (b == '-') {
minus = true;
b = readByte();
}
while (true) {
if (b >= '0' && b <= '9') {
num = (num << 3) + (num << 1) + (b - '0');
} else {
return minus ? -num : num;
}
b = readByte();
}
}
}
}
</CODE>
<EVALUATION_RUBRIC>
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- O(1): The running time does not change regardless of the input size n.
- O(n^2): The running time increases with the square of the input size n.
- O(log(n)): The running time increases with the logarithm of the input size n.
- O(n^3): The running time increases with the cube of the input size n.
- O(n): The running time grows linearly with the input size n.
- O(nlog(n)): The running time increases with the product of n and logarithm of n.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Determine the worst-case time complexity category of a given Java code based on input size n.
</TASK>
<CODE>
/**
* Created by Aminul on 3/14/2019.
*/
import java.io.IOException;
import java.io.InputStream;
import java.io.PrintWriter;
import java.util.Arrays;
import java.util.InputMismatchException;
import static java.lang.Math.max;
public class E_2 {
public static void main(String[] args) throws Exception {
FastReader in = new FastReader(System.in);
PrintWriter pw = new PrintWriter(System.out);
int n = in.nextInt(), k = in.nextInt(), N = (int) 5e6 + 1;
int left = 0, right = 0;
int a[] = new int[n + 1];
for (int i = 1; i <= n; i++) {
a[i] = in.nextInt();
if (a[i] == k) left++;
}
int f[] = new int[N + 1];
int ans = 0;
for (int i = n; i >= 1; i--) {
if (a[i] == k) left--;
f[a[i]]++;
f[a[i]] = max(f[a[i]], 1 + right);
ans = max(ans, f[a[i]] + left);
if (a[i] == k) right++;
}
pw.println(ans);
pw.close();
}
static void debug(Object... obj) {
System.err.println(Arrays.deepToString(obj));
}
static class FastReader {
InputStream is;
private byte[] inbuf = new byte[1024];
private int lenbuf = 0, ptrbuf = 0;
public FastReader(InputStream is) {
this.is = is;
}
public int readByte() {
if (lenbuf == -1) throw new InputMismatchException();
if (ptrbuf >= lenbuf) {
ptrbuf = 0;
try {
lenbuf = is.read(inbuf);
} catch (IOException e) {
throw new InputMismatchException();
}
if (lenbuf <= 0) return -1;
}
return inbuf[ptrbuf++];
}
public int nextInt() {
int num = 0, b;
boolean minus = false;
while ((b = readByte()) != -1 && !((b >= '0' && b <= '9') || b == '-')) ;
if (b == '-') {
minus = true;
b = readByte();
}
while (true) {
if (b >= '0' && b <= '9') {
num = (num << 3) + (num << 1) + (b - '0');
} else {
return minus ? -num : num;
}
b = readByte();
}
}
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(n^3): The time complexity scales proportionally to the cube of the input size.
- O(n): The time complexity increases proportionally to the input size n in a linear manner.
- others: The time complexity does not fit any of the above categories or cannot be clearly classified.
- non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially.
- O(nlog(n)): The time complexity combines linear and logarithmic growth factors.
- O(log(n)): The time complexity increases logarithmically in relation to the input size.
- O(1): The time complexity is constant to the input size n.
- O(n^2): The time complexity grows proportionally to the square of the input size.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
| 929
| 738
|
1,214
|
import java.io.BufferedReader;
import java.io.OutputStream;
import java.io.IOException;
import java.io.InputStreamReader;
import java.io.PrintWriter;
import java.io.Reader;
import java.io.InputStream;
/**
* Built using CHelper plug-in
* Actual solution is at the top
*/
public class Main {
public static void main(String[] args) {
InputStream inputStream = System.in;
OutputStream outputStream = System.out;
InputStreamReader in = new InputStreamReader(inputStream);
PrintWriter out = new PrintWriter(outputStream);
TaskA solver = new TaskA();
solver.solve(1, in, out);
out.close();
}
}
class TaskA {
int MOD = 1000000009;
public void solve(int testNumber, InputStreamReader inSt, PrintWriter out) {
InputReader in = new InputReader(inSt);
long n = in.nextInt();
long m = in.nextInt();
long k = in.nextInt();
long t = find(n, m, k);
long twoPow = binPow(2, (int) t);
twoPow--;
long result = (2 * (k * twoPow % MOD)) % MOD;
result += (m - t * k);
result = result % MOD;
out.println(result);
}
int binPow(int a, int n) {
if (n == 0) {
return 1;
}
if (n % 2 == 1) {
return (int) ((binPow(a, n - 1) * (a+ 0l)) % MOD);
} else {
int b = (binPow(a, n / 2)) % MOD;
return (int) (((b+0l) * b) % MOD);
}
}
long find(long n, long m, long k) {
long l = 0;
long r = m / k;
while (l < r) {
long mid = (l + r) / 2;
long m1 = m - mid * k;
long n1 = n - mid * k;
if (isPossible(n1, m1, k)) {
r = mid;
} else {
l = mid + 1;
}
}
return l;
}
boolean isPossible(long n, long m, long k) {
long r = m / (k - 1);
long q = m - (k - 1) * r;
if (q == 0) {
return r * (k - 1) + r - 1 <= n;
}
return r * (k - 1) + q + r <= n;
}
class InputReader {
public BufferedReader reader;
private String[] currentArray;
int curPointer;
public InputReader(InputStreamReader inputStreamReader) {
reader = new BufferedReader(inputStreamReader);
}
public String next() {
try {
currentArray = null;
return reader.readLine();
} catch (IOException e) {
throw new RuntimeException(e);
}
}
public void nextChars(char[] t) {
try {
currentArray = null;
reader.read(t);
} catch (IOException e) {
throw new RuntimeException(e);
}
}
public char nextChar() {
try {
currentArray = null;
return (char) reader.read();
} catch (IOException e) {
throw new RuntimeException(e);
}
}
public int nextInt() {
if ((currentArray == null) || (curPointer >= currentArray.length)) {
try {
currentArray = reader.readLine().split(" ");
} catch (IOException e) {
throw new RuntimeException(e);
}
curPointer = 0;
}
return Integer.parseInt(currentArray[curPointer++]);
}
public long nextLong() {
if ((currentArray == null) || (curPointer >= currentArray.length)) {
try {
currentArray = reader.readLine().split(" ");
} catch (IOException e) {
throw new RuntimeException(e);
}
curPointer = 0;
}
return Long.parseLong(currentArray[curPointer++]);
}
}
}
|
O(log(n))
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n.
</TASK>
<CODE>
import java.io.BufferedReader;
import java.io.OutputStream;
import java.io.IOException;
import java.io.InputStreamReader;
import java.io.PrintWriter;
import java.io.Reader;
import java.io.InputStream;
/**
* Built using CHelper plug-in
* Actual solution is at the top
*/
public class Main {
public static void main(String[] args) {
InputStream inputStream = System.in;
OutputStream outputStream = System.out;
InputStreamReader in = new InputStreamReader(inputStream);
PrintWriter out = new PrintWriter(outputStream);
TaskA solver = new TaskA();
solver.solve(1, in, out);
out.close();
}
}
class TaskA {
int MOD = 1000000009;
public void solve(int testNumber, InputStreamReader inSt, PrintWriter out) {
InputReader in = new InputReader(inSt);
long n = in.nextInt();
long m = in.nextInt();
long k = in.nextInt();
long t = find(n, m, k);
long twoPow = binPow(2, (int) t);
twoPow--;
long result = (2 * (k * twoPow % MOD)) % MOD;
result += (m - t * k);
result = result % MOD;
out.println(result);
}
int binPow(int a, int n) {
if (n == 0) {
return 1;
}
if (n % 2 == 1) {
return (int) ((binPow(a, n - 1) * (a+ 0l)) % MOD);
} else {
int b = (binPow(a, n / 2)) % MOD;
return (int) (((b+0l) * b) % MOD);
}
}
long find(long n, long m, long k) {
long l = 0;
long r = m / k;
while (l < r) {
long mid = (l + r) / 2;
long m1 = m - mid * k;
long n1 = n - mid * k;
if (isPossible(n1, m1, k)) {
r = mid;
} else {
l = mid + 1;
}
}
return l;
}
boolean isPossible(long n, long m, long k) {
long r = m / (k - 1);
long q = m - (k - 1) * r;
if (q == 0) {
return r * (k - 1) + r - 1 <= n;
}
return r * (k - 1) + q + r <= n;
}
class InputReader {
public BufferedReader reader;
private String[] currentArray;
int curPointer;
public InputReader(InputStreamReader inputStreamReader) {
reader = new BufferedReader(inputStreamReader);
}
public String next() {
try {
currentArray = null;
return reader.readLine();
} catch (IOException e) {
throw new RuntimeException(e);
}
}
public void nextChars(char[] t) {
try {
currentArray = null;
reader.read(t);
} catch (IOException e) {
throw new RuntimeException(e);
}
}
public char nextChar() {
try {
currentArray = null;
return (char) reader.read();
} catch (IOException e) {
throw new RuntimeException(e);
}
}
public int nextInt() {
if ((currentArray == null) || (curPointer >= currentArray.length)) {
try {
currentArray = reader.readLine().split(" ");
} catch (IOException e) {
throw new RuntimeException(e);
}
curPointer = 0;
}
return Integer.parseInt(currentArray[curPointer++]);
}
public long nextLong() {
if ((currentArray == null) || (curPointer >= currentArray.length)) {
try {
currentArray = reader.readLine().split(" ");
} catch (IOException e) {
throw new RuntimeException(e);
}
curPointer = 0;
}
return Long.parseLong(currentArray[curPointer++]);
}
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(log(n)): The execution time ascends in proportion to the logarithm of the input size n.
- O(1): The execution time is unaffected by the size of the input n.
- O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially.
- O(n): The execution time ascends in a one-to-one ratio with the input size n.
- O(n^2): The execution time ascends in proportion to the square of the input size n.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- O(n^3): The execution time ascends in proportion to the cube of the input size n.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Determine the worst-case time complexity category of a given Java code based on input size n.
</TASK>
<CODE>
import java.io.BufferedReader;
import java.io.OutputStream;
import java.io.IOException;
import java.io.InputStreamReader;
import java.io.PrintWriter;
import java.io.Reader;
import java.io.InputStream;
/**
* Built using CHelper plug-in
* Actual solution is at the top
*/
public class Main {
public static void main(String[] args) {
InputStream inputStream = System.in;
OutputStream outputStream = System.out;
InputStreamReader in = new InputStreamReader(inputStream);
PrintWriter out = new PrintWriter(outputStream);
TaskA solver = new TaskA();
solver.solve(1, in, out);
out.close();
}
}
class TaskA {
int MOD = 1000000009;
public void solve(int testNumber, InputStreamReader inSt, PrintWriter out) {
InputReader in = new InputReader(inSt);
long n = in.nextInt();
long m = in.nextInt();
long k = in.nextInt();
long t = find(n, m, k);
long twoPow = binPow(2, (int) t);
twoPow--;
long result = (2 * (k * twoPow % MOD)) % MOD;
result += (m - t * k);
result = result % MOD;
out.println(result);
}
int binPow(int a, int n) {
if (n == 0) {
return 1;
}
if (n % 2 == 1) {
return (int) ((binPow(a, n - 1) * (a+ 0l)) % MOD);
} else {
int b = (binPow(a, n / 2)) % MOD;
return (int) (((b+0l) * b) % MOD);
}
}
long find(long n, long m, long k) {
long l = 0;
long r = m / k;
while (l < r) {
long mid = (l + r) / 2;
long m1 = m - mid * k;
long n1 = n - mid * k;
if (isPossible(n1, m1, k)) {
r = mid;
} else {
l = mid + 1;
}
}
return l;
}
boolean isPossible(long n, long m, long k) {
long r = m / (k - 1);
long q = m - (k - 1) * r;
if (q == 0) {
return r * (k - 1) + r - 1 <= n;
}
return r * (k - 1) + q + r <= n;
}
class InputReader {
public BufferedReader reader;
private String[] currentArray;
int curPointer;
public InputReader(InputStreamReader inputStreamReader) {
reader = new BufferedReader(inputStreamReader);
}
public String next() {
try {
currentArray = null;
return reader.readLine();
} catch (IOException e) {
throw new RuntimeException(e);
}
}
public void nextChars(char[] t) {
try {
currentArray = null;
reader.read(t);
} catch (IOException e) {
throw new RuntimeException(e);
}
}
public char nextChar() {
try {
currentArray = null;
return (char) reader.read();
} catch (IOException e) {
throw new RuntimeException(e);
}
}
public int nextInt() {
if ((currentArray == null) || (curPointer >= currentArray.length)) {
try {
currentArray = reader.readLine().split(" ");
} catch (IOException e) {
throw new RuntimeException(e);
}
curPointer = 0;
}
return Integer.parseInt(currentArray[curPointer++]);
}
public long nextLong() {
if ((currentArray == null) || (curPointer >= currentArray.length)) {
try {
currentArray = reader.readLine().split(" ");
} catch (IOException e) {
throw new RuntimeException(e);
}
curPointer = 0;
}
return Long.parseLong(currentArray[curPointer++]);
}
}
}
</CODE>
<EVALUATION_RUBRIC>
- non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially.
- O(n): The time complexity increases proportionally to the input size n in a linear manner.
- others: The time complexity does not fit any of the above categories or cannot be clearly classified.
- O(1): The time complexity is constant to the input size n.
- O(n^2): The time complexity grows proportionally to the square of the input size.
- O(log(n)): The time complexity increases logarithmically in relation to the input size.
- O(nlog(n)): The time complexity combines linear and logarithmic growth factors.
- O(n^3): The time complexity scales proportionally to the cube of the input size.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
| 1,243
| 1,213
|
4,069
|
import java.io.BufferedReader;
import java.io.InputStreamReader;
import java.io.PrintWriter;
import java.util.Arrays;
import java.util.StringTokenizer;
/**
* 111118315581
*
* @author pttrung
*/
public class C {
static Point hand;
static int n;
static Point[] data;
static int[] next;
static int[] dp;
static int[][] pre;
public static void main(String[] args) {
Scanner in = new Scanner();
PrintWriter out = new PrintWriter(System.out);
// System.out.println(1 << 24);
hand = new Point(in.nextInt(), in.nextInt());
n = in.nextInt();
data = new Point[n];
for (int i = 0; i < n; i++) {
data[i] = new Point(in.nextInt(), in.nextInt());
}
pre = new int[n][n];
for (int i = 0; i < n; i++) {
for (int j = i + 1; j < n; j++) {
pre[i][j] = distance(data[i], data[j]);
}
}
next = new int[1 << n];
dp = new int[1 << n];
Arrays.fill(dp, -1);
out.println(cal(0));
int start = 0;
do {
int m = next[start];
int val = m - start;
out.print(0 + " ");
for (int i = 0; i < n; i++) {
if (((1 << i) & val) != 0) {
out.print((i + 1) + " ");
}
}
// out.print(0 + " ") ;
start = m;
} while (start != (1 << n) - 1);
out.println(0);
out.close();
}
public static int cal(int mask) {
if ((1 << n) - 1 == mask) {
// System.out.println(mask);
return 0;
}
if (dp[mask] != -1) {
return dp[mask];
}
int result = Integer.MAX_VALUE;
for (int i = 0; i < n; i++) {
if (((1 << i) & mask) == 0) {
int dist = distance(hand, data[i]);
for (int j = i + 1; j < n; j++) {
if (((1 << j) & mask) == 0) {
//System.out.println(i + " " + j);
int temp = dist + distance(hand, data[j]) + pre[i][j] + cal(mask | (1 << i) | (1 << j));
//System.out.println(temp);
if (temp < result) {
result = temp;
next[mask] = (mask | (1 << i) | (1 << j));
}
}
}
int temp = 2 * dist + cal(mask | (1 << i));
if (temp < result) {
result = temp;
next[mask] = (mask | (1 << i));
}
break;
}
}
dp[mask] = result;
return result;
}
static int distance(Point a, Point b) {
int total = (a.x - b.x) * (a.x - b.x) + (a.y - b.y) * (a.y - b.y);
return total;
}
static class Point {
int x, y;
public Point(int x, int y) {
this.x = x;
this.y = y;
}
}
static class Scanner {
BufferedReader br;
StringTokenizer st;
public Scanner() {
// System.setOut(new PrintStream(new BufferedOutputStream(System.out), true));
br = new BufferedReader(new InputStreamReader(System.in));
}
public String next() {
while (st == null || !st.hasMoreTokens()) {
try {
st = new StringTokenizer(br.readLine());
} catch (Exception e) {
throw new RuntimeException();
}
}
return st.nextToken();
}
public long nextLong() {
return Long.parseLong(next());
}
public int nextInt() {
return Integer.parseInt(next());
}
public double nextDouble() {
return Double.parseDouble(next());
}
public String nextLine() {
st = null;
try {
return br.readLine();
} catch (Exception e) {
throw new RuntimeException();
}
}
public boolean endLine() {
try {
String next = br.readLine();
while (next != null && next.trim().isEmpty()) {
next = br.readLine();
}
if (next == null) {
return true;
}
st = new StringTokenizer(next);
return st.hasMoreTokens();
} catch (Exception e) {
throw new RuntimeException();
}
}
}
}
|
non-polynomial
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Determine the worst-case time complexity category of a given Java code based on input size n.
</TASK>
<CODE>
import java.io.BufferedReader;
import java.io.InputStreamReader;
import java.io.PrintWriter;
import java.util.Arrays;
import java.util.StringTokenizer;
/**
* 111118315581
*
* @author pttrung
*/
public class C {
static Point hand;
static int n;
static Point[] data;
static int[] next;
static int[] dp;
static int[][] pre;
public static void main(String[] args) {
Scanner in = new Scanner();
PrintWriter out = new PrintWriter(System.out);
// System.out.println(1 << 24);
hand = new Point(in.nextInt(), in.nextInt());
n = in.nextInt();
data = new Point[n];
for (int i = 0; i < n; i++) {
data[i] = new Point(in.nextInt(), in.nextInt());
}
pre = new int[n][n];
for (int i = 0; i < n; i++) {
for (int j = i + 1; j < n; j++) {
pre[i][j] = distance(data[i], data[j]);
}
}
next = new int[1 << n];
dp = new int[1 << n];
Arrays.fill(dp, -1);
out.println(cal(0));
int start = 0;
do {
int m = next[start];
int val = m - start;
out.print(0 + " ");
for (int i = 0; i < n; i++) {
if (((1 << i) & val) != 0) {
out.print((i + 1) + " ");
}
}
// out.print(0 + " ") ;
start = m;
} while (start != (1 << n) - 1);
out.println(0);
out.close();
}
public static int cal(int mask) {
if ((1 << n) - 1 == mask) {
// System.out.println(mask);
return 0;
}
if (dp[mask] != -1) {
return dp[mask];
}
int result = Integer.MAX_VALUE;
for (int i = 0; i < n; i++) {
if (((1 << i) & mask) == 0) {
int dist = distance(hand, data[i]);
for (int j = i + 1; j < n; j++) {
if (((1 << j) & mask) == 0) {
//System.out.println(i + " " + j);
int temp = dist + distance(hand, data[j]) + pre[i][j] + cal(mask | (1 << i) | (1 << j));
//System.out.println(temp);
if (temp < result) {
result = temp;
next[mask] = (mask | (1 << i) | (1 << j));
}
}
}
int temp = 2 * dist + cal(mask | (1 << i));
if (temp < result) {
result = temp;
next[mask] = (mask | (1 << i));
}
break;
}
}
dp[mask] = result;
return result;
}
static int distance(Point a, Point b) {
int total = (a.x - b.x) * (a.x - b.x) + (a.y - b.y) * (a.y - b.y);
return total;
}
static class Point {
int x, y;
public Point(int x, int y) {
this.x = x;
this.y = y;
}
}
static class Scanner {
BufferedReader br;
StringTokenizer st;
public Scanner() {
// System.setOut(new PrintStream(new BufferedOutputStream(System.out), true));
br = new BufferedReader(new InputStreamReader(System.in));
}
public String next() {
while (st == null || !st.hasMoreTokens()) {
try {
st = new StringTokenizer(br.readLine());
} catch (Exception e) {
throw new RuntimeException();
}
}
return st.nextToken();
}
public long nextLong() {
return Long.parseLong(next());
}
public int nextInt() {
return Integer.parseInt(next());
}
public double nextDouble() {
return Double.parseDouble(next());
}
public String nextLine() {
st = null;
try {
return br.readLine();
} catch (Exception e) {
throw new RuntimeException();
}
}
public boolean endLine() {
try {
String next = br.readLine();
while (next != null && next.trim().isEmpty()) {
next = br.readLine();
}
if (next == null) {
return true;
}
st = new StringTokenizer(next);
return st.hasMoreTokens();
} catch (Exception e) {
throw new RuntimeException();
}
}
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(n): The time complexity increases proportionally to the input size n in a linear manner.
- O(n^3): The time complexity scales proportionally to the cube of the input size.
- O(1): The time complexity is constant to the input size n.
- O(n^2): The time complexity grows proportionally to the square of the input size.
- non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially.
- O(nlog(n)): The time complexity combines linear and logarithmic growth factors.
- O(log(n)): The time complexity increases logarithmically in relation to the input size.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Determine the worst-case time complexity category of a given Java code based on input size n.
</TASK>
<CODE>
import java.io.BufferedReader;
import java.io.InputStreamReader;
import java.io.PrintWriter;
import java.util.Arrays;
import java.util.StringTokenizer;
/**
* 111118315581
*
* @author pttrung
*/
public class C {
static Point hand;
static int n;
static Point[] data;
static int[] next;
static int[] dp;
static int[][] pre;
public static void main(String[] args) {
Scanner in = new Scanner();
PrintWriter out = new PrintWriter(System.out);
// System.out.println(1 << 24);
hand = new Point(in.nextInt(), in.nextInt());
n = in.nextInt();
data = new Point[n];
for (int i = 0; i < n; i++) {
data[i] = new Point(in.nextInt(), in.nextInt());
}
pre = new int[n][n];
for (int i = 0; i < n; i++) {
for (int j = i + 1; j < n; j++) {
pre[i][j] = distance(data[i], data[j]);
}
}
next = new int[1 << n];
dp = new int[1 << n];
Arrays.fill(dp, -1);
out.println(cal(0));
int start = 0;
do {
int m = next[start];
int val = m - start;
out.print(0 + " ");
for (int i = 0; i < n; i++) {
if (((1 << i) & val) != 0) {
out.print((i + 1) + " ");
}
}
// out.print(0 + " ") ;
start = m;
} while (start != (1 << n) - 1);
out.println(0);
out.close();
}
public static int cal(int mask) {
if ((1 << n) - 1 == mask) {
// System.out.println(mask);
return 0;
}
if (dp[mask] != -1) {
return dp[mask];
}
int result = Integer.MAX_VALUE;
for (int i = 0; i < n; i++) {
if (((1 << i) & mask) == 0) {
int dist = distance(hand, data[i]);
for (int j = i + 1; j < n; j++) {
if (((1 << j) & mask) == 0) {
//System.out.println(i + " " + j);
int temp = dist + distance(hand, data[j]) + pre[i][j] + cal(mask | (1 << i) | (1 << j));
//System.out.println(temp);
if (temp < result) {
result = temp;
next[mask] = (mask | (1 << i) | (1 << j));
}
}
}
int temp = 2 * dist + cal(mask | (1 << i));
if (temp < result) {
result = temp;
next[mask] = (mask | (1 << i));
}
break;
}
}
dp[mask] = result;
return result;
}
static int distance(Point a, Point b) {
int total = (a.x - b.x) * (a.x - b.x) + (a.y - b.y) * (a.y - b.y);
return total;
}
static class Point {
int x, y;
public Point(int x, int y) {
this.x = x;
this.y = y;
}
}
static class Scanner {
BufferedReader br;
StringTokenizer st;
public Scanner() {
// System.setOut(new PrintStream(new BufferedOutputStream(System.out), true));
br = new BufferedReader(new InputStreamReader(System.in));
}
public String next() {
while (st == null || !st.hasMoreTokens()) {
try {
st = new StringTokenizer(br.readLine());
} catch (Exception e) {
throw new RuntimeException();
}
}
return st.nextToken();
}
public long nextLong() {
return Long.parseLong(next());
}
public int nextInt() {
return Integer.parseInt(next());
}
public double nextDouble() {
return Double.parseDouble(next());
}
public String nextLine() {
st = null;
try {
return br.readLine();
} catch (Exception e) {
throw new RuntimeException();
}
}
public boolean endLine() {
try {
String next = br.readLine();
while (next != null && next.trim().isEmpty()) {
next = br.readLine();
}
if (next == null) {
return true;
}
st = new StringTokenizer(next);
return st.hasMoreTokens();
} catch (Exception e) {
throw new RuntimeException();
}
}
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(nlog(n)): The time complexity combines linear and logarithmic growth factors.
- O(1): The time complexity is constant to the input size n.
- O(n): The time complexity increases proportionally to the input size n in a linear manner.
- non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially.
- O(n^3): The time complexity scales proportionally to the cube of the input size.
- O(n^2): The time complexity grows proportionally to the square of the input size.
- others: The time complexity does not fit any of the above categories or cannot be clearly classified.
- O(log(n)): The time complexity increases logarithmically in relation to the input size.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
| 1,383
| 4,058
|
830
|
import java.io.BufferedReader;
import java.io.IOException;
import java.io.InputStreamReader;
import java.io.PrintWriter;
import java.util.ArrayList;
import java.util.Arrays;
import java.util.StringTokenizer;
/**
* Problem solution template.
* @author Andrew Porokhin, [email protected]
*/
public class Problem17A implements Runnable {
void solve() throws NumberFormatException, IOException {
int n = nextInt();
int k = nextInt();
ArrayList<Integer> primes = new ArrayList<Integer>(n + 1);
boolean[] simplePrime = new boolean[n + 1];
Arrays.fill(simplePrime, 0, simplePrime.length, true);
simplePrime[0] = simplePrime[1] = false;
for (int i = 2; i <= n; i++) {
if (simplePrime[i]) {
for (int j = i + i; j <= n; j += i) {
simplePrime[j] = false;
}
primes.add(i);
}
}
int actualK = 0;
for (int i = 1; i < primes.size(); i++) {
int val = primes.get(i - 1) + primes.get(i) + 1;
if (val <= n) {
if (simplePrime[val]) {
// System.out.printf("%d + %d + 1 = %d%n", primes.get(i - 1), primes.get(i), val);
actualK++;
}
} else {
break;
}
}
// System.out.printf("req: %d actual: %d%n", k, actualK);
System.out.println((k <= actualK ? "YES" : "NO"));
}
StringTokenizer st;
BufferedReader in;
PrintWriter out;
public static void main(String[] args) {
new Problem17A().run();
}
public void run() {
try {
in = new BufferedReader(new InputStreamReader(System.in));
out = new PrintWriter(System.out);
solve();
} catch (Exception e) {
e.printStackTrace();
} finally {
out.flush();
out.close();
}
}
String nextToken() throws IOException {
while (st == null || !st.hasMoreTokens()) {
st = new StringTokenizer(in.readLine());
}
return st.nextToken();
}
int nextInt() throws NumberFormatException, IOException {
return Integer.parseInt(nextToken());
}
long nextLong() throws NumberFormatException, IOException {
return Long.parseLong(nextToken());
}
double nextDouble() throws NumberFormatException, IOException {
return Double.parseDouble(nextToken());
}
}
|
O(n)
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Determine the worst-case time complexity category of a given Java code based on input size n.
</TASK>
<CODE>
import java.io.BufferedReader;
import java.io.IOException;
import java.io.InputStreamReader;
import java.io.PrintWriter;
import java.util.ArrayList;
import java.util.Arrays;
import java.util.StringTokenizer;
/**
* Problem solution template.
* @author Andrew Porokhin, [email protected]
*/
public class Problem17A implements Runnable {
void solve() throws NumberFormatException, IOException {
int n = nextInt();
int k = nextInt();
ArrayList<Integer> primes = new ArrayList<Integer>(n + 1);
boolean[] simplePrime = new boolean[n + 1];
Arrays.fill(simplePrime, 0, simplePrime.length, true);
simplePrime[0] = simplePrime[1] = false;
for (int i = 2; i <= n; i++) {
if (simplePrime[i]) {
for (int j = i + i; j <= n; j += i) {
simplePrime[j] = false;
}
primes.add(i);
}
}
int actualK = 0;
for (int i = 1; i < primes.size(); i++) {
int val = primes.get(i - 1) + primes.get(i) + 1;
if (val <= n) {
if (simplePrime[val]) {
// System.out.printf("%d + %d + 1 = %d%n", primes.get(i - 1), primes.get(i), val);
actualK++;
}
} else {
break;
}
}
// System.out.printf("req: %d actual: %d%n", k, actualK);
System.out.println((k <= actualK ? "YES" : "NO"));
}
StringTokenizer st;
BufferedReader in;
PrintWriter out;
public static void main(String[] args) {
new Problem17A().run();
}
public void run() {
try {
in = new BufferedReader(new InputStreamReader(System.in));
out = new PrintWriter(System.out);
solve();
} catch (Exception e) {
e.printStackTrace();
} finally {
out.flush();
out.close();
}
}
String nextToken() throws IOException {
while (st == null || !st.hasMoreTokens()) {
st = new StringTokenizer(in.readLine());
}
return st.nextToken();
}
int nextInt() throws NumberFormatException, IOException {
return Integer.parseInt(nextToken());
}
long nextLong() throws NumberFormatException, IOException {
return Long.parseLong(nextToken());
}
double nextDouble() throws NumberFormatException, IOException {
return Double.parseDouble(nextToken());
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(nlog(n)): The time complexity combines linear and logarithmic growth factors.
- O(n^3): The time complexity scales proportionally to the cube of the input size.
- O(n): The time complexity increases proportionally to the input size n in a linear manner.
- O(n^2): The time complexity grows proportionally to the square of the input size.
- O(1): The time complexity is constant to the input size n.
- non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially.
- O(log(n)): The time complexity increases logarithmically in relation to the input size.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Classify the following Java code's worst-case time complexity according to its relationship to the input size n.
</TASK>
<CODE>
import java.io.BufferedReader;
import java.io.IOException;
import java.io.InputStreamReader;
import java.io.PrintWriter;
import java.util.ArrayList;
import java.util.Arrays;
import java.util.StringTokenizer;
/**
* Problem solution template.
* @author Andrew Porokhin, [email protected]
*/
public class Problem17A implements Runnable {
void solve() throws NumberFormatException, IOException {
int n = nextInt();
int k = nextInt();
ArrayList<Integer> primes = new ArrayList<Integer>(n + 1);
boolean[] simplePrime = new boolean[n + 1];
Arrays.fill(simplePrime, 0, simplePrime.length, true);
simplePrime[0] = simplePrime[1] = false;
for (int i = 2; i <= n; i++) {
if (simplePrime[i]) {
for (int j = i + i; j <= n; j += i) {
simplePrime[j] = false;
}
primes.add(i);
}
}
int actualK = 0;
for (int i = 1; i < primes.size(); i++) {
int val = primes.get(i - 1) + primes.get(i) + 1;
if (val <= n) {
if (simplePrime[val]) {
// System.out.printf("%d + %d + 1 = %d%n", primes.get(i - 1), primes.get(i), val);
actualK++;
}
} else {
break;
}
}
// System.out.printf("req: %d actual: %d%n", k, actualK);
System.out.println((k <= actualK ? "YES" : "NO"));
}
StringTokenizer st;
BufferedReader in;
PrintWriter out;
public static void main(String[] args) {
new Problem17A().run();
}
public void run() {
try {
in = new BufferedReader(new InputStreamReader(System.in));
out = new PrintWriter(System.out);
solve();
} catch (Exception e) {
e.printStackTrace();
} finally {
out.flush();
out.close();
}
}
String nextToken() throws IOException {
while (st == null || !st.hasMoreTokens()) {
st = new StringTokenizer(in.readLine());
}
return st.nextToken();
}
int nextInt() throws NumberFormatException, IOException {
return Integer.parseInt(nextToken());
}
long nextLong() throws NumberFormatException, IOException {
return Long.parseLong(nextToken());
}
double nextDouble() throws NumberFormatException, IOException {
return Double.parseDouble(nextToken());
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(n^2): The running time increases with the square of the input size n.
- O(log(n)): The running time increases with the logarithm of the input size n.
- O(n): The running time grows linearly with the input size n.
- O(n^3): The running time increases with the cube of the input size n.
- O(1): The running time does not change regardless of the input size n.
- others: The code does not clearly correspond to the listed classes or has an unclassified time complexity.
- O(nlog(n)): The running time increases with the product of n and logarithm of n.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
| 889
| 829
|
683
|
/*
* Created on 17.05.2019
*/
import java.io.BufferedReader;
import java.io.IOException;
import java.io.InputStreamReader;
/**
* @author Wolfgang Weck
*/
public class C01Easy {
public static void main(String[] args) {
try (BufferedReader r = new BufferedReader(new InputStreamReader(System.in))) {
final String[] line = r.readLine().split(" ");
final int N = Integer.parseInt(line[0]), P = Integer.parseInt(line[1]);
final String[] numS = r.readLine().split(" ");
if (numS.length != N) throw new IllegalArgumentException();
final int[] n = new int[N];
int sum1 = 0, sum2 = 0;
for (int i = 0; i < N; i++) {
n[i] = Integer.parseInt(numS[i]) % P;
sum2 += n[i];
if (sum2 >= P) sum2 -= P;
}
int max = sum2;
for (int i = 0; i < N; i++) {
sum1 += n[i];
if (sum1 >= P) sum1 -= P;
sum2 -= n[i];
if (sum2 < 0) sum2 += P;
final int s = sum1 + sum2;
if (s > max) max = s;
}
System.out.println(max);
}
catch (IOException e) {
e.printStackTrace();
}
}
}
|
O(n)
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Determine the worst-case time complexity category of a given Java code based on input size n.
</TASK>
<CODE>
/*
* Created on 17.05.2019
*/
import java.io.BufferedReader;
import java.io.IOException;
import java.io.InputStreamReader;
/**
* @author Wolfgang Weck
*/
public class C01Easy {
public static void main(String[] args) {
try (BufferedReader r = new BufferedReader(new InputStreamReader(System.in))) {
final String[] line = r.readLine().split(" ");
final int N = Integer.parseInt(line[0]), P = Integer.parseInt(line[1]);
final String[] numS = r.readLine().split(" ");
if (numS.length != N) throw new IllegalArgumentException();
final int[] n = new int[N];
int sum1 = 0, sum2 = 0;
for (int i = 0; i < N; i++) {
n[i] = Integer.parseInt(numS[i]) % P;
sum2 += n[i];
if (sum2 >= P) sum2 -= P;
}
int max = sum2;
for (int i = 0; i < N; i++) {
sum1 += n[i];
if (sum1 >= P) sum1 -= P;
sum2 -= n[i];
if (sum2 < 0) sum2 += P;
final int s = sum1 + sum2;
if (s > max) max = s;
}
System.out.println(max);
}
catch (IOException e) {
e.printStackTrace();
}
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(n^3): The time complexity scales proportionally to the cube of the input size.
- O(n^2): The time complexity grows proportionally to the square of the input size.
- non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially.
- O(n): The time complexity increases proportionally to the input size n in a linear manner.
- O(1): The time complexity is constant to the input size n.
- O(nlog(n)): The time complexity combines linear and logarithmic growth factors.
- O(log(n)): The time complexity increases logarithmically in relation to the input size.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n.
</TASK>
<CODE>
/*
* Created on 17.05.2019
*/
import java.io.BufferedReader;
import java.io.IOException;
import java.io.InputStreamReader;
/**
* @author Wolfgang Weck
*/
public class C01Easy {
public static void main(String[] args) {
try (BufferedReader r = new BufferedReader(new InputStreamReader(System.in))) {
final String[] line = r.readLine().split(" ");
final int N = Integer.parseInt(line[0]), P = Integer.parseInt(line[1]);
final String[] numS = r.readLine().split(" ");
if (numS.length != N) throw new IllegalArgumentException();
final int[] n = new int[N];
int sum1 = 0, sum2 = 0;
for (int i = 0; i < N; i++) {
n[i] = Integer.parseInt(numS[i]) % P;
sum2 += n[i];
if (sum2 >= P) sum2 -= P;
}
int max = sum2;
for (int i = 0; i < N; i++) {
sum1 += n[i];
if (sum1 >= P) sum1 -= P;
sum2 -= n[i];
if (sum2 < 0) sum2 += P;
final int s = sum1 + sum2;
if (s > max) max = s;
}
System.out.println(max);
}
catch (IOException e) {
e.printStackTrace();
}
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(n): The execution time ascends in a one-to-one ratio with the input size n.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- O(1): The execution time is unaffected by the size of the input n.
- O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially.
- O(log(n)): The execution time ascends in proportion to the logarithm of the input size n.
- others: The time complexity does not fit to any of the given categories or is ambiguous.
- O(n^2): The execution time ascends in proportion to the square of the input size n.
- O(n^3): The execution time ascends in proportion to the cube of the input size n.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
| 650
| 682
|
1,962
|
import java.io.*;
import java.util.*;
public class A {
BufferedReader br;
PrintWriter out;
StringTokenizer st;
boolean eof;
class Team implements Comparable<Team>{
int ac;
int penalty;
public Team(int ac, int penalty) {
this.ac = ac;
this.penalty = penalty;
}
@Override
public int compareTo(Team o) {
if (ac != o.ac)
return ac > o.ac ? -1 : 1;
return (penalty == o.penalty) ? 0 : (penalty < o.penalty ? -1 : 1);
}
}
void solve() throws IOException {
int n = nextInt();
int k = nextInt() - 1;
Team[] a = new Team[n];
for (int i = 0; i < n; i++)
a[i] = new Team(nextInt(), nextInt());
Arrays.sort(a);
for (int i = 0; i < n;) {
int j = i;
while (j < n && a[j].compareTo(a[i]) == 0)
j++;
if (i <= k && k < j) {
out.println(j - i);
return;
}
i = j;
}
}
void inp() throws IOException {
br = new BufferedReader(new InputStreamReader(System.in));
out = new PrintWriter(System.out);
solve();
out.close();
}
public static void main(String[] args) throws IOException {
new A().inp();
}
String nextToken() {
while (st == null || !st.hasMoreTokens()) {
try {
st = new StringTokenizer(br.readLine());
} catch (Exception e) {
eof = true;
return null;
}
}
return st.nextToken();
}
String nextString() {
try {
return br.readLine();
} catch (IOException e) {
eof = true;
return null;
}
}
int nextInt() throws IOException {
return Integer.parseInt(nextToken());
}
long nextLong() throws IOException {
return Long.parseLong(nextToken());
}
double nextDouble() throws IOException {
return Double.parseDouble(nextToken());
}
}
|
O(nlog(n))
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Determine the worst-case time complexity category of a given Java code based on input size n.
</TASK>
<CODE>
import java.io.*;
import java.util.*;
public class A {
BufferedReader br;
PrintWriter out;
StringTokenizer st;
boolean eof;
class Team implements Comparable<Team>{
int ac;
int penalty;
public Team(int ac, int penalty) {
this.ac = ac;
this.penalty = penalty;
}
@Override
public int compareTo(Team o) {
if (ac != o.ac)
return ac > o.ac ? -1 : 1;
return (penalty == o.penalty) ? 0 : (penalty < o.penalty ? -1 : 1);
}
}
void solve() throws IOException {
int n = nextInt();
int k = nextInt() - 1;
Team[] a = new Team[n];
for (int i = 0; i < n; i++)
a[i] = new Team(nextInt(), nextInt());
Arrays.sort(a);
for (int i = 0; i < n;) {
int j = i;
while (j < n && a[j].compareTo(a[i]) == 0)
j++;
if (i <= k && k < j) {
out.println(j - i);
return;
}
i = j;
}
}
void inp() throws IOException {
br = new BufferedReader(new InputStreamReader(System.in));
out = new PrintWriter(System.out);
solve();
out.close();
}
public static void main(String[] args) throws IOException {
new A().inp();
}
String nextToken() {
while (st == null || !st.hasMoreTokens()) {
try {
st = new StringTokenizer(br.readLine());
} catch (Exception e) {
eof = true;
return null;
}
}
return st.nextToken();
}
String nextString() {
try {
return br.readLine();
} catch (IOException e) {
eof = true;
return null;
}
}
int nextInt() throws IOException {
return Integer.parseInt(nextToken());
}
long nextLong() throws IOException {
return Long.parseLong(nextToken());
}
double nextDouble() throws IOException {
return Double.parseDouble(nextToken());
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(n): The time complexity increases proportionally to the input size n in a linear manner.
- O(n^3): The time complexity scales proportionally to the cube of the input size.
- O(nlog(n)): The time complexity combines linear and logarithmic growth factors.
- non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially.
- O(n^2): The time complexity grows proportionally to the square of the input size.
- O(1): The time complexity is constant to the input size n.
- O(log(n)): The time complexity increases logarithmically in relation to the input size.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Classify the following Java code's worst-case time complexity according to its relationship to the input size n.
</TASK>
<CODE>
import java.io.*;
import java.util.*;
public class A {
BufferedReader br;
PrintWriter out;
StringTokenizer st;
boolean eof;
class Team implements Comparable<Team>{
int ac;
int penalty;
public Team(int ac, int penalty) {
this.ac = ac;
this.penalty = penalty;
}
@Override
public int compareTo(Team o) {
if (ac != o.ac)
return ac > o.ac ? -1 : 1;
return (penalty == o.penalty) ? 0 : (penalty < o.penalty ? -1 : 1);
}
}
void solve() throws IOException {
int n = nextInt();
int k = nextInt() - 1;
Team[] a = new Team[n];
for (int i = 0; i < n; i++)
a[i] = new Team(nextInt(), nextInt());
Arrays.sort(a);
for (int i = 0; i < n;) {
int j = i;
while (j < n && a[j].compareTo(a[i]) == 0)
j++;
if (i <= k && k < j) {
out.println(j - i);
return;
}
i = j;
}
}
void inp() throws IOException {
br = new BufferedReader(new InputStreamReader(System.in));
out = new PrintWriter(System.out);
solve();
out.close();
}
public static void main(String[] args) throws IOException {
new A().inp();
}
String nextToken() {
while (st == null || !st.hasMoreTokens()) {
try {
st = new StringTokenizer(br.readLine());
} catch (Exception e) {
eof = true;
return null;
}
}
return st.nextToken();
}
String nextString() {
try {
return br.readLine();
} catch (IOException e) {
eof = true;
return null;
}
}
int nextInt() throws IOException {
return Integer.parseInt(nextToken());
}
long nextLong() throws IOException {
return Long.parseLong(nextToken());
}
double nextDouble() throws IOException {
return Double.parseDouble(nextToken());
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(n): The running time grows linearly with the input size n.
- others: The code does not clearly correspond to the listed classes or has an unclassified time complexity.
- O(n^2): The running time increases with the square of the input size n.
- O(log(n)): The running time increases with the logarithm of the input size n.
- O(n^3): The running time increases with the cube of the input size n.
- O(1): The running time does not change regardless of the input size n.
- O(nlog(n)): The running time increases with the product of n and logarithm of n.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
| 809
| 1,958
|
2,651
|
import java.io.*;
import java.util.*;
public class oK{
void pre() throws Exception{}
void solve(int TC) throws Exception{
int n=ni();
int a[]=new int[n];
for(int i=0;i<n;i++) {
a[i]=ni();
}
Arrays.sort(a);
int b[]=new int[101];
int flag=0;
int count=0;
for(int i=0;i<n;i++) {
flag=0;
if(b[a[i]]==0) {
count++;
}
for(int j=i;j<n;j++) {
if(b[a[j]]==0&&a[j]%a[i]==0) {
b[a[j]]=1;
}
//if(flag==1)count++;
}
}
pn(count);
}
// void hold(boolean b)throws Exception{if(!b)throw new Exception("Hold right there, Sparky!");}
static boolean multipleTC = false, memory = false;
FastReader in;PrintWriter out;
void run() throws Exception{
in = new FastReader();
out = new PrintWriter(System.out);
int T = (multipleTC)?ni():1;
pre();for(int t = 1; t<= T; t++)solve(t);
out.flush();
out.close();
}
public static void main(String[] args) throws Exception{
if(memory)new Thread(null, new Runnable() {public void run(){try{new oK().run();}catch(Exception e){e.printStackTrace();}}}, "1", 1 << 28).start();
else new oK().run();
}
void p(Object o){out.print(o);}
void pn(Object o){out.println(o);}
void pni(Object o){out.println(o);out.flush();}
String n()throws Exception{return in.next();}
String nln()throws Exception{return in.nextLine();}
int ni()throws Exception{return Integer.parseInt(in.next());}
long nl()throws Exception{return Long.parseLong(in.next());}
class FastReader{
BufferedReader br;
StringTokenizer st;
public FastReader(){
br = new BufferedReader(new InputStreamReader(System.in));
}
public FastReader(String s) throws Exception{
br = new BufferedReader(new FileReader(s));
}
String next() throws Exception{
while (st == null || !st.hasMoreElements()){
try{
st = new StringTokenizer(br.readLine());
}catch (IOException e){
throw new Exception(e.toString());
}
}
return st.nextToken();
}
String nextLine() throws Exception{
String str = "";
try{
str = br.readLine();
}catch (IOException e){
throw new Exception(e.toString());
}
return str;
}
}
}
|
O(n^2)
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n.
</TASK>
<CODE>
import java.io.*;
import java.util.*;
public class oK{
void pre() throws Exception{}
void solve(int TC) throws Exception{
int n=ni();
int a[]=new int[n];
for(int i=0;i<n;i++) {
a[i]=ni();
}
Arrays.sort(a);
int b[]=new int[101];
int flag=0;
int count=0;
for(int i=0;i<n;i++) {
flag=0;
if(b[a[i]]==0) {
count++;
}
for(int j=i;j<n;j++) {
if(b[a[j]]==0&&a[j]%a[i]==0) {
b[a[j]]=1;
}
//if(flag==1)count++;
}
}
pn(count);
}
// void hold(boolean b)throws Exception{if(!b)throw new Exception("Hold right there, Sparky!");}
static boolean multipleTC = false, memory = false;
FastReader in;PrintWriter out;
void run() throws Exception{
in = new FastReader();
out = new PrintWriter(System.out);
int T = (multipleTC)?ni():1;
pre();for(int t = 1; t<= T; t++)solve(t);
out.flush();
out.close();
}
public static void main(String[] args) throws Exception{
if(memory)new Thread(null, new Runnable() {public void run(){try{new oK().run();}catch(Exception e){e.printStackTrace();}}}, "1", 1 << 28).start();
else new oK().run();
}
void p(Object o){out.print(o);}
void pn(Object o){out.println(o);}
void pni(Object o){out.println(o);out.flush();}
String n()throws Exception{return in.next();}
String nln()throws Exception{return in.nextLine();}
int ni()throws Exception{return Integer.parseInt(in.next());}
long nl()throws Exception{return Long.parseLong(in.next());}
class FastReader{
BufferedReader br;
StringTokenizer st;
public FastReader(){
br = new BufferedReader(new InputStreamReader(System.in));
}
public FastReader(String s) throws Exception{
br = new BufferedReader(new FileReader(s));
}
String next() throws Exception{
while (st == null || !st.hasMoreElements()){
try{
st = new StringTokenizer(br.readLine());
}catch (IOException e){
throw new Exception(e.toString());
}
}
return st.nextToken();
}
String nextLine() throws Exception{
String str = "";
try{
str = br.readLine();
}catch (IOException e){
throw new Exception(e.toString());
}
return str;
}
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(n): The execution time ascends in a one-to-one ratio with the input size n.
