hexsha
string
size
int64
ext
string
lang
string
max_stars_repo_path
string
max_stars_repo_name
string
max_stars_repo_head_hexsha
string
max_stars_repo_licenses
list
max_stars_count
int64
max_stars_repo_stars_event_min_datetime
string
max_stars_repo_stars_event_max_datetime
string
max_issues_repo_path
string
max_issues_repo_name
string
max_issues_repo_head_hexsha
string
max_issues_repo_licenses
list
max_issues_count
int64
max_issues_repo_issues_event_min_datetime
string
max_issues_repo_issues_event_max_datetime
string
max_forks_repo_path
string
max_forks_repo_name
string
max_forks_repo_head_hexsha
string
max_forks_repo_licenses
list
max_forks_count
int64
max_forks_repo_forks_event_min_datetime
string
max_forks_repo_forks_event_max_datetime
string
content
string
avg_line_length
float64
max_line_length
int64
alphanum_fraction
float64
qsc_code_num_words_quality_signal
int64
qsc_code_num_chars_quality_signal
float64
qsc_code_mean_word_length_quality_signal
float64
qsc_code_frac_words_unique_quality_signal
float64
qsc_code_frac_chars_top_2grams_quality_signal
float64
qsc_code_frac_chars_top_3grams_quality_signal
float64
qsc_code_frac_chars_top_4grams_quality_signal
float64
qsc_code_frac_chars_dupe_5grams_quality_signal
float64
qsc_code_frac_chars_dupe_6grams_quality_signal
float64
qsc_code_frac_chars_dupe_7grams_quality_signal
float64
qsc_code_frac_chars_dupe_8grams_quality_signal
float64
qsc_code_frac_chars_dupe_9grams_quality_signal
float64
qsc_code_frac_chars_dupe_10grams_quality_signal
float64
qsc_code_frac_chars_replacement_symbols_quality_signal
float64
qsc_code_frac_chars_digital_quality_signal
float64
qsc_code_frac_chars_whitespace_quality_signal
float64
qsc_code_size_file_byte_quality_signal
float64
qsc_code_num_lines_quality_signal
float64
qsc_code_num_chars_line_max_quality_signal
float64
qsc_code_num_chars_line_mean_quality_signal
float64
qsc_code_frac_chars_alphabet_quality_signal
float64
qsc_code_frac_chars_comments_quality_signal
float64
qsc_code_cate_xml_start_quality_signal
float64
qsc_code_frac_lines_dupe_lines_quality_signal
float64
qsc_code_cate_autogen_quality_signal
float64
qsc_code_frac_lines_long_string_quality_signal
float64
qsc_code_frac_chars_string_length_quality_signal
float64
qsc_code_frac_chars_long_word_length_quality_signal
float64
qsc_code_frac_lines_string_concat_quality_signal
float64
qsc_code_cate_encoded_data_quality_signal
float64
qsc_code_frac_chars_hex_words_quality_signal
float64
qsc_code_frac_lines_prompt_comments_quality_signal
float64
qsc_code_frac_lines_assert_quality_signal
float64
qsc_codepython_cate_ast_quality_signal
float64
qsc_codepython_frac_lines_func_ratio_quality_signal
float64
qsc_codepython_cate_var_zero_quality_signal
bool
qsc_codepython_frac_lines_pass_quality_signal
float64
qsc_codepython_frac_lines_import_quality_signal
float64
qsc_codepython_frac_lines_simplefunc_quality_signal
float64
qsc_codepython_score_lines_no_logic_quality_signal
float64
qsc_codepython_frac_lines_print_quality_signal
float64
qsc_code_num_words
int64
qsc_code_num_chars
int64
qsc_code_mean_word_length
int64
qsc_code_frac_words_unique
null
qsc_code_frac_chars_top_2grams
int64
qsc_code_frac_chars_top_3grams
int64
qsc_code_frac_chars_top_4grams
int64
qsc_code_frac_chars_dupe_5grams
int64
qsc_code_frac_chars_dupe_6grams
int64
qsc_code_frac_chars_dupe_7grams
int64
qsc_code_frac_chars_dupe_8grams
int64
qsc_code_frac_chars_dupe_9grams
int64
qsc_code_frac_chars_dupe_10grams
int64
qsc_code_frac_chars_replacement_symbols
int64
qsc_code_frac_chars_digital
int64
qsc_code_frac_chars_whitespace
int64
qsc_code_size_file_byte
int64
qsc_code_num_lines
int64
qsc_code_num_chars_line_max
int64
qsc_code_num_chars_line_mean
int64
qsc_code_frac_chars_alphabet
int64
qsc_code_frac_chars_comments
int64
qsc_code_cate_xml_start
int64
qsc_code_frac_lines_dupe_lines
int64
qsc_code_cate_autogen
int64
qsc_code_frac_lines_long_string
int64
qsc_code_frac_chars_string_length
int64
qsc_code_frac_chars_long_word_length
int64
qsc_code_frac_lines_string_concat
null
qsc_code_cate_encoded_data
int64
qsc_code_frac_chars_hex_words
int64
qsc_code_frac_lines_prompt_comments
int64
qsc_code_frac_lines_assert
int64
qsc_codepython_cate_ast
int64
qsc_codepython_frac_lines_func_ratio
int64
qsc_codepython_cate_var_zero
int64
qsc_codepython_frac_lines_pass
int64
qsc_codepython_frac_lines_import
int64
qsc_codepython_frac_lines_simplefunc
int64
qsc_codepython_score_lines_no_logic
int64
qsc_codepython_frac_lines_print
int64
effective
string
hits
int64
6a8b93de9ef615a88be0dad5abda769599f3cf01
2,886
py
Python
neptune/internal/client_library/job_development_api/image.py
jiji-online/neptune-cli
50cf680a80d141497f9331ab7cdaee49fcb90b0c
[ "Apache-2.0" ]
null
null
null
neptune/internal/client_library/job_development_api/image.py
jiji-online/neptune-cli
50cf680a80d141497f9331ab7cdaee49fcb90b0c
[ "Apache-2.0" ]
null
null
null
neptune/internal/client_library/job_development_api/image.py
jiji-online/neptune-cli
50cf680a80d141497f9331ab7cdaee49fcb90b0c
[ "Apache-2.0" ]
null
null
null
# -*- coding: utf-8 -*- # # Copyright (c) 2016, deepsense.io # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # from future import standard_library standard_library.install_aliases() # pylint: disable=wrong-import-position from future.builtins import object import base64 import io import PIL.Image from neptune.generated.swagger_client import InputImage from neptune.internal.common.models.parameters_validation import ( of_type_validator, text_conv, validate ) class Image(object): """ Represents information about images sent to image channels. """ @validate(name=text_conv, description=text_conv, data=of_type_validator(PIL.Image.Image)) def __init__(self, name, description, data): """ Creates a new Image. :param name: Name of the image, displayed in the Channels tab on job's dashboard. :param description: Description of the image displayed in the Channels tab on job's dashboard. :param data: Image data. :type name: unicode :type description: unicode :type data: PIL.Image """ self._name = name self._description = description self._data = data def to_input_image(self): """ Creates InputImage that can be sent to Neptune. :return: input image in format appropriate to be sent to Neptune. :rtype: InputImage """ image_buffer = io.BytesIO() self.data.save(image_buffer, format='PNG') contents = image_buffer.getvalue() image_buffer.close() input_image = InputImage() input_image.name = self.name input_image.description = self.description input_image.data = base64.b64encode(contents).decode('utf-8') return input_image @property def name(self): """ Gets name of this Image. :return: The name of this Image. :rtype: str """ return self._name @property def description(self): """ Gets description of this Image. :return: The description of this Image. :rtype: str """ return self._description @property def data(self): """ Gets data of this Image. :return: The data of this Image. :rtype: PIL.Image """ return self._data
26.722222
93
0.647263
359
2,886
5.111421
0.389972
0.038147
0.035967
0.027793
0.124251
0.091553
0.091553
0.059946
0.059946
0.059946
0
0.007597
0.27027
2,886
107
94
26.971963
0.863723
0.469508
0
0.081081
0
0
0.006329
0
0
0
0
0
0
1
0.135135
false
0
0.189189
0
0.459459
0
0
0
0
null
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
null
0
0
0
0
0
0
0
0
0
0
0
0
1
0
6a8e67d20152ca7acb56c8c6199b1999e7f99406
500
py
Python
pybyte/session.py
ms7m/py-byte
c5872ff5b8536160d8cbd7f88406ed593113e77d
[ "MIT" ]
4
2020-01-26T17:22:05.000Z
2020-08-15T12:23:31.000Z
pybyte/session.py
ms7m/py-byte
c5872ff5b8536160d8cbd7f88406ed593113e77d
[ "MIT" ]
3
2020-01-27T18:10:06.000Z
2020-03-31T10:56:03.000Z
pybyte/session.py
ms7m/py-byte
c5872ff5b8536160d8cbd7f88406ed593113e77d
[ "MIT" ]
2
2020-01-27T17:59:45.000Z
2020-02-01T16:43:53.000Z
import requests class ByteSession(object): def __init__(self, token, providedSession=False): self._userToken = token if providedSession == False: self._session = requests.session() else: self._session = providedSession self._session.headers = { "Authorization": token, "User-Agent": "byte/0.2 (co.byte.video; build:145; iOS 13.3.0) Alamofire/4.9.1" } def session(self): return self._session
26.315789
91
0.594
54
500
5.333333
0.62963
0.152778
0.166667
0
0
0
0
0
0
0
0
0.034091
0.296
500
19
92
26.315789
0.784091
0
0
0
0
0.071429
0.172
0
0
0
0
0
0
1
0.142857
false
0
0.071429
0.071429
0.357143
0
0
0
0
null
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
null
0
0
0
0
0
0
0
0
0
0
0
0
1
0
6a8f6efd4560f4b302cef1f8c07a3c86f509c35d
642
py
Python
debugging/code/multiprocess_main.py
awesome-archive/python-debugging-skills
69af455302a805d6f198a06ea934f79d5913cb3e
[ "MIT" ]
null
null
null
debugging/code/multiprocess_main.py
awesome-archive/python-debugging-skills
69af455302a805d6f198a06ea934f79d5913cb3e
[ "MIT" ]
null
null
null
debugging/code/multiprocess_main.py
awesome-archive/python-debugging-skills
69af455302a805d6f198a06ea934f79d5913cb3e
[ "MIT" ]
null
null
null
# -*- encoding: utf-8 -*- import multiprocessing as mp import time from pudb.remote import set_trace def worker(worker_id): """ Simple worker process""" i = 0 while i < 10: if worker_id == 1: # debug process with id 1 set_trace(term_size=(80, 24)) time.sleep(1) # represents some work print('In Process {}, i:{}'.format(worker_id, i)) i = i + 1 if __name__ == '__main__': processes = [] for p_id in range(2): # 2 worker processes p = mp.Process(target=worker, args=(p_id,)) p.start() processes.append(p) for p in processes: p.join()
22.928571
57
0.573209
91
642
3.868132
0.538462
0.068182
0
0
0
0
0
0
0
0
0
0.030973
0.29595
642
27
58
23.777778
0.747788
0.17134
0
0
0
0
0.051724
0
0
0
0
0
0
1
0.052632
false
0
0.157895
0
0.210526
0.052632
0
0
0
null
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
null
0
0
0
0
0
0
0
0
0
0
0
0
1
0
6a8fb5db5439c528b72c62e081f71f595115b9ad
1,317
py
Python
lldb/packages/Python/lldbsuite/test/expression_command/anonymous-struct/TestCallUserAnonTypedef.py
bytesnake/Enzyme
247606c279920d476645d2e319e574bf8be10fc9
[ "Apache-2.0" ]
null
null
null
lldb/packages/Python/lldbsuite/test/expression_command/anonymous-struct/TestCallUserAnonTypedef.py
bytesnake/Enzyme
247606c279920d476645d2e319e574bf8be10fc9
[ "Apache-2.0" ]
null
null
null
lldb/packages/Python/lldbsuite/test/expression_command/anonymous-struct/TestCallUserAnonTypedef.py
bytesnake/Enzyme
247606c279920d476645d2e319e574bf8be10fc9
[ "Apache-2.0" ]
null
null
null
""" Test calling user defined functions using expression evaluation. This test checks that typesystem lookup works correctly for typedefs of untagged structures. Ticket: https://llvm.org/bugs/show_bug.cgi?id=26790 """ from __future__ import print_function import lldb from lldbsuite.test.decorators import * from lldbsuite.test.lldbtest import * from lldbsuite.test import lldbutil class TestExprLookupAnonStructTypedef(TestBase): mydir = TestBase.compute_mydir(__file__) def setUp(self): TestBase.setUp(self) # Find the breakpoint self.line = line_number('main.cpp', '// lldb testsuite break') @expectedFailureAll(oslist=["windows"]) @expectedFailureAll( oslist=['linux'], archs=['arm'], bugnumber="llvm.org/pr27868") def test(self): """Test typedeffed untagged struct arguments for function call expressions""" self.build() self.runCmd("file "+self.getBuildArtifact("a.out"), CURRENT_EXECUTABLE_SET) lldbutil.run_break_set_by_file_and_line( self, "main.cpp", self.line, num_expected_locations=-1, loc_exact=True ) self.runCmd("run", RUN_SUCCEEDED) self.expect("expr multiply(&s)", substrs=['$0 = 1'])
28.021277
85
0.658314
148
1,317
5.695946
0.648649
0.046263
0.060498
0.054567
0
0
0
0
0
0
0
0.01291
0.235383
1,317
46
86
28.630435
0.82423
0.230068
0
0
0
0
0.105894
0
0
0
0
0
0
1
0.071429
false
0
0.178571
0
0.321429
0.035714
0
0
0
null
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
null
0
0
0
0
0
0
0
0
0
0
0
0
1
0
6a920dacf31156e85a0fcebb52765a1d1ca683fe
2,255
py
Python
authors/apps/notifications/views.py
andela/ah-backend-spaces-
58e031a96a6b9555f1a4133cf8cb688c236d3f3b
[ "BSD-3-Clause" ]
2
2018-08-17T15:47:36.000Z
2018-09-13T13:58:34.000Z
authors/apps/notifications/views.py
andela/ah-backend-spaces-
58e031a96a6b9555f1a4133cf8cb688c236d3f3b
[ "BSD-3-Clause" ]
35
2018-07-24T11:42:53.000Z
2021-06-10T20:34:41.000Z
authors/apps/notifications/views.py
andela/ah-backend-spaces-
58e031a96a6b9555f1a4133cf8cb688c236d3f3b
[ "BSD-3-Clause" ]
3
2018-07-17T13:05:35.000Z
2018-09-06T16:03:52.000Z
from rest_framework import status from rest_framework.generics import ( RetrieveUpdateAPIView, CreateAPIView, RetrieveUpdateDestroyAPIView ) from rest_framework.permissions import AllowAny, IsAuthenticated from rest_framework.response import Response from rest_framework.views import APIView from ..authentication.backends import JWTAuthentication from ..authentication.models import User from .models import Notifications from .renderers import ( NotificationsJSONRenderer ) from .serializers import ( NotificationsAPIViewSerializer, GetNotificationsAPIViewSerializer ) class NotificationsAPIView(RetrieveUpdateAPIView): permission_classes = (IsAuthenticated,) renderer_classes = (NotificationsJSONRenderer,) def put(self, request): """ This class method is used to update a users article """ serializer_class = NotificationsAPIViewSerializer notification = request.data.get('notification', {}) user_data = JWTAuthentication().authenticate(request) # append user_id from token to article variable for later validations in serializers notification["user_id"] = user_data[1] serializer = serializer_class(data=notification) serializer.is_valid(raise_exception=True) # update the notification statue to True serializer.update_read_status(serializer.data["notifications"]) return Response(serializer.data, status=status.HTTP_201_CREATED) def get(self, request): """ retrieve all notifications of a user """ # decode users authentication token user_data = JWTAuthentication().authenticate(request) # get user notifications details from the Notifications table in the database notifications = Notifications.objects.filter(notification_owner=user_data[1]).values( "id", "article_id", "notification_title", "notification_body", "notification_owner", "read_status" ) # create a list of notifications # the action below is done by use of list comprehension list_of_notifications = [i for i in notifications] return Response({"notifications": list_of_notifications}, status=status.HTTP_200_OK)
34.692308
93
0.73082
228
2,255
7.083333
0.407895
0.024768
0.052632
0.04582
0.054489
0
0
0
0
0
0
0.004442
0.20133
2,255
64
94
35.234375
0.892282
0.180044
0
0.054054
0
0
0.067334
0
0
0
0
0
0
1
0.054054
false
0
0.27027
0
0.459459
0
0
0
0
null
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
null
0
0
0
0
0
0
0
0
0
0
0
0
1
0
6a95707999c6dd8d718ea3549fc898fb5e496ed8
965
py
Python
python/flexflow/keras/datasets/cifar.py
zmxdream/FlexFlow
7ea50d71a02e853af7ae573d88c911511b3e82e0
[ "Apache-2.0" ]
455
2018-12-09T01:57:46.000Z
2022-03-22T01:56:47.000Z
python/flexflow/keras/datasets/cifar.py
zmxdream/FlexFlow
7ea50d71a02e853af7ae573d88c911511b3e82e0
[ "Apache-2.0" ]
136
2019-04-19T08:24:27.000Z
2022-03-28T01:39:19.000Z
python/flexflow/keras/datasets/cifar.py
zmxdream/FlexFlow
7ea50d71a02e853af7ae573d88c911511b3e82e0
[ "Apache-2.0" ]
102
2018-12-22T07:38:05.000Z
2022-03-30T06:04:39.000Z
# -*- coding: utf-8 -*- """Utilities common to CIFAR10 and CIFAR100 datasets. """ from __future__ import absolute_import from __future__ import division from __future__ import print_function import sys from six.moves import cPickle def load_batch(fpath, label_key='labels'): """Internal utility for parsing CIFAR data. # Arguments fpath: path the file to parse. label_key: key for label data in the retrieve dictionary. # Returns A tuple `(data, labels)`. """ with open(fpath, 'rb') as f: if sys.version_info < (3,): d = cPickle.load(f) else: d = cPickle.load(f, encoding='bytes') # decode utf8 d_decoded = {} for k, v in d.items(): d_decoded[k.decode('utf8')] = v d = d_decoded data = d['data'] labels = d[label_key] data = data.reshape(data.shape[0], 3, 32, 32) return data, labels
26.081081
53
0.586528
126
965
4.31746
0.547619
0.055147
0.088235
0.047794
0
0
0
0
0
0
0
0.022355
0.304663
965
37
54
26.081081
0.788376
0.295337
0
0
0
0
0.032864
0
0
0
0
0
0
1
0.052632
false
0
0.263158
0
0.368421
0.052632
0
0
0
null
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
null
0
0
0
0
0
0
0
0
0
0
0
0
1
0
6a96000d55f22510def511958af1f99b01dba806
523
py
Python
day7/p2.py
Seralpa/Advent-of-code
9633624e4ff48c50d8be3deac54c83059e9c3b04
[ "MIT" ]
1
2020-12-18T16:06:25.000Z
2020-12-18T16:06:25.000Z
day7/p2.py
Seralpa/Advent-of-code
9633624e4ff48c50d8be3deac54c83059e9c3b04
[ "MIT" ]
null
null
null
day7/p2.py
Seralpa/Advent-of-code
9633624e4ff48c50d8be3deac54c83059e9c3b04
[ "MIT" ]
null
null
null
def getNumBags(color): if color=='': return 0 numBags=1 for bag in rules[color]: numBags+=bag[1]*getNumBags(bag[0]) return numBags with open('day7/input.txt') as f: rules=dict([l.split(' contain') for l in f.read().replace(' bags', '').replace(' bag', '').replace('.', '').replace(' no other', '0 ').splitlines()]) for key in rules: rules[key]=[(d[2:].strip(), int(d[:2].strip())) for d in rules[key].split(', ')] print(getNumBags('shiny gold')-1) #-1 cause shiny bag not included
40.230769
153
0.596558
79
523
3.949367
0.506329
0.067308
0.044872
0
0
0
0
0
0
0
0
0.02331
0.179732
523
13
154
40.230769
0.703963
0.059273
0
0
0
0
0.111789
0
0
0
0
0
0
1
0.083333
false
0
0
0
0.25
0.083333
0
0
0
null
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
null
0
0
0
0
0
0
0
0
0
0
0
0
1
0
6a9611abd97c536f926ca250cbefadb44ebcbbc2
471
py
Python
adv/luther.py
6tennis/dl
69eb7e71da9fabe9e7ec40c461b525b4f967f345
[ "Apache-2.0" ]
null
null
null
adv/luther.py
6tennis/dl
69eb7e71da9fabe9e7ec40c461b525b4f967f345
[ "Apache-2.0" ]
null
null
null
adv/luther.py
6tennis/dl
69eb7e71da9fabe9e7ec40c461b525b4f967f345
[ "Apache-2.0" ]
null
null
null
from core.advbase import * from slot.d import * def module(): return Luther class Luther(Adv): a1 = ('cc',0.10,'hit15') conf = {} conf ['slots.d'] = Leviathan() conf['acl'] = """ `dragon `s1 `s2, seq=5 and cancel `s3, seq=5 and cancel or fsc `fs, seq=5 """ coab = ['Blade', 'Xander', 'Tiki'] if __name__ == '__main__': from core.simulate import test_with_argv test_with_argv(None, *sys.argv)
20.478261
44
0.552017
64
471
3.875
0.703125
0.048387
0.056452
0.104839
0
0
0
0
0
0
0
0.035821
0.288747
471
23
45
20.478261
0.704478
0
0
0
0
0
0.336864
0
0
0
0
0
0
1
0.052632
false
0
0.157895
0.052632
0.473684
0
0
0
0
null
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
null
0
0
0
0
0
0
0
0
0
0
0
0
1
0
6a9615693970b5561756763d7533ebc0f325ce0c
21,646
py
Python
wandb/sdk/data_types/image.py
macio232/client
295380c99b1a0946470672d40348b17a674ad17f
[ "MIT" ]
null
null
null
wandb/sdk/data_types/image.py
macio232/client
295380c99b1a0946470672d40348b17a674ad17f
[ "MIT" ]
null
null
null
wandb/sdk/data_types/image.py
macio232/client
295380c99b1a0946470672d40348b17a674ad17f
[ "MIT" ]
null
null
null
import hashlib from io import BytesIO import logging import os from typing import Any, cast, Dict, List, Optional, Sequence, Type, TYPE_CHECKING, Union from pkg_resources import parse_version import wandb from wandb import util from ._private import MEDIA_TMP from .base_types.media import BatchableMedia, Media from .helper_types.bounding_boxes_2d import BoundingBoxes2D from .helper_types.classes import Classes from .helper_types.image_mask import ImageMask if TYPE_CHECKING: # pragma: no cover import matplotlib # type: ignore import numpy as np # type: ignore import PIL # type: ignore import torch # type: ignore from wandb.apis.public import Artifact as PublicArtifact from ..wandb_artifacts import Artifact as LocalArtifact from ..wandb_run import Run as LocalRun ImageDataType = Union[ "matplotlib.artist.Artist", "PIL.Image", "TorchTensorType", "np.ndarray" ] ImageDataOrPathType = Union[str, "Image", ImageDataType] TorchTensorType = Union["torch.Tensor", "torch.Variable"] def _server_accepts_image_filenames() -> bool: # Newer versions of wandb accept large image filenames arrays # but older versions would have issues with this. max_cli_version = util._get_max_cli_version() if max_cli_version is None: return False return parse_version("0.12.10") <= parse_version(max_cli_version) class Image(BatchableMedia): """Format images for logging to W&B. Arguments: data_or_path: (numpy array, string, io) Accepts numpy array of image data, or a PIL image. The class attempts to infer the data format and converts it. mode: (string) The PIL mode for an image. Most common are "L", "RGB", "RGBA". Full explanation at https://pillow.readthedocs.io/en/4.2.x/handbook/concepts.html#concept-modes. caption: (string) Label for display of image. Examples: ### Create a wandb.Image from a numpy array <!--yeadoc-test:log-image-numpy-> ```python import numpy as np import wandb wandb.init() examples = [] for i in range(3): pixels = np.random.randint(low=0, high=256, size=(100, 100, 3)) image = wandb.Image(pixels, caption=f"random field {i}") examples.append(image) wandb.log({"examples": examples}) ``` ### Create a wandb.Image from a PILImage <!--yeadoc-test:log-image-pil-> ```python import numpy as np from PIL import Image as PILImage import wandb wandb.init() examples = [] for i in range(3): pixels = np.random.randint(low=0, high=256, size=(100, 100, 3), dtype=np.uint8) pil_image = PILImage.fromarray(pixels, mode="RGB") image = wandb.Image(pil_image, caption=f"random field {i}") examples.append(image) wandb.log({"examples": examples}) ``` """ MAX_ITEMS = 108 # PIL limit MAX_DIMENSION = 65500 _log_type = "image-file" format: Optional[str] _grouping: Optional[int] _caption: Optional[str] _width: Optional[int] _height: Optional[int] _image: Optional["PIL.Image"] _classes: Optional["Classes"] _boxes: Optional[Dict[str, "BoundingBoxes2D"]] _masks: Optional[Dict[str, "ImageMask"]] def __init__( self, data_or_path: "ImageDataOrPathType", mode: Optional[str] = None, caption: Optional[str] = None, grouping: Optional[int] = None, classes: Optional[Union["Classes", Sequence[dict]]] = None, boxes: Optional[Union[Dict[str, "BoundingBoxes2D"], Dict[str, dict]]] = None, masks: Optional[Union[Dict[str, "ImageMask"], Dict[str, dict]]] = None, ) -> None: super(Image, self).__init__() # TODO: We should remove grouping, it's a terrible name and I don't # think anyone uses it. self._grouping = None self._caption = None self._width = None self._height = None self._image = None self._classes = None self._boxes = None self._masks = None # Allows the user to pass an Image object as the first parameter and have a perfect copy, # only overriding additional metdata passed in. If this pattern is compelling, we can generalize. if isinstance(data_or_path, Image): self._initialize_from_wbimage(data_or_path) elif isinstance(data_or_path, str): self._initialize_from_path(data_or_path) else: self._initialize_from_data(data_or_path, mode) self._set_initialization_meta(grouping, caption, classes, boxes, masks) def _set_initialization_meta( self, grouping: Optional[int] = None, caption: Optional[str] = None, classes: Optional[Union["Classes", Sequence[dict]]] = None, boxes: Optional[Union[Dict[str, "BoundingBoxes2D"], Dict[str, dict]]] = None, masks: Optional[Union[Dict[str, "ImageMask"], Dict[str, dict]]] = None, ) -> None: if grouping is not None: self._grouping = grouping if caption is not None: self._caption = caption total_classes = {} if boxes: if not isinstance(boxes, dict): raise ValueError('Images "boxes" argument must be a dictionary') boxes_final: Dict[str, BoundingBoxes2D] = {} for key in boxes: box_item = boxes[key] if isinstance(box_item, BoundingBoxes2D): boxes_final[key] = box_item elif isinstance(box_item, dict): # TODO: Consider injecting top-level classes if user-provided is empty boxes_final[key] = BoundingBoxes2D(box_item, key) total_classes.update(boxes_final[key]._class_labels) self._boxes = boxes_final if masks: if not isinstance(masks, dict): raise ValueError('Images "masks" argument must be a dictionary') masks_final: Dict[str, ImageMask] = {} for key in masks: mask_item = masks[key] if isinstance(mask_item, ImageMask): masks_final[key] = mask_item elif isinstance(mask_item, dict): # TODO: Consider injecting top-level classes if user-provided is empty masks_final[key] = ImageMask(mask_item, key) if hasattr(masks_final[key], "_val"): total_classes.update(masks_final[key]._val["class_labels"]) self._masks = masks_final if classes is not None: if isinstance(classes, Classes): total_classes.update( {val["id"]: val["name"] for val in classes._class_set} ) else: total_classes.update({val["id"]: val["name"] for val in classes}) if len(total_classes.keys()) > 0: self._classes = Classes( [ {"id": key, "name": total_classes[key]} for key in total_classes.keys() ] ) self._width, self._height = self.image.size # type: ignore self._free_ram() def _initialize_from_wbimage(self, wbimage: "Image") -> None: self._grouping = wbimage._grouping self._caption = wbimage._caption self._width = wbimage._width self._height = wbimage._height self._image = wbimage._image self._classes = wbimage._classes self._path = wbimage._path self._is_tmp = wbimage._is_tmp self._extension = wbimage._extension self._sha256 = wbimage._sha256 self._size = wbimage._size self.format = wbimage.format self._artifact_source = wbimage._artifact_source self._artifact_target = wbimage._artifact_target # We do not want to implicitly copy boxes or masks, just the image-related data. # self._boxes = wbimage._boxes # self._masks = wbimage._masks def _initialize_from_path(self, path: str) -> None: pil_image = util.get_module( "PIL.Image", required='wandb.Image needs the PIL package. To get it, run "pip install pillow".', ) self._set_file(path, is_tmp=False) self._image = pil_image.open(path) self._image.load() ext = os.path.splitext(path)[1][1:] self.format = ext def _initialize_from_data(self, data: "ImageDataType", mode: str = None,) -> None: pil_image = util.get_module( "PIL.Image", required='wandb.Image needs the PIL package. To get it, run "pip install pillow".', ) if util.is_matplotlib_typename(util.get_full_typename(data)): buf = BytesIO() util.ensure_matplotlib_figure(data).savefig(buf) self._image = pil_image.open(buf) elif isinstance(data, pil_image.Image): self._image = data elif util.is_pytorch_tensor_typename(util.get_full_typename(data)): vis_util = util.get_module( "torchvision.utils", "torchvision is required to render images" ) if hasattr(data, "requires_grad") and data.requires_grad: data = data.detach() data = vis_util.make_grid(data, normalize=True) self._image = pil_image.fromarray( data.mul(255).clamp(0, 255).byte().permute(1, 2, 0).cpu().numpy() ) else: if hasattr(data, "numpy"): # TF data eager tensors data = data.numpy() if data.ndim > 2: data = data.squeeze() # get rid of trivial dimensions as a convenience self._image = pil_image.fromarray( self.to_uint8(data), mode=mode or self.guess_mode(data) ) tmp_path = os.path.join(MEDIA_TMP.name, str(util.generate_id()) + ".png") self.format = "png" self._image.save(tmp_path, transparency=None) self._set_file(tmp_path, is_tmp=True) @classmethod def from_json( cls: Type["Image"], json_obj: dict, source_artifact: "PublicArtifact" ) -> "Image": classes = None if json_obj.get("classes") is not None: classes = source_artifact.get(json_obj["classes"]["path"]) masks = json_obj.get("masks") _masks: Optional[Dict[str, ImageMask]] = None if masks: _masks = {} for key in masks: _masks[key] = ImageMask.from_json(masks[key], source_artifact) _masks[key]._set_artifact_source(source_artifact) _masks[key]._key = key boxes = json_obj.get("boxes") _boxes: Optional[Dict[str, BoundingBoxes2D]] = None if boxes: _boxes = {} for key in boxes: _boxes[key] = BoundingBoxes2D.from_json(boxes[key], source_artifact) _boxes[key]._key = key return cls( source_artifact.get_path(json_obj["path"]).download(), caption=json_obj.get("caption"), grouping=json_obj.get("grouping"), classes=classes, boxes=_boxes, masks=_masks, ) @classmethod def get_media_subdir(cls: Type["Image"]) -> str: return os.path.join("media", "images") def bind_to_run( self, run: "LocalRun", key: Union[int, str], step: Union[int, str], id_: Optional[Union[int, str]] = None, ignore_copy_err: Optional[bool] = None, ) -> None: super().bind_to_run(run, key, step, id_, ignore_copy_err=ignore_copy_err) if self._boxes is not None: for i, k in enumerate(self._boxes): id_ = "{}{}".format(id_, i) if id_ is not None else None self._boxes[k].bind_to_run( run, key, step, id_, ignore_copy_err=ignore_copy_err ) if self._masks is not None: for i, k in enumerate(self._masks): id_ = "{}{}".format(id_, i) if id_ is not None else None self._masks[k].bind_to_run( run, key, step, id_, ignore_copy_err=ignore_copy_err ) def to_json(self, run_or_artifact: Union["LocalRun", "LocalArtifact"]) -> dict: json_dict = super(Image, self).to_json(run_or_artifact) json_dict["_type"] = Image._log_type json_dict["format"] = self.format if self._width is not None: json_dict["width"] = self._width if self._height is not None: json_dict["height"] = self._height if self._grouping: json_dict["grouping"] = self._grouping if self._caption: json_dict["caption"] = self._caption if isinstance(run_or_artifact, wandb.wandb_sdk.wandb_artifacts.Artifact): artifact = run_or_artifact if ( self._masks is not None or self._boxes is not None ) and self._classes is None: raise ValueError( "classes must be passed to wandb.Image which have masks or bounding boxes when adding to artifacts" ) if self._classes is not None: class_id = hashlib.md5( str(self._classes._class_set).encode("utf-8") ).hexdigest() class_name = os.path.join("media", "classes", class_id + "_cls",) classes_entry = artifact.add(self._classes, class_name) json_dict["classes"] = { "type": "classes-file", "path": classes_entry.path, "digest": classes_entry.digest, } elif not isinstance(run_or_artifact, wandb.wandb_sdk.wandb_run.Run): raise ValueError("to_json accepts wandb_run.Run or wandb_artifact.Artifact") if self._boxes: json_dict["boxes"] = { k: box.to_json(run_or_artifact) for (k, box) in self._boxes.items() } if self._masks: json_dict["masks"] = { k: mask.to_json(run_or_artifact) for (k, mask) in self._masks.items() } return json_dict def guess_mode(self, data: "np.ndarray") -> str: """ Guess what type of image the np.array is representing """ # TODO: do we want to support dimensions being at the beginning of the array? if data.ndim == 2: return "L" elif data.shape[-1] == 3: return "RGB" elif data.shape[-1] == 4: return "RGBA" else: raise ValueError( "Un-supported shape for image conversion %s" % list(data.shape) ) @classmethod def to_uint8(cls, data: "np.ndarray") -> "np.ndarray": """ Converts floating point image on the range [0,1] and integer images on the range [0,255] to uint8, clipping if necessary. """ np = util.get_module( "numpy", required="wandb.Image requires numpy if not supplying PIL Images: pip install numpy", ) # I think it's better to check the image range vs the data type, since many # image libraries will return floats between 0 and 255 # some images have range -1...1 or 0-1 dmin = np.min(data) if dmin < 0: data = (data - np.min(data)) / np.ptp(data) if np.max(data) <= 1.0: data = (data * 255).astype(np.int32) # assert issubclass(data.dtype.type, np.integer), 'Illegal image format.' return data.clip(0, 255).astype(np.uint8) @classmethod def seq_to_json( cls: Type["Image"], seq: Sequence["BatchableMedia"], run: "LocalRun", key: str, step: Union[int, str], ) -> dict: """ Combines a list of images into a meta dictionary object describing the child images. """ if TYPE_CHECKING: seq = cast(Sequence["Image"], seq) jsons = [obj.to_json(run) for obj in seq] media_dir = cls.get_media_subdir() for obj in jsons: expected = util.to_forward_slash_path(media_dir) if not obj["path"].startswith(expected): raise ValueError( "Files in an array of Image's must be in the {} directory, not {}".format( cls.get_media_subdir(), obj["path"] ) ) num_images_to_log = len(seq) width, height = seq[0].image.size # type: ignore format = jsons[0]["format"] def size_equals_image(image: "Image") -> bool: img_width, img_height = image.image.size # type: ignore return img_width == width and img_height == height # type: ignore sizes_match = all(size_equals_image(img) for img in seq) if not sizes_match: logging.warning( "Images sizes do not match. This will causes images to be display incorrectly in the UI." ) meta = { "_type": "images/separated", "width": width, "height": height, "format": format, "count": num_images_to_log, } if _server_accepts_image_filenames(): meta["filenames"] = [obj["path"] for obj in jsons] else: wandb.termwarn( "Unable to log image array filenames. In some cases, this can prevent images from being" "viewed in the UI. Please upgrade your wandb server", repeat=False, ) captions = Image.all_captions(seq) if captions: meta["captions"] = captions all_masks = Image.all_masks(seq, run, key, step) if all_masks: meta["all_masks"] = all_masks all_boxes = Image.all_boxes(seq, run, key, step) if all_boxes: meta["all_boxes"] = all_boxes return meta @classmethod def all_masks( cls: Type["Image"], images: Sequence["Image"], run: "LocalRun", run_key: str, step: Union[int, str], ) -> Union[List[Optional[dict]], bool]: all_mask_groups: List[Optional[dict]] = [] for image in images: if image._masks: mask_group = {} for k in image._masks: mask = image._masks[k] mask_group[k] = mask.to_json(run) all_mask_groups.append(mask_group) else: all_mask_groups.append(None) if all_mask_groups and not all(x is None for x in all_mask_groups): return all_mask_groups else: return False @classmethod def all_boxes( cls: Type["Image"], images: Sequence["Image"], run: "LocalRun", run_key: str, step: Union[int, str], ) -> Union[List[Optional[dict]], bool]: all_box_groups: List[Optional[dict]] = [] for image in images: if image._boxes: box_group = {} for k in image._boxes: box = image._boxes[k] box_group[k] = box.to_json(run) all_box_groups.append(box_group) else: all_box_groups.append(None) if all_box_groups and not all(x is None for x in all_box_groups): return all_box_groups else: return False @classmethod def all_captions( cls: Type["Image"], images: Sequence["Media"] ) -> Union[bool, Sequence[Optional[str]]]: return cls.captions(images) def __ne__(self, other: object) -> bool: return not self.