Datasets:
metadata
dataset_info:
features:
- name: image
dtype: image
- name: mask
dtype: image
splits:
- name: train
num_bytes: 119307954.15
num_examples: 2450
- name: validation
num_bytes: 27229918
num_examples: 613
- name: test
num_bytes: 39479824
num_examples: 955
download_size: 169673709
dataset_size: 186017696.15
configs:
- config_name: default
data_files:
- split: train
path: data/train-*
- split: validation
path: data/validation-*
- split: test
path: data/test-*
task_categories:
- image-segmentation
size_categories:
- 1K<n<10K
Links
- Paper: https://arxiv.org/pdf/1908.09101v2
- Repository: https://github.com/Mhaiyang/ICCV2019_MirrorNet
- Project page: https://mhaiyang.github.io/ICCV2019_MirrorNet/index.html
- We got our data from: https://github.com/Charmve/Mirror-Glass-Detection
Split info
We split the train to train and validation with the ratio 80% and 20% respectively. If you want to use the original split, you can just combine train and validation.
License info
Refer to the project page, original repository, and paper. We retrieve the dataset from third party repository.