- O(1): The execution time is unaffected by the size of the input n.
- O(n^2): The execution time ascends in proportion to the square of the input size n.
- O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially.
- O(log(n)): The execution time ascends in proportion to the logarithm of the input size n.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- O(n^3): The execution time ascends in proportion to the cube of the input size n.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Classify the following Java code's worst-case time complexity according to its relationship to the input size n.
</TASK>
<CODE>
import java.io.*;
import java.util.*;
public class oK{
void pre() throws Exception{}
void solve(int TC) throws Exception{
int n=ni();
int a[]=new int[n];
for(int i=0;i<n;i++) {
a[i]=ni();
}
Arrays.sort(a);
int b[]=new int[101];
int flag=0;
int count=0;
for(int i=0;i<n;i++) {
flag=0;
if(b[a[i]]==0) {
count++;
}
for(int j=i;j<n;j++) {
if(b[a[j]]==0&&a[j]%a[i]==0) {
b[a[j]]=1;
}
//if(flag==1)count++;
}
}
pn(count);
}
// void hold(boolean b)throws Exception{if(!b)throw new Exception("Hold right there, Sparky!");}
static boolean multipleTC = false, memory = false;
FastReader in;PrintWriter out;
void run() throws Exception{
in = new FastReader();
out = new PrintWriter(System.out);
int T = (multipleTC)?ni():1;
pre();for(int t = 1; t<= T; t++)solve(t);
out.flush();
out.close();
}
public static void main(String[] args) throws Exception{
if(memory)new Thread(null, new Runnable() {public void run(){try{new oK().run();}catch(Exception e){e.printStackTrace();}}}, "1", 1 << 28).start();
else new oK().run();
}
void p(Object o){out.print(o);}
void pn(Object o){out.println(o);}
void pni(Object o){out.println(o);out.flush();}
String n()throws Exception{return in.next();}
String nln()throws Exception{return in.nextLine();}
int ni()throws Exception{return Integer.parseInt(in.next());}
long nl()throws Exception{return Long.parseLong(in.next());}
class FastReader{
BufferedReader br;
StringTokenizer st;
public FastReader(){
br = new BufferedReader(new InputStreamReader(System.in));
}
public FastReader(String s) throws Exception{
br = new BufferedReader(new FileReader(s));
}
String next() throws Exception{
while (st == null || !st.hasMoreElements()){
try{
st = new StringTokenizer(br.readLine());
}catch (IOException e){
throw new Exception(e.toString());
}
}
return st.nextToken();
}
String nextLine() throws Exception{
String str = "";
try{
str = br.readLine();
}catch (IOException e){
throw new Exception(e.toString());
}
return str;
}
}
}
</CODE>
<EVALUATION_RUBRIC>
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- O(n^3): The running time increases with the cube of the input size n.
- O(n): The running time grows linearly with the input size n.
- O(1): The running time does not change regardless of the input size n.
- O(nlog(n)): The running time increases with the product of n and logarithm of n.
- others: The code does not clearly correspond to the listed classes or has an unclassified time complexity.
- O(n^2): The running time increases with the square of the input size n.
- O(log(n)): The running time increases with the logarithm of the input size n.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
| 1,003
| 2,645
|
3,502
|
import java.io.OutputStream;
import java.io.IOException;
import java.io.InputStream;
import java.io.OutputStream;
import java.util.Arrays;
import java.io.IOException;
import java.io.UncheckedIOException;
import java.io.Closeable;
import java.io.Writer;
import java.io.OutputStreamWriter;
import java.math.BigInteger;
import java.io.InputStream;
/**
* Built using CHelper plug-in
* Actual solution is at the top
*/
public class Main {
public static void main(String[] args) throws Exception {
Thread thread = new Thread(null, new TaskAdapter(), "", 1 << 29);
thread.start();
thread.join();
}
static class TaskAdapter implements Runnable {
@Override
public void run() {
InputStream inputStream = System.in;
OutputStream outputStream = System.out;
FastInput in = new FastInput(inputStream);
FastOutput out = new FastOutput(outputStream);
EPhoenixAndComputers solver = new EPhoenixAndComputers();
solver.solve(1, in, out);
out.close();
}
}
static class EPhoenixAndComputers {
public void solve(int testNumber, FastInput in, FastOutput out) {
int n = in.ri();
int mod = in.ri();
CachedPow2 cp = new CachedPow2(2, mod, n + 1, mod - 1);
Combination comb = new Combination(n + 1, mod);
long[][][] dp = new long[n + 1][n + 1][2];
dp[0][0][0] = 1;
for (int i = 1; i <= n; i++) {
for (int j = 0; j <= n; j++) {
dp[i][j][0] = dp[i - 1][j][1];
for (int k = 0; k < i; k++) {
int len = i - k;
int last = j - len;
if (last >= 0) {
dp[i][j][1] += dp[k][last][0] * cp.pow(len - 1) % mod * comb.combination(j, len) % mod;
}
}
dp[i][j][1] %= mod;
}
}
long ans = 0;
for (int i = 0; i <= n; i++) {
ans += dp[n][i][1];
}
ans %= mod;
out.println(ans);
}
}
static class FastOutput implements AutoCloseable, Closeable, Appendable {
private static final int THRESHOLD = 32 << 10;
private final Writer os;
private StringBuilder cache = new StringBuilder(THRESHOLD * 2);
public FastOutput append(CharSequence csq) {
cache.append(csq);
return this;
}
public FastOutput append(CharSequence csq, int start, int end) {
cache.append(csq, start, end);
return this;
}
private void afterWrite() {
if (cache.length() < THRESHOLD) {
return;
}
flush();
}
public FastOutput(Writer os) {
this.os = os;
}
public FastOutput(OutputStream os) {
this(new OutputStreamWriter(os));
}
public FastOutput append(char c) {
cache.append(c);
afterWrite();
return this;
}
public FastOutput append(long c) {
cache.append(c);
afterWrite();
return this;
}
public FastOutput println(long c) {
return append(c).println();
}
public FastOutput println() {
return append('\n');
}
public FastOutput flush() {
try {
// boolean success = false;
// if (stringBuilderValueField != null) {
// try {
// char[] value = (char[]) stringBuilderValueField.get(cache);
// os.write(value, 0, cache.length());
// success = true;
// } catch (Exception e) {
// }
// }
// if (!success) {
os.append(cache);
// }
os.flush();
cache.setLength(0);
} catch (IOException e) {
throw new UncheckedIOException(e);
}
return this;
}
public void close() {
flush();
try {
os.close();
} catch (IOException e) {
throw new UncheckedIOException(e);
}
}
public String toString() {
return cache.toString();
}
}
static interface IntegerEntryIterator {
boolean hasNext();
void next();
int getEntryKey();
int getEntryValue();
}
static class FastInput {
private final InputStream is;
private byte[] buf = new byte[1 << 13];
private int bufLen;
private int bufOffset;
private int next;
public FastInput(InputStream is) {
this.is = is;
}
private int read() {
while (bufLen == bufOffset) {
bufOffset = 0;
try {
bufLen = is.read(buf);
} catch (IOException e) {
bufLen = -1;
}
if (bufLen == -1) {
return -1;
}
}
return buf[bufOffset++];
}
public void skipBlank() {
while (next >= 0 && next <= 32) {
next = read();
}
}
public int ri() {
return readInt();
}
public int readInt() {
boolean rev = false;
skipBlank();
if (next == '+' || next == '-') {
rev = next == '-';
next = read();
}
int val = 0;
while (next >= '0' && next <= '9') {
val = val * 10 - next + '0';
next = read();
}
return rev ? val : -val;
}
}
static class Hasher {
private long time = System.nanoTime() + System.currentTimeMillis() * 31L;
public int shuffle(long z) {
z += time;
z = (z ^ (z >>> 33)) * 0x62a9d9ed799705f5L;
return (int) (((z ^ (z >>> 28)) * 0xcb24d0a5c88c35b3L) >>> 32);
}
public int hash(int x) {
return shuffle(x);
}
}
static class CachedEulerFunction {
private static int boundary = 1 << 16;
private static int[] euler = MultiplicativeFunctionSieve.getInstance(boundary).getEuler();
private static IntegerHashMap map = new IntegerHashMap(64, true);
public static int get(int x) {
return get(x, 2);
}
private static int get(int x, int begin) {
if (x <= boundary) {
return euler[x];
}
int ans = map.getOrDefault(x, -1);
if (ans == -1) {
int factor = findPrimeFactor(x, begin);
int y = x;
int exp = 1;
while (y % factor == 0) {
y /= factor;
exp *= factor;
}
ans = get(y, factor + 1) * (exp - exp / factor);
//ans = calc(x);
map.put(x, ans);
}
return ans;
}
private static int findPrimeFactor(int x, int begin) {
for (int i = Math.max(2, begin); i * i <= x; i++) {
if (x % i == 0) {
return i;
}
}
return x;
}
}
static interface IntCombination {
}
static class MultiplicativeFunctionSieve {
static MultiplicativeFunctionSieve instance = new MultiplicativeFunctionSieve(1 << 16);
public int[] primes;
public boolean[] isComp;
public int primeLength;
public int[] smallestPrimeFactor;
public int[] expOfSmallestPrimeFactor;
int limit;
public static MultiplicativeFunctionSieve getInstance(int n) {
if (n <= (1 << 16)) {
return instance;
}
return new MultiplicativeFunctionSieve(n);
}
public int[] getEuler() {
int[] euler = new int[limit + 1];
euler[1] = 1;
for (int i = 2; i <= limit; i++) {
if (!isComp[i]) {
euler[i] = i - 1;
} else {
if (expOfSmallestPrimeFactor[i] == i) {
euler[i] = i - i / smallestPrimeFactor[i];
} else {
euler[i] = euler[expOfSmallestPrimeFactor[i]] * euler[i / expOfSmallestPrimeFactor[i]];
}
}
}
return euler;
}
public MultiplicativeFunctionSieve(int limit) {
this.limit = limit;
isComp = new boolean[limit + 1];
primes = new int[limit + 1];
expOfSmallestPrimeFactor = new int[limit + 1];
smallestPrimeFactor = new int[limit + 1];
primeLength = 0;
for (int i = 2; i <= limit; i++) {
if (!isComp[i]) {
primes[primeLength++] = i;
expOfSmallestPrimeFactor[i] = smallestPrimeFactor[i] = i;
}
for (int j = 0, until = limit / i; j < primeLength && primes[j] <= until; j++) {
int pi = primes[j] * i;
smallestPrimeFactor[pi] = primes[j];
expOfSmallestPrimeFactor[pi] = smallestPrimeFactor[i] == primes[j]
? (expOfSmallestPrimeFactor[i] * expOfSmallestPrimeFactor[primes[j]])
: expOfSmallestPrimeFactor[primes[j]];
isComp[pi] = true;
if (i % primes[j] == 0) {
break;
}
}
}
}
}
static class Factorial {
int[] fact;
int[] inv;
int mod;
public int getMod() {
return mod;
}
public Factorial(int[] fact, int[] inv, int mod) {
this.mod = mod;
this.fact = fact;
this.inv = inv;
fact[0] = inv[0] = 1;
int n = Math.min(fact.length, mod);
for (int i = 1; i < n; i++) {
fact[i] = i;
fact[i] = (int) ((long) fact[i] * fact[i - 1] % mod);
}
if (n - 1 >= 0) {
inv[n - 1] = BigInteger.valueOf(fact[n - 1]).modInverse(BigInteger.valueOf(mod)).intValue();
}
for (int i = n - 2; i >= 1; i--) {
inv[i] = (int) ((long) inv[i + 1] * (i + 1) % mod);
}
}
public Factorial(int limit, int mod) {
this(new int[Math.min(limit + 1, mod)], new int[Math.min(limit + 1, mod)], mod);
}
public int fact(int n) {
if (n >= mod) {
return 0;
}
return fact[n];
}
public int invFact(int n) {
if (n >= mod) {
throw new IllegalArgumentException();
}
return inv[n];
}
}
static class CachedPow2 {
private int[] first;
private int[] second;
private int mod;
private int low;
private int mask;
private int phi;
private int xphi;
public CachedPow2(int x, int mod) {
this(x, mod, CachedEulerFunction.get(mod));
}
public CachedPow2(int x, int mod, int phi) {
this(x, mod, mod, phi);
}
public CachedPow2(int x, int mod, int limit, int phi) {
this.phi = phi;
limit = Math.min(limit, mod);
this.mod = mod;
int log = Log2.ceilLog(limit + 1);
low = (log + 1) / 2;
mask = (1 << low) - 1;
first = new int[1 << low];
second = new int[1 << log - low];
first[0] = 1;
for (int i = 1; i < first.length; i++) {
first[i] = (int) ((long) x * first[i - 1] % mod);
}
second[0] = 1;
long step = (long) x * first[first.length - 1] % mod;
for (int i = 1; i < second.length; i++) {
second[i] = (int) (second[i - 1] * step % mod);
}
xphi = DigitUtils.modPow(x, phi, mod);
}
public int pow(int exp) {
return (int) ((long) first[exp & mask] * second[exp >> low] % mod);
}
}
static class DigitUtils {
private DigitUtils() {
}
public static int mod(long x, int mod) {
if (x < -mod || x >= mod) {
x %= mod;
}
if (x < 0) {
x += mod;
}
return (int) x;
}
public static int mod(int x, int mod) {
if (x < -mod || x >= mod) {
x %= mod;
}
if (x < 0) {
x += mod;
}
return x;
}
public static int modPow(int x, long n, int m) {
if (n == 0) {
return DigitUtils.mod(1, m);
}
int ans = modPow(x, n / 2, m);
ans = DigitUtils.mod((long) ans * ans, m);
if (n % 2 == 1) {
ans = DigitUtils.mod((long) ans * x, m);
}
return ans;
}
}
static class Combination implements IntCombination {
final Factorial factorial;
int modVal;
public Combination(Factorial factorial) {
this.factorial = factorial;
this.modVal = factorial.getMod();
}
public Combination(int limit, int mod) {
this(new Factorial(limit, mod));
}
public int combination(int m, int n) {
if (n > m || n < 0) {
return 0;
}
return (int) ((long) factorial.fact(m) * factorial.invFact(n) % modVal * factorial.invFact(m - n) % modVal);
}
}
static class Log2 {
public static int ceilLog(int x) {
if (x <= 0) {
return 0;
}
return 32 - Integer.numberOfLeadingZeros(x - 1);
}
}
static class IntegerHashMap {
private int now;
private int[] slot;
private int[] version;
private int[] next;
private int[] keys;
private int[] values;
private int alloc;
private boolean[] removed;
private int mask;
private int size;
private boolean rehash;
private Hasher hasher = new Hasher();
public IntegerHashMap(int cap, boolean rehash) {
now = 1;
this.mask = (1 << (32 - Integer.numberOfLeadingZeros(cap - 1))) - 1;
slot = new int[mask + 1];
version = new int[slot.length];
next = new int[cap + 1];
keys = new int[cap + 1];
values = new int[cap + 1];
removed = new boolean[cap + 1];
this.rehash = rehash;
}
private void doubleCapacity() {
int newSize = Math.max(next.length + 10, next.length * 2);
next = Arrays.copyOf(next, newSize);
keys = Arrays.copyOf(keys, newSize);
values = Arrays.copyOf(values, newSize);
removed = Arrays.copyOf(removed, newSize);
}
public void alloc() {
alloc++;
if (alloc >= next.length) {
doubleCapacity();
}
next[alloc] = 0;
removed[alloc] = false;
size++;
}
private void rehash() {
int[] newSlots = new int[Math.max(16, slot.length * 2)];
int[] newVersions = new int[newSlots.length];
int newMask = newSlots.length - 1;
for (int i = 0; i < slot.length; i++) {
access(i);
if (slot[i] == 0) {
continue;
}
int head = slot[i];
while (head != 0) {
int n = next[head];
int s = hash(keys[head]) & newMask;
next[head] = newSlots[s];
newSlots[s] = head;
head = n;
}
}
this.slot = newSlots;
this.version = newVersions;
now = 0;
this.mask = newMask;
}
private int hash(int x) {
return hasher.hash(x);
}
public void put(int x, int y) {
put(x, y, true);
}
public void put(int x, int y, boolean cover) {
int h = hash(x);
int s = h & mask;
access(s);
if (slot[s] == 0) {
alloc();
slot[s] = alloc;
keys[alloc] = x;
values[alloc] = y;
} else {
int index = findIndexOrLastEntry(s, x);
if (keys[index] != x) {
alloc();
next[index] = alloc;
keys[alloc] = x;
values[alloc] = y;
} else if (cover) {
values[index] = y;
}
}
if (rehash && size >= slot.length) {
rehash();
}
}
public int getOrDefault(int x, int def) {
int h = hash(x);
int s = h & mask;
access(s);
if (slot[s] == 0) {
return def;
}
int index = findIndexOrLastEntry(s, x);
return keys[index] == x ? values[index] : def;
}
private int findIndexOrLastEntry(int s, int x) {
int iter = slot[s];
while (keys[iter] != x) {
if (next[iter] != 0) {
iter = next[iter];
} else {
return iter;
}
}
return iter;
}
private void access(int i) {
if (version[i] != now) {
version[i] = now;
slot[i] = 0;
}
}
public IntegerEntryIterator iterator() {
return new IntegerEntryIterator() {
int index = 1;
int readIndex = -1;
public boolean hasNext() {
while (index <= alloc && removed[index]) {
index++;
}
return index <= alloc;
}
public int getEntryKey() {
return keys[readIndex];
}
public int getEntryValue() {
return values[readIndex];
}
public void next() {
if (!hasNext()) {
throw new IllegalStateException();
}
readIndex = index;
index++;
}
};
}
public String toString() {
IntegerEntryIterator iterator = iterator();
StringBuilder builder = new StringBuilder("{");
while (iterator.hasNext()) {
iterator.next();
builder.append(iterator.getEntryKey()).append("->").append(iterator.getEntryValue()).append(',');
}
if (builder.charAt(builder.length() - 1) == ',') {
builder.setLength(builder.length() - 1);
}
builder.append('}');
return builder.toString();
}
}
}
|
O(n^3)
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Determine the worst-case time complexity category of a given Java code based on input size n.
</TASK>
<CODE>
import java.io.OutputStream;
import java.io.IOException;
import java.io.InputStream;
import java.io.OutputStream;
import java.util.Arrays;
import java.io.IOException;
import java.io.UncheckedIOException;
import java.io.Closeable;
import java.io.Writer;
import java.io.OutputStreamWriter;
import java.math.BigInteger;
import java.io.InputStream;
/**
* Built using CHelper plug-in
* Actual solution is at the top
*/
public class Main {
public static void main(String[] args) throws Exception {
Thread thread = new Thread(null, new TaskAdapter(), "", 1 << 29);
thread.start();
thread.join();
}
static class TaskAdapter implements Runnable {
@Override
public void run() {
InputStream inputStream = System.in;
OutputStream outputStream = System.out;
FastInput in = new FastInput(inputStream);
FastOutput out = new FastOutput(outputStream);
EPhoenixAndComputers solver = new EPhoenixAndComputers();
solver.solve(1, in, out);
out.close();
}
}
static class EPhoenixAndComputers {
public void solve(int testNumber, FastInput in, FastOutput out) {
int n = in.ri();
int mod = in.ri();
CachedPow2 cp = new CachedPow2(2, mod, n + 1, mod - 1);
Combination comb = new Combination(n + 1, mod);
long[][][] dp = new long[n + 1][n + 1][2];
dp[0][0][0] = 1;
for (int i = 1; i <= n; i++) {
for (int j = 0; j <= n; j++) {
dp[i][j][0] = dp[i - 1][j][1];
for (int k = 0; k < i; k++) {
int len = i - k;
int last = j - len;
if (last >= 0) {
dp[i][j][1] += dp[k][last][0] * cp.pow(len - 1) % mod * comb.combination(j, len) % mod;
}
}
dp[i][j][1] %= mod;
}
}
long ans = 0;
for (int i = 0; i <= n; i++) {
ans += dp[n][i][1];
}
ans %= mod;
out.println(ans);
}
}
static class FastOutput implements AutoCloseable, Closeable, Appendable {
private static final int THRESHOLD = 32 << 10;
private final Writer os;
private StringBuilder cache = new StringBuilder(THRESHOLD * 2);
public FastOutput append(CharSequence csq) {
cache.append(csq);
return this;
}
public FastOutput append(CharSequence csq, int start, int end) {
cache.append(csq, start, end);
return this;
}
private void afterWrite() {
if (cache.length() < THRESHOLD) {
return;
}
flush();
}
public FastOutput(Writer os) {
this.os = os;
}
public FastOutput(OutputStream os) {
this(new OutputStreamWriter(os));
}
public FastOutput append(char c) {
cache.append(c);
afterWrite();
return this;
}
public FastOutput append(long c) {
cache.append(c);
afterWrite();
return this;
}
public FastOutput println(long c) {
return append(c).println();
}
public FastOutput println() {
return append('\n');
}
public FastOutput flush() {
try {
// boolean success = false;
// if (stringBuilderValueField != null) {
// try {
// char[] value = (char[]) stringBuilderValueField.get(cache);
// os.write(value, 0, cache.length());
// success = true;
// } catch (Exception e) {
// }
// }
// if (!success) {
os.append(cache);
// }
os.flush();
cache.setLength(0);
} catch (IOException e) {
throw new UncheckedIOException(e);
}
return this;
}
public void close() {
flush();
try {
os.close();
} catch (IOException e) {
throw new UncheckedIOException(e);
}
}
public String toString() {
return cache.toString();
}
}
static interface IntegerEntryIterator {
boolean hasNext();
void next();
int getEntryKey();
int getEntryValue();
}
static class FastInput {
private final InputStream is;
private byte[] buf = new byte[1 << 13];
private int bufLen;
private int bufOffset;
private int next;
public FastInput(InputStream is) {
this.is = is;
}
private int read() {
while (bufLen == bufOffset) {
bufOffset = 0;
try {
bufLen = is.read(buf);
} catch (IOException e) {
bufLen = -1;
}
if (bufLen == -1) {
return -1;
}
}
return buf[bufOffset++];
}
public void skipBlank() {
while (next >= 0 && next <= 32) {
next = read();
}
}
public int ri() {
return readInt();
}
public int readInt() {
boolean rev = false;
skipBlank();
if (next == '+' || next == '-') {
rev = next == '-';
next = read();
}
int val = 0;
while (next >= '0' && next <= '9') {
val = val * 10 - next + '0';
next = read();
}
return rev ? val : -val;
}
}
static class Hasher {
private long time = System.nanoTime() + System.currentTimeMillis() * 31L;
public int shuffle(long z) {
z += time;
z = (z ^ (z >>> 33)) * 0x62a9d9ed799705f5L;
return (int) (((z ^ (z >>> 28)) * 0xcb24d0a5c88c35b3L) >>> 32);
}
public int hash(int x) {
return shuffle(x);
}
}
static class CachedEulerFunction {
private static int boundary = 1 << 16;
private static int[] euler = MultiplicativeFunctionSieve.getInstance(boundary).getEuler();
private static IntegerHashMap map = new IntegerHashMap(64, true);
public static int get(int x) {
return get(x, 2);
}
private static int get(int x, int begin) {
if (x <= boundary) {
return euler[x];
}
int ans = map.getOrDefault(x, -1);
if (ans == -1) {
int factor = findPrimeFactor(x, begin);
int y = x;
int exp = 1;
while (y % factor == 0) {
y /= factor;
exp *= factor;
}
ans = get(y, factor + 1) * (exp - exp / factor);
//ans = calc(x);
map.put(x, ans);
}
return ans;
}
private static int findPrimeFactor(int x, int begin) {
for (int i = Math.max(2, begin); i * i <= x; i++) {
if (x % i == 0) {
return i;
}
}
return x;
}
}
static interface IntCombination {
}
static class MultiplicativeFunctionSieve {
static MultiplicativeFunctionSieve instance = new MultiplicativeFunctionSieve(1 << 16);
public int[] primes;
public boolean[] isComp;
public int primeLength;
public int[] smallestPrimeFactor;
public int[] expOfSmallestPrimeFactor;
int limit;
public static MultiplicativeFunctionSieve getInstance(int n) {
if (n <= (1 << 16)) {
return instance;
}
return new MultiplicativeFunctionSieve(n);
}
public int[] getEuler() {
int[] euler = new int[limit + 1];
euler[1] = 1;
for (int i = 2; i <= limit; i++) {
if (!isComp[i]) {
euler[i] = i - 1;
} else {
if (expOfSmallestPrimeFactor[i] == i) {
euler[i] = i - i / smallestPrimeFactor[i];
} else {
euler[i] = euler[expOfSmallestPrimeFactor[i]] * euler[i / expOfSmallestPrimeFactor[i]];
}
}
}
return euler;
}
public MultiplicativeFunctionSieve(int limit) {
this.limit = limit;
isComp = new boolean[limit + 1];
primes = new int[limit + 1];
expOfSmallestPrimeFactor = new int[limit + 1];
smallestPrimeFactor = new int[limit + 1];
primeLength = 0;
for (int i = 2; i <= limit; i++) {
if (!isComp[i]) {
primes[primeLength++] = i;
expOfSmallestPrimeFactor[i] = smallestPrimeFactor[i] = i;
}
for (int j = 0, until = limit / i; j < primeLength && primes[j] <= until; j++) {
int pi = primes[j] * i;
smallestPrimeFactor[pi] = primes[j];
expOfSmallestPrimeFactor[pi] = smallestPrimeFactor[i] == primes[j]
? (expOfSmallestPrimeFactor[i] * expOfSmallestPrimeFactor[primes[j]])
: expOfSmallestPrimeFactor[primes[j]];
isComp[pi] = true;
if (i % primes[j] == 0) {
break;
}
}
}
}
}
static class Factorial {
int[] fact;
int[] inv;
int mod;
public int getMod() {
return mod;
}
public Factorial(int[] fact, int[] inv, int mod) {
this.mod = mod;
this.fact = fact;
this.inv = inv;
fact[0] = inv[0] = 1;
int n = Math.min(fact.length, mod);
for (int i = 1; i < n; i++) {
fact[i] = i;
fact[i] = (int) ((long) fact[i] * fact[i - 1] % mod);
}
if (n - 1 >= 0) {
inv[n - 1] = BigInteger.valueOf(fact[n - 1]).modInverse(BigInteger.valueOf(mod)).intValue();
}
for (int i = n - 2; i >= 1; i--) {
inv[i] = (int) ((long) inv[i + 1] * (i + 1) % mod);
}
}
public Factorial(int limit, int mod) {
this(new int[Math.min(limit + 1, mod)], new int[Math.min(limit + 1, mod)], mod);
}
public int fact(int n) {
if (n >= mod) {
return 0;
}
return fact[n];
}
public int invFact(int n) {
if (n >= mod) {
throw new IllegalArgumentException();
}
return inv[n];
}
}
static class CachedPow2 {
private int[] first;
private int[] second;
private int mod;
private int low;
private int mask;
private int phi;
private int xphi;
public CachedPow2(int x, int mod) {
this(x, mod, CachedEulerFunction.get(mod));
}
public CachedPow2(int x, int mod, int phi) {
this(x, mod, mod, phi);
}
public CachedPow2(int x, int mod, int limit, int phi) {
this.phi = phi;
limit = Math.min(limit, mod);
this.mod = mod;
int log = Log2.ceilLog(limit + 1);
low = (log + 1) / 2;
mask = (1 << low) - 1;
first = new int[1 << low];
second = new int[1 << log - low];
first[0] = 1;
for (int i = 1; i < first.length; i++) {
first[i] = (int) ((long) x * first[i - 1] % mod);
}
second[0] = 1;
long step = (long) x * first[first.length - 1] % mod;
for (int i = 1; i < second.length; i++) {
second[i] = (int) (second[i - 1] * step % mod);
}
xphi = DigitUtils.modPow(x, phi, mod);
}
public int pow(int exp) {
return (int) ((long) first[exp & mask] * second[exp >> low] % mod);
}
}
static class DigitUtils {
private DigitUtils() {
}
public static int mod(long x, int mod) {
if (x < -mod || x >= mod) {
x %= mod;
}
if (x < 0) {
x += mod;
}
return (int) x;
}
public static int mod(int x, int mod) {
if (x < -mod || x >= mod) {
x %= mod;
}
if (x < 0) {
x += mod;
}
return x;
}
public static int modPow(int x, long n, int m) {
if (n == 0) {
return DigitUtils.mod(1, m);
}
int ans = modPow(x, n / 2, m);
ans = DigitUtils.mod((long) ans * ans, m);
if (n % 2 == 1) {
ans = DigitUtils.mod((long) ans * x, m);
}
return ans;
}
}
static class Combination implements IntCombination {
final Factorial factorial;
int modVal;
public Combination(Factorial factorial) {
this.factorial = factorial;
this.modVal = factorial.getMod();
}
public Combination(int limit, int mod) {
this(new Factorial(limit, mod));
}
public int combination(int m, int n) {
if (n > m || n < 0) {
return 0;
}
return (int) ((long) factorial.fact(m) * factorial.invFact(n) % modVal * factorial.invFact(m - n) % modVal);
}
}
static class Log2 {
public static int ceilLog(int x) {
if (x <= 0) {
return 0;
}
return 32 - Integer.numberOfLeadingZeros(x - 1);
}
}
static class IntegerHashMap {
private int now;
private int[] slot;
private int[] version;
private int[] next;
private int[] keys;
private int[] values;
private int alloc;
private boolean[] removed;
private int mask;
private int size;
private boolean rehash;
private Hasher hasher = new Hasher();
public IntegerHashMap(int cap, boolean rehash) {
now = 1;
this.mask = (1 << (32 - Integer.numberOfLeadingZeros(cap - 1))) - 1;
slot = new int[mask + 1];
version = new int[slot.length];
next = new int[cap + 1];
keys = new int[cap + 1];
values = new int[cap + 1];
removed = new boolean[cap + 1];
this.rehash = rehash;
}
private void doubleCapacity() {
int newSize = Math.max(next.length + 10, next.length * 2);
next = Arrays.copyOf(next, newSize);
keys = Arrays.copyOf(keys, newSize);
values = Arrays.copyOf(values, newSize);
removed = Arrays.copyOf(removed, newSize);
}
public void alloc() {
alloc++;
if (alloc >= next.length) {
doubleCapacity();
}
next[alloc] = 0;
removed[alloc] = false;
size++;
}
private void rehash() {
int[] newSlots = new int[Math.max(16, slot.length * 2)];
int[] newVersions = new int[newSlots.length];
int newMask = newSlots.length - 1;
for (int i = 0; i < slot.length; i++) {
access(i);
if (slot[i] == 0) {
continue;
}
int head = slot[i];
while (head != 0) {
int n = next[head];
int s = hash(keys[head]) & newMask;
next[head] = newSlots[s];
newSlots[s] = head;
head = n;
}
}
this.slot = newSlots;
this.version = newVersions;
now = 0;
this.mask = newMask;
}
private int hash(int x) {
return hasher.hash(x);
}
public void put(int x, int y) {
put(x, y, true);
}
public void put(int x, int y, boolean cover) {
int h = hash(x);
int s = h & mask;
access(s);
if (slot[s] == 0) {
alloc();
slot[s] = alloc;
keys[alloc] = x;
values[alloc] = y;
} else {
int index = findIndexOrLastEntry(s, x);
if (keys[index] != x) {
alloc();
next[index] = alloc;
keys[alloc] = x;
values[alloc] = y;
} else if (cover) {
values[index] = y;
}
}
if (rehash && size >= slot.length) {
rehash();
}
}
public int getOrDefault(int x, int def) {
int h = hash(x);
int s = h & mask;
access(s);
if (slot[s] == 0) {
return def;
}
int index = findIndexOrLastEntry(s, x);
return keys[index] == x ? values[index] : def;
}
private int findIndexOrLastEntry(int s, int x) {
int iter = slot[s];
while (keys[iter] != x) {
if (next[iter] != 0) {
iter = next[iter];
} else {
return iter;
}
}
return iter;
}
private void access(int i) {
if (version[i] != now) {
version[i] = now;
slot[i] = 0;
}
}
public IntegerEntryIterator iterator() {
return new IntegerEntryIterator() {
int index = 1;
int readIndex = -1;
public boolean hasNext() {
while (index <= alloc && removed[index]) {
index++;
}
return index <= alloc;
}
public int getEntryKey() {
return keys[readIndex];
}
public int getEntryValue() {
return values[readIndex];
}
public void next() {
if (!hasNext()) {
throw new IllegalStateException();
}
readIndex = index;
index++;
}
};
}
public String toString() {
IntegerEntryIterator iterator = iterator();
StringBuilder builder = new StringBuilder("{");
while (iterator.hasNext()) {
iterator.next();
builder.append(iterator.getEntryKey()).append("->").append(iterator.getEntryValue()).append(',');
}
if (builder.charAt(builder.length() - 1) == ',') {
builder.setLength(builder.length() - 1);
}
builder.append('}');
return builder.toString();
}
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(n): The time complexity increases proportionally to the input size n in a linear manner.
- non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially.
- O(1): The time complexity is constant to the input size n.
- O(n^3): The time complexity scales proportionally to the cube of the input size.
- O(log(n)): The time complexity increases logarithmically in relation to the input size.
- O(n^2): The time complexity grows proportionally to the square of the input size.
- O(nlog(n)): The time complexity combines linear and logarithmic growth factors.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Determine the worst-case time complexity category of a given Java code based on input size n.
</TASK>
<CODE>
import java.io.OutputStream;
import java.io.IOException;
import java.io.InputStream;
import java.io.OutputStream;
import java.util.Arrays;
import java.io.IOException;
import java.io.UncheckedIOException;
import java.io.Closeable;
import java.io.Writer;
import java.io.OutputStreamWriter;
import java.math.BigInteger;
import java.io.InputStream;
/**
* Built using CHelper plug-in
* Actual solution is at the top
*/
public class Main {
public static void main(String[] args) throws Exception {
Thread thread = new Thread(null, new TaskAdapter(), "", 1 << 29);
thread.start();
thread.join();
}
static class TaskAdapter implements Runnable {
@Override
public void run() {
InputStream inputStream = System.in;
OutputStream outputStream = System.out;
FastInput in = new FastInput(inputStream);
FastOutput out = new FastOutput(outputStream);
EPhoenixAndComputers solver = new EPhoenixAndComputers();
solver.solve(1, in, out);
out.close();
}
}
static class EPhoenixAndComputers {
public void solve(int testNumber, FastInput in, FastOutput out) {
int n = in.ri();
int mod = in.ri();
CachedPow2 cp = new CachedPow2(2, mod, n + 1, mod - 1);
Combination comb = new Combination(n + 1, mod);
long[][][] dp = new long[n + 1][n + 1][2];
dp[0][0][0] = 1;
for (int i = 1; i <= n; i++) {
for (int j = 0; j <= n; j++) {
dp[i][j][0] = dp[i - 1][j][1];
for (int k = 0; k < i; k++) {
int len = i - k;
int last = j - len;
if (last >= 0) {
dp[i][j][1] += dp[k][last][0] * cp.pow(len - 1) % mod * comb.combination(j, len) % mod;
}
}
dp[i][j][1] %= mod;
}
}
long ans = 0;
for (int i = 0; i <= n; i++) {
ans += dp[n][i][1];
}
ans %= mod;
out.println(ans);
}
}
static class FastOutput implements AutoCloseable, Closeable, Appendable {
private static final int THRESHOLD = 32 << 10;
private final Writer os;
private StringBuilder cache = new StringBuilder(THRESHOLD * 2);
public FastOutput append(CharSequence csq) {
cache.append(csq);
return this;
}
public FastOutput append(CharSequence csq, int start, int end) {
cache.append(csq, start, end);
return this;
}
private void afterWrite() {
if (cache.length() < THRESHOLD) {
return;
}
flush();
}
public FastOutput(Writer os) {
this.os = os;
}
public FastOutput(OutputStream os) {
this(new OutputStreamWriter(os));
}
public FastOutput append(char c) {
cache.append(c);
afterWrite();
return this;
}
public FastOutput append(long c) {
cache.append(c);
afterWrite();
return this;
}
public FastOutput println(long c) {
return append(c).println();
}
public FastOutput println() {
return append('\n');
}
public FastOutput flush() {
try {
// boolean success = false;
// if (stringBuilderValueField != null) {
// try {
// char[] value = (char[]) stringBuilderValueField.get(cache);
// os.write(value, 0, cache.length());
// success = true;
// } catch (Exception e) {
// }
// }
// if (!success) {
os.append(cache);
// }
os.flush();
cache.setLength(0);
} catch (IOException e) {
throw new UncheckedIOException(e);
}
return this;
}
public void close() {
flush();
try {
os.close();
} catch (IOException e) {
throw new UncheckedIOException(e);
}
}
public String toString() {
return cache.toString();
}
}
static interface IntegerEntryIterator {
boolean hasNext();
void next();
int getEntryKey();
int getEntryValue();
}
static class FastInput {
private final InputStream is;
private byte[] buf = new byte[1 << 13];
private int bufLen;
private int bufOffset;
private int next;
public FastInput(InputStream is) {
this.is = is;
}
private int read() {
while (bufLen == bufOffset) {
bufOffset = 0;
try {
bufLen = is.read(buf);
} catch (IOException e) {
bufLen = -1;
}
if (bufLen == -1) {
return -1;
}
}
return buf[bufOffset++];
}
public void skipBlank() {
while (next >= 0 && next <= 32) {
next = read();
}
}
public int ri() {
return readInt();
}
public int readInt() {
boolean rev = false;
skipBlank();
if (next == '+' || next == '-') {
rev = next == '-';
next = read();
}
int val = 0;
while (next >= '0' && next <= '9') {
val = val * 10 - next + '0';
next = read();
}
return rev ? val : -val;
}
}
static class Hasher {
private long time = System.nanoTime() + System.currentTimeMillis() * 31L;
public int shuffle(long z) {
z += time;
z = (z ^ (z >>> 33)) * 0x62a9d9ed799705f5L;
return (int) (((z ^ (z >>> 28)) * 0xcb24d0a5c88c35b3L) >>> 32);
}
public int hash(int x) {
return shuffle(x);
}
}
static class CachedEulerFunction {
private static int boundary = 1 << 16;
private static int[] euler = MultiplicativeFunctionSieve.getInstance(boundary).getEuler();
private static IntegerHashMap map = new IntegerHashMap(64, true);
public static int get(int x) {
return get(x, 2);
}
private static int get(int x, int begin) {
if (x <= boundary) {
return euler[x];
}
int ans = map.getOrDefault(x, -1);
if (ans == -1) {
int factor = findPrimeFactor(x, begin);
int y = x;
int exp = 1;
while (y % factor == 0) {
y /= factor;
exp *= factor;
}
ans = get(y, factor + 1) * (exp - exp / factor);
//ans = calc(x);
map.put(x, ans);
}
return ans;
}
private static int findPrimeFactor(int x, int begin) {
for (int i = Math.max(2, begin); i * i <= x; i++) {
if (x % i == 0) {
return i;
}
}
return x;
}
}
static interface IntCombination {
}
static class MultiplicativeFunctionSieve {
static MultiplicativeFunctionSieve instance = new MultiplicativeFunctionSieve(1 << 16);
public int[] primes;
public boolean[] isComp;
public int primeLength;
public int[] smallestPrimeFactor;
public int[] expOfSmallestPrimeFactor;
int limit;
public static MultiplicativeFunctionSieve getInstance(int n) {
if (n <= (1 << 16)) {
return instance;
}
return new MultiplicativeFunctionSieve(n);
}
public int[] getEuler() {
int[] euler = new int[limit + 1];
euler[1] = 1;
for (int i = 2; i <= limit; i++) {
if (!isComp[i]) {
euler[i] = i - 1;
} else {
if (expOfSmallestPrimeFactor[i] == i) {
euler[i] = i - i / smallestPrimeFactor[i];
} else {
euler[i] = euler[expOfSmallestPrimeFactor[i]] * euler[i / expOfSmallestPrimeFactor[i]];
}
}
}
return euler;
}
public MultiplicativeFunctionSieve(int limit) {
this.limit = limit;
isComp = new boolean[limit + 1];
primes = new int[limit + 1];
expOfSmallestPrimeFactor = new int[limit + 1];
smallestPrimeFactor = new int[limit + 1];
primeLength = 0;
for (int i = 2; i <= limit; i++) {
if (!isComp[i]) {
primes[primeLength++] = i;
expOfSmallestPrimeFactor[i] = smallestPrimeFactor[i] = i;
}
for (int j = 0, until = limit / i; j < primeLength && primes[j] <= until; j++) {
int pi = primes[j] * i;
smallestPrimeFactor[pi] = primes[j];
expOfSmallestPrimeFactor[pi] = smallestPrimeFactor[i] == primes[j]
? (expOfSmallestPrimeFactor[i] * expOfSmallestPrimeFactor[primes[j]])
: expOfSmallestPrimeFactor[primes[j]];
isComp[pi] = true;
if (i % primes[j] == 0) {
break;
}
}
}
}
}
static class Factorial {
int[] fact;
int[] inv;
int mod;
public int getMod() {
return mod;
}
public Factorial(int[] fact, int[] inv, int mod) {
this.mod = mod;
this.fact = fact;
this.inv = inv;
fact[0] = inv[0] = 1;
int n = Math.min(fact.length, mod);
for (int i = 1; i < n; i++) {
fact[i] = i;
fact[i] = (int) ((long) fact[i] * fact[i - 1] % mod);
}
if (n - 1 >= 0) {
inv[n - 1] = BigInteger.valueOf(fact[n - 1]).modInverse(BigInteger.valueOf(mod)).intValue();
}
for (int i = n - 2; i >= 1; i--) {
inv[i] = (int) ((long) inv[i + 1] * (i + 1) % mod);
}
}
public Factorial(int limit, int mod) {
this(new int[Math.min(limit + 1, mod)], new int[Math.min(limit + 1, mod)], mod);
}
public int fact(int n) {
if (n >= mod) {
return 0;
}
return fact[n];
}
public int invFact(int n) {
if (n >= mod) {
throw new IllegalArgumentException();
}
return inv[n];
}
}
static class CachedPow2 {
private int[] first;
private int[] second;
private int mod;
private int low;
private int mask;
private int phi;
private int xphi;
public CachedPow2(int x, int mod) {
this(x, mod, CachedEulerFunction.get(mod));
}
public CachedPow2(int x, int mod, int phi) {
this(x, mod, mod, phi);
}
public CachedPow2(int x, int mod, int limit, int phi) {
this.phi = phi;
limit = Math.min(limit, mod);
this.mod = mod;
int log = Log2.ceilLog(limit + 1);
low = (log + 1) / 2;
mask = (1 << low) - 1;
first = new int[1 << low];
second = new int[1 << log - low];
first[0] = 1;
for (int i = 1; i < first.length; i++) {
first[i] = (int) ((long) x * first[i - 1] % mod);
}
second[0] = 1;
long step = (long) x * first[first.length - 1] % mod;
for (int i = 1; i < second.length; i++) {
second[i] = (int) (second[i - 1] * step % mod);
}
xphi = DigitUtils.modPow(x, phi, mod);
}
public int pow(int exp) {
return (int) ((long) first[exp & mask] * second[exp >> low] % mod);
}
}
static class DigitUtils {
private DigitUtils() {
}
public static int mod(long x, int mod) {
if (x < -mod || x >= mod) {
x %= mod;
}
if (x < 0) {
x += mod;
}
return (int) x;
}
public static int mod(int x, int mod) {
if (x < -mod || x >= mod) {
x %= mod;
}
if (x < 0) {
x += mod;
}
return x;
}
public static int modPow(int x, long n, int m) {
if (n == 0) {
return DigitUtils.mod(1, m);
}
int ans = modPow(x, n / 2, m);
ans = DigitUtils.mod((long) ans * ans, m);
if (n % 2 == 1) {
ans = DigitUtils.mod((long) ans * x, m);
}
return ans;
}
}
static class Combination implements IntCombination {
final Factorial factorial;
int modVal;
public Combination(Factorial factorial) {
this.factorial = factorial;
this.modVal = factorial.getMod();
}
public Combination(int limit, int mod) {
this(new Factorial(limit, mod));
}
public int combination(int m, int n) {
if (n > m || n < 0) {
return 0;
}
return (int) ((long) factorial.fact(m) * factorial.invFact(n) % modVal * factorial.invFact(m - n) % modVal);
}
}
static class Log2 {
public static int ceilLog(int x) {
if (x <= 0) {
return 0;
}
return 32 - Integer.numberOfLeadingZeros(x - 1);
}
}
static class IntegerHashMap {
private int now;
private int[] slot;
private int[] version;
private int[] next;
private int[] keys;
private int[] values;
private int alloc;
private boolean[] removed;
private int mask;
private int size;
private boolean rehash;
private Hasher hasher = new Hasher();
public IntegerHashMap(int cap, boolean rehash) {
now = 1;
this.mask = (1 << (32 - Integer.numberOfLeadingZeros(cap - 1))) - 1;
slot = new int[mask + 1];
version = new int[slot.length];
next = new int[cap + 1];
keys = new int[cap + 1];
values = new int[cap + 1];
removed = new boolean[cap + 1];
this.rehash = rehash;
}
private void doubleCapacity() {
int newSize = Math.max(next.length + 10, next.length * 2);
next = Arrays.copyOf(next, newSize);
keys = Arrays.copyOf(keys, newSize);
values = Arrays.copyOf(values, newSize);
removed = Arrays.copyOf(removed, newSize);
}
public void alloc() {
alloc++;
if (alloc >= next.length) {
doubleCapacity();
}
next[alloc] = 0;
removed[alloc] = false;
size++;
}
private void rehash() {
int[] newSlots = new int[Math.max(16, slot.length * 2)];
int[] newVersions = new int[newSlots.length];
int newMask = newSlots.length - 1;
for (int i = 0; i < slot.length; i++) {
access(i);
if (slot[i] == 0) {
continue;
}
int head = slot[i];
while (head != 0) {
int n = next[head];
int s = hash(keys[head]) & newMask;
next[head] = newSlots[s];
newSlots[s] = head;
head = n;
}
}
this.slot = newSlots;
this.version = newVersions;
now = 0;
this.mask = newMask;
}
private int hash(int x) {
return hasher.hash(x);
}
public void put(int x, int y) {
put(x, y, true);
}
public void put(int x, int y, boolean cover) {
int h = hash(x);
int s = h & mask;
access(s);
if (slot[s] == 0) {
alloc();
slot[s] = alloc;
keys[alloc] = x;
values[alloc] = y;
} else {
int index = findIndexOrLastEntry(s, x);
if (keys[index] != x) {
alloc();
next[index] = alloc;
keys[alloc] = x;
values[alloc] = y;
} else if (cover) {
values[index] = y;
}
}
if (rehash && size >= slot.length) {
rehash();
}
}
public int getOrDefault(int x, int def) {
int h = hash(x);
int s = h & mask;
access(s);
if (slot[s] == 0) {
return def;
}
int index = findIndexOrLastEntry(s, x);
return keys[index] == x ? values[index] : def;
}
private int findIndexOrLastEntry(int s, int x) {
int iter = slot[s];
while (keys[iter] != x) {
if (next[iter] != 0) {
iter = next[iter];
} else {
return iter;
}
}
return iter;
}
private void access(int i) {
if (version[i] != now) {
version[i] = now;
slot[i] = 0;
}
}
public IntegerEntryIterator iterator() {
return new IntegerEntryIterator() {
int index = 1;
int readIndex = -1;
public boolean hasNext() {
while (index <= alloc && removed[index]) {
index++;
}
return index <= alloc;
}
public int getEntryKey() {
return keys[readIndex];
}
public int getEntryValue() {
return values[readIndex];
}
public void next() {
if (!hasNext()) {
throw new IllegalStateException();
}
readIndex = index;
index++;
}
};
}
public String toString() {
IntegerEntryIterator iterator = iterator();
StringBuilder builder = new StringBuilder("{");
while (iterator.hasNext()) {
iterator.next();
builder.append(iterator.getEntryKey()).append("->").append(iterator.getEntryValue()).append(',');
}
if (builder.charAt(builder.length() - 1) == ',') {
builder.setLength(builder.length() - 1);
}
builder.append('}');
return builder.toString();
}
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(1): The time complexity is constant to the input size n.