__eq__(other) def __eq__(self, other: object) -> bool: if not isinstance(other, Image): return False else: self_image = self.image other_image = other.image if self_image is not None: self_image = list(self_image.getdata()) if other_image is not None: other_image = list(other_image.getdata()) return ( self._grouping == other._grouping and self._caption == other._caption and self._width == other._width and self._height == other._height and self_image == other_image and self._classes == other._classes ) def to_data_array(self) -> List[Any]: res = [] if self.image is not None: data = list(self.image.getdata()) for i in range(self.image.height): res.append(data[i * self.image.width : (i + 1) * self.image.width]) self._free_ram() return res def _free_ram(self) -> None: if self._path is not None: self._image = None @property def image(self) -> Optional["PIL.Image"]: if self._image is None: if self._path is not None: pil_image = util.get_module( "PIL.Image", required='wandb.Image needs the PIL package. To get it, run "pip install pillow".', ) self._image = pil_image.open(self._path) self._image.load() return self._image
36.688136
119
0.572438
2,602
21,646
4.567256
0.154112
0.01969
0.013632
0.007152
0.241669
0.186974
0.171491
0.153315
0.146415
0.141535
0
0.007541
0.326111
21,646
589
120
36.750424
0.807157
0.130832
0
0.205357
0
0
0.09162
0.002533
0
0
0
0.003396
0
1
0.049107
false
0.002232
0.044643
0.006696
0.169643
0
0
0
0
null
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
null
0
0
0
0
0
0
0
0
0
0
0
0
1
0
6a961a7708b268c3d81ea73ab8b93515bd578d6c
669
py
Python
src/ACC_Backend_Utils.py
skostic14/isda-racing-backend
41b5f9760dc17a29aa8ab5e4cc1894a27496a72c
[ "Apache-2.0" ]
1
2021-07-29T05:29:06.000Z
2021-07-29T05:29:06.000Z
src/ACC_Backend_Utils.py
skostic14/isda-racing-backend
41b5f9760dc17a29aa8ab5e4cc1894a27496a72c
[ "Apache-2.0" ]
null
null
null
src/ACC_Backend_Utils.py
skostic14/isda-racing-backend
41b5f9760dc17a29aa8ab5e4cc1894a27496a72c
[ "Apache-2.0" ]
null
null
null
import datetime # Gets time from milliseconds # Returns string formatted as HH:MM:SS:mmm, MM:SS:mmm or S:mmm, depending on the time. def get_time_from_milliseconds(milli): milliseconds = milli % 1000 seconds= (milli//1000)%60 minutes= (milli//(1000*60))%60 hours= (milli//(1000*60*60))%24 if hours == 0: if minutes == 0: return '%d.%03d' % (seconds, milliseconds) return '%02d:%02d.%03d' % (minutes, seconds, milliseconds) return '%02d:%02d:%02d.%03d' % (hours, minutes, seconds, milliseconds) # Returns a string formatted as YYYY-MM-DD def get_date_today(): return datetime.date.today().strftime("%Y-%m-%d")
35.210526
87
0.651719
95
669
4.536842
0.442105
0.083527
0.076566
0.060325
0.143852
0
0
0
0
0
0
0.085343
0.19432
669
19
88
35.210526
0.714286
0.230194
0
0
0
0
0.09375
0
0
0
0
0
0
1
0.153846
false
0
0.076923
0.076923
0.538462
0
0
0
0
null
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
null
0
0
0
0
0
0
0
0
0
0
0
0
1
0
6a961b6b72524b941aa7777c8c1e4c9ea87f76f0
2,721
py
Python
examples/advanced/pidigits.py
ovolve/sympy
0a15782f20505673466b940454b33b8014a25c13
[ "BSD-3-Clause" ]
3
2015-01-17T23:15:04.000Z
2015-05-26T14:11:44.000Z
examples/advanced/pidigits.py
ovolve/sympy
0a15782f20505673466b940454b33b8014a25c13
[ "BSD-3-Clause" ]
7
2015-03-23T23:33:02.000Z
2019-02-09T00:19:41.000Z
examples/advanced/pidigits.py
ovolve/sympy
0a15782f20505673466b940454b33b8014a25c13
[ "BSD-3-Clause" ]
1
2019-10-18T12:39:41.000Z
2019-10-18T12:39:41.000Z
#!/usr/bin/env python """Pi digits example Example shows arbitrary precision using mpmath with the computation of the digits of pi. """ from mpmath import libmp, pi from mpmath import functions as mpf_funs import math from time import clock import sys def display_fraction(digits, skip=0, colwidth=10, columns=5): """Pretty printer for first n digits of a fraction""" perline = colwidth * columns printed = 0 for linecount in range((len(digits) - skip) // (colwidth * columns)): line = digits[skip + linecount*perline:skip + (linecount + 1)*perline] for i in range(columns): print(line[i*colwidth: (i + 1)*colwidth],) print(":", (linecount + 1)*perline) if (linecount + 1) % 10 == 0: print printed += colwidth*columns rem = (len(digits) - skip) % (colwidth * columns) if rem: buf = digits[-rem:] s = "" for i in range(columns): s += buf[:colwidth].ljust(colwidth + 1, " ") buf = buf[colwidth:] print(s + ":", printed + colwidth*columns) def calculateit(func, base, n, tofile): """Writes first n base-digits of a mpmath function to file""" prec = 100 intpart = libmp.numeral(3, base) if intpart == 0: skip = 0 else: skip = len(intpart) print("Step 1 of 2: calculating binary value...") prec = int(n*math.log(base, 2)) + 10 t = clock() a = func(prec) step1_time = clock() - t print("Step 2 of 2: converting to specified base...") t = clock() d = libmp.bin_to_radix(a.man, -a.exp, base, n) d = libmp.numeral(d, base, n) step2_time = clock() - t print("\nWriting output...\n") if tofile: out_ = sys.stdout sys.stdout = tofile print("%i base-%i digits of pi:\n" % (n, base)) print(intpart, ".\n") display_fraction(d, skip, colwidth=10, columns=5) if tofile: sys.stdout = out_ print("\nFinished in %f seconds (%f calc, %f convert)" % \ ((step1_time + step2_time), step1_time, step2_time)) def interactive(): """Simple function to interact with user""" print("Compute digits of pi with SymPy\n") base = input("Which base? (2-36, 10 for decimal) \n> ") digits = input("How many digits? (enter a big number, say, 10000)\n> ") tofile = raw_input("Output to file? (enter a filename, or just press enter\nto print directly to the screen) \n> ") if tofile: tofile = open(tofile, "w") calculateit(pi, base, digits, tofile) def main(): """A non-interactive runner""" base = 16 digits = 500 tofile = None calculateit(pi, base, digits, tofile) if __name__ == "__main__": interactive()
30.233333
119
0.602352
374
2,721
4.323529
0.347594
0.024737
0.018553
0.022263
0.092764
0
0
0
0
0
0
0.024863
0.260933
2,721
89
120
30.573034
0.779214
0.108416
0
0.134328
0
0.014925
0.170905
0
0
0
0
0
0
1
0.059701
false
0
0.074627
0
0.134328
0.208955
0
0
0
null
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
null
0
0
0
0
0
0
0
0
0
0
0
0
1
0
6a97a004a7c418b0d32aaf5764a1c6b24a50f26a
10,580
py
Python
tempest/hacking/checks.py
rishabh20111990/tempest
df15531cd4231000b0da016f5cd8641523ce984e
[ "Apache-2.0" ]
2
2015-08-13T00:07:49.000Z
2020-08-07T06:38:44.000Z
tempest/hacking/checks.py
rishabh20111990/tempest
df15531cd4231000b0da016f5cd8641523ce984e
[ "Apache-2.0" ]
null
null
null
tempest/hacking/checks.py
rishabh20111990/tempest
df15531cd4231000b0da016f5cd8641523ce984e
[ "Apache-2.0" ]
3
2016-08-30T06:53:54.000Z
2021-03-22T16:54:39.000Z
# Copyright 2013 IBM Corp. # # Licensed under the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. You may obtain # a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. import os import re from hacking import core import pycodestyle PYTHON_CLIENTS = ['cinder', 'glance', 'keystone', 'nova', 'swift', 'neutron', 'ironic', 'heat', 'sahara'] PYTHON_CLIENT_RE = re.compile('import (%s)client' % '|'.join(PYTHON_CLIENTS)) TEST_DEFINITION = re.compile(r'^\s*def test.*') SETUP_TEARDOWN_CLASS_DEFINITION = re.compile(r'^\s+def (setUp|tearDown)Class') SCENARIO_DECORATOR = re.compile(r'\s*@.*services\((.*)\)') RAND_NAME_HYPHEN_RE = re.compile(r".*rand_name\(.+[\-\_][\"\']\)") mutable_default_args = re.compile(r"^\s*def .+\((.+=\{\}|.+=\[\])") TESTTOOLS_SKIP_DECORATOR = re.compile(r'\s*@testtools\.skip\((.*)\)') METHOD = re.compile(r"^ def .+") METHOD_GET_RESOURCE = re.compile(r"^\s*def (list|show)\_.+") METHOD_DELETE_RESOURCE = re.compile(r"^\s*def delete_.+") CLASS = re.compile(r"^class .+") EX_ATTRIBUTE = re.compile(r'(\s+|\()(e|ex|exc|exception).message(\s+|\))') NEGATIVE_TEST_DECORATOR = re.compile( r'\s*@decorators\.attr\(type=.*negative.*\)') _HAVE_NEGATIVE_DECORATOR = False @core.flake8ext def import_no_clients_in_api_and_scenario_tests(physical_line, filename): """Check for client imports from tempest/api & tempest/scenario tests T102: Cannot import OpenStack python clients """ if "tempest/api" in filename or "tempest/scenario" in filename: res = PYTHON_CLIENT_RE.match(physical_line) if res: return (physical_line.find(res.group(1)), ("T102: python clients import not allowed" " in tempest/api/* or tempest/scenario/* tests")) @core.flake8ext def scenario_tests_need_service_tags(physical_line, filename, previous_logical): """Check that scenario tests have service tags T104: Scenario tests require a services decorator """ if 'tempest/scenario/' in filename and '/test_' in filename: if TEST_DEFINITION.match(physical_line): if not SCENARIO_DECORATOR.match(previous_logical): return (physical_line.find('def'), "T104: Scenario tests require a service decorator") @core.flake8ext def no_setup_teardown_class_for_tests(physical_line, filename): if pycodestyle.noqa(physical_line): return if 'tempest/test.py' in filename or 'tempest/lib/' in filename: return if SETUP_TEARDOWN_CLASS_DEFINITION.match(physical_line): return (physical_line.find('def'), "T105: (setUp|tearDown)Class can not be used in tests") @core.flake8ext def service_tags_not_in_module_path(physical_line, filename): """Check that a service tag isn't in the module path A service tag should only be added if the service name isn't already in the module path. T107 """ # NOTE(mtreinish) Scenario tests always need service tags, but subdirs are # created for services like heat which would cause false negatives for # those tests, so just exclude the scenario tests. if 'tempest/scenario' not in filename: matches = SCENARIO_DECORATOR.match(physical_line) if matches: services = matches.group(1).split(',') for service in services: service_name = service.strip().strip("'") modulepath = os.path.split(filename)[0] if service_name in modulepath: return (physical_line.find(service_name), "T107: service tag should not be in path") @core.flake8ext def no_hyphen_at_end_of_rand_name(logical_line, filename): """Check no hyphen at the end of rand_name() argument T108 """ msg = "T108: hyphen should not be specified at the end of rand_name()" if RAND_NAME_HYPHEN_RE.match(logical_line): return 0, msg @core.flake8ext def no_mutable_default_args(logical_line): """Check that mutable object isn't used as default argument N322: Method's default argument shouldn't be mutable """ msg = "N322: Method's default argument shouldn't be mutable!" if mutable_default_args.match(logical_line): yield (0, msg) @core.flake8ext def no_testtools_skip_decorator(logical_line): """Check that methods do not have the testtools.skip decorator T109 """ if TESTTOOLS_SKIP_DECORATOR.match(logical_line): yield (0, "T109: Cannot use testtools.skip decorator; instead use " "decorators.skip_because from tempest.lib") def _common_service_clients_check(logical_line, physical_line, filename, ignored_list_file=None): if not re.match('tempest/(lib/)?services/.*', filename): return False if ignored_list_file is not None: ignored_list = [] with open('tempest/hacking/' + ignored_list_file) as f: for line in f: ignored_list.append(line.strip()) if filename in ignored_list: return False if not METHOD.match(physical_line): return False if pycodestyle.noqa(physical_line): return False return True @core.flake8ext def get_resources_on_service_clients(physical_line, logical_line, filename, line_number, lines): """Check that service client names of GET should be consistent T110 """ if not _common_service_clients_check(logical_line, physical_line, filename, 'ignored_list_T110.txt'): return for line in lines[line_number:]: if METHOD.match(line) or CLASS.match(line): # the end of a method return if 'self.get(' not in line and ('self.show_resource(' not in line and 'self.list_resources(' not in line): continue if METHOD_GET_RESOURCE.match(logical_line): return msg = ("T110: [GET /resources] methods should be list_<resource name>s" " or show_<resource name>") yield (0, msg) @core.flake8ext def delete_resources_on_service_clients(physical_line, logical_line, filename, line_number, lines): """Check that service client names of DELETE should be consistent T111 """ if not _common_service_clients_check(logical_line, physical_line, filename, 'ignored_list_T111.txt'): return for line in lines[line_number:]: if METHOD.match(line) or CLASS.match(line): # the end of a method return if 'self.delete(' not in line and 'self.delete_resource(' not in line: continue if METHOD_DELETE_RESOURCE.match(logical_line): return msg = ("T111: [DELETE /resources/<id>] methods should be " "delete_<resource name>") yield (0, msg) @core.flake8ext def dont_import_local_tempest_into_lib(logical_line, filename): """Check that tempest.lib should not import local tempest code T112 """ if 'tempest/lib/' not in filename: return if not ('from tempest' in logical_line or 'import tempest' in logical_line): return if ('from tempest.lib' in logical_line or 'import tempest.lib' in logical_line): return msg = ("T112: tempest.lib should not import local tempest code to avoid " "circular dependency") yield (0, msg) @core.flake8ext def use_rand_uuid_instead_of_uuid4(logical_line, filename): """Check that tests use data_utils.rand_uuid() instead of uuid.uuid4() T113 """ if 'tempest/lib/' in filename: return if 'uuid.uuid4()' not in logical_line: return msg = ("T113: Tests should use data_utils.rand_uuid()/rand_uuid_hex() " "instead of uuid.uuid4()/uuid.uuid4().hex") yield (0, msg) @core.flake8ext def dont_use_config_in_tempest_lib(logical_line, filename): """Check that tempest.lib doesn't use tempest config T114 """ if 'tempest/lib/' not in filename: return if ('tempest.config' in logical_line or 'from tempest import config' in logical_line or 'oslo_config' in logical_line): msg = ('T114: tempest.lib can not have any dependency on tempest ' 'config.') yield(0, msg) @core.flake8ext def dont_put_admin_tests_on_nonadmin_path(logical_line, filename): """Check admin tests should exist under admin path T115 """ if 'tempest/api/' not in filename: return if not re.match(r'class .*Test.*\(.*Admin.*\):', logical_line): return if not re.match(r'.\/tempest\/api\/.*\/admin\/.*', filename): msg = 'T115: All admin tests should exist under admin path.' yield(0, msg) @core.flake8ext def unsupported_exception_attribute_PY3(logical_line): """Check Unsupported 'message' exception attribute in PY3 T116 """ result = EX_ATTRIBUTE.search(logical_line) msg = ("[T116] Unsupported 'message' Exception attribute in PY3") if result: yield(0, msg) @core.flake8ext def negative_test_attribute_always_applied_to_negative_tests(physical_line, filename): """Check ``@decorators.attr(type=['negative'])`` applied to negative tests. T117 """ global _HAVE_NEGATIVE_DECORATOR if re.match(r'.\/tempest\/api\/.*_negative.*', filename): if NEGATIVE_TEST_DECORATOR.match(physical_line): _HAVE_NEGATIVE_DECORATOR = True return if TEST_DEFINITION.match(physical_line): if not _HAVE_NEGATIVE_DECORATOR: return ( 0, "T117: Must apply `@decorators.attr(type=['negative'])`" " to all negative API tests" ) _HAVE_NEGATIVE_DECORATOR = False
31.963746
79
0.636578
1,338
10,580
4.85426
0.189088
0.047421
0.036952
0.015242
0.36736
0.288068
0.182448
0.162125
0.105158
0.091917
0
0.017672
0.261909
10,580
330
80
32.060606
0.814061
0.180246
0
0.356757
0
0
0.226009
0.061295
0
0
0
0
0
1
0.086486
false
0
0.064865
0
0.302703
0
0
0
0
null
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
null
0
0
0
0
0
0
0
0
0
0
0
0
1
0
6a98547230e4cc83fa248137ca0fde09ebb67dcf
1,018
py
Python
data/train/python/6a98547230e4cc83fa248137ca0fde09ebb67dcfController.py
harshp8l/deep-learning-lang-detection
2a54293181c1c2b1a2b840ddee4d4d80177efb33
[ "MIT" ]
84
2017-10-25T15:49:21.000Z
2021-11-28T21:25:54.000Z
data/train/python/6a98547230e4cc83fa248137ca0fde09ebb67dcfController.py
vassalos/deep-learning-lang-detection
cbb00b3e81bed3a64553f9c6aa6138b2511e544e
[ "MIT" ]
5
2018-03-29T11:50:46.000Z
2021-04-26T13:33:18.000Z
data/train/python/6a98547230e4cc83fa248137ca0fde09ebb67dcfController.py
vassalos/deep-learning-lang-detection
cbb00b3e81bed3a64553f9c6aa6138b2511e544e
[ "MIT" ]
24
2017-11-22T08:31:00.000Z
2022-03-27T01:22:31.000Z
import SimpleXMLRPCServer import sys import logging from K8055Controller import K8055Controller logging.basicConfig() controller_log = logging.getLogger("Controller") class Controller: def __init__(self): self.k8055 = K8055Controller() controller_log.debug("initialized") def reset(self): self.k8055.reset() controller_log.debug("reset") return 0 def turn_on(self, i): self.k8055.turn_on(i) controller_log.debug('turned on %i' % (i)) return 0 def turn_off(self, i): self.k8055.turn_off(i) controller_log.debug('turned off %i' % (i)) return 0 def set_analog(self, i, level): if (i == 1): self.k8055.set_analog1(level) else: self.k8055.set_analog2(level) return 0 controller = Controller() server = SimpleXMLRPCServer.SimpleXMLRPCServer(("d6349.mysql.zone.ee", 7000)) server.register_instance(controller) server.serve_forever()
24.829268
77
0.634578
118
1,018
5.322034
0.364407
0.085987
0.11465
0.044586
0.175159
0
0
0
0
0
0
0.067639
0.259332
1,018
41
78
24.829268
0.765252
0
0
0.125
0
0
0.068695
0
0
0
0
0
0
1
0.15625
false
0
0.125
0
0.4375
0
0
0
0
null
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
null
0
0
0
0
0
0
0
0
0
0
0
0
1
0
6a9a4141ccd8a77a2a296371f9b8eb6510494db4
1,487
py
Python
tokendito/tool.py
pcmxgti/tokendito
c1672917b1b95e463c5bdf8e9c3c039189da8e42
[ "Apache-2.0" ]
40
2019-07-31T03:21:03.000Z
2022-03-29T23:57:19.000Z
tokendito/tool.py
pcmxgti/tokendito
c1672917b1b95e463c5bdf8e9c3c039189da8e42
[ "Apache-2.0" ]
27
2019-08-07T06:40:15.000Z
2022-03-21T18:46:49.000Z
tokendito/tool.py
pcmxgti/tokendito
c1672917b1b95e463c5bdf8e9c3c039189da8e42
[ "Apache-2.0" ]
16
2019-07-31T14:22:04.000Z
2022-02-16T12:55:27.000Z
# vim: set filetype=python ts=4 sw=4 # -*- coding: utf-8 -*- """This module retrieves AWS credentials after authenticating with Okta.""" from __future__ import absolute_import, division, print_function, unicode_literals import logging from future import standard_library from tokendito import aws_helpers from tokendito import helpers from tokendito import okta_helpers from tokendito import settings standard_library.install_aliases() def cli(args): """Tokendito retrieves AWS credentials after authenticating with Okta.""" # Set some required initial values args = helpers.setup(args) logging.debug("tokendito retrieves AWS credentials after authenticating with Okta.") # Collect and organize user specific information helpers.process_options(args) # Authenticate okta and AWS also use assumerole to assign the role logging.debug("Authenticate user with Okta and AWS.") secret_session_token = okta_helpers.authenticate_user( settings.okta_org, settings.okta_username, settings.okta_password ) saml_response_string, saml_xml = aws_helpers.authenticate_to_roles( secret_session_token, settings.okta_aws_app_url ) assume_role_response, role_name = aws_helpers.select_assumeable_role( saml_response_string, saml_xml ) aws_helpers.ensure_keys_work(assume_role_response) helpers.set_local_credentials( assume_role_response, role_name, settings.aws_region, settings.aws_output )
31.638298
88
0.774042
190
1,487
5.784211
0.442105
0.029117
0.069154
0.076433
0.263876
0.216561
0.216561
0.10737
0
0
0
0.002414
0.164089
1,487
46
89
32.326087
0.881738
0.228648
0
0
0
0
0.090989
0
0
0
0
0
0
1
0.038462
false
0.038462
0.269231
0
0.307692
0.038462
0
0
0
null
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
null
0
0
0
0
0
0
0
0
0
0
0
0
1
0
6a9c07074d315021100d6322a18c6bc3087be1db
15,833
py
Python
ir_datasets/formats/trec.py
cakiki/ir_datasets
7f9f8e9ff62e49d40383220ecc2daa250695d267
[ "Apache-2.0" ]
null
null
null
ir_datasets/formats/trec.py
cakiki/ir_datasets
7f9f8e9ff62e49d40383220ecc2daa250695d267
[ "Apache-2.0" ]
null
null
null
ir_datasets/formats/trec.py
cakiki/ir_datasets
7f9f8e9ff62e49d40383220ecc2daa250695d267
[ "Apache-2.0" ]
null
null
null
import io import codecs import tarfile import re import gzip import xml.etree.ElementTree as ET from fnmatch import fnmatch from pathlib import Path from typing import NamedTuple import ir_datasets from ir_datasets.indices import PickleLz4FullStore from .base import GenericDoc, GenericQuery, GenericScoredDoc, BaseDocs, BaseQueries, BaseScoredDocs, BaseQrels class TrecDoc(NamedTuple): doc_id: str text: str marked_up_doc: str class TitleUrlTextDoc(NamedTuple): doc_id: str title: str url: str text: str class TrecQuery(NamedTuple): query_id: str title: str description: str narrative: str class TrecSubtopic(NamedTuple): number: str text: str type: str class TrecQrel(NamedTuple): query_id: str doc_id: str relevance: int iteration: str class TrecPrel(NamedTuple): query_id: str doc_id: str relevance: int method: int iprob: float # Default content tags from Anserini's TrecCollection CONTENT_TAGS = 'TEXT HEADLINE TITLE HL HEAD TTL DD DATE LP LEADPARA'.split() class TrecDocs(BaseDocs): def __init__(self, docs_dlc, encoding=None, path_globs=None, content_tags=CONTENT_TAGS, parser='BS4', namespace=None, lang=None, expected_file_count=None, docstore_size_hint=None, count_hint=None): self._docs_dlc = docs_dlc self._encoding = encoding self._path_globs = path_globs self._content_tags = content_tags self._parser = { 'BS4': self._parser_bs, 'text': self._parser_text, 'tut': self._parser_tut, }[parser] self._doc = { 'BS4': TrecDoc, 'text': GenericDoc, 'tut': TitleUrlTextDoc, }[parser] self._docs_namespace = namespace self._docs_lang = lang self._expected_file_count = expected_file_count self._docstore_size_hint = docstore_size_hint self._count_hint = count_hint if expected_file_count is not None: assert self._path_globs is not None, "expected_file_count only supported with path_globs" def docs_path(self, force=True): return self._docs_dlc.path(force) @ir_datasets.util.use_docstore def docs_iter(self): if Path(self._docs_dlc.path()).is_dir(): if self._path_globs: file_count = 0 for glob in sorted(self._path_globs): for path in sorted(Path(self._docs_dlc.path()).glob(glob)): file_count += 1 yield from self._docs_iter(path) if self._expected_file_count is not None: if file_count != self._expected_file_count: raise RuntimeError(f'found {file_count} files of the expected {self._expected_file_count} matching the following: {self._path_globs} under {self._docs_dlc.path()}. Make sure that directories are linked such that these globs match the correct number of files.') else: yield from self._docs_iter(self._docs_dlc.path()) else: if self._path_globs: file_count = 0 # tarfile, find globs, open in streaming mode (r|) with self._docs_dlc.stream() as stream: with tarfile.open(fileobj=stream, mode='r|gz') as tarf: for block in tarf: if any(fnmatch(block.name, g) for g in self._path_globs): file = tarf.extractfile(block) if block.name.endswith('.gz'): file = gzip.GzipFile(fileobj=file) yield from self._parser(file) file_count += 1 if self._expected_file_count is not None: if file_count != self._expected_file_count: raise RuntimeError(f'found {file_count} files of the expected {self._expected_file_count} matching the following: {self._path_globs} under {self._docs_dlc.path()}. Make sure that directories are linked such that these globs match the correct number of files.') else: with self._docs_dlc.stream() as f: yield from self._parser(f) def _docs_iter(self, path): if Path(path).is_file(): if str(path).endswith('.gz'): with gzip.open(path, 'rb') as f: yield from self._parser(f) else: with path.open('rb') as f: yield from self._parser(f) elif Path(path).is_dir(): for child in path.iterdir(): yield from self._docs_iter(child) def _parser_bs(self, stream): BeautifulSoup = ir_datasets.lazy_libs.bs4().BeautifulSoup f = codecs.getreader(self._encoding or 'utf8')(stream, errors='replace') doc_id, doc_markup = None, '' in_tag = False for line in f: if line.startswith('<DOCNO>'): doc_id = line.replace('<DOCNO>', '').replace('</DOCNO>\n', '').strip() elif line == '</DOC>\n': soup = BeautifulSoup(f'<OUTER>\n{doc_markup}\n</OUTER>', 'lxml') text = soup.get_text() yield TrecDoc(doc_id, text, doc_markup) doc_id, doc_markup = None, '' else: if in_tag: doc_markup += line if line.startswith('</'): if any(line.startswith(f'</{tag}>') for tag in self._content_tags): in_tag -= 1 if line.startswith('<'): if any(line.startswith(f'<{tag}>') for tag in self._content_tags): in_tag += 1 if in_tag == 1: doc_markup += line def _parser_text(self, stream): f = codecs.getreader(self._encoding or 'utf8')(stream, errors='replace') doc_id, doc_text = None, '' in_tag = False for line in f: if line.startswith('<DOCNO>'): doc_id = line.replace('<DOCNO>', '').replace('</DOCNO>\n', '').strip() elif line == '</DOC>\n': yield GenericDoc(doc_id, doc_text) doc_id, doc_text = None, '' else: if line.startswith('</'): if any(line.startswith(f'</{tag}>') for tag in self._content_tags): in_tag = False if in_tag: doc_text += line if line.startswith('<'): if any(line.startswith(f'<{tag}>') for tag in self._content_tags): in_tag = True def _parser_tut(self, stream): f = codecs.getreader(self._encoding or 'utf8')(stream, errors='replace') doc_id, doc_title, doc_url, doc_text = None, None, None, '' in_tag = False for line in f: if line.startswith('<DOCNO>'): doc_id = line.replace('<DOCNO>', '').replace('</DOCNO>\n', '').strip() if line.startswith('<TITLE>'): doc_title = line.replace('<TITLE>', '').replace('</TITLE>\n', '').strip() if line.startswith('<URL>'): doc_url = line.replace('<URL>', '').replace('</URL>\n', '').strip() elif line == '</DOC>\n': yield TitleUrlTextDoc(doc_id, doc_title, doc_url, doc_text) doc_id, doc_title, doc_url, doc_text = None, None, None, '' else: if line.startswith('</TEXT>'): in_tag = False if in_tag: doc_text += line if line.startswith('<TEXT>'): in_tag = True def docs_cls(self): return self._doc def docs_store(self, field='doc_id'): return PickleLz4FullStore( path=f'{self.docs_path(force=False)}.pklz4', init_iter_fn=self.docs_iter, data_cls=self.docs_cls(), lookup_field=field, index_fields=['doc_id'], size_hint=self._docstore_size_hint, count_hint=self._count_hint, ) def docs_count(self): if self.docs_store().built(): return self.docs_store().count() def docs_namespace(self): return self._docs_namespace def docs_lang(self): return self._docs_lang DEFAULT_QTYPE_MAP = { '<num> *(Number:)?': 'query_id', '<title> *(Topic:)?': 'title', '<desc> *(Description:)?': 'description', '<narr> *(Narrative:)?': 'narrative' } class TrecQueries(BaseQueries): def __init__(self, queries_dlc, qtype=TrecQuery, qtype_map=None, encoding=None, namespace=None, lang=None, remove_tags=('</title>',)): self._queries_dlc = queries_dlc self._qtype = qtype self._qtype_map = qtype_map or DEFAULT_QTYPE_MAP self._encoding = encoding self._queries_namespace = namespace self._queries_lang = lang self._remove_tags = remove_tags def queries_path(self): return self._queries_dlc.path() def queries_iter(self): fields, reading = {}, None with self._queries_dlc.stream() as f: f = codecs.getreader(self._encoding or 'utf8')(f) for line in f: if line.startswith('</top>'): assert len(fields) == len(self._qtype._fields), fields for tag in self._remove_tags: fields = {k: v.replace(tag, '') for k, v in fields.items()} yield self._qtype(*(fields[f].strip() for f in self._qtype._fields)) fields, reading = {}, None match_any = False for tag, target in self._qtype_map.items(): match = re.match(tag, line) if match: fields[target] = line[match.end():] reading = target match_any = True break if not match_any and reading and not line.startswith('<'): fields[reading] += line def queries_cls(self): return self._qtype def queries_namespace(self): return self._queries_namespace def queries_lang(self): return self._queries_lang class TrecXmlQueries(BaseQueries): def __init__(self, queries_dlc, qtype=TrecQuery, qtype_map=None, encoding=None, subtopics_key='subtopics', namespace=None, lang=None): self._queries_dlc = queries_dlc self._qtype = qtype self._qtype_map = qtype_map or {f: f for f in qtype._fields} self._encoding = encoding self._subtopics_key = subtopics_key self._queries_namespace = namespace self._queries_lang = lang def queries_path(self): return self._queries_dlc.path() def queries_iter(self): with self._queries_dlc.stream() as f: f = codecs.getreader(self._encoding or 'utf8')(f) for topic_el in ET.fromstring(f.read()): item = [None for _ in self._qtype._fields] if 'number' in topic_el.attrib: item[self._qtype._fields.index('query_id')] = topic_el.attrib['number'] subtopics = [] for attr in topic_el.attrib: if attr in self._qtype_map: text = topic_el.attrib[attr] field = self._qtype_map[attr] item[self._qtype._fields.index(field)] = text if topic_el.tag in self._qtype_map: text = ''.join(topic_el.itertext()) field = self._qtype_map[topic_el.tag] item[self._qtype._fields.index(field)] = text for field_el in topic_el: if field_el.tag in self._qtype_map: text = ''.join(field_el.itertext()) field = self._qtype_map[field_el.tag] item[self._qtype._fields.index(field)] = text if field_el.tag == 'subtopic': text = ''.join(field_el.itertext()) subtopics.append(TrecSubtopic(field_el.attrib['number'], text, field_el.attrib['type'])) if self._subtopics_key in self._qtype._fields: item[self._qtype._fields.index('subtopics')] = tuple(subtopics) qid_field = self._qtype._fields.index('query_id') item[qid_field] = item[qid_field].strip() # remove whitespace from query_ids yield self._qtype(*item) def queries_cls(self): return self._qtype def queries_namespace(self): return self._queries_namespace def queries_lang(self): return self._queries_lang class TrecColonQueries(BaseQueries): def __init__(self, queries_dlc, encoding=None, namespace=None, lang=None): self._queries_dlc = queries_dlc self._encoding = encoding self._queries_namespace = namespace self._queries_lang = lang def queries_iter(self): with self._queries_dlc.stream() as f: f = codecs.getreader(self._encoding or 'utf8')(f) for line in f: query_id, text = line.split(':', 1) text = text.rstrip('\n') yield GenericQuery(query_id, text) def queries_path(self): return self._queries_dlc.path() def queries_cls(self): return GenericQuery def queries_namespace(self): return self._queries_namespace def queries_lang(self): return self._queries_lang class TrecQrels(BaseQrels): def __init__(self, qrels_dlc, qrels_defs): self._qrels_dlc = qrels_dlc self._qrels_defs = qrels_defs def qrels_path(self): return self._qrels_dlc.path() def qrels_iter(self): with self._qrels_dlc.stream() as f: f = codecs.getreader('utf8')(f) for line in f: if line == '\n': continue # ignore blank lines cols = line.rstrip().split() if len(cols) != 4: raise RuntimeError(f'expected 4 columns, got {len(cols)}') qid, it, did, score = cols yield TrecQrel(qid, did, int(score), it) def qrels_cls(self): return TrecQrel def qrels_defs(self): return self._qrels_defs class TrecPrels(TrecQrels): def qrels_iter(self): with self._qrels_dlc.stream() as f: f = codecs.getreader('utf8')(f) for line in f: if line == '\n': continue # ignore blank lines cols = line.rstrip().split() if len(cols) != 5: raise RuntimeError(f'expected 5 columns, got {len(cols)}') qid, did, rel, method, iprob = cols yield TrecPrel(qid, did, int(rel), int(method), float(iprob)) def qrels_cls(self): return TrecPrel class TrecScoredDocs(BaseScoredDocs): def __init__(self, scoreddocs_dlc): self._scoreddocs_dlc = scoreddocs_dlc def scoreddocs_path(self): return self._scoreddocs_dlc.path() def scoreddocs_iter(self): with self._scoreddocs_dlc.stream() as f: f = codecs.getreader('utf8')(f) for line in f: cols = line.rstrip().split() if len(cols) == 6: qid, _, did, _, score, _ = cols elif len(cols) == 2: qid, did, score = *cols, '0' yield GenericScoredDoc(qid, did, float(score))
