kdoherty commited on
Commit
1c63a76
·
verified ·
1 Parent(s): e6e4128

Update dataset card metadata - 2025-09-22T23:48:11.339847

Browse files
Files changed (1) hide show
  1. README.md +160 -138
README.md CHANGED
@@ -1,136 +1,10 @@
1
  ---
2
- dataset_info:
3
- - config_name: default
4
- features:
5
- - name: idx
6
- dtype: string
7
- - name: image_t0
8
- dtype: image
9
- - name: image_t1
10
- dtype: image
11
- - name: image_t2
12
- dtype: image
13
- - name: canopy_height
14
- dtype:
15
- array2_d:
16
- shape:
17
- - 1024
18
- - 1024
19
- dtype: int32
20
- splits:
21
- - name: train
22
- num_bytes: 4905235380
23
- num_examples: 487
24
- - name: test
25
- num_bytes: 1221459061
26
- num_examples: 122
27
- download_size: 3688072446
28
- dataset_size: 6126694441
29
- - config_name: dinov2_base
30
- features:
31
- - name: idx
32
- dtype: string
33
- - name: cls_t0
34
- list: float32
35
- length: 768
36
- - name: cls_t1
37
- list: float32
38
- length: 768
39
- - name: cls_t2
40
- list: float32
41
- length: 768
42
- - name: patch_t0
43
- dtype:
44
- array2_d:
45
- shape:
46
- - 256
47
- - 768
48
- dtype: float32
49
- - name: patch_t1
50
- dtype:
51
- array2_d:
52
- shape:
53
- - 256
54
- - 768
55
- dtype: float32
56
- - name: patch_t2
57
- dtype:
58
- array2_d:
59
- shape:
60
- - 256
61
- - 768
62
- dtype: float32
63
- splits:
64
- - name: train
65
- num_bytes: 1154971327
66
- num_examples: 487
67
- - name: test
68
- num_bytes: 289335733
69
- num_examples: 122
70
- download_size: 1487171455
71
- dataset_size: 1444307060
72
- - config_name: dinov3_sat
73
- features:
74
- - name: idx
75
- dtype: string
76
- - name: cls_t0
77
- list: float32
78
- length: 1024
79
- - name: cls_t1
80
- list: float32
81
- length: 1024
82
- - name: cls_t2
83
- list: float32
84
- length: 1024
85
- - name: patch_t0
86
- dtype:
87
- array2_d:
88
- shape:
89
- - 196
90
- - 1024
91
- dtype: float32
92
- - name: patch_t1
93
- dtype:
94
- array2_d:
95
- shape:
96
- - 196
97
- - 1024
98
- dtype: float32
99
- - name: patch_t2
100
- dtype:
101
- array2_d:
102
- shape:
103
- - 196
104
- - 1024
105
- dtype: float32
106
- splits:
107
- - name: train
108
- num_bytes: 1180053775
109
- num_examples: 487
110
- - name: test
111
- num_bytes: 295619221
112
- num_examples: 122
113
- download_size: 1520934285
114
- dataset_size: 1475672996
115
- configs:
116
- - config_name: default
117
- data_files:
118
- - split: train
119
- path: data/train-*
120
- - split: test
121
- path: data/test-*
122
- - config_name: dinov2_base
123
- data_files:
124
- - split: train
125
- path: dinov2_base/train-*
126
- - split: test
127
- path: dinov2_base/test-*
128
- - config_name: dinov3_sat
129
- data_files:
130
- - split: train
131
- path: dinov3_sat/train-*
132
- - split: test
133
- path: dinov3_sat/test-*
134
  tags:
135
  - remote-sensing
136
  - aerial-imagery
@@ -144,12 +18,160 @@ tags:
144
  - embeddings
145
  - multi-config
146
  pretty_name: Light Stable Semantics
147
- license: cc-by-4.0
148
- language:
149
- - en
150
- task_categories:
151
- - feature-extraction
152
- - image-to-image
153
  size_categories:
154
  - n<1K
155
  ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  ---
2
+ license: cc-by-4.0
3
+ task_categories:
4
+ - feature-extraction
5
+ - image-to-image
6
+ language:
7
+ - en
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8
  tags:
9
  - remote-sensing
10
  - aerial-imagery
 
18
  - embeddings
19
  - multi-config
20
  pretty_name: Light Stable Semantics
 
 
 
 
 