- O(nlog(n)): The time complexity combines linear and logarithmic growth factors.
- O(n): The time complexity increases proportionally to the input size n in a linear manner.
- others: The time complexity does not fit any of the above categories or cannot be clearly classified.
- O(n^3): The time complexity scales proportionally to the cube of the input size.
- O(n^2): The time complexity grows proportionally to the square of the input size.
- non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially.
- O(log(n)): The time complexity increases logarithmically in relation to the input size.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
| 4,756
| 3,496
|
3,723
|
/**
* author: derrick20
* created: 3/20/21 7:13 PM
*/
import java.io.*;
import java.util.*;
import static java.lang.Math.*;
public class E2_SquareFreeFast {
static FastScanner sc = new FastScanner();
static PrintWriter out = new PrintWriter(System.out);
public static void main(String[] args) {
// generate();
int T = sc.nextInt();
int MAX = (int) 1e7;
int[] canonical = new int[MAX + 1];
canonical[1] = 1;
for (int factor = 2; factor <= MAX; factor++) {
if (canonical[factor] == 0) {
for (int mult = factor; mult <= MAX; mult += factor) {
int prev = canonical[mult / factor];
if (prev % factor == 0) {
canonical[mult] = prev / factor;
} else {
canonical[mult] = prev * factor;
}
}
}
}
int[] last = new int[MAX + 1];
while (T-->0) {
int N = sc.nextInt();
int K = sc.nextInt();
int[] a = new int[N + 1];
int[][] dp = new int[2][K + 1];
int[][] start = new int[2][K + 1];
int ptr = 0;
for (int i = 1; i <= N; i++) {
int nxt = 1 ^ ptr;
a[i] = canonical[sc.nextInt()];
for (int k = 0; k <= K; k++) {
if (start[ptr][k] > last[a[i]]) {
// extend it for free (unique)
dp[nxt][k] = dp[ptr][k];
start[nxt][k] = start[ptr][k];
} else {
// start anew
dp[nxt][k] = dp[ptr][k] + 1;
start[nxt][k] = i;
}
// Use a change (only if existing segment)
if (i > 1 && k > 0 && start[ptr][k - 1] <= last[a[i]]) {
// if this cost beats the old cost, or if it has a later start point, it's better.
if (dp[ptr][k - 1] < dp[nxt][k] || (dp[ptr][k - 1] == dp[nxt][k] && start[ptr][k - 1] > start[nxt][k])) {
dp[nxt][k] = dp[ptr][k - 1];
start[nxt][k] = start[ptr][k - 1];
}
}
}
// System.out.println(Arrays.toString(start[nxt]));
// System.out.println(Arrays.toString(dp[nxt]));
last[a[i]] = i;
ptr = nxt;
}
for (int v : a) {
last[v] = 0;
}
// always allowed to waste initial changes by starting offset, so mono decr
out.println(dp[ptr][K]);
}
out.close();
}
static class FastScanner {
private int BS = 1 << 16;
private char NC = (char) 0;
private byte[] buf = new byte[BS];
private int bId = 0, size = 0;
private char c = NC;
private double cnt = 1;
private BufferedInputStream in;
public FastScanner() {
in = new BufferedInputStream(System.in, BS);
}
public FastScanner(String s) {
try {
in = new BufferedInputStream(new FileInputStream(new File(s)), BS);
} catch (Exception e) {
in = new BufferedInputStream(System.in, BS);
}
}
char getChar() {
while (bId == size) {
try {
size = in.read(buf);
} catch (Exception e) {
return NC;
}
if (size == -1) return NC;
bId = 0;
}
return (char) buf[bId++];
}
int nextInt() {
return (int) nextLong();
}
long nextLong() {
cnt = 1;
boolean neg = false;
if (c == NC) c = getChar();
for (; (c < '0' || c > '9'); c = getChar()) {
if (c == '-') neg = true;
}
long res = 0;
for (; c >= '0' && c <= '9'; c = getChar()) {
res = (res << 3) + (res << 1) + c - '0';
cnt *= 10;
}
return neg ? -res : res;
}
double nextDouble() {
boolean neg = false;
if (c == NC) c = getChar();
for (; (c < '0' || c > '9'); c = getChar()) {
if (c == '-') neg = true;
}
double cur = nextLong();
if (c != '.') {
return neg ? -cur : cur;
} else {
double frac = nextLong() / cnt;
return neg ? -cur - frac : cur + frac;
}
}
String next() {
StringBuilder res = new StringBuilder();
while (c <= 32) c = getChar();
while (c > 32) {
res.append(c);
c = getChar();
}
return res.toString();
}
String nextLine() {
StringBuilder res = new StringBuilder();
while (c <= 32) c = getChar();
while (c != '\n') {
res.append(c);
c = getChar();
}
return res.toString();
}
boolean hasNext() {
if (c > 32) return true;
while (true) {
c = getChar();
if (c == NC) return false;
else if (c > 32) return true;
}
}
}
static void ASSERT(boolean assertion, String message) {
if (!assertion) throw new AssertionError(message);
}
static void ASSERT(boolean assertion) {
if (!assertion) throw new AssertionError();
}
}
|
O(n^3)
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Determine the worst-case time complexity category of a given Java code based on input size n.
</TASK>
<CODE>
/**
* author: derrick20
* created: 3/20/21 7:13 PM
*/
import java.io.*;
import java.util.*;
import static java.lang.Math.*;
public class E2_SquareFreeFast {
static FastScanner sc = new FastScanner();
static PrintWriter out = new PrintWriter(System.out);
public static void main(String[] args) {
// generate();
int T = sc.nextInt();
int MAX = (int) 1e7;
int[] canonical = new int[MAX + 1];
canonical[1] = 1;
for (int factor = 2; factor <= MAX; factor++) {
if (canonical[factor] == 0) {
for (int mult = factor; mult <= MAX; mult += factor) {
int prev = canonical[mult / factor];
if (prev % factor == 0) {
canonical[mult] = prev / factor;
} else {
canonical[mult] = prev * factor;
}
}
}
}
int[] last = new int[MAX + 1];
while (T-->0) {
int N = sc.nextInt();
int K = sc.nextInt();
int[] a = new int[N + 1];
int[][] dp = new int[2][K + 1];
int[][] start = new int[2][K + 1];
int ptr = 0;
for (int i = 1; i <= N; i++) {
int nxt = 1 ^ ptr;
a[i] = canonical[sc.nextInt()];
for (int k = 0; k <= K; k++) {
if (start[ptr][k] > last[a[i]]) {
// extend it for free (unique)
dp[nxt][k] = dp[ptr][k];
start[nxt][k] = start[ptr][k];
} else {
// start anew
dp[nxt][k] = dp[ptr][k] + 1;
start[nxt][k] = i;
}
// Use a change (only if existing segment)
if (i > 1 && k > 0 && start[ptr][k - 1] <= last[a[i]]) {
// if this cost beats the old cost, or if it has a later start point, it's better.
if (dp[ptr][k - 1] < dp[nxt][k] || (dp[ptr][k - 1] == dp[nxt][k] && start[ptr][k - 1] > start[nxt][k])) {
dp[nxt][k] = dp[ptr][k - 1];
start[nxt][k] = start[ptr][k - 1];
}
}
}
// System.out.println(Arrays.toString(start[nxt]));
// System.out.println(Arrays.toString(dp[nxt]));
last[a[i]] = i;
ptr = nxt;
}
for (int v : a) {
last[v] = 0;
}
// always allowed to waste initial changes by starting offset, so mono decr
out.println(dp[ptr][K]);
}
out.close();
}
static class FastScanner {
private int BS = 1 << 16;
private char NC = (char) 0;
private byte[] buf = new byte[BS];
private int bId = 0, size = 0;
private char c = NC;
private double cnt = 1;
private BufferedInputStream in;
public FastScanner() {
in = new BufferedInputStream(System.in, BS);
}
public FastScanner(String s) {
try {
in = new BufferedInputStream(new FileInputStream(new File(s)), BS);
} catch (Exception e) {
in = new BufferedInputStream(System.in, BS);
}
}
char getChar() {
while (bId == size) {
try {
size = in.read(buf);
} catch (Exception e) {
return NC;
}
if (size == -1) return NC;
bId = 0;
}
return (char) buf[bId++];
}
int nextInt() {
return (int) nextLong();
}
long nextLong() {
cnt = 1;
boolean neg = false;
if (c == NC) c = getChar();
for (; (c < '0' || c > '9'); c = getChar()) {
if (c == '-') neg = true;
}
long res = 0;
for (; c >= '0' && c <= '9'; c = getChar()) {
res = (res << 3) + (res << 1) + c - '0';
cnt *= 10;
}
return neg ? -res : res;
}
double nextDouble() {
boolean neg = false;
if (c == NC) c = getChar();
for (; (c < '0' || c > '9'); c = getChar()) {
if (c == '-') neg = true;
}
double cur = nextLong();
if (c != '.') {
return neg ? -cur : cur;
} else {
double frac = nextLong() / cnt;
return neg ? -cur - frac : cur + frac;
}
}
String next() {
StringBuilder res = new StringBuilder();
while (c <= 32) c = getChar();
while (c > 32) {
res.append(c);
c = getChar();
}
return res.toString();
}
String nextLine() {
StringBuilder res = new StringBuilder();
while (c <= 32) c = getChar();
while (c != '\n') {
res.append(c);
c = getChar();
}
return res.toString();
}
boolean hasNext() {
if (c > 32) return true;
while (true) {
c = getChar();
if (c == NC) return false;
else if (c > 32) return true;
}
}
}
static void ASSERT(boolean assertion, String message) {
if (!assertion) throw new AssertionError(message);
}
static void ASSERT(boolean assertion) {
if (!assertion) throw new AssertionError();
}
}
</CODE>
<EVALUATION_RUBRIC>
- non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially.
- O(1): The time complexity is constant to the input size n.
- O(log(n)): The time complexity increases logarithmically in relation to the input size.
- O(n): The time complexity increases proportionally to the input size n in a linear manner.
- O(nlog(n)): The time complexity combines linear and logarithmic growth factors.
- O(n^2): The time complexity grows proportionally to the square of the input size.
- O(n^3): The time complexity scales proportionally to the cube of the input size.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Classify the following Java code's worst-case time complexity according to its relationship to the input size n.
</TASK>
<CODE>
/**
* author: derrick20
* created: 3/20/21 7:13 PM
*/
import java.io.*;
import java.util.*;
import static java.lang.Math.*;
public class E2_SquareFreeFast {
static FastScanner sc = new FastScanner();
static PrintWriter out = new PrintWriter(System.out);
public static void main(String[] args) {
// generate();
int T = sc.nextInt();
int MAX = (int) 1e7;
int[] canonical = new int[MAX + 1];
canonical[1] = 1;
for (int factor = 2; factor <= MAX; factor++) {
if (canonical[factor] == 0) {
for (int mult = factor; mult <= MAX; mult += factor) {
int prev = canonical[mult / factor];
if (prev % factor == 0) {
canonical[mult] = prev / factor;
} else {
canonical[mult] = prev * factor;
}
}
}
}
int[] last = new int[MAX + 1];
while (T-->0) {
int N = sc.nextInt();
int K = sc.nextInt();
int[] a = new int[N + 1];
int[][] dp = new int[2][K + 1];
int[][] start = new int[2][K + 1];
int ptr = 0;
for (int i = 1; i <= N; i++) {
int nxt = 1 ^ ptr;
a[i] = canonical[sc.nextInt()];
for (int k = 0; k <= K; k++) {
if (start[ptr][k] > last[a[i]]) {
// extend it for free (unique)
dp[nxt][k] = dp[ptr][k];
start[nxt][k] = start[ptr][k];
} else {
// start anew
dp[nxt][k] = dp[ptr][k] + 1;
start[nxt][k] = i;
}
// Use a change (only if existing segment)
if (i > 1 && k > 0 && start[ptr][k - 1] <= last[a[i]]) {
// if this cost beats the old cost, or if it has a later start point, it's better.
if (dp[ptr][k - 1] < dp[nxt][k] || (dp[ptr][k - 1] == dp[nxt][k] && start[ptr][k - 1] > start[nxt][k])) {
dp[nxt][k] = dp[ptr][k - 1];
start[nxt][k] = start[ptr][k - 1];
}
}
}
// System.out.println(Arrays.toString(start[nxt]));
// System.out.println(Arrays.toString(dp[nxt]));
last[a[i]] = i;
ptr = nxt;
}
for (int v : a) {
last[v] = 0;
}
// always allowed to waste initial changes by starting offset, so mono decr
out.println(dp[ptr][K]);
}
out.close();
}
static class FastScanner {
private int BS = 1 << 16;
private char NC = (char) 0;
private byte[] buf = new byte[BS];
private int bId = 0, size = 0;
private char c = NC;
private double cnt = 1;
private BufferedInputStream in;
public FastScanner() {
in = new BufferedInputStream(System.in, BS);
}
public FastScanner(String s) {
try {
in = new BufferedInputStream(new FileInputStream(new File(s)), BS);
} catch (Exception e) {
in = new BufferedInputStream(System.in, BS);
}
}
char getChar() {
while (bId == size) {
try {
size = in.read(buf);
} catch (Exception e) {
return NC;
}
if (size == -1) return NC;
bId = 0;
}
return (char) buf[bId++];
}
int nextInt() {
return (int) nextLong();
}
long nextLong() {
cnt = 1;
boolean neg = false;
if (c == NC) c = getChar();
for (; (c < '0' || c > '9'); c = getChar()) {
if (c == '-') neg = true;
}
long res = 0;
for (; c >= '0' && c <= '9'; c = getChar()) {
res = (res << 3) + (res << 1) + c - '0';
cnt *= 10;
}
return neg ? -res : res;
}
double nextDouble() {
boolean neg = false;
if (c == NC) c = getChar();
for (; (c < '0' || c > '9'); c = getChar()) {
if (c == '-') neg = true;
}
double cur = nextLong();
if (c != '.') {
return neg ? -cur : cur;
} else {
double frac = nextLong() / cnt;
return neg ? -cur - frac : cur + frac;
}
}
String next() {
StringBuilder res = new StringBuilder();
while (c <= 32) c = getChar();
while (c > 32) {
res.append(c);
c = getChar();
}
return res.toString();
}
String nextLine() {
StringBuilder res = new StringBuilder();
while (c <= 32) c = getChar();
while (c != '\n') {
res.append(c);
c = getChar();
}
return res.toString();
}
boolean hasNext() {
if (c > 32) return true;
while (true) {
c = getChar();
if (c == NC) return false;
else if (c > 32) return true;
}
}
}
static void ASSERT(boolean assertion, String message) {
if (!assertion) throw new AssertionError(message);
}
static void ASSERT(boolean assertion) {
if (!assertion) throw new AssertionError();
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(1): The running time does not change regardless of the input size n.
- O(n^2): The running time increases with the square of the input size n.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- O(n^3): The running time increases with the cube of the input size n.
- O(n): The running time grows linearly with the input size n.
- others: The code does not clearly correspond to the listed classes or has an unclassified time complexity.
- O(log(n)): The running time increases with the logarithm of the input size n.
- O(nlog(n)): The running time increases with the product of n and logarithm of n.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
| 1,710
| 3,715
|
1,472
|
import java.io.InputStreamReader;
import java.io.IOException;
import java.util.InputMismatchException;
import java.io.BufferedReader;
import java.io.OutputStream;
import java.io.PrintWriter;
import java.util.StringTokenizer;
import java.io.InputStream;
/**
* Built using CHelper plug-in
* Actual solution is at the top
* @author Zakhar Voit
*/
public class Main {
public static void main(String[] args) {
InputStream inputStream = System.in;
OutputStream outputStream = System.out;
Scanner in = new Scanner(inputStream);
PrintWriter out = new PrintWriter(outputStream);
TaskD solver = new TaskD();
solver.solve(1, in, out);
out.close();
}
}
class TaskD {
public void solve(int testNumber, Scanner in, PrintWriter out) {
out.println(solve(in.nextLong(), in.nextLong()));
/*for (long l = 1; l < 500; l++) {
for (long r = l; r < 500; r++) {
if (badSolve(l, r) != solve(l, r)) {
out.println(l + " " + r);
return;
}
}
}
out.println("OK");*/
}
long solve(long l, long r) {
if (l == r)
return 0;
long ans = l ^ (l + 1);
for (int i = 0; i < 62; i++) {
l |= (1l << i);
if (l + 1 <= r)
ans = (1l << (i + 2l)) - 1;
}
return ans;
}
}
class Scanner {
BufferedReader in;
StringTokenizer tok;
public Scanner(InputStream in) {
this.in = new BufferedReader(new InputStreamReader(in));
tok = new StringTokenizer("");
}
public String nextToken() {
if (!tok.hasMoreTokens()) {
try {
String newLine = in.readLine();
if (newLine == null)
throw new InputMismatchException();
tok = new StringTokenizer(newLine);
} catch (IOException e) {
throw new InputMismatchException();
}
return nextToken();
}
return tok.nextToken();
}
public long nextLong() {
return Long.parseLong(nextToken());
}
}
|
O(log(n))
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Determine the worst-case time complexity category of a given Java code based on input size n.
</TASK>
<CODE>
import java.io.InputStreamReader;
import java.io.IOException;
import java.util.InputMismatchException;
import java.io.BufferedReader;
import java.io.OutputStream;
import java.io.PrintWriter;
import java.util.StringTokenizer;
import java.io.InputStream;
/**
* Built using CHelper plug-in
* Actual solution is at the top
* @author Zakhar Voit
*/
public class Main {
public static void main(String[] args) {
InputStream inputStream = System.in;
OutputStream outputStream = System.out;
Scanner in = new Scanner(inputStream);
PrintWriter out = new PrintWriter(outputStream);
TaskD solver = new TaskD();
solver.solve(1, in, out);
out.close();
}
}
class TaskD {
public void solve(int testNumber, Scanner in, PrintWriter out) {
out.println(solve(in.nextLong(), in.nextLong()));
/*for (long l = 1; l < 500; l++) {
for (long r = l; r < 500; r++) {
if (badSolve(l, r) != solve(l, r)) {
out.println(l + " " + r);
return;
}
}
}
out.println("OK");*/
}
long solve(long l, long r) {
if (l == r)
return 0;
long ans = l ^ (l + 1);
for (int i = 0; i < 62; i++) {
l |= (1l << i);
if (l + 1 <= r)
ans = (1l << (i + 2l)) - 1;
}
return ans;
}
}
class Scanner {
BufferedReader in;
StringTokenizer tok;
public Scanner(InputStream in) {
this.in = new BufferedReader(new InputStreamReader(in));
tok = new StringTokenizer("");
}
public String nextToken() {
if (!tok.hasMoreTokens()) {
try {
String newLine = in.readLine();
if (newLine == null)
throw new InputMismatchException();
tok = new StringTokenizer(newLine);
} catch (IOException e) {
throw new InputMismatchException();
}
return nextToken();
}
return tok.nextToken();
}
public long nextLong() {
return Long.parseLong(nextToken());
}
}
</CODE>
<EVALUATION_RUBRIC>
- non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially.
- O(nlog(n)): The time complexity combines linear and logarithmic growth factors.
- O(log(n)): The time complexity increases logarithmically in relation to the input size.
- O(n): The time complexity increases proportionally to the input size n in a linear manner.
- O(n^2): The time complexity grows proportionally to the square of the input size.
- O(1): The time complexity is constant to the input size n.
- O(n^3): The time complexity scales proportionally to the cube of the input size.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Classify the following Java code's worst-case time complexity according to its relationship to the input size n.
</TASK>
<CODE>
import java.io.InputStreamReader;
import java.io.IOException;
import java.util.InputMismatchException;
import java.io.BufferedReader;
import java.io.OutputStream;
import java.io.PrintWriter;
import java.util.StringTokenizer;
import java.io.InputStream;
/**
* Built using CHelper plug-in
* Actual solution is at the top
* @author Zakhar Voit
*/
public class Main {
public static void main(String[] args) {
InputStream inputStream = System.in;
OutputStream outputStream = System.out;
Scanner in = new Scanner(inputStream);
PrintWriter out = new PrintWriter(outputStream);
TaskD solver = new TaskD();
solver.solve(1, in, out);
out.close();
}
}
class TaskD {
public void solve(int testNumber, Scanner in, PrintWriter out) {
out.println(solve(in.nextLong(), in.nextLong()));
/*for (long l = 1; l < 500; l++) {
for (long r = l; r < 500; r++) {
if (badSolve(l, r) != solve(l, r)) {
out.println(l + " " + r);
return;
}
}
}
out.println("OK");*/
}
long solve(long l, long r) {
if (l == r)
return 0;
long ans = l ^ (l + 1);
for (int i = 0; i < 62; i++) {
l |= (1l << i);
if (l + 1 <= r)
ans = (1l << (i + 2l)) - 1;
}
return ans;
}
}
class Scanner {
BufferedReader in;
StringTokenizer tok;
public Scanner(InputStream in) {
this.in = new BufferedReader(new InputStreamReader(in));
tok = new StringTokenizer("");
}
public String nextToken() {
if (!tok.hasMoreTokens()) {
try {
String newLine = in.readLine();
if (newLine == null)
throw new InputMismatchException();
tok = new StringTokenizer(newLine);
} catch (IOException e) {
throw new InputMismatchException();
}
return nextToken();
}
return tok.nextToken();
}
public long nextLong() {
return Long.parseLong(nextToken());
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(log(n)): The running time increases with the logarithm of the input size n.
- O(n^2): The running time increases with the square of the input size n.
- O(n): The running time grows linearly with the input size n.
- O(nlog(n)): The running time increases with the product of n and logarithm of n.
- O(n^3): The running time increases with the cube of the input size n.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- O(1): The running time does not change regardless of the input size n.
- others: The code does not clearly correspond to the listed classes or has an unclassified time complexity.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
| 818
| 1,470
|
3,329
|
//Author: net12k44
import java.io.*;
import java.util.*;
public
class Main{//}
static PrintWriter out;
static int c[][];
static int x[] , y[] , n;
static int degIn[];
static ArrayList< ArrayList<Integer> >a = new ArrayList< ArrayList<Integer> >();
static int cnt = 0;
static boolean b[];
private static boolean dfs(int i) {
if (i == -1) return true;
if (b[i]) return false;
b[i] = true;
for(Integer j : a.get(i) )
if ( dfs( y[j] ) ) {
x[i] = j;
y[j] = i;
return true;
}
return false;
}
private static void find(int k) {
int _cnt = -1;
if (k>=0) { x[k] = k; y[k] = k; }
while (_cnt != cnt) {
_cnt = cnt;
Arrays.fill( b , false );
if (k>=0) b[k] = true;
for(int i = 0; i < n; ++i)
if (x[i] == -1 && dfs(i) ) ++cnt;
}
if (k>=0) { x[k] = -1; y[k] = -1; }
}
public static void solve() {
n = in.nextInt();
int m = in.nextInt();
b = new boolean[n]; c = new int [n][n];
degIn = new int[n]; x = new int[n]; y = new int[n];
Arrays.fill(x , -1); Arrays.fill(y , -1);
for(int i = 0; i < n; ++i) a. add( new ArrayList< Integer > () );
while (m-- > 0) {
int i = in.nextInt()-1 , j = in.nextInt()-1;
a.get(i).add(j);
degIn[j]++;
c[i][j] = 1;
}
find(-1);
int kq = Integer.MAX_VALUE;
for(int k = 0; k < n; ++k) {
if (x[k] != -1) {y[ x[k] ] = -1; x[k] = -1; cnt--; }
if (y[k] != -1) {x[ y[k] ] = -1; y[k] = -1; cnt--; }
find(k);
int t = n*2 - 1 - a.get(k).size() - degIn[k] + c[k][k];
for(int i = 0; i < n; ++i)
if (i!=k)
t = t + a.get(i).size() - c[i][k];
t = t - cnt + (n-1) - cnt;
if (kq > t) kq = t;
}
out.println(kq);
}
public static void main (String[] args) throws java.lang.Exception {
long startTime = System.currentTimeMillis();
out = new PrintWriter(System.out);
solve();
//out.println((String.format("%.2f",(double)(System.currentTimeMillis()-startTime)/1000)));
out.close();
}
static class in {
static BufferedReader reader = new BufferedReader( new InputStreamReader(System.in) ) ;
static StringTokenizer tokenizer = new StringTokenizer("");
static String next() {
while ( !tokenizer.hasMoreTokens() )
try { tokenizer = new StringTokenizer( reader.readLine() ); }
catch (IOException e){
throw new RuntimeException(e);
}
return tokenizer.nextToken();
}
static int nextInt() { return Integer.parseInt( next() ); }
static double nextDouble(){ return Double.parseDouble( next() ); }
}
//////////////////////////////////////////////////
}//
|
O(n^3)
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n.
</TASK>
<CODE>
//Author: net12k44
import java.io.*;
import java.util.*;
public
class Main{//}
static PrintWriter out;
static int c[][];
static int x[] , y[] , n;
static int degIn[];
static ArrayList< ArrayList<Integer> >a = new ArrayList< ArrayList<Integer> >();
static int cnt = 0;
static boolean b[];
private static boolean dfs(int i) {
if (i == -1) return true;
if (b[i]) return false;
b[i] = true;
for(Integer j : a.get(i) )
if ( dfs( y[j] ) ) {
x[i] = j;
y[j] = i;
return true;
}
return false;
}
private static void find(int k) {
int _cnt = -1;
if (k>=0) { x[k] = k; y[k] = k; }
while (_cnt != cnt) {
_cnt = cnt;
Arrays.fill( b , false );
if (k>=0) b[k] = true;
for(int i = 0; i < n; ++i)
if (x[i] == -1 && dfs(i) ) ++cnt;
}
if (k>=0) { x[k] = -1; y[k] = -1; }
}
public static void solve() {
n = in.nextInt();
int m = in.nextInt();
b = new boolean[n]; c = new int [n][n];
degIn = new int[n]; x = new int[n]; y = new int[n];
Arrays.fill(x , -1); Arrays.fill(y , -1);
for(int i = 0; i < n; ++i) a. add( new ArrayList< Integer > () );
while (m-- > 0) {
int i = in.nextInt()-1 , j = in.nextInt()-1;
a.get(i).add(j);
degIn[j]++;
c[i][j] = 1;
}
find(-1);
int kq = Integer.MAX_VALUE;
for(int k = 0; k < n; ++k) {
if (x[k] != -1) {y[ x[k] ] = -1; x[k] = -1; cnt--; }
if (y[k] != -1) {x[ y[k] ] = -1; y[k] = -1; cnt--; }
find(k);
int t = n*2 - 1 - a.get(k).size() - degIn[k] + c[k][k];
for(int i = 0; i < n; ++i)
if (i!=k)
t = t + a.get(i).size() - c[i][k];
t = t - cnt + (n-1) - cnt;
if (kq > t) kq = t;
}
out.println(kq);
}
public static void main (String[] args) throws java.lang.Exception {
long startTime = System.currentTimeMillis();
out = new PrintWriter(System.out);
solve();
//out.println((String.format("%.2f",(double)(System.currentTimeMillis()-startTime)/1000)));
out.close();
}
static class in {
static BufferedReader reader = new BufferedReader( new InputStreamReader(System.in) ) ;
static StringTokenizer tokenizer = new StringTokenizer("");
static String next() {
while ( !tokenizer.hasMoreTokens() )
try { tokenizer = new StringTokenizer( reader.readLine() ); }
catch (IOException e){
throw new RuntimeException(e);
}
return tokenizer.nextToken();
}
static int nextInt() { return Integer.parseInt( next() ); }
static double nextDouble(){ return Double.parseDouble( next() ); }
}
//////////////////////////////////////////////////
}//
</CODE>
<EVALUATION_RUBRIC>
- O(log(n)): The execution time ascends in proportion to the logarithm of the input size n.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- O(n): The execution time ascends in a one-to-one ratio with the input size n.
- O(1): The execution time is unaffected by the size of the input n.
- O(n^3): The execution time ascends in proportion to the cube of the input size n.
- O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially.
- O(n^2): The execution time ascends in proportion to the square of the input size n.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Determine the worst-case time complexity category of a given Java code based on input size n.
</TASK>
<CODE>
//Author: net12k44
import java.io.*;
import java.util.*;
public
class Main{//}
static PrintWriter out;
static int c[][];
static int x[] , y[] , n;
static int degIn[];
static ArrayList< ArrayList<Integer> >a = new ArrayList< ArrayList<Integer> >();
static int cnt = 0;
static boolean b[];
private static boolean dfs(int i) {
if (i == -1) return true;
if (b[i]) return false;
b[i] = true;
for(Integer j : a.get(i) )
if ( dfs( y[j] ) ) {
x[i] = j;
y[j] = i;
return true;
}
return false;
}
private static void find(int k) {
int _cnt = -1;
if (k>=0) { x[k] = k; y[k] = k; }
while (_cnt != cnt) {
_cnt = cnt;
Arrays.fill( b , false );
if (k>=0) b[k] = true;
for(int i = 0; i < n; ++i)
if (x[i] == -1 && dfs(i) ) ++cnt;
}
if (k>=0) { x[k] = -1; y[k] = -1; }
}
public static void solve() {
n = in.nextInt();
int m = in.nextInt();
b = new boolean[n]; c = new int [n][n];
degIn = new int[n]; x = new int[n]; y = new int[n];
Arrays.fill(x , -1); Arrays.fill(y , -1);
for(int i = 0; i < n; ++i) a. add( new ArrayList< Integer > () );
while (m-- > 0) {
int i = in.nextInt()-1 , j = in.nextInt()-1;
a.get(i).add(j);
degIn[j]++;
c[i][j] = 1;
}
find(-1);
int kq = Integer.MAX_VALUE;
for(int k = 0; k < n; ++k) {
if (x[k] != -1) {y[ x[k] ] = -1; x[k] = -1; cnt--; }
if (y[k] != -1) {x[ y[k] ] = -1; y[k] = -1; cnt--; }
find(k);
int t = n*2 - 1 - a.get(k).size() - degIn[k] + c[k][k];
for(int i = 0; i < n; ++i)
if (i!=k)
t = t + a.get(i).size() - c[i][k];
t = t - cnt + (n-1) - cnt;
if (kq > t) kq = t;
}
out.println(kq);
}
public static void main (String[] args) throws java.lang.Exception {
long startTime = System.currentTimeMillis();
out = new PrintWriter(System.out);
solve();
//out.println((String.format("%.2f",(double)(System.currentTimeMillis()-startTime)/1000)));
out.close();
}
static class in {
static BufferedReader reader = new BufferedReader( new InputStreamReader(System.in) ) ;
static StringTokenizer tokenizer = new StringTokenizer("");
static String next() {
while ( !tokenizer.hasMoreTokens() )
try { tokenizer = new StringTokenizer( reader.readLine() ); }
catch (IOException e){
throw new RuntimeException(e);
}
return tokenizer.nextToken();
}
static int nextInt() { return Integer.parseInt( next() ); }
static double nextDouble(){ return Double.parseDouble( next() ); }
}
//////////////////////////////////////////////////
}//
</CODE>
<EVALUATION_RUBRIC>
- others: The time complexity does not fit any of the above categories or cannot be clearly classified.
- O(nlog(n)): The time complexity combines linear and logarithmic growth factors.
- O(n): The time complexity increases proportionally to the input size n in a linear manner.
- O(n^3): The time complexity scales proportionally to the cube of the input size.
- non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially.
- O(1): The time complexity is constant to the input size n.
- O(log(n)): The time complexity increases logarithmically in relation to the input size.
- O(n^2): The time complexity grows proportionally to the square of the input size.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
| 1,154
| 3,323
|
2,319
|
import java.io.*;
import java.util.*;
import java.math.*;
import java.util.concurrent.*;
public final class py_indent
{
static BufferedReader br=new BufferedReader(new InputStreamReader(System.in));
static FastScanner sc=new FastScanner(br);
static PrintWriter out=new PrintWriter(System.out);
static Random rnd=new Random();
static int maxn=(int)(5e3+5);
static long mod=(long)(1e9+7);
static int add(long a,long b)
{
long ret=(a+b);
if(ret>=mod)
{
ret%=mod;
}
return (int)ret;
}
public static void main(String args[]) throws Exception
{
int n=sc.nextInt();char[] a=new char[n+1];a[0]='s';
for(int i=1;i<=n;i++)
{
a[i]=sc.next().charAt(0);
}
int[][] dp=new int[n+1][maxn],sum=new int[n+1][maxn];dp[0][0]=1;
sum[0][0]=1;
for(int i=1;i<maxn;i++)
{
sum[0][i]=add(sum[0][i],sum[0][i-1]);
}
for(int i=1;i<=n;i++)
{
if(a[i]=='f')
{
continue;
}
int curr=0,idx=0;
for(int j=i-1;j>=0;j--)
{
if(a[j]=='s')
{
idx=j;break;
}
else
{
curr++;
}
}
for(int j=0;j<maxn;j++)
{
int up=Math.max(0,j-curr);
long now=(sum[idx][maxn-1]-(up==0?0:sum[idx][up-1]));
now=add(now,mod);
dp[i][j]=add(dp[i][j],now);
}
sum[i][0]=dp[i][0];
for(int j=1;j<maxn;j++)
{
sum[i][j]=add(dp[i][j],sum[i][j-1]);
}
}
//out.println(dp[2][0]+" "+dp[2][1]+" "+dp[2][2]);
out.println(dp[n][0]);out.close();
}
}
class FastScanner
{
BufferedReader in;
StringTokenizer st;
public FastScanner(BufferedReader in) {
this.in = in;
}
public String nextToken() throws Exception {
while (st == null || !st.hasMoreTokens()) {
st = new StringTokenizer(in.readLine());
}
return st.nextToken();
}
public String next() throws Exception {
return nextToken().toString();
}
public int nextInt() throws Exception {
return Integer.parseInt(nextToken());
}
public long nextLong() throws Exception {
return Long.parseLong(nextToken());
}
public double nextDouble() throws Exception {
return Double.parseDouble(nextToken());
}
}
|
O(n^2)
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Determine the worst-case time complexity category of a given Java code based on input size n.
</TASK>
<CODE>
import java.io.*;
import java.util.*;
import java.math.*;
import java.util.concurrent.*;
public final class py_indent
{
static BufferedReader br=new BufferedReader(new InputStreamReader(System.in));
static FastScanner sc=new FastScanner(br);
static PrintWriter out=new PrintWriter(System.out);
static Random rnd=new Random();
static int maxn=(int)(5e3+5);
static long mod=(long)(1e9+7);
static int add(long a,long b)
{
long ret=(a+b);
if(ret>=mod)
{
ret%=mod;
}
return (int)ret;
}
public static void main(String args[]) throws Exception
{
int n=sc.nextInt();char[] a=new char[n+1];a[0]='s';
for(int i=1;i<=n;i++)
{
a[i]=sc.next().charAt(0);
}
int[][] dp=new int[n+1][maxn],sum=new int[n+1][maxn];dp[0][0]=1;
sum[0][0]=1;
for(int i=1;i<maxn;i++)
{
sum[0][i]=add(sum[0][i],sum[0][i-1]);
}
for(int i=1;i<=n;i++)
{
if(a[i]=='f')
{
continue;
}
int curr=0,idx=0;
for(int j=i-1;j>=0;j--)
{
if(a[j]=='s')
{
idx=j;break;
}
else
{
curr++;
}
}
for(int j=0;j<maxn;j++)
{
int up=Math.max(0,j-curr);
long now=(sum[idx][maxn-1]-(up==0?0:sum[idx][up-1]));
now=add(now,mod);
dp[i][j]=add(dp[i][j],now);
}
sum[i][0]=dp[i][0];
for(int j=1;j<maxn;j++)
{
sum[i][j]=add(dp[i][j],sum[i][j-1]);
}
}
//out.println(dp[2][0]+" "+dp[2][1]+" "+dp[2][2]);
out.println(dp[n][0]);out.close();
}
}
class FastScanner
{
BufferedReader in;
StringTokenizer st;
public FastScanner(BufferedReader in) {
this.in = in;
}
public String nextToken() throws Exception {
while (st == null || !st.hasMoreTokens()) {
st = new StringTokenizer(in.readLine());
}
return st.nextToken();
}
public String next() throws Exception {
return nextToken().toString();
}
public int nextInt() throws Exception {
return Integer.parseInt(nextToken());
}
public long nextLong() throws Exception {
return Long.parseLong(nextToken());
}
public double nextDouble() throws Exception {
return Double.parseDouble(nextToken());
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(n^2): The time complexity grows proportionally to the square of the input size.
- O(n): The time complexity increases proportionally to the input size n in a linear manner.
- O(nlog(n)): The time complexity combines linear and logarithmic growth factors.
- O(n^3): The time complexity scales proportionally to the cube of the input size.
- O(log(n)): The time complexity increases logarithmically in relation to the input size.
- O(1): The time complexity is constant to the input size n.
- non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Classify the following Java code's worst-case time complexity according to its relationship to the input size n.
</TASK>
<CODE>
import java.io.*;
import java.util.*;
import java.math.*;
import java.util.concurrent.*;
public final class py_indent
{
static BufferedReader br=new BufferedReader(new InputStreamReader(System.in));
static FastScanner sc=new FastScanner(br);
static PrintWriter out=new PrintWriter(System.out);
static Random rnd=new Random();
static int maxn=(int)(5e3+5);
static long mod=(long)(1e9+7);
static int add(long a,long b)
{
long ret=(a+b);
if(ret>=mod)
{
ret%=mod;
}
return (int)ret;
}
public static void main(String args[]) throws Exception
{
int n=sc.nextInt();char[] a=new char[n+1];a[0]='s';
for(int i=1;i<=n;i++)
{
a[i]=sc.next().charAt(0);
}
int[][] dp=new int[n+1][maxn],sum=new int[n+1][maxn];dp[0][0]=1;
sum[0][0]=1;
for(int i=1;i<maxn;i++)
{
sum[0][i]=add(sum[0][i],sum[0][i-1]);
}
for(int i=1;i<=n;i++)
{
if(a[i]=='f')
{
continue;
}
int curr=0,idx=0;
for(int j=i-1;j>=0;j--)
{
if(a[j]=='s')
{
idx=j;break;
}
else
{
curr++;
}
}
for(int j=0;j<maxn;j++)
{
int up=Math.max(0,j-curr);
long now=(sum[idx][maxn-1]-(up==0?0:sum[idx][up-1]));
now=add(now,mod);
dp[i][j]=add(dp[i][j],now);
}
sum[i][0]=dp[i][0];
for(int j=1;j<maxn;j++)
{
sum[i][j]=add(dp[i][j],sum[i][j-1]);
}
}
//out.println(dp[2][0]+" "+dp[2][1]+" "+dp[2][2]);
out.println(dp[n][0]);out.close();
}
}
class FastScanner
{
BufferedReader in;
StringTokenizer st;
public FastScanner(BufferedReader in) {
this.in = in;
}
public String nextToken() throws Exception {
while (st == null || !st.hasMoreTokens()) {
st = new StringTokenizer(in.readLine());
}
return st.nextToken();
}
public String next() throws Exception {
return nextToken().toString();
}
public int nextInt() throws Exception {
return Integer.parseInt(nextToken());
}
public long nextLong() throws Exception {
return Long.parseLong(nextToken());
}
public double nextDouble() throws Exception {
return Double.parseDouble(nextToken());
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(nlog(n)): The running time increases with the product of n and logarithm of n.
- O(n^2): The running time increases with the square of the input size n.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- O(n^3): The running time increases with the cube of the input size n.
- O(n): The running time grows linearly with the input size n.
- others: The code does not clearly correspond to the listed classes or has an unclassified time complexity.
- O(1): The running time does not change regardless of the input size n.
- O(log(n)): The running time increases with the logarithm of the input size n.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
| 1,015
| 2,314
|
143
|
//q4
import java.io.*;
import java.util.*;
import java.math.*;
public class q4 {
public static void main(String[] args) {
Scanner in = new Scanner(System.in);
PrintWriter out=new PrintWriter(new OutputStreamWriter(System.out));
int query = in.nextInt();
while (query -- > 0) {
int n = in.nextInt();
int k = in.nextInt();
char[] arr = new char[n];
//slot all n into char array
String code = in.next();
for (int i = 0; i < n; i++) {
arr[i] = code.charAt(i);
}
//R, G, B cycle
int r = 0;
int g = 0;
int b = 0;
for (int i = 0; i < k; i++) {
if (i % 3 == 0) {
if (arr[i] == 'R') {g++; b++;}
else if (arr[i] == 'G') {r++; b++;}
else {r++; g++;} //if is 'B'
} else if (i % 3 == 1) {
if (arr[i] == 'G') {g++; b++;}
else if (arr[i] == 'B') {r++; b++;}
else {r++; g++;} //if is 'R'
} else { //if mod 3 is 2
if (arr[i] == 'B') {g++; b++;}
else if (arr[i] == 'R') {r++; b++;}
else {r++; g++;} //if is 'G'
}
}
//starting from kth position, if different then add 1, and check (j-k)th position
int rMin = r;
int gMin = g;
int bMin = b;
for (int j = k; j < n; j++) {
//R cycle
if ((j % 3 == 0 && arr[j] != 'R') ||
(j % 3 == 1 && arr[j] != 'G') ||
(j % 3 == 2 && arr[j] != 'B')) {
r++;
}
//R cycle
if (((j - k) % 3 == 0 && arr[j - k] != 'R') ||
((j - k) % 3 == 1 && arr[j - k] != 'G') ||
((j - k) % 3 == 2 && arr[j - k] != 'B')) {
r--;
}
rMin = Math.min(r, rMin);
//G cycle
if ((j % 3 == 0 && arr[j] != 'G') ||
(j % 3 == 1 && arr[j] != 'B') ||
(j % 3 == 2 && arr[j] != 'R')) {
g++;
}
if (((j - k) % 3 == 0 && arr[j - k] != 'G') ||
((j - k) % 3 == 1 && arr[j - k] != 'B') ||
((j - k) % 3 == 2 && arr[j - k] != 'R')) {
g--;
}
gMin = Math.min(gMin, g);
//B cycle
if ((j % 3 == 0 && arr[j] != 'B') ||
(j % 3 == 1 && arr[j] != 'R') ||
(j % 3 == 2 && arr[j] != 'G')) {
b++;
}
if (((j - k) % 3 == 0 && arr[j - k] != 'B') ||
((j - k) % 3 == 1 && arr[j - k] != 'R') ||
((j - k) % 3 == 2 && arr[j - k] != 'G')) {
b--;
}
bMin = Math.min(bMin, b);
}
out.println(Math.min(Math.min(rMin, gMin), bMin));
}
out.flush();
}
}
|
O(n^2)
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Determine the worst-case time complexity category of a given Java code based on input size n.
</TASK>
<CODE>
//q4
import java.io.*;
import java.util.*;
import java.math.*;
public class q4 {
public static void main(String[] args) {
Scanner in = new Scanner(System.in);
PrintWriter out=new PrintWriter(new OutputStreamWriter(System.out));
int query = in.nextInt();
while (query -- > 0) {
int n = in.nextInt();
int k = in.nextInt();
char[] arr = new char[n];
//slot all n into char array
String code = in.next();
for (int i = 0; i < n; i++) {
arr[i] = code.charAt(i);
}
//R, G, B cycle
int r = 0;
int g = 0;
int b = 0;
for (int i = 0; i < k; i++) {
if (i % 3 == 0) {
if (arr[i] == 'R') {g++; b++;}
else if (arr[i] == 'G') {r++; b++;}
else {r++; g++;} //if is 'B'
} else if (i % 3 == 1) {
if (arr[i] == 'G') {g++; b++;}
else if (arr[i] == 'B') {r++; b++;}
else {r++; g++;} //if is 'R'
} else { //if mod 3 is 2
if (arr[i] == 'B') {g++; b++;}
else if (arr[i] == 'R') {r++; b++;}
else {r++; g++;} //if is 'G'
}
}
//starting from kth position, if different then add 1, and check (j-k)th position
int rMin = r;
int gMin = g;
int bMin = b;
for (int j = k; j < n; j++) {
//R cycle
if ((j % 3 == 0 && arr[j] != 'R') ||
(j % 3 == 1 && arr[j] != 'G') ||
(j % 3 == 2 && arr[j] != 'B')) {
r++;
}
//R cycle
if (((j - k) % 3 == 0 && arr[j - k] != 'R') ||
((j - k) % 3 == 1 && arr[j - k] != 'G') ||
((j - k) % 3 == 2 && arr[j - k] != 'B')) {
r--;
}
rMin = Math.min(r, rMin);
//G cycle
if ((j % 3 == 0 && arr[j] != 'G') ||
(j % 3 == 1 && arr[j] != 'B') ||
(j % 3 == 2 && arr[j] != 'R')) {
g++;
}
if (((j - k) % 3 == 0 && arr[j - k] != 'G') ||
((j - k) % 3 == 1 && arr[j - k] != 'B') ||
((j - k) % 3 == 2 && arr[j - k] != 'R')) {
g--;
}
gMin = Math.min(gMin, g);
//B cycle
if ((j % 3 == 0 && arr[j] != 'B') ||
(j % 3 == 1 && arr[j] != 'R') ||
(j % 3 == 2 && arr[j] != 'G')) {
b++;
}
if (((j - k) % 3 == 0 && arr[j - k] != 'B') ||
((j - k) % 3 == 1 && arr[j - k] != 'R') ||
((j - k) % 3 == 2 && arr[j - k] != 'G')) {
b--;
}
bMin = Math.min(bMin, b);
}
out.println(Math.min(Math.min(rMin, gMin), bMin));
}
out.flush();
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(n^2): The time complexity grows proportionally to the square of the input size.
- O(log(n)): The time complexity increases logarithmically in relation to the input size.
- O(n^3): The time complexity scales proportionally to the cube of the input size.
- O(1): The time complexity is constant to the input size n.
- non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially.
- O(n): The time complexity increases proportionally to the input size n in a linear manner.
- O(nlog(n)): The time complexity combines linear and logarithmic growth factors.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n.