38.429612
284
0.55978
1,860
15,833
4.52043
0.130108
0.02676
0.028306
0.022479
0.489653
0.442793
0.410442
0.393911
0.373335
0.354781
0
0.002943
0.334681
15,833
411
285
38.523114
0.795234
0.0108
0
0.439437
0
0.005634
0.077095
0.010731
0
0
0
0
0.005634
1
0.112676
false
0
0.033803
0.061972
0.312676
0
0
0
0
null
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
null
0
0
0
0
0
0
0
0
0
0
0
0
1
0
6a9c552700ad0a75cac33278ee8dc5a5139c2432
844
py
Python
textpand/download.py
caufieldjh/textpand-for-kgs
42853c53c5a4cc06fbd745c147d02fe7916690fa
[ "BSD-3-Clause" ]
3
2021-12-10T21:13:47.000Z
2021-12-10T23:36:18.000Z
textpand/download.py
caufieldjh/textpand-for-kgs
42853c53c5a4cc06fbd745c147d02fe7916690fa
[ "BSD-3-Clause" ]
1
2022-01-06T20:59:07.000Z
2022-01-06T20:59:07.000Z
textpand/download.py
caufieldjh/textpand-for-kgs
42853c53c5a4cc06fbd745c147d02fe7916690fa
[ "BSD-3-Clause" ]
null
null
null
#!/usr/bin/env python # -*- coding: utf-8 -*- from .utils import download_from_yaml def download(output_dir: str, snippet_only: bool, ignore_cache: bool = False) -> None: """Downloads data files from list of URLs (default: download.yaml) into data directory (default: data/). Args: output_dir: A string pointing to the location to download data to. snippet_only: Downloads only the first 5 kB of the source, for testing and file checks. ignore_cache: Ignore cache and download files even if they exist [false] Returns: None. """ download_from_yaml(yaml_file="download.yaml", output_dir=output_dir, snippet_only=snippet_only, ignore_cache=ignore_cache, verbose=True) return None
31.259259
108
0.625592
107
844
4.775701
0.523364
0.107632
0.062622
0.086106
0
0
0
0
0
0
0
0.003367
0.296209
844
26
109
32.461538
0.856902
0.491706
0
0
0
0
0.033079
0
0
0
0
0
0
1
0.125
false
0
0.125
0
0.375
0
0
0
0
null
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
null
0
0
0
0
0
0
0
0
0
0
0
0
1
0
6a9cb003c79f63e5985173912dffc928314248d4
6,770
py
Python
venv/lib/python3.6/site-packages/ansible_collections/netapp/ontap/plugins/modules/na_ontap_autosupport_invoke.py
usegalaxy-no/usegalaxy
75dad095769fe918eb39677f2c887e681a747f3a
[ "MIT" ]
1
2020-01-22T13:11:23.000Z
2020-01-22T13:11:23.000Z
venv/lib/python3.6/site-packages/ansible_collections/netapp/ontap/plugins/modules/na_ontap_autosupport_invoke.py
usegalaxy-no/usegalaxy
75dad095769fe918eb39677f2c887e681a747f3a
[ "MIT" ]
12
2020-02-21T07:24:52.000Z
2020-04-14T09:54:32.000Z
venv/lib/python3.6/site-packages/ansible_collections/netapp/ontap/plugins/modules/na_ontap_autosupport_invoke.py
usegalaxy-no/usegalaxy
75dad095769fe918eb39677f2c887e681a747f3a
[ "MIT" ]
null
null
null
#!/usr/bin/python # (c) 2020, NetApp, Inc # GNU General Public License v3.0+ (see COPYING or https://www.gnu.org/licenses/gpl-3.0.txt) ''' na_ontap_autosupport_invoke ''' from __future__ import absolute_import, division, print_function __metaclass__ = type ANSIBLE_METADATA = { 'metadata_version': '1.1', 'status': ['preview'], 'supported_by': 'certified' } DOCUMENTATION = ''' module: na_ontap_autosupport_invoke author: NetApp Ansible Team (@carchi8py) <[email protected]> short_description: NetApp ONTAP send AutoSupport message extends_documentation_fragment: - netapp.ontap.netapp.na_ontap version_added: '20.4.0' description: - Send an AutoSupport message from a node options: name: description: - The name of the node to send the message to. - Not specifying this option invokes AutoSupport on all nodes in the cluster. type: str autosupport_message: description: - Text sent in the subject line of the AutoSupport message. type: str aliases: - message version_added: 20.8.0 type: description: - Type of AutoSupport Collection to Issue. choices: ['test', 'performance', 'all'] default: 'all' type: str uri: description: - send the AutoSupport message to the destination you specify instead of the configured destination. type: str ''' EXAMPLES = ''' - name: Send message na_ontap_autosupport_invoke: name: node1 message: invoked test autosupport rest uri: http://1.2.3.4/delivery_uri type: test hostname: "{{ hostname }}" username: "{{ username }}" password: "{{ password }}" ''' RETURN = ''' ''' import traceback from ansible.module_utils.basic import AnsibleModule from ansible.module_utils._text import to_native from ansible_collections.netapp.ontap.plugins.module_utils.netapp_module import NetAppModule from ansible_collections.netapp.ontap.plugins.module_utils.netapp import OntapRestAPI import ansible_collections.netapp.ontap.plugins.module_utils.netapp as netapp_utils HAS_NETAPP_LIB = netapp_utils.has_netapp_lib() class NetAppONTAPasupInvoke(object): ''' send ASUP message ''' def __init__(self): self.use_rest = False self.argument_spec = netapp_utils.na_ontap_host_argument_spec() self.argument_spec.update(dict( name=dict(required=False, type='str'), autosupport_message=dict(required=False, type='str', aliases=["message"]), type=dict(required=False, choices=[ 'test', 'performance', 'all'], default='all'), uri=dict(required=False, type='str') )) self.module = AnsibleModule( argument_spec=self.argument_spec, supports_check_mode=True ) self.na_helper = NetAppModule() self.parameters = self.na_helper.set_parameters(self.module.params) # REST API should be used for ONTAP 9.6 or higher. self.rest_api = OntapRestAPI(self.module) if self.rest_api.is_rest(): self.use_rest = True else: if not HAS_NETAPP_LIB: self.module.fail_json(msg="the python NetApp-Lib module is required") else: self.server = netapp_utils.setup_na_ontap_zapi(module=self.module) def get_nodes(self): nodes = list() node_obj = netapp_utils.zapi.NaElement('system-node-get-iter') desired_attributes = netapp_utils.zapi.NaElement('desired-attributes') node_details_info = netapp_utils.zapi.NaElement('node-details-info') node_details_info.add_new_child('node', '') desired_attributes.add_child_elem(node_details_info) node_obj.add_child_elem(desired_attributes) try: result = self.server.invoke_successfully(node_obj, True) except netapp_utils.zapi.NaApiError as error: self.module.fail_json(msg=to_native(error), exception=traceback.format_exc()) if result.get_child_by_name('num-records') and \ int(result.get_child_content('num-records')) > 0: node_info = result.get_child_by_name('attributes-list') if node_info is not None: nodes = [node_details.get_child_content('node') for node_details in node_info.get_children()] return nodes def send_zapi_message(self, params, node_name): params['node-name'] = node_name send_message = netapp_utils.zapi.NaElement.create_node_with_children('autosupport-invoke', **params) try: self.server.invoke_successfully(send_message, enable_tunneling=False) except netapp_utils.zapi.NaApiError as error: self.module.fail_json(msg="Error on sending autosupport message to node %s: %s." % (node_name, to_native(error)), exception=traceback.format_exc()) def send_message(self): params = dict() if self.parameters.get('autosupport_message'): params['message'] = self.parameters['autosupport_message'] if self.parameters.get('type'): params['type'] = self.parameters['type'] if self.parameters.get('uri'): params['uri'] = self.parameters['uri'] if self.use_rest: if self.parameters.get('name'): params['node.name'] = self.parameters['name'] node_name = params['node.name'] else: node_name = '*' api = 'support/autosupport/messages' dummy, error = self.rest_api.post(api, params) if error is not None: self.module.fail_json(msg="Error on sending autosupport message to node %s: %s." % (node_name, error)) else: if self.parameters.get('name'): node_names = [self.parameters['name']] else: # simulate REST behavior by sending to all nodes in the cluster node_names = self.get_nodes() for name in node_names: self.send_zapi_message(params, name) def ems_log_event(self): results = netapp_utils.get_cserver(self.server) cserver = netapp_utils.setup_na_ontap_zapi(module=self.module, vserver=results) return netapp_utils.ems_log_event("na_ontap_autosupport_invoke", cserver) def apply(self): if not self.use_rest: self.ems_log_event() if self.module.check_mode: pass else: self.send_message() self.module.exit_json(changed=True) def main(): message = NetAppONTAPasupInvoke() message.apply() if __name__ == '__main__': main()
34.365482
109
0.644018
816
6,770
5.121324
0.264706
0.034219
0.021536
0.022733
0.24001
0.152668
0.135918
0.116774
0.104092
0.056234
0
0.005343
0.253619
6,770
196
110
34.540816
0.82169
0.042393
0
0.167742
0
0
0.275793
0.030317
0
0
0
0
0
1
0.045161
false
0.012903
0.045161
0
0.109677
0.006452
0
0
0
null
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
null
0
0
0
0
0
0
0
0
0
0
0
0
1
0
6a9cd0c545ed5aa451bbc0bc26a2e800d471ecd0
304
py
Python
tests/api/serializer/test_user.py
armandomeeuwenoord/freight
31ae2fa9252ab0b25385abd04742475e6671e3b1
[ "Apache-2.0" ]
562
2015-02-20T08:25:24.000Z
2021-11-12T19:58:44.000Z
tests/api/serializer/test_user.py
armandomeeuwenoord/freight
31ae2fa9252ab0b25385abd04742475e6671e3b1
[ "Apache-2.0" ]
129
2015-02-20T07:41:14.000Z
2022-02-17T21:14:40.000Z
tests/api/serializer/test_user.py
armandomeeuwenoord/freight
31ae2fa9252ab0b25385abd04742475e6671e3b1
[ "Apache-2.0" ]
54
2015-02-28T01:12:23.000Z
2021-03-02T11:14:52.000Z
from freight.api.serializer import serialize from freight.testutils import TestCase class UserSerializerTest(TestCase): def test_simple(self): user = self.create_user() result = serialize(user) assert result["id"] == str(user.id) assert result["name"] == user.name
25.333333
44
0.680921
36
304
5.694444
0.583333
0.107317
0
0
0
0
0
0
0
0
0
0
0.213816
304
11
45
27.636364
0.857741
0
0
0
0
0
0.019737
0
0
0
0
0
0.25
1
0.125
false
0
0.25
0
0.5
0
0
0
0
null
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
null
0
0
0
0
0
0
0
0
0
0
0
0
1
0
6a9cdc6c74a18d65dd44c9480dd5e3953a78dd18
1,639
py
Python
binning/pozo_5m_class_dem.py
UP-RS-ESP/GEW-DAP04-WS201819
18341620d9168e1eec476af1d8f568cf0017bf56
[ "MIT" ]
2
2020-10-12T11:33:00.000Z
2021-12-20T06:33:54.000Z
binning/pozo_5m_class_dem.py
UP-RS-ESP/GEW-DAP04-WS201819
18341620d9168e1eec476af1d8f568cf0017bf56
[ "MIT" ]
null
null
null
binning/pozo_5m_class_dem.py
UP-RS-ESP/GEW-DAP04-WS201819
18341620d9168e1eec476af1d8f568cf0017bf56
[ "MIT" ]
null
null
null
import sys import numpy as np from matplotlib import pyplot as pl from rw import WriteGTiff fn = '../pozo-steep-vegetated-pcl.npy' pts = np.load(fn) x, y, z, c = pts[:, 0], pts[:, 1], pts[:, 2], pts[:, 5] ix = (0.2 * (x - x.min())).astype('int') iy = (0.2 * (y - y.min())).astype('int') shape = (100, 100) xb = np.arange(shape[1]+1) yb = np.arange(shape[0]+1) fg, ax = pl.subplots(ncols = 2, nrows = 2, figsize = (10.24, 10.24), sharex = True, sharey = True) uc = (2, 5) for j in range(len(uc)): print('Class %i' % uc[j]) b = c == uc[j] cx, cy, cz = ix[b], iy[b], z[b] mean = np.zeros(shape) stdr = np.zeros(shape) for i in range(shape[0]): print('% 3d%%' % i) for k in range(shape[1]): b = (cy == i) * (cx == k) mean[i, k] = cz[b].mean() stdr[i, k] = cz[b].std() fname = 'pozo_5m_dem_mean_cl%i.tif' % uc[j] WriteGTiff(fname, mean, x.min(), y.min()+500, step = 5) np.save('pozo_5m_dem_mean_cl%i.npy' % uc[j], mean) np.save('pozo_5m_dem_stdr_cl%i.npy' % uc[j], stdr) ax[0, j].set_title('Class %i' % uc[j]) im = ax[0, j].pcolormesh(xb, yb, np.ma.masked_invalid(mean), cmap = pl.cm.viridis_r) cb = fg.colorbar(im, ax = ax[0, j]) cb.set_label('Mean elevation [m]') im = ax[1, j].pcolormesh(xb, yb, np.ma.masked_invalid(stdr), cmap = pl.cm.magma_r) cb = fg.colorbar(im, ax = ax[1, j]) cb.set_label('Elevation STD') ax[0, j].set_aspect('equal') ax[1, j].set_aspect('equal') pl.savefig('%s.png' % sys.argv[0][:-3])
30.351852
59
0.52349
287
1,639
2.916376
0.344948
0.021505
0.019116
0.021505
0.203106
0.160096
0.121864
0.076464
0
0
0
0.040765
0.266626
1,639
53
60
30.924528
0.655574
0
0
0
0
0
0.110433
0.064674
0
0
0
0
0
1
0
false
0
0.086957
0
0.086957
0.043478
0
0
0
null
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
null
0
0
0
0
0
0
0
0
0
0
0
0
1
0
6a9cfc593e93acc1f1c0f3afda04be08e714940c
2,228
py
Python
comtypes/_meta.py
phuslu/pyMSAA
611bc4c31e0d6ba36f0f0bebdc6e6be14b994eb0
[ "MIT" ]
23
2015-05-28T15:31:35.000Z
2022-02-16T07:51:34.000Z
comtypes/_meta.py
kar98kar/pyMSAA
611bc4c31e0d6ba36f0f0bebdc6e6be14b994eb0
[ "MIT" ]
3
2020-05-19T03:00:52.000Z
2020-11-03T09:22:51.000Z
comtypes/_meta.py
kar98kar/pyMSAA
611bc4c31e0d6ba36f0f0bebdc6e6be14b994eb0
[ "MIT" ]
13
2016-08-26T23:00:40.000Z
2022-03-03T09:58:36.000Z
# comtypes._meta helper module from ctypes import POINTER, c_void_p, cast import comtypes ################################################################ # metaclass for CoClass (in comtypes/__init__.py) def _wrap_coclass(self): # We are an IUnknown pointer, represented as a c_void_p instance, # but we really want this interface: itf = self._com_interfaces_[0] punk = cast(self, POINTER(itf)) result = punk.QueryInterface(itf) result.__dict__["__clsid"] = str(self._reg_clsid_) return result def _coclass_from_param(cls, obj): if isinstance(obj, (cls._com_interfaces_[0], cls)): return obj raise TypeError(obj) # # The mro() of a POINTER(App) type, where class App is a subclass of CoClass: # # POINTER(App) # App # CoClass # c_void_p # _SimpleCData # _CData # object class _coclass_meta(type): # metaclass for CoClass # # When a CoClass subclass is created, create a POINTER(...) type # for that class, with bases <coclass> and c_void_p. Also, the # POINTER(...) type gets a __ctypes_from_outparam__ method which # will QueryInterface for the default interface: the first one on # the coclass' _com_interfaces_ list. def __new__(cls, name, bases, namespace): klass = type.__new__(cls, name, bases, namespace) if bases == (object,): return klass # XXX We should insist that a _reg_clsid_ is present. if "_reg_clsid_" in namespace: clsid = namespace["_reg_clsid_"] comtypes.com_coclass_registry[str(clsid)] = klass PTR = _coclass_pointer_meta("POINTER(%s)" % klass.__name__, (klass, c_void_p), {"__ctypes_from_outparam__": _wrap_coclass, "from_param": classmethod(_coclass_from_param), }) from ctypes import _pointer_type_cache _pointer_type_cache[klass] = PTR return klass # will not work if we change the order of the two base classes! class _coclass_pointer_meta(type(c_void_p), _coclass_meta): pass
35.935484
85
0.601436
267
2,228
4.64794
0.389513
0.024174
0.029009
0.037067
0.038678
0
0
0
0
0
0
0.001266
0.290844
2,228
61
86
36.52459
0.784177
0.342908
0
0.066667
0
0
0.056274
0.018251
0
0
0
0
0
1
0.1
false
0.033333
0.1
0
0.4
0
0
0
0
null
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
null
0
0
0
0
0
0
0
0
0
0
0
0
1
0
6a9da9d2fe8534cba2998ec7d3c2190abe55abec
5,190
py
Python
deep_sdf/workspace.py
huajian1069/non-convex_optimisation
cf4cd5070524c3f7e6b814fe9b85a15a06e7b8db
[ "MIT" ]
2
2020-10-12T19:22:50.000Z
2021-08-21T21:48:27.000Z
deep_sdf/workspace.py
huajian1069/non-convex_optimisation
cf4cd5070524c3f7e6b814fe9b85a15a06e7b8db
[ "MIT" ]
13
2020-04-17T09:07:06.000Z
2020-07-25T19:43:44.000Z
deep_sdf/workspace.py
huajian1069/non-convex-optimisation
cf4cd5070524c3f7e6b814fe9b85a15a06e7b8db
[ "MIT" ]
null
null
null
#!/usr/bin/env python3 # Copyright 2004-present Facebook. All Rights Reserved. import json import os import torch model_params_subdir = "ModelParameters" optimizer_params_subdir = "OptimizerParameters" latent_codes_subdir = "LatentCodes" logs_filename = "Logs.pth" reconstructions_subdir = "Reconstructions" reconstruction_meshes_subdir = "Meshes" reconstruction_codes_subdir = "Codes" optimizations_subdir = "Optimizations" optimizations_meshes_subdir = "Meshes" optimizations_codes_subdir = "Codes" specifications_filename = "specs.json" data_source_map_filename = ".datasources.json" evaluation_subdir = "Evaluation" sdf_samples_subdir = "SdfSamples" renders_subdir = "Renders" surface_samples_subdir = "SurfaceSamples" normalization_param_subdir = "NormalizationParameters" training_meshes_subdir = "TrainingMeshes" def load_experiment_specifications(experiment_directory): filename = os.path.join(experiment_directory, specifications_filename) if not os.path.isfile(filename): raise Exception( "The experiment directory ({}) does not include specifications file " + '"specs.json"'.format(experiment_directory) ) return json.load(open(filename)) def load_model_parameters(experiment_directory, checkpoint, decoder): filename = os.path.join( experiment_directory, model_params_subdir, checkpoint + ".pth" ) if not os.path.isfile(filename): raise Exception('model state dict "{}" does not exist'.format(filename)) data = torch.load(filename) decoder.load_state_dict(data["model_state_dict"]) return data["epoch"] def build_decoder(experiment_directory, experiment_specs): arch = __import__( "networks." + experiment_specs["NetworkArch"], fromlist=["Decoder"] ) latent_size = experiment_specs["CodeLength"] decoder = arch.Decoder(latent_size, **experiment_specs["NetworkSpecs"]).cuda() return decoder def load_decoder( experiment_directory, experiment_specs, checkpoint, data_parallel=True ): decoder = build_decoder(experiment_directory, experiment_specs) if data_parallel: decoder = torch.nn.DataParallel(decoder) epoch = load_model_parameters(experiment_directory, checkpoint, decoder) return (decoder, epoch) def load_latent_vectors(experiment_directory, checkpoint): filename = os.path.join( experiment_directory, latent_codes_subdir, checkpoint + ".pth" ) if not os.path.isfile(filename): raise Exception( "The experiment directory ({}) does not include a latent code file" + " for checkpoint '{}'".format(experiment_directory, checkpoint) ) data = torch.load(filename) if isinstance(data["latent_codes"], torch.Tensor): num_vecs = data["latent_codes"].size()[0] lat_vecs = [] for i in range(num_vecs): lat_vecs.append(data["latent_codes"][i].cuda()) return lat_vecs else: num_embeddings, embedding_dim = data["latent_codes"]["weight"].shape lat_vecs = torch.nn.Embedding(num_embeddings, embedding_dim) lat_vecs.load_state_dict(data["latent_codes"]) return lat_vecs.weight.data.detach() def get_data_source_map_filename(data_dir): return os.path.join(data_dir, data_source_map_filename) def get_reconstructed_mesh_filename( experiment_dir, epoch, dataset, class_name, instance_name ): return os.path.join( experiment_dir, reconstructions_subdir, str(epoch), reconstruction_meshes_subdir, dataset, class_name, instance_name + ".ply", ) def get_reconstructed_code_filename( experiment_dir, epoch, dataset, class_name, instance_name ): return os.path.join( experiment_dir, reconstructions_subdir, str(epoch), reconstruction_codes_subdir, dataset, class_name, instance_name + ".pth", ) def get_evaluation_dir(experiment_dir, checkpoint, create_if_nonexistent=False): dir = os.path.join(experiment_dir, evaluation_subdir, checkpoint) if create_if_nonexistent and not os.path.isdir(dir): os.makedirs(dir) return dir def get_model_params_dir(experiment_dir, create_if_nonexistent=False): dir = os.path.join(experiment_dir, model_params_subdir) if create_if_nonexistent and not os.path.isdir(dir): os.makedirs(dir) return dir def get_optimizer_params_dir(experiment_dir, create_if_nonexistent=False): dir = os.path.join(experiment_dir, optimizer_params_subdir) if create_if_nonexistent and not os.path.isdir(dir): os.makedirs(dir) return dir def get_latent_codes_dir(experiment_dir, create_if_nonexistent=False): dir = os.path.join(experiment_dir, latent_codes_subdir) if create_if_nonexistent and not os.path.isdir(dir): os.makedirs(dir) return dir def get_normalization_params_filename( data_dir, dataset_name, class_name, instance_name ): return os.path.join( data_dir, normalization_param_subdir, dataset_name, class_name, instance_name + ".npz", )
25.566502
82
0.7158
608
5,190
5.807566
0.205592
0.030586
0.031153
0.050977
0.464741
0.435004
0.337581
0.306429
0.29595
0.29595
0
0.001431
0.1921
5,190
202
83
25.693069
0.840687
0.014451
0
0.315385
0
0
0.110307
0.004498
0
0
0
0
0
1
0.1
false
0
0.030769
0.030769
0.238462
0
0
0
0
null
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
null
0
0
0
0
0
0
0
0
0
0
0
0
1
0
6a9e779e59feb114fa5c597307d0f0ba536c3a82
1,571
py
Python
EmoPy/EmoPy/examples/convolutional_dropout_model.py
Rahmatullina/FinalYearProject
326f521b9f600dbbc7ace2223bd5aafc79b2267c
[ "Apache-2.0" ]
null
null
null
EmoPy/EmoPy/examples/convolutional_dropout_model.py
Rahmatullina/FinalYearProject
326f521b9f600dbbc7ace2223bd5aafc79b2267c
[ "Apache-2.0" ]
9
2020-09-26T01:09:35.000Z
2022-02-10T01:32:30.000Z
EmoPy/EmoPy/examples/convolutional_dropout_model.py
Rahmatullina/FinalYearProject
326f521b9f600dbbc7ace2223bd5aafc79b2267c
[ "Apache-2.0" ]
null
null
null
from EmoPy.src.fermodel import FERModel from EmoPy.src.directory_data_loader import DirectoryDataLoader from EmoPy.src.csv_data_loader import CSVDataLoader from EmoPy.src.data_generator import DataGenerator from EmoPy.src.neuralnets import ConvolutionalNNDropout from sklearn.model_selection import train_test_split import numpy as np from pkg_resources import resource_filename,resource_exists validation_split = 0.15 target_dimensions = (48, 48) channels = 1 verbose = True print('--------------- Convolutional Dropout Model -------------------') print('Loading data...') directory_path = resource_filename('EmoPy.examples','image_data/sample_image_directory') data_loader = DirectoryDataLoader(datapath=directory_path, validation_split=validation_split) dataset = data_loader.load_data() if verbose: dataset.print_data_details() print('Preparing training/testing data...') train_images, train_labels = dataset.get_training_data() train_gen = DataGenerator().fit(train_images, train_labels) test_images, test_labels = dataset.get_test_data() test_gen = DataGenerator().fit(test_images, test_labels) print('Training net...') model = ConvolutionalNNDropout(target_dimensions, channels, dataset.get_emotion_index_map(), verbose=True) model.fit_generator(train_gen.generate(target_dimensions, batch_size=5), test_gen.generate(target_dimensions, batch_size=5), epochs=15) # Save model configuration # model.export_model('output/conv2d_model.json','output/conv2d_weights.h5',"output/conv2d_emotion_map.json", emotion_map)
38.317073
121
0.789306
200
1,571
5.915
0.385
0.038039
0.050719
0.037194
0.062553
0.062553
0.062553
0
0
0
0
0.011315
0.099936
1,571
40
122
39.275
0.825318
0.091661
0
0
0
0
0.122191
0.023174
0
0
0
0
0
1
0
false
0
0.275862
0
0.275862
0.172414
0
0
0
null
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
null
0
0
0
0
0
0
0
0
0
0
0
0
1
0
6a9f71d63576d36e576c5ed1a561ba09b6a33e88
45,622
py
Python
deepstream_ignition_usb_yolo.py
valdivj/Deepstream-IGN-Maker-YOLO
f38ece731e9797a525da932c3da2de77e48f45af
[ "Unlicense" ]
18
2021-02-09T11:07:57.000Z
2022-03-16T12:35:34.000Z
deepstream_ignition_usb_yolo.py
valdivj/Deepstream-IGN-Maker-YOLO
f38ece731e9797a525da932c3da2de77e48f45af
[ "Unlicense" ]
null
null
null
deepstream_ignition_usb_yolo.py
valdivj/Deepstream-IGN-Maker-YOLO
f38ece731e9797a525da932c3da2de77e48f45af
[ "Unlicense" ]
3
2021-02-11T00:23:56.000Z
2021-11-16T02:15:37.000Z
