Datasets:
Formats:
parquet
Languages:
English
Size:
1K - 10K
Tags:
remote-sensing
aerial-imagery
orthomosaic
lighting-invariance
representation-stability
vision-encoder
License:
Delete README.md with huggingface_hub
Browse files
README.md
DELETED
|
@@ -1,177 +0,0 @@
|
|
| 1 |
-
---
|
| 2 |
-
license: cc-by-4.0
|
| 3 |
-
task_categories:
|
| 4 |
-
- feature-extraction
|
| 5 |
-
- image-to-image
|
| 6 |
-
language:
|
| 7 |
-
- en
|
| 8 |
-
tags:
|
| 9 |
-
- remote-sensing
|
| 10 |
-
- aerial-imagery
|
| 11 |
-
- orthomosaic
|
| 12 |
-
- lighting-invariance
|
| 13 |
-
- semantic-stability
|
| 14 |
-
- vision-encoder
|
| 15 |
-
- time-series
|
| 16 |
-
- dinov2
|
| 17 |
-
- dinov3
|
| 18 |
-
- embeddings
|
| 19 |
-
- multi-config
|
| 20 |
-
pretty_name: Light Stable Semantics
|
| 21 |
-
size_categories:
|
| 22 |
-
- n<1K
|
| 23 |
-
---
|
| 24 |
-
|
| 25 |
-
# Light Stable Semantics Dataset
|
| 26 |
-
|
| 27 |
-
## Dataset Description
|
| 28 |
-
|
| 29 |
-
This dataset contains aerial orthomosaic tiles captured at three different times of day (10:00, 12:00, and 15:00). The dataset is organized into three configurations: `default` (raw images + canopy height), `dinov2_base` (DINOv2 embeddings), and `dinov3_sat` (DINOv3 embeddings). All configurations share consistent train/test splits with matching tile identifiers for cross-referencing. The dataset is designed for training vision encoders that maintain consistent feature representations despite changes in illumination, with applications in remote sensing and environmental monitoring.
|
| 30 |
-
|
| 31 |
-
## Dataset Configurations
|
| 32 |
-
|
| 33 |
-
The dataset is organized into three configurations, each serving different research needs:
|
| 34 |
-
|
| 35 |
-
### Configuration: `default`
|
| 36 |
-
Raw imagery and environmental data for direct analysis:
|
| 37 |
-
|
| 38 |
-
| Feature | Type | Shape | Description |
|
| 39 |
-
|---------|------|--------|-------------|
|
| 40 |
-
| `idx` | string | - | Tile identifier in format `{ROW}_{COL}` for geographic referencing |
|
| 41 |
-
| `image_t0` | Image | 1024×1024×3 | Morning capture at 10:00 AM (time=1000) |
|
| 42 |
-
| `image_t1` | Image | 1024×1024×3 | Noon capture at 12:00 PM (time=1200) |
|
| 43 |
-
| `image_t2` | Image | 1024×1024×3 | Afternoon capture at 3:00 PM (time=1500) |
|
| 44 |
-
| `canopy_height` | int32 | [1024, 1024] | Canopy height grid in centimeters from canopy height model |
|
| 45 |
-
|
| 46 |
-
### Configuration: `dinov2_base`
|
| 47 |
-
Pre-computed DINOv2 Base (ViT-B/14) embeddings:
|
| 48 |
-
|
| 49 |
-
| Feature | Type | Shape | Description |
|
| 50 |
-
|---------|------|--------|-------------|
|
| 51 |
-
| `idx` | string | - | Tile identifier matching other configurations |
|
| 52 |
-
| `cls_t0` | float32 | [768] | DINOv2 CLS token (global features) for morning image |
|
| 53 |
-
| `cls_t1` | float32 | [768] | DINOv2 CLS token (global features) for noon image |
|
| 54 |
-
| `cls_t2` | float32 | [768] | DINOv2 CLS token (global features) for afternoon image |
|
| 55 |
-
| `patch_t0` | float32 | [256, 768] | DINOv2 patch tokens (16×16 spatial grid) for morning image |
|
| 56 |
-
| `patch_t1` | float32 | [256, 768] | DINOv2 patch tokens (16×16 spatial grid) for noon image |
|
| 57 |
-
| `patch_t2` | float32 | [256, 768] | DINOv2 patch tokens (16×16 spatial grid) for afternoon image |
|
| 58 |
-
|
| 59 |
-