</TASK>
<CODE>
//q4
import java.io.*;
import java.util.*;
import java.math.*;
public class q4 {
public static void main(String[] args) {
Scanner in = new Scanner(System.in);
PrintWriter out=new PrintWriter(new OutputStreamWriter(System.out));
int query = in.nextInt();
while (query -- > 0) {
int n = in.nextInt();
int k = in.nextInt();
char[] arr = new char[n];
//slot all n into char array
String code = in.next();
for (int i = 0; i < n; i++) {
arr[i] = code.charAt(i);
}
//R, G, B cycle
int r = 0;
int g = 0;
int b = 0;
for (int i = 0; i < k; i++) {
if (i % 3 == 0) {
if (arr[i] == 'R') {g++; b++;}
else if (arr[i] == 'G') {r++; b++;}
else {r++; g++;} //if is 'B'
} else if (i % 3 == 1) {
if (arr[i] == 'G') {g++; b++;}
else if (arr[i] == 'B') {r++; b++;}
else {r++; g++;} //if is 'R'
} else { //if mod 3 is 2
if (arr[i] == 'B') {g++; b++;}
else if (arr[i] == 'R') {r++; b++;}
else {r++; g++;} //if is 'G'
}
}
//starting from kth position, if different then add 1, and check (j-k)th position
int rMin = r;
int gMin = g;
int bMin = b;
for (int j = k; j < n; j++) {
//R cycle
if ((j % 3 == 0 && arr[j] != 'R') ||
(j % 3 == 1 && arr[j] != 'G') ||
(j % 3 == 2 && arr[j] != 'B')) {
r++;
}
//R cycle
if (((j - k) % 3 == 0 && arr[j - k] != 'R') ||
((j - k) % 3 == 1 && arr[j - k] != 'G') ||
((j - k) % 3 == 2 && arr[j - k] != 'B')) {
r--;
}
rMin = Math.min(r, rMin);
//G cycle
if ((j % 3 == 0 && arr[j] != 'G') ||
(j % 3 == 1 && arr[j] != 'B') ||
(j % 3 == 2 && arr[j] != 'R')) {
g++;
}
if (((j - k) % 3 == 0 && arr[j - k] != 'G') ||
((j - k) % 3 == 1 && arr[j - k] != 'B') ||
((j - k) % 3 == 2 && arr[j - k] != 'R')) {
g--;
}
gMin = Math.min(gMin, g);
//B cycle
if ((j % 3 == 0 && arr[j] != 'B') ||
(j % 3 == 1 && arr[j] != 'R') ||
(j % 3 == 2 && arr[j] != 'G')) {
b++;
}
if (((j - k) % 3 == 0 && arr[j - k] != 'B') ||
((j - k) % 3 == 1 && arr[j - k] != 'R') ||
((j - k) % 3 == 2 && arr[j - k] != 'G')) {
b--;
}
bMin = Math.min(bMin, b);
}
out.println(Math.min(Math.min(rMin, gMin), bMin));
}
out.flush();
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(1): The execution time is unaffected by the size of the input n.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- O(n^2): The execution time ascends in proportion to the square of the input size n.
- others: The time complexity does not fit to any of the given categories or is ambiguous.
- O(log(n)): The execution time ascends in proportion to the logarithm of the input size n.
- O(n^3): The execution time ascends in proportion to the cube of the input size n.
- O(n): The execution time ascends in a one-to-one ratio with the input size n.
- O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
| 1,262
| 143
|
986
|
import java.io.OutputStream;
import java.io.IOException;
import java.io.InputStream;
import java.io.OutputStream;
import java.io.PrintWriter;
import java.io.BufferedWriter;
import java.io.Writer;
import java.io.OutputStreamWriter;
import java.util.InputMismatchException;
import java.io.IOException;
import java.io.InputStream;
/**
* Built using CHelper plug-in
* Actual solution is at the top
*
* @author cunbidun
*/
public class Main {
public static void main(String[] args) {
InputStream inputStream = System.in;
OutputStream outputStream = System.out;
InputReader in = new InputReader(inputStream);
OutputWriter out = new OutputWriter(outputStream);
BSportMafia solver = new BSportMafia();
solver.solve(1, in, out);
out.close();
}
static class BSportMafia {
private InputReader in;
private OutputWriter out;
public void solve(int testNumber, InputReader in, OutputWriter out) {
this.in = in;
this.out = out;
long n = in.nextInt();
long k = in.nextInt();
for (long i = 1; i * (i + 1) / 2 + i <= n + k; i++) {
if (i * (i + 1) / 2 + i == n + k) {
out.println(n - i);
return;
}
}
}
}
static class InputReader extends InputStream {
private InputStream stream;
private byte[] buf = new byte[1 << 16];
private int curChar;
private int numChars;
public InputReader(InputStream stream) {
this.stream = stream;
}
public int read() {
if (numChars == -1) {
throw new InputMismatchException();
}
if (curChar >= numChars) {
curChar = 0;
try {
numChars = stream.read(buf);
} catch (IOException e) {
throw new InputMismatchException();
}
if (numChars <= 0) {
return -1;
}
}
return buf[curChar++];
}
public int nextInt() {
int c = read();
while (isSpaceChar(c))
c = read();
int sgn = 1;
if (c == '-') {
sgn = -1;
c = read();
}
int res = 0;
do {
if (c < '0' || c > '9') {
throw new InputMismatchException();
}
res *= 10;
res += c - '0';
c = read();
} while (!isSpaceChar(c));
return res * sgn;
}
private static boolean isSpaceChar(int c) {
return c == ' ' || c == '\n' || c == '\r' || c == '\t' || c == -1;
}
}
static class OutputWriter {
private final PrintWriter out;
public OutputWriter(OutputStream outputStream) {
out = new PrintWriter(new BufferedWriter(new OutputStreamWriter(outputStream)));
}
public OutputWriter(Writer writer) {
this.out = new PrintWriter(writer);
}
public void close() {
out.close();
}
public void println(long i) {
out.println(i);
}
}
}
|
O(log(n))
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Classify the following Java code's worst-case time complexity according to its relationship to the input size n.
</TASK>
<CODE>
import java.io.OutputStream;
import java.io.IOException;
import java.io.InputStream;
import java.io.OutputStream;
import java.io.PrintWriter;
import java.io.BufferedWriter;
import java.io.Writer;
import java.io.OutputStreamWriter;
import java.util.InputMismatchException;
import java.io.IOException;
import java.io.InputStream;
/**
* Built using CHelper plug-in
* Actual solution is at the top
*
* @author cunbidun
*/
public class Main {
public static void main(String[] args) {
InputStream inputStream = System.in;
OutputStream outputStream = System.out;
InputReader in = new InputReader(inputStream);
OutputWriter out = new OutputWriter(outputStream);
BSportMafia solver = new BSportMafia();
solver.solve(1, in, out);
out.close();
}
static class BSportMafia {
private InputReader in;
private OutputWriter out;
public void solve(int testNumber, InputReader in, OutputWriter out) {
this.in = in;
this.out = out;
long n = in.nextInt();
long k = in.nextInt();
for (long i = 1; i * (i + 1) / 2 + i <= n + k; i++) {
if (i * (i + 1) / 2 + i == n + k) {
out.println(n - i);
return;
}
}
}
}
static class InputReader extends InputStream {
private InputStream stream;
private byte[] buf = new byte[1 << 16];
private int curChar;
private int numChars;
public InputReader(InputStream stream) {
this.stream = stream;
}
public int read() {
if (numChars == -1) {
throw new InputMismatchException();
}
if (curChar >= numChars) {
curChar = 0;
try {
numChars = stream.read(buf);
} catch (IOException e) {
throw new InputMismatchException();
}
if (numChars <= 0) {
return -1;
}
}
return buf[curChar++];
}
public int nextInt() {
int c = read();
while (isSpaceChar(c))
c = read();
int sgn = 1;
if (c == '-') {
sgn = -1;
c = read();
}
int res = 0;
do {
if (c < '0' || c > '9') {
throw new InputMismatchException();
}
res *= 10;
res += c - '0';
c = read();
} while (!isSpaceChar(c));
return res * sgn;
}
private static boolean isSpaceChar(int c) {
return c == ' ' || c == '\n' || c == '\r' || c == '\t' || c == -1;
}
}
static class OutputWriter {
private final PrintWriter out;
public OutputWriter(OutputStream outputStream) {
out = new PrintWriter(new BufferedWriter(new OutputStreamWriter(outputStream)));
}
public OutputWriter(Writer writer) {
this.out = new PrintWriter(writer);
}
public void close() {
out.close();
}
public void println(long i) {
out.println(i);
}
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(log(n)): The running time increases with the logarithm of the input size n.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- O(1): The running time does not change regardless of the input size n.
- O(nlog(n)): The running time increases with the product of n and logarithm of n.
- O(n^2): The running time increases with the square of the input size n.
- O(n): The running time grows linearly with the input size n.
- O(n^3): The running time increases with the cube of the input size n.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Determine the worst-case time complexity category of a given Java code based on input size n.
</TASK>
<CODE>
import java.io.OutputStream;
import java.io.IOException;
import java.io.InputStream;
import java.io.OutputStream;
import java.io.PrintWriter;
import java.io.BufferedWriter;
import java.io.Writer;
import java.io.OutputStreamWriter;
import java.util.InputMismatchException;
import java.io.IOException;
import java.io.InputStream;
/**
* Built using CHelper plug-in
* Actual solution is at the top
*
* @author cunbidun
*/
public class Main {
public static void main(String[] args) {
InputStream inputStream = System.in;
OutputStream outputStream = System.out;
InputReader in = new InputReader(inputStream);
OutputWriter out = new OutputWriter(outputStream);
BSportMafia solver = new BSportMafia();
solver.solve(1, in, out);
out.close();
}
static class BSportMafia {
private InputReader in;
private OutputWriter out;
public void solve(int testNumber, InputReader in, OutputWriter out) {
this.in = in;
this.out = out;
long n = in.nextInt();
long k = in.nextInt();
for (long i = 1; i * (i + 1) / 2 + i <= n + k; i++) {
if (i * (i + 1) / 2 + i == n + k) {
out.println(n - i);
return;
}
}
}
}
static class InputReader extends InputStream {
private InputStream stream;
private byte[] buf = new byte[1 << 16];
private int curChar;
private int numChars;
public InputReader(InputStream stream) {
this.stream = stream;
}
public int read() {
if (numChars == -1) {
throw new InputMismatchException();
}
if (curChar >= numChars) {
curChar = 0;
try {
numChars = stream.read(buf);
} catch (IOException e) {
throw new InputMismatchException();
}
if (numChars <= 0) {
return -1;
}
}
return buf[curChar++];
}
public int nextInt() {
int c = read();
while (isSpaceChar(c))
c = read();
int sgn = 1;
if (c == '-') {
sgn = -1;
c = read();
}
int res = 0;
do {
if (c < '0' || c > '9') {
throw new InputMismatchException();
}
res *= 10;
res += c - '0';
c = read();
} while (!isSpaceChar(c));
return res * sgn;
}
private static boolean isSpaceChar(int c) {
return c == ' ' || c == '\n' || c == '\r' || c == '\t' || c == -1;
}
}
static class OutputWriter {
private final PrintWriter out;
public OutputWriter(OutputStream outputStream) {
out = new PrintWriter(new BufferedWriter(new OutputStreamWriter(outputStream)));
}
public OutputWriter(Writer writer) {
this.out = new PrintWriter(writer);
}
public void close() {
out.close();
}
public void println(long i) {
out.println(i);
}
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(n^2): The time complexity grows proportionally to the square of the input size.
- O(n^3): The time complexity scales proportionally to the cube of the input size.
- others: The time complexity does not fit any of the above categories or cannot be clearly classified.
- O(nlog(n)): The time complexity combines linear and logarithmic growth factors.
- O(1): The time complexity is constant to the input size n.
- non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially.
- O(n): The time complexity increases proportionally to the input size n in a linear manner.
- O(log(n)): The time complexity increases logarithmically in relation to the input size.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
| 1,039
| 985
|
962
|
import java.util.*;
public class CFEdu66 {
public static void main(String[] args) {
Scanner in = new Scanner(System.in);
long n = in.nextLong();
long k = in.nextLong();
double tmp = Math.sqrt(9 + 8*(n+k));
if(Math.ceil(tmp)-tmp<0.001)
tmp = Math.ceil(tmp);
long root = (long)tmp;
long x = (-3+root)/2;
System.out.println(n-x);
}
}
|
O(log(n))
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Classify the following Java code's worst-case time complexity according to its relationship to the input size n.
</TASK>
<CODE>
import java.util.*;
public class CFEdu66 {
public static void main(String[] args) {
Scanner in = new Scanner(System.in);
long n = in.nextLong();
long k = in.nextLong();
double tmp = Math.sqrt(9 + 8*(n+k));
if(Math.ceil(tmp)-tmp<0.001)
tmp = Math.ceil(tmp);
long root = (long)tmp;
long x = (-3+root)/2;
System.out.println(n-x);
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(n^3): The running time increases with the cube of the input size n.
- O(n^2): The running time increases with the square of the input size n.
- O(1): The running time does not change regardless of the input size n.
- O(n): The running time grows linearly with the input size n.
- O(nlog(n)): The running time increases with the product of n and logarithm of n.
- O(log(n)): The running time increases with the logarithm of the input size n.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Determine the worst-case time complexity category of a given Java code based on input size n.
</TASK>
<CODE>
import java.util.*;
public class CFEdu66 {
public static void main(String[] args) {
Scanner in = new Scanner(System.in);
long n = in.nextLong();
long k = in.nextLong();
double tmp = Math.sqrt(9 + 8*(n+k));
if(Math.ceil(tmp)-tmp<0.001)
tmp = Math.ceil(tmp);
long root = (long)tmp;
long x = (-3+root)/2;
System.out.println(n-x);
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(log(n)): The time complexity increases logarithmically in relation to the input size.
- O(n^2): The time complexity grows proportionally to the square of the input size.
- non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially.
- others: The time complexity does not fit any of the above categories or cannot be clearly classified.
- O(n^3): The time complexity scales proportionally to the cube of the input size.
- O(1): The time complexity is constant to the input size n.
- O(n): The time complexity increases proportionally to the input size n in a linear manner.
- O(nlog(n)): The time complexity combines linear and logarithmic growth factors.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
| 446
| 961
|
2,987
|
import java.util.Scanner;
import java.io.StreamTokenizer;
import java.io.InputStreamReader;
import java.io.IOException;
import java.io.PrintStream;
import java.io.BufferedReader;
import java.io.OutputStream;
import java.io.PrintWriter;
import java.io.InputStream;
/**
* Built using CHelper plug-in
* Actual solution is at the top
* @author KNIGHT0X300
*/
public class Main {
public static void main(String[] args) {
InputStream inputStream = System.in;
OutputStream outputStream = System.out;
InputStreamReader in = new InputStreamReader(inputStream);
PrintWriter out = new PrintWriter(outputStream);
TaskA solver = new TaskA();
solver.solve(1, in, out);
out.close();
}
}
class TaskA {
StreamTokenizer in;
PrintWriter out;
BufferedReader re;
Scanner sc;
public void solve (int testNumber, InputStreamReader in, PrintWriter out) {
this.in = new StreamTokenizer(new BufferedReader(in));
this.re = new BufferedReader(in);
this.sc = new Scanner(in);
this.out = out;
try {
this.solve();
} catch (IOException e) {
e.printStackTrace(); //To change body of catch statement use File | Settings | File Templates.
}
out.flush();
}
void solve() throws IOException
{
long a=sc.nextLong(),b=sc.nextLong();
long ans=0,t;
while(Math.min(a,b)!=1){
if(a>b){
ans+=a/b;
a%=b;
}
else{
t=b;
b=a;
a=t;
long g=gcd(a,b);
a/=g;b/=g;
}
}
ans+=Math.max(a,b);
out.println(ans);
}
public static long gcd(long a, long b) {
long c = 0;
if(a<0) a=-a;
if(b<0) b=-b;
while (b>0) {
c = a % b;
a = b;
b = c;
}
return a;
}
// do the sum
}
|
O(1)
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Determine the worst-case time complexity category of a given Java code based on input size n.
</TASK>
<CODE>
import java.util.Scanner;
import java.io.StreamTokenizer;
import java.io.InputStreamReader;
import java.io.IOException;
import java.io.PrintStream;
import java.io.BufferedReader;
import java.io.OutputStream;
import java.io.PrintWriter;
import java.io.InputStream;
/**
* Built using CHelper plug-in
* Actual solution is at the top
* @author KNIGHT0X300
*/
public class Main {
public static void main(String[] args) {
InputStream inputStream = System.in;
OutputStream outputStream = System.out;
InputStreamReader in = new InputStreamReader(inputStream);
PrintWriter out = new PrintWriter(outputStream);
TaskA solver = new TaskA();
solver.solve(1, in, out);
out.close();
}
}
class TaskA {
StreamTokenizer in;
PrintWriter out;
BufferedReader re;
Scanner sc;
public void solve (int testNumber, InputStreamReader in, PrintWriter out) {
this.in = new StreamTokenizer(new BufferedReader(in));
this.re = new BufferedReader(in);
this.sc = new Scanner(in);
this.out = out;
try {
this.solve();
} catch (IOException e) {
e.printStackTrace(); //To change body of catch statement use File | Settings | File Templates.
}
out.flush();
}
void solve() throws IOException
{
long a=sc.nextLong(),b=sc.nextLong();
long ans=0,t;
while(Math.min(a,b)!=1){
if(a>b){
ans+=a/b;
a%=b;
}
else{
t=b;
b=a;
a=t;
long g=gcd(a,b);
a/=g;b/=g;
}
}
ans+=Math.max(a,b);
out.println(ans);
}
public static long gcd(long a, long b) {
long c = 0;
if(a<0) a=-a;
if(b<0) b=-b;
while (b>0) {
c = a % b;
a = b;
b = c;
}
return a;
}
// do the sum
}
</CODE>
<EVALUATION_RUBRIC>
- O(log(n)): The time complexity increases logarithmically in relation to the input size.
- O(nlog(n)): The time complexity combines linear and logarithmic growth factors.
- O(n^3): The time complexity scales proportionally to the cube of the input size.
- O(n): The time complexity increases proportionally to the input size n in a linear manner.
- non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially.
- O(n^2): The time complexity grows proportionally to the square of the input size.
- O(1): The time complexity is constant to the input size n.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Classify the following Java code's worst-case time complexity according to its relationship to the input size n.
</TASK>
<CODE>
import java.util.Scanner;
import java.io.StreamTokenizer;
import java.io.InputStreamReader;
import java.io.IOException;
import java.io.PrintStream;
import java.io.BufferedReader;
import java.io.OutputStream;
import java.io.PrintWriter;
import java.io.InputStream;
/**
* Built using CHelper plug-in
* Actual solution is at the top
* @author KNIGHT0X300
*/
public class Main {
public static void main(String[] args) {
InputStream inputStream = System.in;
OutputStream outputStream = System.out;
InputStreamReader in = new InputStreamReader(inputStream);
PrintWriter out = new PrintWriter(outputStream);
TaskA solver = new TaskA();
solver.solve(1, in, out);
out.close();
}
}
class TaskA {
StreamTokenizer in;
PrintWriter out;
BufferedReader re;
Scanner sc;
public void solve (int testNumber, InputStreamReader in, PrintWriter out) {
this.in = new StreamTokenizer(new BufferedReader(in));
this.re = new BufferedReader(in);
this.sc = new Scanner(in);
this.out = out;
try {
this.solve();
} catch (IOException e) {
e.printStackTrace(); //To change body of catch statement use File | Settings | File Templates.
}
out.flush();
}
void solve() throws IOException
{
long a=sc.nextLong(),b=sc.nextLong();
long ans=0,t;
while(Math.min(a,b)!=1){
if(a>b){
ans+=a/b;
a%=b;
}
else{
t=b;
b=a;
a=t;
long g=gcd(a,b);
a/=g;b/=g;
}
}
ans+=Math.max(a,b);
out.println(ans);
}
public static long gcd(long a, long b) {
long c = 0;
if(a<0) a=-a;
if(b<0) b=-b;
while (b>0) {
c = a % b;
a = b;
b = c;
}
return a;
}
// do the sum
}
</CODE>
<EVALUATION_RUBRIC>
- O(n): The running time grows linearly with the input size n.
- O(n^2): The running time increases with the square of the input size n.
- O(n^3): The running time increases with the cube of the input size n.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- O(1): The running time does not change regardless of the input size n.
- others: The code does not clearly correspond to the listed classes or has an unclassified time complexity.
- O(log(n)): The running time increases with the logarithm of the input size n.
- O(nlog(n)): The running time increases with the product of n and logarithm of n.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
| 780
| 2,981
|
2,932
|
import java.io.BufferedReader;
import java.io.IOException;
import java.io.InputStreamReader;
public class Test3 {
public static void main(String[] args) throws NumberFormatException, IOException {
BufferedReader br=new BufferedReader(new InputStreamReader(System.in));
int x=Integer.parseInt(br.readLine());
int y=Integer.parseInt(br.readLine());
System.out.print((int)(y%(Math.pow(2, x))));
}
}
|
O(1)
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Classify the following Java code's worst-case time complexity according to its relationship to the input size n.
</TASK>
<CODE>
import java.io.BufferedReader;
import java.io.IOException;
import java.io.InputStreamReader;
public class Test3 {
public static void main(String[] args) throws NumberFormatException, IOException {
BufferedReader br=new BufferedReader(new InputStreamReader(System.in));
int x=Integer.parseInt(br.readLine());
int y=Integer.parseInt(br.readLine());
System.out.print((int)(y%(Math.pow(2, x))));
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(nlog(n)): The running time increases with the product of n and logarithm of n.
- O(n): The running time grows linearly with the input size n.
- O(n^3): The running time increases with the cube of the input size n.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- O(n^2): The running time increases with the square of the input size n.
- O(log(n)): The running time increases with the logarithm of the input size n.
- O(1): The running time does not change regardless of the input size n.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Classify the following Java code's worst-case time complexity according to its relationship to the input size n.
</TASK>
<CODE>
import java.io.BufferedReader;
import java.io.IOException;
import java.io.InputStreamReader;
public class Test3 {
public static void main(String[] args) throws NumberFormatException, IOException {
BufferedReader br=new BufferedReader(new InputStreamReader(System.in));
int x=Integer.parseInt(br.readLine());
int y=Integer.parseInt(br.readLine());
System.out.print((int)(y%(Math.pow(2, x))));
}
}
</CODE>
<EVALUATION_RUBRIC>
- others: The code does not clearly correspond to the listed classes or has an unclassified time complexity.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- O(n): The running time grows linearly with the input size n.
- O(1): The running time does not change regardless of the input size n.
- O(n^2): The running time increases with the square of the input size n.
- O(n^3): The running time increases with the cube of the input size n.
- O(log(n)): The running time increases with the logarithm of the input size n.
- O(nlog(n)): The running time increases with the product of n and logarithm of n.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
| 411
| 2,926
|
1,824
|
import java.io.*;
import java.util.*;
public class A {
public static void main(String[] args) throws Exception {
Scanner in = new Scanner(System.in);
int n = in.nextInt();
int m = in.nextInt();
int k = in.nextInt();
int so[]= new int[n];
for(int i=0;i<n;i++) so[i]=in.nextInt();
Arrays.sort(so);
if(m<=k) {
System.out.println("0");
return;
}
int sum=0;
int socUsed=0;
int cont=0;
for(int i=n-1;i>=0;i--){
cont++;
sum+=so[i];
if(sum>=m || sum+(k-1)>=m){
System.out.println(cont);
return;
}
sum--;
}
System.out.println("-1");
}
}
|
O(nlog(n))
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Determine the worst-case time complexity category of a given Java code based on input size n.
</TASK>
<CODE>
import java.io.*;
import java.util.*;
public class A {
public static void main(String[] args) throws Exception {
Scanner in = new Scanner(System.in);
int n = in.nextInt();
int m = in.nextInt();
int k = in.nextInt();
int so[]= new int[n];
for(int i=0;i<n;i++) so[i]=in.nextInt();
Arrays.sort(so);
if(m<=k) {
System.out.println("0");
return;
}
int sum=0;
int socUsed=0;
int cont=0;
for(int i=n-1;i>=0;i--){
cont++;
sum+=so[i];
if(sum>=m || sum+(k-1)>=m){
System.out.println(cont);
return;
}
sum--;
}
System.out.println("-1");
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(n): The time complexity increases proportionally to the input size n in a linear manner.
- O(n^2): The time complexity grows proportionally to the square of the input size.
- O(n^3): The time complexity scales proportionally to the cube of the input size.
- non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially.
- O(nlog(n)): The time complexity combines linear and logarithmic growth factors.
- O(1): The time complexity is constant to the input size n.
- O(log(n)): The time complexity increases logarithmically in relation to the input size.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Classify the following Java code's worst-case time complexity according to its relationship to the input size n.
</TASK>
<CODE>
import java.io.*;
import java.util.*;
public class A {
public static void main(String[] args) throws Exception {
Scanner in = new Scanner(System.in);
int n = in.nextInt();
int m = in.nextInt();
int k = in.nextInt();
int so[]= new int[n];
for(int i=0;i<n;i++) so[i]=in.nextInt();
Arrays.sort(so);
if(m<=k) {
System.out.println("0");
return;
}
int sum=0;
int socUsed=0;
int cont=0;
for(int i=n-1;i>=0;i--){
cont++;
sum+=so[i];
if(sum>=m || sum+(k-1)>=m){
System.out.println(cont);
return;
}
sum--;
}
System.out.println("-1");
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(n^3): The running time increases with the cube of the input size n.
- O(nlog(n)): The running time increases with the product of n and logarithm of n.
- O(n): The running time grows linearly with the input size n.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- O(log(n)): The running time increases with the logarithm of the input size n.
- others: The code does not clearly correspond to the listed classes or has an unclassified time complexity.
- O(n^2): The running time increases with the square of the input size n.
- O(1): The running time does not change regardless of the input size n.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
| 517
| 1,820
|
2,644
|
import java.io.OutputStream;
import java.io.IOException;
import java.io.InputStream;
import java.io.PrintWriter;
import java.util.Arrays;
import java.util.StringTokenizer;
import java.io.IOException;
import java.io.BufferedReader;
import java.io.InputStreamReader;
import java.io.InputStream;
/**
* Built using CHelper plug-in
* Actual solution is at the top
*
* @author Washoum
*/
public class Main {
public static void main(String[] args) {
InputStream inputStream = System.in;
OutputStream outputStream = System.out;
inputClass in = new inputClass(inputStream);
PrintWriter out = new PrintWriter(outputStream);
APaintTheNumbers solver = new APaintTheNumbers();
solver.solve(1, in, out);
out.close();
}
static class APaintTheNumbers {
public void solve(int testNumber, inputClass sc, PrintWriter out) {
int n = sc.nextInt();
Integer[] tab = new Integer[n];
for (int i = 0; i < n; i++) {
tab[i] = sc.nextInt();
}
Arrays.sort(tab);
boolean[] done = new boolean[n];
int ans = 0;
for (int i = 0; i < n; i++) {
if (!done[i]) {
ans++;
done[i] = true;
for (int j = i + 1; j < n; j++) {
if (!done[j] && tab[j] % tab[i] == 0) {
done[j] = true;
}
}
}
}
out.println(ans);
}
}
static class inputClass {
BufferedReader br;
StringTokenizer st;
public inputClass(InputStream in) {
br = new BufferedReader(new InputStreamReader(in));
}
public String next() {
while (st == null || !st.hasMoreElements()) {
try {
st = new StringTokenizer(br.readLine());
} catch (IOException e) {
e.printStackTrace();
}
}
return st.nextToken();
}
public int nextInt() {
return Integer.parseInt(next());
}
}
}
|
O(n^2)
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Classify the following Java code's worst-case time complexity according to its relationship to the input size n.
</TASK>
<CODE>
import java.io.OutputStream;
import java.io.IOException;
import java.io.InputStream;
import java.io.PrintWriter;
import java.util.Arrays;
import java.util.StringTokenizer;
import java.io.IOException;
import java.io.BufferedReader;
import java.io.InputStreamReader;
import java.io.InputStream;
/**
* Built using CHelper plug-in
* Actual solution is at the top
*
* @author Washoum
*/
public class Main {
public static void main(String[] args) {
InputStream inputStream = System.in;
OutputStream outputStream = System.out;
inputClass in = new inputClass(inputStream);
PrintWriter out = new PrintWriter(outputStream);
APaintTheNumbers solver = new APaintTheNumbers();
solver.solve(1, in, out);
out.close();
}
static class APaintTheNumbers {
public void solve(int testNumber, inputClass sc, PrintWriter out) {
int n = sc.nextInt();
Integer[] tab = new Integer[n];
for (int i = 0; i < n; i++) {
tab[i] = sc.nextInt();
}
Arrays.sort(tab);
boolean[] done = new boolean[n];
int ans = 0;
for (int i = 0; i < n; i++) {
if (!done[i]) {
ans++;
done[i] = true;
for (int j = i + 1; j < n; j++) {
if (!done[j] && tab[j] % tab[i] == 0) {
done[j] = true;
}
}
}
}
out.println(ans);
}
}
static class inputClass {
BufferedReader br;
StringTokenizer st;
public inputClass(InputStream in) {
br = new BufferedReader(new InputStreamReader(in));
}
public String next() {
while (st == null || !st.hasMoreElements()) {
try {
st = new StringTokenizer(br.readLine());
} catch (IOException e) {
e.printStackTrace();
}
}
return st.nextToken();
}
public int nextInt() {
return Integer.parseInt(next());
}
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(n): The running time grows linearly with the input size n.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- O(n^3): The running time increases with the cube of the input size n.
- O(log(n)): The running time increases with the logarithm of the input size n.
- O(n^2): The running time increases with the square of the input size n.
- O(nlog(n)): The running time increases with the product of n and logarithm of n.
- O(1): The running time does not change regardless of the input size n.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n.
</TASK>
<CODE>
import java.io.OutputStream;
import java.io.IOException;
import java.io.InputStream;
import java.io.PrintWriter;
import java.util.Arrays;
import java.util.StringTokenizer;
import java.io.IOException;
import java.io.BufferedReader;
import java.io.InputStreamReader;
import java.io.InputStream;
/**
* Built using CHelper plug-in
* Actual solution is at the top
*
* @author Washoum
*/
public class Main {
public static void main(String[] args) {
InputStream inputStream = System.in;
OutputStream outputStream = System.out;
inputClass in = new inputClass(inputStream);
PrintWriter out = new PrintWriter(outputStream);
APaintTheNumbers solver = new APaintTheNumbers();
solver.solve(1, in, out);
out.close();
}
static class APaintTheNumbers {
public void solve(int testNumber, inputClass sc, PrintWriter out) {
int n = sc.nextInt();
Integer[] tab = new Integer[n];
for (int i = 0; i < n; i++) {
tab[i] = sc.nextInt();
}
Arrays.sort(tab);
boolean[] done = new boolean[n];
int ans = 0;
for (int i = 0; i < n; i++) {
if (!done[i]) {
ans++;
done[i] = true;
for (int j = i + 1; j < n; j++) {
if (!done[j] && tab[j] % tab[i] == 0) {
done[j] = true;
}
}
}
}
out.println(ans);
}
}
static class inputClass {
BufferedReader br;
StringTokenizer st;
public inputClass(InputStream in) {
br = new BufferedReader(new InputStreamReader(in));
}
public String next() {
while (st == null || !st.hasMoreElements()) {
try {
st = new StringTokenizer(br.readLine());
} catch (IOException e) {
e.printStackTrace();
}
}
return st.nextToken();
}
public int nextInt() {
return Integer.parseInt(next());
}
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(n^3): The execution time ascends in proportion to the cube of the input size n.
- O(1): The execution time is unaffected by the size of the input n.
- others: The time complexity does not fit to any of the given categories or is ambiguous.
- O(log(n)): The execution time ascends in proportion to the logarithm of the input size n.
- O(n): The execution time ascends in a one-to-one ratio with the input size n.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- O(n^2): The execution time ascends in proportion to the square of the input size n.
- O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
| 770
| 2,638
|
255
|
import java.util.*;
public class Main {
public static void main(String args[]) {
Scanner sc = new Scanner(System.in);
int n = sc.nextInt();
int m = sc.nextInt();
long totalBlocks = 0;
long a[] = new long[n];
for(int i = 0; i < n; ++i) {
a[i] = sc.nextLong();
totalBlocks += a[i];
}
Arrays.sort(a);
long selected = 0;
for(int i = 0; i < n; ++i) {
if(a[i] > selected)
selected++;
}
long leftCols = a[n - 1] - selected;
long remBlocks = totalBlocks - leftCols - n;
System.out.print(remBlocks);
}
}
|
O(nlog(n))
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Classify the following Java code's worst-case time complexity according to its relationship to the input size n.
</TASK>
<CODE>
import java.util.*;
public class Main {
public static void main(String args[]) {
Scanner sc = new Scanner(System.in);
int n = sc.nextInt();
int m = sc.nextInt();
long totalBlocks = 0;
long a[] = new long[n];
for(int i = 0; i < n; ++i) {
a[i] = sc.nextLong();
totalBlocks += a[i];
}
Arrays.sort(a);
long selected = 0;
for(int i = 0; i < n; ++i) {
if(a[i] > selected)
selected++;
}
long leftCols = a[n - 1] - selected;
long remBlocks = totalBlocks - leftCols - n;
System.out.print(remBlocks);
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(n^3): The running time increases with the cube of the input size n.
- O(1): The running time does not change regardless of the input size n.
- O(n^2): The running time increases with the square of the input size n.
- O(nlog(n)): The running time increases with the product of n and logarithm of n.
- O(n): The running time grows linearly with the input size n.
- O(log(n)): The running time increases with the logarithm of the input size n.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Classify the following Java code's worst-case time complexity according to its relationship to the input size n.
</TASK>
<CODE>
import java.util.*;
public class Main {
public static void main(String args[]) {
Scanner sc = new Scanner(System.in);
int n = sc.nextInt();
int m = sc.nextInt();
long totalBlocks = 0;
long a[] = new long[n];
for(int i = 0; i < n; ++i) {
a[i] = sc.nextLong();
totalBlocks += a[i];
}
Arrays.sort(a);
long selected = 0;
for(int i = 0; i < n; ++i) {
if(a[i] > selected)
selected++;
}
long leftCols = a[n - 1] - selected;
long remBlocks = totalBlocks - leftCols - n;
System.out.print(remBlocks);
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(1): The running time does not change regardless of the input size n.
- O(n): The running time grows linearly with the input size n.
- O(nlog(n)): The running time increases with the product of n and logarithm of n.
- O(n^2): The running time increases with the square of the input size n.
- others: The code does not clearly correspond to the listed classes or has an unclassified time complexity.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- O(n^3): The running time increases with the cube of the input size n.
- O(log(n)): The running time increases with the logarithm of the input size n.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
| 502
| 255
|
1,477
|
import java.io.*;
import java.lang.reflect.*;
public class D {
final int MOD = (int)1e9 + 7;
final double eps = 1e-12;
final int INF = (int)1e9;
public D () {
long L = sc.nextLong();
long R = sc.nextLong();
for (int i = 60; i >= 0; --i) {
long b = (1L << i);
long A = (L & b), B = (R & b);
if (A != B)
exit(2*b-1);
}
exit(0);
}
////////////////////////////////////////////////////////////////////////////////////
/* Dear hacker, don't bother reading below this line, unless you want to help me debug my I/O routines :-) */
static MyScanner sc = new MyScanner();
static class MyScanner {
public String next() {
newLine();
return line[index++];
}
public char nextChar() {
return next().charAt(0);
}
public int nextInt() {
return Integer.parseInt(next());
}
public long nextLong() {
return Long.parseLong(next());
}
public double nextDouble() {
return Double.parseDouble(next());
}
public String nextLine() {
line = null;
return readLine();
}
public String [] nextStrings() {
line = null;
return readLine().split(" ");
}
public char [] nextChars() {
return next().toCharArray();
}
public Integer [] nextInts() {
String [] L = nextStrings();
Integer [] res = new Integer [L.length];
for (int i = 0; i < L.length; ++i)
res[i] = Integer.parseInt(L[i]);
return res;
}
public Long [] nextLongs() {
String [] L = nextStrings();
Long [] res = new Long [L.length];
for (int i = 0; i < L.length; ++i)
res[i] = Long.parseLong(L[i]);
return res;
}
public Double [] nextDoubles() {
String [] L = nextStrings();
Double [] res = new Double [L.length];
for (int i = 0; i < L.length; ++i)
res[i] = Double.parseDouble(L[i]);
return res;
}
public String [] next (int N) {
String [] res = new String [N];
for (int i = 0; i < N; ++i)
res[i] = sc.next();
return res;
}
public Integer [] nextInt (int N) {
Integer [] res = new Integer [N];
for (int i = 0; i < N; ++i)
res[i] = sc.nextInt();
return res;
}
public Long [] nextLong (int N) {
Long [] res = new Long [N];
for (int i = 0; i < N; ++i)
res[i] = sc.nextLong();
return res;
}
public Double [] nextDouble (int N) {
Double [] res = new Double [N];
for (int i = 0; i < N; ++i)
res[i] = sc.nextDouble();
return res;
}
public String [][] nextStrings (int N) {
String [][] res = new String [N][];
for (int i = 0; i < N; ++i)
res[i] = sc.nextStrings();
return res;
}
public Integer [][] nextInts (int N) {
Integer [][] res = new Integer [N][];
for (int i = 0; i < N; ++i)
res[i] = sc.nextInts();
return res;
}
public Long [][] nextLongs (int N) {
Long [][] res = new Long [N][];
for (int i = 0; i < N; ++i)
res[i] = sc.nextLongs();
return res;
}
public Double [][] nextDoubles (int N) {
Double [][] res = new Double [N][];
for (int i = 0; i < N; ++i)
res[i] = sc.nextDoubles();
return res;
}
//////////////////////////////////////////////
private boolean eol() {
return index == line.length;
}
private String readLine() {
try {
return r.readLine();
} catch (Exception e) {
throw new Error(e);
}
}
private final BufferedReader r;
MyScanner () {
this(new BufferedReader(new InputStreamReader(System.in)));
}
MyScanner(BufferedReader r) {
try {
this.r = r;
while (!r.ready())
Thread.sleep(1);
start();
} catch (Exception e) {
throw new Error(e);
}
}
private String [] line;
private int index;
private void newLine() {
if (line == null || eol()) {
line = readLine().split(" ");
index = 0;
}
}
}
static void print(Object o, Object... a) {
printDelim(" ", o, a);
}
static void cprint(Object o, Object... a) {
printDelim("", o, a);
}
static void printDelim (String delim, Object o, Object... a) {
pw.println(build(delim, o, a));
}
static void exit (Object o, Object... a) {
print(o, a);
exit();
}
static void exit () {
pw.close();
System.out.flush();
System.err.println("------------------");
System.err.println("Time: " + ((millis() - t) / 1000.0));
System.exit(0);
}
void NO() {
throw new Error("NO!");
}
////////////////////////////////////////////////////////////////////////////////////
static String build(String delim, Object o, Object... a) {
StringBuilder b = new StringBuilder();
append(b, o, delim);
for (Object p : a)
append(b, p, delim);
return b.toString().trim();
}
static void append(StringBuilder b, Object o, String delim) {
if (o.getClass().isArray()) {
int L = Array.getLength(o);
for (int i = 0; i < L; ++i)
append(b, Array.get(o, i), delim);
} else if (o instanceof Iterable<?>) {
for (Object p : (Iterable<?>)o)
append(b, p, delim);
} else
b.append(delim).append(o);
}
////////////////////////////////////////////////////////////////////////////////////
public static void main(String[] args) {
new D();
exit();
}
static void start() {
t = millis();
}
static PrintWriter pw = new PrintWriter(System.out);
static long t;
static long millis() {
return System.currentTimeMillis();
}
}
|
O(log(n))
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Classify the following Java code's worst-case time complexity according to its relationship to the input size n.
</TASK>
<CODE>
import java.io.*;
import java.lang.reflect.*;
public class D {
final int MOD = (int)1e9 + 7;
final double eps = 1e-12;
final int INF = (int)1e9;
public D () {
long L = sc.nextLong();
long R = sc.nextLong();
for (int i = 60; i >= 0; --i) {
long b = (1L << i);
long A = (L & b), B = (R & b);
if (A != B)
exit(2*b-1);
}
exit(0);
}
////////////////////////////////////////////////////////////////////////////////////
/* Dear hacker, don't bother reading below this line, unless you want to help me debug my I/O routines :-) */
static MyScanner sc = new MyScanner();
static class MyScanner {
public String next() {
newLine();
return line[index++];
}
public char nextChar() {
return next().charAt(0);
}
public int nextInt() {
return Integer.parseInt(next());
}
public long nextLong() {
return Long.parseLong(next());
}
public double nextDouble() {
return Double.parseDouble(next());
}
public String nextLine() {
line = null;
return readLine();
}
public String [] nextStrings() {
line = null;
return readLine().split(" ");
}
public char [] nextChars() {
return next().toCharArray();
}
public Integer [] nextInts() {
String [] L = nextStrings();
Integer [] res = new Integer [L.length];
for (int i = 0; i < L.length; ++i)
res[i] = Integer.parseInt(L[i]);
return res;
}
public Long [] nextLongs() {
String [] L = nextStrings();
Long [] res = new Long [L.length];
for (int i = 0; i < L.length; ++i)
res[i] = Long.parseLong(L[i]);
return res;
}
public Double [] nextDoubles() {
String [] L = nextStrings();
Double [] res = new Double [L.length];
for (int i = 0; i < L.length; ++i)
res[i] = Double.parseDouble(L[i]);
return res;
}
public String [] next (int N) {
String [] res = new String [N];
for (int i = 0; i < N; ++i)
res[i] = sc.next();
return res;
}
public Integer [] nextInt (int N) {
Integer [] res = new Integer [N];
for (int i = 0; i < N; ++i)
res[i] = sc.nextInt();
return res;
}
public Long [] nextLong (int N) {
Long [] res = new Long [N];
for (int i = 0; i < N; ++i)
res[i] = sc.nextLong();
return res;
}
public Double [] nextDouble (int N) {
Double [] res = new Double [N];
for (int i = 0; i < N; ++i)
res[i] = sc.nextDouble();
return res;
}
public String [][] nextStrings (int N) {
String [][] res = new String [N][];
for (int i = 0; i < N; ++i)
res[i] = sc.nextStrings();
return res;
}
public Integer [][] nextInts (int N) {
Integer [][] res = new Integer [N][];
for (int i = 0; i < N; ++i)
res[i] = sc.nextInts();
return res;
}
public Long [][] nextLongs (int N) {
Long [][] res = new Long [N][];
for (int i = 0; i < N; ++i)
res[i] = sc.nextLongs();
return res;
}
public Double [][] nextDoubles (int N) {
Double [][] res = new Double [N][];
for (int i = 0; i < N; ++i)
res[i] = sc.nextDoubles();
return res;
}
//////////////////////////////////////////////
private boolean eol() {
return index == line.length;
}
private String readLine() {
try {
return r.readLine();
} catch (Exception e) {
throw new Error(e);
}
}
private final BufferedReader r;
MyScanner () {
this(new BufferedReader(new InputStreamReader(System.in)));
}
MyScanner(BufferedReader r) {
try {
this.r = r;
while (!r.ready())
Thread.sleep(1);
start();
} catch (Exception e) {
throw new Error(e);
}
}
private String [] line;
private int index;
private void newLine() {
if (line == null || eol()) {
line = readLine().split(" ");
index = 0;
}
}
}
static void print(Object o, Object... a) {
printDelim(" ", o, a);
}
static void cprint(Object o, Object... a) {
printDelim("", o, a);
}
static void printDelim (String delim, Object o, Object... a) {
pw.println(build(delim, o, a));
}
static void exit (Object o, Object... a) {
print(o, a);
exit();
}
static void exit () {
pw.close();
System.out.flush();
System.err.println("------------------");
System.err.println("Time: " + ((millis() - t) / 1000.0));
System.exit(0);
}
void NO() {
throw new Error("NO!");
}
////////////////////////////////////////////////////////////////////////////////////
static String build(String delim, Object o, Object... a) {
StringBuilder b = new StringBuilder();
append(b, o, delim);
for (Object p : a)
append(b, p, delim);
return b.toString().trim();
}
static void append(StringBuilder b, Object o, String delim) {
if (o.getClass().isArray()) {
int L = Array.getLength(o);
for (int i = 0; i < L; ++i)
append(b, Array.get(o, i), delim);
} else if (o instanceof Iterable<?>) {
for (Object p : (Iterable<?>)o)
append(b, p, delim);
} else
b.append(delim).append(o);
}
////////////////////////////////////////////////////////////////////////////////////
public static void main(String[] args) {
new D();
exit();
}
static void start() {
t = millis();
}
static PrintWriter pw = new PrintWriter(System.out);
static long t;
static long millis() {
return System.currentTimeMillis();
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(1): The running time does not change regardless of the input size n.
- O(n^2): The running time increases with the square of the input size n.
- O(log(n)): The running time increases with the logarithm of the input size n.
- O(n): The running time grows linearly with the input size n.
- O(n^3): The running time increases with the cube of the input size n.
- O(nlog(n)): The running time increases with the product of n and logarithm of n.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Classify the following Java code's worst-case time complexity according to its relationship to the input size n.