#!/usr/bin/env python3 ################################################################################ # Copyright (c) 2020, NVIDIA CORPORATION. All rights reserved. # # Permission is hereby granted, free of charge, to any person obtaining a # copy of this software and associated documentation files (the "Software"), # to deal in the Software without restriction, including without limitation # the rights to use, copy, modify, merge, publish, distribute, sublicense, # and/or sell copies of the Software, and to permit persons to whom the # Software is furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in # all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL # THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING # FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER # DEALINGS IN THE SOFTWARE. ################################################################################ import sys sys.path.append('../') sys.path.insert(0, "../../../client_libraries/python/") import paho.mqtt.client as mqtt import sparkplug_b as sparkplug import time import time, threading import random import string import gi gi.require_version('Gst', '1.0') from gi.repository import GObject, Gst from common.is_aarch_64 import is_aarch64 from common.bus_call import bus_call from sparkplug_b import * import pyds # Application Variables serverUrl = "localhost" myGroupId = "Sparkplug B Devices" myNodeName = "NVIDIA" myDeviceName = "XavierNX" publishPeriod = 5000 myUsername = "admin" myPassword = "changeme" client = mqtt.Client(serverUrl, 1883, 60) WAIT_SECONDS = 1 frame_numberx = 0 num_rectsx = 0 counter1 = 0 counter2 = 0 Object1 = 0 Object2 = 0 Object3 = 0 Object4 = 0 Object5 = 0 Object6 = 0 Object7 = 0 Object8 = 0 Object9 = 0 Object10 = 0 newValue1 = 0 newValue2 = 0 newValue3 = 0 newValue4 = 0 newValue5 = 0 newValue6 = 0 newValue7 = 0 newValue8 = 0 newValue9 = 0 newValue10 = 0 class AliasMap: Next_Server = 0 Rebirth = 1 Reboot = 2 Device_frame_numberx = 3 Device_num_rectsx = 4 Device_Metric0 = 5 Device_Metric1 = 6 Device_Metric2 = 7 Device_Metric3 = 8 Device_Metric4 = 9 Device_counter1 = 10 Device_counter2 = 11 Device_Input1 = 12 Device_Input2 = 13 Device_Input3 = 14 Device_Input4 = 15 Device_Input5 = 16 Device_Input6 = 17 Device_Input7 = 18 Device_Input8 = 19 Device_Input9 = 20 Device_Input10 = 21 Device_Output1 = 22 Device_Output2 = 23 Device_Output3 = 24 Device_Output4 = 25 Device_Output5 = 26 Device_Output6 = 27 Device_Output7 = 28 Device_Output8 = 29 Device_Output9 = 30 Device_Output10 = 31 MAX_DISPLAY_LEN=64 PGIE_CLASS_ID_TOOTHBRUSH = 79 PGIE_CLASS_ID_HAIR_DRYER = 78 PGIE_CLASS_ID_TEDDY_BEAR = 77 PGIE_CLASS_ID_SCISSORS = 76 PGIE_CLASS_ID_VASE = 75 PGIE_CLASS_ID_CLOCK = 74 PGIE_CLASS_ID_BOOK = 73 PGIE_CLASS_ID_REFRIGERATOR = 72 PGIE_CLASS_ID_SINK = 71 PGIE_CLASS_ID_TOASTER = 70 PGIE_CLASS_ID_OVEN = 69 PGIE_CLASS_ID_MICROWAVE = 68 PGIE_CLASS_ID_CELL_PHONE = 67 PGIE_CLASS_ID_KEYBOARD = 66 PGIE_CLASS_ID_REMOTE = 65 PGIE_CLASS_ID_MOUSE = 64 PGIE_CLASS_ID_LAPTOP = 63 PGIE_CLASS_ID_TVMONITOR = 62 PGIE_CLASS_ID_TOILET = 61 PGIE_CLASS_ID_DININGTABLE= 60 PGIE_CLASS_ID_BED = 59 PGIE_CLASS_ID_POTTEDPLANT = 58 PGIE_CLASS_ID_SOFA = 57 PGIE_CLASS_ID_CHAIR = 56 PGIE_CLASS_ID_CAKE = 55 PGIE_CLASS_ID_DONUT = 54 PGIE_CLASS_ID_PIZZA = 53 PGIE_CLASS_ID_HOT_DOG = 52 PGIE_CLASS_ID_CARROT = 51 PGIE_CLASS_ID_BROCCOLI = 50 PGIE_CLASS_ID_ORANGE = 49 PGIE_CLASS_ID_SANDWICH = 48 PGIE_CLASS_ID_APPLE = 47 PGIE_CLASS_ID_BANANA = 46 PGIE_CLASS_ID_BOWL = 45 PGIE_CLASS_ID_SPOON = 44 PGIE_CLASS_ID_KNIFE = 43 PGIE_CLASS_ID_FORK = 42 PGIE_CLASS_ID_CUP = 41 PGIE_CLASS_ID_WINE_GLASS = 40 PGIE_CLASS_ID_BOTTLE = 39 PGIE_CLASS_ID_TENNIS_RACKET = 38 PGIE_CLASS_ID_SURFBOARD = 37 PGIE_CLASS_ID_SKATEBOARD = 36 PGIE_CLASS_ID_BASEBALL_GLOVE = 35 PGIE_CLASS_ID_BASEBALL_BAT = 34 PGIE_CLASS_ID_KITE = 33 PGIE_CLASS_ID_SPORTS_BALL = 32 PGIE_CLASS_ID_SNOWBOARD = 31 PGIE_CLASS_ID_SKIS = 30 PGIE_CLASS_ID_FRISBEE = 29 PGIE_CLASS_ID_SUITCASE = 28 PGIE_CLASS_ID_TIE = 27 PGIE_CLASS_ID_HANDBAG = 26 PGIE_CLASS_ID_UMBRELLA = 25 PGIE_CLASS_ID_BACKPACK = 24 PGIE_CLASS_ID_GIRAFFE = 23 PGIE_CLASS_ID_ZEBRA = 22 PGIE_CLASS_ID_BEAR = 21 PGIE_CLASS_ID_ELEPHANT = 20 PGIE_CLASS_ID_COW = 19 PGIE_CLASS_ID_SHEEP = 18 PGIE_CLASS_ID_HORSE = 17 PGIE_CLASS_ID_DOG = 16 PGIE_CLASS_ID_CAT = 15 PGIE_CLASS_ID_BIRD = 14 PGIE_CLASS_ID_BENCH = 13 PGIE_CLASS_ID_PARKING_METER = 12 PGIE_CLASS_ID_STOP_SIGN = 11 PGIE_CLASS_ID_FIRE_HYDRANT = 10 PGIE_CLASS_ID_TRAFFIC_LIGHT = 9 PGIE_CLASS_ID_BOAT = 8 PGIE_CLASS_ID_TRUCK = 7 PGIE_CLASS_ID_TRAIN = 6 PGIE_CLASS_ID_BUS = 5 PGIE_CLASS_ID_AEROPLANE = 4 PGIE_CLASS_ID_MOTORBIKE = 3 PGIE_CLASS_ID_VEHICLE = 2 PGIE_CLASS_ID_BICYCLE = 1 PGIE_CLASS_ID_PERSON = 0 pgie_classes_str= ["Toothbrush", "Hair dryer", "Teddy bear","Scissors","Vase", "Clock", "Book","Refrigerator", "Sink", "Toaster","Oven","Microwave", "Cell phone", "Keyboard","Remote", "Mouse", "Laptop","Tvmonitor","Toilet", "Diningtable", "Bed","Pottedplant", "Sofa", "Chair","Cake","Donut", "Pizza", "Hot dog","Carrot", "Broccli", "Orange","Sandwich","Apple", "Banana", "Bowl","Spoon", "Knife", "Fork","Cup","Wine Glass", "Bottle", "Tennis racket","Surfboard", "Skateboard", "Baseball glove","Baseball bat","Kite", "Sports ball", "Snowboard","Skis", "Frisbee", "Suitcase","Tie","Handbag", "Umbrella", "Backpack","Giraffe", "Zebra", "Bear","Elephant","Cow", "Sheep", "Horse","Dog", "Cat", "Bird","Bench","Parking meter", "Stop sign", "Fire hydrant","Traffic light", "Boat", "Truck","Train","Bus", "Areoplane", "Motorbike","Car", "Bicycle", "Person"] ###################################################################### # The callback for when the client receives a CONNACK response from the server. ###################################################################### def on_connect(client, userdata, flags, rc): if rc == 0: print("Connected with result code "+str(rc)) else: print("Failed to connect with result code "+str(rc)) sys.exit() global myGroupId global myNodeName # Subscribing in on_connect() means that if we lose the connection and # reconnect then subscriptions will be renewed. client.subscribe("spBv1.0/" + myGroupId + "/NCMD/" + myNodeName + "/#") client.subscribe("spBv1.0/" + myGroupId + "/DCMD/" + myNodeName + "/#") ###################################################################### ###################################################################### # The callback for when a PUBLISH message is received from the server. ###################################################################### def on_message(client, userdata, msg): print("Message arrived: " + msg.topic) tokens = msg.topic.split("/") global newValue1 global newValue2 global newValue3 global newValue4 global newValue5 global newValue6 global newValue7 global newValue8 global newValue9 global newValue10 if tokens[0] == "spBv1.0" and tokens[1] == myGroupId and (tokens[2] == "NCMD" or tokens[2] == "DCMD") and tokens[3] == myNodeName: inboundPayload = sparkplug_b_pb2.Payload() inboundPayload.ParseFromString(msg.payload) for metric in inboundPayload.metrics: if metric.name == "Node Control/Next Server" or metric.alias == AliasMap.Next_Server: # 'Node Control/Next Server' is an NCMD used to tell the device/client application to # disconnect from the current MQTT server and connect to the next MQTT server in the # list of available servers. This is used for clients that have a pool of MQTT servers # to connect to. print ("'Node Control/Next Server' is not implemented in this example") elif metric.name == "Node Control/Rebirth" or metric.alias == AliasMap.Rebirth: # 'Node Control/Rebirth' is an NCMD used to tell the device/client application to resend # its full NBIRTH and DBIRTH again. MQTT Engine will send this NCMD to a device/client # application if it receives an NDATA or DDATA with a metric that was not published in the # original NBIRTH or DBIRTH. This is why the application must send all known metrics in # its original NBIRTH and DBIRTH messages. publishBirth() elif metric.name == "Node Control/Reboot" or metric.alias == AliasMap.Reboot: # 'Node Control/Reboot' is an NCMD used to tell a device/client application to reboot # This can be used for devices that need a full application reset via a soft reboot. # In this case, we fake a full reboot with a republishing of the NBIRTH and DBIRTH # messages. publishBirth() elif metric.name == "output/Device Metric2" or metric.alias == AliasMap.Device_Metric2: # This is a metric we declared in our DBIRTH message and we're emulating an output. # So, on incoming 'writes' to the output we must publish a DDATA with the new output # value. If this were a real output we'd write to the output and then read it back # before publishing a DDATA message. # We know this is an Int16 because of how we declated it in the DBIRTH newValue = metric.int_value print ("CMD message for output/Device Metric2 - New Value: {}".format(newValue)) # Create the DDATA payload - Use the alias because this isn't the DBIRTH payload = sparkplug.getDdataPayload() addMetric(payload, None, AliasMap.Device_Metric2, MetricDataType.Int16, newValue) # Publish a message data byteArray = bytearray(payload.SerializeToString()) client.publish("spBv1.0/" + myGroupId + "/DDATA/" + myNodeName + "/" + myDeviceName, byteArray, 0, False) # Publish a message Input 1 #publishBirth() elif metric.name == "output/Device Input1" or metric.alias == AliasMap.Device_Input1: # This is a metric we declared in our DBIRTH message and we're emulating an output. # So, on incoming 'writes' to the output we must publish a DDATA with the new output # value. If this were a real output we'd write to the output and then read it back # before publishing a DDATA message. # We know this is an Int16 because of how we declated it in the DBIRTH newValue1 = metric.int_value print ("CMD message for output/Device Input1 - New Value: {}".format(newValue1)) # Create the DDATA payload - Use the alias because this isn't the DBIRTH payload = sparkplug.getDdataPayload() addMetric(payload, None, AliasMap.Device_Input1, MetricDataType.Int16, newValue1) # Publish a message data byteArray = bytearray(payload.SerializeToString()) client.publish("spBv1.0/" + myGroupId + "/DDATA/" + myNodeName + "/" + myDeviceName, byteArray, 0, False) # Publish a message Input 2 #publishBirth() elif metric.name == "output/Device Input2" or metric.alias == AliasMap.Device_Input2: # This is a metric we declared in our DBIRTH message and we're emulating an output. # So, on incoming 'writes' to the output we must publish a DDATA with the new output # value. If this were a real output we'd write to the output and then read it back # before publishing a DDATA message. # We know this is an Int16 because of how we declated it in the DBIRTH newValue2 = metric.int_value print ("CMD message for output/Device Input2 - New Value: {}".format(newValue2)) # Create the DDATA payload - Use the alias because this isn't the DBIRTH payload = sparkplug.getDdataPayload() addMetric(payload, None, AliasMap.Device_Input2, MetricDataType.Int16, newValue2) # Publish a message data byteArray = bytearray(payload.SerializeToString()) client.publish("spBv1.0/" + myGroupId + "/DDATA/" + myNodeName + "/" + myDeviceName, byteArray, 0, False) # Publish a message Input 3 #publishBirth() elif metric.name == "output/Device Input3" or metric.alias == AliasMap.Device_Input3: # This is a metric we declared in our DBIRTH message and we're emulating an output. # So, on incoming 'writes' to the output we must publish a DDATA with the new output # value. If this were a real output we'd write to the output and then read it back # before publishing a DDATA message. # We know this is an Int16 because of how we declated it in the DBIRTH newValue3 = metric.int_value print ("CMD message for output/Device Input3 - New Value: {}".format(newValue3)) # Create the DDATA payload - Use the alias because this isn't the DBIRTH payload = sparkplug.getDdataPayload() addMetric(payload, None, AliasMap.Device_Input3, MetricDataType.Int16, newValue3) # Publish a message data byteArray = bytearray(payload.SerializeToString()) client.publish("spBv1.0/" + myGroupId + "/DDATA/" + myNodeName + "/" + myDeviceName, byteArray, 0, False) # Publish a message Input 4 #publishBirth() elif metric.name == "output/Device Input4" or metric.alias == AliasMap.Device_Input4: # This is a metric we declared in our DBIRTH message and we're emulating an output. # So, on incoming 'writes' to the output we must publish a DDATA with the new output # value. If this were a real output we'd write to the output and then read it back # before publishing a DDATA message. # We know this is an Int16 because of how we declated it in the DBIRTH newValue4 = metric.int_value print ("CMD message for output/Device Input4 - New Value: {}".format(newValue4)) # Create the DDATA payload - Use the alias because this isn't the DBIRTH payload = sparkplug.getDdataPayload() addMetric(payload, None, AliasMap.Device_Input4, MetricDataType.Int16, newValue4) # Publish a message data byteArray = bytearray(payload.SerializeToString()) client.publish("spBv1.0/" + myGroupId + "/DDATA/" + myNodeName + "/" + myDeviceName, byteArray, 0, False) # Publish a message Input 5 #publishBirth() elif metric.name == "output/Device Input5" or metric.alias == AliasMap.Device_Input5: # This is a metric we declared in our DBIRTH message and we're emulating an output. # So, on incoming 'writes' to the output we must publish a DDATA with the new output # value. If this were a real output we'd write to the output and then read it back # before publishing a DDATA message. # We know this is an Int16 because of how we declated it in the DBIRTH newValue5 = metric.int_value print ("CMD message for output/Device Input5 - New Value: {}".format(newValue5)) # Create the DDATA payload - Use the alias because this isn't the DBIRTH payload = sparkplug.getDdataPayload() addMetric(payload, None, AliasMap.Device_Input5, MetricDataType.Int16, newValue5) # Publish a message data byteArray = bytearray(payload.SerializeToString()) client.publish("spBv1.0/" + myGroupId + "/DDATA/" + myNodeName + "/" + myDeviceName, byteArray, 0, False) # Publish a message Input 6 #publishBirth() elif metric.name == "output/Device Input6" or metric.alias == AliasMap.Device_Input6: # This is a metric we declared in our DBIRTH message and we're emulating an output. # So, on incoming 'writes' to the output we must publish a DDATA with the new output # value. If this were a real output we'd write to the output and then read it back # before publishing a DDATA message. # We know this is an Int16 because of how we declated it in the DBIRTH newValue6 = metric.int_value print ("CMD message for output/Device Input6 - New Value: {}".format(newValue6)) # Create the DDATA payload - Use the alias because this isn't the DBIRTH payload = sparkplug.getDdataPayload() addMetric(payload, None, AliasMap.Device_Input6, MetricDataType.Int16, newValue6) # Publish a message data byteArray = bytearray(payload.SerializeToString()) client.publish("spBv1.0/" + myGroupId + "/DDATA/" + myNodeName + "/" + myDeviceName, byteArray, 0, False) # Publish a message Input 7 #publishBirth() elif metric.name == "output/Device Input7" or metric.alias == AliasMap.Device_Input7: # This is a metric we declared in our DBIRTH message and we're emulating an output. # So, on incoming 'writes' to the output we must publish a DDATA with the new output # value. If this were a real output we'd write to the output and then read it back # before publishing a DDATA message. # We know this is an Int16 because of how we declated it in the DBIRTH newValue7 = metric.int_value print ("CMD message for output/Device Input7 - New Value: {}".format(newValue7)) # Create the DDATA payload - Use the alias because this isn't the DBIRTH payload = sparkplug.getDdataPayload() addMetric(payload, None, AliasMap.Device_Input7, MetricDataType.Int16, newValue7) # Publish a message data byteArray = bytearray(payload.SerializeToString()) client.publish("spBv1.0/" + myGroupId + "/DDATA/" + myNodeName + "/" + myDeviceName, byteArray, 0, False) # Publish a message Input 8 #publishBirth() elif metric.name == "output/Device Input8" or metric.alias == AliasMap.Device_Input8: # This is a metric we declared in our DBIRTH message and we're emulating an output. # So, on incoming 'writes' to the output we must publish a DDATA with the new output # value. If this were a real output we'd write to the output and then read it back # before publishing a DDATA message. # We know this is an Int16 because of how we declated it in the DBIRTH newValue8 = metric.int_value print ("CMD message for output/Device Input8 - New Value: {}".format(newValue8)) # Create the DDATA payload - Use the alias because this isn't the DBIRTH payload = sparkplug.getDdataPayload() addMetric(payload, None, AliasMap.Device_Input8, MetricDataType.Int16, newValue8) # Publish a message data byteArray = bytearray(payload.SerializeToString()) client.publish("spBv1.0/" + myGroupId + "/DDATA/" + myNodeName + "/" + myDeviceName, byteArray, 0, False) # Publish a message Input 9 #publishBirth() elif metric.name == "output/Device Input9" or metric.alias == AliasMap.Device_Input9: # This is a metric we declared in our DBIRTH message and we're emulating an output. # So, on incoming 'writes' to the output we must publish a DDATA with the new output # value. If this were a real output we'd write to the output and then read it back # before publishing a DDATA message. # We know this is an Int16 because of how we declated it in the DBIRTH newValue9 = metric.int_value print ("CMD message for output/Device Input9 - New Value: {}".format(newValue9)) # Create the DDATA payload - Use the alias because this isn't the DBIRTH payload = sparkplug.getDdataPayload() addMetric(payload, None, AliasMap.Device_Input9, MetricDataType.Int16, newValue9) # Publish a message data byteArray = bytearray(payload.SerializeToString()) client.publish("spBv1.0/" + myGroupId + "/DDATA/" + myNodeName + "/" + myDeviceName, byteArray, 0, False) # Publish a message Input 10 #publishBirth() elif metric.name == "output/Device Input10" or metric.alias == AliasMap.Device_Input10: # This is a metric we declared in our DBIRTH message and we're emulating an output. # So, on incoming 'writes' to the output we must publish a DDATA with the new output # value. If this were a real output we'd write to the output and then read it back # before publishing a DDATA message. # We know this is an Int16 because of how we declated it in the DBIRTH newValue10 = metric.int_value print ("CMD message for output/Device Input10 - New Value: {}".format(newValue10)) # Create the DDATA payload - Use the alias because this isn't the DBIRTH payload = sparkplug.getDdataPayload() addMetric(payload, None, AliasMap.Device_Input10, MetricDataType.Int16, newValue10) # Publish a message data byteArray = bytearray(payload.SerializeToString()) client.publish("spBv1.0/" + myGroupId + "/DDATA/" + myNodeName + "/" + myDeviceName, byteArray, 0, False) #global newValue4 #publishBirth() elif metric.name == "output/Device Metric4" or metric.alias == AliasMap.Device_Metric4: # This is a metric we declared in our DBIRTH message and we're emulating an output. # So, on incoming 'writes' to the output we must publish a DDATA with the new output # value. If this were a real output we'd write to the output and then read it back # before publishing a DDATA message. # We know this is an Int16 because of how we declated it in the DBIRTH newValue = metric.string_value print ("CMD message for output/Device Metric4 - New Value: {}".format(newValue)) # Create the DDATA payload - Use the alias because this isn't the DBIRTH payload = sparkplug.getDdataPayload() addMetric(payload, None, AliasMap.Device_Metric4, MetricDataType.String, newValue) # Publish a message data byteArray = bytearray(payload.SerializeToString()) client.publish("spBv1.0/" + myGroupId + "/DDATA/" + myNodeName + "/" + myDeviceName, byteArray, 0, False) #publishBirth() elif metric.name == "output/Device Metric3" or metric.alias == AliasMap.Device_Metric3: # This is a metric we declared in our DBIRTH message and we're emulating an output. # So, on incoming 'writes' to the output we must publish a DDATA with the new output # value. If this were a real output we'd write to the output and then read it back # before publishing a DDATA message. # We know this is an Boolean because of how we declated it in the DBIRTH newValue = metric.boolean_value print ("CMD message for output/Device Metric3 - New Value: %r" % newValue) # Create the DDATA payload - use the alias because this isn't the DBIRTH payload = sparkplug.getDdataPayload() addMetric(payload, None, AliasMap.Device_Metric3, MetricDataType.Boolean, newValue) # Publish a message data byteArray = bytearray(payload.SerializeToString()) client.publish("spBv1.0/" + myGroupId + "/DDATA/" + myNodeName + "/" + myDeviceName, byteArray, 0, False) else: print ("Unknown command: " + metric.name) else: print ("Unknown command...") print ("Done publishing") ##################################################################### ###################################################################### ###################################################################### # Publish the BIRTH certificates ###################################################################### def publishBirth(): publishNodeBirth() publishDeviceBirth() ###################################################################### ###################################################################### # Publish the NBIRTH certificate ###################################################################### def publishNodeBirth(): print ("Publishing Node Birth") # Create the node birth payload payload = sparkplug.getNodeBirthPayload() # Set up the Node Controls addMetric(payload, "Node Control/Next Server", AliasMap.Next_Server, MetricDataType.Boolean, False) addMetric(payload, "Node Control/Rebirth", AliasMap.Rebirth, MetricDataType.Boolean, False) addMetric(payload, "Node Control/Reboot", AliasMap.Reboot, MetricDataType.Boolean, False) # Publish the node birth certificate byteArray = bytearray(payload.SerializeToString()) client.publish("spBv1.0/" + myGroupId + "/NBIRTH/" + myNodeName, byteArray, 0, False) ###################################################################### ###################################################################### # Publish the DBIRTH certificate ###################################################################### def publishDeviceBirth(): print ("Publishing Device Birth") # Get the payload payload = sparkplug.getDeviceBirthPayload() # Add some device metrics addMetric(payload, "input/Frame Number", AliasMap.Device_frame_numberx, MetricDataType.Int16, frame_numberx ) addMetric(payload, "input/Device Metric0", AliasMap.Device_Metric0, MetricDataType.String, "hello device") addMetric(payload, "input/Device Metric1", AliasMap.Device_Metric1, MetricDataType.Boolean, True) addMetric(payload, "input/Number of Objects", AliasMap.Device_num_rectsx, MetricDataType.Int16, num_rectsx ) addMetric(payload, "output/Device Metric2", AliasMap.Device_Metric2, MetricDataType.Int16, 0) addMetric(payload, "output/Device Input1", AliasMap.Device_Input1, MetricDataType.Int16, 0) addMetric(payload, "output/Device Input2", AliasMap.Device_Input2, MetricDataType.Int16, 0) addMetric(payload, "output/Device Input3", AliasMap.Device_Input3, MetricDataType.Int16, 0) addMetric(payload, "output/Device Input4", AliasMap.Device_Input4, MetricDataType.Int16, 0) addMetric(payload, "output/Device Input5", AliasMap.Device_Input5, MetricDataType.Int16, 0) addMetric(payload, "output/Device Input6", AliasMap.Device_Input6, MetricDataType.Int16, 0) addMetric(payload, "output/Device Input7", AliasMap.Device_Input7, MetricDataType.Int16, 0) addMetric(payload, "output/Device Input8", AliasMap.Device_Input8, MetricDataType.Int16, 0) addMetric(payload, "output/Device Input9", AliasMap.Device_Input9, MetricDataType.Int16, 0) addMetric(payload, "output/Device Input10", AliasMap.Device_Input10, MetricDataType.Int16, 0) addMetric(payload,"input/Device Output1", AliasMap.Device_Output1, MetricDataType.Int16, 0) addMetric(payload, "input/Device Output2", AliasMap.Device_Output2, MetricDataType.Int16, 0) addMetric(payload, "input/Device Output3", AliasMap.Device_Output3, MetricDataType.Int16, 0) addMetric(payload, "input/Device Output4", AliasMap.Device_Output4, MetricDataType.Int16, 0) addMetric(payload, "input/Device Output5", AliasMap.Device_Output5, MetricDataType.Int16, 0) addMetric(payload, "input/Device Output6", AliasMap.Device_Output6, MetricDataType.Int16, 0) addMetric(payload, "input/Device Output7", AliasMap.Device_Output7, MetricDataType.Int16, 0) addMetric(payload, "input/Device Output8", AliasMap.Device_Output8, MetricDataType.Int16, 0) addMetric(payload, "input/Device Output9", AliasMap.Device_Output9, MetricDataType.Int16, 0) addMetric(payload, "input/Device Output10", AliasMap.Device_Output10, MetricDataType.Int16, 0) addMetric(payload, "output/Device Metric3", AliasMap.Device_Metric3, MetricDataType.Boolean, True) addMetric(payload, "output/Device Metric4", AliasMap.Device_Metric4, MetricDataType.String, "start") # Publish the initial data with the Device BIRTH certificate totalByteArray = bytearray(payload.SerializeToString()) client.publish("spBv1.0/" + myGroupId + "/DBIRTH/" + myNodeName + "/" + myDeviceName, totalByteArray, 0, False) ###################################################################### ###################################################################### def osd_sink_pad_buffer_probe(pad,info,u_data): global frame_numberx global num_rectsx global Object1 global Object2 global Object3 global Object4 global Object5 global Object6 global Object7 global Object8 global Object9 global Object10 #Intiallizing object counter with 0. obj_counter = { PGIE_CLASS_ID_TOOTHBRUSH:0, PGIE_CLASS_ID_HAIR_DRYER:0, PGIE_CLASS_ID_TEDDY_BEAR:0, PGIE_CLASS_ID_SCISSORS:0, PGIE_CLASS_ID_VASE:0, PGIE_CLASS_ID_CLOCK:0, PGIE_CLASS_ID_BOOK:0, PGIE_CLASS_ID_REFRIGERATOR:0, PGIE_CLASS_ID_SINK:0, PGIE_CLASS_ID_TOASTER:0, PGIE_CLASS_ID_OVEN:0, PGIE_CLASS_ID_MICROWAVE:0, PGIE_CLASS_ID_CELL_PHONE:0, PGIE_CLASS_ID_KEYBOARD:0, PGIE_CLASS_ID_REMOTE:0, PGIE_CLASS_ID_MOUSE:0, PGIE_CLASS_ID_LAPTOP:0, PGIE_CLASS_ID_TVMONITOR:0, PGIE_CLASS_ID_TOILET:0, PGIE_CLASS_ID_DININGTABLE:0, PGIE_CLASS_ID_BED:0, PGIE_CLASS_ID_POTTEDPLANT:0, PGIE_CLASS_ID_SOFA:0, PGIE_CLASS_ID_CHAIR:0, PGIE_CLASS_ID_CAKE:0, PGIE_CLASS_ID_DONUT:0, PGIE_CLASS_ID_PIZZA:0, PGIE_CLASS_ID_HOT_DOG:0, PGIE_CLASS_ID_CARROT:0, PGIE_CLASS_ID_BROCCOLI:0, PGIE_CLASS_ID_ORANGE:0, PGIE_CLASS_ID_SANDWICH:0, PGIE_CLASS_ID_APPLE:0, PGIE_CLASS_ID_BANANA:0, PGIE_CLASS_ID_BOWL:0, PGIE_CLASS_ID_SPOON:0, PGIE_CLASS_ID_KNIFE:0, PGIE_CLASS_ID_FORK:0, PGIE_CLASS_ID_CUP:0, PGIE_CLASS_ID_WINE_GLASS:0, PGIE_CLASS_ID_BOTTLE:0, PGIE_CLASS_ID_TENNIS_RACKET:0, PGIE_CLASS_ID_SURFBOARD:0, PGIE_CLASS_ID_SKATEBOARD:0, PGIE_CLASS_ID_BASEBALL_GLOVE:0, PGIE_CLASS_ID_BASEBALL_BAT:0, PGIE_CLASS_ID_KITE:0, PGIE_CLASS_ID_SPORTS_BALL:0, PGIE_CLASS_ID_SNOWBOARD:0, PGIE_CLASS_ID_SKIS:0, PGIE_CLASS_ID_FRISBEE:0, PGIE_CLASS_ID_SUITCASE:0, PGIE_CLASS_ID_TIE:0, PGIE_CLASS_ID_HANDBAG:0, PGIE_CLASS_ID_UMBRELLA:0, PGIE_CLASS_ID_BACKPACK:0, PGIE_CLASS_ID_GIRAFFE:0, PGIE_CLASS_ID_ZEBRA:0, PGIE_CLASS_ID_BEAR:0, PGIE_CLASS_ID_ELEPHANT:0, PGIE_CLASS_ID_COW:0, PGIE_CLASS_ID_SHEEP:0, PGIE_CLASS_ID_HORSE:0, PGIE_CLASS_ID_DOG:0, PGIE_CLASS_ID_CAT:0, PGIE_CLASS_ID_BIRD:0, PGIE_CLASS_ID_BENCH:0, PGIE_CLASS_ID_PARKING_METER:0, PGIE_CLASS_ID_STOP_SIGN:0, PGIE_CLASS_ID_FIRE_HYDRANT:0, PGIE_CLASS_ID_TRAFFIC_LIGHT:0, PGIE_CLASS_ID_BOAT:0, PGIE_CLASS_ID_TRUCK:0, PGIE_CLASS_ID_TRAIN:0, PGIE_CLASS_ID_BUS:0, PGIE_CLASS_ID_AEROPLANE:0, PGIE_CLASS_ID_MOTORBIKE:0, PGIE_CLASS_ID_VEHICLE:0, PGIE_CLASS_ID_BICYCLE:0, PGIE_CLASS_ID_PERSON:0 } num_rects=0 gst_buffer = info.get_buffer() if not gst_buffer: print("Unable to get GstBuffer ") return # Retrieve batch metadata from the gst_buffer # Note that pyds.gst_buffer_get_nvds_batch_meta() expects the # C address of gst_buffer as input, which is obtained with hash(gst_buffer) batch_meta = pyds.gst_buffer_get_nvds_batch_meta(hash(gst_buffer)) l_frame = batch_meta.frame_meta_list while l_frame is not None: try: # Note that l_frame.data needs a cast to pyds.NvDsFrameMeta # The casting is done by pyds.NvDsFrameMeta.cast() # The casting also keeps ownership of the underlying memory # in the C code, so the Python garbage collector will leave # it alone. frame_meta = pyds.NvDsFrameMeta.cast(l_frame.data) except StopIteration: break frame_number=frame_meta.frame_num frame_numberx=frame_meta.frame_num num_rects = frame_meta.num_obj_meta num_rectsx = frame_meta.num_obj_meta l_obj=frame_meta.obj_meta_list while l_obj is not None: try: # Casting l_obj.data to pyds.NvDsObjectMeta obj_meta=pyds.NvDsObjectMeta.cast(l_obj.data) except StopIteration: break obj_counter[obj_meta.class_id] += 1 try: l_obj=l_obj.next except StopIteration: break # Acquiring a display meta object. The memory ownership remains in # the C code so downstream plugins can still access it. Otherwise # the garbage collector will claim it when this probe function exits. display_meta=pyds.nvds_acquire_display_meta_from_pool(batch_meta) display_meta.num_labels = 1 py_nvosd_text_params = display_meta.text_params[0] # Setting display text to be shown on screen # Note that the pyds module allocates a buffer for the string, and the # memory will not be claimed by the garbage collector. # Reading the display_text field here will return the C address of the # allocated string. Use pyds.get_string() to get the string content. py_nvosd_text_params.display_text = "Frame Number={} Number of Objects={} Bird_count={} Person_count={}".format(frame_number, num_rects, obj_counter[PGIE_CLASS_ID_CUP], obj_counter[PGIE_CLASS_ID_BOTTLE]) Object1 = obj_counter[newValue1] Object2 = obj_counter[newValue2] Object3 = obj_counter[newValue3] Object4 = obj_counter[newValue4] Object5 = obj_counter[newValue5] Object6 = obj_counter[newValue6] Object7 = obj_counter[newValue7] Object8 = obj_counter[newValue8] Object9 = obj_counter[newValue9] Object10 = obj_counter[newValue10] # Now set the offsets where the string should appear py_nvosd_text_params.x_offset = 10 py_nvosd_text_params.y_offset = 12 # Font , font-color and font-size py_nvosd_text_params.font_params.font_name = "Serif" py_nvosd_text_params.font_params.font_size = 10 # set(red, green, blue, alpha); set to White py_nvosd_text_params.font_params.font_color.set(1.0, 1.0, 1.0, 1.0) # Text background color py_nvosd_text_params.set_bg_clr = 1 # set(red, green, blue, alpha); set to Black py_nvosd_text_params.text_bg_clr.set(0.0, 0.0, 0.0, 1.0) # Using pyds.get_string() to get display_text as string # print(pyds.get_string(py_nvosd_text_params.display_text)) #pyds.nvds_add_display_meta_to_frame(frame_meta, display_meta) try: l_frame=l_frame.next except StopIteration: break return Gst.PadProbeReturn.OK ###################################################################### def main(args): # Check input arguments if len(args) != 2: sys.stderr.write("usage: %s <v4l2-device-path>\n" % args[0]) sys.exit(1) # Standard GStreamer initialization GObject.threads_init() Gst.init(None) # Create gstreamer elements # Create Pipeline element that will form a connection of other elements print("Creating Pipeline \n ") pipeline = Gst.Pipeline() if not pipeline: sys.stderr.write(" Unable to create Pipeline \n") # Source element for reading from the file print("Creating Source \n ") source = Gst.ElementFactory.make("v4l2src", "usb-cam-source") if not source: sys.stderr.write(" Unable to create Source \n") caps_v4l2src = Gst.ElementFactory.make("capsfilter", "v4l2src_caps") if not caps_v4l2src: sys.stderr.write(" Unable to create v4l2src capsfilter \n") print("Creating Video Converter \n") # Adding videoconvert -> nvvideoconvert as not all # raw formats are supported by nvvideoconvert; # Say YUYV is unsupported - which is the common # raw format for many logi usb cams # In case we have a camera with raw format supported in # nvvideoconvert, GStreamer plugins' capability negotiation # shall be intelligent enough to reduce compute by # videoconvert doing passthrough (TODO we need to confirm this) # videoconvert to make sure a superset of raw formats are supported vidconvsrc = Gst.ElementFactory.make("videoconvert", "convertor_src1") if not vidconvsrc: sys.stderr.write(" Unable to create videoconvert \n") # nvvideoconvert to convert incoming raw buffers to NVMM Mem (NvBufSurface API) nvvidconvsrc = Gst.ElementFactory.make("nvvideoconvert", "convertor_src2") if not nvvidconvsrc: sys.stderr.write(" Unable to create Nvvideoconvert \n") caps_vidconvsrc = Gst.ElementFactory.make("capsfilter", "nvmm_caps") if not caps_vidconvsrc: sys.stderr.write(" Unable to create capsfilter \n") # Create nvstreammux instance to form batches from one or more sources. streammux = Gst.ElementFactory.make("nvstreammux", "Stream-muxer") if not streammux: sys.stderr.write(" Unable to create NvStreamMux \n") # Use nvinfer to run inferencing on camera's output, # behaviour of inferencing is set through config file pgie = Gst.ElementFactory.make("nvinfer", "primary-inference") if not pgie: sys.stderr.write(" Unable to create pgie \n") # Use convertor to convert from NV12 to RGBA as required by nvosd nvvidconv = Gst.ElementFactory.make("nvvideoconvert", "convertor") if not nvvidconv: sys.stderr.write(" Unable to create nvvidconv \n") # Create OSD to draw on the converted RGBA buffer nvosd = Gst.ElementFactory.make("nvdsosd", "onscreendisplay") if not nvosd: sys.stderr.write(" Unable to create nvosd \n") # Finally render the osd output if is_aarch64(): transform = Gst.ElementFactory.make("nvegltransform", "nvegl-transform") print("Creating EGLSink \n") sink = Gst.ElementFactory.make("nveglglessink", "nvvideo-renderer") if not sink: sys.stderr.write(" Unable to create egl sink \n") print("Playing cam %s " %args[1]) caps_v4l2src.set_property('caps', Gst.Caps.from_string("video/x-raw, framerate=30/1")) caps_vidconvsrc.set_property('caps', Gst.Caps.from_string("video/x-raw(memory:NVMM)")) source.set_property('device', args[1]) streammux.set_property('width', 640) streammux.set_property('height', 480) streammux.set_property('batch-size', 1) streammux.set_property('batched-push-timeout', 4000000) pgie.set_property('config-file-path', "config_infer_primary_yoloV3.txt") # Set sync = false to avoid late frame drops at the display-sink sink.set_property('sync', False) print("Adding elements to Pipeline \n") pipeline.add(source) pipeline.add(caps_v4l2src) pipeline.add(vidconvsrc) pipeline.add(nvvidconvsrc) pipeline.add(caps_vidconvsrc) pipeline.add(streammux) pipeline.add(pgie) pipeline.add(nvvidconv) pipeline.add(nvosd) pipeline.add(sink) if is_aarch64(): pipeline.add(transform) # we link the elements together # v4l2src -> nvvideoconvert -> mux -> # nvinfer -> nvvideoconvert -> nvosd -> video-renderer print("Linking elements in the Pipeline \n") source.link(caps_v4l2src) caps_v4l2src.link(vidconvsrc) vidconvsrc.link(nvvidconvsrc) nvvidconvsrc.link(caps_vidconvsrc) sinkpad = streammux.get_request_pad("sink_0") if not sinkpad: sys.stderr.write(" Unable to get the sink pad of streammux \n") srcpad = caps_vidconvsrc.get_static_pad("src") if not srcpad: sys.stderr.write(" Unable to get source pad of caps_vidconvsrc \n") srcpad.link(sinkpad) streammux.link(pgie) pgie.link(nvvidconv) nvvidconv.link(nvosd) if is_aarch64(): nvosd.link(transform) transform.link(sink) else: nvosd.link(sink) # create an event loop and feed gstreamer bus mesages to it loop = GObject.MainLoop() bus = pipeline.get_bus() bus.add_signal_watch() bus.connect ("message", bus_call, loop) # Lets add probe to get informed of the meta data generated, we add probe to # the sink pad of the osd element, since by that time, the buffer would have # had got all the metadata. osdsinkpad = nvosd.get_static_pad("sink") if not osdsinkpad: sys.stderr.write(" Unable to get sink pad of nvosd \n") osdsinkpad.add_probe(Gst.PadProbeType.BUFFER, osd_sink_pad_buffer_probe, 0) ###################################################################### # Create the node death payload deathPayload = sparkplug.getNodeDeathPayload() # Start of main program - Set up the MQTT client connection client.on_connect = on_connect client.on_message = on_message client.username_pw_set(myUsername, myPassword) deathByteArray = bytearray(deathPayload.SerializeToString()) client.will_set("spBv1.0/" + myGroupId + "/NDEATH/" + myNodeName, deathByteArray, 0, False) client.connect(serverUrl, 1883, 60) # Publish the birth certificates publishBirth() def foo(): # Periodically publish some new data payload = sparkplug.getDdataPayload() # Add some random data to the inputs addMetric(payload, "input/number of objects", AliasMap.Device_num_rectsx, MetricDataType.Int16, num_rectsx ) addMetric(payload, "input/Frame Number", AliasMap.Device_frame_numberx, MetricDataType.Int16, frame_numberx ) addMetric(payload,"input/Device Output1", AliasMap.Device_Output1, MetricDataType.Int16, Object1) addMetric(payload, "input/Device Output2", AliasMap.Device_Output2, MetricDataType.Int16, Object2) addMetric(payload, "input/Device Output3", AliasMap.Device_Output3, MetricDataType.Int16, Object3) addMetric(payload, "input/Device Output4", AliasMap.Device_Output4, MetricDataType.Int16, Object4) addMetric(payload, "input/Device Output5", AliasMap.Device_Output5, MetricDataType.Int16, Object5) addMetric(payload, "input/Device Output6", AliasMap.Device_Output6, MetricDataType.Int16, Object6) addMetric(payload, "input/Device Output7", AliasMap.Device_Output7, MetricDataType.Int16, Object7) addMetric(payload, "input/Device Output8", AliasMap.Device_Output8, MetricDataType.Int16, Object8) addMetric(payload, "input/Device Output9", AliasMap.Device_Output9, MetricDataType.Int16, Object9) addMetric(payload, "input/Device Output10", AliasMap.Device_Output10, MetricDataType.Int16, Object10) # Publish a message data byteArray = bytearray(payload.SerializeToString()) client.publish("spBv1.0/" + myGroupId + "/DDATA/" + myNodeName + "/" + myDeviceName, byteArray, 0, False) # Sit and wait for inbound or outbound events for _ in range(1): time.sleep(1) client.loop() threading.Timer(WAIT_SECONDS, foo).start() foo() ###################################################################### print("Starting pipeline \n") pipeline.set_state(Gst.State.PLAYING) try: loop.run() except: pass #cleanup print("Exiting app\n") pipeline.set_state(Gst.State.NULL) if __name__ == '__main__': sys.exit(main(sys.argv))
