metadata
dataset_info:
features:
- name: text
dtype: string
- name: embedding
list: float32
length: 768
splits:
- name: train
num_examples: 13028
dataset_size: 13028
download_size: 13028
configs:
- config_name: default
data_files:
- split: train
path: train/*
metadata:
model_name: Alibaba-NLP/gte-modernbert-base
dataset_name: mteb/lotte
Embedpress: Alibaba-NLP/gte-modernbert-base on the mteb/lotte dataset
This is the mteb/lotte dataset, embedded with Alibaba-NLP/gte-modernbert-base.
For each example, we embed the text directly (no additional instruction prompt). Embeddings have dimensionality 768.
These embeddings are intended for tasks like large-scale distillation, retrieval, and similarity search. Because the raw text may exceed the model’s limit, we recommend truncating to the model’s maximum token length at build time.
Schema
text(string) — the query text used for embeddingembedding(float32[768]) — the vector representation fromAlibaba-NLP/gte-modernbert-base
Split
train— 13028 examples
Notes
- Produced with
Alibaba-NLP/gte-modernbert-basefrom Hugging Face Hub. - If you need a smaller embedding size (e.g., matryoshka/truncated vectors), you can safely slice the embeddings without re-embedding.
Acknowledgments
Thanks Mixedbread AI for a GPU grant for research into small retrieval models.