</TASK>
<CODE>
import java.io.*;
import java.lang.reflect.*;
public class D {
final int MOD = (int)1e9 + 7;
final double eps = 1e-12;
final int INF = (int)1e9;
public D () {
long L = sc.nextLong();
long R = sc.nextLong();
for (int i = 60; i >= 0; --i) {
long b = (1L << i);
long A = (L & b), B = (R & b);
if (A != B)
exit(2*b-1);
}
exit(0);
}
////////////////////////////////////////////////////////////////////////////////////
/* Dear hacker, don't bother reading below this line, unless you want to help me debug my I/O routines :-) */
static MyScanner sc = new MyScanner();
static class MyScanner {
public String next() {
newLine();
return line[index++];
}
public char nextChar() {
return next().charAt(0);
}
public int nextInt() {
return Integer.parseInt(next());
}
public long nextLong() {
return Long.parseLong(next());
}
public double nextDouble() {
return Double.parseDouble(next());
}
public String nextLine() {
line = null;
return readLine();
}
public String [] nextStrings() {
line = null;
return readLine().split(" ");
}
public char [] nextChars() {
return next().toCharArray();
}
public Integer [] nextInts() {
String [] L = nextStrings();
Integer [] res = new Integer [L.length];
for (int i = 0; i < L.length; ++i)
res[i] = Integer.parseInt(L[i]);
return res;
}
public Long [] nextLongs() {
String [] L = nextStrings();
Long [] res = new Long [L.length];
for (int i = 0; i < L.length; ++i)
res[i] = Long.parseLong(L[i]);
return res;
}
public Double [] nextDoubles() {
String [] L = nextStrings();
Double [] res = new Double [L.length];
for (int i = 0; i < L.length; ++i)
res[i] = Double.parseDouble(L[i]);
return res;
}
public String [] next (int N) {
String [] res = new String [N];
for (int i = 0; i < N; ++i)
res[i] = sc.next();
return res;
}
public Integer [] nextInt (int N) {
Integer [] res = new Integer [N];
for (int i = 0; i < N; ++i)
res[i] = sc.nextInt();
return res;
}
public Long [] nextLong (int N) {
Long [] res = new Long [N];
for (int i = 0; i < N; ++i)
res[i] = sc.nextLong();
return res;
}
public Double [] nextDouble (int N) {
Double [] res = new Double [N];
for (int i = 0; i < N; ++i)
res[i] = sc.nextDouble();
return res;
}
public String [][] nextStrings (int N) {
String [][] res = new String [N][];
for (int i = 0; i < N; ++i)
res[i] = sc.nextStrings();
return res;
}
public Integer [][] nextInts (int N) {
Integer [][] res = new Integer [N][];
for (int i = 0; i < N; ++i)
res[i] = sc.nextInts();
return res;
}
public Long [][] nextLongs (int N) {
Long [][] res = new Long [N][];
for (int i = 0; i < N; ++i)
res[i] = sc.nextLongs();
return res;
}
public Double [][] nextDoubles (int N) {
Double [][] res = new Double [N][];
for (int i = 0; i < N; ++i)
res[i] = sc.nextDoubles();
return res;
}
//////////////////////////////////////////////
private boolean eol() {
return index == line.length;
}
private String readLine() {
try {
return r.readLine();
} catch (Exception e) {
throw new Error(e);
}
}
private final BufferedReader r;
MyScanner () {
this(new BufferedReader(new InputStreamReader(System.in)));
}
MyScanner(BufferedReader r) {
try {
this.r = r;
while (!r.ready())
Thread.sleep(1);
start();
} catch (Exception e) {
throw new Error(e);
}
}
private String [] line;
private int index;
private void newLine() {
if (line == null || eol()) {
line = readLine().split(" ");
index = 0;
}
}
}
static void print(Object o, Object... a) {
printDelim(" ", o, a);
}
static void cprint(Object o, Object... a) {
printDelim("", o, a);
}
static void printDelim (String delim, Object o, Object... a) {
pw.println(build(delim, o, a));
}
static void exit (Object o, Object... a) {
print(o, a);
exit();
}
static void exit () {
pw.close();
System.out.flush();
System.err.println("------------------");
System.err.println("Time: " + ((millis() - t) / 1000.0));
System.exit(0);
}
void NO() {
throw new Error("NO!");
}
////////////////////////////////////////////////////////////////////////////////////
static String build(String delim, Object o, Object... a) {
StringBuilder b = new StringBuilder();
append(b, o, delim);
for (Object p : a)
append(b, p, delim);
return b.toString().trim();
}
static void append(StringBuilder b, Object o, String delim) {
if (o.getClass().isArray()) {
int L = Array.getLength(o);
for (int i = 0; i < L; ++i)
append(b, Array.get(o, i), delim);
} else if (o instanceof Iterable<?>) {
for (Object p : (Iterable<?>)o)
append(b, p, delim);
} else
b.append(delim).append(o);
}
////////////////////////////////////////////////////////////////////////////////////
public static void main(String[] args) {
new D();
exit();
}
static void start() {
t = millis();
}
static PrintWriter pw = new PrintWriter(System.out);
static long t;
static long millis() {
return System.currentTimeMillis();
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(n): The running time grows linearly with the input size n.
- O(n^3): The running time increases with the cube of the input size n.
- O(1): The running time does not change regardless of the input size n.
- O(nlog(n)): The running time increases with the product of n and logarithm of n.
- O(log(n)): The running time increases with the logarithm of the input size n.
- others: The code does not clearly correspond to the listed classes or has an unclassified time complexity.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- O(n^2): The running time increases with the square of the input size n.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
| 1,889
| 1,475
|
3,270
|
import java.util.Scanner;
public class Main {
public static void main(String[] args) {
Scanner r = new Scanner(System.in);
int N = r.nextInt();
System.out.println(N + " " + 0 + " " + 0);
}
}
|
O(1)
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Determine the worst-case time complexity category of a given Java code based on input size n.
</TASK>
<CODE>
import java.util.Scanner;
public class Main {
public static void main(String[] args) {
Scanner r = new Scanner(System.in);
int N = r.nextInt();
System.out.println(N + " " + 0 + " " + 0);
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(1): The time complexity is constant to the input size n.
- O(n^3): The time complexity scales proportionally to the cube of the input size.
- O(n^2): The time complexity grows proportionally to the square of the input size.
- O(n): The time complexity increases proportionally to the input size n in a linear manner.
- O(log(n)): The time complexity increases logarithmically in relation to the input size.
- O(nlog(n)): The time complexity combines linear and logarithmic growth factors.
- non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Classify the following Java code's worst-case time complexity according to its relationship to the input size n.
</TASK>
<CODE>
import java.util.Scanner;
public class Main {
public static void main(String[] args) {
Scanner r = new Scanner(System.in);
int N = r.nextInt();
System.out.println(N + " " + 0 + " " + 0);
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(n^2): The running time increases with the square of the input size n.
- others: The code does not clearly correspond to the listed classes or has an unclassified time complexity.
- O(n): The running time grows linearly with the input size n.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- O(n^3): The running time increases with the cube of the input size n.
- O(nlog(n)): The running time increases with the product of n and logarithm of n.
- O(log(n)): The running time increases with the logarithm of the input size n.
- O(1): The running time does not change regardless of the input size n.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
| 387
| 3,264
|
3,957
|
import java.io.BufferedReader;
import java.io.InputStreamReader;
import java.io.PrintWriter;
import java.io.Reader;
import java.io.IOException;
import java.util.StringTokenizer;
/*
* @author Tnascimento
*/
public class MaeDosDragoes {
// public static StringTokenizer tokenizer;
// public static BufferedReader reader;
public static PrintWriter saida = new PrintWriter(System.out, false);
// public static String proximo() {
// while (tokenizer == null || !tokenizer.hasMoreElements()) {
// try {
// tokenizer = new StringTokenizer(reader.readLine());
// } catch (RuntimeException e) {
// e.printStackTrace();
// }
// }
// return tokenizer.nextToken();
// }
public static class FastScanner {
BufferedReader br;
StringTokenizer st;
public FastScanner(Reader in) {
br = new BufferedReader(in);
}
public FastScanner() {
this(new InputStreamReader(System.in));
}
String next() {
while (st == null || !st.hasMoreElements()) {
try {
st = new StringTokenizer(br.readLine());
} catch (IOException e) {
e.printStackTrace();
}
}
return st.nextToken();
}
int nextInt() {
return Integer.parseInt(next());
}
long nextLong() {
return Long.parseLong(next());
}
double nextDouble() {
return Double.parseDouble(next());
}
String readNextLine() {
String str = "";
try {
str = br.readLine();
} catch (IOException e) {
e.printStackTrace();
}
return str;
}
}
public static void main(String[] args) {
FastScanner fastScanner = new FastScanner();
int proximoInt = fastScanner.nextInt();
double proximoDouble = fastScanner.nextInt();
long[] graph = new long[proximoInt];
for(Integer i = 0; i < proximoInt; i++) {
for(Integer j =0; j < proximoInt; j++) {
Integer val = fastScanner.nextInt();
if (val.equals(1) || i.equals(j)) {
graph[i] |= 1L << j;
}
}
}
int szLeft = proximoInt/2;
int szRight = proximoInt - szLeft;
int[] dp = new int[1 << szLeft];
int maxMask = 1 << szLeft;
for(int mask = 1; mask <maxMask; mask++) {
int curMask = mask;
for(int j = 0; j < szLeft; j++) {
if (((1 << j) & mask) > 0) {
curMask &= graph[j + szRight] >> szRight;
dp[mask] = Math.max(dp[mask], dp[mask ^ (1 << j)]);
}
}
if (mask == curMask) {
dp[mask] = Math.max(dp[mask],Integer.bitCount(mask));
}
}
int ans = 0;
int rmaxMask = 1 << szRight;
for(int mask = 0; mask < rmaxMask; mask++) {
int curMask = mask;
int oMask = maxMask -1;
for(int j = 0; j < szRight; j++) {
if (((1 << j) & mask) > 0) {
curMask &= (graph[j] & (rmaxMask-1));
oMask &= graph[j] >> szRight;
}
}
if (curMask != mask) continue;
ans = Math.max(ans, Integer.bitCount(mask) + dp[oMask]);
}
proximoDouble/=ans;
saida.println(proximoDouble * proximoDouble * (ans * (ans-1))/2);
saida.flush();
}
}
|
non-polynomial
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Classify the following Java code's worst-case time complexity according to its relationship to the input size n.
</TASK>
<CODE>
import java.io.BufferedReader;
import java.io.InputStreamReader;
import java.io.PrintWriter;
import java.io.Reader;
import java.io.IOException;
import java.util.StringTokenizer;
/*
* @author Tnascimento
*/
public class MaeDosDragoes {
// public static StringTokenizer tokenizer;
// public static BufferedReader reader;
public static PrintWriter saida = new PrintWriter(System.out, false);
// public static String proximo() {
// while (tokenizer == null || !tokenizer.hasMoreElements()) {
// try {
// tokenizer = new StringTokenizer(reader.readLine());
// } catch (RuntimeException e) {
// e.printStackTrace();
// }
// }
// return tokenizer.nextToken();
// }
public static class FastScanner {
BufferedReader br;
StringTokenizer st;
public FastScanner(Reader in) {
br = new BufferedReader(in);
}
public FastScanner() {
this(new InputStreamReader(System.in));
}
String next() {
while (st == null || !st.hasMoreElements()) {
try {
st = new StringTokenizer(br.readLine());
} catch (IOException e) {
e.printStackTrace();
}
}
return st.nextToken();
}
int nextInt() {
return Integer.parseInt(next());
}
long nextLong() {
return Long.parseLong(next());
}
double nextDouble() {
return Double.parseDouble(next());
}
String readNextLine() {
String str = "";
try {
str = br.readLine();
} catch (IOException e) {
e.printStackTrace();
}
return str;
}
}
public static void main(String[] args) {
FastScanner fastScanner = new FastScanner();
int proximoInt = fastScanner.nextInt();
double proximoDouble = fastScanner.nextInt();
long[] graph = new long[proximoInt];
for(Integer i = 0; i < proximoInt; i++) {
for(Integer j =0; j < proximoInt; j++) {
Integer val = fastScanner.nextInt();
if (val.equals(1) || i.equals(j)) {
graph[i] |= 1L << j;
}
}
}
int szLeft = proximoInt/2;
int szRight = proximoInt - szLeft;
int[] dp = new int[1 << szLeft];
int maxMask = 1 << szLeft;
for(int mask = 1; mask <maxMask; mask++) {
int curMask = mask;
for(int j = 0; j < szLeft; j++) {
if (((1 << j) & mask) > 0) {
curMask &= graph[j + szRight] >> szRight;
dp[mask] = Math.max(dp[mask], dp[mask ^ (1 << j)]);
}
}
if (mask == curMask) {
dp[mask] = Math.max(dp[mask],Integer.bitCount(mask));
}
}
int ans = 0;
int rmaxMask = 1 << szRight;
for(int mask = 0; mask < rmaxMask; mask++) {
int curMask = mask;
int oMask = maxMask -1;
for(int j = 0; j < szRight; j++) {
if (((1 << j) & mask) > 0) {
curMask &= (graph[j] & (rmaxMask-1));
oMask &= graph[j] >> szRight;
}
}
if (curMask != mask) continue;
ans = Math.max(ans, Integer.bitCount(mask) + dp[oMask]);
}
proximoDouble/=ans;
saida.println(proximoDouble * proximoDouble * (ans * (ans-1))/2);
saida.flush();
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(n): The running time grows linearly with the input size n.
- O(n^3): The running time increases with the cube of the input size n.
- O(1): The running time does not change regardless of the input size n.
- O(log(n)): The running time increases with the logarithm of the input size n.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- O(nlog(n)): The running time increases with the product of n and logarithm of n.
- O(n^2): The running time increases with the square of the input size n.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n.
</TASK>
<CODE>
import java.io.BufferedReader;
import java.io.InputStreamReader;
import java.io.PrintWriter;
import java.io.Reader;
import java.io.IOException;
import java.util.StringTokenizer;
/*
* @author Tnascimento
*/
public class MaeDosDragoes {
// public static StringTokenizer tokenizer;
// public static BufferedReader reader;
public static PrintWriter saida = new PrintWriter(System.out, false);
// public static String proximo() {
// while (tokenizer == null || !tokenizer.hasMoreElements()) {
// try {
// tokenizer = new StringTokenizer(reader.readLine());
// } catch (RuntimeException e) {
// e.printStackTrace();
// }
// }
// return tokenizer.nextToken();
// }
public static class FastScanner {
BufferedReader br;
StringTokenizer st;
public FastScanner(Reader in) {
br = new BufferedReader(in);
}
public FastScanner() {
this(new InputStreamReader(System.in));
}
String next() {
while (st == null || !st.hasMoreElements()) {
try {
st = new StringTokenizer(br.readLine());
} catch (IOException e) {
e.printStackTrace();
}
}
return st.nextToken();
}
int nextInt() {
return Integer.parseInt(next());
}
long nextLong() {
return Long.parseLong(next());
}
double nextDouble() {
return Double.parseDouble(next());
}
String readNextLine() {
String str = "";
try {
str = br.readLine();
} catch (IOException e) {
e.printStackTrace();
}
return str;
}
}
public static void main(String[] args) {
FastScanner fastScanner = new FastScanner();
int proximoInt = fastScanner.nextInt();
double proximoDouble = fastScanner.nextInt();
long[] graph = new long[proximoInt];
for(Integer i = 0; i < proximoInt; i++) {
for(Integer j =0; j < proximoInt; j++) {
Integer val = fastScanner.nextInt();
if (val.equals(1) || i.equals(j)) {
graph[i] |= 1L << j;
}
}
}
int szLeft = proximoInt/2;
int szRight = proximoInt - szLeft;
int[] dp = new int[1 << szLeft];
int maxMask = 1 << szLeft;
for(int mask = 1; mask <maxMask; mask++) {
int curMask = mask;
for(int j = 0; j < szLeft; j++) {
if (((1 << j) & mask) > 0) {
curMask &= graph[j + szRight] >> szRight;
dp[mask] = Math.max(dp[mask], dp[mask ^ (1 << j)]);
}
}
if (mask == curMask) {
dp[mask] = Math.max(dp[mask],Integer.bitCount(mask));
}
}
int ans = 0;
int rmaxMask = 1 << szRight;
for(int mask = 0; mask < rmaxMask; mask++) {
int curMask = mask;
int oMask = maxMask -1;
for(int j = 0; j < szRight; j++) {
if (((1 << j) & mask) > 0) {
curMask &= (graph[j] & (rmaxMask-1));
oMask &= graph[j] >> szRight;
}
}
if (curMask != mask) continue;
ans = Math.max(ans, Integer.bitCount(mask) + dp[oMask]);
}
proximoDouble/=ans;
saida.println(proximoDouble * proximoDouble * (ans * (ans-1))/2);
saida.flush();
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(n^3): The execution time ascends in proportion to the cube of the input size n.
- O(1): The execution time is unaffected by the size of the input n.
- O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially.
- others: The time complexity does not fit to any of the given categories or is ambiguous.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- O(log(n)): The execution time ascends in proportion to the logarithm of the input size n.
- O(n): The execution time ascends in a one-to-one ratio with the input size n.
- O(n^2): The execution time ascends in proportion to the square of the input size n.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
| 1,146
| 3,946
|
1,696
|
import java.io.BufferedReader;
import java.io.IOException;
import java.io.InputStreamReader;
import java.io.PrintWriter;
import java.util.HashSet;
import java.util.Set;
import java.util.StringTokenizer;
public class Houses implements Runnable {
private void solve() throws IOException {
int n = nextInt();
int t = nextInt();
int[] x = new int[n];
int[] a = new int[n];
for (int i = 0; i < n; ++i) {
x[i] = nextInt() * 2;
a[i] = nextInt();
}
Set<Integer> res = new HashSet<Integer>();
for (int i = 0; i < n; ++i) {
if (valid(n, t, x, a, x[i] + a[i] + t))
res.add(x[i] + a[i] + t);
if (valid(n, t, x, a, x[i] - a[i] - t))
res.add(x[i] - a[i] - t);
}
writer.println(res.size());
}
private boolean valid(int n, int t, int[] x, int[] a, int pos) {
for (int i = 0; i < n; ++i) {
if (Math.abs(pos - x[i]) < a[i] + t)
return false;
}
return true;
}
public static void main(String[] args) {
new Houses().run();
}
BufferedReader reader;
StringTokenizer tokenizer;
PrintWriter writer;
public void run() {
try {
reader = new BufferedReader(new InputStreamReader(System.in));
tokenizer = null;
writer = new PrintWriter(System.out);
solve();
reader.close();
writer.close();
} catch (Exception e) {
e.printStackTrace();
System.exit(1);
}
}
int nextInt() throws IOException {
return Integer.parseInt(nextToken());
}
long nextLong() throws IOException {
return Long.parseLong(nextToken());
}
double nextDouble() throws IOException {
return Double.parseDouble(nextToken());
}
String nextToken() throws IOException {
while (tokenizer == null || !tokenizer.hasMoreTokens()) {
tokenizer = new StringTokenizer(reader.readLine());
}
return tokenizer.nextToken();
}
}
|
O(nlog(n))
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n.
</TASK>
<CODE>
import java.io.BufferedReader;
import java.io.IOException;
import java.io.InputStreamReader;
import java.io.PrintWriter;
import java.util.HashSet;
import java.util.Set;
import java.util.StringTokenizer;
public class Houses implements Runnable {
private void solve() throws IOException {
int n = nextInt();
int t = nextInt();
int[] x = new int[n];
int[] a = new int[n];
for (int i = 0; i < n; ++i) {
x[i] = nextInt() * 2;
a[i] = nextInt();
}
Set<Integer> res = new HashSet<Integer>();
for (int i = 0; i < n; ++i) {
if (valid(n, t, x, a, x[i] + a[i] + t))
res.add(x[i] + a[i] + t);
if (valid(n, t, x, a, x[i] - a[i] - t))
res.add(x[i] - a[i] - t);
}
writer.println(res.size());
}
private boolean valid(int n, int t, int[] x, int[] a, int pos) {
for (int i = 0; i < n; ++i) {
if (Math.abs(pos - x[i]) < a[i] + t)
return false;
}
return true;
}
public static void main(String[] args) {
new Houses().run();
}
BufferedReader reader;
StringTokenizer tokenizer;
PrintWriter writer;
public void run() {
try {
reader = new BufferedReader(new InputStreamReader(System.in));
tokenizer = null;
writer = new PrintWriter(System.out);
solve();
reader.close();
writer.close();
} catch (Exception e) {
e.printStackTrace();
System.exit(1);
}
}
int nextInt() throws IOException {
return Integer.parseInt(nextToken());
}
long nextLong() throws IOException {
return Long.parseLong(nextToken());
}
double nextDouble() throws IOException {
return Double.parseDouble(nextToken());
}
String nextToken() throws IOException {
while (tokenizer == null || !tokenizer.hasMoreTokens()) {
tokenizer = new StringTokenizer(reader.readLine());
}
return tokenizer.nextToken();
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(n^3): The execution time ascends in proportion to the cube of the input size n.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- O(n): The execution time ascends in a one-to-one ratio with the input size n.
- O(log(n)): The execution time ascends in proportion to the logarithm of the input size n.
- O(n^2): The execution time ascends in proportion to the square of the input size n.
- O(1): The execution time is unaffected by the size of the input n.
- O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Determine the worst-case time complexity category of a given Java code based on input size n.
</TASK>
<CODE>
import java.io.BufferedReader;
import java.io.IOException;
import java.io.InputStreamReader;
import java.io.PrintWriter;
import java.util.HashSet;
import java.util.Set;
import java.util.StringTokenizer;
public class Houses implements Runnable {
private void solve() throws IOException {
int n = nextInt();
int t = nextInt();
int[] x = new int[n];
int[] a = new int[n];
for (int i = 0; i < n; ++i) {
x[i] = nextInt() * 2;
a[i] = nextInt();
}
Set<Integer> res = new HashSet<Integer>();
for (int i = 0; i < n; ++i) {
if (valid(n, t, x, a, x[i] + a[i] + t))
res.add(x[i] + a[i] + t);
if (valid(n, t, x, a, x[i] - a[i] - t))
res.add(x[i] - a[i] - t);
}
writer.println(res.size());
}
private boolean valid(int n, int t, int[] x, int[] a, int pos) {
for (int i = 0; i < n; ++i) {
if (Math.abs(pos - x[i]) < a[i] + t)
return false;
}
return true;
}
public static void main(String[] args) {
new Houses().run();
}
BufferedReader reader;
StringTokenizer tokenizer;
PrintWriter writer;
public void run() {
try {
reader = new BufferedReader(new InputStreamReader(System.in));
tokenizer = null;
writer = new PrintWriter(System.out);
solve();
reader.close();
writer.close();
} catch (Exception e) {
e.printStackTrace();
System.exit(1);
}
}
int nextInt() throws IOException {
return Integer.parseInt(nextToken());
}
long nextLong() throws IOException {
return Long.parseLong(nextToken());
}
double nextDouble() throws IOException {
return Double.parseDouble(nextToken());
}
String nextToken() throws IOException {
while (tokenizer == null || !tokenizer.hasMoreTokens()) {
tokenizer = new StringTokenizer(reader.readLine());
}
return tokenizer.nextToken();
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(nlog(n)): The time complexity combines linear and logarithmic growth factors.
- O(1): The time complexity is constant to the input size n.
- O(n): The time complexity increases proportionally to the input size n in a linear manner.
- O(n^3): The time complexity scales proportionally to the cube of the input size.
- others: The time complexity does not fit any of the above categories or cannot be clearly classified.
- O(n^2): The time complexity grows proportionally to the square of the input size.
- O(log(n)): The time complexity increases logarithmically in relation to the input size.
- non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
| 832
| 1,693
|
3,592
|
import java.io.*;
import java.util.*;
public class Main
{
public static void main(String[] args) throws IOException
{
PrintWriter pw = new PrintWriter(new FileWriter("output.txt"));
Scanner in=new Scanner(new File("input.txt"));
int n,m,k;
n=in.nextInt();
m=in.nextInt();
k=in.nextInt();
Vector<Integer> vec=new Vector<Integer>();
Vector<Integer> temp=new Vector<Integer>();
boolean[][] mas=new boolean[n][m];
long time=System.currentTimeMillis();
for(int i=0;i<k;i++)
{
vec.add(in.nextInt()-1);
vec.add(in.nextInt()-1);
mas[vec.get(vec.size()-2)][vec.get(vec.size()-1)]=true;
}
int x,y;
x=y=0;
while(vec.size()!=0)
{
for(int i=0;i<vec.size();i+=2)
{
x=vec.get(i);
y=vec.get(i+1);
if(x>0 && !mas[x-1][y])
{
temp.add(x-1);
temp.add(y);
mas[x-1][y]=true;
}
if(x<n-1 && !mas[x+1][y])
{
temp.add(x+1);
temp.add(y);
mas[x+1][y]=true;
}
if(y>0 && !mas[x][y-1])
{
temp.add(x);
temp.add(y-1);
mas[x][y-1]=true;
}
if(y<m-1 && !mas[x][y+1])
{
temp.add(x);
temp.add(y+1);
mas[x][y+1]=true;
}
}
vec=temp;
temp=new Vector<Integer>();
}
pw.println((x+1)+" "+(y+1));
System.out.println(System.currentTimeMillis()-time);
in.close();
pw.close();
}
}
|
O(n^3)
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Classify the following Java code's worst-case time complexity according to its relationship to the input size n.
</TASK>
<CODE>
import java.io.*;
import java.util.*;
public class Main
{
public static void main(String[] args) throws IOException
{
PrintWriter pw = new PrintWriter(new FileWriter("output.txt"));
Scanner in=new Scanner(new File("input.txt"));
int n,m,k;
n=in.nextInt();
m=in.nextInt();
k=in.nextInt();
Vector<Integer> vec=new Vector<Integer>();
Vector<Integer> temp=new Vector<Integer>();
boolean[][] mas=new boolean[n][m];
long time=System.currentTimeMillis();
for(int i=0;i<k;i++)
{
vec.add(in.nextInt()-1);
vec.add(in.nextInt()-1);
mas[vec.get(vec.size()-2)][vec.get(vec.size()-1)]=true;
}
int x,y;
x=y=0;
while(vec.size()!=0)
{
for(int i=0;i<vec.size();i+=2)
{
x=vec.get(i);
y=vec.get(i+1);
if(x>0 && !mas[x-1][y])
{
temp.add(x-1);
temp.add(y);
mas[x-1][y]=true;
}
if(x<n-1 && !mas[x+1][y])
{
temp.add(x+1);
temp.add(y);
mas[x+1][y]=true;
}
if(y>0 && !mas[x][y-1])
{
temp.add(x);
temp.add(y-1);
mas[x][y-1]=true;
}
if(y<m-1 && !mas[x][y+1])
{
temp.add(x);
temp.add(y+1);
mas[x][y+1]=true;
}
}
vec=temp;
temp=new Vector<Integer>();
}
pw.println((x+1)+" "+(y+1));
System.out.println(System.currentTimeMillis()-time);
in.close();
pw.close();
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(n^2): The running time increases with the square of the input size n.
- O(n): The running time grows linearly with the input size n.
- O(1): The running time does not change regardless of the input size n.
- O(nlog(n)): The running time increases with the product of n and logarithm of n.
- O(log(n)): The running time increases with the logarithm of the input size n.
- O(n^3): The running time increases with the cube of the input size n.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Classify the following Java code's worst-case time complexity according to its relationship to the input size n.
</TASK>
<CODE>
import java.io.*;
import java.util.*;
public class Main
{
public static void main(String[] args) throws IOException
{
PrintWriter pw = new PrintWriter(new FileWriter("output.txt"));
Scanner in=new Scanner(new File("input.txt"));
int n,m,k;
n=in.nextInt();
m=in.nextInt();
k=in.nextInt();
Vector<Integer> vec=new Vector<Integer>();
Vector<Integer> temp=new Vector<Integer>();
boolean[][] mas=new boolean[n][m];
long time=System.currentTimeMillis();
for(int i=0;i<k;i++)
{
vec.add(in.nextInt()-1);
vec.add(in.nextInt()-1);
mas[vec.get(vec.size()-2)][vec.get(vec.size()-1)]=true;
}
int x,y;
x=y=0;
while(vec.size()!=0)
{
for(int i=0;i<vec.size();i+=2)
{
x=vec.get(i);
y=vec.get(i+1);
if(x>0 && !mas[x-1][y])
{
temp.add(x-1);
temp.add(y);
mas[x-1][y]=true;
}
if(x<n-1 && !mas[x+1][y])
{
temp.add(x+1);
temp.add(y);
mas[x+1][y]=true;
}
if(y>0 && !mas[x][y-1])
{
temp.add(x);
temp.add(y-1);
mas[x][y-1]=true;
}
if(y<m-1 && !mas[x][y+1])
{
temp.add(x);
temp.add(y+1);
mas[x][y+1]=true;
}
}
vec=temp;
temp=new Vector<Integer>();
}
pw.println((x+1)+" "+(y+1));
System.out.println(System.currentTimeMillis()-time);
in.close();
pw.close();
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(1): The running time does not change regardless of the input size n.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- O(n): The running time grows linearly with the input size n.
- O(log(n)): The running time increases with the logarithm of the input size n.
- others: The code does not clearly correspond to the listed classes or has an unclassified time complexity.
- O(nlog(n)): The running time increases with the product of n and logarithm of n.
- O(n^3): The running time increases with the cube of the input size n.
- O(n^2): The running time increases with the square of the input size n.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
| 751
| 3,584
|
1,283
|
import java.io.IOException;
import java.io.InputStream;
import java.util.InputMismatchException;
public class Main {
static long MOD = (long) 1e9 + 7;
static long[][] identity = {{1, 0}, {0, 1}};
public static void main(String[] args) {
FastScanner input = new FastScanner(System.in);
long x = input.nextLong();
long k = input.nextLong();
long[][] matrix = {
{2, MOD - 1},
{0, 1}
};
if (x == 0)
System.out.println(0);
else if (k == 0) {
System.out.println((x * 2) % MOD);
} else {
x %= MOD;
matrix = matrixexpo(k, matrix);
long low = (x * matrix[0][0] + matrix[0][1]) % MOD;
long hi = x * mathpow(k, 2) % MOD;
System.out.println((low + hi) % MOD);
}
}
static long mathpow(long k, long x) {
if (k == 0)
return 1L;
else return mathpow(k / 2, (x * x) % MOD) * (k % 2 == 1 ? x : 1) % MOD;
}
static long[][] matrixexpo(long k, long[][] matrix) {
if (k == 0)
return identity;
if (k % 2 == 0)
return matrixexpo(k / 2, multiply(matrix, matrix));
else
return multiply(matrix, matrixexpo(k / 2, multiply(matrix, matrix)));
}
static long[][] multiply(long[][] arr, long[][] brr) {
int n = arr.length, m = arr[0].length, p = brr[0].length;
long[][] product = new long[n][p];
for (int i = 0; i < n; i++)
for (int j = 0; j < p; j++)
for (int k = 0; k < m; k++)
product[i][j] = (product[i][j] + arr[i][k] * brr[k][j]) % MOD;
return product;
}
// Matt Fontaine's Fast IO
static class FastScanner {
private InputStream stream;
private byte[] buf = new byte[1024];
private int curChar;
private int numChars;
public FastScanner(InputStream stream) {
this.stream = stream;
}
int read() {
if (numChars == -1)
throw new InputMismatchException();
if (curChar >= numChars) {
curChar = 0;
try {
numChars = stream.read(buf);
} catch (IOException e) {
throw new InputMismatchException();
}
if (numChars <= 0)
return -1;
}
return buf[curChar++];
}
boolean isSpaceChar(int c) {
return c == ' ' || c == '\n' || c == '\r' || c == '\t' || c == -1;
}
boolean isEndline(int c) {
return c == '\n' || c == '\r' || c == -1;
}
int nextInt() {
return Integer.parseInt(next());
}
long nextLong() {
return Long.parseLong(next());
}
double nextDouble() {
return Double.parseDouble(next());
}
String next() {
int c = read();
while (isSpaceChar(c))
c = read();
StringBuilder res = new StringBuilder();
do {
res.appendCodePoint(c);
c = read();
} while (!isSpaceChar(c));
return res.toString();
}
String nextLine() {
int c = read();
while (isEndline(c))
c = read();
StringBuilder res = new StringBuilder();
do {
res.appendCodePoint(c);
c = read();
} while (!isEndline(c));
return res.toString();
}
}
}
|
O(log(n))
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n.
</TASK>
<CODE>
import java.io.IOException;
import java.io.InputStream;
import java.util.InputMismatchException;
public class Main {
static long MOD = (long) 1e9 + 7;
static long[][] identity = {{1, 0}, {0, 1}};
public static void main(String[] args) {
FastScanner input = new FastScanner(System.in);
long x = input.nextLong();
long k = input.nextLong();
long[][] matrix = {
{2, MOD - 1},
{0, 1}
};
if (x == 0)
System.out.println(0);
else if (k == 0) {
System.out.println((x * 2) % MOD);
} else {
x %= MOD;
matrix = matrixexpo(k, matrix);
long low = (x * matrix[0][0] + matrix[0][1]) % MOD;
long hi = x * mathpow(k, 2) % MOD;
System.out.println((low + hi) % MOD);
}
}
static long mathpow(long k, long x) {
if (k == 0)
return 1L;
else return mathpow(k / 2, (x * x) % MOD) * (k % 2 == 1 ? x : 1) % MOD;
}
static long[][] matrixexpo(long k, long[][] matrix) {
if (k == 0)
return identity;
if (k % 2 == 0)
return matrixexpo(k / 2, multiply(matrix, matrix));
else
return multiply(matrix, matrixexpo(k / 2, multiply(matrix, matrix)));
}
static long[][] multiply(long[][] arr, long[][] brr) {
int n = arr.length, m = arr[0].length, p = brr[0].length;
long[][] product = new long[n][p];
for (int i = 0; i < n; i++)
for (int j = 0; j < p; j++)
for (int k = 0; k < m; k++)
product[i][j] = (product[i][j] + arr[i][k] * brr[k][j]) % MOD;
return product;
}
// Matt Fontaine's Fast IO
static class FastScanner {
private InputStream stream;
private byte[] buf = new byte[1024];
private int curChar;
private int numChars;
public FastScanner(InputStream stream) {
this.stream = stream;
}
int read() {
if (numChars == -1)
throw new InputMismatchException();
if (curChar >= numChars) {
curChar = 0;
try {
numChars = stream.read(buf);
} catch (IOException e) {
throw new InputMismatchException();
}
if (numChars <= 0)
return -1;
}
return buf[curChar++];
}
boolean isSpaceChar(int c) {
return c == ' ' || c == '\n' || c == '\r' || c == '\t' || c == -1;
}
boolean isEndline(int c) {
return c == '\n' || c == '\r' || c == -1;
}
int nextInt() {
return Integer.parseInt(next());
}
long nextLong() {
return Long.parseLong(next());
}
double nextDouble() {
return Double.parseDouble(next());
}
String next() {
int c = read();
while (isSpaceChar(c))
c = read();
StringBuilder res = new StringBuilder();
do {
res.appendCodePoint(c);
c = read();
} while (!isSpaceChar(c));
return res.toString();
}
String nextLine() {
int c = read();
while (isEndline(c))
c = read();
StringBuilder res = new StringBuilder();
do {
res.appendCodePoint(c);
c = read();
} while (!isEndline(c));
return res.toString();
}
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(n): The execution time ascends in a one-to-one ratio with the input size n.
- O(n^3): The execution time ascends in proportion to the cube of the input size n.
- O(n^2): The execution time ascends in proportion to the square of the input size n.
- O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- O(log(n)): The execution time ascends in proportion to the logarithm of the input size n.
- O(1): The execution time is unaffected by the size of the input n.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Classify the following Java code's worst-case time complexity according to its relationship to the input size n.
</TASK>
<CODE>
import java.io.IOException;
import java.io.InputStream;
import java.util.InputMismatchException;
public class Main {
static long MOD = (long) 1e9 + 7;
static long[][] identity = {{1, 0}, {0, 1}};
public static void main(String[] args) {
FastScanner input = new FastScanner(System.in);
long x = input.nextLong();
long k = input.nextLong();
long[][] matrix = {
{2, MOD - 1},
{0, 1}
};
if (x == 0)
System.out.println(0);
else if (k == 0) {
System.out.println((x * 2) % MOD);
} else {
x %= MOD;
matrix = matrixexpo(k, matrix);
long low = (x * matrix[0][0] + matrix[0][1]) % MOD;
long hi = x * mathpow(k, 2) % MOD;
System.out.println((low + hi) % MOD);
}
}
static long mathpow(long k, long x) {
if (k == 0)
return 1L;
else return mathpow(k / 2, (x * x) % MOD) * (k % 2 == 1 ? x : 1) % MOD;
}
static long[][] matrixexpo(long k, long[][] matrix) {
if (k == 0)
return identity;
if (k % 2 == 0)
return matrixexpo(k / 2, multiply(matrix, matrix));
else
return multiply(matrix, matrixexpo(k / 2, multiply(matrix, matrix)));
}
static long[][] multiply(long[][] arr, long[][] brr) {
int n = arr.length, m = arr[0].length, p = brr[0].length;
long[][] product = new long[n][p];
for (int i = 0; i < n; i++)
for (int j = 0; j < p; j++)
for (int k = 0; k < m; k++)
product[i][j] = (product[i][j] + arr[i][k] * brr[k][j]) % MOD;
return product;
}
// Matt Fontaine's Fast IO
static class FastScanner {
private InputStream stream;
private byte[] buf = new byte[1024];
private int curChar;
private int numChars;
public FastScanner(InputStream stream) {
this.stream = stream;
}
int read() {
if (numChars == -1)
throw new InputMismatchException();
if (curChar >= numChars) {
curChar = 0;
try {
numChars = stream.read(buf);
} catch (IOException e) {
throw new InputMismatchException();
}
if (numChars <= 0)
return -1;
}
return buf[curChar++];
}
boolean isSpaceChar(int c) {
return c == ' ' || c == '\n' || c == '\r' || c == '\t' || c == -1;
}
boolean isEndline(int c) {
return c == '\n' || c == '\r' || c == -1;
}
int nextInt() {
return Integer.parseInt(next());
}
long nextLong() {
return Long.parseLong(next());
}
double nextDouble() {
return Double.parseDouble(next());
}
String next() {
int c = read();
while (isSpaceChar(c))
c = read();
StringBuilder res = new StringBuilder();
do {
res.appendCodePoint(c);
c = read();
} while (!isSpaceChar(c));
return res.toString();
}
String nextLine() {
int c = read();
while (isEndline(c))
c = read();
StringBuilder res = new StringBuilder();
do {
res.appendCodePoint(c);
c = read();
} while (!isEndline(c));
return res.toString();
}
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(nlog(n)): The running time increases with the product of n and logarithm of n.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- O(n): The running time grows linearly with the input size n.
- O(1): The running time does not change regardless of the input size n.
- O(n^2): The running time increases with the square of the input size n.
- O(log(n)): The running time increases with the logarithm of the input size n.
- O(n^3): The running time increases with the cube of the input size n.
- others: The code does not clearly correspond to the listed classes or has an unclassified time complexity.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
| 1,264
| 1,281
|
1,837
|
import java.io.OutputStream;
import java.io.IOException;
import java.io.OutputStreamWriter;
import java.io.PrintWriter;
import java.util.Arrays;
import java.io.BufferedWriter;
import java.util.InputMismatchException;
import java.io.Writer;
import java.io.InputStream;
/**
* Built using CHelper plug-in
* Actual solution is at the top
* @author BSRK Aditya ([email protected])
*/
public class Main {
public static void main(String[] args) {
InputStream inputStream = System.in;
OutputStream outputStream = System.out;
InputReader in = new InputReader(inputStream);
OutputWriter out = new OutputWriter(outputStream);
TaskA solver = new TaskA();
solver.solve(1, in, out);
out.close();
}
}
class TaskA {
public void solve(int testNumber, InputReader in, OutputWriter out) {
int n = in.readInt();
int m = in.readInt();
int k = in.readInt();
int [] filters = new int[n];
for(int i = 0; i < n; ++i) filters[i] = in.readInt();
Arrays.sort(filters);
int nS = 0, tN = k;
while(tN < m && nS < n) {
tN += filters[n-1-nS] - 1;
nS++;
}
if(tN >= m) out.printLine(nS);
else out.printLine(-1);
}
}
class InputReader {
private InputStream stream;
private byte[] buf = new byte[1024];
private int curChar;
private int numChars;
private SpaceCharFilter filter;
public InputReader(InputStream stream) {
this.stream = stream;
}
public int read() {
if (numChars == -1)
throw new InputMismatchException();
if (curChar >= numChars) {
curChar = 0;
try {
numChars = stream.read(buf);
} catch (IOException e) {
throw new InputMismatchException();
}
if (numChars <= 0)
return -1;
}
return buf[curChar++];
}
public int readInt() {
int c = read();
while (isSpaceChar(c))
c = read();
int sgn = 1;
if (c == '-') {
sgn = -1;
c = read();
}
int res = 0;
do {
if (c < '0' || c > '9')
throw new InputMismatchException();
res *= 10;
res += c - '0';
c = read();
} while (!isSpaceChar(c));
return res * sgn;
}
public boolean isSpaceChar(int c) {
if (filter != null)
return filter.isSpaceChar(c);
return c == ' ' || c == '\n' || c == '\r' || c == '\t' || c == -1;
}
public interface SpaceCharFilter {
public boolean isSpaceChar(int ch);
}
}
class OutputWriter {
private final PrintWriter writer;
public OutputWriter(OutputStream outputStream) {
writer = new PrintWriter(new BufferedWriter(new OutputStreamWriter(outputStream)));
}
public OutputWriter(Writer writer) {
this.writer = new PrintWriter(writer);
}
public void print(Object...objects) {
for (int i = 0; i < objects.length; i++) {
if (i != 0)
writer.print(' ');
writer.print(objects[i]);
}
}
public void printLine(Object...objects) {
print(objects);
writer.println();
}
public void close() {
writer.close();
}
}
|
O(nlog(n))
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n.
</TASK>
<CODE>
import java.io.OutputStream;
import java.io.IOException;
import java.io.OutputStreamWriter;
import java.io.PrintWriter;
import java.util.Arrays;
import java.io.BufferedWriter;
import java.util.InputMismatchException;
import java.io.Writer;
import java.io.InputStream;
/**
* Built using CHelper plug-in
* Actual solution is at the top
* @author BSRK Aditya ([email protected])
*/
public class Main {
public static void main(String[] args) {
InputStream inputStream = System.in;
OutputStream outputStream = System.out;
InputReader in = new InputReader(inputStream);
OutputWriter out = new OutputWriter(outputStream);
TaskA solver = new TaskA();
solver.solve(1, in, out);
out.close();
}
}
class TaskA {
public void solve(int testNumber, InputReader in, OutputWriter out) {
int n = in.readInt();
int m = in.readInt();
int k = in.readInt();
int [] filters = new int[n];
for(int i = 0; i < n; ++i) filters[i] = in.readInt();
Arrays.sort(filters);
int nS = 0, tN = k;
while(tN < m && nS < n) {
tN += filters[n-1-nS] - 1;
nS++;
}
if(tN >= m) out.printLine(nS);
else out.printLine(-1);
}
}
class InputReader {
private InputStream stream;
private byte[] buf = new byte[1024];
private int curChar;
private int numChars;
private SpaceCharFilter filter;
public InputReader(InputStream stream) {
this.stream = stream;
}
public int read() {
if (numChars == -1)
throw new InputMismatchException();
if (curChar >= numChars) {
curChar = 0;
try {
numChars = stream.read(buf);
} catch (IOException e) {
throw new InputMismatchException();
}
if (numChars <= 0)
return -1;
}
return buf[curChar++];
}
public int readInt() {
int c = read();
while (isSpaceChar(c))
c = read();
int sgn = 1;
if (c == '-') {
sgn = -1;
c = read();
}
int res = 0;
do {
if (c < '0' || c > '9')
throw new InputMismatchException();
res *= 10;
res += c - '0';
c = read();
} while (!isSpaceChar(c));
return res * sgn;
}
public boolean isSpaceChar(int c) {
if (filter != null)
return filter.isSpaceChar(c);
return c == ' ' || c == '\n' || c == '\r' || c == '\t' || c == -1;
}
public interface SpaceCharFilter {
public boolean isSpaceChar(int ch);
}
}
class OutputWriter {
private final PrintWriter writer;
public OutputWriter(OutputStream outputStream) {
writer = new PrintWriter(new BufferedWriter(new OutputStreamWriter(outputStream)));
}
public OutputWriter(Writer writer) {
this.writer = new PrintWriter(writer);
}
public void print(Object...objects) {
for (int i = 0; i < objects.length; i++) {
if (i != 0)
writer.print(' ');
writer.print(objects[i]);
}
}
public void printLine(Object...objects) {
print(objects);
writer.println();
}
public void close() {
writer.close();
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(n^3): The execution time ascends in proportion to the cube of the input size n.
- O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially.
- O(n): The execution time ascends in a one-to-one ratio with the input size n.
- O(n^2): The execution time ascends in proportion to the square of the input size n.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- O(log(n)): The execution time ascends in proportion to the logarithm of the input size n.
- O(1): The execution time is unaffected by the size of the input n.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Determine the worst-case time complexity category of a given Java code based on input size n.
</TASK>
<CODE>
import java.io.OutputStream;
import java.io.IOException;
import java.io.OutputStreamWriter;
import java.io.PrintWriter;
import java.util.Arrays;
import java.io.BufferedWriter;
import java.util.InputMismatchException;
import java.io.Writer;
import java.io.InputStream;
/**
* Built using CHelper plug-in
* Actual solution is at the top
* @author BSRK Aditya ([email protected])
*/
public class Main {
public static void main(String[] args) {
InputStream inputStream = System.in;
OutputStream outputStream = System.out;
InputReader in = new InputReader(inputStream);
OutputWriter out = new OutputWriter(outputStream);
TaskA solver = new TaskA();
solver.solve(1, in, out);
out.close();
}
}
class TaskA {
public void solve(int testNumber, InputReader in, OutputWriter out) {
int n = in.readInt();
int m = in.readInt();
int k = in.readInt();
int [] filters = new int[n];
for(int i = 0; i < n; ++i) filters[i] = in.readInt();
Arrays.sort(filters);
int nS = 0, tN = k;
while(tN < m && nS < n) {
tN += filters[n-1-nS] - 1;
nS++;
}
if(tN >= m) out.printLine(nS);
else out.printLine(-1);
}
}
class InputReader {
private InputStream stream;
private byte[] buf = new byte[1024];
private int curChar;
private int numChars;
private SpaceCharFilter filter;
public InputReader(InputStream stream) {
this.stream = stream;
}
public int read() {
if (numChars == -1)
throw new InputMismatchException();
if (curChar >= numChars) {
curChar = 0;
try {
numChars = stream.read(buf);
} catch (IOException e) {
throw new InputMismatchException();
}
if (numChars <= 0)
return -1;
}
return buf[curChar++];
}
public int readInt() {
int c = read();
while (isSpaceChar(c))
c = read();
int sgn = 1;
if (c == '-') {
sgn = -1;
c = read();
}
int res = 0;
do {
if (c < '0' || c > '9')
throw new InputMismatchException();
res *= 10;
res += c - '0';
c = read();
} while (!isSpaceChar(c));
return res * sgn;
}
public boolean isSpaceChar(int c) {
if (filter != null)
return filter.isSpaceChar(c);
return c == ' ' || c == '\n' || c == '\r' || c == '\t' || c == -1;
}
public interface SpaceCharFilter {
public boolean isSpaceChar(int ch);
}
}
class OutputWriter {
private final PrintWriter writer;
public OutputWriter(OutputStream outputStream) {
writer = new PrintWriter(new BufferedWriter(new OutputStreamWriter(outputStream)));
}
public OutputWriter(Writer writer) {
this.writer = new PrintWriter(writer);
}
public void print(Object...objects) {
for (int i = 0; i < objects.length; i++) {
if (i != 0)
writer.print(' ');
writer.print(objects[i]);
}
}
public void printLine(Object...objects) {
print(objects);
writer.println();
}
public void close() {
writer.close();
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(n^2): The time complexity grows proportionally to the square of the input size.
- others: The time complexity does not fit any of the above categories or cannot be clearly classified.
- O(n^3): The time complexity scales proportionally to the cube of the input size.
- O(1): The time complexity is constant to the input size n.
- non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially.
- O(n): The time complexity increases proportionally to the input size n in a linear manner.
- O(log(n)): The time complexity increases logarithmically in relation to the input size.