46.410987
849
0.645829
5,676
45,622
5.037703
0.141473
0.039903
0.062321
0.033154
0.495524
0.41827
0.38585
0.351193
0.345632
0.326467
0
0.026393
0.242602
45,622
982
850
46.458248
0.801123
0.260883
0
0.109855
0
0
0.134868
0.002756
0
0
0
0.001018
0
1
0.012924
false
0.004847
0.021002
0
0.090469
0.051696
0
0
0
null
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
null
0
0
0
0
0
0
0
0
0
0
0
0
1
0
6a9fcd8ecc089595a2ffc3a48b4ee67000ac218d
799
py
Python
src/pyams_i18n/tests/__init__.py
Py-AMS/pyams-i18n
dbb3953302311977653145385af02e4d1ae41431
[ "ZPL-2.1" ]
null
null
null
src/pyams_i18n/tests/__init__.py
Py-AMS/pyams-i18n
dbb3953302311977653145385af02e4d1ae41431
[ "ZPL-2.1" ]
null
null
null
src/pyams_i18n/tests/__init__.py
Py-AMS/pyams-i18n
dbb3953302311977653145385af02e4d1ae41431
[ "ZPL-2.1" ]
null
null
null
# # Copyright (c) 2015-2019 Thierry Florac <tflorac AT ulthar.net> # All Rights Reserved. # # This software is subject to the provisions of the Zope Public License, # Version 2.1 (ZPL). A copy of the ZPL should accompany this distribution. # THIS SOFTWARE IS PROVIDED "AS IS" AND ANY AND ALL EXPRESS OR IMPLIED # WARRANTIES ARE DISCLAIMED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED # WARRANTIES OF TITLE, MERCHANTABILITY, AGAINST INFRINGEMENT, AND FITNESS # FOR A PARTICULAR PURPOSE. # """ Generic test cases for pyams_i18n doctests """ __docformat__ = 'restructuredtext' import os import sys def get_package_dir(value): """Get package directory""" package_dir = os.path.split(value)[0] if package_dir not in sys.path: sys.path.append(package_dir) return package_dir
26.633333
75
0.740926
116
799
5.008621
0.681034
0.086059
0.048193
0
0
0
0
0
0
0
0
0.019817
0.178974
799
29
76
27.551724
0.865854
0.664581
0
0
0
0
0.065306
0
0
0
0
0
0
1
0.125
false
0
0.25
0
0.5
0
0
0
0
null
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
null
0
0
0
0
0
0
0
0
0
0
0
0
1
0
6aa02482ee4345f8d62c98b8785e029ed85945dd
1,639
py
Python
tqsdk/demo/example/momentum.py
boyscout2008/tqsdk-python
79496a938a44f79ea9164569637509d0cc7db70a
[ "Apache-2.0" ]
null
null
null
tqsdk/demo/example/momentum.py
boyscout2008/tqsdk-python
79496a938a44f79ea9164569637509d0cc7db70a
[ "Apache-2.0" ]
null
null
null
tqsdk/demo/example/momentum.py
boyscout2008/tqsdk-python
79496a938a44f79ea9164569637509d0cc7db70a
[ "Apache-2.0" ]
1
2020-11-20T01:19:11.000Z
2020-11-20T01:19:11.000Z
#!/usr/bin/env python # -*- coding: utf-8 -*- __author__ = "Ringo" ''' 价格动量 策略 (难度:初级) 参考: https://www.shinnytech.com/blog/momentum-strategy/ 注: 该示例策略仅用于功能示范, 实盘时请根据自己的策略/经验进行修改 ''' from tqsdk import TqAccount, TqApi, TargetPosTask # 设置指定合约,获取N条K线计算价格动量 SYMBOL = "SHFE.au1912" N = 15 api = TqApi() klines = api.get_kline_serial(SYMBOL, 60*60*24, N) quote = api.get_quote(SYMBOL) target_pos = TargetPosTask(api, SYMBOL) position = api.get_position(SYMBOL) # 编写价格动量函数AR,以前N-1日K线计算价格动量ar def AR(kline1): spread_ho = sum(kline1.high[:-1] - kline1.open[:-1]) spread_oc = sum(kline1.open[:-1] - kline1.low[:-1]) # spread_oc 为0时,设置为最小价格跳动值 if spread_oc == 0: spread_oc = quote.price_tick ar = (spread_ho/spread_oc)*100 return ar ar = AR(klines) print("策略开始启动") while True: api.wait_update() # 生成新K线时,重新计算价格动量值ar if api.is_changing(klines.iloc[-1], "datetime"): ar = AR(klines) print("价格动量是:", ar) # 每次最新价发生变动时,重新进行判断 if api.is_changing(quote, "last_price"): # 开仓策略 if position.pos_long == 0 and position.pos_short == 0: # 如果ar大于110并且小于150,开多仓 if 110 < ar < 150: print("价值动量超过110,小于150,做多") target_pos.set_target_volume(100) # 如果ar大于50,小于90,开空仓 elif 50 < ar < 90: print("价值动量大于50,小于90,做空") target_pos.set_target_volume(-100) # 止损策略,多头下当前ar值小于90则平仓止损,空头下当前ar值大于110则平仓止损 elif (position.pos_long > 0 and ar < 90) or (position.pos_short > 0 and ar > 110): print("止损平仓") target_pos.set_target_volume(0)
26.015873
90
0.621721
216
1,639
4.560185
0.523148
0.040609
0.036548
0.054822
0.117767
0.054822
0
0
0
0
0
0.064673
0.245272
1,639
62
91
26.435484
0.731609
0.145821
0
0.058824
0
0
0.065882
0
0
0
0
0
0
1
0.029412
false
0
0.029412
0
0.088235
0.147059
0
0
0
null
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
null
0
0
0
0
0
0
0
0
0
0
0
0
1
0
6aa1d7c9f54267d6e42717a153600f7e111a7f9f
10,323
py
Python
color_transfer/__init__.py
AdamSpannbauer/color_transfer
155e0134615f35bf19bf32f4cacf056603604914
[ "MIT" ]
null
null
null
color_transfer/__init__.py
AdamSpannbauer/color_transfer
155e0134615f35bf19bf32f4cacf056603604914
[ "MIT" ]
null
null
null
color_transfer/__init__.py
AdamSpannbauer/color_transfer
155e0134615f35bf19bf32f4cacf056603604914
[ "MIT" ]
1
2020-11-05T17:35:14.000Z
2020-11-05T17:35:14.000Z
# import the necessary packages import numpy as np import cv2 import imutils def color_transfer(source, target, clip=True, preserve_paper=True): """ Transfers the color distribution from the source to the target image using the mean and standard deviations of the L*a*b* color space. This implementation is (loosely) based on to the "Color Transfer between Images" paper by Reinhard et al., 2001. Parameters: ------- source: NumPy array OpenCV image in BGR color space (the source image) target: NumPy array OpenCV image in BGR color space (the target image) clip: Should components of L*a*b* image be scaled by np.clip before converting back to BGR color space? If False then components will be min-max scaled appropriately. Clipping will keep target image brightness truer to the input. Scaling will adjust image brightness to avoid washed out portions in the resulting color transfer that can be caused by clipping. preserve_paper: Should color transfer strictly follow methodology laid out in original paper? The method does not always produce aesthetically pleasing results. If False then L*a*b* components will scaled using the reciprocal of the scaling factor proposed in the paper. This method seems to produce more consistently aesthetically pleasing results Returns: ------- transfer: NumPy array OpenCV image (w, h, 3) NumPy array (uint8) """ # convert the images from the RGB to L*ab* color space, being # sure to utilizing the floating point data type (note: OpenCV # expects floats to be 32-bit, so use that instead of 64-bit) source = cv2.cvtColor(source, cv2.COLOR_BGR2LAB).astype("float32") target = cv2.cvtColor(target, cv2.COLOR_BGR2LAB).astype("float32") # compute color statistics for the source and target images (lMeanSrc, lStdSrc, aMeanSrc, aStdSrc, bMeanSrc, bStdSrc) = image_stats(source) (lMeanTar, lStdTar, aMeanTar, aStdTar, bMeanTar, bStdTar) = image_stats(target) # subtract the means from the target image (l, a, b) = cv2.split(target) l -= lMeanTar a -= aMeanTar b -= bMeanTar if preserve_paper: # scale by the standard deviations using paper proposed factor l = (lStdTar / lStdSrc) * l a = (aStdTar / aStdSrc) * a b = (bStdTar / bStdSrc) * b else: # scale by the standard deviations using reciprocal of paper proposed factor l = (lStdSrc / lStdTar) * l a = (aStdSrc / aStdTar) * a b = (bStdSrc / bStdTar) * b # add in the source mean l += lMeanSrc a += aMeanSrc b += bMeanSrc # clip/scale the pixel intensities to [0, 255] if they fall # outside this range l = _scale_array(l, clip=clip) a = _scale_array(a, clip=clip) b = _scale_array(b, clip=clip) # merge the channels together and convert back to the RGB color # space, being sure to utilize the 8-bit unsigned integer data # type transfer = cv2.merge([l, a, b]) transfer = cv2.cvtColor(transfer.astype("uint8"), cv2.COLOR_LAB2BGR) # return the color transferred image return transfer def auto_color_transfer(source, target): """Pick color_transfer result truest to source image color Applies color_transfer with all possible combinations of the clip & preserve_paper arguments. Mean absolute error (MAE) is computed for the HSV channels of each result and the source image. The best_result that minimizes the MAE is returned as well as a montage of all candidate results. Parameters: ------- source: NumPy array OpenCV image in BGR color space (the source image) target: NumPy array OpenCV image in BGR color space (the target image) Returns: ------- tuple: (best_result, comparison) best_result: NumPy array result that minimizes mean absolute error between compared to source image in HSV color space comparison: NumPy array image showing the results of all combinations of color_transfer options """ # get mean HSV stats from source image for comparison hsv_source = cv2.cvtColor(source, cv2.COLOR_BGR2HSV) hsv_hist_src = cv2.calcHist([hsv_source], [0, 1, 2], None, [8, 8, 8], [0, 256, 0, 256, 0, 256]) # iterate through all 4 options for toggling color transfer bools = [True, False] candidates = [] best_result = None best_dist = float('inf') for clip in bools: for preserve_paper in bools: # create candidate image from options of this iteration candidate = color_transfer(source, target, clip, preserve_paper) # get mean HSV stats from candidate image for comparison hsv_candidate = cv2.cvtColor(candidate, cv2.COLOR_BGR2HSV) hsv_hist_cand = cv2.calcHist([hsv_candidate], [0, 1, 2], None, [8, 8, 8], [0, 256, 0, 256, 0, 256]) # calc chi square dist chi2_dist = chi2_distance(hsv_hist_src, hsv_hist_cand) # propose new truest result if found new smallest mae if chi2_dist < best_dist: best_result = candidate[:] candidates.append(candidate) # build 2 by 2 image matrix of all candidates for comparison comparison = np.hstack((np.vstack(candidates[:2]), np.vstack(candidates[2:]))) # add border annotations showing values of params for each output comparison = _bool_matrix_border(comparison) return best_result, comparison def chi2_distance(hist_a, hist_b, eps=1e-10): return 0.5 * np.sum(((hist_a - hist_b) ** 2) / (hist_a + hist_b + eps)) def _bool_matrix_border(comparison_image): """Apply table formatting for comparison of color_transfer options Parameters: ------- target: NumPy array OpenCV image in BGR color space (the comparison image produced in auto_color_transfer) Returns: ------- comparison: NumPy array OpenCV image in BGR color space with borders applied to easily compare the different results of the auto_color_transfer """ # 200 seems to work well as border size border_size = 200 # put black border on top and left of input image h, w = comparison_image.shape[:2] top = np.zeros(w * border_size, dtype='uint8').reshape(border_size, w) left = np.zeros((h + border_size) * border_size, dtype='uint8').reshape(h + border_size, border_size) top = cv2.cvtColor(top, cv2.COLOR_GRAY2BGR) left = cv2.cvtColor(left, cv2.COLOR_GRAY2BGR) bordered_comparison_image = np.vstack((top, comparison_image)) bordered_comparison_image = np.hstack((left, bordered_comparison_image)) # add text for clip arg options to top border top_title_loc = (border_size, 75) top_true_loc = (border_size, 190) top_false_loc = (int(border_size + w / 2), 190) cv2.putText(bordered_comparison_image, 'Clip', top_title_loc, cv2.FONT_HERSHEY_SIMPLEX, 3, (255, 255, 255), 2) cv2.putText(bordered_comparison_image, 'True', top_true_loc, cv2.FONT_HERSHEY_SIMPLEX, 2, (255, 255, 255), 2) cv2.putText(bordered_comparison_image, 'False', top_false_loc, cv2.FONT_HERSHEY_SIMPLEX, 2, (255, 255, 255), 2) # rotate 90 degrees for writing text to left border bordered_comparison_image = imutils.rotate_bound(bordered_comparison_image, 90) # add text for preserve paper arg options to left border top_title_loc = (5, 75) top_true_loc = (5 + int(h / 2), 190) top_false_loc = (5, 190) cv2.putText(bordered_comparison_image, 'Preserve Paper', top_title_loc, cv2.FONT_HERSHEY_SIMPLEX, 3, (255, 255, 255), 2) cv2.putText(bordered_comparison_image, 'True', top_true_loc, cv2.FONT_HERSHEY_SIMPLEX, 2, (255, 255, 255), 2) cv2.putText(bordered_comparison_image, 'False', top_false_loc, cv2.FONT_HERSHEY_SIMPLEX, 2, (255, 255, 255), 2) # rotate -90 degrees to return image in correct orientation bordered_comparison_image = imutils.rotate_bound(bordered_comparison_image, -90) return bordered_comparison_image def image_stats(image): """ Parameters: ------- image: NumPy array OpenCV image in L*a*b* color space Returns: ------- Tuple of mean and standard deviations for the L*, a*, and b* channels, respectively """ # compute the mean and standard deviation of each channel (l, a, b) = cv2.split(image) (lMean, lStd) = (l.mean(), l.std()) (aMean, aStd) = (a.mean(), a.std()) (bMean, bStd) = (b.mean(), b.std()) # return the color statistics return lMean, lStd, aMean, aStd, bMean, bStd def _min_max_scale(arr, new_range=(0, 255)): """ Perform min-max scaling to a NumPy array Parameters: ------- arr: NumPy array to be scaled to [new_min, new_max] range new_range: tuple of form (min, max) specifying range of transformed array Returns: ------- NumPy array that has been scaled to be in [new_range[0], new_range[1]] range """ # get array's current min and max mn = arr.min() mx = arr.max() # check if scaling needs to be done to be in new_range if mn < new_range[0] or mx > new_range[1]: # perform min-max scaling scaled = (new_range[1] - new_range[0]) * (arr - mn) / (mx - mn) + new_range[0] else: # return array if already in range scaled = arr return scaled def _scale_array(arr, clip=True): """ Trim NumPy array values to be in [0, 255] range with option of clipping or scaling. Parameters: ------- arr: array to be trimmed to [0, 255] range clip: should array be scaled by np.clip? if False then input array will be min-max scaled to range [max([arr.min(), 0]), min([arr.max(), 255])] Returns: ------- NumPy array that has been scaled to be in [0, 255] range """ if clip: scaled = np.clip(arr, 0, 255) else: scale_range = (max([arr.min(), 0]), min([arr.max(), 255])) scaled = _min_max_scale(arr, new_range=scale_range) return scaled
36.477032
105
0.657173
1,447
10,323
4.569454
0.213545
0.040835
0.048699
0.025408
0.277374
0.202511
0.161978
0.161978
0.156534
0.148367
0
0.032266
0.252446
10,323
282
106
36.606383
0.824543
0.473215
0
0.163462
0
0
0.013559
0
0
0
0
0
0
1
0.067308
false
0
0.028846
0.009615
0.163462
0
0
0
0
null
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
null
0
0
0
0
0
0
0
0
0
0
0
0
1
0
6aa21222a53d441e6c157bad6965004f0771b6e4
250
py
Python
Python/Tree/TestCreateTreeLibraryImport.py
zseen/hackerrank-challenges
c154f039f58073ee3d94d012462c7055e68784b2
[ "MIT" ]
null
null
null
Python/Tree/TestCreateTreeLibraryImport.py
zseen/hackerrank-challenges
c154f039f58073ee3d94d012462c7055e68784b2
[ "MIT" ]
null
null
null
Python/Tree/TestCreateTreeLibraryImport.py
zseen/hackerrank-challenges
c154f039f58073ee3d94d012462c7055e68784b2
[ "MIT" ]
null
null
null
from Library.CreateATree import CreateATree tree = CreateATree.BinarySearchTree() nodesList = list((4, 5, 1, 3, 2)) for i in range(0, len(nodesList)): tree.insert(nodesList[i]) #tree.printInorder() tree.printPreorder() #tree.printPostorder()
19.230769
43
0.732
32
250
5.71875
0.71875
0
0
0
0
0
0
0
0
0
0
0.027397
0.124
250
12
44
20.833333
0.808219
0.16
0
0
0
0
0
0
0
0
0
0
0
1
0
false
0
0.166667
0
0.166667
0.166667
0
0
0
null
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
null
0
0
0
0
0
0
0
0
0
0
0
0
1
0
6aa25f7e4d64679c81ca1e60dffb6ddf922f9c4c
522
py
Python
application/siteApp/urls.py
Marcelotsvaz/vaz-projects
8ccc0bf8d25f9276714e1e5ecb0a4e80f07442b4
[ "Unlicense" ]
null
null
null
application/siteApp/urls.py
Marcelotsvaz/vaz-projects
8ccc0bf8d25f9276714e1e5ecb0a4e80f07442b4
[ "Unlicense" ]
null
null
null
application/siteApp/urls.py
Marcelotsvaz/vaz-projects
8ccc0bf8d25f9276714e1e5ecb0a4e80f07442b4
[ "Unlicense" ]
null
null
null
# # VAZ Projects # # # Author: Marcelo Tellier Sartori Vaz <[email protected]> from django.urls import path from . import views app_name = 'siteApp' urlpatterns = [ path( '', views.Home.as_view(), name = 'home' ), path( 'about-me', views.About_me.as_view(), name = 'about_me' ), path( 'search', views.Search.as_view(), name = 'search' ), path( 'search/page/<int:page>', views.Search.as_view(), name = 'search' ), path( 'sitemap.xml', views.Sitemap.as_view(), name = 'sitemap' ), ]
23.727273
77
0.628352
68
522
4.705882
0.426471
0.09375
0.15625
0.10625
0.19375
0.19375
0.19375
0
0
0
0
0
0.189655
522
22
78
23.727273
0.756501
0.143678
0
0
0
0
0.192744
0.049887
0
0
0
0
0
1
0
false
0
0.2
0
0.2
0
0
0
0
null
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
null
0
0
0
0
0
0
0
0
0
0
0
0
1
0
6aa2cafc9ca0f9283336142e3b81fea44a3587b3
1,286
py
Python
Classes/ServiceBase.py
tkeske/SMS-Fetcher
7b3ec0ea4517ad11164b8e2d7ee2c60d2a9f0ed2
[ "BSD-3-Clause" ]
null
null
null
Classes/ServiceBase.py
tkeske/SMS-Fetcher
7b3ec0ea4517ad11164b8e2d7ee2c60d2a9f0ed2
[ "BSD-3-Clause" ]
null
null
null
Classes/ServiceBase.py
tkeske/SMS-Fetcher
7b3ec0ea4517ad11164b8e2d7ee2c60d2a9f0ed2
[ "BSD-3-Clause" ]
null
null
null
''' @author Tomáš Keske @since 10.8.2019 ''' import sys from jnius import autoclass from Conf.Conf import * class ServiceBase(): def __init__(self): PythonServiceClass = autoclass('org.kivy.android.PythonService') self.Context = autoclass('android.content.Context') self.Service = PythonServiceClass.mService #set autorestart to be imune to task swiping on Android 9 self.Service.setAutoRestartService(True) self.confDict = {k: v for k,v in globals().items() if k.isupper() and k.startswith("SMS")} for k, v in confDict.items(): setattr(self, k, v) def killGeneric(self, error): print(repr(error)) PythonService.setAutoRestartService(False) print("Autorestart of the service disabled.") print("Attempting to kill service permanently.") PythonService.stop() #service takes time to stop. flow thus continues to next block of code #sys.exit() is to prevent subsequent code from execution #both calls are neccesary to avoid "Scheduling restart of crashed service process" #in case we called only sys.exit() #this applies even if we have setAutoRestartService(False) print("Exiting python script") sys.exit()
32.15
98
0.667963
159
1,286
5.377358
0.603774
0.009357
0.011696
0.016374
0
0
0
0
0
0
0
0.008197
0.241058
1,286
40
99
32.15
0.867828
0.301711
0
0
0
0
0.171558
0.059819
0
0
0
0
0
1
0.1
false
0
0.15
0
0.3
0.2
0
0
0
null
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
null
0
0
0
0
0
0
0
0
0
0
0
0
1
0
6aa359b860399eb8f9859835f9d9ac0f53b4de56
723
py
Python
api/queue/__init__.py
sofia008/api-redis-queue
8d65665c8a9f44990565baa8c7ba43d7f01425d3
[ "Apache-2.0" ]
null
null
null
api/queue/__init__.py
sofia008/api-redis-queue
8d65665c8a9f44990565baa8c7ba43d7f01425d3
[ "Apache-2.0" ]
null
null
null
api/queue/__init__.py
sofia008/api-redis-queue
8d65665c8a9f44990565baa8c7ba43d7f01425d3
[ "Apache-2.0" ]
null
null
null
# api/queue/__init__.py import os from flask import Flask from flask_bootstrap import Bootstrap # instantiate the extensions bootstrap = Bootstrap() def create_app(script_info=None): # instantiate the app app = Flask( __name__, template_folder="../client/templates", static_folder="../client/static", ) # set config app_settings = os.getenv("APP_SETTINGS") app.config.from_object(app_settings) # set up extensions bootstrap.init_app(app) # register blueprints from api.queue.push.views import main_blueprint app.register_blueprint(main_blueprint) # shell context for flask cli app.shell_context_processor({"app": app}) return app
19.026316
51
0.697095
89
723
5.404494
0.47191
0.037422
0
0
0
0
0
0
0
0
0
0
0.214385
723
37
52
19.540541
0.846831
0.200553
0
0
0
0
0.087719
0
0
0
0
0
0
1
0.058824
false
0
0.235294
0
0.352941
0.117647
0
0
0
null
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
null
0
0
0
0
0
0
0
0
0
0
0
0
1
0
6aa447f55a379751c7664d4eb5818450b99462c4
2,183
py
Python
tests/test_engine.py
Foxboron/python-adblock
50b2ddba9f7b237b38c848c7d4a1637917444924
[ "Apache-2.0", "MIT" ]
35
2020-06-26T21:06:13.000Z
2022-03-19T10:50:35.000Z
tests/test_engine.py
Foxboron/python-adblock
50b2ddba9f7b237b38c848c7d4a1637917444924
[ "Apache-2.0", "MIT" ]
34
2020-04-27T02:59:40.000Z
2022-03-06T20:55:00.000Z
tests/test_engine.py
Foxboron/python-adblock
50b2ddba9f7b237b38c848c7d4a1637917444924
[ "Apache-2.0", "MIT" ]
6
2020-12-22T21:56:02.000Z
2022-02-16T02:13:21.000Z
import adblock import pytest SMALL_FILTER_LIST = """ ||wikipedia.org^ ||old.reddit.com^ ||lobste.rs^ """ def empty_engine(): return adblock.Engine(adblock.FilterSet()) def test_engine_creation_and_blocking(): filter_set = adblock.FilterSet(debug=True) filter_set.add_filter_list(SMALL_FILTER_LIST) engine = adblock.Engine(filter_set=filter_set) blocker_result_wikipedia = engine.check_network_urls( url="https://wikipedia.org/img.png", source_url="https://google.com/", request_type="image", ) assert isinstance(blocker_result_wikipedia, adblock.BlockerResult) assert blocker_result_wikipedia.matched blocker_result_facebook = engine.check_network_urls( "https://facebook.com/directory/img.png", "https://old.reddit.com/r/all", "image", ) assert isinstance(blocker_result_facebook, adblock.BlockerResult) assert not blocker_result_facebook.matched def test_serde_file(tmpdir): path = str(tmpdir / "cache.dat") engine0 = empty_engine() with pytest.raises(FileNotFoundError): # We haven't created the cache.dat file, so we should get an exception # when attempting to deserialize. engine0.deserialize_from_file(path) engine1 = empty_engine() serialization_result = engine1.serialize_to_file(path) assert serialization_result is None engine2 = empty_engine() deserialization_result = engine2.deserialize_from_file(path) assert deserialization_result is None def test_deserialize_corrupt(tmpdir): path = str(tmpdir / "corrupt_cache.dat") with open(path, "w", encoding="utf-8") as f: f.write("abc") engine = empty_engine() with pytest.raises(adblock.DeserializationError): engine.deserialize_from_file(path) with pytest.raises(adblock.DeserializationError): engine.deserialize(b"abc") def test_serde(): engine = empty_engine() serialization_result = engine.serialize() assert isinstance(serialization_result, bytes) engine2 = empty_engine() deserialization_result = engine2.deserialize(serialization_result) assert deserialization_result is None
29.106667
78
0.724233
259
2,183
5.864865
0.366795
0.050691
0.04345
0.045425
0.267281
0.154049
0.154049
0
0
0
0
0.005008
0.176821
2,183
74
79
29.5
0.840289
0.045809
0
0.148148
0
0
0.101442
0
0
0
0
0
0.148148
1
0.092593
false
0
0.037037
0.018519
0.148148
0
0
0
0
null
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
null
0
0
0
0
0
0
0
0
0
0
0
0
1
0
6aa55947380a65f7c24093ff3b3feee2ac3b5948
1,048
py
Python
data_structures/stack/largest_rectangle_area_in_histogram.py
ruler30cm/python-ds
f84605c5b746ea1d46de3d00b86f5fba399445c7
[ "MIT" ]
1,723
2019-07-30T07:06:22.000Z
2022-03-31T15:22:22.000Z
data_structures/stack/largest_rectangle_area_in_histogram.py
ruler30cm/python-ds
f84605c5b746ea1d46de3d00b86f5fba399445c7
[ "MIT" ]
213
2019-10-06T08:07:47.000Z
2021-10-04T15:38:36.000Z
data_structures/stack/largest_rectangle_area_in_histogram.py
ruler30cm/python-ds
f84605c5b746ea1d46de3d00b86f5fba399445c7
[ "MIT" ]
628
2019-10-06T10:26:25.000Z
2022-03-31T01:41:00.000Z
''' Largest rectangle area in a histogram:: Find the largest rectangular area possible in a given histogram where the largest rectangle can be made of a number of contiguous bars. For simplicity, assume that all bars have same width and the width is 1 unit. ''' def max_area_histogram(histogram): stack = list() max_area = 0 # Initialize max area index = 0 while index < len(histogram): if (not stack) or (histogram[stack[-1]] <= histogram[index]): stack.append(index) index += 1 else: top_of_stack = stack.pop() area = (histogram[top_of_stack] * ((index - stack[-1] - 1) if stack else index)) max_area = max(max_area, area) while stack: top_of_stack = stack.pop() area = (histogram[top_of_stack] * ((index - stack[-1] - 1) if stack else index)) max_area = max(max_area, area) return max_area hist = [4, 7, 1, 8, 4, 9, 5] print("Maximum area is", max_area_histogram(hist))
28.324324
136
0.603053
147
1,048
4.176871
0.380952
0.102606
0.065147
0.04886
0.29316
0.29316
0.29316
0.29316
0.29316
0.29316
0
0.021651
0.294847
1,048
36
137
29.111111
0.809202
0.262405
0
0.3
0
0
0.019634
0
0
0
0
0
0
1
0.05
false
0
0
0
0.1
0.05
0
0
0
null
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
null
0
0
0
0
0
0
0
0
0
0
0
0
1
0
6aa72ed7ab8eb40be3928ae652b97a0368992b42
2,389
py
Python
auth_backend/src/key_op.py
cispa/bitahoy
ffc2004930a033cfb94d13671bc6068b473ce226
[ "MIT" ]
null
null
null
auth_backend/src/key_op.py
cispa/bitahoy
ffc2004930a033cfb94d13671bc6068b473ce226
[ "MIT" ]
null
null
null
auth_backend/src/key_op.py
cispa/bitahoy
ffc2004930a033cfb94d13671bc6068b473ce226
[ "MIT" ]
2
2021-12-30T16:48:15.000Z
2022-01-14T14:21:15.000Z
import sys import os import psycopg2 import base64 from cryptography.hazmat.primitives import serialization, hashes from cryptography.hazmat.primitives.asymmetric import padding, rsa from cryptography.hazmat.backends import default_backend import time if len(sys.argv) < 2: print("Please enter either create or remove as a argv[1]") sys.exit(0) with psycopg2.connect("dbname='auth_db' user='auth_db' host='authdb' [redacted-2]") as conn: with conn.cursor() as cursor: if sys.argv[1] == "generate": #Load the key or generate a new one: cursor.execute("CREATE TABLE IF NOT EXISTS key (key varchar(4096),time bigint UNIQUE PRIMARY KEY)") privkey = rsa.generate_private_key(public_exponent=65537, key_size=2048, backend=default_backend()) pem = privkey.private_bytes(encoding=serialization.Encoding.PEM,format=serialization.PrivateFormat.TraditionalOpenSSL,encryption_algorithm=serialization.NoEncryption()) cursor.execute("INSERT INTO key (key,time) VALUES('"+str(pem.decode("utf-8"))+"',"+str(int(time.time()))+")") conn.commit() print("New key generated!") elif sys.argv[1] == "generate_if_needed": #Load the key or generate a new one: cursor.execute("CREATE TABLE IF NOT EXISTS key (key varchar(4096),time bigint UNIQUE PRIMARY KEY)") cursor.execute("SELECT * FROM key") res = cursor.fetchall() if len(res) == 0: privkey = rsa.generate_private_key(public_exponent=65537, key_size=2048, backend=default_backend()) pem = privkey.private_bytes(encoding=serialization.Encoding.PEM,format=serialization.PrivateFormat.TraditionalOpenSSL,encryption_algorithm=serialization.NoEncryption()) cursor.execute("INSERT INTO key (key,time) VALUES('"+str(pem.decode("utf-8"))+"',"+str(int(time.time()))+")") conn.commit() print("New key generated, as database was empty!") else: print("Database has key ready!") elif sys.argv[1] == "drop": cursor.execute("DROP TABLE key") conn.commit() print("Dropped old keys") else: print("Invalid option! Try 'drop', 'generate' or 'generate_if_needed'...")