### Configuration: `dinov3_sat`
|
| 60 |
-
Pre-computed DINOv3 Large (ViT-L/16) embeddings with satellite pretraining:
|
| 61 |
-
|
| 62 |
-
| Feature | Type | Shape | Description |
|
| 63 |
-
|---------|------|--------|-------------|
|
| 64 |
-
| `idx` | string | - | Tile identifier matching other configurations |
|
| 65 |
-
| `cls_t0` | float32 | [1024] | DINOv3 CLS token (global features) for morning image |
|
| 66 |
-
| `cls_t1` | float32 | [1024] | DINOv3 CLS token (global features) for noon image |
|
| 67 |
-
| `cls_t2` | float32 | [1024] | DINOv3 CLS token (global features) for afternoon image |
|
| 68 |
-
| `patch_t0` | float32 | [196, 1024] | DINOv3 patch tokens (14×14 spatial grid) for morning image |
|
| 69 |
-
| `patch_t1` | float32 | [196, 1024] | DINOv3 patch tokens (14×14 spatial grid) for noon image |
|
| 70 |
-
| `patch_t2` | float32 | [196, 1024] | DINOv3 patch tokens (14×14 spatial grid) for afternoon image |
|
| 71 |
-
|
| 72 |
-
**Notes:**
|
| 73 |
-
- Canopy height values represent centimeters above ground; missing data is encoded as `-2147483648`
|
| 74 |
-
- All configurations use consistent 80%/20% train/test splits with matching `idx` values
|
| 75 |
-
- Patch tokens represent spatial features in different grid resolutions: 16×16 (DINOv2) vs 14×14 (DINOv3)
|
| 76 |
-
|
| 77 |
-
## Usage Example
|
| 78 |
-
|
| 79 |
-
```python
|
| 80 |
-
from datasets import load_dataset
|
| 81 |
-
|
| 82 |
-
# Load specific configurations
|
| 83 |
-
dataset_default = load_dataset("mpg-ranch/light-stable-semantics", "default")
|
| 84 |
-
dataset_dinov2 = load_dataset("mpg-ranch/light-stable-semantics", "dinov2_base")
|
| 85 |
-
dataset_dinov3 = load_dataset("mpg-ranch/light-stable-semantics", "dinov3_sat")
|
| 86 |
-
|
| 87 |
-
# Access raw imagery and canopy height
|
| 88 |
-
sample_default = dataset_default['train'][0]
|
| 89 |
-
morning_image = sample_default['image_t0'] # RGB image
|
| 90 |
-
noon_image = sample_default['image_t1'] # RGB image
|
| 91 |
-
afternoon_image = sample_default['image_t2'] # RGB image
|
| 92 |
-
canopy_height = sample_default['canopy_height'] # Height grid in cm
|
| 93 |
-
tile_id = sample_default['idx'] # Geographic identifier
|
| 94 |
-
|
| 95 |
-
# Access DINOv2 embeddings (same tile via matching idx)
|
| 96 |
-
sample_dinov2 = dataset_dinov2['train'][0]
|
| 97 |
-
dinov2_cls_morning = sample_dinov2['cls_t0'] # Global features (768-dim)
|
| 98 |
-
dinov2_patches_morning = sample_dinov2['patch_t0'] # Spatial features (256×768)
|
| 99 |
-
|
| 100 |
-
# Access DINOv3 embeddings (same tile via matching idx)
|
| 101 |
-
sample_dinov3 = dataset_dinov3['train'][0]
|
| 102 |
-
dinov3_cls_morning = sample_dinov3['cls_t0'] # Global features (1024-dim)
|
| 103 |
-
dinov3_patches_morning = sample_dinov3['patch_t0'] # Spatial features (196×1024)
|
| 104 |
-
|
| 105 |
-
# Verify consistent tile identifiers across configurations
|
| 106 |
-
assert sample_default['idx'] == sample_dinov2['idx'] == sample_dinov3['idx']
|
| 107 |
-
|
| 108 |
-
# Access test sets for evaluation
|
| 109 |
-
test_default = dataset_default['test'][0]
|
| 110 |
-
test_dinov2 = dataset_dinov2['test'][0]
|
| 111 |
-
test_dinov3 = dataset_dinov3['test'][0]
|
| 112 |
-
```
|
| 113 |
-
|
| 114 |
-
## Pre-computed Embeddings
|
| 115 |
-
|
| 116 |
-
The dataset includes pre-computed embeddings from two state-of-the-art vision transformers:
|
| 117 |
-
|
| 118 |
-