- O(nlog(n)): The time complexity combines linear and logarithmic growth factors.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
| 1,145
| 1,833
|
2,143
|
import java.io.*;
import java.util.*;
public class C {
public static void main(String[] args) throws IOException {
FastScanner in = new FastScanner(System.in);
PrintWriter out = new PrintWriter(new BufferedWriter(new OutputStreamWriter(System.out)));
int n = in.nextInt();
double r = in.nextInt();
double[] x = new double[n+1];
double[] y = new double[n+1];
for (int i = 1; i <= n; i++) {
x[i] = in.nextInt();
}
int[] lastx = new int[1001];
for (int i = 1; i <= n; i++) {
double s = x[i] - r, e = x[i] + r;
for (int j = (int)Math.max(0, s); j <= (int)Math.min(1000, e); j++) {
if (lastx[j] == 0) {
y[i] = Math.max(y[i], findY(x[i], x[i], 0 - r, 2 * r));
}
else {
y[i] = Math.max(y[i], findY(x[lastx[j]], x[i], y[lastx[j]], 2 * r));
}
lastx[j] = i;
}
}
for (int i = 1; i <= n; i++) {
out.println(y[i]);
}
out.close();
}
public static double findY(double x1, double x2, double y1, double d) {
return Math.max(y1 + Math.sqrt(-1 * Math.pow(x1, 2) + 2 * x1 * x2 + Math.pow(d, 2) - Math.pow(x2, 2)),
y1 - Math.sqrt(-1 * Math.pow(x1, 2) + 2 * x1 * x2 + Math.pow(d, 2) - Math.pow(x2, 2)));
}
static class FastScanner {
private InputStream stream;
private byte[] buf = new byte[1024];
private int curChar;
private int numChars;
public FastScanner(InputStream stream) {
this.stream = stream;
}
int read() {
if (numChars == -1)
throw new InputMismatchException();
if (curChar >= numChars) {
curChar = 0;
try {
numChars = stream.read(buf);
} catch (IOException e) {
throw new InputMismatchException();
}
if (numChars <= 0)
return -1;
}
return buf[curChar++];
}
boolean isSpaceChar(int c) {
return c == ' ' || c == '\n' || c == '\r' || c == '\t' || c == -1;
}
boolean isEndline(int c) {
return c == '\n' || c == '\r' || c == -1;
}
public int nextInt() {
return Integer.parseInt(next());
}
public long nextLong() {
return Long.parseLong(next());
}
public double nextDouble() {
return Double.parseDouble(next());
}
public String next() {
int c = read();
while (isSpaceChar(c))
c = read();
StringBuilder res = new StringBuilder();
do {
res.appendCodePoint(c);
c = read();
} while (!isSpaceChar(c));
return res.toString();
}
public String nextLine() {
int c = read();
while (isEndline(c))
c = read();
StringBuilder res = new StringBuilder();
do {
res.appendCodePoint(c);
c = read();
} while (!isEndline(c));
return res.toString();
}
}
}
|
O(n^2)
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Classify the following Java code's worst-case time complexity according to its relationship to the input size n.
</TASK>
<CODE>
import java.io.*;
import java.util.*;
public class C {
public static void main(String[] args) throws IOException {
FastScanner in = new FastScanner(System.in);
PrintWriter out = new PrintWriter(new BufferedWriter(new OutputStreamWriter(System.out)));
int n = in.nextInt();
double r = in.nextInt();
double[] x = new double[n+1];
double[] y = new double[n+1];
for (int i = 1; i <= n; i++) {
x[i] = in.nextInt();
}
int[] lastx = new int[1001];
for (int i = 1; i <= n; i++) {
double s = x[i] - r, e = x[i] + r;
for (int j = (int)Math.max(0, s); j <= (int)Math.min(1000, e); j++) {
if (lastx[j] == 0) {
y[i] = Math.max(y[i], findY(x[i], x[i], 0 - r, 2 * r));
}
else {
y[i] = Math.max(y[i], findY(x[lastx[j]], x[i], y[lastx[j]], 2 * r));
}
lastx[j] = i;
}
}
for (int i = 1; i <= n; i++) {
out.println(y[i]);
}
out.close();
}
public static double findY(double x1, double x2, double y1, double d) {
return Math.max(y1 + Math.sqrt(-1 * Math.pow(x1, 2) + 2 * x1 * x2 + Math.pow(d, 2) - Math.pow(x2, 2)),
y1 - Math.sqrt(-1 * Math.pow(x1, 2) + 2 * x1 * x2 + Math.pow(d, 2) - Math.pow(x2, 2)));
}
static class FastScanner {
private InputStream stream;
private byte[] buf = new byte[1024];
private int curChar;
private int numChars;
public FastScanner(InputStream stream) {
this.stream = stream;
}
int read() {
if (numChars == -1)
throw new InputMismatchException();
if (curChar >= numChars) {
curChar = 0;
try {
numChars = stream.read(buf);
} catch (IOException e) {
throw new InputMismatchException();
}
if (numChars <= 0)
return -1;
}
return buf[curChar++];
}
boolean isSpaceChar(int c) {
return c == ' ' || c == '\n' || c == '\r' || c == '\t' || c == -1;
}
boolean isEndline(int c) {
return c == '\n' || c == '\r' || c == -1;
}
public int nextInt() {
return Integer.parseInt(next());
}
public long nextLong() {
return Long.parseLong(next());
}
public double nextDouble() {
return Double.parseDouble(next());
}
public String next() {
int c = read();
while (isSpaceChar(c))
c = read();
StringBuilder res = new StringBuilder();
do {
res.appendCodePoint(c);
c = read();
} while (!isSpaceChar(c));
return res.toString();
}
public String nextLine() {
int c = read();
while (isEndline(c))
c = read();
StringBuilder res = new StringBuilder();
do {
res.appendCodePoint(c);
c = read();
} while (!isEndline(c));
return res.toString();
}
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(n^3): The running time increases with the cube of the input size n.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- O(nlog(n)): The running time increases with the product of n and logarithm of n.
- O(n^2): The running time increases with the square of the input size n.
- O(log(n)): The running time increases with the logarithm of the input size n.
- O(n): The running time grows linearly with the input size n.
- O(1): The running time does not change regardless of the input size n.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Determine the worst-case time complexity category of a given Java code based on input size n.
</TASK>
<CODE>
import java.io.*;
import java.util.*;
public class C {
public static void main(String[] args) throws IOException {
FastScanner in = new FastScanner(System.in);
PrintWriter out = new PrintWriter(new BufferedWriter(new OutputStreamWriter(System.out)));
int n = in.nextInt();
double r = in.nextInt();
double[] x = new double[n+1];
double[] y = new double[n+1];
for (int i = 1; i <= n; i++) {
x[i] = in.nextInt();
}
int[] lastx = new int[1001];
for (int i = 1; i <= n; i++) {
double s = x[i] - r, e = x[i] + r;
for (int j = (int)Math.max(0, s); j <= (int)Math.min(1000, e); j++) {
if (lastx[j] == 0) {
y[i] = Math.max(y[i], findY(x[i], x[i], 0 - r, 2 * r));
}
else {
y[i] = Math.max(y[i], findY(x[lastx[j]], x[i], y[lastx[j]], 2 * r));
}
lastx[j] = i;
}
}
for (int i = 1; i <= n; i++) {
out.println(y[i]);
}
out.close();
}
public static double findY(double x1, double x2, double y1, double d) {
return Math.max(y1 + Math.sqrt(-1 * Math.pow(x1, 2) + 2 * x1 * x2 + Math.pow(d, 2) - Math.pow(x2, 2)),
y1 - Math.sqrt(-1 * Math.pow(x1, 2) + 2 * x1 * x2 + Math.pow(d, 2) - Math.pow(x2, 2)));
}
static class FastScanner {
private InputStream stream;
private byte[] buf = new byte[1024];
private int curChar;
private int numChars;
public FastScanner(InputStream stream) {
this.stream = stream;
}
int read() {
if (numChars == -1)
throw new InputMismatchException();
if (curChar >= numChars) {
curChar = 0;
try {
numChars = stream.read(buf);
} catch (IOException e) {
throw new InputMismatchException();
}
if (numChars <= 0)
return -1;
}
return buf[curChar++];
}
boolean isSpaceChar(int c) {
return c == ' ' || c == '\n' || c == '\r' || c == '\t' || c == -1;
}
boolean isEndline(int c) {
return c == '\n' || c == '\r' || c == -1;
}
public int nextInt() {
return Integer.parseInt(next());
}
public long nextLong() {
return Long.parseLong(next());
}
public double nextDouble() {
return Double.parseDouble(next());
}
public String next() {
int c = read();
while (isSpaceChar(c))
c = read();
StringBuilder res = new StringBuilder();
do {
res.appendCodePoint(c);
c = read();
} while (!isSpaceChar(c));
return res.toString();
}
public String nextLine() {
int c = read();
while (isEndline(c))
c = read();
StringBuilder res = new StringBuilder();
do {
res.appendCodePoint(c);
c = read();
} while (!isEndline(c));
return res.toString();
}
}
}
</CODE>
<EVALUATION_RUBRIC>
- others: The time complexity does not fit any of the above categories or cannot be clearly classified.
- O(log(n)): The time complexity increases logarithmically in relation to the input size.
- O(nlog(n)): The time complexity combines linear and logarithmic growth factors.
- O(1): The time complexity is constant to the input size n.
- O(n^3): The time complexity scales proportionally to the cube of the input size.
- non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially.
- O(n): The time complexity increases proportionally to the input size n in a linear manner.
- O(n^2): The time complexity grows proportionally to the square of the input size.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
| 1,166
| 2,139
|
4,513
|
import java.util.*;
import java.io.*;
public class Main {
public static void main(String args[]) {new Main().run();}
FastReader in = new FastReader();
PrintWriter out = new PrintWriter(System.out);
void run(){
out.println(work());
out.flush();
}
long mod=1000000007;
long gcd(long a,long b) {
return b==0?a:gcd(b,a%b);
}
long work() {
int n=in.nextInt();
int m=in.nextInt();
String str=in.next();
long[] dp=new long[1<<m];
long[][] cnt=new long[m][m];
long[] rec=new long[1<<m];//记录每次移动的一位怎加的值,减少重复计算
for(int i=1;i<n;i++) {
int n1=str.charAt(i-1)-'a';
int n2=str.charAt(i)-'a';
cnt[n1][n2]++;
cnt[n2][n1]++;
}
for(int i=1;i<1<<m;i++) {
dp[i]=9999999999L;
long v=0;
int b=0;//最低位的1
for(int j=0;j<m;j++) {
if((i&(1<<j))>0) {
b=j;
break;
}
}
for(int j=0;j<m;j++) {
if((i&(1<<j))==0) {
v+=cnt[b][j];
}else {
if(b!=j)v-=cnt[b][j];
}
}
v+=rec[i-(1<<b)];
for(int j=0;j<m;j++) {
if((i&(1<<j))>0) {
dp[i]=Math.min(dp[i], dp[i-(1<<j)]+v);
}
}
rec[i]=v;
}
return dp[(1<<m)-1];
}
}
class FastReader
{
BufferedReader br;
StringTokenizer st;
public FastReader()
{
br=new BufferedReader(new InputStreamReader(System.in));
}
public String next()
{
if(st==null || !st.hasMoreElements())
{
try {
st = new StringTokenizer(br.readLine());
} catch (IOException e) {
e.printStackTrace();
}
}
return st.nextToken();
}
public int nextInt()
{
return Integer.parseInt(next());
}
public long nextLong()
{
return Long.parseLong(next());
}
}
|
non-polynomial
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Classify the following Java code's worst-case time complexity according to its relationship to the input size n.
</TASK>
<CODE>
import java.util.*;
import java.io.*;
public class Main {
public static void main(String args[]) {new Main().run();}
FastReader in = new FastReader();
PrintWriter out = new PrintWriter(System.out);
void run(){
out.println(work());
out.flush();
}
long mod=1000000007;
long gcd(long a,long b) {
return b==0?a:gcd(b,a%b);
}
long work() {
int n=in.nextInt();
int m=in.nextInt();
String str=in.next();
long[] dp=new long[1<<m];
long[][] cnt=new long[m][m];
long[] rec=new long[1<<m];//记录每次移动的一位怎加的值,减少重复计算
for(int i=1;i<n;i++) {
int n1=str.charAt(i-1)-'a';
int n2=str.charAt(i)-'a';
cnt[n1][n2]++;
cnt[n2][n1]++;
}
for(int i=1;i<1<<m;i++) {
dp[i]=9999999999L;
long v=0;
int b=0;//最低位的1
for(int j=0;j<m;j++) {
if((i&(1<<j))>0) {
b=j;
break;
}
}
for(int j=0;j<m;j++) {
if((i&(1<<j))==0) {
v+=cnt[b][j];
}else {
if(b!=j)v-=cnt[b][j];
}
}
v+=rec[i-(1<<b)];
for(int j=0;j<m;j++) {
if((i&(1<<j))>0) {
dp[i]=Math.min(dp[i], dp[i-(1<<j)]+v);
}
}
rec[i]=v;
}
return dp[(1<<m)-1];
}
}
class FastReader
{
BufferedReader br;
StringTokenizer st;
public FastReader()
{
br=new BufferedReader(new InputStreamReader(System.in));
}
public String next()
{
if(st==null || !st.hasMoreElements())
{
try {
st = new StringTokenizer(br.readLine());
} catch (IOException e) {
e.printStackTrace();
}
}
return st.nextToken();
}
public int nextInt()
{
return Integer.parseInt(next());
}
public long nextLong()
{
return Long.parseLong(next());
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(n^2): The running time increases with the square of the input size n.
- O(n^3): The running time increases with the cube of the input size n.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- O(n): The running time grows linearly with the input size n.
- O(log(n)): The running time increases with the logarithm of the input size n.
- O(1): The running time does not change regardless of the input size n.
- O(nlog(n)): The running time increases with the product of n and logarithm of n.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n.
</TASK>
<CODE>
import java.util.*;
import java.io.*;
public class Main {
public static void main(String args[]) {new Main().run();}
FastReader in = new FastReader();
PrintWriter out = new PrintWriter(System.out);
void run(){
out.println(work());
out.flush();
}
long mod=1000000007;
long gcd(long a,long b) {
return b==0?a:gcd(b,a%b);
}
long work() {
int n=in.nextInt();
int m=in.nextInt();
String str=in.next();
long[] dp=new long[1<<m];
long[][] cnt=new long[m][m];
long[] rec=new long[1<<m];//记录每次移动的一位怎加的值,减少重复计算
for(int i=1;i<n;i++) {
int n1=str.charAt(i-1)-'a';
int n2=str.charAt(i)-'a';
cnt[n1][n2]++;
cnt[n2][n1]++;
}
for(int i=1;i<1<<m;i++) {
dp[i]=9999999999L;
long v=0;
int b=0;//最低位的1
for(int j=0;j<m;j++) {
if((i&(1<<j))>0) {
b=j;
break;
}
}
for(int j=0;j<m;j++) {
if((i&(1<<j))==0) {
v+=cnt[b][j];
}else {
if(b!=j)v-=cnt[b][j];
}
}
v+=rec[i-(1<<b)];
for(int j=0;j<m;j++) {
if((i&(1<<j))>0) {
dp[i]=Math.min(dp[i], dp[i-(1<<j)]+v);
}
}
rec[i]=v;
}
return dp[(1<<m)-1];
}
}
class FastReader
{
BufferedReader br;
StringTokenizer st;
public FastReader()
{
br=new BufferedReader(new InputStreamReader(System.in));
}
public String next()
{
if(st==null || !st.hasMoreElements())
{
try {
st = new StringTokenizer(br.readLine());
} catch (IOException e) {
e.printStackTrace();
}
}
return st.nextToken();
}
public int nextInt()
{
return Integer.parseInt(next());
}
public long nextLong()
{
return Long.parseLong(next());
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(n^2): The execution time ascends in proportion to the square of the input size n.
- O(n): The execution time ascends in a one-to-one ratio with the input size n.
- O(log(n)): The execution time ascends in proportion to the logarithm of the input size n.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- others: The time complexity does not fit to any of the given categories or is ambiguous.
- O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially.
- O(n^3): The execution time ascends in proportion to the cube of the input size n.
- O(1): The execution time is unaffected by the size of the input n.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
| 887
| 4,501
|
2,728
|
import java.util.Scanner;
public class A235 {
public static void main(String[] args) {
// TODO Auto-generated method stub
Scanner sc = new Scanner(System.in);
long n = sc.nextInt();
if (n == 1) {
System.out.println(1);
return;
} else if (n == 2) {
System.out.println(2);
return;
} else if (n == 3) {
System.out.println(6);
return;
}
if (n % 2 == 0) {
if(n % 3 == 0)
System.out.println((n - 1) * (n - 2) * (n - 3));
else
System.out.println((n - 1) * n * (n - 3));
} else {
System.out.println(n * (n - 1) * (n - 2));
}
}
}
|
O(1)
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Determine the worst-case time complexity category of a given Java code based on input size n.
</TASK>
<CODE>
import java.util.Scanner;
public class A235 {
public static void main(String[] args) {
// TODO Auto-generated method stub
Scanner sc = new Scanner(System.in);
long n = sc.nextInt();
if (n == 1) {
System.out.println(1);
return;
} else if (n == 2) {
System.out.println(2);
return;
} else if (n == 3) {
System.out.println(6);
return;
}
if (n % 2 == 0) {
if(n % 3 == 0)
System.out.println((n - 1) * (n - 2) * (n - 3));
else
System.out.println((n - 1) * n * (n - 3));
} else {
System.out.println(n * (n - 1) * (n - 2));
}
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(1): The time complexity is constant to the input size n.
- non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially.
- O(n^3): The time complexity scales proportionally to the cube of the input size.
- O(n^2): The time complexity grows proportionally to the square of the input size.
- O(n): The time complexity increases proportionally to the input size n in a linear manner.
- O(log(n)): The time complexity increases logarithmically in relation to the input size.
- O(nlog(n)): The time complexity combines linear and logarithmic growth factors.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Classify the following Java code's worst-case time complexity according to its relationship to the input size n.
</TASK>
<CODE>
import java.util.Scanner;
public class A235 {
public static void main(String[] args) {
// TODO Auto-generated method stub
Scanner sc = new Scanner(System.in);
long n = sc.nextInt();
if (n == 1) {
System.out.println(1);
return;
} else if (n == 2) {
System.out.println(2);
return;
} else if (n == 3) {
System.out.println(6);
return;
}
if (n % 2 == 0) {
if(n % 3 == 0)
System.out.println((n - 1) * (n - 2) * (n - 3));
else
System.out.println((n - 1) * n * (n - 3));
} else {
System.out.println(n * (n - 1) * (n - 2));
}
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(nlog(n)): The running time increases with the product of n and logarithm of n.
- O(n): The running time grows linearly with the input size n.
- O(n^2): The running time increases with the square of the input size n.
- O(log(n)): The running time increases with the logarithm of the input size n.
- others: The code does not clearly correspond to the listed classes or has an unclassified time complexity.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- O(n^3): The running time increases with the cube of the input size n.
- O(1): The running time does not change regardless of the input size n.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
| 535
| 2,722
|
1,299
|
import java.math.BigInteger;
import java.util.*;
import java.io.*;
public class Contest {
public static void main(String[] args)throws IOException {
BufferedReader br = new BufferedReader(new InputStreamReader(System.in));
String[] s=br.readLine().split(" ");
BigInteger x = new BigInteger(s[0]);
BigInteger k = new BigInteger(s[1]);
BigInteger mod = new BigInteger(String.valueOf((int) (Math.pow(10, 9) + 7)));
BigInteger two = new BigInteger("2");
BigInteger interm = two.modPow(k, mod);
BigInteger res = interm.multiply(two.multiply(x).subtract(BigInteger.ONE)).add(BigInteger.ONE).mod(mod);
if(x.equals(BigInteger.ZERO)) {
System.out.println("0");
return;
}
System.out.println(res);
}
}
|
O(log(n))
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Determine the worst-case time complexity category of a given Java code based on input size n.
</TASK>
<CODE>
import java.math.BigInteger;
import java.util.*;
import java.io.*;
public class Contest {
public static void main(String[] args)throws IOException {
BufferedReader br = new BufferedReader(new InputStreamReader(System.in));
String[] s=br.readLine().split(" ");
BigInteger x = new BigInteger(s[0]);
BigInteger k = new BigInteger(s[1]);
BigInteger mod = new BigInteger(String.valueOf((int) (Math.pow(10, 9) + 7)));
BigInteger two = new BigInteger("2");
BigInteger interm = two.modPow(k, mod);
BigInteger res = interm.multiply(two.multiply(x).subtract(BigInteger.ONE)).add(BigInteger.ONE).mod(mod);
if(x.equals(BigInteger.ZERO)) {
System.out.println("0");
return;
}
System.out.println(res);
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(1): The time complexity is constant to the input size n.
- O(n): The time complexity increases proportionally to the input size n in a linear manner.
- O(n^2): The time complexity grows proportionally to the square of the input size.
- O(n^3): The time complexity scales proportionally to the cube of the input size.
- O(log(n)): The time complexity increases logarithmically in relation to the input size.
- non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially.
- O(nlog(n)): The time complexity combines linear and logarithmic growth factors.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Classify the following Java code's worst-case time complexity according to its relationship to the input size n.
</TASK>
<CODE>
import java.math.BigInteger;
import java.util.*;
import java.io.*;
public class Contest {
public static void main(String[] args)throws IOException {
BufferedReader br = new BufferedReader(new InputStreamReader(System.in));
String[] s=br.readLine().split(" ");
BigInteger x = new BigInteger(s[0]);
BigInteger k = new BigInteger(s[1]);
BigInteger mod = new BigInteger(String.valueOf((int) (Math.pow(10, 9) + 7)));
BigInteger two = new BigInteger("2");
BigInteger interm = two.modPow(k, mod);
BigInteger res = interm.multiply(two.multiply(x).subtract(BigInteger.ONE)).add(BigInteger.ONE).mod(mod);
if(x.equals(BigInteger.ZERO)) {
System.out.println("0");
return;
}
System.out.println(res);
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(log(n)): The running time increases with the logarithm of the input size n.
- O(n): The running time grows linearly with the input size n.
- O(nlog(n)): The running time increases with the product of n and logarithm of n.
- others: The code does not clearly correspond to the listed classes or has an unclassified time complexity.
- O(n^2): The running time increases with the square of the input size n.
- O(n^3): The running time increases with the cube of the input size n.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- O(1): The running time does not change regardless of the input size n.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
| 503
| 1,297
|
2,654
|
import static java.lang.Math.*;
import static java.util.Arrays.* ;
import java.math.BigInteger;
import java.util.*;
import java.io.*;
public class D
{
int [][] adjList ;
int dfs(int u , int p )
{
int size = 1 ;
for(int v : adjList[u])
if(v != p )
{
int curr = dfs(v, u) ;
size += curr ;
}
return size ;
}
void main() throws Exception
{
Scanner sc = new Scanner(System.in);
PrintWriter out = new PrintWriter(System.out);
int n = sc.nextInt() ;
int [] a = new int [n] ;
boolean [] vis = new boolean[n] ;
int cnt = 0 ;
for(int i = 0 ;i < n ; i++)
a[i] = sc.nextInt() ;
sort(a);
for(int i = 0 ;i < n ; i ++)
{
if(!vis[i])
{
for(int j= i ; j < n ; j++)
if(a[j] % a[i] == 0)
vis[j] = true ;
cnt ++ ;
}
}
out.println(cnt);
out.flush();
out.close();
}
class SegmentTree
{
int [] sTree ;
int [] lazy ;
int N ;
SegmentTree(int n)
{
N = 1 << (32 - Integer.numberOfLeadingZeros(n - 1)) ;
sTree = new int [N << 1] ;
lazy= new int [N << 1] ;
}
void push(int node , int b , int e , int mid)
{
sTree[node << 1] += (mid - b + 1) * lazy[node] ;
sTree[node << 1 | 1] += (e - mid) * lazy[node] ;
lazy[node << 1] += lazy[node] ;
lazy[node << 1 | 1] += lazy[node] ;
lazy[node] = 0 ;
}
void updateRange(int node , int b , int e , int i , int j , int val)
{
if(i > e || j < b)return;
if(i <= b && e <= j)
{
sTree[node] += (e - b + 1) * val ;
lazy[node] += val ;
return;
}
int mid = b + e >> 1 ;
push(node , b , e , mid) ;
updateRange(node << 1 , b , mid , i , j , val);
updateRange(node << 1 | 1 , mid + 1 , e , i , j , val);
sTree[node] = sTree[node << 1] + sTree[node << 1 | 1] ;
}
int query(int node , int b , int e , int i , int j)
{
if(i > e || j < b)
return 0 ;
if(i <= b && e <= j)
return sTree[node] ;
int mid = b + e >> 1 ;
push(node , b , e , mid);
return query(node << 1 , b , mid , i , j) + query(node << 1 | 1 , mid + 1 , e , i , j) ;
}
}
class Compressor
{
TreeSet<Integer> set = new TreeSet<>() ;
TreeMap<Integer ,Integer> map = new TreeMap<>() ;
void add(int x)
{
set.add(x) ;
}
void fix()
{
for(int x : set)
map.put(x , map.size() + 1) ;
}
int get(int x)
{
return map.get(x) ;
}
}
class Scanner
{
BufferedReader br ;
StringTokenizer st ;
Scanner(InputStream in)
{
br = new BufferedReader(new InputStreamReader(in)) ;
}
String next() throws Exception
{
while (st == null || !st.hasMoreTokens())
st = new StringTokenizer(br.readLine()) ;
return st.nextToken() ;
}
int nextInt() throws Exception
{
return Integer.parseInt(next()) ;
}
long nextLong() throws Exception
{
return Long.parseLong(next()) ;
}
double nextDouble() throws Exception
{
return Double.parseDouble(next()) ;
}
}
public static void main (String [] args) throws Exception {(new D()).main();}
}
|
O(n^2)
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Determine the worst-case time complexity category of a given Java code based on input size n.
</TASK>
<CODE>
import static java.lang.Math.*;
import static java.util.Arrays.* ;
import java.math.BigInteger;
import java.util.*;
import java.io.*;
public class D
{
int [][] adjList ;
int dfs(int u , int p )
{
int size = 1 ;
for(int v : adjList[u])
if(v != p )
{
int curr = dfs(v, u) ;
size += curr ;
}
return size ;
}
void main() throws Exception
{
Scanner sc = new Scanner(System.in);
PrintWriter out = new PrintWriter(System.out);
int n = sc.nextInt() ;
int [] a = new int [n] ;
boolean [] vis = new boolean[n] ;
int cnt = 0 ;
for(int i = 0 ;i < n ; i++)
a[i] = sc.nextInt() ;
sort(a);
for(int i = 0 ;i < n ; i ++)
{
if(!vis[i])
{
for(int j= i ; j < n ; j++)
if(a[j] % a[i] == 0)
vis[j] = true ;
cnt ++ ;
}
}
out.println(cnt);
out.flush();
out.close();
}
class SegmentTree
{
int [] sTree ;
int [] lazy ;
int N ;
SegmentTree(int n)
{
N = 1 << (32 - Integer.numberOfLeadingZeros(n - 1)) ;
sTree = new int [N << 1] ;
lazy= new int [N << 1] ;
}
void push(int node , int b , int e , int mid)
{
sTree[node << 1] += (mid - b + 1) * lazy[node] ;
sTree[node << 1 | 1] += (e - mid) * lazy[node] ;
lazy[node << 1] += lazy[node] ;
lazy[node << 1 | 1] += lazy[node] ;
lazy[node] = 0 ;
}
void updateRange(int node , int b , int e , int i , int j , int val)
{
if(i > e || j < b)return;
if(i <= b && e <= j)
{
sTree[node] += (e - b + 1) * val ;
lazy[node] += val ;
return;
}
int mid = b + e >> 1 ;
push(node , b , e , mid) ;
updateRange(node << 1 , b , mid , i , j , val);
updateRange(node << 1 | 1 , mid + 1 , e , i , j , val);
sTree[node] = sTree[node << 1] + sTree[node << 1 | 1] ;
}
int query(int node , int b , int e , int i , int j)
{
if(i > e || j < b)
return 0 ;
if(i <= b && e <= j)
return sTree[node] ;
int mid = b + e >> 1 ;
push(node , b , e , mid);
return query(node << 1 , b , mid , i , j) + query(node << 1 | 1 , mid + 1 , e , i , j) ;
}
}
class Compressor
{
TreeSet<Integer> set = new TreeSet<>() ;
TreeMap<Integer ,Integer> map = new TreeMap<>() ;
void add(int x)
{
set.add(x) ;
}
void fix()
{
for(int x : set)
map.put(x , map.size() + 1) ;
}
int get(int x)
{
return map.get(x) ;
}
}
class Scanner
{
BufferedReader br ;
StringTokenizer st ;
Scanner(InputStream in)
{
br = new BufferedReader(new InputStreamReader(in)) ;
}
String next() throws Exception
{
while (st == null || !st.hasMoreTokens())
st = new StringTokenizer(br.readLine()) ;
return st.nextToken() ;
}
int nextInt() throws Exception
{
return Integer.parseInt(next()) ;
}
long nextLong() throws Exception
{
return Long.parseLong(next()) ;
}
double nextDouble() throws Exception
{
return Double.parseDouble(next()) ;
}
}
public static void main (String [] args) throws Exception {(new D()).main();}
}
</CODE>
<EVALUATION_RUBRIC>
- O(log(n)): The time complexity increases logarithmically in relation to the input size.
- O(n^3): The time complexity scales proportionally to the cube of the input size.
- O(nlog(n)): The time complexity combines linear and logarithmic growth factors.
- O(1): The time complexity is constant to the input size n.
- O(n^2): The time complexity grows proportionally to the square of the input size.
- O(n): The time complexity increases proportionally to the input size n in a linear manner.
- non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n.
</TASK>
<CODE>
import static java.lang.Math.*;
import static java.util.Arrays.* ;
import java.math.BigInteger;
import java.util.*;
import java.io.*;
public class D
{
int [][] adjList ;
int dfs(int u , int p )
{
int size = 1 ;
for(int v : adjList[u])
if(v != p )
{
int curr = dfs(v, u) ;
size += curr ;
}
return size ;
}
void main() throws Exception
{
Scanner sc = new Scanner(System.in);
PrintWriter out = new PrintWriter(System.out);
int n = sc.nextInt() ;
int [] a = new int [n] ;
boolean [] vis = new boolean[n] ;
int cnt = 0 ;
for(int i = 0 ;i < n ; i++)
a[i] = sc.nextInt() ;
sort(a);
for(int i = 0 ;i < n ; i ++)
{
if(!vis[i])
{
for(int j= i ; j < n ; j++)
if(a[j] % a[i] == 0)
vis[j] = true ;
cnt ++ ;
}
}
out.println(cnt);
out.flush();
out.close();
}
class SegmentTree
{
int [] sTree ;
int [] lazy ;
int N ;
SegmentTree(int n)
{
N = 1 << (32 - Integer.numberOfLeadingZeros(n - 1)) ;
sTree = new int [N << 1] ;
lazy= new int [N << 1] ;
}
void push(int node , int b , int e , int mid)
{
sTree[node << 1] += (mid - b + 1) * lazy[node] ;
sTree[node << 1 | 1] += (e - mid) * lazy[node] ;
lazy[node << 1] += lazy[node] ;
lazy[node << 1 | 1] += lazy[node] ;
lazy[node] = 0 ;
}
void updateRange(int node , int b , int e , int i , int j , int val)
{
if(i > e || j < b)return;
if(i <= b && e <= j)
{
sTree[node] += (e - b + 1) * val ;
lazy[node] += val ;
return;
}
int mid = b + e >> 1 ;
push(node , b , e , mid) ;
updateRange(node << 1 , b , mid , i , j , val);
updateRange(node << 1 | 1 , mid + 1 , e , i , j , val);
sTree[node] = sTree[node << 1] + sTree[node << 1 | 1] ;
}
int query(int node , int b , int e , int i , int j)
{
if(i > e || j < b)
return 0 ;
if(i <= b && e <= j)
return sTree[node] ;
int mid = b + e >> 1 ;
push(node , b , e , mid);
return query(node << 1 , b , mid , i , j) + query(node << 1 | 1 , mid + 1 , e , i , j) ;
}
}
class Compressor
{
TreeSet<Integer> set = new TreeSet<>() ;
TreeMap<Integer ,Integer> map = new TreeMap<>() ;
void add(int x)
{
set.add(x) ;
}
void fix()
{
for(int x : set)
map.put(x , map.size() + 1) ;
}
int get(int x)
{
return map.get(x) ;
}
}
class Scanner
{
BufferedReader br ;
StringTokenizer st ;
Scanner(InputStream in)
{
br = new BufferedReader(new InputStreamReader(in)) ;
}
String next() throws Exception
{
while (st == null || !st.hasMoreTokens())
st = new StringTokenizer(br.readLine()) ;
return st.nextToken() ;
}
int nextInt() throws Exception
{
return Integer.parseInt(next()) ;
}
long nextLong() throws Exception
{
return Long.parseLong(next()) ;
}
double nextDouble() throws Exception
{
return Double.parseDouble(next()) ;
}
}
public static void main (String [] args) throws Exception {(new D()).main();}
}
</CODE>
<EVALUATION_RUBRIC>
- O(1): The execution time is unaffected by the size of the input n.
- O(n): The execution time ascends in a one-to-one ratio with the input size n.
- O(n^2): The execution time ascends in proportion to the square of the input size n.
- O(n^3): The execution time ascends in proportion to the cube of the input size n.
- O(log(n)): The execution time ascends in proportion to the logarithm of the input size n.
- O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially.
- others: The time complexity does not fit to any of the given categories or is ambiguous.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
| 1,301
| 2,648
|
788
|
import java.util.*;
import java.io.*;
public class C {
public static void main(String[] args) throws IOException {
BufferedReader in =
new BufferedReader(new InputStreamReader(System.in));
int n = Integer.parseInt(in.readLine());
char[] ps = in.readLine().toCharArray();
HashMap<Character, TreeSet<Integer>> locs =
new HashMap<Character, TreeSet<Integer>>();
HashSet<Character> poks = new HashSet<Character>();
int lastNew = n;
for (int i = 0; i < n; i++) {
if (!poks.contains(ps[i])) {
poks.add(ps[i]);
locs.put(ps[i], new TreeSet<Integer>());
lastNew = i;
}
locs.get(ps[i]).add(i);
}
int max = lastNew;
int minRange = max+1;
for (int min = 0; min < n; min++) {
char pAtMin = ps[min];
Integer nextInd = locs.get(pAtMin).higher(min);
if (nextInd == null) break;
max = Math.max(max, nextInd);
minRange = Math.min(minRange, max-min);
}
System.out.println(minRange);
}
}
|
O(n)
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Determine the worst-case time complexity category of a given Java code based on input size n.
</TASK>
<CODE>
import java.util.*;
import java.io.*;
public class C {
public static void main(String[] args) throws IOException {
BufferedReader in =
new BufferedReader(new InputStreamReader(System.in));
int n = Integer.parseInt(in.readLine());
char[] ps = in.readLine().toCharArray();
HashMap<Character, TreeSet<Integer>> locs =
new HashMap<Character, TreeSet<Integer>>();
HashSet<Character> poks = new HashSet<Character>();
int lastNew = n;
for (int i = 0; i < n; i++) {
if (!poks.contains(ps[i])) {
poks.add(ps[i]);
locs.put(ps[i], new TreeSet<Integer>());
lastNew = i;
}
locs.get(ps[i]).add(i);
}
int max = lastNew;
int minRange = max+1;
for (int min = 0; min < n; min++) {
char pAtMin = ps[min];
Integer nextInd = locs.get(pAtMin).higher(min);
if (nextInd == null) break;
max = Math.max(max, nextInd);
minRange = Math.min(minRange, max-min);
}
System.out.println(minRange);
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(1): The time complexity is constant to the input size n.
- O(n): The time complexity increases proportionally to the input size n in a linear manner.
- non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially.
- O(log(n)): The time complexity increases logarithmically in relation to the input size.
- O(n^3): The time complexity scales proportionally to the cube of the input size.
- O(nlog(n)): The time complexity combines linear and logarithmic growth factors.
- O(n^2): The time complexity grows proportionally to the square of the input size.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n.
</TASK>
<CODE>
import java.util.*;
import java.io.*;
public class C {
public static void main(String[] args) throws IOException {
BufferedReader in =
new BufferedReader(new InputStreamReader(System.in));
int n = Integer.parseInt(in.readLine());
char[] ps = in.readLine().toCharArray();
HashMap<Character, TreeSet<Integer>> locs =
new HashMap<Character, TreeSet<Integer>>();
HashSet<Character> poks = new HashSet<Character>();
int lastNew = n;
for (int i = 0; i < n; i++) {
if (!poks.contains(ps[i])) {
poks.add(ps[i]);
locs.put(ps[i], new TreeSet<Integer>());
lastNew = i;
}
locs.get(ps[i]).add(i);
}
int max = lastNew;
int minRange = max+1;
for (int min = 0; min < n; min++) {
char pAtMin = ps[min];
Integer nextInd = locs.get(pAtMin).higher(min);
if (nextInd == null) break;
max = Math.max(max, nextInd);
minRange = Math.min(minRange, max-min);
}
System.out.println(minRange);
}
}
</CODE>
<EVALUATION_RUBRIC>
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- O(n^3): The execution time ascends in proportion to the cube of the input size n.
- O(log(n)): The execution time ascends in proportion to the logarithm of the input size n.
- O(1): The execution time is unaffected by the size of the input n.
- O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially.
- others: The time complexity does not fit to any of the given categories or is ambiguous.
- O(n^2): The execution time ascends in proportion to the square of the input size n.
- O(n): The execution time ascends in a one-to-one ratio with the input size n.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
| 575
| 787
|
1,404
|
import java.util.Scanner;
public class Main {
public static void main(String[] args) {
Scanner sc = new Scanner(System.in);
String s = sc.nextLine();
String[] info = s.split(" ");
long n = Long.parseLong(info[0]);
long k = Long.parseLong(info[1]);
sc.close();
long maximum = k * (k - 1) / 2 + 1;
if (n == 1)
System.out.println(0);
else if (n > maximum)
System.out.println(-1);
else {
long left = 0, right = k - 1;
while (left + 1 < right) {
long mid = (right + left) / 2;
if (mid * (k - 1 + k - mid) / 2 + 1 >= n)
right = mid;
else
left = mid;
}
System.out.println(right);
}
}
}
|
O(log(n))
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Classify the following Java code's worst-case time complexity according to its relationship to the input size n.
</TASK>
<CODE>
import java.util.Scanner;
public class Main {
public static void main(String[] args) {
Scanner sc = new Scanner(System.in);
String s = sc.nextLine();
String[] info = s.split(" ");
long n = Long.parseLong(info[0]);
long k = Long.parseLong(info[1]);
sc.close();
long maximum = k * (k - 1) / 2 + 1;
if (n == 1)
System.out.println(0);
else if (n > maximum)
System.out.println(-1);
else {
long left = 0, right = k - 1;
while (left + 1 < right) {
long mid = (right + left) / 2;
if (mid * (k - 1 + k - mid) / 2 + 1 >= n)
right = mid;
else
left = mid;
}
System.out.println(right);
}
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(1): The running time does not change regardless of the input size n.
- O(log(n)): The running time increases with the logarithm of the input size n.
- O(n^3): The running time increases with the cube of the input size n.
- O(nlog(n)): The running time increases with the product of n and logarithm of n.
- O(n): The running time grows linearly with the input size n.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- O(n^2): The running time increases with the square of the input size n.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n.
</TASK>
<CODE>
import java.util.Scanner;
public class Main {
public static void main(String[] args) {
Scanner sc = new Scanner(System.in);
String s = sc.nextLine();
String[] info = s.split(" ");
long n = Long.parseLong(info[0]);
long k = Long.parseLong(info[1]);
sc.close();
long maximum = k * (k - 1) / 2 + 1;
if (n == 1)
System.out.println(0);
else if (n > maximum)
System.out.println(-1);
else {
long left = 0, right = k - 1;
while (left + 1 < right) {
long mid = (right + left) / 2;
if (mid * (k - 1 + k - mid) / 2 + 1 >= n)
right = mid;
else
left = mid;
}
System.out.println(right);
}
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(1): The execution time is unaffected by the size of the input n.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- others: The time complexity does not fit to any of the given categories or is ambiguous.
- O(n^2): The execution time ascends in proportion to the square of the input size n.
- O(log(n)): The execution time ascends in proportion to the logarithm of the input size n.
- O(n^3): The execution time ascends in proportion to the cube of the input size n.
- O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially.
- O(n): The execution time ascends in a one-to-one ratio with the input size n.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
| 540
| 1,402
|
3,838
|
//I'm Whiplash99
import java.io.*;
import java.util.*;
public class C
{
public static void main(String[] args) throws Exception
{
BufferedReader br=new BufferedReader(new InputStreamReader(System.in));
int i,N;
int T=Integer.parseInt(br.readLine().trim());
StringBuilder sb=new StringBuilder();
while (T-->0)
{
N=Integer.parseInt(br.readLine().trim());
int[] a=new int[N];
for(i=0;i<N;i++) a[i]=Integer.parseInt(br.readLine().trim());
int end=1;
int[][] ans=new int[N][N+10];
ans[0][0]=1;
for(i=1;i<N;i++)
{
while (true)
{
if(ans[i-1][end]==a[i]-1) break;
end--;
}
for(int j=0;j<end;j++) ans[i][j]=ans[i-1][j];
ans[i][end]=a[i];
end++;
}
for(i=0;i<N;i++)
{
for(int j=0;j<N&&ans[i][j]!=0;j++)
{
sb.append(ans[i][j]);
if(ans[i][j+1]!=0) sb.append('.');
}
sb.append("\n");
}
}
System.out.println(sb);
}
}
|
O(n^3)
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Classify the following Java code's worst-case time complexity according to its relationship to the input size n.
</TASK>
<CODE>
//I'm Whiplash99
import java.io.*;
import java.util.*;
public class C
{
public static void main(String[] args) throws Exception
{
BufferedReader br=new BufferedReader(new InputStreamReader(System.in));
int i,N;
int T=Integer.parseInt(br.readLine().trim());
StringBuilder sb=new StringBuilder();
while (T-->0)
{
N=Integer.parseInt(br.readLine().trim());
int[] a=new int[N];
for(i=0;i<N;i++) a[i]=Integer.parseInt(br.readLine().trim());
int end=1;
int[][] ans=new int[N][N+10];
ans[0][0]=1;
for(i=1;i<N;i++)
{
while (true)
{
if(ans[i-1][end]==a[i]-1) break;
end--;
}
for(int j=0;j<end;j++) ans[i][j]=ans[i-1][j];
ans[i][end]=a[i];
end++;
}
for(i=0;i<N;i++)
{
for(int j=0;j<N&&ans[i][j]!=0;j++)
{
sb.append(ans[i][j]);
if(ans[i][j+1]!=0) sb.append('.');
}
sb.append("\n");
}
}
System.out.println(sb);
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(n^3): The running time increases with the cube of the input size n.
- O(n): The running time grows linearly with the input size n.
- O(nlog(n)): The running time increases with the product of n and logarithm of n.
- O(1): The running time does not change regardless of the input size n.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- O(n^2): The running time increases with the square of the input size n.
- O(log(n)): The running time increases with the logarithm of the input size n.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Determine the worst-case time complexity category of a given Java code based on input size n.
</TASK>
<CODE>
//I'm Whiplash99
import java.io.*;
import java.util.*;
public class C
{
public static void main(String[] args) throws Exception
{
BufferedReader br=new BufferedReader(new InputStreamReader(System.in));
int i,N;
int T=Integer.parseInt(br.readLine().trim());
StringBuilder sb=new StringBuilder();
while (T-->0)
{
N=Integer.parseInt(br.readLine().trim());
int[] a=new int[N];
for(i=0;i<N;i++) a[i]=Integer.parseInt(br.readLine().trim());
int end=1;
int[][] ans=new int[N][N+10];
ans[0][0]=1;
for(i=1;i<N;i++)
{
while (true)
{
if(ans[i-1][end]==a[i]-1) break;
end--;
}
for(int j=0;j<end;j++) ans[i][j]=ans[i-1][j];
ans[i][end]=a[i];
end++;
}
for(i=0;i<N;i++)
{
for(int j=0;j<N&&ans[i][j]!=0;j++)
{
sb.append(ans[i][j]);
if(ans[i][j+1]!=0) sb.append('.');
}
sb.append("\n");
}
}
System.out.println(sb);
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(1): The time complexity is constant to the input size n.
- O(n^3): The time complexity scales proportionally to the cube of the input size.
- O(n^2): The time complexity grows proportionally to the square of the input size.
- others: The time complexity does not fit any of the above categories or cannot be clearly classified.
- non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially.
- O(log(n)): The time complexity increases logarithmically in relation to the input size.
- O(n): The time complexity increases proportionally to the input size n in a linear manner.
- O(nlog(n)): The time complexity combines linear and logarithmic growth factors.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
| 621
| 3,828
|
1,107
|
import java.util.*;
import java.io.*;
import java.math.*;
public class Main
{
static class Reader
{
private InputStream mIs;private byte[] buf = new byte[1024];private int curChar,numChars;public Reader() { this(System.in); }public Reader(InputStream is) { mIs = is;}
public int read() {if (numChars == -1) throw new InputMismatchException();if (curChar >= numChars) {curChar = 0;try { numChars = mIs.read(buf);} catch (IOException e) { throw new InputMismatchException();}if (numChars <= 0) return -1; }return buf[curChar++];}
public String nextLine(){int c = read();while (isSpaceChar(c)) c = read();StringBuilder res = new StringBuilder();do {res.appendCodePoint(c);c = read();}while (!isEndOfLine(c));return res.toString() ;}
public String s(){int c = read();while (isSpaceChar(c)) c = read();StringBuilder res = new StringBuilder();do {res.appendCodePoint(c);c = read();}while (!isSpaceChar(c));return res.toString();}
public long l(){int c = read();while (isSpaceChar(c)) c = read();int sgn = 1;if (c == '-') { sgn = -1 ; c = read() ; }long res = 0; do{ if (c < '0' || c > '9') throw new InputMismatchException();res *= 10 ; res += c - '0' ; c = read();}while(!isSpaceChar(c));return res * sgn;}
public int i(){int c = read() ;while (isSpaceChar(c)) c = read();int sgn = 1;if (c == '-') { sgn = -1 ; c = read() ; }int res = 0;do{if (c < '0' || c > '9') throw new InputMismatchException();res *= 10 ; res += c - '0' ; c = read() ;}while(!isSpaceChar(c));return res * sgn;}
public double d() throws IOException {return Double.parseDouble(s()) ;}
public boolean isSpaceChar(int c) { return c == ' ' || c == '\n' || c == '\r' || c == '\t' || c == -1; }
public boolean isEndOfLine(int c) { return c == '\n' || c == '\r' || c == -1; }
public int[] arr(int n){int[] ret = new int[n];for (int i = 0; i < n; i++) {ret[i] = i();}return ret;}
}
// |----| /\ | | ----- |
// | / / \ | | | |
// |--/ /----\ |----| | |
// | \ / \ | | | |
// | \ / \ | | ----- -------
public static void main(String[] args)throws IOException
{
PrintWriter out= new PrintWriter(System.out);
Reader sc=new Reader();
int n=sc.i();
System.out.println("? "+1);
int a=sc.i();
System.out.println("? "+(1+n/2));
int b=sc.i();
if(a==b)
{
System.out.println("! "+1);
System.exit(0);
}
int inv=0;
if(a>b)
inv=1;
int low=2;
int high=n/2;
int q=0;
while(low<=high)
{
if(q==60)
break;
int mid=(low+high)/2;
System.out.println("? "+mid);
a=sc.i();
System.out.println("? "+(mid+n/2));
b=sc.i();
if(a==b)
{
System.out.println("! "+mid);
System.exit(0);
}
else if(a<b)
{
if(inv==0)
low=mid+1;
else
high=mid-1;
}
else
{
if(inv==0)
high=mid-1;
else
low=mid+1;
}
q++;
}
System.out.println("! -1");
out.flush();
}
}
|
O(log(n))
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Classify the following Java code's worst-case time complexity according to its relationship to the input size n.