45.942308
184
0.637505
286
2,389
5.251748
0.363636
0.051931
0.043941
0.04261
0.573901
0.573901
0.573901
0.573901
0.573901
0.573901
0
0.022124
0.243198
2,389
52
185
45.942308
0.808628
0.029301
0
0.342105
0
0
0.249784
0.009922
0
0
0
0
0
1
0
false
0
0.210526
0
0.210526
0.157895
0
0
0
null
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
null
0
0
0
0
0
0
0
0
0
0
0
0
1
0
6aa93bd0cfbc5bae7eaa0365dd95b7de863c0e17
653
py
Python
scripts/issue_param_value.py
Jhsmit/awesome-panel-extensions
41eba7cf84caa911be4ed0df2a96e16fc1e70263
[ "CC-BY-4.0" ]
3
2020-07-16T07:28:45.000Z
2020-07-17T12:53:56.000Z
scripts/issue_param_value.py
MarcSkovMadsen/panel-extensions-template
f41ad8d8fb8502f87de3a4992917cbffb6299012
[ "CC-BY-4.0" ]
null
null
null
scripts/issue_param_value.py
MarcSkovMadsen/panel-extensions-template
f41ad8d8fb8502f87de3a4992917cbffb6299012
[ "CC-BY-4.0" ]
null
null
null
import panel as pn import param from awesome_panel_extensions.frameworks.fast import FastTemplate, FastTextInput WIDGETS = { "some_text": {"type": FastTextInput, "readonly": True, "sizing_mode": "fixed", "width": 400} } class ParameterizedApp(param.Parameterized): some_text = param.String(default="This is some text") view = param.Parameter() def __init__(self, **params): super().__init__(**params) self.view = pn.Param(self, parameters=["some_text"], widgets=WIDGETS) parameterized_app = ParameterizedApp() paremeterized_template = FastTemplate(main=[parameterized_app.view]) paremeterized_template.servable()
27.208333
96
0.735069
73
653
6.328767
0.589041
0.069264
0
0
0
0
0
0
0
0
0
0.005338
0.139357
653
23
97
28.391304
0.816726
0
0
0
0
0
0.104135
0
0
0
0
0
0
1
0.066667
false
0
0.2
0
0.466667
0
0
0
0
null
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
null
0
0
0
0
0
0
0
0
0
0
0
0
1
0
6aab6b3ba732d64220b4fb1bf6b4cc739254d1fe
1,019
py
Python
tests/pm/update_sla.py
supsi-dacd-isaac/parity-sidechain-interface
b64a5fb724955332afb4998344081d1b93ac216a
[ "MIT" ]
null
null
null
tests/pm/update_sla.py
supsi-dacd-isaac/parity-sidechain-interface
b64a5fb724955332afb4998344081d1b93ac216a
[ "MIT" ]
null
null
null
tests/pm/update_sla.py
supsi-dacd-isaac/parity-sidechain-interface
b64a5fb724955332afb4998344081d1b93ac216a
[ "MIT" ]
null
null
null
# Importing section import json import requests import argparse import hashlib import time from http import HTTPStatus # Main if __name__ == "__main__": arg_parser = argparse.ArgumentParser() args = arg_parser.parse_args() set_cmd = 'updateSla' params = { 'idx': 'sla04', 'start': 3000, 'end': 3900 } cmd_url = 'http://localhost:9119/%s' % set_cmd headers = {'Content-Type': 'application/json', 'Accept': 'application/json'} print('COMMAND: %s' % cmd_url) print('PARAMS: %s' % params) r = requests.post(cmd_url, headers=headers, json=params) data = json.loads(r.text) print('RESPONSE: %s\n' % data) # Wait some seconds to be sure that the transaction has been handled time.sleep(5) check_tx_url = 'http://localhost:9119/checkTx/%s' % data['tx_hash'] print('CHECK TX: %s' % check_tx_url) r = requests.get(check_tx_url) data = json.loads(r.text) print('RESPONSE: %s\n' % data)
24.261905
80
0.617272
132
1,019
4.590909
0.5
0.046205
0.049505
0.066007
0.122112
0.122112
0.122112
0.122112
0.122112
0.122112
0
0.02474
0.24632
1,019
41
81
24.853659
0.764323
0.088322
0
0.142857
0
0
0.223784
0
0
0
0
0
0
1
0
false
0
0.214286
0
0.214286
0.178571
0
0
0
null
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
null
0
0
0
0
0
0
0
0
0
0
0
0
1
0
6aac1f4d092634d65b03e7c6699787370a84bac7
498
py
Python
array/python3/5_move_all_negative_elements.py
jitendragangwar123/cp
8d9da1abd841784da8304e7ebb64a6b94cb804bb
[ "MIT" ]
null
null
null
array/python3/5_move_all_negative_elements.py
jitendragangwar123/cp
8d9da1abd841784da8304e7ebb64a6b94cb804bb
[ "MIT" ]
1
2020-12-12T19:09:01.000Z
2020-12-12T19:09:01.000Z
array/python3/5_move_all_negative_elements.py
jitendragangwar123/cp
8d9da1abd841784da8304e7ebb64a6b94cb804bb
[ "MIT" ]
1
2020-12-12T18:36:24.000Z
2020-12-12T18:36:24.000Z
def sort(arr): # Start index 0. start = 0 # End index end = len(arr)-1 while start <= end: # Swap all positive value with last index end & decrease end by 1. if arr[start] >= 0: arr[start], arr[end] = arr[end], arr[start] end -= 1 else: # If arr[start] is not positive then increase start by 1. start += 1 if __name__ == "__main__": arr = [-1, 2, -3, 4, 5, 6, -7, 8, 9] sort(arr) print(arr)
23.714286
74
0.5
74
498
3.256757
0.472973
0.165975
0.082988
0
0
0
0
0
0
0
0
0.05414
0.369478
498
20
75
24.9
0.713376
0.291165
0
0
0
0
0.022989
0
0
0
0
0
0
1
0.076923
false
0
0
0
0.076923
0.076923
0
0
0
null
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
null
0
0
0
0
0
0
0
0
0
0
0
0
1
0
6aac551e77cffa8d22df81867eace49a7797fd1d
1,199
py
Python
misc.py
hldai/wikiprocesspy
788ccb6f0e0e54a7322863d5a13332635afc240d
[ "MIT" ]
null
null
null
misc.py
hldai/wikiprocesspy
788ccb6f0e0e54a7322863d5a13332635afc240d
[ "MIT" ]
null
null
null
misc.py
hldai/wikiprocesspy
788ccb6f0e0e54a7322863d5a13332635afc240d
[ "MIT" ]
null
null
null
import json def __text_from_anchor_sents_file(anchor_sents_file, output_file): f = open(anchor_sents_file, encoding='utf-8') fout = open(output_file, 'w', encoding='utf-8', newline='\n') for i, line in enumerate(f): sent = json.loads(line) fout.write('{}\n'.format(sent['tokens'])) # if i > 5: # break f.close() fout.close() def merge_files(filenames, output_file): fout = open(output_file, 'w', encoding='utf-8', newline='\n') for filename in filenames: print(filename) f = open(filename, encoding='utf-8') for line in f: fout.write(line) f.close() fout.close() wiki19_anchor_sents_file = 'd:/data/res/wiki/anchor/enwiki-20190101-anchor-sents.txt' anchor_sent_texts_file = 'd:/data/res/wiki/anchor/enwiki-20190101-anchor-sents-tok-texts.txt' # __text_from_anchor_sents_file(wiki19_anchor_sents_file, anchor_sent_texts_file) part_pos_tag_files = [f'd:/data/res/wiki/anchor/enwiki-20190101-anchor-sents-tok-texts-pos-{i}.txt' for i in range(4)] pos_tag_file = 'd:/data/res/wiki/anchor/enwiki-20190101-anchor-sents-tok-texts-pos.txt' # merge_files(part_pos_tag_files, pos_tag_file)
35.264706
118
0.686405
186
1,199
4.188172
0.27957
0.141207
0.115533
0.061617
0.441592
0.382542
0.382542
0.382542
0.382542
0.382542
0
0.042
0.165972
1,199
33
119
36.333333
0.737
0.120934
0
0.272727
0
0.136364
0.287893
0.253575
0
0
0
0
0
1
0.090909
false
0
0.045455
0
0.136364
0.045455
0
0
0
null
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
null
0
0
0
0
0
0
0
0
0
0
0
0
1
0
6aad4ce5dfa92a930b5b7dfb6e85c80cb8498743
2,833
py
Python
neural_toolbox/inception.py
ibrahimSouleiman/GuessWhat
60d140de1aae5ccda27e7d3eef2b9fb9548f0854
[ "Apache-2.0" ]
null
null
null
neural_toolbox/inception.py
ibrahimSouleiman/GuessWhat
60d140de1aae5ccda27e7d3eef2b9fb9548f0854
[ "Apache-2.0" ]
null
null
null
neural_toolbox/inception.py
ibrahimSouleiman/GuessWhat
60d140de1aae5ccda27e7d3eef2b9fb9548f0854
[ "Apache-2.0" ]
null
null
null
import tensorflow as tf import tensorflow.contrib.slim as slim import tensorflow.contrib.slim.python.slim.nets.resnet_v1 as resnet_v1 import tensorflow.contrib.slim.python.slim.nets.inception_v1 as inception_v1 import tensorflow.contrib.slim.python.slim.nets.resnet_utils as slim_utils from tensorflow.contrib import layers as layers_lib from tensorflow.contrib.framework.python.ops import arg_scope import os def get_resnet_arg_scope(bn_fn): """ Trick to apply CBN from a pretrained tf network. It overides the batchnorm constructor with cbn :param bn_fn: cbn factory :return: tensorflow scope """ with arg_scope( [layers_lib.conv2d], activation_fn=tf.nn.relu, normalizer_fn=bn_fn, normalizer_params=None) as arg_sc: return arg_sc def create_inception(image_input, is_training, scope="", inception_out="Mixed_5c", resnet_version=50, cbn=None): """ Create a resnet by overidding the classic batchnorm with conditional batchnorm :param image_input: placeholder with image :param is_training: are you using the resnet at training_time or test_time :param scope: tensorflow scope :param resnet_version: 50/101/152 :param cbn: the cbn factory :return: the resnet output """ # assert False, "\n" \ # "There is a bug with classic batchnorm with slim networks (https://github.com/tensorflow/tensorflow/issues/4887). \n" \ # "Please use the following config -> 'cbn': {'use_cbn':true, 'excluded_scope_names': ['*']}" # arg_sc = slim_utils.resnet_arg_scope(is_training=is_training) # print("--- 1") arg_sc = inception_v1.inception_v1_arg_scope() # Pick the correct version of the resnet # if resnet_version == 50: # current_resnet = resnet_v1.resnet_v1_50 # elif resnet_version == 101: # current_resnet = resnet_v1.resnet_v1_101 # elif resnet_version == 152: # current_resnet = resnet_v1.resnet_v1_152 # else: # raise ValueError("Unsupported resnet version") # inception_scope = os.path.join('InceptionV1/InceptionV1', inception_out) # print("--- 2") inception_scope = inception_out # print(" resnet_out = {} , resnet_scope = {}".format(resnet_out,resnet_scope)) # print("--- 3") with slim.arg_scope(arg_sc): net, end_points = inception_v1.inception_v1(image_input, 1001) # 1000 is the number of softmax class print("Net = ",net) # print("--- 4") if len(scope) > 0 and not scope.endswith("/"): scope += "/" # print("--- 5") # print(end_points) print(" Batch ",inception_scope) out = end_points[scope + inception_scope] print("-- out Use: {},output = {}".format(inception_scope,out)) return out,end_points
36.320513
143
0.676668
378
2,833
4.857143
0.330688
0.034858
0.050109
0.058824
0.123094
0.123094
0.075708
0.075708
0
0
0
0.027953
0.217084
2,833
77
144
36.792208
0.79982
0.487116
0
0
0
0
0.035793
0
0
0
0
0
0
1
0.074074
false
0
0.296296
0
0.444444
0.111111
0
0
0
null
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
null
0
0
0
0
0
0
0
0
0
0
0
0
1
0
6aad74ee52655f68220f799efaffcbccdd0748ad
6,133
py
Python
timm/utils/checkpoint_saver.py
Robert-JunWang/pytorch-image-models
7c67d6aca992f039eece0af5f7c29a43d48c00e4
[ "Apache-2.0" ]
17,769
2019-05-02T08:08:25.000Z
2022-03-31T22:14:44.000Z
timm/utils/checkpoint_saver.py
jonychoi/pytorch-image-models
e4360e6125bb0bb4279785810c8eb33b40af3ebd
[ "Apache-2.0" ]
556
2019-05-26T16:31:37.000Z
2022-03-30T04:21:07.000Z
timm/utils/checkpoint_saver.py
jonychoi/pytorch-image-models
e4360e6125bb0bb4279785810c8eb33b40af3ebd
[ "Apache-2.0" ]
3,029
2019-05-14T01:18:28.000Z
2022-03-31T20:09:50.000Z
""" Checkpoint Saver Track top-n training checkpoints and maintain recovery checkpoints on specified intervals. Hacked together by / Copyright 2020 Ross Wightman """ import glob import operator import os import logging import torch from .model import unwrap_model, get_state_dict _logger = logging.getLogger(__name__) class CheckpointSaver: def __init__( self, model, optimizer, args=None, model_ema=None, amp_scaler=None, checkpoint_prefix='checkpoint', recovery_prefix='recovery', checkpoint_dir='', recovery_dir='', decreasing=False, max_history=10, unwrap_fn=unwrap_model): # objects to save state_dicts of self.model = model self.optimizer = optimizer self.args = args self.model_ema = model_ema self.amp_scaler = amp_scaler # state self.checkpoint_files = [] # (filename, metric) tuples in order of decreasing betterness self.best_epoch = None self.best_metric = None self.curr_recovery_file = '' self.last_recovery_file = '' # config self.checkpoint_dir = checkpoint_dir self.recovery_dir = recovery_dir self.save_prefix = checkpoint_prefix self.recovery_prefix = recovery_prefix self.extension = '.pth.tar' self.decreasing = decreasing # a lower metric is better if True self.cmp = operator.lt if decreasing else operator.gt # True if lhs better than rhs self.max_history = max_history self.unwrap_fn = unwrap_fn assert self.max_history >= 1 def save_checkpoint(self, epoch, metric=None): assert epoch >= 0 tmp_save_path = os.path.join(self.checkpoint_dir, 'tmp' + self.extension) last_save_path = os.path.join(self.checkpoint_dir, 'last' + self.extension) self._save(tmp_save_path, epoch, metric) if os.path.exists(last_save_path): os.unlink(last_save_path) # required for Windows support. os.rename(tmp_save_path, last_save_path) worst_file = self.checkpoint_files[-1] if self.checkpoint_files else None if (len(self.checkpoint_files) < self.max_history or metric is None or self.cmp(metric, worst_file[1])): if len(self.checkpoint_files) >= self.max_history: self._cleanup_checkpoints(1) filename = '-'.join([self.save_prefix, str(epoch)]) + self.extension save_path = os.path.join(self.checkpoint_dir, filename) os.link(last_save_path, save_path) self.checkpoint_files.append((save_path, metric)) self.checkpoint_files = sorted( self.checkpoint_files, key=lambda x: x[1], reverse=not self.decreasing) # sort in descending order if a lower metric is not better checkpoints_str = "Current checkpoints:\n" for c in self.checkpoint_files: checkpoints_str += ' {}\n'.format(c) _logger.info(checkpoints_str) if metric is not None and (self.best_metric is None or self.cmp(metric, self.best_metric)): self.best_epoch = epoch self.best_metric = metric best_save_path = os.path.join(self.checkpoint_dir, 'model_best' + self.extension) if os.path.exists(best_save_path): os.unlink(best_save_path) os.link(last_save_path, best_save_path) return (None, None) if self.best_metric is None else (self.best_metric, self.best_epoch) def _save(self, save_path, epoch, metric=None): save_state = { 'epoch': epoch, 'arch': type(self.model).__name__.lower(), 'state_dict': get_state_dict(self.model, self.unwrap_fn), 'optimizer': self.optimizer.state_dict(), 'version': 2, # version < 2 increments epoch before save } if self.args is not None: save_state['arch'] = self.args.model save_state['args'] = self.args if self.amp_scaler is not None: save_state[self.amp_scaler.state_dict_key] = self.amp_scaler.state_dict() if self.model_ema is not None: save_state['state_dict_ema'] = get_state_dict(self.model_ema, self.unwrap_fn) if metric is not None: save_state['metric'] = metric torch.save(save_state, save_path) def _cleanup_checkpoints(self, trim=0): trim = min(len(self.checkpoint_files), trim) delete_index = self.max_history - trim if delete_index < 0 or len(self.checkpoint_files) <= delete_index: return to_delete = self.checkpoint_files[delete_index:] for d in to_delete: try: _logger.debug("Cleaning checkpoint: {}".format(d)) os.remove(d[0]) except Exception as e: _logger.error("Exception '{}' while deleting checkpoint".format(e)) self.checkpoint_files = self.checkpoint_files[:delete_index] def save_recovery(self, epoch, batch_idx=0): assert epoch >= 0 filename = '-'.join([self.recovery_prefix, str(epoch), str(batch_idx)]) + self.extension save_path = os.path.join(self.recovery_dir, filename) self._save(save_path, epoch) if os.path.exists(self.last_recovery_file): try: _logger.debug("Cleaning recovery: {}".format(self.last_recovery_file)) os.remove(self.last_recovery_file) except Exception as e: _logger.error("Exception '{}' while removing {}".format(e, self.last_recovery_file)) self.last_recovery_file = self.curr_recovery_file self.curr_recovery_file = save_path def find_recovery(self): recovery_path = os.path.join(self.recovery_dir, self.recovery_prefix) files = glob.glob(recovery_path + '*' + self.extension) files = sorted(files) return files[0] if len(files) else ''
40.615894
104
0.626121
767
6,133
4.762712
0.191656
0.04599
0.072817
0.03285
0.261429
0.164796
0.121544
0.095812
0
0
0
0.004531
0.280287
6,133
150
105
40.886667
0.823063
0.073863
0
0.04878
0
0
0.044492
0
0
0
0
0
0.02439
1
0.04878
false
0
0.04878
0
0.130081
0
0
0
0
null
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
null
0
0
0
0
0
0
0
0
0
0
0
0
1
0
6aad9dd74183fdbafeb45c7c06a4bb4ab92534aa
292
py
Python
AGC004/AGC004a.py
VolgaKurvar/AtCoder
21acb489f1594bbb1cdc64fbf8421d876b5b476d
[ "Unlicense" ]
null
null
null
AGC004/AGC004a.py
VolgaKurvar/AtCoder
21acb489f1594bbb1cdc64fbf8421d876b5b476d
[ "Unlicense" ]
null
null
null
AGC004/AGC004a.py
VolgaKurvar/AtCoder
21acb489f1594bbb1cdc64fbf8421d876b5b476d
[ "Unlicense" ]
null
null
null
# AGC004a def main(): import sys input = sys.stdin.readline sys.setrecursionlimit(10**6) a, b, c = map(int, input().split()) if a % 2 == 0 or b % 2 == 0 or c % 2 == 0: print(0) exit(0) print(min(a*b, b*c, c*a)) if __name__ == '__main__': main()
18.25
46
0.506849
48
292
2.916667
0.520833
0.042857
0.057143
0
0
0
0
0
0
0
0
0.069652
0.311644
292
15
47
19.466667
0.626866
0.023973
0
0
0
0
0.028269
0
0
0
0
0
0
1
0.090909
false
0
0.090909
0
0.181818
0.181818
0
0
0
null
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
null
0
0
0
0
0
0
0
0
0
0
0
0
1
0
6ab135f81cd0354b89240b44a37bacfa732bfab3
13,664
py
Python
qcore/asserts.py
corey-sobel/qcore
719a44617789e3cc384ce860031d9479ee0877e4
[ "Apache-2.0" ]
1
2022-01-31T23:15:48.000Z
2022-01-31T23:15:48.000Z
qcore/asserts.py
corey-sobel/qcore
719a44617789e3cc384ce860031d9479ee0877e4
[ "Apache-2.0" ]
null
null
null
qcore/asserts.py
corey-sobel/qcore
719a44617789e3cc384ce860031d9479ee0877e4
[ "Apache-2.0" ]
null
null
null
# Copyright 2016 Quora, Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Module with assertion helpers. The advantages of using a method like assert_eq(expected, actual) instead of assert expected == actual include: 1 - On failures, assert_eq prints an informative message of the actual values compared (e.g. AssertionError: 1 != 2) for free, which makes it faster and easier to iterate on tests. 2 - In the context of refactors, basic asserts incorrectly shift the burden of adding printouts and writing good test code to people refactoring code rather than the person who initially wrote the code. """ __all__ = [ "assert_is", "assert_is_not", "assert_is_instance", "assert_eq", "assert_dict_eq", "assert_ne", "assert_gt", "assert_ge", "assert_lt", "assert_le", "assert_in", "assert_not_in", "assert_in_with_tolerance", "assert_unordered_list_eq", "assert_raises", "AssertRaises", # Strings "assert_is_substring", "assert_is_not_substring", "assert_startswith", "assert_endswith", ] # The unittest.py testing framework checks for this variable in a module to # filter out stack frames from that module from the test output, in order to # make the output more concise. # __unittest = 1 import traceback from .inspection import get_full_name _number_types = (int, float, complex) def _assert_fail_message(message, expected, actual, comparison_str, extra): if message: return message if extra: return "%a %s %a (%s)" % (expected, comparison_str, actual, extra) return "%a %s %a" % (expected, comparison_str, actual) def assert_is(expected, actual, message=None, extra=None): """Raises an AssertionError if expected is not actual.""" assert expected is actual, _assert_fail_message( message, expected, actual, "is not", extra ) def assert_is_not(expected, actual, message=None, extra=None): """Raises an AssertionError if expected is actual.""" assert expected is not actual, _assert_fail_message( message, expected, actual, "is", extra ) def assert_is_instance(value, types, message=None, extra=None): """Raises an AssertionError if value is not an instance of type(s).""" assert isinstance(value, types), _assert_fail_message( message, value, types, "is not an instance of", extra ) def assert_eq(expected, actual, message=None, tolerance=None, extra=None): """Raises an AssertionError if expected != actual. If tolerance is specified, raises an AssertionError if either - expected or actual isn't a number, or - the difference between expected and actual is larger than the tolerance. """ if tolerance is None: assert expected == actual, _assert_fail_message( message, expected, actual, "!=", extra ) else: assert isinstance(tolerance, _number_types), ( "tolerance parameter to assert_eq must be a number: %a" % tolerance ) assert isinstance(expected, _number_types) and isinstance( actual, _number_types ), "parameters must be numbers when tolerance is specified: %a, %a" % ( expected, actual, ) diff = abs(expected - actual) assert diff <= tolerance, _assert_fail_message( message, expected, actual, "is more than %a away from" % tolerance, extra ) def _dict_path_string(path): if len(path) == 0: return "(root)" return "->".join(map(ascii, path)) def assert_dict_eq(expected, actual, number_tolerance=None, dict_path=[]): """Asserts that two dictionaries are equal, producing a custom message if they are not.""" assert_is_instance(expected, dict) assert_is_instance(actual, dict) expected_keys = set(expected.keys()) actual_keys = set(actual.keys()) assert expected_keys <= actual_keys, "Actual dict at %s is missing keys: %a" % ( _dict_path_string(dict_path), expected_keys - actual_keys, ) assert actual_keys <= expected_keys, "Actual dict at %s has extra keys: %a" % ( _dict_path_string(dict_path), actual_keys - expected_keys, ) for k in expected_keys: key_path = dict_path + [k] assert_is_instance( actual[k], type(expected[k]), extra="Types don't match for %s" % _dict_path_string(key_path), ) assert_is_instance( expected[k], type(actual[k]), extra="Types don't match for %s" % _dict_path_string(key_path), ) if isinstance(actual[k], dict): assert_dict_eq( expected[k], actual[k], number_tolerance=number_tolerance, dict_path=key_path, ) elif isinstance(actual[k], _number_types): assert_eq( expected[k], actual[k], extra="Value doesn't match for %s" % _dict_path_string(key_path), tolerance=number_tolerance, ) else: assert_eq( expected[k], actual[k], extra="Value doesn't match for %s" % _dict_path_string(key_path), ) def assert_ne(expected, actual, message=None, tolerance=None, extra=None): """Raises an AssertionError if expected == actual. If tolerance is specified, raises an AssertionError if either - expected or actual isn't a number, or - the difference between expected and actual is smaller than the tolerance. """ if tolerance is None: assert expected != actual, _assert_fail_message( message, expected, actual, "==", extra ) else: assert isinstance(tolerance, _number_types), ( "tolerance parameter to assert_eq must be a number: %a" % tolerance ) assert isinstance(expected, _number_types) and isinstance( actual, _number_types ), "parameters must be numbers when tolerance is specified: %a, %a" % ( expected, actual, ) diff = abs(expected - actual) assert diff > tolerance, _assert_fail_message( message, expected, actual, "is less than %a away from" % tolerance, extra ) def assert_gt(left, right, message=None, extra=None): """Raises an AssertionError if left_hand <= right_hand.""" assert left > right, _assert_fail_message(message, left, right, "<=", extra) def assert_ge(left, right, message=None, extra=None): """Raises an AssertionError if left_hand < right_hand.""" assert left >= right, _assert_fail_message(message, left, right, "<", extra) def assert_lt(left, right, message=None, extra=None): """Raises an AssertionError if left_hand >= right_hand.""" assert left < right, _assert_fail_message(message, left, right, ">=", extra) def assert_le(left, right, message=None, extra=None): """Raises an AssertionError if left_hand > right_hand.""" assert left <= right, _assert_fail_message(message, left, right, ">", extra) def assert_in(obj, seq, message=None, extra=None): """Raises an AssertionError if obj is not in seq.""" assert obj in seq, _assert_fail_message(message, obj, seq, "is not in", extra) def assert_not_in(obj, seq, message=None, extra=None): """Raises an AssertionError if obj is in iter.""" # for very long strings, provide a truncated error if isinstance(seq, str) and obj in seq and len(seq) > 200: index = seq.find(obj) start_index = index - 50 if start_index > 0: truncated = "(truncated) ..." else: truncated = "" start_index = 0 end_index = index + len(obj) + 50 truncated += seq[start_index:end_index] if end_index < len(seq): truncated += "... (truncated)" assert False, _assert_fail_message(message, obj, truncated, "is in", extra) assert obj not in seq, _assert_fail_message(message, obj, seq, "is in", extra) def assert_in_with_tolerance(obj, seq, tolerance, message=None, extra=None): """Raises an AssertionError if obj is not in seq using assert_eq cmp.""" for i in seq: try: assert_eq(obj, i, tolerance=tolerance, message=message, extra=extra) return except AssertionError: pass assert False, _assert_fail_message(message, obj, seq, "is not in", extra) def assert_unordered_list_eq(expected, actual, message=None): """Raises an AssertionError if the objects contained in expected are not equal to the objects contained in actual without regard to their order. This takes quadratic time in the umber of elements in actual; don't use it for very long lists. """ missing_in_actual = [] missing_in_expected = list(actual) for x in expected: try: missing_in_expected.remove(x) except ValueError: missing_in_actual.append(x) if missing_in_actual or missing_in_expected: if not message: message = ( "%a not equal to %a; missing items: %a in expected, %a in actual." % (expected, actual, missing_in_expected, missing_in_actual) ) assert False, message def assert_raises(fn, *expected_exception_types): """Raises an AssertionError if calling fn does not raise one of the expected_exception-types.""" with AssertRaises(*expected_exception_types): fn() class AssertRaises(object): """With-context that asserts that the code within the context raises the specified exception.""" def __init__(self, *expected_exception_types, **kwargs): # when you don't specify the exception expected, it's easy to write buggy tests that appear # to pass but actually throw an exception different from the expected one assert ( len(expected_exception_types) >= 1 ), "You must specify the exception type when using AssertRaises" self.expected_exception_types = set(expected_exception_types) self.expected_exception_found = None self.extra = kwargs.pop("extra", None) assert_eq({}, kwargs) def __enter__(self): return self def __exit__(self, exc_type, exc_val, exc_tb): if exc_type in self.expected_exception_types: # Return True to suppress the Exception if the type matches. For details, # see: http://docs.python.org/release/2.5.2/lib/typecontextmanager.html self.expected_exception_found = exc_val return True for t in self.expected_exception_types: if isinstance(exc_val, t): self.expected_exception_found = exc_val return True expected = ", ".join(map(get_full_name, self.expected_exception_types)) if exc_type is None: message = "No exception raised, but expected: %s" % expected if self.extra is not None: message += " (%s)" % self.extra else: template = ( "{TYPE}: {VAL} is raised, but expected:" " {EXPECTED}{EXTRA_STR}\n\n{STACK}" ) message = template.format( TYPE=get_full_name(exc_type), VAL=exc_val, EXPECTED=expected, STACK="".join(traceback.format_tb(exc_tb)), EXTRA_STR=(" (%s)" % self.extra) if self.extra is not None else "", ) raise AssertionError(message) # =================================================== # Strings # =================================================== def assert_is_substring(substring, subject, message=None, extra=None): """Raises an AssertionError if substring is not a substring of subject.""" assert ( (subject is not None) and (substring is not None) and (subject.find(substring) != -1) ), _assert_fail_message(message, substring, subject, "is not in", extra) def assert_is_not_substring(substring, subject, message=None, extra=None): """Raises an AssertionError if substring is a substring of subject.""" assert ( (subject is not None) and (substring is not None) and (subject.find(substring) == -1) ), _assert_fail_message(message, substring, subject, "is in", extra) def assert_startswith(prefix, subject, message=None, extra=None): """Raises an AssertionError if the subject string does not start with prefix.""" assert ( (type(subject) is str) and (type(prefix) is str) and (subject.startswith(prefix)) ), _assert_fail_message(message, subject, prefix, "does not start with", extra) def assert_endswith(suffix, subject, message=None, extra=None): """Raises an AssertionError if the subject string does not end with suffix.""" assert ( (type(subject) is str) and (type(suffix) is str) and (subject.endswith(suffix)) ), _assert_fail_message(message, subject, suffix, "does not end with", extra)
34.592405
100
0.640222
1,733
13,664
4.875361
0.171379
0.039768
0.040241
0.056811
0.464079
0.420168
0.405018
0.378861
0.352823
0.347852
0
0.00286
0.257904
13,664
394
101
34.680203
0.830375
0.259368
0
0.233333
0
0.004167
0.116202
0.010372
0
0
0
0
0.3625
1
0.1
false
0.004167
0.008333
0.004167
0.15
0
0
0
0
null
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
null
0
0
0
0
0
0
0
0
0
0
0
0
1
0
6ab21446cecd0d46b1a47275470353f326cec4d7
6,318
py
Python
src/python/pants/core/goals/check_test.py
yoav-orca/pants
995448e9add343975844c7a43d5d64618fc4e4d9
[ "Apache-2.0" ]
1,806
2015-01-05T07:31:00.000Z
2022-03-31T11:35:41.000Z
src/python/pants/core/goals/check_test.py
yoav-orca/pants
995448e9add343975844c7a43d5d64618fc4e4d9
[ "Apache-2.0" ]
9,565
2015-01-02T19:01:59.000Z
2022-03-31T23:25:16.000Z
src/python/pants/core/goals/check_test.py
riisi/pants
b33327389fab67c47b919710ea32f20ca284b1a6
[ "Apache-2.0" ]
443
2015-01-06T20:17:57.000Z
2022-03-31T05:28:17.000Z
# Copyright 2020 Pants project contributors (see CONTRIBUTORS.md). # Licensed under the Apache License, Version 2.0 (see LICENSE). from abc import ABCMeta, abstractmethod from pathlib import Path from textwrap import dedent from typing import ClassVar, Iterable, List, Optional, Tuple, Type from pants.core.goals.check import Check, CheckRequest, CheckResult, CheckResults, check from pants.core.util_rules.distdir import DistDir from pants.engine.addresses import Address from pants.engine.fs import Workspace from pants.engine.target import FieldSet, MultipleSourcesField, Target, Targets from pants.engine.unions import UnionMembership from pants.testutil.option_util import create_options_bootstrapper from pants.testutil.rule_runner import MockGet, RuleRunner, mock_console, run_rule_with_mocks from pants.util.logging import LogLevel class MockTarget(Target): alias = "mock_target" core_fields = (MultipleSourcesField,) class MockCheckFieldSet(FieldSet): required_fields = (MultipleSourcesField,) class MockCheckRequest(CheckRequest, metaclass=ABCMeta): field_set_type = MockCheckFieldSet checker_name: ClassVar[str] @staticmethod @abstractmethod def exit_code(_: Iterable[Address]) -> int: pass @property def check_results(self) -> CheckResults: addresses = [config.address for config in self.field_sets] return CheckResults( [ CheckResult( self.exit_code(addresses), "", "", ) ], checker_name=self.checker_name, ) class SuccessfulRequest(MockCheckRequest): checker_name = "SuccessfulChecker" @staticmethod def exit_code(_: Iterable[Address]) -> int: return 0 class FailingRequest(MockCheckRequest): checker_name = "FailingChecker" @staticmethod def exit_code(_: Iterable[Address]) -> int: return 1 class ConditionallySucceedsRequest(MockCheckRequest): checker_name = "ConditionallySucceedsChecker" @staticmethod def exit_code(addresses: Iterable[Address]) -> int: if any(address.target_name == "bad" for address in addresses): return 127 return 0 class SkippedRequest(MockCheckRequest): @staticmethod def exit_code(_) -> int: return 0 @property def check_results(self) -> CheckResults: return CheckResults([], checker_name="SkippedChecker") class InvalidField(MultipleSourcesField): pass class InvalidFieldSet(MockCheckFieldSet): required_fields = (InvalidField,) class InvalidRequest(MockCheckRequest): field_set_type = InvalidFieldSet checker_name = "InvalidChecker" @staticmethod def exit_code(_: Iterable[Address]) -> int: return -1 def make_target(address: Optional[Address] = None) -> Target: if address is None: address = Address("", target_name="tests") return MockTarget({}, address) def run_typecheck_rule( *, request_types: List[Type[CheckRequest]], targets: List[Target] ) -> Tuple[int, str]: union_membership = UnionMembership({CheckRequest: request_types}) with mock_console(create_options_bootstrapper()) as (console, stdio_reader): rule_runner = RuleRunner() result: Check = run_rule_with_mocks( check, rule_args=[ console, Workspace(rule_runner.scheduler, _enforce_effects=False), Targets(targets), DistDir(relpath=Path("dist")), union_membership, ], mock_gets=[ MockGet( output_type=CheckResults, input_type=CheckRequest, mock=lambda field_set_collection: field_set_collection.check_results, ), ], union_membership=union_membership, ) assert not stdio_reader.get_stdout() return result.exit_code, stdio_reader.get_stderr() def test_invalid_target_noops() -> None: exit_code, stderr = run_typecheck_rule(request_types=[InvalidRequest], targets=[make_target()]) assert exit_code == 0 assert stderr == "" def test_summary() -> None: good_address = Address("", target_name="good") bad_address = Address("", target_name="bad") exit_code, stderr = run_typecheck_rule( request_types=[ ConditionallySucceedsRequest, FailingRequest, SkippedRequest, SuccessfulRequest, ], targets=[make_target(good_address), make_target(bad_address)], ) assert exit_code == FailingRequest.exit_code([bad_address]) assert stderr == dedent( """\ 𐄂 ConditionallySucceedsChecker failed. 𐄂 FailingChecker failed. - SkippedChecker skipped. ✓ SuccessfulChecker succeeded. """ ) def test_streaming_output_skip() -> None: results = CheckResults([], checker_name="typechecker") assert results.level() == LogLevel.DEBUG assert results.message() == "typechecker skipped." def test_streaming_output_success() -> None: results = CheckResults([CheckResult(0, "stdout", "stderr")], checker_name="typechecker") assert results.level() == LogLevel.INFO assert results.message() == dedent( """\ typechecker succeeded. stdout stderr """ ) def test_streaming_output_failure() -> None: results = CheckResults([CheckResult(18, "stdout", "stderr")], checker_name="typechecker") assert results.level() == LogLevel.ERROR assert results.message() == dedent( """\ typechecker failed (exit code 18). stdout stderr """ ) def test_streaming_output_partitions() -> None: results = CheckResults( [ CheckResult(21, "", "", partition_description="ghc8.1"), CheckResult(0, "stdout", "stderr", partition_description="ghc9.2"), ], checker_name="typechecker", ) assert results.level() == LogLevel.ERROR assert results.message() == dedent( """\ typechecker failed (exit code 21). Partition #1 - ghc8.1: Partition #2 - ghc9.2: stdout stderr """ )
28.459459
