Datasets:
Dataset Preview
The full dataset viewer is not available (click to read why). Only showing a preview of the rows.
The dataset generation failed because of a cast error
Error code: DatasetGenerationCastError
Exception: DatasetGenerationCastError
Message: An error occurred while generating the dataset
All the data files must have the same columns, but at some point there are 12 new columns ({'Moorcheh All', 'Provider', 'Rerank_Mean_ms', 'Elasticsearch', 'Pinecone (Search + Rerank)', 'Cohere (Rerank)', 'Search_Mean_ms', 'PGVector', 'Moorcheh Distance Only', 'Qdrant', 'Pinecone (Search)', 'Search_Server_Mean_ms'}) and 5 missing columns ({'PGVector - Vector (Floating-Point)', 'Qdrant - Vector (Floating-Point)', 'Moorcheh - Vector (Quantized)', 'Elasticsearch - Vector (Floating-Point)', 'Pinecone with Cohere - Vector (Floating-Point)'}).
This happened while the csv dataset builder was generating data using
hf://datasets/moorcheh/mair-floating-point-vs-quantized-benchmarks/latency_vector_fp.csv (at revision 09cf874987ffa43796b5e512444fcb330f7a38cb)
Please either edit the data files to have matching columns, or separate them into different configurations (see docs at https://hf.co/docs/hub/datasets-manual-configuration#multiple-configurations)
Traceback: Traceback (most recent call last):
File "/usr/local/lib/python3.12/site-packages/datasets/builder.py", line 1831, in _prepare_split_single
writer.write_table(table)
File "/usr/local/lib/python3.12/site-packages/datasets/arrow_writer.py", line 714, in write_table
pa_table = table_cast(pa_table, self._schema)
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
File "/usr/local/lib/python3.12/site-packages/datasets/table.py", line 2272, in table_cast
return cast_table_to_schema(table, schema)
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
File "/usr/local/lib/python3.12/site-packages/datasets/table.py", line 2218, in cast_table_to_schema
raise CastError(
datasets.table.CastError: Couldn't cast
Dataset: string
Category: string
Dataset Size: int64
Provider: string
Search_Server_Mean_ms: double
Search_Mean_ms: double
Rerank_Mean_ms: double
Moorcheh Distance Only: double
Elasticsearch: double
PGVector: double
Qdrant: double
Moorcheh All: double
Pinecone (Search + Rerank): double
Pinecone (Search): double
Cohere (Rerank): double
-- schema metadata --
pandas: '{"index_columns": [{"kind": "range", "name": null, "start": 0, "' + 2174
to
{'Dataset': Value('string'), 'Category': Value('string'), 'Dataset Size': Value('int64'), 'Moorcheh - Vector (Quantized)': Value('float64'), 'Elasticsearch - Vector (Floating-Point)': Value('float64'), 'Pinecone with Cohere - Vector (Floating-Point)': Value('float64'), 'PGVector - Vector (Floating-Point)': Value('float64'), 'Qdrant - Vector (Floating-Point)': Value('float64')}
because column names don't match
During handling of the above exception, another exception occurred:
Traceback (most recent call last):
File "/src/services/worker/src/worker/job_runners/config/parquet_and_info.py", line 1339, in compute_config_parquet_and_info_response
parquet_operations = convert_to_parquet(builder)
^^^^^^^^^^^^^^^^^^^^^^^^^^^
File "/src/services/worker/src/worker/job_runners/config/parquet_and_info.py", line 972, in convert_to_parquet
builder.download_and_prepare(
File "/usr/local/lib/python3.12/site-packages/datasets/builder.py", line 894, in download_and_prepare
self._download_and_prepare(
File "/usr/local/lib/python3.12/site-packages/datasets/builder.py", line 970, in _download_and_prepare
self._prepare_split(split_generator, **prepare_split_kwargs)
File "/usr/local/lib/python3.12/site-packages/datasets/builder.py", line 1702, in _prepare_split
for job_id, done, content in self._prepare_split_single(
^^^^^^^^^^^^^^^^^^^^^^^^^^^
File "/usr/local/lib/python3.12/site-packages/datasets/builder.py", line 1833, in _prepare_split_single
raise DatasetGenerationCastError.from_cast_error(
datasets.exceptions.DatasetGenerationCastError: An error occurred while generating the dataset
All the data files must have the same columns, but at some point there are 12 new columns ({'Moorcheh All', 'Provider', 'Rerank_Mean_ms', 'Elasticsearch', 'Pinecone (Search + Rerank)', 'Cohere (Rerank)', 'Search_Mean_ms', 'PGVector', 'Moorcheh Distance Only', 'Qdrant', 'Pinecone (Search)', 'Search_Server_Mean_ms'}) and 5 missing columns ({'PGVector - Vector (Floating-Point)', 'Qdrant - Vector (Floating-Point)', 'Moorcheh - Vector (Quantized)', 'Elasticsearch - Vector (Floating-Point)', 'Pinecone with Cohere - Vector (Floating-Point)'}).