</TASK>
<CODE>
import java.util.*;
import java.io.*;
import java.math.*;
public class Main
{
static class Reader
{
private InputStream mIs;private byte[] buf = new byte[1024];private int curChar,numChars;public Reader() { this(System.in); }public Reader(InputStream is) { mIs = is;}
public int read() {if (numChars == -1) throw new InputMismatchException();if (curChar >= numChars) {curChar = 0;try { numChars = mIs.read(buf);} catch (IOException e) { throw new InputMismatchException();}if (numChars <= 0) return -1; }return buf[curChar++];}
public String nextLine(){int c = read();while (isSpaceChar(c)) c = read();StringBuilder res = new StringBuilder();do {res.appendCodePoint(c);c = read();}while (!isEndOfLine(c));return res.toString() ;}
public String s(){int c = read();while (isSpaceChar(c)) c = read();StringBuilder res = new StringBuilder();do {res.appendCodePoint(c);c = read();}while (!isSpaceChar(c));return res.toString();}
public long l(){int c = read();while (isSpaceChar(c)) c = read();int sgn = 1;if (c == '-') { sgn = -1 ; c = read() ; }long res = 0; do{ if (c < '0' || c > '9') throw new InputMismatchException();res *= 10 ; res += c - '0' ; c = read();}while(!isSpaceChar(c));return res * sgn;}
public int i(){int c = read() ;while (isSpaceChar(c)) c = read();int sgn = 1;if (c == '-') { sgn = -1 ; c = read() ; }int res = 0;do{if (c < '0' || c > '9') throw new InputMismatchException();res *= 10 ; res += c - '0' ; c = read() ;}while(!isSpaceChar(c));return res * sgn;}
public double d() throws IOException {return Double.parseDouble(s()) ;}
public boolean isSpaceChar(int c) { return c == ' ' || c == '\n' || c == '\r' || c == '\t' || c == -1; }
public boolean isEndOfLine(int c) { return c == '\n' || c == '\r' || c == -1; }
public int[] arr(int n){int[] ret = new int[n];for (int i = 0; i < n; i++) {ret[i] = i();}return ret;}
}
// |----| /\ | | ----- |
// | / / \ | | | |
// |--/ /----\ |----| | |
// | \ / \ | | | |
// | \ / \ | | ----- -------
public static void main(String[] args)throws IOException
{
PrintWriter out= new PrintWriter(System.out);
Reader sc=new Reader();
int n=sc.i();
System.out.println("? "+1);
int a=sc.i();
System.out.println("? "+(1+n/2));
int b=sc.i();
if(a==b)
{
System.out.println("! "+1);
System.exit(0);
}
int inv=0;
if(a>b)
inv=1;
int low=2;
int high=n/2;
int q=0;
while(low<=high)
{
if(q==60)
break;
int mid=(low+high)/2;
System.out.println("? "+mid);
a=sc.i();
System.out.println("? "+(mid+n/2));
b=sc.i();
if(a==b)
{
System.out.println("! "+mid);
System.exit(0);
}
else if(a<b)
{
if(inv==0)
low=mid+1;
else
high=mid-1;
}
else
{
if(inv==0)
high=mid-1;
else
low=mid+1;
}
q++;
}
System.out.println("! -1");
out.flush();
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(n): The running time grows linearly with the input size n.
- O(nlog(n)): The running time increases with the product of n and logarithm of n.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- O(log(n)): The running time increases with the logarithm of the input size n.
- O(n^2): The running time increases with the square of the input size n.
- O(n^3): The running time increases with the cube of the input size n.
- O(1): The running time does not change regardless of the input size n.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Classify the following Java code's worst-case time complexity according to its relationship to the input size n.
</TASK>
<CODE>
import java.util.*;
import java.io.*;
import java.math.*;
public class Main
{
static class Reader
{
private InputStream mIs;private byte[] buf = new byte[1024];private int curChar,numChars;public Reader() { this(System.in); }public Reader(InputStream is) { mIs = is;}
public int read() {if (numChars == -1) throw new InputMismatchException();if (curChar >= numChars) {curChar = 0;try { numChars = mIs.read(buf);} catch (IOException e) { throw new InputMismatchException();}if (numChars <= 0) return -1; }return buf[curChar++];}
public String nextLine(){int c = read();while (isSpaceChar(c)) c = read();StringBuilder res = new StringBuilder();do {res.appendCodePoint(c);c = read();}while (!isEndOfLine(c));return res.toString() ;}
public String s(){int c = read();while (isSpaceChar(c)) c = read();StringBuilder res = new StringBuilder();do {res.appendCodePoint(c);c = read();}while (!isSpaceChar(c));return res.toString();}
public long l(){int c = read();while (isSpaceChar(c)) c = read();int sgn = 1;if (c == '-') { sgn = -1 ; c = read() ; }long res = 0; do{ if (c < '0' || c > '9') throw new InputMismatchException();res *= 10 ; res += c - '0' ; c = read();}while(!isSpaceChar(c));return res * sgn;}
public int i(){int c = read() ;while (isSpaceChar(c)) c = read();int sgn = 1;if (c == '-') { sgn = -1 ; c = read() ; }int res = 0;do{if (c < '0' || c > '9') throw new InputMismatchException();res *= 10 ; res += c - '0' ; c = read() ;}while(!isSpaceChar(c));return res * sgn;}
public double d() throws IOException {return Double.parseDouble(s()) ;}
public boolean isSpaceChar(int c) { return c == ' ' || c == '\n' || c == '\r' || c == '\t' || c == -1; }
public boolean isEndOfLine(int c) { return c == '\n' || c == '\r' || c == -1; }
public int[] arr(int n){int[] ret = new int[n];for (int i = 0; i < n; i++) {ret[i] = i();}return ret;}
}
// |----| /\ | | ----- |
// | / / \ | | | |
// |--/ /----\ |----| | |
// | \ / \ | | | |
// | \ / \ | | ----- -------
public static void main(String[] args)throws IOException
{
PrintWriter out= new PrintWriter(System.out);
Reader sc=new Reader();
int n=sc.i();
System.out.println("? "+1);
int a=sc.i();
System.out.println("? "+(1+n/2));
int b=sc.i();
if(a==b)
{
System.out.println("! "+1);
System.exit(0);
}
int inv=0;
if(a>b)
inv=1;
int low=2;
int high=n/2;
int q=0;
while(low<=high)
{
if(q==60)
break;
int mid=(low+high)/2;
System.out.println("? "+mid);
a=sc.i();
System.out.println("? "+(mid+n/2));
b=sc.i();
if(a==b)
{
System.out.println("! "+mid);
System.exit(0);
}
else if(a<b)
{
if(inv==0)
low=mid+1;
else
high=mid-1;
}
else
{
if(inv==0)
high=mid-1;
else
low=mid+1;
}
q++;
}
System.out.println("! -1");
out.flush();
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(log(n)): The running time increases with the logarithm of the input size n.
- O(1): The running time does not change regardless of the input size n.
- O(n^2): The running time increases with the square of the input size n.
- others: The code does not clearly correspond to the listed classes or has an unclassified time complexity.
- O(nlog(n)): The running time increases with the product of n and logarithm of n.
- O(n): The running time grows linearly with the input size n.
- O(n^3): The running time increases with the cube of the input size n.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
| 1,316
| 1,106
|
102
|
import java.util.*;
public class Pizza {
public static void main(String[] args)
{
Scanner sc = new Scanner(System.in);
long num = sc.nextLong() + 1;
sc.close();
System.out.println(num % 2 == 0 || num == 1 ? num / 2 : num);
}
}
|
O(1)
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n.
</TASK>
<CODE>
import java.util.*;
public class Pizza {
public static void main(String[] args)
{
Scanner sc = new Scanner(System.in);
long num = sc.nextLong() + 1;
sc.close();
System.out.println(num % 2 == 0 || num == 1 ? num / 2 : num);
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially.
- O(log(n)): The execution time ascends in proportion to the logarithm of the input size n.
- O(1): The execution time is unaffected by the size of the input n.
- O(n^2): The execution time ascends in proportion to the square of the input size n.
- O(n^3): The execution time ascends in proportion to the cube of the input size n.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- O(n): The execution time ascends in a one-to-one ratio with the input size n.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Classify the following Java code's worst-case time complexity according to its relationship to the input size n.
</TASK>
<CODE>
import java.util.*;
public class Pizza {
public static void main(String[] args)
{
Scanner sc = new Scanner(System.in);
long num = sc.nextLong() + 1;
sc.close();
System.out.println(num % 2 == 0 || num == 1 ? num / 2 : num);
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(n): The running time grows linearly with the input size n.
- O(n^3): The running time increases with the cube of the input size n.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- O(nlog(n)): The running time increases with the product of n and logarithm of n.
- O(log(n)): The running time increases with the logarithm of the input size n.
- others: The code does not clearly correspond to the listed classes or has an unclassified time complexity.
- O(1): The running time does not change regardless of the input size n.
- O(n^2): The running time increases with the square of the input size n.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
| 422
| 102
|
679
|
import java.util.Scanner;
//import java.util.Scanner;
public class SingleWildcard {
public static void main(String[] args) {
// TODO Auto-generated method stub
Scanner input =new Scanner(System.in);
int a = input.nextInt();
int b = input.nextInt();
char[] s1 =new char[a];
s1 = input.next().toCharArray();
char[] s2 = new char[b];
s2 = input.next().toCharArray();
boolean condition = false;
for(int i=0; i<a;i++){
if(s1[i]=='*'){
condition= true;
break;
}
}
if(!condition){
if(match(s1,s2)){
System.out.println("YES");
}
else
System.out.println("NO");
return;
}
else{
int i=0;
if(s1.length-1>s2.length){
System.out.println("NO");
return;
}
while(i<s1.length && i<s2.length && s1[i]==s2[i]){
i++;
}
int j=s2.length-1;
int k = s1.length-1;
while(j>=0 && k>=0 && s1[k]==s2[j] && i<=j){
j--;
k--;
}
//System.out.println(i);
if(i==k && i>=0 && i<s1.length && s1[i]=='*' ){
System.out.println("YES");
return;
}
System.out.println("NO");
}
}
static boolean match(char[] s1,char[] s2){
if(s1.length!=s2.length)return false;
for(int i=0; i<s1.length;i++){
if(s1[i]!=s2[i])return false;
}
return true;
}
}
|
O(n)
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n.
</TASK>
<CODE>
import java.util.Scanner;
//import java.util.Scanner;
public class SingleWildcard {
public static void main(String[] args) {
// TODO Auto-generated method stub
Scanner input =new Scanner(System.in);
int a = input.nextInt();
int b = input.nextInt();
char[] s1 =new char[a];
s1 = input.next().toCharArray();
char[] s2 = new char[b];
s2 = input.next().toCharArray();
boolean condition = false;
for(int i=0; i<a;i++){
if(s1[i]=='*'){
condition= true;
break;
}
}
if(!condition){
if(match(s1,s2)){
System.out.println("YES");
}
else
System.out.println("NO");
return;
}
else{
int i=0;
if(s1.length-1>s2.length){
System.out.println("NO");
return;
}
while(i<s1.length && i<s2.length && s1[i]==s2[i]){
i++;
}
int j=s2.length-1;
int k = s1.length-1;
while(j>=0 && k>=0 && s1[k]==s2[j] && i<=j){
j--;
k--;
}
//System.out.println(i);
if(i==k && i>=0 && i<s1.length && s1[i]=='*' ){
System.out.println("YES");
return;
}
System.out.println("NO");
}
}
static boolean match(char[] s1,char[] s2){
if(s1.length!=s2.length)return false;
for(int i=0; i<s1.length;i++){
if(s1[i]!=s2[i])return false;
}
return true;
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- O(n^3): The execution time ascends in proportion to the cube of the input size n.
- O(log(n)): The execution time ascends in proportion to the logarithm of the input size n.
- O(n): The execution time ascends in a one-to-one ratio with the input size n.
- O(1): The execution time is unaffected by the size of the input n.
- O(n^2): The execution time ascends in proportion to the square of the input size n.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Classify the following Java code's worst-case time complexity according to its relationship to the input size n.
</TASK>
<CODE>
import java.util.Scanner;
//import java.util.Scanner;
public class SingleWildcard {
public static void main(String[] args) {
// TODO Auto-generated method stub
Scanner input =new Scanner(System.in);
int a = input.nextInt();
int b = input.nextInt();
char[] s1 =new char[a];
s1 = input.next().toCharArray();
char[] s2 = new char[b];
s2 = input.next().toCharArray();
boolean condition = false;
for(int i=0; i<a;i++){
if(s1[i]=='*'){
condition= true;
break;
}
}
if(!condition){
if(match(s1,s2)){
System.out.println("YES");
}
else
System.out.println("NO");
return;
}
else{
int i=0;
if(s1.length-1>s2.length){
System.out.println("NO");
return;
}
while(i<s1.length && i<s2.length && s1[i]==s2[i]){
i++;
}
int j=s2.length-1;
int k = s1.length-1;
while(j>=0 && k>=0 && s1[k]==s2[j] && i<=j){
j--;
k--;
}
//System.out.println(i);
if(i==k && i>=0 && i<s1.length && s1[i]=='*' ){
System.out.println("YES");
return;
}
System.out.println("NO");
}
}
static boolean match(char[] s1,char[] s2){
if(s1.length!=s2.length)return false;
for(int i=0; i<s1.length;i++){
if(s1[i]!=s2[i])return false;
}
return true;
}
}
</CODE>
<EVALUATION_RUBRIC>
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- O(nlog(n)): The running time increases with the product of n and logarithm of n.
- O(log(n)): The running time increases with the logarithm of the input size n.
- O(n^3): The running time increases with the cube of the input size n.
- others: The code does not clearly correspond to the listed classes or has an unclassified time complexity.
- O(1): The running time does not change regardless of the input size n.
- O(n): The running time grows linearly with the input size n.
- O(n^2): The running time increases with the square of the input size n.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
| 756
| 678
|
2,873
|
import java.util.Scanner;
public class K603 {
public static void main(String[] args) {
Scanner sc=new Scanner(System.in);
long a=sc.nextLong();
long b=sc.nextLong();
if(b-a<2){
System.out.println(-1);
}else if(b-a==2 && a%2==1){
System.out.println(-1);
}else if(b-a==2 && a%2==0){
System.out.println(a+" "+(a+1)+" "+(a+2));
}else{
if(a%2==0){
System.out.println(a+" "+(a+1)+" "+(a+2));
}else{
System.out.println((a+1)+" "+(a+2)+" "+(a+3));
}
}
}
}
|
O(1)
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n.
</TASK>
<CODE>
import java.util.Scanner;
public class K603 {
public static void main(String[] args) {
Scanner sc=new Scanner(System.in);
long a=sc.nextLong();
long b=sc.nextLong();
if(b-a<2){
System.out.println(-1);
}else if(b-a==2 && a%2==1){
System.out.println(-1);
}else if(b-a==2 && a%2==0){
System.out.println(a+" "+(a+1)+" "+(a+2));
}else{
if(a%2==0){
System.out.println(a+" "+(a+1)+" "+(a+2));
}else{
System.out.println((a+1)+" "+(a+2)+" "+(a+3));
}
}
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(1): The execution time is unaffected by the size of the input n.
- O(n): The execution time ascends in a one-to-one ratio with the input size n.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially.
- O(n^3): The execution time ascends in proportion to the cube of the input size n.
- O(log(n)): The execution time ascends in proportion to the logarithm of the input size n.
- O(n^2): The execution time ascends in proportion to the square of the input size n.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Determine the worst-case time complexity category of a given Java code based on input size n.
</TASK>
<CODE>
import java.util.Scanner;
public class K603 {
public static void main(String[] args) {
Scanner sc=new Scanner(System.in);
long a=sc.nextLong();
long b=sc.nextLong();
if(b-a<2){
System.out.println(-1);
}else if(b-a==2 && a%2==1){
System.out.println(-1);
}else if(b-a==2 && a%2==0){
System.out.println(a+" "+(a+1)+" "+(a+2));
}else{
if(a%2==0){
System.out.println(a+" "+(a+1)+" "+(a+2));
}else{
System.out.println((a+1)+" "+(a+2)+" "+(a+3));
}
}
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(n^2): The time complexity grows proportionally to the square of the input size.
- others: The time complexity does not fit any of the above categories or cannot be clearly classified.
- O(n^3): The time complexity scales proportionally to the cube of the input size.
- O(log(n)): The time complexity increases logarithmically in relation to the input size.
- O(n): The time complexity increases proportionally to the input size n in a linear manner.
- non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially.
- O(nlog(n)): The time complexity combines linear and logarithmic growth factors.
- O(1): The time complexity is constant to the input size n.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
| 528
| 2,867
|
1,870
|
import java.io.*;
import java.math.BigInteger;
import java.util.*;
public class main
{
private InputStream stream;
private byte[] buf = new byte[1024];
private int curChar;
private int numChars;
private SpaceCharFilter filter;
private PrintWriter pw;
private long mod = 1000000000 + 7;
private StringBuilder ans_sb;
private ArrayList<Integer> primes;
private long ans;
private void soln()
{
int n = nextInt();
long[] arr = new long[n];
for (int i = 0; i < n; i++)
arr[i] = nextLong();
Segment tree = new Segment(n, arr);
long[] ans = new long[n];
BigInteger fa = BigInteger.ZERO;
HashMap<Long, Integer> map = new HashMap<>();
for (int i = 0; i < n; i++)
{
ans[i] = ((long) i + 1) * arr[i] - tree.query(0, i);
if (map.containsKey(arr[i] - 1))
{
long tmp = map.get(arr[i] - 1);
ans[i] -= tmp;
}
if (map.containsKey(arr[i] + 1))
{
long tmp = map.get(arr[i] + 1);
ans[i] += tmp;
}
if (!map.containsKey(arr[i]))
map.put(arr[i], 0);
map.put(arr[i], map.get(arr[i]) + 1);
fa = fa.add(new BigInteger(Long.toString(ans[i])));
}
// debug(ans);
/*
* Node[] nn = new Node[n]; for(int i=0;i<n;i++) { nn[i] = new Node();
* nn[i].node = i; nn[i].dist = arr[i]; } //debug(fa); Arrays.sort(nn);
* //debug(nn); for(int i=0;i<n-1;i++) { if(nn[i].dist + 1 == nn[i+1].dist) {
* System.out.println(nn[i].node +" "+nn[i+1].node); if(nn[i].node >
* nn[i+1].node) { fa++; }else fa--; } }
*/
pw.println(fa.toString());
// int k = nextInt();
// int n = nextInt();
// String[] arr = new String[k];
// for(int i=0;i<k;i++)
// arr[i] = nextLine();
// HashSet<String> set1 = new HashSet<>();
// for(int i=0;i<k;i++)
// set1.add(arr[i]);
// if(set1.size() == 1) {
// String s = arr[0];
// pw.print(s.charAt(1));
// pw.print(s.charAt(0));
// for(int i=2;i<n;i++)
// pw.print(s.charAt(i));
// }else {
// String s1 = arr[0];
// set1.remove(arr[0]);
// HashSet<Integer>[] aa = new HashSet[set1.size()];
// ArrayList<String> set = new ArrayList<>();
// for(String s:set1)
// set.add(s);
// int k1 = 0;
// boolean f1 = false;
// for(String s:set) {
// aa[k1] = new HashSet<>();
// for(int i=0;i<n;i++)
// if(s1.charAt(i) != s.charAt(i))
// aa[k1].add(i);
// if(aa[k1].size() > 4) {
// pw.println(-1);
// f1 = true;
// }
// k1++;
// }
// //debug(set);
// char[] ch = s1.toCharArray();
//
// boolean[] f11 = new boolean[set.size()];
// int k2 = 0;
// for(String s:set) {
// int[] freq = new int[26];
// for(int i=0;i<n;i++)
// freq[s.charAt(i)-'a']++;
// boolean kuu = false;
// for(int i=0;i<26;i++)
// if(freq[i] >= 2) {
// kuu = true;
// break;
// }
// f11[k2] = true;
// k2++;
// }
// // debug(f11);
//
// for(int i=0;i<n;i++) {
// if(f1)
// break;
// for(int j=i+1;j<n;j++) {
// if(f1)
// break;
// //System.out.println(i+" "+j);
// char tmp = ch[i];
// ch[i] = ch[j];
// ch[j] = tmp;
// k1 = 0;
// HashSet<Integer> haha = new HashSet<>();
// boolean f = true;
// for(String s:set) {
// HashSet<Integer> indi = aa[k1];
// boolean h1 = false;
// boolean h2 = false;
// if(!indi.contains(i)) {
// indi.add(i);
// h1 = true;
// }
// if(!indi.contains(j)) {
// indi.add(j);
// h2 = true;
// }
// int cnt = 0;
// for(int ii:indi) {
// if(s.charAt(ii) != ch[ii])
// cnt++;
// }
// /*if(i==1 && j==3) {
// System.out.println(cnt+" "+i+" "+j+" "+s);
// debug(indi);
// }*/
// if(cnt > 2 ) {
// f = false;
// break;
// }
// if(cnt ==1 && !f11[k1]) {
// f = false;
// break;
// }
// if(h1)
// indi.remove(i);
// if(h2)
// indi.remove(j);
// k1++;
//
// }
// if(f) {
// for(int i1=0;i1<n;i1++) {
// pw.print(ch[i1]);
// }
// f1 = true;
// break;
// }
// tmp = ch[i];
// ch[i] = ch[j];
// ch[j] = tmp;
// }
// }
// if(!f1)
// pw.println(-1);
// }
}
public class Segment
{
private Node[] tree;
private boolean[] lazy;
private int size;
private int n;
private long[] base;
private class Node
{
private int l;
private int r;
private long ans;
private long ans2;
}
public Segment(int n, long[] arr)
{
this.base = arr;
int x = (int) (Math.ceil(Math.log(n) / Math.log(2)));
size = 2 * (int) Math.pow(2, x) - 1;
tree = new Node[size];
lazy = new boolean[size];
this.n = n;
// this.set = set1;
build(0, 0, n - 1);
}
public void build(int id, int l, int r)
{
if (l == r)
{
tree[id] = new Node();
tree[id].l = l;
tree[id].r = r;
tree[id].ans = base[l];
return;
}
int mid = (l + r) / 2;
build(2 * id + 1, l, mid);
build(2 * id + 2, mid + 1, r);
tree[id] = merge(tree[2 * id + 1], tree[2 * id + 2], l, r);
// System.out.println(l+" "+r+" "+tree[id].l+" "+tree[id].r+" "+tree[id].ans);
}
public Node merge(Node n1, Node n2, int l, int r)
{
Node ret = new Node();
if (n1 == null && n2 == null)
return null;
else if (n1 == null)
{
ret.ans = n2.ans;
}
else if (n2 == null)
{
ret.ans = n1.ans;
} else
{
ret.ans = n1.ans + n2.ans;
}
return ret;
}
public long query(int l, int r)
{
Node ret = queryUtil(l, r, 0, 0, n - 1);
if (ret == null)
{
return 0;
} else
return ret.ans;
}
private Node queryUtil(int x, int y, int id, int l, int r)
{
if (l > y || x > r)
return null;
if (x <= l && r <= y)
{
return tree[id];
}
int mid = l + (r - l) / 2;
// shift(id);
Node q1 = queryUtil(x, y, 2 * id + 1, l, mid);
Node q2 = queryUtil(x, y, 2 * id + 2, mid + 1, r);
return merge(q1, q2, Math.max(l, x), Math.min(r, y));
}
public void update(int x, int y, int c)
{
update1(x, y, c, 0, 0, n - 1);
}
private void update1(int x, int y, int colour, int id, int l, int r)
{
// System.out.println(l+" "+r+" "+x);
if (x > r || y < l)
return;
if (x <= l && r <= y)
{
if (colour != -1)
{
tree[id] = new Node();
tree[id].ans = 1;
} else
tree[id] = null;
return;
}
int mid = l + (r - l) / 2;
// shift(id);
if (y <= mid)
update1(x, y, colour, 2 * id + 1, l, mid);
else if (x > mid)
update1(x, y, colour, 2 * id + 2, mid + 1, r);
else
{
update1(x, y, colour, 2 * id + 1, l, mid);
update1(x, y, colour, 2 * id + 2, mid + 1, r);
}
tree[id] = merge(tree[2 * id + 1], tree[2 * id + 2], l, r);
}
public void print(int l, int r, int id)
{
if (l == r)
{
if (tree[id] != null)
System.out.println(l + " " + r + " " + tree[id].l + " " + tree[id].r + " " + tree[id].ans + " "
+ tree[id].ans2);
return;
}
int mid = l + (r - l) / 2;
print(l, mid, 2 * id + 1);
print(mid + 1, r, 2 * id + 2);
if (tree[id] != null)
System.out.println(
l + " " + r + " " + tree[id].l + " " + tree[id].r + " " + tree[id].ans + " " + tree[id].ans2);
}
public void shift(int id)
{
}
}
private class Node implements Comparable<Node>
{
int node;
long dist;
@Override
public int compareTo(Node arg0)
{
if (this.dist != arg0.dist)
return (int) (this.dist - arg0.dist);
return this.node - arg0.node;
}
public boolean equals(Object o)
{
if (o instanceof Node)
{
Node c = (Node) o;
return this.node == c.node && this.dist == c.dist;
}
return false;
}
public String toString()
{
return this.node + ", " + this.dist;
}
}
private void debug(Object... o)
{
System.out.println(Arrays.deepToString(o));
}
private long pow(long a, long b, long c)
{
if (b == 0)
return 1;
long p = pow(a, b / 2, c);
p = (p * p) % c;
return (b % 2 == 0) ? p : (a * p) % c;
}
private long gcd(long n, long l)
{
if (l == 0)
return n;
return gcd(l, n % l);
}
public static void main(String[] args) throws Exception
{
new Thread(null, new Runnable()
{
@Override
public void run()
{
new main().solve();
}
}, "1", 1 << 26).start();
}
public StringBuilder solve()
{
InputReader(System.in);
/*
* try { InputReader(new FileInputStream("C:\\Users\\hardik\\Desktop\\in.txt"));
* } catch(FileNotFoundException e) {}
*/
pw = new PrintWriter(System.out);
ans_sb = new StringBuilder();
soln();
pw.close();
// System.out.println(ans_sb);
return ans_sb;
}
public void InputReader(InputStream stream1)
{
stream = stream1;
}
private boolean isWhitespace(int c)
{
return c == ' ' || c == '\n' || c == '\r' || c == '\t' || c == -1;
}
private boolean isEndOfLine(int c)
{
return c == '\n' || c == '\r' || c == -1;
}
private int read()
{
if (numChars == -1)
throw new InputMismatchException();
if (curChar >= numChars)
{
curChar = 0;
try
{
numChars = stream.read(buf);
} catch (IOException e)
{
throw new InputMismatchException();
}
if (numChars <= 0)
return -1;
}
return buf[curChar++];
}
private int nextInt()
{
int c = read();
while (isSpaceChar(c))
c = read();
int sgn = 1;
if (c == '-')
{
sgn = -1;
c = read();
}
int res = 0;
do
{
if (c < '0' || c > '9')
throw new InputMismatchException();
res *= 10;
res += c - '0';
c = read();
} while (!isSpaceChar(c));
return res * sgn;
}
private long nextLong()
{
int c = read();
while (isSpaceChar(c))
c = read();
int sgn = 1;
if (c == '-')
{
sgn = -1;
c = read();
}
long res = 0;
do
{
if (c < '0' || c > '9')
throw new InputMismatchException();
res *= 10;
res += c - '0';
c = read();
} while (!isSpaceChar(c));
return res * sgn;
}
private String nextToken()
{
int c = read();
while (isSpaceChar(c))
c = read();
StringBuilder res = new StringBuilder();
do
{
res.appendCodePoint(c);
c = read();
} while (!isSpaceChar(c));
return res.toString();
}
private String nextLine()
{
int c = read();
while (isSpaceChar(c))
c = read();
StringBuilder res = new StringBuilder();
do
{
res.appendCodePoint(c);
c = read();
} while (!isEndOfLine(c));
return res.toString();
}
private int[] nextIntArray(int n)
{
int[] arr = new int[n];
for (int i = 0; i < n; i++)
{
arr[i] = nextInt();
}
return arr;
}
private long[] nextLongArray(int n)
{
long[] arr = new long[n];
for (int i = 0; i < n; i++)
{
arr[i] = nextLong();
}
return arr;
}
private void pArray(int[] arr)
{
for (int i = 0; i < arr.length; i++)
{
System.out.print(arr[i] + " ");
}
System.out.println();
return;
}
private void pArray(long[] arr)
{
for (int i = 0; i < arr.length; i++)
{
System.out.print(arr[i] + " ");
}
System.out.println();
return;
}
private boolean isSpaceChar(int c)
{
if (filter != null)
return filter.isSpaceChar(c);
return isWhitespace(c);
}
private char nextChar()
{
int c = read();
while (isSpaceChar(c))
c = read();
char c1 = (char) c;
while (!isSpaceChar(c))
c = read();
return c1;
}
private interface SpaceCharFilter
{
public boolean isSpaceChar(int ch);
}
}
|
O(nlog(n))
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Classify the following Java code's worst-case time complexity according to its relationship to the input size n.
</TASK>
<CODE>
import java.io.*;
import java.math.BigInteger;
import java.util.*;
public class main
{
private InputStream stream;
private byte[] buf = new byte[1024];
private int curChar;
private int numChars;
private SpaceCharFilter filter;
private PrintWriter pw;
private long mod = 1000000000 + 7;
private StringBuilder ans_sb;
private ArrayList<Integer> primes;
private long ans;
private void soln()
{
int n = nextInt();
long[] arr = new long[n];
for (int i = 0; i < n; i++)
arr[i] = nextLong();
Segment tree = new Segment(n, arr);
long[] ans = new long[n];
BigInteger fa = BigInteger.ZERO;
HashMap<Long, Integer> map = new HashMap<>();
for (int i = 0; i < n; i++)
{
ans[i] = ((long) i + 1) * arr[i] - tree.query(0, i);
if (map.containsKey(arr[i] - 1))
{
long tmp = map.get(arr[i] - 1);
ans[i] -= tmp;
}
if (map.containsKey(arr[i] + 1))
{
long tmp = map.get(arr[i] + 1);
ans[i] += tmp;
}
if (!map.containsKey(arr[i]))
map.put(arr[i], 0);
map.put(arr[i], map.get(arr[i]) + 1);
fa = fa.add(new BigInteger(Long.toString(ans[i])));
}
// debug(ans);
/*
* Node[] nn = new Node[n]; for(int i=0;i<n;i++) { nn[i] = new Node();
* nn[i].node = i; nn[i].dist = arr[i]; } //debug(fa); Arrays.sort(nn);
* //debug(nn); for(int i=0;i<n-1;i++) { if(nn[i].dist + 1 == nn[i+1].dist) {
* System.out.println(nn[i].node +" "+nn[i+1].node); if(nn[i].node >
* nn[i+1].node) { fa++; }else fa--; } }
*/
pw.println(fa.toString());
// int k = nextInt();
// int n = nextInt();
// String[] arr = new String[k];
// for(int i=0;i<k;i++)
// arr[i] = nextLine();
// HashSet<String> set1 = new HashSet<>();
// for(int i=0;i<k;i++)
// set1.add(arr[i]);
// if(set1.size() == 1) {
// String s = arr[0];
// pw.print(s.charAt(1));
// pw.print(s.charAt(0));
// for(int i=2;i<n;i++)
// pw.print(s.charAt(i));
// }else {
// String s1 = arr[0];
// set1.remove(arr[0]);
// HashSet<Integer>[] aa = new HashSet[set1.size()];
// ArrayList<String> set = new ArrayList<>();
// for(String s:set1)
// set.add(s);
// int k1 = 0;
// boolean f1 = false;
// for(String s:set) {
// aa[k1] = new HashSet<>();
// for(int i=0;i<n;i++)
// if(s1.charAt(i) != s.charAt(i))
// aa[k1].add(i);
// if(aa[k1].size() > 4) {
// pw.println(-1);
// f1 = true;
// }
// k1++;
// }
// //debug(set);
// char[] ch = s1.toCharArray();
//
// boolean[] f11 = new boolean[set.size()];
// int k2 = 0;
// for(String s:set) {
// int[] freq = new int[26];
// for(int i=0;i<n;i++)
// freq[s.charAt(i)-'a']++;
// boolean kuu = false;
// for(int i=0;i<26;i++)
// if(freq[i] >= 2) {
// kuu = true;
// break;
// }
// f11[k2] = true;
// k2++;
// }
// // debug(f11);
//
// for(int i=0;i<n;i++) {
// if(f1)
// break;
// for(int j=i+1;j<n;j++) {
// if(f1)
// break;
// //System.out.println(i+" "+j);
// char tmp = ch[i];
// ch[i] = ch[j];
// ch[j] = tmp;
// k1 = 0;
// HashSet<Integer> haha = new HashSet<>();
// boolean f = true;
// for(String s:set) {
// HashSet<Integer> indi = aa[k1];
// boolean h1 = false;
// boolean h2 = false;
// if(!indi.contains(i)) {
// indi.add(i);
// h1 = true;
// }
// if(!indi.contains(j)) {
// indi.add(j);
// h2 = true;
// }
// int cnt = 0;
// for(int ii:indi) {
// if(s.charAt(ii) != ch[ii])
// cnt++;
// }
// /*if(i==1 && j==3) {
// System.out.println(cnt+" "+i+" "+j+" "+s);
// debug(indi);
// }*/
// if(cnt > 2 ) {
// f = false;
// break;
// }
// if(cnt ==1 && !f11[k1]) {
// f = false;
// break;
// }
// if(h1)
// indi.remove(i);
// if(h2)
// indi.remove(j);
// k1++;
//
// }
// if(f) {
// for(int i1=0;i1<n;i1++) {
// pw.print(ch[i1]);
// }
// f1 = true;
// break;
// }
// tmp = ch[i];
// ch[i] = ch[j];
// ch[j] = tmp;
// }
// }
// if(!f1)
// pw.println(-1);
// }
}
public class Segment
{
private Node[] tree;
private boolean[] lazy;
private int size;
private int n;
private long[] base;
private class Node
{
private int l;
private int r;
private long ans;
private long ans2;
}
public Segment(int n, long[] arr)
{
this.base = arr;
int x = (int) (Math.ceil(Math.log(n) / Math.log(2)));
size = 2 * (int) Math.pow(2, x) - 1;
tree = new Node[size];
lazy = new boolean[size];
this.n = n;
// this.set = set1;
build(0, 0, n - 1);
}
public void build(int id, int l, int r)
{
if (l == r)
{
tree[id] = new Node();
tree[id].l = l;
tree[id].r = r;
tree[id].ans = base[l];
return;
}
int mid = (l + r) / 2;
build(2 * id + 1, l, mid);
build(2 * id + 2, mid + 1, r);
tree[id] = merge(tree[2 * id + 1], tree[2 * id + 2], l, r);
// System.out.println(l+" "+r+" "+tree[id].l+" "+tree[id].r+" "+tree[id].ans);
}
public Node merge(Node n1, Node n2, int l, int r)
{
Node ret = new Node();
if (n1 == null && n2 == null)
return null;
else if (n1 == null)
{
ret.ans = n2.ans;
}
else if (n2 == null)
{
ret.ans = n1.ans;
} else
{
ret.ans = n1.ans + n2.ans;
}
return ret;
}
public long query(int l, int r)
{
Node ret = queryUtil(l, r, 0, 0, n - 1);
if (ret == null)
{
return 0;
} else
return ret.ans;
}
private Node queryUtil(int x, int y, int id, int l, int r)
{
if (l > y || x > r)
return null;
if (x <= l && r <= y)
{
return tree[id];
}
int mid = l + (r - l) / 2;
// shift(id);
Node q1 = queryUtil(x, y, 2 * id + 1, l, mid);
Node q2 = queryUtil(x, y, 2 * id + 2, mid + 1, r);
return merge(q1, q2, Math.max(l, x), Math.min(r, y));
}
public void update(int x, int y, int c)
{
update1(x, y, c, 0, 0, n - 1);
}
private void update1(int x, int y, int colour, int id, int l, int r)
{
// System.out.println(l+" "+r+" "+x);
if (x > r || y < l)
return;
if (x <= l && r <= y)
{
if (colour != -1)
{
tree[id] = new Node();
tree[id].ans = 1;
} else
tree[id] = null;
return;
}
int mid = l + (r - l) / 2;
// shift(id);
if (y <= mid)
update1(x, y, colour, 2 * id + 1, l, mid);
else if (x > mid)
update1(x, y, colour, 2 * id + 2, mid + 1, r);
else
{
update1(x, y, colour, 2 * id + 1, l, mid);
update1(x, y, colour, 2 * id + 2, mid + 1, r);
}
tree[id] = merge(tree[2 * id + 1], tree[2 * id + 2], l, r);
}
public void print(int l, int r, int id)
{
if (l == r)
{
if (tree[id] != null)
System.out.println(l + " " + r + " " + tree[id].l + " " + tree[id].r + " " + tree[id].ans + " "
+ tree[id].ans2);
return;
}
int mid = l + (r - l) / 2;
print(l, mid, 2 * id + 1);
print(mid + 1, r, 2 * id + 2);
if (tree[id] != null)
System.out.println(
l + " " + r + " " + tree[id].l + " " + tree[id].r + " " + tree[id].ans + " " + tree[id].ans2);
}
public void shift(int id)
{
}
}
private class Node implements Comparable<Node>
{
int node;
long dist;
@Override
public int compareTo(Node arg0)
{
if (this.dist != arg0.dist)
return (int) (this.dist - arg0.dist);
return this.node - arg0.node;
}
public boolean equals(Object o)
{
if (o instanceof Node)
{
Node c = (Node) o;
return this.node == c.node && this.dist == c.dist;
}
return false;
}
public String toString()
{
return this.node + ", " + this.dist;
}
}
private void debug(Object... o)
{
System.out.println(Arrays.deepToString(o));
}
private long pow(long a, long b, long c)
{
if (b == 0)
return 1;
long p = pow(a, b / 2, c);
p = (p * p) % c;
return (b % 2 == 0) ? p : (a * p) % c;
}
private long gcd(long n, long l)
{
if (l == 0)
return n;
return gcd(l, n % l);
}
public static void main(String[] args) throws Exception
{
new Thread(null, new Runnable()
{
@Override
public void run()
{
new main().solve();
}
}, "1", 1 << 26).start();
}
public StringBuilder solve()
{
InputReader(System.in);
/*
* try { InputReader(new FileInputStream("C:\\Users\\hardik\\Desktop\\in.txt"));
* } catch(FileNotFoundException e) {}
*/
pw = new PrintWriter(System.out);
ans_sb = new StringBuilder();
soln();
pw.close();
// System.out.println(ans_sb);
return ans_sb;
}
public void InputReader(InputStream stream1)
{
stream = stream1;
}
private boolean isWhitespace(int c)
{
return c == ' ' || c == '\n' || c == '\r' || c == '\t' || c == -1;
}
private boolean isEndOfLine(int c)
{
return c == '\n' || c == '\r' || c == -1;
}
private int read()
{
if (numChars == -1)
throw new InputMismatchException();
if (curChar >= numChars)
{
curChar = 0;
try
{
numChars = stream.read(buf);
} catch (IOException e)
{
throw new InputMismatchException();
}
if (numChars <= 0)
return -1;
}
return buf[curChar++];
}
private int nextInt()
{
int c = read();
while (isSpaceChar(c))
c = read();
int sgn = 1;
if (c == '-')
{
sgn = -1;
c = read();
}
int res = 0;
do
{
if (c < '0' || c > '9')
throw new InputMismatchException();
res *= 10;
res += c - '0';
c = read();
} while (!isSpaceChar(c));
return res * sgn;
}
private long nextLong()
{
int c = read();
while (isSpaceChar(c))
c = read();
int sgn = 1;
if (c == '-')
{
sgn = -1;
c = read();
}
long res = 0;
do
{
if (c < '0' || c > '9')
throw new InputMismatchException();
res *= 10;
res += c - '0';
c = read();
} while (!isSpaceChar(c));
return res * sgn;
}
private String nextToken()
{
int c = read();
while (isSpaceChar(c))
c = read();
StringBuilder res = new StringBuilder();
do
{
res.appendCodePoint(c);
c = read();
} while (!isSpaceChar(c));
return res.toString();
}
private String nextLine()
{
int c = read();
while (isSpaceChar(c))
c = read();
StringBuilder res = new StringBuilder();
do
{
res.appendCodePoint(c);
c = read();
} while (!isEndOfLine(c));
return res.toString();
}
private int[] nextIntArray(int n)
{
int[] arr = new int[n];
for (int i = 0; i < n; i++)
{
arr[i] = nextInt();
}
return arr;
}
private long[] nextLongArray(int n)
{
long[] arr = new long[n];
for (int i = 0; i < n; i++)
{
arr[i] = nextLong();
}
return arr;
}
private void pArray(int[] arr)
{
for (int i = 0; i < arr.length; i++)
{
System.out.print(arr[i] + " ");
}
System.out.println();
return;
}
private void pArray(long[] arr)
{
for (int i = 0; i < arr.length; i++)
{
System.out.print(arr[i] + " ");
}
System.out.println();
return;
}
private boolean isSpaceChar(int c)
{
if (filter != null)
return filter.isSpaceChar(c);
return isWhitespace(c);
}
private char nextChar()
{
int c = read();
while (isSpaceChar(c))
c = read();
char c1 = (char) c;
while (!isSpaceChar(c))
c = read();
return c1;
}
private interface SpaceCharFilter
{
public boolean isSpaceChar(int ch);
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(nlog(n)): The running time increases with the product of n and logarithm of n.
- O(log(n)): The running time increases with the logarithm of the input size n.
- O(n^2): The running time increases with the square of the input size n.
- O(n): The running time grows linearly with the input size n.
- O(1): The running time does not change regardless of the input size n.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- O(n^3): The running time increases with the cube of the input size n.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Determine the worst-case time complexity category of a given Java code based on input size n.