### DINOv2 Base (`facebook/dinov2-base`)
|
| 119 |
-
- **Architecture**: Vision Transformer Base with 14×14 patch size
|
| 120 |
-
- **CLS Tokens**: 768-dimensional global feature vectors capturing scene-level semantics
|
| 121 |
-
- **Patch Tokens**: 256×768 arrays (16×16 spatial grid) encoding local features
|
| 122 |
-
- **Training**: Self-supervised learning on natural images
|
| 123 |
-
|
| 124 |
-
### DINOv3 Large (`facebook/dinov3-vitl16-pretrain-sat493m`)
|
| 125 |
-
- **Architecture**: Vision Transformer Large with 16×16 patch size
|
| 126 |
-
- **CLS Tokens**: 1024-dimensional global feature vectors capturing scene-level semantics
|
| 127 |
-
- **Patch Tokens**: 196×1024 arrays (14×14 spatial grid) encoding local features
|
| 128 |
-
- **Training**: Self-supervised learning with satellite imagery pretraining
|
| 129 |
-
|
| 130 |
-
**Purpose**: Enable efficient training and analysis without requiring on-the-fly feature extraction, while providing comparison between natural image and satellite-pretrained models.
|
| 131 |
-
|
| 132 |
-
## Dataset Information
|
| 133 |
-
|
| 134 |
-
- **Location**: Lower Partridge Alley, MPG Ranch, Montana, USA
|
| 135 |
-
- **Survey Date**: November 7, 2024
|
| 136 |
-
- **Coverage**: 620 complete tile sets (80% train / 20% test split via seeded random sampling)
|
| 137 |
-
- **Resolution**: 1024×1024 pixels at 1.2cm ground resolution
|
| 138 |
-
- **Total Size**: ~6.4GB of image data plus embeddings
|
| 139 |
-
- **Quality Control**: Tiles with transient objects, such as vehicles, were excluded from the dataset. RGB imagery and canopy rasters are removed together to keep modalities aligned.
|
| 140 |
-
|
| 141 |
-
## Use Cases
|
| 142 |
-
|
| 143 |
-
This dataset is intended for:
|
| 144 |
-
- Developing vision encoders robust to lighting variations
|
| 145 |
-
- Semantic stability research in computer vision
|
| 146 |
-
- Time-invariant feature learning
|
| 147 |
-
- Remote sensing applications requiring lighting robustness
|
| 148 |
-
- Comparative analysis of illumination effects on vision model features
|
| 149 |
-
|
| 150 |
-
## Citation
|
| 151 |
-
|
| 152 |
-
If you use this dataset in your research, please cite:
|
| 153 |
-
|
| 154 |
-
```bibtex
|
| 155 |
-
@dataset{mpg_ranch_light_stable_semantics_2024,
|
| 156 |
-
title={Light Stable Semantics Dataset},
|
| 157 |
-
author={Kyle Doherty and Erik Samose and Max Gurinas and Brandon Trabucco and Ruslan Salakhutdinov},
|
| 158 |
-
year={2024},
|
| 159 |
-
month={November},
|
| 160 |
-
url={https://huggingface.co/datasets/mpg-ranch/light-stable-semantics},
|
| 161 |
-
publisher={Hugging Face},
|
| 162 |
-
note={Aerial orthomosaic tiles with DINOv2 and DINOv3 embeddings for light-stable semantic vision encoder training},
|
| 163 |
-
location={MPG Ranch, Montana, USA},
|
| 164 |
-
survey_date={2024-11-07},
|
| 165 |
-
organization={MPG Ranch}
|
| 166 |
-
}
|
| 167 |
-
```
|
| 168 |
-
|
| 169 |
-
## License
|
| 170 |
-
|
| 171 |
-
This dataset is released under the [Creative Commons Attribution 4.0 International (CC BY 4.0)](https://creativecommons.org/licenses/by/4.0/) license.
|
| 172 |
-
|
| 173 |
-
**Attribution Requirements:**
|
| 174 |
-
- You must give appropriate credit to MPG Ranch
|
| 175 |
-
- Provide a link to the license
|
| 176 |
-
- Indicate if changes were made to the dataset
|
| 177 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|