This happened while the csv dataset builder was generating data using
hf://datasets/moorcheh/mair-floating-point-vs-quantized-benchmarks/latency_vector_fp.csv (at revision 09cf874987ffa43796b5e512444fcb330f7a38cb)
Please either edit the data files to have matching columns, or separate them into different configurations (see docs at https://hf.co/docs/hub/datasets-manual-configuration#multiple-configurations)Need help to make the dataset viewer work? Make sure to review how to configure the dataset viewer, and open a discussion for direct support.
Dataset
string | Category
string | Dataset Size
int64 | Moorcheh - Vector (Quantized)
float64 | Elasticsearch - Vector (Floating-Point)
float64 | Pinecone with Cohere - Vector (Floating-Point)
float64 | PGVector - Vector (Floating-Point)
float64 | Qdrant - Vector (Floating-Point)
float64 |
|---|---|---|---|---|---|---|---|
AILA2019-Statutes
|
Legal & Regulatory
| 197
| 0.228303
| 0.222806
| 0.209694
| 0.2222
| 0.221341
|
Apple
|
API Documentation
| 678
| 0.642484
| 0.63617
| 0.652698
| 0.6362
| 0.636662
|
AILA2019-Case
|
Legal & Regulatory
| 2,914
| 0.137408
| 0.169442
| 0.112211
| 0.1693
| 0.169729
|
LeCaRDv2
|
Legal & Regulatory
| 3,000
| 0.661731
| 0.694548
| 0.540271
| 0.6938
| 0.696224
|
NFCorpus
|
Medical & Clinical
| 3,633
| 0.361107
| 0.394753
| 0.360817
| 0.3947
| 0.393532
|
REGIR-UK2EU
|
Legal & Regulatory
| 3,930
| 0.578363
| 0.667594
| 0.485664
| 0.6676
| 0.667251
|
HC3Finance
|
Financial
| 3,933
| 0.400558
| 0.427735
| 0.378612
| 0.4277
| 0.432085
|
ConvFinQA
|
Financial
| 6,503
| 0.742992
| 0.768612
| 0.78801
| 0.7691
| 0.764325
|
REGIR-EU2UK
|
Legal & Regulatory
| 10,000
| 0.621456
| 0.641452
| 0.645327
| 0.6315
| 0.636338
|
FinQA
|
Financial
| 11,865
| 0.683209
| 0.692795
| 0.740212
| 0.6816
| 0.6916
|
FinanceBench
|
Financial
| 15,325
| 0.578197
| 0.673586
| 0.63823
| 0.6636
| 0.671871
|
LegalQuAD
|
Legal & Regulatory
| 17,702
| 0.667329
| 0.684662
| 0.789092
| 0.6685
| 0.685607
|
ACORDAR
|
Legal & Regulatory
| 31,589
| 0.308483
| 0.341478
| 0.301194
| 0.3402
| 0.321282
|
FiQA
|
Financial
| 57,638
| 0.539874
| 0.56898
| 0.533496
| 0.5633
| 0.568467
|
Dataset Coverage
The benchmarks evaluate performance across 14+ specialized datasets covering:
- Legal & Regulatory: ACORDAR, AILA2019-Case, AILA2019-Statutes, LeCaRDv2, LegalQuAD, REGIR-EU2UK, REGIR-UK2EU.
- Financial: ConvFinQA, FinanceBench, FinQA, FiQA, HC3Finance.
- Medical & Clinical: NFCorpus.
- General/API: Apple Documentation.
Metrics
- NDCG@10: Normalized Discounted Cumulative Gain at rank 10, measuring retrieval quality.
- Latency (ms): Mean search latency measured on the server-side and end-to-end.
Benchmark Configurations
The data is organized into four primary splits, which you can switch between using the "Viewer" tab above:
- NDCG@10 - Floating Point (
ndcg_vector_fp): Evaluation of retrieval accuracy using standard 32-bit floating-point vectors. - Latency - Floating Point (
latency_vector_fp): Search performance (ms) for floating-point vector retrieval. - NDCG@10 - Quantized (
ndcg_vector_quantized): Evaluation of retrieval accuracy using optimized quantized/binary embedding paths. - Latency - Quantized (
latency_vector_quantized): Search performance (ms) for optimized quantized vector retrieval.
Tested Providers
Results include comparisons across:
- Moorcheh
- Elasticsearch
- Pinecone (with Cohere Rerank)
- PGVector (PostgreSQL)
- Qdrant
How to use in Python
You can load these results directly into a Pandas DataFrame using the Hugging Face datasets library:
from datasets import load_dataset
# Load the Latency results for Floating Point vectors
dataset = load_dataset("moorcheh/Benchmarks", split="latency_vector_fp")
df = dataset.to_pandas()
print(df.head())
- Downloads last month
- 11