</TASK>
<CODE>
import java.io.*;
import java.math.BigInteger;
import java.util.*;
public class main
{
private InputStream stream;
private byte[] buf = new byte[1024];
private int curChar;
private int numChars;
private SpaceCharFilter filter;
private PrintWriter pw;
private long mod = 1000000000 + 7;
private StringBuilder ans_sb;
private ArrayList<Integer> primes;
private long ans;
private void soln()
{
int n = nextInt();
long[] arr = new long[n];
for (int i = 0; i < n; i++)
arr[i] = nextLong();
Segment tree = new Segment(n, arr);
long[] ans = new long[n];
BigInteger fa = BigInteger.ZERO;
HashMap<Long, Integer> map = new HashMap<>();
for (int i = 0; i < n; i++)
{
ans[i] = ((long) i + 1) * arr[i] - tree.query(0, i);
if (map.containsKey(arr[i] - 1))
{
long tmp = map.get(arr[i] - 1);
ans[i] -= tmp;
}
if (map.containsKey(arr[i] + 1))
{
long tmp = map.get(arr[i] + 1);
ans[i] += tmp;
}
if (!map.containsKey(arr[i]))
map.put(arr[i], 0);
map.put(arr[i], map.get(arr[i]) + 1);
fa = fa.add(new BigInteger(Long.toString(ans[i])));
}
// debug(ans);
/*
* Node[] nn = new Node[n]; for(int i=0;i<n;i++) { nn[i] = new Node();
* nn[i].node = i; nn[i].dist = arr[i]; } //debug(fa); Arrays.sort(nn);
* //debug(nn); for(int i=0;i<n-1;i++) { if(nn[i].dist + 1 == nn[i+1].dist) {
* System.out.println(nn[i].node +" "+nn[i+1].node); if(nn[i].node >
* nn[i+1].node) { fa++; }else fa--; } }
*/
pw.println(fa.toString());
// int k = nextInt();
// int n = nextInt();
// String[] arr = new String[k];
// for(int i=0;i<k;i++)
// arr[i] = nextLine();
// HashSet<String> set1 = new HashSet<>();
// for(int i=0;i<k;i++)
// set1.add(arr[i]);
// if(set1.size() == 1) {
// String s = arr[0];
// pw.print(s.charAt(1));
// pw.print(s.charAt(0));
// for(int i=2;i<n;i++)
// pw.print(s.charAt(i));
// }else {
// String s1 = arr[0];
// set1.remove(arr[0]);
// HashSet<Integer>[] aa = new HashSet[set1.size()];
// ArrayList<String> set = new ArrayList<>();
// for(String s:set1)
// set.add(s);
// int k1 = 0;
// boolean f1 = false;
// for(String s:set) {
// aa[k1] = new HashSet<>();
// for(int i=0;i<n;i++)
// if(s1.charAt(i) != s.charAt(i))
// aa[k1].add(i);
// if(aa[k1].size() > 4) {
// pw.println(-1);
// f1 = true;
// }
// k1++;
// }
// //debug(set);
// char[] ch = s1.toCharArray();
//
// boolean[] f11 = new boolean[set.size()];
// int k2 = 0;
// for(String s:set) {
// int[] freq = new int[26];
// for(int i=0;i<n;i++)
// freq[s.charAt(i)-'a']++;
// boolean kuu = false;
// for(int i=0;i<26;i++)
// if(freq[i] >= 2) {
// kuu = true;
// break;
// }
// f11[k2] = true;
// k2++;
// }
// // debug(f11);
//
// for(int i=0;i<n;i++) {
// if(f1)
// break;
// for(int j=i+1;j<n;j++) {
// if(f1)
// break;
// //System.out.println(i+" "+j);
// char tmp = ch[i];
// ch[i] = ch[j];
// ch[j] = tmp;
// k1 = 0;
// HashSet<Integer> haha = new HashSet<>();
// boolean f = true;
// for(String s:set) {
// HashSet<Integer> indi = aa[k1];
// boolean h1 = false;
// boolean h2 = false;
// if(!indi.contains(i)) {
// indi.add(i);
// h1 = true;
// }
// if(!indi.contains(j)) {
// indi.add(j);
// h2 = true;
// }
// int cnt = 0;
// for(int ii:indi) {
// if(s.charAt(ii) != ch[ii])
// cnt++;
// }
// /*if(i==1 && j==3) {
// System.out.println(cnt+" "+i+" "+j+" "+s);
// debug(indi);
// }*/
// if(cnt > 2 ) {
// f = false;
// break;
// }
// if(cnt ==1 && !f11[k1]) {
// f = false;
// break;
// }
// if(h1)
// indi.remove(i);
// if(h2)
// indi.remove(j);
// k1++;
//
// }
// if(f) {
// for(int i1=0;i1<n;i1++) {
// pw.print(ch[i1]);
// }
// f1 = true;
// break;
// }
// tmp = ch[i];
// ch[i] = ch[j];
// ch[j] = tmp;
// }
// }
// if(!f1)
// pw.println(-1);
// }
}
public class Segment
{
private Node[] tree;
private boolean[] lazy;
private int size;
private int n;
private long[] base;
private class Node
{
private int l;
private int r;
private long ans;
private long ans2;
}
public Segment(int n, long[] arr)
{
this.base = arr;
int x = (int) (Math.ceil(Math.log(n) / Math.log(2)));
size = 2 * (int) Math.pow(2, x) - 1;
tree = new Node[size];
lazy = new boolean[size];
this.n = n;
// this.set = set1;
build(0, 0, n - 1);
}
public void build(int id, int l, int r)
{
if (l == r)
{
tree[id] = new Node();
tree[id].l = l;
tree[id].r = r;
tree[id].ans = base[l];
return;
}
int mid = (l + r) / 2;
build(2 * id + 1, l, mid);
build(2 * id + 2, mid + 1, r);
tree[id] = merge(tree[2 * id + 1], tree[2 * id + 2], l, r);
// System.out.println(l+" "+r+" "+tree[id].l+" "+tree[id].r+" "+tree[id].ans);
}
public Node merge(Node n1, Node n2, int l, int r)
{
Node ret = new Node();
if (n1 == null && n2 == null)
return null;
else if (n1 == null)
{
ret.ans = n2.ans;
}
else if (n2 == null)
{
ret.ans = n1.ans;
} else
{
ret.ans = n1.ans + n2.ans;
}
return ret;
}
public long query(int l, int r)
{
Node ret = queryUtil(l, r, 0, 0, n - 1);
if (ret == null)
{
return 0;
} else
return ret.ans;
}
private Node queryUtil(int x, int y, int id, int l, int r)
{
if (l > y || x > r)
return null;
if (x <= l && r <= y)
{
return tree[id];
}
int mid = l + (r - l) / 2;
// shift(id);
Node q1 = queryUtil(x, y, 2 * id + 1, l, mid);
Node q2 = queryUtil(x, y, 2 * id + 2, mid + 1, r);
return merge(q1, q2, Math.max(l, x), Math.min(r, y));
}
public void update(int x, int y, int c)
{
update1(x, y, c, 0, 0, n - 1);
}
private void update1(int x, int y, int colour, int id, int l, int r)
{
// System.out.println(l+" "+r+" "+x);
if (x > r || y < l)
return;
if (x <= l && r <= y)
{
if (colour != -1)
{
tree[id] = new Node();
tree[id].ans = 1;
} else
tree[id] = null;
return;
}
int mid = l + (r - l) / 2;
// shift(id);
if (y <= mid)
update1(x, y, colour, 2 * id + 1, l, mid);
else if (x > mid)
update1(x, y, colour, 2 * id + 2, mid + 1, r);
else
{
update1(x, y, colour, 2 * id + 1, l, mid);
update1(x, y, colour, 2 * id + 2, mid + 1, r);
}
tree[id] = merge(tree[2 * id + 1], tree[2 * id + 2], l, r);
}
public void print(int l, int r, int id)
{
if (l == r)
{
if (tree[id] != null)
System.out.println(l + " " + r + " " + tree[id].l + " " + tree[id].r + " " + tree[id].ans + " "
+ tree[id].ans2);
return;
}
int mid = l + (r - l) / 2;
print(l, mid, 2 * id + 1);
print(mid + 1, r, 2 * id + 2);
if (tree[id] != null)
System.out.println(
l + " " + r + " " + tree[id].l + " " + tree[id].r + " " + tree[id].ans + " " + tree[id].ans2);
}
public void shift(int id)
{
}
}
private class Node implements Comparable<Node>
{
int node;
long dist;
@Override
public int compareTo(Node arg0)
{
if (this.dist != arg0.dist)
return (int) (this.dist - arg0.dist);
return this.node - arg0.node;
}
public boolean equals(Object o)
{
if (o instanceof Node)
{
Node c = (Node) o;
return this.node == c.node && this.dist == c.dist;
}
return false;
}
public String toString()
{
return this.node + ", " + this.dist;
}
}
private void debug(Object... o)
{
System.out.println(Arrays.deepToString(o));
}
private long pow(long a, long b, long c)
{
if (b == 0)
return 1;
long p = pow(a, b / 2, c);
p = (p * p) % c;
return (b % 2 == 0) ? p : (a * p) % c;
}
private long gcd(long n, long l)
{
if (l == 0)
return n;
return gcd(l, n % l);
}
public static void main(String[] args) throws Exception
{
new Thread(null, new Runnable()
{
@Override
public void run()
{
new main().solve();
}
}, "1", 1 << 26).start();
}
public StringBuilder solve()
{
InputReader(System.in);
/*
* try { InputReader(new FileInputStream("C:\\Users\\hardik\\Desktop\\in.txt"));
* } catch(FileNotFoundException e) {}
*/
pw = new PrintWriter(System.out);
ans_sb = new StringBuilder();
soln();
pw.close();
// System.out.println(ans_sb);
return ans_sb;
}
public void InputReader(InputStream stream1)
{
stream = stream1;
}
private boolean isWhitespace(int c)
{
return c == ' ' || c == '\n' || c == '\r' || c == '\t' || c == -1;
}
private boolean isEndOfLine(int c)
{
return c == '\n' || c == '\r' || c == -1;
}
private int read()
{
if (numChars == -1)
throw new InputMismatchException();
if (curChar >= numChars)
{
curChar = 0;
try
{
numChars = stream.read(buf);
} catch (IOException e)
{
throw new InputMismatchException();
}
if (numChars <= 0)
return -1;
}
return buf[curChar++];
}
private int nextInt()
{
int c = read();
while (isSpaceChar(c))
c = read();
int sgn = 1;
if (c == '-')
{
sgn = -1;
c = read();
}
int res = 0;
do
{
if (c < '0' || c > '9')
throw new InputMismatchException();
res *= 10;
res += c - '0';
c = read();
} while (!isSpaceChar(c));
return res * sgn;
}
private long nextLong()
{
int c = read();
while (isSpaceChar(c))
c = read();
int sgn = 1;
if (c == '-')
{
sgn = -1;
c = read();
}
long res = 0;
do
{
if (c < '0' || c > '9')
throw new InputMismatchException();
res *= 10;
res += c - '0';
c = read();
} while (!isSpaceChar(c));
return res * sgn;
}
private String nextToken()
{
int c = read();
while (isSpaceChar(c))
c = read();
StringBuilder res = new StringBuilder();
do
{
res.appendCodePoint(c);
c = read();
} while (!isSpaceChar(c));
return res.toString();
}
private String nextLine()
{
int c = read();
while (isSpaceChar(c))
c = read();
StringBuilder res = new StringBuilder();
do
{
res.appendCodePoint(c);
c = read();
} while (!isEndOfLine(c));
return res.toString();
}
private int[] nextIntArray(int n)
{
int[] arr = new int[n];
for (int i = 0; i < n; i++)
{
arr[i] = nextInt();
}
return arr;
}
private long[] nextLongArray(int n)
{
long[] arr = new long[n];
for (int i = 0; i < n; i++)
{
arr[i] = nextLong();
}
return arr;
}
private void pArray(int[] arr)
{
for (int i = 0; i < arr.length; i++)
{
System.out.print(arr[i] + " ");
}
System.out.println();
return;
}
private void pArray(long[] arr)
{
for (int i = 0; i < arr.length; i++)
{
System.out.print(arr[i] + " ");
}
System.out.println();
return;
}
private boolean isSpaceChar(int c)
{
if (filter != null)
return filter.isSpaceChar(c);
return isWhitespace(c);
}
private char nextChar()
{
int c = read();
while (isSpaceChar(c))
c = read();
char c1 = (char) c;
while (!isSpaceChar(c))
c = read();
return c1;
}
private interface SpaceCharFilter
{
public boolean isSpaceChar(int ch);
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(n^3): The time complexity scales proportionally to the cube of the input size.
- O(log(n)): The time complexity increases logarithmically in relation to the input size.
- O(n^2): The time complexity grows proportionally to the square of the input size.
- O(1): The time complexity is constant to the input size n.
- O(nlog(n)): The time complexity combines linear and logarithmic growth factors.
- non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially.
- others: The time complexity does not fit any of the above categories or cannot be clearly classified.
- O(n): The time complexity increases proportionally to the input size n in a linear manner.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
| 4,392
| 1,866
|
3,004
|
import java.util.*;
import java.io.*;
public class A {
ArrayList<Integer> list = new ArrayList<Integer>();
boolean valid(int n) {
Queue<Integer> q = new LinkedList<Integer>();
q.add(4);
q.add(7);
int crnt;
while(!q.isEmpty()) {
crnt = q.poll();
if(n%crnt == 0) return true;
if ( crnt*10 + 4 <= 1000 ) q.add(crnt*10 + 4);
if ( crnt*10 + 7 <= 1000 ) q.add(crnt*10 + 7);
}
return false;
}
void dfs(int n){
if(n>1000)return;
if(n!=0)list.add(n);
n = n*10;
dfs(n+4);
dfs(n+7);
}
void run() {
Scanner s = new Scanner(System.in);
int n = s.nextInt();
if (valid(n)) {
System.out.println("YES");
} else {
System.out.println("NO");
}
}
public static void main(String[] args) {
new A().run();
}
}
|
O(1)
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Classify the following Java code's worst-case time complexity according to its relationship to the input size n.
</TASK>
<CODE>
import java.util.*;
import java.io.*;
public class A {
ArrayList<Integer> list = new ArrayList<Integer>();
boolean valid(int n) {
Queue<Integer> q = new LinkedList<Integer>();
q.add(4);
q.add(7);
int crnt;
while(!q.isEmpty()) {
crnt = q.poll();
if(n%crnt == 0) return true;
if ( crnt*10 + 4 <= 1000 ) q.add(crnt*10 + 4);
if ( crnt*10 + 7 <= 1000 ) q.add(crnt*10 + 7);
}
return false;
}
void dfs(int n){
if(n>1000)return;
if(n!=0)list.add(n);
n = n*10;
dfs(n+4);
dfs(n+7);
}
void run() {
Scanner s = new Scanner(System.in);
int n = s.nextInt();
if (valid(n)) {
System.out.println("YES");
} else {
System.out.println("NO");
}
}
public static void main(String[] args) {
new A().run();
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(n): The running time grows linearly with the input size n.
- O(nlog(n)): The running time increases with the product of n and logarithm of n.
- O(log(n)): The running time increases with the logarithm of the input size n.
- O(n^3): The running time increases with the cube of the input size n.
- O(n^2): The running time increases with the square of the input size n.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- O(1): The running time does not change regardless of the input size n.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Determine the worst-case time complexity category of a given Java code based on input size n.
</TASK>
<CODE>
import java.util.*;
import java.io.*;
public class A {
ArrayList<Integer> list = new ArrayList<Integer>();
boolean valid(int n) {
Queue<Integer> q = new LinkedList<Integer>();
q.add(4);
q.add(7);
int crnt;
while(!q.isEmpty()) {
crnt = q.poll();
if(n%crnt == 0) return true;
if ( crnt*10 + 4 <= 1000 ) q.add(crnt*10 + 4);
if ( crnt*10 + 7 <= 1000 ) q.add(crnt*10 + 7);
}
return false;
}
void dfs(int n){
if(n>1000)return;
if(n!=0)list.add(n);
n = n*10;
dfs(n+4);
dfs(n+7);
}
void run() {
Scanner s = new Scanner(System.in);
int n = s.nextInt();
if (valid(n)) {
System.out.println("YES");
} else {
System.out.println("NO");
}
}
public static void main(String[] args) {
new A().run();
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(nlog(n)): The time complexity combines linear and logarithmic growth factors.
- O(n^2): The time complexity grows proportionally to the square of the input size.
- O(log(n)): The time complexity increases logarithmically in relation to the input size.
- non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially.
- O(n^3): The time complexity scales proportionally to the cube of the input size.
- O(n): The time complexity increases proportionally to the input size n in a linear manner.
- others: The time complexity does not fit any of the above categories or cannot be clearly classified.
- O(1): The time complexity is constant to the input size n.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
| 600
| 2,998
|
1,683
|
import java.util.*;
import java.math.*;
public class Split {
public static void main(String[] args) {
Scanner sc = new Scanner(System.in);
int n= sc.nextInt();
int k= sc.nextInt();
int a[] = new int[n];
int d[] = new int[n-1];
for(int i=0;i<n;i++) {
a[i] = sc.nextInt();
if(i>0)
d[i-1] = a[i-1] - a[i];
}
Arrays.sort(d);
int t = 0;
for(int i=0;i<k-1;i++)
t += d[i];
System.out.println(a[n-1]-a[0]+t);
}
}
|
O(nlog(n))
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Determine the worst-case time complexity category of a given Java code based on input size n.
</TASK>
<CODE>
import java.util.*;
import java.math.*;
public class Split {
public static void main(String[] args) {
Scanner sc = new Scanner(System.in);
int n= sc.nextInt();
int k= sc.nextInt();
int a[] = new int[n];
int d[] = new int[n-1];
for(int i=0;i<n;i++) {
a[i] = sc.nextInt();
if(i>0)
d[i-1] = a[i-1] - a[i];
}
Arrays.sort(d);
int t = 0;
for(int i=0;i<k-1;i++)
t += d[i];
System.out.println(a[n-1]-a[0]+t);
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(n): The time complexity increases proportionally to the input size n in a linear manner.
- O(log(n)): The time complexity increases logarithmically in relation to the input size.
- O(1): The time complexity is constant to the input size n.
- O(nlog(n)): The time complexity combines linear and logarithmic growth factors.
- non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially.
- O(n^3): The time complexity scales proportionally to the cube of the input size.
- O(n^2): The time complexity grows proportionally to the square of the input size.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Classify the following Java code's worst-case time complexity according to its relationship to the input size n.
</TASK>
<CODE>
import java.util.*;
import java.math.*;
public class Split {
public static void main(String[] args) {
Scanner sc = new Scanner(System.in);
int n= sc.nextInt();
int k= sc.nextInt();
int a[] = new int[n];
int d[] = new int[n-1];
for(int i=0;i<n;i++) {
a[i] = sc.nextInt();
if(i>0)
d[i-1] = a[i-1] - a[i];
}
Arrays.sort(d);
int t = 0;
for(int i=0;i<k-1;i++)
t += d[i];
System.out.println(a[n-1]-a[0]+t);
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(n^2): The running time increases with the square of the input size n.
- O(nlog(n)): The running time increases with the product of n and logarithm of n.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- O(log(n)): The running time increases with the logarithm of the input size n.
- O(1): The running time does not change regardless of the input size n.
- O(n): The running time grows linearly with the input size n.
- O(n^3): The running time increases with the cube of the input size n.
- others: The code does not clearly correspond to the listed classes or has an unclassified time complexity.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
| 486
| 1,680
|
2,008
|
import java.util.*;
public class A{
public static void main(String[] args){
Scanner sc = new Scanner(System.in);
int n = sc.nextInt();
TreeSet<Integer> v = new TreeSet<Integer>();
for(int i=0;i<n;i++) v.add(sc.nextInt());
Iterator<Integer> it = v.iterator();
it.next();
it.remove();
System.out.println(v.isEmpty() ? "NO" : v.iterator().next());
}
}
|
O(nlog(n))
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Classify the following Java code's worst-case time complexity according to its relationship to the input size n.
</TASK>
<CODE>
import java.util.*;
public class A{
public static void main(String[] args){
Scanner sc = new Scanner(System.in);
int n = sc.nextInt();
TreeSet<Integer> v = new TreeSet<Integer>();
for(int i=0;i<n;i++) v.add(sc.nextInt());
Iterator<Integer> it = v.iterator();
it.next();
it.remove();
System.out.println(v.isEmpty() ? "NO" : v.iterator().next());
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(n): The running time grows linearly with the input size n.
- O(n^2): The running time increases with the square of the input size n.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- O(nlog(n)): The running time increases with the product of n and logarithm of n.
- O(log(n)): The running time increases with the logarithm of the input size n.
- O(1): The running time does not change regardless of the input size n.
- O(n^3): The running time increases with the cube of the input size n.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Determine the worst-case time complexity category of a given Java code based on input size n.
</TASK>
<CODE>
import java.util.*;
public class A{
public static void main(String[] args){
Scanner sc = new Scanner(System.in);
int n = sc.nextInt();
TreeSet<Integer> v = new TreeSet<Integer>();
for(int i=0;i<n;i++) v.add(sc.nextInt());
Iterator<Integer> it = v.iterator();
it.next();
it.remove();
System.out.println(v.isEmpty() ? "NO" : v.iterator().next());
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(n): The time complexity increases proportionally to the input size n in a linear manner.
- non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially.
- O(n^2): The time complexity grows proportionally to the square of the input size.
- O(nlog(n)): The time complexity combines linear and logarithmic growth factors.
- O(n^3): The time complexity scales proportionally to the cube of the input size.
- O(1): The time complexity is constant to the input size n.
- O(log(n)): The time complexity increases logarithmically in relation to the input size.
- others: The time complexity does not fit any of the above categories or cannot be clearly classified.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
| 427
| 2,004
|
2,168
|
import java.io.BufferedReader;
import java.io.IOException;
import java.io.InputStream;
import java.io.InputStreamReader;
import java.io.PrintWriter;
import java.util.ArrayList;
import java.util.Arrays;
import java.util.HashMap;
import java.util.HashSet;
import java.util.StringTokenizer;
public class C {
public static void main(String[] args) throws IOException {
FastScanner in= new FastScanner(System.in);
PrintWriter out= new PrintWriter(System.out);
int n= in.nextInt();
int r= in.nextInt();
int [] x= new int[n];
for (int i = 0; i < x.length; i++) {
x[i]= in.nextInt();
}
double [] res= new double[n];
res[0]= r;
for (int i = 1; i < x.length; i++) {
boolean found = false;
for (int j = 0; j < i; j++) {
double dis= Math.abs(x[i]-x[j]);
double rr= 4.0*r*r-1.0*dis*dis;
if(rr>=0) {
double del= Math.sqrt(rr);
res[i]= Math.max(res[i], res[j]+del);
found= true;
}
}
if(!found) {
res[i]= r;
}
}
for (int i = 0; i < res.length; i++) {
out.print(res[i]+" ");
}
out.close();
}
static class FastScanner {
BufferedReader br;
StringTokenizer st;
public FastScanner(InputStream in) {
br = new BufferedReader(new InputStreamReader(in));
st = new StringTokenizer("");
}
public String next() throws IOException {
if (!st.hasMoreTokens()) {
st = new StringTokenizer(br.readLine());
return next();
}
return st.nextToken();
}
public int nextInt() throws IOException {
return Integer.parseInt(next());
}
public double nextDouble() throws NumberFormatException, IOException {
return Double.parseDouble(next());
}
public long nextLong() throws IOException {
return Long.parseLong(next());
}
}
}
|
O(n^2)
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n.
</TASK>
<CODE>
import java.io.BufferedReader;
import java.io.IOException;
import java.io.InputStream;
import java.io.InputStreamReader;
import java.io.PrintWriter;
import java.util.ArrayList;
import java.util.Arrays;
import java.util.HashMap;
import java.util.HashSet;
import java.util.StringTokenizer;
public class C {
public static void main(String[] args) throws IOException {
FastScanner in= new FastScanner(System.in);
PrintWriter out= new PrintWriter(System.out);
int n= in.nextInt();
int r= in.nextInt();
int [] x= new int[n];
for (int i = 0; i < x.length; i++) {
x[i]= in.nextInt();
}
double [] res= new double[n];
res[0]= r;
for (int i = 1; i < x.length; i++) {
boolean found = false;
for (int j = 0; j < i; j++) {
double dis= Math.abs(x[i]-x[j]);
double rr= 4.0*r*r-1.0*dis*dis;
if(rr>=0) {
double del= Math.sqrt(rr);
res[i]= Math.max(res[i], res[j]+del);
found= true;
}
}
if(!found) {
res[i]= r;
}
}
for (int i = 0; i < res.length; i++) {
out.print(res[i]+" ");
}
out.close();
}
static class FastScanner {
BufferedReader br;
StringTokenizer st;
public FastScanner(InputStream in) {
br = new BufferedReader(new InputStreamReader(in));
st = new StringTokenizer("");
}
public String next() throws IOException {
if (!st.hasMoreTokens()) {
st = new StringTokenizer(br.readLine());
return next();
}
return st.nextToken();
}
public int nextInt() throws IOException {
return Integer.parseInt(next());
}
public double nextDouble() throws NumberFormatException, IOException {
return Double.parseDouble(next());
}
public long nextLong() throws IOException {
return Long.parseLong(next());
}
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(n): The execution time ascends in a one-to-one ratio with the input size n.
- O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially.
- O(n^3): The execution time ascends in proportion to the cube of the input size n.
- O(log(n)): The execution time ascends in proportion to the logarithm of the input size n.
- O(1): The execution time is unaffected by the size of the input n.
- O(n^2): The execution time ascends in proportion to the square of the input size n.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Determine the worst-case time complexity category of a given Java code based on input size n.
</TASK>
<CODE>
import java.io.BufferedReader;
import java.io.IOException;
import java.io.InputStream;
import java.io.InputStreamReader;
import java.io.PrintWriter;
import java.util.ArrayList;
import java.util.Arrays;
import java.util.HashMap;
import java.util.HashSet;
import java.util.StringTokenizer;
public class C {
public static void main(String[] args) throws IOException {
FastScanner in= new FastScanner(System.in);
PrintWriter out= new PrintWriter(System.out);
int n= in.nextInt();
int r= in.nextInt();
int [] x= new int[n];
for (int i = 0; i < x.length; i++) {
x[i]= in.nextInt();
}
double [] res= new double[n];
res[0]= r;
for (int i = 1; i < x.length; i++) {
boolean found = false;
for (int j = 0; j < i; j++) {
double dis= Math.abs(x[i]-x[j]);
double rr= 4.0*r*r-1.0*dis*dis;
if(rr>=0) {
double del= Math.sqrt(rr);
res[i]= Math.max(res[i], res[j]+del);
found= true;
}
}
if(!found) {
res[i]= r;
}
}
for (int i = 0; i < res.length; i++) {
out.print(res[i]+" ");
}
out.close();
}
static class FastScanner {
BufferedReader br;
StringTokenizer st;
public FastScanner(InputStream in) {
br = new BufferedReader(new InputStreamReader(in));
st = new StringTokenizer("");
}
public String next() throws IOException {
if (!st.hasMoreTokens()) {
st = new StringTokenizer(br.readLine());
return next();
}
return st.nextToken();
}
public int nextInt() throws IOException {
return Integer.parseInt(next());
}
public double nextDouble() throws NumberFormatException, IOException {
return Double.parseDouble(next());
}
public long nextLong() throws IOException {
return Long.parseLong(next());
}
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(nlog(n)): The time complexity combines linear and logarithmic growth factors.
- O(n^2): The time complexity grows proportionally to the square of the input size.
- O(n): The time complexity increases proportionally to the input size n in a linear manner.
- non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially.
- O(log(n)): The time complexity increases logarithmically in relation to the input size.
- O(n^3): The time complexity scales proportionally to the cube of the input size.
- O(1): The time complexity is constant to the input size n.
- others: The time complexity does not fit any of the above categories or cannot be clearly classified.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
| 807
| 2,164
|
4,268
|
import java.io.*;
import java.util.*;
public class B {
int n, k;
double A;
int[] b, l;
double ans;
double curAns;
void check(boolean[] used) {
int cnt = 0;
for (boolean t : used)
if (t)
cnt++;
double prob = 1;
for (int i = 0; i < n; i++) {
if (used[i])
prob *= ((double) l[i]) / ((double) 100);
else
prob *= 1 - ((double) l[i]) / ((double) 100);
}
if (2 * cnt > n) {
curAns += prob;
} else {
int level = 0;
for (int i = 0; i < n; i++)
if (!used[i])
level += b[i];
curAns += prob * ( A / ((double) A + level));
}
}
void go(int i, boolean[] used) {
if (n == i) {
check(used);
return;
}
used[i] = true;
go(i + 1, used);
used[i] = false;
go(i + 1, used);
}
void candies(int k, int i) {
if (i == n) {
curAns = 0;
go(0, new boolean[n]);
if (curAns > ans)
ans = curAns;
return;
}
candies(k, i + 1);
for (int j = 1; j <= k && l[i] + 10 * j <= 100; j++) {
l[i] += 10 * j;
candies(k - j, i + 1);
l[i] -= 10 * j;
}
}
void solve() throws Exception {
n = nextInt();
k = nextInt();
A = nextInt();
b = new int[n];
l = new int[n];
for (int i = 0; i < n; i++) {
b[i] = nextInt();
l[i] = nextInt();
}
ans = 0;
candies(k, 0);
out.printf("%.12f", ans);
}
void run() {
try {
in = new BufferedReader(new InputStreamReader(System.in));
out = new PrintWriter(System.out);
// in = new BufferedReader(new FileReader(filename + ".in"));
// out = new PrintWriter(filename + ".out");
Locale.setDefault(Locale.US);
solve();
out.close();
} catch (Exception e) {
e.printStackTrace();
System.exit(1);
}
}
BufferedReader in;
StringTokenizer st;
PrintWriter out;
final String filename = new String("B").toLowerCase();
String nextToken() throws Exception {
while (st == null || !st.hasMoreTokens())
st = new StringTokenizer(in.readLine());
return st.nextToken();
}
int nextInt() throws Exception {
return Integer.parseInt(nextToken());
}
long nextLong() throws Exception {
return Long.parseLong(nextToken());
}
double nextDouble() throws Exception {
return Double.parseDouble(nextToken());
}
public static void main(String[] args) {
new B().run();
}
}
|
non-polynomial
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n.
</TASK>
<CODE>
import java.io.*;
import java.util.*;
public class B {
int n, k;
double A;
int[] b, l;
double ans;
double curAns;
void check(boolean[] used) {
int cnt = 0;
for (boolean t : used)
if (t)
cnt++;
double prob = 1;
for (int i = 0; i < n; i++) {
if (used[i])
prob *= ((double) l[i]) / ((double) 100);
else
prob *= 1 - ((double) l[i]) / ((double) 100);
}
if (2 * cnt > n) {
curAns += prob;
} else {
int level = 0;
for (int i = 0; i < n; i++)
if (!used[i])
level += b[i];
curAns += prob * ( A / ((double) A + level));
}
}
void go(int i, boolean[] used) {
if (n == i) {
check(used);
return;
}
used[i] = true;
go(i + 1, used);
used[i] = false;
go(i + 1, used);
}
void candies(int k, int i) {
if (i == n) {
curAns = 0;
go(0, new boolean[n]);
if (curAns > ans)
ans = curAns;
return;
}
candies(k, i + 1);
for (int j = 1; j <= k && l[i] + 10 * j <= 100; j++) {
l[i] += 10 * j;
candies(k - j, i + 1);
l[i] -= 10 * j;
}
}
void solve() throws Exception {
n = nextInt();
k = nextInt();
A = nextInt();
b = new int[n];
l = new int[n];
for (int i = 0; i < n; i++) {
b[i] = nextInt();
l[i] = nextInt();
}
ans = 0;
candies(k, 0);
out.printf("%.12f", ans);
}
void run() {
try {
in = new BufferedReader(new InputStreamReader(System.in));
out = new PrintWriter(System.out);
// in = new BufferedReader(new FileReader(filename + ".in"));
// out = new PrintWriter(filename + ".out");
Locale.setDefault(Locale.US);
solve();
out.close();
} catch (Exception e) {
e.printStackTrace();
System.exit(1);
}
}
BufferedReader in;
StringTokenizer st;
PrintWriter out;
final String filename = new String("B").toLowerCase();
String nextToken() throws Exception {
while (st == null || !st.hasMoreTokens())
st = new StringTokenizer(in.readLine());
return st.nextToken();
}
int nextInt() throws Exception {
return Integer.parseInt(nextToken());
}
long nextLong() throws Exception {
return Long.parseLong(nextToken());
}
double nextDouble() throws Exception {
return Double.parseDouble(nextToken());
}
public static void main(String[] args) {
new B().run();
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially.
- O(n): The execution time ascends in a one-to-one ratio with the input size n.
- O(n^3): The execution time ascends in proportion to the cube of the input size n.
- O(log(n)): The execution time ascends in proportion to the logarithm of the input size n.
- O(1): The execution time is unaffected by the size of the input n.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- O(n^2): The execution time ascends in proportion to the square of the input size n.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Classify the following Java code's worst-case time complexity according to its relationship to the input size n.
</TASK>
<CODE>
import java.io.*;
import java.util.*;
public class B {
int n, k;
double A;
int[] b, l;
double ans;
double curAns;
void check(boolean[] used) {
int cnt = 0;
for (boolean t : used)
if (t)
cnt++;
double prob = 1;
for (int i = 0; i < n; i++) {
if (used[i])
prob *= ((double) l[i]) / ((double) 100);
else
prob *= 1 - ((double) l[i]) / ((double) 100);
}
if (2 * cnt > n) {
curAns += prob;
} else {
int level = 0;
for (int i = 0; i < n; i++)
if (!used[i])
level += b[i];
curAns += prob * ( A / ((double) A + level));
}
}
void go(int i, boolean[] used) {
if (n == i) {
check(used);
return;
}
used[i] = true;
go(i + 1, used);
used[i] = false;
go(i + 1, used);
}
void candies(int k, int i) {
if (i == n) {
curAns = 0;
go(0, new boolean[n]);
if (curAns > ans)
ans = curAns;
return;
}
candies(k, i + 1);
for (int j = 1; j <= k && l[i] + 10 * j <= 100; j++) {
l[i] += 10 * j;
candies(k - j, i + 1);
l[i] -= 10 * j;
}
}
void solve() throws Exception {
n = nextInt();
k = nextInt();
A = nextInt();
b = new int[n];
l = new int[n];
for (int i = 0; i < n; i++) {
b[i] = nextInt();
l[i] = nextInt();
}
ans = 0;
candies(k, 0);
out.printf("%.12f", ans);
}
void run() {
try {
in = new BufferedReader(new InputStreamReader(System.in));
out = new PrintWriter(System.out);
// in = new BufferedReader(new FileReader(filename + ".in"));
// out = new PrintWriter(filename + ".out");
Locale.setDefault(Locale.US);
solve();
out.close();
} catch (Exception e) {
e.printStackTrace();
System.exit(1);
}
}
BufferedReader in;
StringTokenizer st;
PrintWriter out;
final String filename = new String("B").toLowerCase();
String nextToken() throws Exception {
while (st == null || !st.hasMoreTokens())
st = new StringTokenizer(in.readLine());
return st.nextToken();
}
int nextInt() throws Exception {
return Integer.parseInt(nextToken());
}
long nextLong() throws Exception {
return Long.parseLong(nextToken());
}
double nextDouble() throws Exception {
return Double.parseDouble(nextToken());
}
public static void main(String[] args) {
new B().run();
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(log(n)): The running time increases with the logarithm of the input size n.
- O(n^3): The running time increases with the cube of the input size n.
- O(nlog(n)): The running time increases with the product of n and logarithm of n.
- others: The code does not clearly correspond to the listed classes or has an unclassified time complexity.
- O(n): The running time grows linearly with the input size n.
- O(1): The running time does not change regardless of the input size n.
- O(n^2): The running time increases with the square of the input size n.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
| 1,085
| 4,257
|
3,636
|
/**
* Created by IntelliJ IDEA.
* User: Taras_Brzezinsky
* Date: 9/16/11
* Time: 1:27 PM
* To change this template use File | Settings | File Templates.
*/
import java.io.*;
import java.lang.reflect.Array;
import java.util.ArrayDeque;
import java.util.HashSet;
import java.util.Queue;
import java.util.StringTokenizer;
public class TaskC extends Thread {
public TaskC() {
try {
this.input = new BufferedReader(new FileReader("input.txt"));
this.output = new PrintWriter("output.txt");
this.setPriority(Thread.MAX_PRIORITY);
} catch (Throwable e) {
System.exit(666);
}
}
private void solve() throws Throwable {
int n = nextInt();
int m = nextInt();
int k = nextInt();
Queue<Integer> qX = new ArrayDeque<Integer>();
Queue<Integer> qY = new ArrayDeque<Integer>();
boolean [][]was = new boolean[n][m];
for (int i = 0; i < k; ++i) {
int x = nextInt() - 1, y = nextInt() - 1;
qX.add(x);
qY.add(y);
was[x][y] = true;
}
int lastX = -1, lastY = -1;
while (!qX.isEmpty()) {
lastX = qX.poll();
lastY = qY.poll();
for (int i = 0; i < dx.length; ++i) {
int nextX = lastX + dx[i], nextY = lastY + dy[i];
if (nextX < n && nextY < m && nextX >= 0 && nextY >= 0 && !was[nextX][nextY]) {
qX.add(nextX);
qY.add(nextY);
was[nextX][nextY] = true;
}
}
}
++lastX;
++lastY;
output.println(lastX + " " + lastY);
}
public void run() {
try {
solve();
} catch (Throwable e) {
System.err.println(e.getMessage());
e.printStackTrace();
System.exit(666);
} finally {
output.flush();
output.close();
}
}
public static void main(String[] args) {
new TaskC().start();
}
private int nextInt() throws IOException {
return Integer.parseInt(nextToken());
}
private long nextLong() throws IOException {
return Long.parseLong(nextToken());
}
private double nextDouble() throws IOException {
return Double.parseDouble(nextToken());
}
private String nextToken() throws IOException {
while (tokens == null || !tokens.hasMoreTokens()) {
tokens = new StringTokenizer(input.readLine());
}
return tokens.nextToken();
}
static final int PRIME = 3119;
static final int[]dx = {1, -1, 0, 0}, dy = {0, 0, -1, 1};
private BufferedReader input;
private PrintWriter output;
private StringTokenizer tokens = null;
}
|
O(n^3)
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Classify the following Java code's worst-case time complexity according to its relationship to the input size n.
</TASK>
<CODE>
/**
* Created by IntelliJ IDEA.
* User: Taras_Brzezinsky
* Date: 9/16/11
* Time: 1:27 PM
* To change this template use File | Settings | File Templates.
*/
import java.io.*;
import java.lang.reflect.Array;
import java.util.ArrayDeque;
import java.util.HashSet;
import java.util.Queue;
import java.util.StringTokenizer;
public class TaskC extends Thread {
public TaskC() {
try {
this.input = new BufferedReader(new FileReader("input.txt"));
this.output = new PrintWriter("output.txt");
this.setPriority(Thread.MAX_PRIORITY);
} catch (Throwable e) {
System.exit(666);
}
}
private void solve() throws Throwable {
int n = nextInt();
int m = nextInt();
int k = nextInt();
Queue<Integer> qX = new ArrayDeque<Integer>();
Queue<Integer> qY = new ArrayDeque<Integer>();
boolean [][]was = new boolean[n][m];
for (int i = 0; i < k; ++i) {
int x = nextInt() - 1, y = nextInt() - 1;
qX.add(x);
qY.add(y);
was[x][y] = true;
}
int lastX = -1, lastY = -1;
while (!qX.isEmpty()) {
lastX = qX.poll();
lastY = qY.poll();
for (int i = 0; i < dx.length; ++i) {
int nextX = lastX + dx[i], nextY = lastY + dy[i];
if (nextX < n && nextY < m && nextX >= 0 && nextY >= 0 && !was[nextX][nextY]) {
qX.add(nextX);
qY.add(nextY);
was[nextX][nextY] = true;
}
}
}
++lastX;
++lastY;
output.println(lastX + " " + lastY);
}
public void run() {
try {
solve();
} catch (Throwable e) {
System.err.println(e.getMessage());
e.printStackTrace();
System.exit(666);
} finally {
output.flush();
output.close();
}
}
public static void main(String[] args) {
new TaskC().start();
}
private int nextInt() throws IOException {
return Integer.parseInt(nextToken());
}
private long nextLong() throws IOException {
return Long.parseLong(nextToken());
}
private double nextDouble() throws IOException {
return Double.parseDouble(nextToken());
}
private String nextToken() throws IOException {
while (tokens == null || !tokens.hasMoreTokens()) {
tokens = new StringTokenizer(input.readLine());
}
return tokens.nextToken();
}
static final int PRIME = 3119;
static final int[]dx = {1, -1, 0, 0}, dy = {0, 0, -1, 1};
private BufferedReader input;
private PrintWriter output;
private StringTokenizer tokens = null;
}
</CODE>
<EVALUATION_RUBRIC>
- O(log(n)): The running time increases with the logarithm of the input size n.
- O(n^2): The running time increases with the square of the input size n.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- O(1): The running time does not change regardless of the input size n.
- O(n): The running time grows linearly with the input size n.
- O(nlog(n)): The running time increases with the product of n and logarithm of n.
- O(n^3): The running time increases with the cube of the input size n.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Determine the worst-case time complexity category of a given Java code based on input size n.
</TASK>
<CODE>
/**
* Created by IntelliJ IDEA.
* User: Taras_Brzezinsky
* Date: 9/16/11
* Time: 1:27 PM
* To change this template use File | Settings | File Templates.
*/
import java.io.*;
import java.lang.reflect.Array;
import java.util.ArrayDeque;
import java.util.HashSet;
import java.util.Queue;
import java.util.StringTokenizer;
public class TaskC extends Thread {
public TaskC() {
try {
this.input = new BufferedReader(new FileReader("input.txt"));
this.output = new PrintWriter("output.txt");
this.setPriority(Thread.MAX_PRIORITY);
} catch (Throwable e) {
System.exit(666);
}
}
private void solve() throws Throwable {
int n = nextInt();
int m = nextInt();
int k = nextInt();
Queue<Integer> qX = new ArrayDeque<Integer>();
Queue<Integer> qY = new ArrayDeque<Integer>();
boolean [][]was = new boolean[n][m];
for (int i = 0; i < k; ++i) {
int x = nextInt() - 1, y = nextInt() - 1;
qX.add(x);
qY.add(y);
was[x][y] = true;
}
int lastX = -1, lastY = -1;
while (!qX.isEmpty()) {
lastX = qX.poll();
lastY = qY.poll();
for (int i = 0; i < dx.length; ++i) {
int nextX = lastX + dx[i], nextY = lastY + dy[i];
if (nextX < n && nextY < m && nextX >= 0 && nextY >= 0 && !was[nextX][nextY]) {
qX.add(nextX);
qY.add(nextY);
was[nextX][nextY] = true;
}
}
}
++lastX;
++lastY;
output.println(lastX + " " + lastY);
}
public void run() {
try {
solve();
} catch (Throwable e) {
System.err.println(e.getMessage());
e.printStackTrace();
System.exit(666);
} finally {
output.flush();
output.close();
}
}
public static void main(String[] args) {
new TaskC().start();
}
private int nextInt() throws IOException {
return Integer.parseInt(nextToken());
}
private long nextLong() throws IOException {
return Long.parseLong(nextToken());
}
private double nextDouble() throws IOException {
return Double.parseDouble(nextToken());
}
private String nextToken() throws IOException {
while (tokens == null || !tokens.hasMoreTokens()) {
tokens = new StringTokenizer(input.readLine());
}
return tokens.nextToken();
}
static final int PRIME = 3119;
static final int[]dx = {1, -1, 0, 0}, dy = {0, 0, -1, 1};
private BufferedReader input;
private PrintWriter output;
private StringTokenizer tokens = null;
}
</CODE>
<EVALUATION_RUBRIC>
- others: The time complexity does not fit any of the above categories or cannot be clearly classified.
- O(1): The time complexity is constant to the input size n.
- O(n^3): The time complexity scales proportionally to the cube of the input size.
- O(nlog(n)): The time complexity combines linear and logarithmic growth factors.
- non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially.
- O(n^2): The time complexity grows proportionally to the square of the input size.
- O(n): The time complexity increases proportionally to the input size n in a linear manner.
- O(log(n)): The time complexity increases logarithmically in relation to the input size.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
| 1,003
| 3,628
|
4,106
|
import java.util.*;
public class c8 {
static int n;
static int[] ds;
static int[][] g;
public static void main(String[] args)
{
Scanner input = new Scanner(System.in);
int x = input.nextInt(), y = input.nextInt();
int n = input.nextInt();
int[] xs = new int[n], ys = new int[n];
for(int i = 0; i<n; i++)
{
xs[i] = input.nextInt();
ys[i] = input.nextInt();
}
ds = new int[n];
g = new int[n][n];
for(int i = 0; i<n; i++)
{
ds[i] = (x - xs[i]) * (x - xs[i]) + (y - ys[i]) * (y - ys[i]);
for(int j = 0; j<n; j++)
{
g[i][j] = (xs[i] - xs[j]) * (xs[i] - xs[j]) + (ys[i] - ys[j]) * (ys[i] - ys[j]);
}
}
int[] dp = new int[1<<n];
Arrays.fill(dp, 987654321);
dp[0] = 0;
for(int i = 0; i<(1<<n); i++)
{
if(dp[i] == 987654321) continue;
for(int a = 0; a<n; a++)
{
if((i & (1<<a)) > 0) continue;
dp[i | (1<<a)] = Math.min(dp[i | (1<<a)], dp[i] + 2*ds[a]);
for(int b = a+1; b<n; b++)
{
if((i & (1<<b)) > 0) continue;
dp[i | (1<<a) | (1<<b)] = Math.min(dp[i | (1<<a) | (1<<b)], dp[i] + ds[a] + ds[b] + g[a][b]);
}
break;
}
}
Stack<Integer> stk = new Stack<Integer>();
stk.add(0);
int i = (1<<n) - 1;
//System.out.println(Arrays.toString(dp));
trace:
while(i > 0)
{
//System.out.println(i);
for(int a = 0; a<n; a++)
{
if((i & (1<<a)) == 0) continue;
if( dp[i] == dp[i - (1<<a)] + 2*ds[a])
{
stk.add(a+1);
stk.add(0);
i -= (1<<a);
continue trace;
}
for(int b = a+1; b<n; b++)
{
if((i & (1<<b)) == 0) continue;
if(dp[i] == dp[i - (1<<a) - (1<<b)] + ds[a] + ds[b] + g[a][b])
{
stk.add(a+1);
stk.add(b+1);
stk.add(0);
i -= (1<<a) + (1<<b);
continue trace;
}
}
//break;
}
}
System.out.println(dp[(1<<n) - 1]);
while(!stk.isEmpty()) System.out.print(stk.pop()+" ");
}
}
|
non-polynomial
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n.
</TASK>
<CODE>
import java.util.*;
public class c8 {
static int n;
static int[] ds;
static int[][] g;
public static void main(String[] args)
{
Scanner input = new Scanner(System.in);
int x = input.nextInt(), y = input.nextInt();
int n = input.nextInt();
int[] xs = new int[n], ys = new int[n];
for(int i = 0; i<n; i++)
{
xs[i] = input.nextInt();
ys[i] = input.nextInt();
}
ds = new int[n];
g = new int[n][n];
for(int i = 0; i<n; i++)
{
ds[i] = (x - xs[i]) * (x - xs[i]) + (y - ys[i]) * (y - ys[i]);
for(int j = 0; j<n; j++)
{
g[i][j] = (xs[i] - xs[j]) * (xs[i] - xs[j]) + (ys[i] - ys[j]) * (ys[i] - ys[j]);
}
}
int[] dp = new int[1<<n];
Arrays.fill(dp, 987654321);
dp[0] = 0;
for(int i = 0; i<(1<<n); i++)
{
if(dp[i] == 987654321) continue;
for(int a = 0; a<n; a++)
{
if((i & (1<<a)) > 0) continue;
dp[i | (1<<a)] = Math.min(dp[i | (1<<a)], dp[i] + 2*ds[a]);
for(int b = a+1; b<n; b++)
{
if((i & (1<<b)) > 0) continue;
dp[i | (1<<a) | (1<<b)] = Math.min(dp[i | (1<<a) | (1<<b)], dp[i] + ds[a] + ds[b] + g[a][b]);
}
break;
}
}
Stack<Integer> stk = new Stack<Integer>();
stk.add(0);
int i = (1<<n) - 1;
//System.out.println(Arrays.toString(dp));
trace:
while(i > 0)
{
//System.out.println(i);
for(int a = 0; a<n; a++)
{
if((i & (1<<a)) == 0) continue;
if( dp[i] == dp[i - (1<<a)] + 2*ds[a])
{
stk.add(a+1);
stk.add(0);
i -= (1<<a);
continue trace;
}
for(int b = a+1; b<n; b++)
{
if((i & (1<<b)) == 0) continue;
if(dp[i] == dp[i - (1<<a) - (1<<b)] + ds[a] + ds[b] + g[a][b])
{
stk.add(a+1);
stk.add(b+1);
stk.add(0);
i -= (1<<a) + (1<<b);
continue trace;
}
}
//break;
}
}
System.out.println(dp[(1<<n) - 1]);
while(!stk.isEmpty()) System.out.print(stk.pop()+" ");
}
}
</CODE>
<EVALUATION_RUBRIC>
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- O(1): The execution time is unaffected by the size of the input n.
- O(n^3): The execution time ascends in proportion to the cube of the input size n.
- O(n): The execution time ascends in a one-to-one ratio with the input size n.
- O(log(n)): The execution time ascends in proportion to the logarithm of the input size n.
- O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially.
- O(n^2): The execution time ascends in proportion to the square of the input size n.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Determine the worst-case time complexity category of a given Java code based on input size n.
</TASK>
<CODE>
import java.util.*;
public class c8 {
static int n;
static int[] ds;
static int[][] g;
public static void main(String[] args)
{
Scanner input = new Scanner(System.in);
int x = input.nextInt(), y = input.nextInt();
int n = input.nextInt();
int[] xs = new int[n], ys = new int[n];
for(int i = 0; i<n; i++)
{
xs[i] = input.nextInt();
ys[i] = input.nextInt();
}
ds = new int[n];
g = new int[n][n];
for(int i = 0; i<n; i++)
{
ds[i] = (x - xs[i]) * (x - xs[i]) + (y - ys[i]) * (y - ys[i]);
for(int j = 0; j<n; j++)
{
g[i][j] = (xs[i] - xs[j]) * (xs[i] - xs[j]) + (ys[i] - ys[j]) * (ys[i] - ys[j]);
}
}
int[] dp = new int[1<<n];
Arrays.fill(dp, 987654321);
dp[0] = 0;
for(int i = 0; i<(1<<n); i++)
{
if(dp[i] == 987654321) continue;
for(int a = 0; a<n; a++)
{
if((i & (1<<a)) > 0) continue;
dp[i | (1<<a)] = Math.min(dp[i | (1<<a)], dp[i] + 2*ds[a]);
for(int b = a+1; b<n; b++)
{
if((i & (1<<b)) > 0) continue;
dp[i | (1<<a) | (1<<b)] = Math.min(dp[i | (1<<a) | (1<<b)], dp[i] + ds[a] + ds[b] + g[a][b]);
}
break;
}
}
Stack<Integer> stk = new Stack<Integer>();
stk.add(0);
int i = (1<<n) - 1;
//System.out.println(Arrays.toString(dp));
trace:
while(i > 0)
{
//System.out.println(i);
for(int a = 0; a<n; a++)
{
if((i & (1<<a)) == 0) continue;
if( dp[i] == dp[i - (1<<a)] + 2*ds[a])
{
stk.add(a+1);
stk.add(0);
i -= (1<<a);
continue trace;
}
for(int b = a+1; b<n; b++)
{
if((i & (1<<b)) == 0) continue;
if(dp[i] == dp[i - (1<<a) - (1<<b)] + ds[a] + ds[b] + g[a][b])
{
stk.add(a+1);
stk.add(b+1);
stk.add(0);
i -= (1<<a) + (1<<b);
continue trace;
}
}
//break;
}
}
System.out.println(dp[(1<<n) - 1]);
while(!stk.isEmpty()) System.out.print(stk.pop()+" ");
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(1): The time complexity is constant to the input size n.
- O(n): The time complexity increases proportionally to the input size n in a linear manner.
- O(log(n)): The time complexity increases logarithmically in relation to the input size.
- O(n^2): The time complexity grows proportionally to the square of the input size.
- others: The time complexity does not fit any of the above categories or cannot be clearly classified.
- O(nlog(n)): The time complexity combines linear and logarithmic growth factors.
- O(n^3): The time complexity scales proportionally to the cube of the input size.
- non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
| 1,100
| 4,095
|
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.