 
21
  size_categories:
22
  - n<1K
23
  ---
24
+
25
+ # Light Stable Semantics Dataset
26
+
27
+ ## Dataset Description
28
+
29
+ This dataset contains aerial orthomosaic tiles captured at three different times of day (10:00, 12:00, and 15:00). The dataset is organized into three configurations: `default` (raw images + canopy height), `dinov2_base` (DINOv2 embeddings), and `dinov3_sat` (DINOv3 embeddings). All configurations share consistent train/test splits with matching tile identifiers for cross-referencing. The dataset is designed for training vision encoders that maintain consistent feature representations despite changes in illumination, with applications in remote sensing and environmental monitoring.
30
+
31
+ ## Dataset Configurations
32
+
33
+ The dataset is organized into three configurations, each serving different research needs:
34
+
35
+ ### Configuration: `default`
36
+ Raw imagery and environmental data for direct analysis:
37
+
38
+ | Feature | Type | Shape | Description |
39
+ |---------|------|--------|-------------|
40
+ | `idx` | string | - | Tile identifier in format `{ROW}_{COL}` for geographic referencing |
41
+ | `image_t0` | Image | 1024×1024×3 | Morning capture at 10:00 AM (time=1000) |
42
+ | `image_t1` | Image | 1024×1024×3 | Noon capture at 12:00 PM (time=1200) |
43
+ | `image_t2` | Image | 1024×1024×3 | Afternoon capture at 3:00 PM (time=1500) |
44
+ | `canopy_height` | int32 | [1024, 1024] | Canopy height grid in centimeters from canopy height model |
45
+
46
+ ### Configuration: `dinov2_base`
47
+ Pre-computed DINOv2 Base (ViT-B/14) embeddings:
48
+
49
+ | Feature | Type | Shape | Description |
50
+ |---------|------|--------|-------------|
51
+ | `idx` | string | - | Tile identifier matching other configurations |
52
+ | `cls_t0` | float32 | [768] | DINOv2 CLS token (global features) for morning image |
53
+ | `cls_t1` | float32 | [768] | DINOv2 CLS token (global features) for noon image |
54
+ | `cls_t2` | float32 | [768] | DINOv2 CLS token (global features) for afternoon image |
55
+ | `patch_t0` | float32 | [256, 768] | DINOv2 patch tokens (16×16 spatial grid) for morning image |
56
+ | `patch_t1` | float32 | [256, 768] | DINOv2 patch tokens (16×16 spatial grid) for noon image |
57
+ | `patch_t2` | float32 | [256, 768] | DINOv2 patch tokens (16×16 spatial grid) for afternoon image |
58
+
59
+ ### Configuration: `dinov3_sat`
60
+ Pre-computed DINOv3 Large (ViT-L/16) embeddings with satellite pretraining:
61
+
62
+ | Feature | Type | Shape | Description |
63
+ |---------|------|--------|-------------|
64
+ | `idx` | string | - | Tile identifier matching other configurations |
65
+ | `cls_t0` | float32 | [1024] | DINOv3 CLS token (global features) for morning image |
66
+ | `cls_t1` | float32 | [1024] | DINOv3 CLS token (global features) for noon image |
67
+ | `cls_t2` | float32 | [1024] | DINOv3 CLS token (global features) for afternoon image |
68
+ | `patch_t0` | float32 | [196, 1024] | DINOv3 patch tokens (14×14 spatial grid) for morning image |
69
+ | `patch_t1` | float32 | [196, 1024] | DINOv3 patch tokens (14×14 spatial grid) for noon image |
70
+ | `patch_t2` | float32 | [196, 1024] | DINOv3 patch tokens (14×14 spatial grid) for afternoon image |
71
+
72
+ **Notes:**
73
+ - Canopy height values represent centimeters above ground; missing data is encoded as `-2147483648`
74
+ - All configurations use consistent 80%/20% train/test splits with matching `idx` values
75
+ - Patch tokens represent spatial features in different grid resolutions: 16×16 (DINOv2) vs 14×14 (DINOv3)
76
+
77
+ ## Usage Example
78
+
79
+ ```python
80
+ from datasets import load_dataset
81
+
82
+ # Load specific configurations
83
+ dataset_default = load_dataset("mpg-ranch/light-stable-semantics", "default")
84
+ dataset_dinov2 = load_dataset("mpg-ranch/light-stable-semantics", "dinov2_base")
85
+ dataset_dinov3 = load_dataset("mpg-ranch/light-stable-semantics", "dinov3_sat")
86
+
87
+ # Access raw imagery and canopy height
88
+ sample_default = dataset_default['train'][0]
89
+ morning_image = sample_default['image_t0'] # RGB image
90
+ noon_image = sample_default['image_t1'] # RGB image
91
+ afternoon_image = sample_default['image_t2'] # RGB image
