Dataset Viewer
Auto-converted to Parquet Duplicate
Search is not available for this dataset
danceability
float64
energy
float64
key
int64
loudness
float64
mode
int64
speechiness
float64
acousticness
float64
instrumentalness
float64
liveness
float64
valence
float64
tempo
float64
duration_ms
int64
time_signature
int64
liked
int64
0.803
0.624
7
-6.764
0
0.0477
0.451
0.000734
0.1
0.628
95.968
304,524
4
0
0.762
0.703
10
-7.951
0
0.306
0.206
0
0.0912
0.519
151.329
247,178
4
1
0.261
0.0149
1
-27.528
1
0.0419
0.992
0.897
0.102
0.0382
75.296
286,987
4
0
0.722
0.736
3
-6.994
0
0.0585
0.431
0.000001
0.123
0.582
89.86
208,920
4
1
0.787
0.572
1
-7.516
1
0.222
0.145
0
0.0753
0.647
155.117
179,413
4
1
0.778
0.632
8
-6.415
1
0.125
0.0404
0
0.0912
0.827
140.951
224,029
4
1
0.666
0.589
0
-8.405
0
0.324
0.555
0
0.114
0.776
74.974
146,053
4
1
0.922
0.712
7
-6.024
1
0.171
0.0779
0.00004
0.175
0.904
104.964
161,800
4
1
0.794
0.659
7
-7.063
0
0.0498
0.143
0.00224
0.0944
0.308
112.019
247,460
4
0
0.853
0.668
3
-6.995
1
0.447
0.263
0
0.104
0.745
157.995
165,363
4
1
0.297
0.993
9
-7.173
1
0.118
0.000057
0.77
0.0766
0.178
127.693
182,427
4
0
0.816
0.433
1
-9.19
1
0.241
0.00471
0
0.132
0.676
147.942
225,000
4
1
0.297
0.973
1
-4.505
1
0.151
0.00146
0.918
0.139
0.234
102.757
170,520
4
0
0.564
0.743
6
-5.782
1
0.22
0.584
0
0.101
0.191
168.849
185,667
4
1
0.64
0.957
8
-2.336
1
0.0741
0.0431
0
0.0789
0.692
134.992
178,013
4
1
0.684
0.64
5
-9.906
0
0.0309
0.221
0.0102
0.179
0.777
106.023
234,267
4
0
0.85
0.853
8
-5.65
1
0.123
0.0155
0
0.105
0.734
142.03
136,901
4
1
0.745
0.456
8
-9.482
1
0.0874
0.44
0
0.072
0.124
94.032
314,367
4
0
0.754
0.475
1
-10.889
1
0.154
0.523
0
0.113
0.235
117.006
201,384
4
1
0.797
0.852
8
-5.202
1
0.241
0.0555
0.000025
0.0536
0.48
136.035
102,353
4
1
0.798
0.835
9
-3.832
1
0.202
0.165
0
0.112
0.609
150.04
139,240
4
1
0.438
0.0825
9
-21.686
0
0.0695
0.983
0.0749
0.0461
0.37
106.275
270,000
5
0
0.802
0.549
5
-8.6
0
0.0631
0.268
0.00496
0.0984
0.498
138.984
184,627
4
1
0.6
0.535
4
-12.028
1
0.376
0.274
0
0.0984
0.205
180.036
176,000
3
1
0.729
0.533
9
-10.104
0
0.444
0.747
0.000005
0.0848
0.422
155.999
225,953
4
0
0.867
0.457
1
-7.908
1
0.237
0.0987
0
0.0967
0.193
101.052
210,733
4
1
0.65
0.545
4
-7.712
0
0.0514
0.271
0.000007
0.102
0.113
76.503
240,924
4
1
0.809
0.574
5
-8.546
0
0.385
0.4
0
0.105
0.756
151.974
185,493
4
1
0.749
0.839
6
-4.847
1
0.297
0.0867
0
0.204
0.804
172.068
111,000
4
1
0.657
0.333
8
-13.553
1
0.526
0.0608
0
0.157
0.313
148.168
98,615
4
1
0.689
0.68
7
-6.551
0
0.0774
0.392
0.000001
0.107
0.567
75.445
168,574
4
1
0.668
0.459
6
-12.072
0