99
0.650681
615
6,318
6.495935
0.273171
0.030038
0.016521
0.028786
0.198999
0.182728
0.138924
0.126909
0.094118
0.052065
0
0.007407
0.252137
6,318
221
100
28.588235
0.83746
0.019943
0
0.212329
0
0
0.04019
0.004914
0
0
0
0
0.089041
1
0.109589
false
0.013699
0.089041
0.034247
0.410959
0
0
0
0
null
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
null
0
0
0
0
0
0
0
0
0
0
0
0
1
0
6ab219191a7ea6ce5d831e0b7655a8775e4ac26e
9,851
py
Python
data-processing/entities/definitions/model/utils.py
alexkreidler/scholarphi
86d26d0bfa5ded00760fba1a9c6891a94a3dd6d2
[ "Apache-2.0" ]
null
null
null
data-processing/entities/definitions/model/utils.py
alexkreidler/scholarphi
86d26d0bfa5ded00760fba1a9c6891a94a3dd6d2
[ "Apache-2.0" ]
null
null
null
data-processing/entities/definitions/model/utils.py
alexkreidler/scholarphi
86d26d0bfa5ded00760fba1a9c6891a94a3dd6d2
[ "Apache-2.0" ]
1
2020-10-23T12:36:11.000Z
2020-10-23T12:36:11.000Z
import os import random from typing import Any, Dict, List, Union import numpy as np import torch from colorama import Fore, Style from sklearn.metrics import f1_score from sklearn.metrics import precision_recall_fscore_support as score from sklearn.metrics import precision_score, recall_score def highlight(input_: Any) -> str: input_ = str(input_) return str(Fore.YELLOW + str(input_) + Style.RESET_ALL) def get_intent_labels(args: Any) -> List[str]: return [ label.strip() for label in open( os.path.join(args.data_dir, args.intent_label_file), "r", encoding="utf-8" ) ] def get_slot_labels(args: Any) -> List[str]: return [ label.strip() for label in open( os.path.join(args.data_dir, args.slot_label_file), "r", encoding="utf-8" ) ] def get_pos_labels(args: Any) -> List[str]: return [ label.strip() for label in open( os.path.join(args.data_dir, args.pos_label_file), "r", encoding="utf-8" ) ] def set_torch_seed(seed: Any, no_cuda: bool) -> None: random.seed(seed) np.random.seed(seed) torch.manual_seed(seed) # type: ignore if not no_cuda and torch.cuda.is_available(): torch.cuda.manual_seed_all(seed) # type: ignore def compute_metrics( intent_preds: List[str], intent_labels: List[str], slot_preds: List[List[str]], slot_labels: List[List[str]], ) -> Dict[Any, Any]: assert ( len(intent_preds) == len(intent_labels) == len(slot_preds) == len(slot_labels) ) results: Dict[Any, Any] = {} intent_result = get_intent_acc(intent_preds, intent_labels) slot_result = get_slot_metrics(slot_preds, slot_labels) sementic_result = get_sentence_frame_acc( intent_preds, intent_labels, slot_preds, slot_labels ) # New metrics added following Dan's request. slot_simple_result = get_slot_simple_metrics(slot_preds, slot_labels) partial_match_result = get_partial_match_metrics(slot_preds, slot_labels) results.update(intent_result) results.update(slot_result) results.update(sementic_result) results.update(slot_simple_result) results.update(partial_match_result) return results def simplify_tokens(preds: List[str]) -> List[str]: simple_preds = [] for p in preds: if p.endswith("TERM"): simple_preds.append("TERM") elif p.endswith("DEF"): simple_preds.append("DEF") else: simple_preds.append(p) return simple_preds def get_partial_match_metrics( preds: List[List[str]], labels: List[List[str]] ) -> Dict[Any, Any]: """ Suppose there are N such pairs in the gold data and the system predicts M such pairs. Say a ‘partial match’ happens when the system predicts a pair <term,defn> and there is some overlap (at least one token) between the predicted and gold term spans AND there is some overlap between the predicted and gold definition spans. Let X be the number of partial matches. What are Partial match precision = P/M Partial match recall = P/N """ assert len(preds) == len(labels) both_in_preds, both_in_labels = [], [] partial_matches, exact_matches = [], [] for pred_sent, label_sent in zip(preds, labels): simple_pred_sent = simplify_tokens(pred_sent) simple_label_sent = simplify_tokens(label_sent) # check whether term/def exist together both_in_pred = "TERM" in simple_pred_sent and "DEF" in simple_pred_sent both_in_label = "TERM" in simple_label_sent and "DEF" in simple_label_sent both_in_preds.append(both_in_pred) both_in_labels.append(both_in_label) partial_match = False exact_match = False match: List[Union[str, bool]] = [] if both_in_pred and both_in_label: for p, l in zip(simple_pred_sent, simple_label_sent): if p == l: match.append(p) else: match.append(False) if "TERM" in match and "DEF" in match: partial_match = True if False not in match: exact_match = True partial_matches.append(partial_match) exact_matches.append(exact_match) count_both_in_preds = sum(both_in_preds) # N count_both_in_labels = sum(both_in_labels) # M count_partial_matches = sum(partial_matches) # P count_exact_matches = sum(exact_matches) # E partial_precision = count_partial_matches / count_both_in_preds partial_recall = count_partial_matches / count_both_in_labels partial_fscore = ( 2 * partial_precision * partial_recall / (partial_precision + partial_recall) ) exact_precision = count_exact_matches / count_both_in_preds exact_recall = count_exact_matches / count_both_in_labels exact_fscore = 2 * exact_precision * exact_recall / (exact_precision + exact_recall) return { "partial_match_precision": partial_precision, "partial_match_recall": partial_recall, "partial_match_f1": partial_fscore, "exact_match_precision": exact_precision, "excat_match_recall": exact_recall, "excat_match_f1": exact_fscore, } def get_slot_simple_metrics( preds: List[List[str]], labels: List[List[str]] ) -> Dict[Any, Any]: """ Conceptually, define the following new types of ‘virtual tags’ TERM = B-term OR I-Term (ie the union of those two tags) DEF = B-Def OR I-Def Now, what are the P,R & F1 numbers for TERM and DEF? (I think these matter because users may just care about accuracy of term and defn matching and the macro averaged scores conflate other things like recall on these metrics and precision on O. Likewise the current macro average treats missing the first word in a definition differently from skipping the last word. """ assert len(preds) == len(labels) # flatten preds_flattened = [p for ps in preds for p in ps] labels_flattened = [l for ls in labels for l in ls] # simplify by replacing {B,I}-TERM to TERM and {B,I}-DEF to DEF simple_preds = simplify_tokens(preds_flattened) simple_labels = simplify_tokens(labels_flattened) assert len(simple_preds) == len(simple_labels) label_names = ["O", "TERM", "DEF"] p, r, f, s = score(simple_labels, simple_preds, average=None, labels=label_names) s = [int(si) for si in s] p = [round(float(pi), 3) for pi in p] r = [round(float(pi), 3) for pi in r] f = [round(float(pi), 3) for pi in f] per_class = {"p": list(p), "r": list(r), "f": list(f), "s": list(s)} # pprint(per_class) return { "slot_merged_TERM_precision": per_class["p"][1], "slot_merged_TERM_recall": per_class["r"][1], "slot_merged_TERM_f1": per_class["f"][1], "slot_merged_DEFINITION_precision": per_class["p"][2], "slot_merged_DEFINITION_recall": per_class["r"][2], "slot_merged_DEFINITION_f1": per_class["f"][2], } def get_slot_metrics(preds: List[List[str]], labels: List[List[str]]) -> Dict[Any, Any]: assert len(preds) == len(labels) # flatten preds_flattened = [p for ps in preds for p in ps] labels_flattened = [l for ls in labels for l in ls] macro_f1 = f1_score(labels_flattened, preds_flattened, average="macro") micro_f1 = f1_score(labels_flattened, preds_flattened, average="micro") macro_p = precision_score(labels_flattened, preds_flattened, average="macro") micro_p = precision_score(labels_flattened, preds_flattened, average="micro") macro_r = recall_score(labels_flattened, preds_flattened, average="macro") micro_r = recall_score(labels_flattened, preds_flattened, average="micro") label_names = ["O", "B-TERM", "I-TERM", "B-DEF", "I-DEF"] p, r, f, s = score( labels_flattened, preds_flattened, average=None, labels=label_names ) s = [int(si) for si in s] p = [round(float(pi), 3) for pi in p] r = [round(float(pi), 3) for pi in r] f = [round(float(pi), 3) for pi in f] per_class = {"p": list(p), "r": list(r), "f": list(f), "s": list(s)} # print(per_class) return { "slot_precision_macro": macro_p, "slot_recall_macro": macro_r, "slot_f1_macro": macro_f1, "slot_precision_micro": micro_p, "slot_recall_micro": micro_r, "slot_f1_micro": micro_f1, "slot_precision_per_label": per_class["p"], "slot_recal_per_label": per_class["r"], "slot_f1_per_label": per_class["f"], "slot_num_per_label": per_class["s"], } def get_intent_acc(preds: List[str], labels: List[str]) -> Dict[Any, Any]: acc = (preds == labels).mean() return {"intent_acc": acc} def read_prediction_text(args: Any) -> List[str]: return [ text.strip() for text in open( os.path.join(args.pred_dir, args.pred_input_file), "r", encoding="utf-8" ) ] def get_sentence_frame_acc( intent_preds: List[str], intent_labels: List[str], slot_preds: List[List[str]], slot_labels: List[List[str]], ) -> Dict[Any, Any]: """For the cases that intent and all the slots are correct (in one sentence)""" # Get the intent comparison result intent_result = intent_preds == intent_labels # Get the slot comparision result slot_result = [] for preds, labels in zip(slot_preds, slot_labels): assert len(preds) == len(labels) one_sent_result = True for p, l in zip(preds, labels): if p != l: one_sent_result = False break slot_result.append(one_sent_result) slot_result = np.array(slot_result) sementic_acc = np.multiply(intent_result, slot_result).mean() return {"sementic_frame_acc": sementic_acc}
35.952555
376
0.66308
1,418
9,851
4.35402
0.158674
0.024943
0.017817
0.028345
0.360382
0.298996
0.241173
0.232588
0.168772
0.167315
0
0.004346
0.229114
9,851
273
377
36.084249
0.808665
0.132575
0
0.230392
0
0
0.072094
0.023953
0
0
0
0
0.029412
1
0.063725
false
0
0.044118
0.019608
0.166667
0
0
0
0
null
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
null
0
0
0
0
0
0
0
0
0
0
0
0
1
0
6ab2ef53d9a0815c477ae2435981a3a0029d019b
11,463
py
Python
fire/trace.py
nvhoang55/python-fire
b78287f6d68208732ca4d91e57f4678e6c4747c7
[ "Apache-2.0" ]
null
null
null
fire/trace.py
nvhoang55/python-fire
b78287f6d68208732ca4d91e57f4678e6c4747c7
[ "Apache-2.0" ]
null
null
null
fire/trace.py
nvhoang55/python-fire
b78287f6d68208732ca4d91e57f4678e6c4747c7
[ "Apache-2.0" ]
1
2022-01-17T08:35:09.000Z
2022-01-17T08:35:09.000Z
# Copyright (C) 2018 Google Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """This module has classes for tracing the execution of a Fire execution. A FireTrace consists of a sequence of FireTraceElement objects. Each element represents an action taken by Fire during a single Fire execution. An action may be instantiating a class, calling a routine, or accessing a property. Each action consumes args and results in a new component. The final component is serialized to stdout by Fire as well as returned by the Fire method. If a Fire usage error occurs, such as insufficient arguments being provided to call a function, then that error will be captured in the trace and the final component will be None. """ from __future__ import absolute_import from __future__ import division from __future__ import print_function import pipes from fire import inspectutils INITIAL_COMPONENT = 'Initial component' INSTANTIATED_CLASS = 'Instantiated class' CALLED_ROUTINE = 'Called routine' CALLED_CALLABLE = 'Called callable' ACCESSED_PROPERTY = 'Accessed property' COMPLETION_SCRIPT = 'Generated completion script' INTERACTIVE_MODE = 'Entered interactive mode' class FireTrace(object): """A FireTrace represents the steps taken during a single Fire execution. A FireTrace consists of a sequence of FireTraceElement objects. Each element represents an action taken by Fire during a single Fire execution. An action may be instantiating a class, calling a routine, or accessing a property. """ def __init__(self, initial_component, name=None, separator='-', verbose=False, show_help=False, show_trace=False): initial_trace_element = FireTraceElement( component=initial_component, action=INITIAL_COMPONENT, ) self.name = name self.separator = separator self.elements = [initial_trace_element] self.verbose = verbose self.show_help = show_help self.show_trace = show_trace def GetResult(self): """Returns the component from the last element of the trace.""" # pytype: disable=attribute-error return self.GetLastHealthyElement().component # pytype: enable=attribute-error def GetLastHealthyElement(self): """Returns the last element of the trace that is not an error. This element will contain the final component indicated by the trace. Returns: The last element of the trace that is not an error. """ for element in reversed(self.elements): if not element.HasError(): return element return None def HasError(self): """Returns whether the Fire execution encountered a Fire usage error.""" return self.elements[-1].HasError() def AddAccessedProperty(self, component, target, args, filename, lineno): element = FireTraceElement( component=component, action=ACCESSED_PROPERTY, target=target, args=args, filename=filename, lineno=lineno, ) self.elements.append(element) def AddCalledComponent(self, component, target, args, filename, lineno, capacity, action=CALLED_CALLABLE): """Adds an element to the trace indicating that a component was called. Also applies to instantiating a class. Args: component: The result of calling the callable. target: The name of the callable. args: The args consumed in order to call this callable. filename: The file in which the callable is defined, or None if N/A. lineno: The line number on which the callable is defined, or None if N/A. capacity: (bool) Whether the callable could have accepted additional args. action: The value to include as the action in the FireTraceElement. """ element = FireTraceElement( component=component, action=action, target=target, args=args, filename=filename, lineno=lineno, capacity=capacity, ) self.elements.append(element) def AddCompletionScript(self, script): element = FireTraceElement( component=script, action=COMPLETION_SCRIPT, ) self.elements.append(element) def AddInteractiveMode(self): element = FireTraceElement(action=INTERACTIVE_MODE) self.elements.append(element) def AddError(self, error, args): element = FireTraceElement(error=error, args=args) self.elements.append(element) def AddSeparator(self): """Marks that the most recent element of the trace used a separator. A separator is an argument you can pass to a Fire CLI to separate args left of the separator from args right of the separator. Here's an example to demonstrate the separator. Let's say you have a function that takes a variable number of args, and you want to call that function, and then upper case the result. Here's how to do it: # in Python def display(arg1, arg2='!'): return arg1 + arg2 # from Bash (the default separator is the hyphen -) display hello # hello! display hello upper # helloupper display hello - upper # HELLO! Note how the separator caused the display function to be called with the default value for arg2. """ self.elements[-1].AddSeparator() def _Quote(self, arg): if arg.startswith('--') and '=' in arg: prefix, value = arg.split('=', 1) return pipes.quote(prefix) + '=' + pipes.quote(value) return pipes.quote(arg) def GetCommand(self, include_separators=True): """Returns the command representing the trace up to this point. Args: include_separators: Whether or not to include separators in the command. Returns: A string representing a Fire CLI command that would produce this trace. """ args = [] if self.name: args.append(self.name) for element in self.elements: if element.HasError(): continue if element.args: args.extend(element.args) if element.HasSeparator() and include_separators: args.append(self.separator) if self.NeedsSeparator() and include_separators: args.append(self.separator) return ' '.join(self._Quote(arg) for arg in args) def NeedsSeparator(self): """Returns whether a separator should be added to the command. If the command is a function call, then adding an additional argument to the command sometimes would add an extra arg to the function call, and sometimes would add an arg acting on the result of the function call. This function tells us whether we should add a separator to the command before adding additional arguments in order to make sure the arg is applied to the result of the function call, and not the function call itself. Returns: Whether a separator should be added to the command if order to keep the component referred to by the command the same when adding additional args. """ element = self.GetLastHealthyElement() return element.HasCapacity() and not element.HasSeparator() def __str__(self): lines = [] for index, element in enumerate(self.elements): line = '{index}. {trace_string}'.format( index=index + 1, trace_string=element, ) lines.append(line) return '\n'.join(lines) def NeedsSeparatingHyphenHyphen(self, flag='help'): """Returns whether a the trace need '--' before '--help'. '--' is needed when the component takes keyword arguments, when the value of flag matches one of the argument of the component, or the component takes in keyword-only arguments(e.g. argument with default value). Args: flag: the flag available for the trace Returns: True for needed '--', False otherwise. """ element = self.GetLastHealthyElement() component = element.component spec = inspectutils.GetFullArgSpec(component) return (spec.varkw is not None or flag in spec.args or flag in spec.kwonlyargs) class FireTraceElement(object): """A FireTraceElement represents a single step taken by a Fire execution. Examples of a FireTraceElement are the instantiation of a class or the accessing of an object member. """ def __init__(self, component=None, action=None, target=None, args=None, filename=None, lineno=None, error=None, capacity=None): """Instantiates a FireTraceElement. Args: component: The result of this element of the trace. action: The type of action (eg instantiating a class) taking place. target: (string) The name of the component being acted upon. args: The args consumed by the represented action. filename: The file in which the action is defined, or None if N/A. lineno: The line number on which the action is defined, or None if N/A. error: The error represented by the action, or None if N/A. capacity: (bool) Whether the action could have accepted additional args. """ self.component = component self._action = action self._target = target self.args = args self._filename = filename self._lineno = lineno self._error = error self._separator = False self._capacity = capacity def HasError(self): return self._error is not None def HasCapacity(self): return self._capacity def HasSeparator(self): return self._separator def AddSeparator(self): self._separator = True def ErrorAsStr(self): return ' '.join(str(arg) for arg in self._error.args) def __str__(self): if self.HasError(): return self.ErrorAsStr() else: # Format is: {action} "{target}" ({filename}:{lineno}) string = self._action if self._target is not None: string += ' "{target}"'.format(target=self._target) if self._filename is not None: path = self._filename if self._lineno is not None: path += ':{lineno}'.format(lineno=self._lineno) string += ' ({path})'.format(path=path) return string
36.275316
84
0.640932
1,400
11,463
5.19
0.22
0.009634
0.008258
0.011698
0.21346
0.164327
0.139004
0.127168
0.113955
0.106524
0
0.002093
0.291547
11,463
315
85
36.390476
0.892624
0.449795
0
0.186667
0
0
0.034761
0
0
0
0
0
0
1
0.146667
false
0
0.033333
0.026667
0.3
0.006667
0
0
0
null
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
null
0
0
0
0
0
0
0
0
0
0
0
0
1
0
6ab36187809db9e1ba202abbdfa4e21a0d5b6dfb
33,549
py
Python
test/unit/__init__.py
thiagodasilva/swift
0553d9333ed0045c4d209065b315533a33e5d7d7
[ "Apache-2.0" ]
null
null
null
test/unit/__init__.py
thiagodasilva/swift
0553d9333ed0045c4d209065b315533a33e5d7d7
[ "Apache-2.0" ]
null
null
null
test/unit/__init__.py
thiagodasilva/swift
0553d9333ed0045c4d209065b315533a33e5d7d7
[ "Apache-2.0" ]
null
null
null
# Copyright (c) 2010-2012 OpenStack Foundation # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or # implied. # See the License for the specific language governing permissions and # limitations under the License. """ Swift tests """ from __future__ import print_function import os import copy import logging import errno from six.moves import range import sys from contextlib import contextmanager, closing from collections import defaultdict, Iterable import itertools from numbers import Number from tempfile import NamedTemporaryFile import time import eventlet from eventlet.green import socket from tempfile import mkdtemp from shutil import rmtree from swift.common.utils import Timestamp, NOTICE from test import get_config from swift.common import swob, utils from swift.common.ring import Ring, RingData from hashlib import md5 import logging.handlers from six.moves.http_client import HTTPException from swift.common import storage_policy from swift.common.storage_policy import (StoragePolicy, ECStoragePolicy, VALID_EC_TYPES) import functools import six.moves.cPickle as pickle from gzip import GzipFile import mock as mocklib import inspect EMPTY_ETAG = md5().hexdigest() # try not to import this module from swift if not os.path.basename(sys.argv[0]).startswith('swift'): # never patch HASH_PATH_SUFFIX AGAIN! utils.HASH_PATH_SUFFIX = 'endcap' EC_TYPE_PREFERENCE = [ 'liberasurecode_rs_vand', 'jerasure_rs_vand', ] for eclib_name in EC_TYPE_PREFERENCE: if eclib_name in VALID_EC_TYPES: break else: raise SystemExit('ERROR: unable to find suitable PyECLib type' ' (none of %r found in %r)' % ( EC_TYPE_PREFERENCE, VALID_EC_TYPES, )) DEFAULT_TEST_EC_TYPE = eclib_name def patch_policies(thing_or_policies=None, legacy_only=False, with_ec_default=False, fake_ring_args=None): if isinstance(thing_or_policies, ( Iterable, storage_policy.StoragePolicyCollection)): return PatchPolicies(thing_or_policies, fake_ring_args=fake_ring_args) if legacy_only: default_policies = [ StoragePolicy(0, name='legacy', is_default=True), ] default_ring_args = [{}] elif with_ec_default: default_policies = [ ECStoragePolicy(0, name='ec', is_default=True, ec_type=DEFAULT_TEST_EC_TYPE, ec_ndata=10, ec_nparity=4, ec_segment_size=4096), StoragePolicy(1, name='unu'), ] default_ring_args = [{'replicas': 14}, {}] else: default_policies = [ StoragePolicy(0, name='nulo', is_default=True), StoragePolicy(1, name='unu'), ] default_ring_args = [{}, {}] fake_ring_args = fake_ring_args or default_ring_args decorator = PatchPolicies(default_policies, fake_ring_args=fake_ring_args) if not thing_or_policies: return decorator else: # it's a thing, we return the wrapped thing instead of the decorator return decorator(thing_or_policies) class PatchPolicies(object): """ Why not mock.patch? In my case, when used as a decorator on the class it seemed to patch setUp at the wrong time (i.e. in setup the global wasn't patched yet) """ def __init__(self, policies, fake_ring_args=None): if isinstance(policies, storage_policy.StoragePolicyCollection): self.policies = policies else: self.policies = storage_policy.StoragePolicyCollection(policies) self.fake_ring_args = fake_ring_args or [None] * len(self.policies) def _setup_rings(self): """ Our tests tend to use the policies rings like their own personal playground - which can be a problem in the particular case of a patched TestCase class where the FakeRing objects are scoped in the call to the patch_policies wrapper outside of the TestCase instance which can lead to some bled state. To help tests get better isolation without having to think about it, here we're capturing the args required to *build* a new FakeRing instances so we can ensure each test method gets a clean ring setup. The TestCase can always "tweak" these fresh rings in setUp - or if they'd prefer to get the same "reset" behavior with custom FakeRing's they can pass in their own fake_ring_args to patch_policies instead of setting the object_ring on the policy definitions. """ for policy, fake_ring_arg in zip(self.policies, self.fake_ring_args): if fake_ring_arg is not None: policy.object_ring = FakeRing(**fake_ring_arg) def __call__(self, thing): if isinstance(thing, type): return self._patch_class(thing) else: return self._patch_method(thing) def _patch_class(self, cls): """ Creating a new class that inherits from decorated class is the more common way I've seen class decorators done - but it seems to cause infinite recursion when super is called from inside methods in the decorated class. """ orig_setUp = cls.setUp orig_tearDown = cls.tearDown def setUp(cls_self): self._orig_POLICIES = storage_policy._POLICIES if not getattr(cls_self, '_policies_patched', False): storage_policy._POLICIES = self.policies self._setup_rings() cls_self._policies_patched = True orig_setUp(cls_self) def tearDown(cls_self): orig_tearDown(cls_self) storage_policy._POLICIES = self._orig_POLICIES cls.setUp = setUp cls.tearDown = tearDown return cls def _patch_method(self, f): @functools.wraps(f) def mywrapper(*args, **kwargs): self._orig_POLICIES = storage_policy._POLICIES try: storage_policy._POLICIES = self.policies self._setup_rings() return f(*args, **kwargs) finally: storage_policy._POLICIES = self._orig_POLICIES return mywrapper def __enter__(self): self._orig_POLICIES = storage_policy._POLICIES storage_policy._POLICIES = self.policies def __exit__(self, *args): storage_policy._POLICIES = self._orig_POLICIES class FakeRing(Ring): def __init__(self, replicas=3, max_more_nodes=0, part_power=0, base_port=1000): """ :param part_power: make part calculation based on the path If you set a part_power when you setup your FakeRing the parts you get out of ring methods will actually be based on the path - otherwise we exercise the real ring code, but ignore the result and return 1. """ self._base_port = base_port self.max_more_nodes = max_more_nodes self._part_shift = 32 - part_power # 9 total nodes (6 more past the initial 3) is the cap, no matter if # this is set higher, or R^2 for R replicas self.set_replicas(replicas) self._reload() def _reload(self): self._rtime = time.time() def set_replicas(self, replicas): self.replicas = replicas self._devs = [] for x in range(self.replicas): ip = '10.0.0.%s' % x port = self._base_port + x self._devs.append({ 'ip': ip, 'replication_ip': ip, 'port': port, 'replication_port': port, 'device': 'sd' + (chr(ord('a') + x)), 'zone': x % 3, 'region': x % 2, 'id': x, }) @property def replica_count(self): return self.replicas def _get_part_nodes(self, part): return [dict(node, index=i) for i, node in enumerate(list(self._devs))] def get_more_nodes(self, part): for x in range(self.replicas, (self.replicas + self.max_more_nodes)): yield {'ip': '10.0.0.%s' % x, 'replication_ip': '10.0.0.%s' % x, 'port': self._base_port + x, 'replication_port': self._base_port + x, 'device': 'sda', 'zone': x % 3, 'region': x % 2, 'id': x} def write_fake_ring(path, *devs): """ Pretty much just a two node, two replica, 2 part power ring... """ dev1 = {'id': 0, 'zone': 0, 'device': 'sda1', 'ip': '127.0.0.1', 'port': 6000} dev2 = {'id': 0, 'zone': 0, 'device': 'sdb1', 'ip': '127.0.0.1', 'port': 6000} dev1_updates, dev2_updates = devs or ({}, {}) dev1.update(dev1_updates) dev2.update(dev2_updates) replica2part2dev_id = [[0, 1, 0, 1], [1, 0, 1, 0]] devs = [dev1, dev2] part_shift = 30 with closing(GzipFile(path, 'wb')) as f: pickle.dump(RingData(replica2part2dev_id, devs, part_shift), f) class FabricatedRing(Ring): """ When a FakeRing just won't do - you can fabricate one to meet your tests needs. """ def __init__(self, replicas=6, devices=8, nodes=4, port=6000, part_power=4): self.devices = devices self.nodes = nodes self.port = port self.replicas = 6 self.part_power = part_power self._part_shift = 32 - self.part_power self._reload() def _reload(self, *args, **kwargs): self._rtime = time.time() * 2 if hasattr(self, '_replica2part2dev_id'): return self._devs = [{ 'region': 1, 'zone': 1, 'weight': 1.0, 'id': i, 'device': 'sda%d' % i, 'ip': '10.0.0.%d' % (i % self.nodes), 'replication_ip': '10.0.0.%d' % (i % self.nodes), 'port': self.port, 'replication_port': self.port, } for i in range(self.devices)] self._replica2part2dev_id = [ [None] * 2 ** self.part_power for i in range(self.replicas) ] dev_ids = itertools.cycle(range(self.devices)) for p in range(2 ** self.part_power): for r in range(self.replicas): self._replica2part2dev_id[r][p] = next(dev_ids) class FakeMemcache(object): def __init__(self): self.store = {} def get(self, key): return self.store.get(key) def keys(self): return self.store.keys() def set(self, key, value, time=0): self.store[key] = value return True def incr(self, key, time=0): self.store[key] = self.store.setdefault(key, 0) + 1 return self.store[key] @contextmanager def soft_lock(self, key, timeout=0, retries=5): yield True def delete(self, key): try: del self.store[key] except Exception: pass return True def readuntil2crlfs(fd): rv = '' lc = '' crlfs = 0 while crlfs < 2: c = fd.read(1) if not c: raise ValueError("didn't get two CRLFs; just got %r" % rv) rv = rv + c if c == '\r' and lc != '\n': crlfs = 0 if lc == '\r' and c == '\n': crlfs += 1 lc = c return rv def connect_tcp(hostport): rv = socket.socket() rv.connect(hostport) return rv @contextmanager def tmpfile(content): with NamedTemporaryFile('w', delete=False) as f: file_name = f.name f.write(str(content)) try: yield file_name finally: os.unlink(file_name) xattr_data = {} def _get_inode(fd): if not isinstance(fd, int): try: fd = fd.fileno() except AttributeError: return os.stat(fd).st_ino return os.fstat(fd).st_ino def _setxattr(fd, k, v): inode = _get_inode(fd) data = xattr_data.get(inode, {}) data[k] = v xattr_data[inode] = data def _getxattr(fd, k): inode = _get_inode(fd) data = xattr_data.get(inode, {}).get(k) if not data: raise IOError(errno.ENODATA, "Fake IOError") return data import xattr xattr.setxattr = _setxattr xattr.getxattr = _getxattr @contextmanager def temptree(files, contents=''): # generate enough contents to fill the files c = len(files) contents = (list(contents) + [''] * c)[:c] tempdir = mkdtemp() for path, content in zip(files, contents): if os.path.isabs(path): path = '.' + path new_path = os.path.join(tempdir, path) subdir = os.path.dirname(new_path) if not os.path.exists(subdir): os.makedirs(subdir) with open(new_path, 'w') as f: f.write(str(content)) try: yield tempdir finally: rmtree(tempdir) def with_tempdir(f): """ Decorator to give a single test a tempdir as argument to test method. """ @functools.wraps(f) def wrapped(*args, **kwargs): tempdir = mkdtemp() args = list(args) args.append(tempdir) try: return f(*args, **kwargs) finally: rmtree(tempdir) return wrapped class NullLoggingHandler(logging.Handler): def emit(self, record): pass class UnmockTimeModule(object): """ Even if a test mocks time.time - you can restore unmolested behavior in a another module who imports time directly by monkey patching it's imported reference to the module with an instance of this class """ _orig_time = time.time def __getattribute__(self, name): if name == 'time': return UnmockTimeModule._orig_time return getattr(time, name) # logging.LogRecord.