92
+ canopy_height = sample_default['canopy_height'] # Height grid in cm
93
+ tile_id = sample_default['idx'] # Geographic identifier
94
+
95
+ # Access DINOv2 embeddings (same tile via matching idx)
96
+ sample_dinov2 = dataset_dinov2['train'][0]
97
+ dinov2_cls_morning = sample_dinov2['cls_t0'] # Global features (768-dim)
98
+ dinov2_patches_morning = sample_dinov2['patch_t0'] # Spatial features (256×768)
99
+
100
+ # Access DINOv3 embeddings (same tile via matching idx)
101
+ sample_dinov3 = dataset_dinov3['train'][0]
102
+ dinov3_cls_morning = sample_dinov3['cls_t0'] # Global features (1024-dim)
103
+ dinov3_patches_morning = sample_dinov3['patch_t0'] # Spatial features (196×1024)
104
+
105
+ # Verify consistent tile identifiers across configurations
106
+ assert sample_default['idx'] == sample_dinov2['idx'] == sample_dinov3['idx']
107
+
108
+ # Access test sets for evaluation
109
+ test_default = dataset_default['test'][0]
110
+ test_dinov2 = dataset_dinov2['test'][0]
111
+ test_dinov3 = dataset_dinov3['test'][0]
112
+ ```
113
+
114
+ ## Pre-computed Embeddings
115
+
116
+ The dataset includes pre-computed embeddings from two state-of-the-art vision transformers:
117
+
118
+ ### DINOv2 Base (`facebook/dinov2-base`)
119
+ - **Architecture**: Vision Transformer Base with 14×14 patch size
120
+ - **CLS Tokens**: 768-dimensional global feature vectors capturing scene-level semantics
121
+ - **Patch Tokens**: 256×768 arrays (16×16 spatial grid) encoding local features
122
+ - **Training**: Self-supervised learning on natural images
123
+
124
+ ### DINOv3 Large (`facebook/dinov3-vitl16-pretrain-sat493m`)
125
+ - **Architecture**: Vision Transformer Large with 16×16 patch size
126
+ - **CLS Tokens**: 1024-dimensional global feature vectors capturing scene-level semantics
127
+ - **Patch Tokens**: 196×1024 arrays (14×14 spatial grid) encoding local features
128
+ - **Training**: Self-supervised learning with satellite imagery pretraining
129
+
130
+ **Purpose**: Enable efficient training and analysis without requiring on-the-fly feature extraction, while providing comparison between natural image and satellite-pretrained models.
131
+
132
+ ## Dataset Information
133
+
134
+ - **Location**: Lower Partridge Alley, MPG Ranch, Montana, USA
135
+ - **Survey Date**: November 7, 2024
136
+ - **Coverage**: 620 complete tile sets (80% train / 20% test split via seeded random sampling)
137
+ - **Resolution**: 1024×1024 pixels at 1.2cm ground resolution
138
+ - **Total Size**: ~6.4GB of image data plus embeddings
139
+ - **Quality Control**: Tiles with transient objects, such as vehicles, were excluded from the dataset. RGB imagery and canopy rasters are removed together to keep modalities aligned.
140
+
141
+ ## Use Cases
142
+
143
+ This dataset is intended for:
144
+ - Developing vision encoders robust to lighting variations
145
+ - Semantic stability research in computer vision
146
+ - Time-invariant feature learning
147
+ - Remote sensing applications requiring lighting robustness
148
+ - Comparative analysis of illumination effects on vision model features
149
+
150
+ ## Citation
151
+
152
+ If you use this dataset in your research, please cite:
153
+
154
+ ```bibtex
155
+ @dataset{mpg_ranch_light_stable_semantics_2024,
156
+ title={Light Stable Semantics Dataset},
157
+ author={Kyle Doherty and Erik Samose and Max Gurinas and Brandon Trabucco and Ruslan Salakhutdinov},
158
+ year={2024},
159
+ month={November},
160
+ url={https://huggingface.co/datasets/mpg-ranch/light-stable-semantics},
161
+ publisher={Hugging Face},
162
+ note={Aerial orthomosaic tiles with DINOv2 and DINOv3 embeddings for light-stable semantic vision encoder training},
163
+ location={MPG Ranch, Montana, USA},
164
+ survey_date={2024-11-07},
165
+ organization={MPG Ranch}
166
+ }
167
+ ```
168
+
169
+ ## License
170
+
171
+ This dataset is released under the [Creative Commons Attribution 4.0 International (CC BY 4.0)](https://creativecommons.org/licenses/by/4.0/) license.
172
+
173
+ **Attribution Requirements:**
174
+ - You must give appropriate credit to MPG Ranch
175
+ - Provide a link to the license
176
+ - Indicate if changes were made to the dataset
177
+