0.118
0.0499
0.000001
0.408
0.525
159.021
186,415
4
1
0.291
0.98
1
-5.138
1
0.153
0.00127
0.091
0.102
0.257
79.792
270,920
4
0
0.573
0.581
10
-9.026
0
0.339
0.753
0.000001
0.13
0.351
76.506
169,347
4
1
0.608
0.471
0
-8.664
1
0.0945
0.446
0.000004
0.369
0.682
70.702
165,800
3
0
0.307
0.0515
4
-28.493
0
0.0324
0.708
0.631
0.42
0.154
128.056
125,533
4
0
0.784
0.7
7
-7.649
0
0.108
0.491
0
0.108
0.769
82.028
190,067
4
0
0.448
0.97
1
-4.197
1
0.105
0.000428
0.912
0.376
0.381
119.215
123,880
4
0
0.648
0.751
8
-8.582
1
0.0806
0.0182
0.000401
0.0418
0.863
100.437
244,827
4
0
0.895
0.479
11
-9.071
0
0.273
0.208
0
0.0902
0.719
146.049
134,554
4
1
0.358
0.977
8
-8.179
0
0.0727
0.000082
0.924
0.103
0.449
137.681
194,160
4
0
0.742
0.423
1
-9.795
0
0.108
0.832
0.00001
0.0644
0.712
75.026
194,000
4
1
0.603
0.886
5
-3.777
0
0.0837
0.00045
0
0.26
0.395
126.025
229,933
4
1
0.839
0.629
3
-5.663
0
0.147
0.241
0
0.108
0.724
94.008
207,772
4
1
0.184
0.974
8
-6.237
0
0.106
0.000023
0.886
0.241
0.33
93.771
257,390
3
0
0.373
0.98
1
-5.016
0
0.122
0.000319
0.906
0.105
0.34
97.346
211,947
4
0
0.826
0.76
11
-6.382
0
0.117
0.392
0
0.132
0.813
99.974
216,285
4
0
0.924
0.748
2
-3.645
1
0.188
0.174
0
0.207
0.381
121.063
209,667
4
1
0.267
0.0024
1
-42.261
0
0.0531
0.995
0.897
0.0942
0.267
71.428
397,773
4
0
0.462
0.974
1
-5.82
1
0.0816
0.000029
0.723
0.0751
0.399
107.877
186,576
3
0
0.616
0.534
10
-10.264
0
0.483
0.639
0
0.0844
0.556
170.054
146,480
4
1
0.878
0.622
2
-6.995
1
0.405
0.153
0
0.0917
0.638
84.991
163,765
4
1
0.581
0.85
5
-3.45
0
0.0734
0.185
0.00046
0.149
0.357
152.018
178,809
4
1
0.656
0.381
0
-8.757
0
0.0802
0.653
0
0.116
0.166
84.907
325,556
4
0
0.363
0.994
8
-5.781
1
0.131
0.000037
0.582
0.207
0.139
108.017
247,564
4
0
0.568
0.788
2
-7.654
1
0.069
0.191
0.000176
0.0774
0.328
139.959
219,077
4
1
0.809
0.653
0
-7.178
0
0.306
0.335
0
0.11
0.639
139.981
199,093
4
1
0.757
0.451
2
-11.121
1
0.292
0.0485
0.000002
0.337
0.506
150.035
167,062
4
1
0.364
0.00799
8
-33.09
1
0.0395
0.978
0.894
0.109
0.0674
101.226
216,093
4
0
0.247
0.992
8
-7.766
0
0.0772
0.000029
0.799
0.0808
0.318
142.891
237,093
4
0
0.598
0.673
2
-10.431
1
0.0693
0.0422
0.000068
0.289
0.59
102.035
197,693
4
0
0.826
0.556
5
-8.516
0
0.191
0.684
0
0.119
0.591
150.067
187,006
4
1
0.318
0.0633
6
-23.869
1
0.0507
0.992
0.871
0.0831
0.0384
129.466
199,133
3
0
0.506
0.881
5
-5.491
0
0.108
0.000163
0.00143
0.23
0.556
148.084
187,322
4
1
0.138
0.991
8
-5.661
1
0.175
0.000015
0.831
0.337
0.0718
94.443
244,239
1
0
0.531
0.803
8
-3.929
0
0.339
0.325
0
0.368
0.414
97.51
191,133
5
1
0.791
0.5
1
-9.805
0
0.42
0.603
0
0.0993
0.492
130.027
170,582
4
1
0.68
0.877
5
-10.241
0
0.0353
0.191
0.000656
0.349
0.922
108.674
185,107
4
0
0.752
0.468
0
-9.966
1
0.333
0.805
0
0.136
0.716
82.795
179,253
4
1
0.797
0.654
8
-7.373
1
0.245
0.633
0
0.106
0.64
145.121
172,520
4
1
0.774
0.853
1
-6.933
1
0.246
0.0275
0
0.0876
0.619
123.041
106,000
4
1
0.851
0.686
11
-8.143
1
0.222
0.597
0.000001
0.111
0.752
154.986
195,344
4
1
0.75
0.772
10
-8.706
0
0.157
0.206
0
0.0748
0.561
139.98
224,496
4
1
0.843
0.656
1
-11.184
1
0.0595
0.0466
0.0187
0.169
0.931
121.112
215,653
4
0
0.539
0.487
1
-9.653
1
0.202
0.309
0
0.097
0.375
169.985
186,353
4
0
0.454
0.968
6
-6.289
1
0.0787
0.000017
0.338
0.0472
0.535
103.965
250,262
4
0
0.446
0.977
10
-5.036
0
0.0781
0.000535
0.472
0.105
0.339
172.059
284,400
4
0
0.827
0.804
9
-5.846
1
0.128
0.455
0.000001
0.272
0.566
146.079
178,588
4
1
0.74
0.403
6
-9.311
0
0.0635
0.509
0.0247
0.104
0.331
138.013
173,120
4
1
0.833
0.813
4
-5.708
0
0.29
0.244
0
0.128
0.705
154.062
217,760
4
1
0.789
0.84
9
-5.29
1
0.097
0.0309
0
0.0916
0.494
136.059
84,000
4
1
0.62
0.573
0
-11.893
1
0.0423
0.271
0
0.0607
0.897
81.548
231,333
4
0
0.752
0.905
11
-7.015
0
0.181
0.0931
0.000739
0.355
0.521
150.991
179,107
4
1
0.701
0.341
1
-12.26
0
0.0418
0.499
0.903
0.359
0.163
105.513
151,507
3
0
0.83
0.707
2
-5.777
1
0.277
0.167
0
0.0797
0.682
146.154
190,685
4
1
0.779
0.705
4
-7.834
0
0.0827
0.277
0
0.0804
0.228
103.048
233,597
4
0
0.263
0.202
1
-17.687
1
0.0408
0.984
0.905
0.089
0.12
71.462
545,747
4
0
0.338
0.988
8
-7.29
0
0.0865
0.000084
0.833
0.0377
0.449
99.046
221,960
4
0
0.814
0.672
9
-12.068
1
0.0619
0.0435
0
0.061
0.933
109.394
300,000
4
0
0.78
0.551
5
-13.038
0
0.0625
0.0613
0.104
0.0331
0.969
126.009
491,933
4
0
0.567
0.797
1
-3.071
0
0.2
0.392
0
0.116
0.654
110.882
218,732
3
1
0.651
0.811
10
-13.87
1
0.0318
0.0648
0.0293
0.1
0.962
112.126
186,573
4
0
0.798
0.564
2
-5.98
1
0.047
0.23
0.000018
0.183
0.394
108.004
254,218
4
0
0.798
0.746
10
-8.639
1
0.0313
0.0304
0.361
0.0703
0.965
128.553
655,213
4
0
0.908
0.61
9
-5.735
1
0.271
0.213
0.000034
0.241
0.443
140.006
197,613
4
1
0.783
0.836
0
-9.223
0
0.0486
0.396
0.0236
0.135
0.831
108.966
222,667
4
0
0.83
0.612
10
-7.446
0
0.079
0.112
0
0.0892
0.252
97.989
243,956
4
1
0.832
0.553
7
-13.705
1
0.0487
0.0422
0.00356
0.249
0.89
119.825
215,693
4
0
0.764
0.812
7
-4.946
1
0.179
0.202
0
0.126
0.742
139.961
194,973
4
1
0.901
0.939
6
-2.762
1
0.274
0.117
0
0.0643
0.805
142.948
356,347
4
1
End of preview. Expand in Data Studio
YAML Metadata Warning: empty or missing yaml metadata in repo card (https://huggingface.co/docs/hub/datasets-cards)

🎡 Music Feature Dataset Analysis

Welcome to the Exploratory Data Analysis (EDA) of a music feature dataset. This project aims to uncover insights into how audio features of songs influence user preferences, using the liked column as the target variable.


πŸ“ Dataset Overview: train.csv

This dataset contains various musical/audio features for tracks, along with a liked score representing user preference.

🎼 Features Description

Feature Description
danceability Suitability of a track for dancing.
energy Intensity and activity level of the track.
key Musical key as an integer (0 to 11).
loudness Overall loudness in decibels (dB).
mode Tonality: major (1) or minor (0).
speechiness Presence of spoken words in the track.
acousticness Likelihood the track is acoustic.
instrumentalness Predicts whether a track contains no vocals.
liveness Presence of an audience in the recording.
valence Positiveness conveyed by the music.
tempo Tempo in beats per minute (BPM).
duration_ms Duration of the track in milliseconds.
time_signature Estimated time signature (usually 3, 4, or 5).
liked User preference score (continuous numerical value).

🧼 Data Preprocessing

  • βœ… Handled missing values
  • βœ… Removed duplicates
  • βœ… Normalized numeric features using Z-score normalization
  • βœ… Detected outliers using box plots
  • βœ… Computed summary statistics (mean, std, etc.)

πŸ“Š Visual Analysis

Visualizations included in the analysis:

Visualization Description
Missing Values Heatmap of missing values
Unique and Duplicated Count of unique and duplicate rows
Z-Score Normalized feature distributions
Top & Bottom Liked Most and least liked tracks
Distribution Histograms of key features
Danceability Histogram Focused view on danceability distribution
Mean and STD Feature-wise mean and standard deviation
Correlation Heatmap Feature correlation with liked
Boxplot Outlier detection via box plots

πŸ“ˆ Key Findings

  • πŸ”Ή Features like energy, valence, and danceability have positive correlation with the liked score.
  • πŸ”Ή Features like key and mode show low or no correlation with user preference.
  • πŸ”Ή Most features are approximately normally distributed.
  • πŸ”Ή Tracks that are highly energetic, positive, and danceable are generally more liked.

πŸ› οΈ Tools & Libraries Used

  • Language: Python 🐍
  • Libraries:
    • pandas, numpy for data handling
    • matplotlib, seaborn for visualizations
    • scikit-learn for preprocessing

πŸ“Œ Conclusion

This analysis helps identify which audio features most impact user preferences. These insights can guide the development of:

  • 🎧 Music recommendation systems
  • πŸ“Š User behavior models
  • πŸ€– Feature engineering in ML projects

πŸ‘€ Author

Sujal Thakkar


Downloads last month
38