__init__ calls time.time logging.time = UnmockTimeModule() class FakeLogger(logging.Logger, object): # a thread safe fake logger def __init__(self, *args, **kwargs): self._clear() self.name = 'swift.unit.fake_logger' self.level = logging.NOTSET if 'facility' in kwargs: self.facility = kwargs['facility'] self.statsd_client = None self.thread_locals = None self.parent = None store_in = { logging.ERROR: 'error', logging.WARNING: 'warning', logging.INFO: 'info', logging.DEBUG: 'debug', logging.CRITICAL: 'critical', NOTICE: 'notice', } def notice(self, msg, *args, **kwargs): """ Convenience function for syslog priority LOG_NOTICE. The python logging lvl is set to 25, just above info. SysLogHandler is monkey patched to map this log lvl to the LOG_NOTICE syslog priority. """ self.log(NOTICE, msg, *args, **kwargs) def _log(self, level, msg, *args, **kwargs): store_name = self.store_in[level] cargs = [msg] if any(args): cargs.extend(args) captured = dict(kwargs) if 'exc_info' in kwargs and \ not isinstance(kwargs['exc_info'], tuple): captured['exc_info'] = sys.exc_info() self.log_dict[store_name].append((tuple(cargs), captured)) super(FakeLogger, self)._log(level, msg, *args, **kwargs) def _clear(self): self.log_dict = defaultdict(list) self.lines_dict = {'critical': [], 'error': [], 'info': [], 'warning': [], 'debug': [], 'notice': []} clear = _clear # this is a public interface def get_lines_for_level(self, level): if level not in self.lines_dict: raise KeyError( "Invalid log level '%s'; valid levels are %s" % (level, ', '.join("'%s'" % lvl for lvl in sorted(self.lines_dict)))) return self.lines_dict[level] def all_log_lines(self): return dict((level, msgs) for level, msgs in self.lines_dict.items() if len(msgs) > 0) def _store_in(store_name): def stub_fn(self, *args, **kwargs): self.log_dict[store_name].append((args, kwargs)) return stub_fn # mock out the StatsD logging methods: update_stats = _store_in('update_stats') increment = _store_in('increment') decrement = _store_in('decrement') timing = _store_in('timing') timing_since = _store_in('timing_since') transfer_rate = _store_in('transfer_rate') set_statsd_prefix = _store_in('set_statsd_prefix') def get_increments(self): return [call[0][0] for call in self.log_dict['increment']] def get_increment_counts(self): counts = {} for metric in self.get_increments(): if metric not in counts: counts[metric] = 0 counts[metric] += 1 return counts def setFormatter(self, obj): self.formatter = obj def close(self): self._clear() def set_name(self, name): # don't touch _handlers self._name = name def acquire(self): pass def release(self): pass def createLock(self): pass def emit(self, record): pass def _handle(self, record): try: line = record.getMessage() except TypeError: print('WARNING: unable to format log message %r %% %r' % ( record.msg, record.args)) raise self.lines_dict[record.levelname.lower()].append(line) def handle(self, record): self._handle(record) def flush(self): pass def handleError(self, record): pass class DebugLogger(FakeLogger): """A simple stdout logging version of FakeLogger""" def __init__(self, *args, **kwargs): FakeLogger.__init__(self, *args, **kwargs) self.formatter = logging.Formatter( "%(server)s %(levelname)s: %(message)s") def handle(self, record): self._handle(record) print(self.formatter.format(record)) class DebugLogAdapter(utils.LogAdapter): def _send_to_logger(name): def stub_fn(self, *args, **kwargs): return getattr(self.logger, name)(*args, **kwargs) return stub_fn # delegate to FakeLogger's mocks update_stats = _send_to_logger('update_stats') increment = _send_to_logger('increment') decrement = _send_to_logger('decrement') timing = _send_to_logger('timing') timing_since = _send_to_logger('timing_since') transfer_rate = _send_to_logger('transfer_rate') set_statsd_prefix = _send_to_logger('set_statsd_prefix') def __getattribute__(self, name): try: return object.__getattribute__(self, name) except AttributeError: return getattr(self.__dict__['logger'], name) def debug_logger(name='test'): """get a named adapted debug logger""" return DebugLogAdapter(DebugLogger(), name) original_syslog_handler = logging.handlers.SysLogHandler def fake_syslog_handler(): for attr in dir(original_syslog_handler): if attr.startswith('LOG'): setattr(FakeLogger, attr, copy.copy(getattr(logging.handlers.SysLogHandler, attr))) FakeLogger.priority_map = \ copy.deepcopy(logging.handlers.SysLogHandler.priority_map) logging.handlers.SysLogHandler = FakeLogger if utils.config_true_value( get_config('unit_test').get('fake_syslog', 'False')): fake_syslog_handler() class MockTrue(object): """ Instances of MockTrue evaluate like True Any attr accessed on an instance of MockTrue will return a MockTrue instance. Any method called on an instance of MockTrue will return a MockTrue instance. >>> thing = MockTrue() >>> thing True >>> thing == True # True == True True >>> thing == False # True == False False >>> thing != True # True != True False >>> thing != False # True != False True >>> thing.attribute True >>> thing.method() True >>> thing.attribute.method() True >>> thing.method().attribute True """ def __getattribute__(self, *args, **kwargs): return self def __call__(self, *args, **kwargs): return self def __repr__(*args, **kwargs): return repr(True) def __eq__(self, other): return other is True def __ne__(self, other): return other is not True @contextmanager def mock(update): returns = [] deletes = [] for key, value in update.items(): imports = key.split('.') attr = imports.pop(-1) module = __import__(imports[0], fromlist=imports[1:]) for modname in imports[1:]: module = getattr(module, modname) if hasattr(module, attr): returns.append((module, attr, getattr(module, attr))) else: deletes.append((module, attr)) setattr(module, attr, value) try: yield True finally: for module, attr, value in returns: setattr(module, attr, value) for module, attr in deletes: delattr(module, attr) class FakeStatus(object): """ This will work with our fake_http_connect, if you hand in one of these instead of a status int or status int tuple to the "codes" iter you can add some eventlet sleep to the expect and response stages of the connection. """ def __init__(self, status, expect_sleep=None, response_sleep=None): """ :param status: the response status int, or a tuple of ([expect_status, ...], response_status) :param expect_sleep: float, time to eventlet sleep during expect, can be a iter of floats :param response_sleep: float, time to eventlet sleep during response """ # connect exception if isinstance(status, (Exception, eventlet.Timeout)): raise status if isinstance(status, tuple): self.expect_status = list(status[:-1]) self.status = status[-1] self.explicit_expect_list = True else: self.expect_status, self.status = ([], status) self.explicit_expect_list = False if not self.expect_status: # when a swift backend service returns a status before reading # from the body (mostly an error response) eventlet.wsgi will # respond with that status line immediately instead of 100 # Continue, even if the client sent the Expect 100 header. # BufferedHttp and the proxy both see these error statuses # when they call getexpect, so our FakeConn tries to act like # our backend services and return certain types of responses # as expect statuses just like a real backend server would do. if self.status in (507, 412, 409): self.expect_status = [status] else: self.expect_status = [100, 100] # setup sleep attributes if not isinstance(expect_sleep, (list, tuple)): expect_sleep = [expect_sleep] * len(self.expect_status) self.expect_sleep_list = list(expect_sleep) while len(self.expect_sleep_list) < len(self.expect_status): self.expect_sleep_list.append(None) self.response_sleep = response_sleep def get_response_status(self): if self.response_sleep is not None: eventlet.sleep(self.response_sleep) if self.expect_status and self.explicit_expect_list: raise Exception('Test did not consume all fake ' 'expect status: %r' % (self.expect_status,)) if isinstance(self.status, (Exception, eventlet.Timeout)): raise self.status return self.status def get_expect_status(self): expect_sleep = self.expect_sleep_list.pop(0) if expect_sleep is not None: eventlet.sleep(expect_sleep) expect_status = self.expect_status.pop(0) if isinstance(expect_status, (Exception, eventlet.Timeout)): raise expect_status return expect_status class SlowBody(object): """ This will work with our fake_http_connect, if you hand in these instead of strings it will make reads take longer by the given amount. It should be a little bit easier to extend than the current slow kwarg - which inserts whitespace in the response. Also it should be easy to detect if you have one of these (or a subclass) for the body inside of FakeConn if we wanted to do something smarter than just duck-type the str/buffer api enough to get by. """ def __init__(self, body, slowness): self.body = body self.slowness = slowness def slowdown(self): eventlet.sleep(self.slowness) def __getitem__(self, s): return SlowBody(self.body[s], self.slowness) def __len__(self): return len(self.body) def __radd__(self, other): self.slowdown() return other + self.body def fake_http_connect(*code_iter, **kwargs): class FakeConn(object): def __init__(self, status, etag=None, body='', timestamp='1', headers=None, expect_headers=None, connection_id=None, give_send=None): if not isinstance(status, FakeStatus): status = FakeStatus(status) self._status = status self.reason = 'Fake' self.host = '1.2.3.4' self.port = '1234' self.sent = 0 self.received = 0 self.etag = etag self.body = body self.headers = headers or {} self.expect_headers = expect_headers or {} self.timestamp = timestamp self.connection_id = connection_id self.give_send = give_send if 'slow' in kwargs and isinstance(kwargs['slow'], list): try: self._next_sleep = kwargs['slow'].pop(0) except IndexError: self._next_sleep = None # be nice to trixy bits with node_iter's eventlet.sleep() def getresponse(self): exc = kwargs.get('raise_exc') if exc: if isinstance(exc, (Exception, eventlet.Timeout)): raise exc raise Exception('test') if kwargs.get('raise_timeout_exc'): raise eventlet.Timeout() self.status = self._status.get_response_status() return self def getexpect(self): expect_status = self._status.get_expect_status() headers = dict(self.expect_headers) if expect_status == 409: headers['X-Backend-Timestamp'] = self.timestamp response = FakeConn(expect_status, timestamp=self.timestamp, headers=headers) response.status = expect_status return response def getheaders(self): etag = self.etag if not etag: if isinstance(self.body, str): etag = '"' + md5(self.body).hexdigest() + '"' else: etag = '"68b329da9893e34099c7d8ad5cb9c940"' headers = swob.HeaderKeyDict({ 'content-length': len(self.body), 'content-type': 'x-application/test', 'x-timestamp': self.timestamp, 'x-backend-timestamp': self.timestamp, 'last-modified': self.timestamp, 'x-object-meta-test': 'testing', 'x-delete-at': '9876543210', 'etag': etag, 'x-works': 'yes', }) if self.status // 100 == 2: headers['x-account-container-count'] = \ kwargs.get('count', 12345) if not self.timestamp: # when timestamp is None, HeaderKeyDict raises KeyError headers.pop('x-timestamp', None) try: if next(container_ts_iter) is False: headers['x-container-timestamp'] = '1' except StopIteration: pass am_slow, value = self.get_slow() if am_slow: headers['content-length'] = '4' headers.update(self.headers) return headers.items() def get_slow(self): if 'slow' in kwargs and isinstance(kwargs['slow'], list): if self._next_sleep is not None: return True, self._next_sleep else: return False, 0.01 if kwargs.get('slow') and isinstance(kwargs['slow'], Number): return True, kwargs['slow'] return bool(kwargs.get('slow')), 0.1 def read(self, amt=None): am_slow, value = self.get_slow() if am_slow: if self.sent < 4: self.sent += 1 eventlet.sleep(value) return ' ' rv = self.body[:amt] self.body = self.body[amt:] return rv def send(self, amt=None): if self.give_send: self.give_send(self.connection_id, amt) am_slow, value = self.get_slow() if am_slow: if self.received < 4: self.received += 1 eventlet.sleep(value) def getheader(self, name, default=None): return swob.HeaderKeyDict(self.getheaders()).get(name, default) def close(self): pass timestamps_iter = iter(kwargs.get('timestamps') or ['1'] * len(code_iter)) etag_iter = iter(kwargs.get('etags') or [None] * len(code_iter)) if isinstance(kwargs.get('headers'), (list, tuple)): headers_iter = iter(kwargs['headers']) else: headers_iter = iter([kwargs.get('headers', {})] * len(code_iter)) if isinstance(kwargs.get('expect_headers'), (list, tuple)): expect_headers_iter = iter(kwargs['expect_headers']) else: expect_headers_iter = iter([kwargs.get('expect_headers', {})] * len(code_iter)) x = kwargs.get('missing_container', [False] * len(code_iter)) if not isinstance(x, (tuple, list)): x = [x] * len(code_iter) container_ts_iter = iter(x) code_iter = iter(code_iter) conn_id_and_code_iter = enumerate(code_iter) static_body = kwargs.get('body', None) body_iter = kwargs.get('body_iter', None) if body_iter: body_iter = iter(body_iter) def connect(*args, **ckwargs): if kwargs.get('slow_connect', False): eventlet.sleep(0.1) if 'give_content_type' in kwargs: if len(args) >= 7 and 'Content-Type' in args[6]: kwargs['give_content_type'](args[6]['Content-Type']) else: kwargs['give_content_type']('') i, status = next(conn_id_and_code_iter) if 'give_connect' in kwargs: give_conn_fn = kwargs['give_connect'] argspec = inspect.getargspec(give_conn_fn) if argspec.keywords or 'connection_id' in argspec.args: ckwargs['connection_id'] = i give_conn_fn(*args, **ckwargs) etag = next(etag_iter) headers = next(headers_iter) expect_headers = next(expect_headers_iter) timestamp = next(timestamps_iter) if status <= 0: raise HTTPException() if body_iter is None: body = static_body or '' else: body = next(body_iter) return FakeConn(status, etag, body=body, timestamp=timestamp, headers=headers, expect_headers=expect_headers, connection_id=i, give_send=kwargs.get('give_send')) connect.code_iter = code_iter return connect @contextmanager def mocked_http_conn(*args, **kwargs): requests = [] def capture_requests(ip, port, method, path, headers, qs, ssl): req = { 'ip': ip, 'port': port, 'method': method, 'path': path, 'headers': headers, 'qs': qs, 'ssl': ssl, } requests.append(req) kwargs.setdefault('give_connect', capture_requests) fake_conn = fake_http_connect(*args, **kwargs) fake_conn.requests = requests with mocklib.patch('swift.common.bufferedhttp.http_connect_raw', new=fake_conn): yield fake_conn left_over_status = list(fake_conn.code_iter) if left_over_status: raise AssertionError('left over status %r' % left_over_status) def make_timestamp_iter(): return iter(Timestamp(t) for t in itertools.count(int(time.time())))
32.104306
79
0.592924
4,079
33,549
4.703849
0.177004
0.013759
0.007505
0.007818
0.147965
0.092458
0.068171
0.04232
0.026372
0.016782
0
0.011366
0.307669
33,549
1,044
80
32.135057
0.814698
0.1561
0
0.182442
0
0
0.063651
0.005997
0
0
0
0
0.001372
1
0.128944
false
0.013717
0.049383
0.021948
0.29904
0.004115
0
0
0
null
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
null
0
0
0
0
0
0
0
0
0
0
0
0
1
0
6ab3a62e50f821717cc617bcae69096621bae1d3
10,138
py
Python
fairseq/models/bart/model.py
samsontmr/fairseq
1d50b6dcd961faaa74ee32e9d7a02ff76f16ab87
[ "MIT" ]
172
2019-08-22T14:20:25.000Z
2022-02-16T07:38:12.000Z
fairseq/models/bart/model.py
samsontmr/fairseq
1d50b6dcd961faaa74ee32e9d7a02ff76f16ab87
[ "MIT" ]
3
2019-08-30T11:56:15.000Z
2020-10-02T13:57:49.000Z
fairseq/models/bart/model.py
samsontmr/fairseq
1d50b6dcd961faaa74ee32e9d7a02ff76f16ab87
[ "MIT" ]
8
2019-10-15T04:36:43.000Z
2020-10-21T01:50:09.000Z
# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. """ BART: Denoising Sequence-to-Sequence Pre-training for Natural Language Generation, Translation, and Comprehension """ import torch.nn as nn from fairseq import utils from fairseq.models import ( register_model, register_model_architecture, ) from fairseq.models.transformer import TransformerModel from fairseq.modules.transformer_sentence_encoder import init_bert_params from .hub_interface import BARTHubInterface @register_model('bart') class BARTModel(TransformerModel): @classmethod def hub_models(cls): return { 'bart.large': 'http://dl.fbaipublicfiles.com/fairseq/models/bart.large.tar.gz', 'bart.large.mnli': 'http://dl.fbaipublicfiles.com/fairseq/models/bart.large.mnli.tar.gz', } def __init__(self, args, encoder, decoder): super().__init__(args, encoder, decoder) # We follow BERT's random weight initialization self.apply(init_bert_params) self.classification_heads = nn.ModuleDict() @staticmethod def add_args(parser): super(BARTModel, BARTModel).add_args(parser) parser.add_argument( '--max-source-positions', default=1024, type=int, metavar='N', help='max number of tokens in the source sequence' ) parser.add_argument( '--max-target-positions', default=1024, type=int, metavar='N', help='max number of tokens in the target sequence' ) parser.add_argument( '--pooler-dropout', type=float, metavar='D', help='dropout probability in the masked_lm pooler layers' ) parser.add_argument( '--pooler-activation-fn', choices=utils.get_available_activation_fns(), help='activation function to use for pooler layer' ) @property def supported_targets(self): return {'self'} def forward( self, src_tokens, src_lengths, prev_output_tokens, features_only=False, classification_head_name=None, **kwargs ): if classification_head_name is not None: features_only = True encoder_out = self.encoder( src_tokens, src_lengths=src_lengths, **kwargs, ) x, extra = self.decoder( prev_output_tokens, encoder_out=encoder_out, features_only=features_only, **kwargs, ) if classification_head_name is not None: sentence_representation = x[ src_tokens.eq(self.encoder.dictionary.eos()), : ].view(x.size(0), -1, x.size(-1))[:, -1, :] x = self.classification_heads[classification_head_name]( sentence_representation ) return x, extra @classmethod def from_pretrained( cls, model_name_or_path, checkpoint_file='model.pt', data_name_or_path='.', bpe='gpt2', **kwargs, ): from fairseq import hub_utils x = hub_utils.from_pretrained( model_name_or_path, checkpoint_file, data_name_or_path, archive_map=cls.hub_models(), bpe=bpe, load_checkpoint_heads=True, **kwargs, ) return BARTHubInterface(x['args'], x['task'], x['models'][0]) def register_classification_head(self, name, num_classes=None, inner_dim=None, **kwargs): """Register a classification head.""" print("Registering classification head: {0}".format(name)) if name in self.classification_heads: prev_num_classes = self.classification_heads[name].out_proj.out_features prev_inner_dim = self.classification_heads[name].dense.out_features if num_classes != prev_num_classes or inner_dim != prev_inner_dim: print( 'WARNING: re-registering head "{}" with num_classes {} (prev: {}) ' 'and inner_dim {} (prev: {})'.format( name, num_classes, prev_num_classes, inner_dim, prev_inner_dim ) ) self.classification_heads[name] = BARTClassificationHead( self.args.encoder_embed_dim, inner_dim or self.args.encoder_embed_dim, num_classes, self.args.pooler_activation_fn, self.args.pooler_dropout, ) def upgrade_state_dict_named(self, state_dict, name): super().upgrade_state_dict_named(state_dict, name) prefix = name + '.' if name != '' else '' current_head_names = [] if not hasattr(self, 'classification_heads') else \ self.classification_heads.keys() # Handle new classification heads present in the state dict. keys_to_delete = [] for k in state_dict.keys(): if not k.startswith(prefix + 'classification_heads.'): continue head_name = k[len(prefix + 'classification_heads.'):].split('.')[0] num_classes = state_dict[prefix + 'classification_heads.' + head_name + '.out_proj.weight'].size(0) inner_dim = state_dict[prefix + 'classification_heads.' + head_name + '.dense.weight'].size(0) if getattr(self.args, 'load_checkpoint_heads', False): if head_name not in current_head_names: self.register_classification_head(head_name, num_classes, inner_dim) else: if head_name not in current_head_names: print( 'WARNING: deleting classification head ({}) from checkpoint ' 'not present in current model: {}'.format(head_name, k) ) keys_to_delete.append(k) elif ( num_classes != self.classification_heads[head_name].out_proj.out_features or inner_dim != self.classification_heads[head_name].dense.out_features ): print( 'WARNING: deleting classification head ({}) from checkpoint ' 'with different dimensions than current model: {}'.format(head_name, k) ) keys_to_delete.append(k) for k in keys_to_delete: del state_dict[k] # Copy any newly-added classification heads into the state dict # with their current weights. if hasattr(self, 'classification_heads'): cur_state = self.classification_heads.state_dict() for k, v in cur_state.items(): if prefix + 'classification_heads.' + k not in state_dict: print('Overwriting', prefix + 'classification_heads.' + k) state_dict[prefix + 'classification_heads.' + k] = v class BARTClassificationHead(nn.Module): """Head for sentence-level classification tasks.""" def __init__( self, input_dim, inner_dim, num_classes, activation_fn, pooler_dropout, ): super().__init__() self.dense = nn.Linear(input_dim, inner_dim) self.activation_fn = utils.get_activation_fn(activation_fn) self.dropout = nn.Dropout(p=pooler_dropout) self.out_proj = nn.Linear(inner_dim, num_classes) def forward(self, features, **kwargs): x = features x = self.dropout(x) x = self.dense(x) x = self.activation_fn(x) x = self.dropout(x) x = self.out_proj(x) return x @register_model_architecture('bart', 'bart_large') def bart_large_architecture(args): args.encoder_embed_path = getattr(args, 'encoder_embed_path', None) args.encoder_embed_dim = getattr(args, 'encoder_embed_dim', 1024) args.encoder_ffn_embed_dim = getattr(args, 'encoder_ffn_embed_dim', 4*1024) args.encoder_layers = getattr(args, 'encoder_layers', 12) args.encoder_attention_heads = getattr(args, 'encoder_attention_heads', 16) args.encoder_normalize_before = getattr(args, 'encoder_normalize_before', False) args.encoder_learned_pos = getattr(args, 'encoder_learned_pos', True) args.decoder_embed_path = getattr(args, 'decoder_embed_path', None) args.decoder_embed_dim = getattr(args, 'decoder_embed_dim', args.encoder_embed_dim) args.decoder_ffn_embed_dim = getattr(args, 'decoder_ffn_embed_dim', args.encoder_ffn_embed_dim) args.decoder_layers = getattr(args, 'decoder_layers', 12) args.decoder_attention_heads = getattr(args, 'decoder_attention_heads', 16) args.decoder_normalize_before = getattr(args, 'decoder_normalize_before', False) args.decoder_learned_pos = getattr(args, 'decoder_learned_pos', True) args.attention_dropout = getattr(args, 'attention_dropout', 0.) args.relu_dropout = getattr(args, 'relu_dropout', 0.) args.dropout = getattr(args, 'dropout', 0.1) args.max_target_positions = getattr(args, 'max_target_positions', 1024) args.max_source_positions = getattr(args, 'max_source_positions', 1024) args.adaptive_softmax_cutoff = getattr(args, 'adaptive_softmax_cutoff', None) args.adaptive_softmax_dropout = getattr(args, 'adaptive_softmax_dropout', 0) args.share_decoder_input_output_embed = getattr(args, 'share_decoder_input_output_embed', True) args.share_all_embeddings = getattr(args, 'share_all_embeddings', True) args.decoder_output_dim = getattr(args, 'decoder_output_dim', args.decoder_embed_dim) args.decoder_input_dim = getattr(args, 'decoder_input_dim', args.decoder_embed_dim) args.no_scale_embedding = getattr(args, 'no_scale_embedding', True) args.layernorm_embedding = getattr(args, 'layernorm_embedding', True) args.activation_fn = getattr(args, 'activation_fn', 'gelu') args.pooler_activation_fn = getattr(args, 'pooler_activation_fn', 'tanh') args.pooler_dropout = getattr(args, 'pooler_dropout', 0.0)
41.044534
111
0.641251
1,187
10,138
5.192923
0.20219
0.053537
0.044776
0.015412
0.232966
0.15623
0.115509
0.072356
0.034718
0.034718
0
0.00666
0.25942
10,138
246
112
41.211382
0.814331
0.054843
0
0.154229
0
0.004975
0.169195
0.046981
0
0
0
0
0
1
0.054726
false
0
0.034826
0.00995
0.124378
0.024876
0
0
0
null
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
null
0
0
0
0
0
0
0
0
0
0
0
0
1
0
6ab4adb92969b15eb2c974889f086f66aef842c0
3,351
py
Python
tb_plugin/torch_tb_profiler/profiler/trace.py
azhou-determined/kineto
46ed0ce917c1515db29c39cd87b0c5430f5be94e
[ "BSD-3-Clause" ]
null
null
null
tb_plugin/torch_tb_profiler/profiler/trace.py
azhou-determined/kineto
46ed0ce917c1515db29c39cd87b0c5430f5be94e
[ "BSD-3-Clause" ]
null
null
null
tb_plugin/torch_tb_profiler/profiler/trace.py
azhou-determined/kineto
46ed0ce917c1515db29c39cd87b0c5430f5be94e
[ "BSD-3-Clause" ]
2
2021-08-12T08:00:41.000Z
2021-08-20T03:41:03.000Z
# ------------------------------------------------------------------------- # Copyright (c) Microsoft Corporation. All rights reserved. # -------------------------------------------------------------------------- from enum import IntEnum from .. import utils __all__ = ["EventTypes", "create_event"] logger = utils.get_logger() DeviceType = IntEnum('DeviceType', ['CPU', 'CUDA'], start=0) class EventTypes(object): TRACE = "Trace" OPERATOR = "Operator" PROFILER_STEP = "ProfilerStep" RUNTIME = "Runtime" KERNEL = "Kernel" MEMCPY = "Memcpy" MEMSET = "Memset" PYTHON = "Python" MEMORY = "Memory" Supported_EventTypes = [v for k, v in vars(EventTypes).items() if not k.startswith("_") and v != EventTypes.PROFILER_STEP] class BaseEvent(object): def __init__(self, type, data): self.type = type self.name = data.get("name") self.ts = data.get("ts") self.pid = data.get("pid") self.tid = data.get("tid") self.args = data.get("args", {}) class TraceEvent(BaseEvent): def __init__(self, type, data): super().__init__(type, data) self.category = data.get("cat", "") self.duration = data.get("dur") @property def external_id(self): extern_id = self.args.get("external id") if extern_id is None: extern_id = self.args.get("External id") return extern_id @property def callstack(self): return self.args.get("Call stack", "") @property def input_shape(self): shape = self.args.get("Input Dims") if shape is None: shape = self.args.get("Input dims") return shape @property def input_type(self): return self.args.get("Input type") class ProfilerStepEvent(TraceEvent): def __init__(self, data): super().__init__(EventTypes.PROFILER_STEP, data) # torch.profiler.profile.step will invoke record_function with name like "ProfilerStep#5" self.step = int(self.name.split("#")[1]) class MemoryEvent(BaseEvent): def __init__(self, type, data): super().__init__(type, data) self.scope = data.get("s", "") @property def device_type(self): dtype = self.args.get("Device Type") if dtype is None: return None try: return DeviceType(dtype) except ValueError: return None @property def device_id(self): return self.args.get("Device Id") @property def bytes(self): return self.args.get("Bytes", 0) def create_event(event): try: type = event.get("ph") if type == "X": return create_trace_event(event) elif type == "i" and event.get('s') == 't': return MemoryEvent(EventTypes.MEMORY, event) else: return None except Exception as ex: logger.warning("Failed to parse profile event. Exception=%s. Event=%s", ex, event, exc_info=True) raise def create_trace_event(event): category = event.get("cat") if category == "Operator": name = event.get("name") if name and name.startswith("ProfilerStep#"): return ProfilerStepEvent(event) if category in Supported_EventTypes: return TraceEvent(category, event) else: return None
27.925
122
0.578036
386
3,351
4.873057
0.297927
0.042531
0.052632
0.038278
0.164274
0.109516
0.082935
0.0521
0.0521
0.0521
0
0.001608
0.257535
3,351
119
123
28.159664
0.754421
0.087437
0
0.217391
0
0
0.098296
0
0
0
0
0
0
1
0.141304
false
0
0.021739
0.043478
0.478261
0
0
0
0
null
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
null
0
0
0
0
0
0
0
0
0
0
0
0
1
0
6ab57006541d451df413f174cce8e16652508bf7
1,399
py
Python
indexclient/parsers/info.py
uc-cdis/indexclient
5d61bdb2cb9c0104f173d7bba43d92449a093c6d
[ "Apache-2.0" ]
2
2020-02-19T15:52:13.000Z
2021-10-30T12:06:22.000Z
indexclient/parsers/info.py
uc-cdis/indexclient
5d61bdb2cb9c0104f173d7bba43d92449a093c6d
[ "Apache-2.0" ]
20
2017-11-30T18:15:53.000Z
2021-08-20T16:14:17.000Z
indexclient/parsers/info.py
uc-cdis/indexclient
5d61bdb2cb9c0104f173d7bba43d92449a093c6d
[ "Apache-2.0" ]
1
2019-01-31T21:07:50.000Z
2019-01-31T21:07:50.000Z
import sys import json import logging import argparse import warnings import requests from indexclient import errors # DEPRECATED 11/2019 -- interacts with old `/alias/` endpoint. # For creating aliases for indexd records, prefer using # the `add_alias` function, which interacts with the new # `/index/{GUID}/aliases` endpoint. def info(host, port, name, **kwargs): """ Retrieve info by name. """ warnings.warn( ( "This function is deprecated. For creating aliases for indexd " "records, prefer using the `add_alias_for_did` function, which " "interacts with the new `/index/{GUID}/aliases` endpoint." ), DeprecationWarning, ) resource = "http://{host}:{port}/alias/{name}".format( host=host, port=port, name=name ) res = requests.get(resource) try: res.raise_for_status() except Exception as err: raise errors.BaseIndexError(res.status_code, res.text) try: doc = res.json() except ValueError as err: reason = json.dumps({"error": "invalid json payload returned"}) raise errors.BaseIndexError(res.status_code, reason) sys.stdout.write(json.dumps(doc)) def config(parser): """ Configure the info command. """ parser.set_defaults(func=info) parser.add_argument("name", help="name of information to retrieve")
25.436364
76
0.653324
170
1,399
5.317647
0.482353
0.043142
0.039823
0.04646
0.331858
0.331858
0.247788
0.247788
0.247788
0.247788
0
0.005613
0.235883
1,399
54
77
25.907407
0.840037
0.182273
0
0.060606
0
0
0.253153
0.020721
0
0
0
0
0
1
0.060606
false
0
0.212121
0
0.272727
0
0
0
0
null
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
null
0
0
0
0
0
0
0
0
0
0
0
0
1
0
6ab5f637fa16cf262bdd8660fa9b73c3bc7980b2
1,151
py
Python
email-worker-compose/app/sender.py
guilhermebc/docker-playground
e614c314ed2f5ab54835a8c45b4b3eec1ac4c57b
[ "MIT" ]
1
2019-08-31T11:03:33.000Z
2019-08-31T11:03:33.000Z
email-worker-compose/app/sender.py
guilhermebc/docker-playground
e614c314ed2f5ab54835a8c45b4b3eec1ac4c57b
[ "MIT" ]
6
2020-09-07T03:12:42.000Z
2022-03-02T05:25:57.000Z
email-worker-compose/app/sender.py
guilhermebc/docker-playground
e614c314ed2f5ab54835a8c45b4b3eec1ac4c57b
[ "MIT" ]
null
null
null
import psycopg2 import redis import json from bottle import Bottle, request class Sender(Bottle): def __init__(self): super().__init__() self.route('/', method='POST', callback=self.send) self.fila = redis.StrictRedis(host='queue', port=6379, db=0) DSN = 'dbname=email_sender user=postgress host=db' self.conn = psycopg2.connect(DSN) def register_message(self, assunto, mensagem): SQL = 'INSERT INTO emails (assunto, mensagem) VALUES (%s, %s)' cur = self.conn.cursor() cur.execute(SQL, (assunto, mensagem)) self.conn.commit() cur.close() msg = {'assunto': assunto, 'mensagem': mensagem} self.fila.rpush('sender', json.dumps(msg)) print('Message registered!') def send(self): assunto = request.forms.get('assunto') mensagem = request.forms.get('mensagem') self.register_message(assunto, mensagem) return 'Message queued! Assunto: {} Mensage: {}'.format( assunto, mensagem ) if __name__ == '__main__': sender = Sender() sender.run(host='0.0.0.0', port=8080, debug=True)
30.289474
70
0.617724
135
1,151
5.125926
0.488889
0.151734
0.043353
0
0
0
0
0
0
0
0
0.017162
0.24066
1,151
38
71
30.289474
0.7746
0
0
0
0
0
0.186632
0
0
0
0
0
0
1
0.1
false
0
0.133333
0
0.3
0.033333
0
0
0
null
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
null
0
0
0
0
0
0
0
0
0
0
0
0
1
0
6ab5f90a0a47ff5a1e41ea47789a04eed55d4b77
8,949
py
Python
tests/ximpl.py
zsimic/sandbox
3d1571ca723d1a5e80ddecae0ad912160334fee9
[ "MIT" ]
null
null
null
tests/ximpl.py
zsimic/sandbox
3d1571ca723d1a5e80ddecae0ad912160334fee9
[ "MIT" ]
null
null
null
tests/ximpl.py
zsimic/sandbox
3d1571ca723d1a5e80ddecae0ad912160334fee9
[ "MIT" ]
null
null
null
import click import poyo import ruamel.yaml import runez import strictyaml import yaml as pyyaml from zyaml import load_path, load_string, tokens_from_path, tokens_from_string from zyaml.marshal import decode, default_marshal, represented_scalar from . import TestSettings class ImplementationCollection(object): def __init__(self, names, default="zyaml,ruamel"): av = [ZyamlImplementation, RuamelImplementation, PyyamlBaseImplementation, PoyoImplementation, StrictImplementation] self.available = dict((m.name, m()) for m in av) self.unknown = [] self.selected = [] if names.startswith("+"): names = "%s,%s" % (names[1:], default) names = [s.strip() for s in names.split(",")] names = [s for s in names if s] seen = {} for name in names: found = 0 for i in self.available.values(): if name == "all" or name in i.name: if i.name not in seen: seen[i.name] = True self.selected.append(i) found += 1 if found == 0: self.unknown.append(name) self.combinations = None def track_result_combination(self, impl, data): if isinstance(data, Exception): value = runez.stringified(data) else: value = runez.represented_json(data, stringify=decode, keep_none=True, none_key="-null-") name = impl.name if self.combinations is None: self.combinations = {} for i1 in self.selected: for i2 in self.selected: if i1.name < i2.name: self.combinations[(i1.name, i2.name)] = set() for names, values in self.combinations.items(): if name in names: values.add(value) def __repr__(self): return ",".join(str(i) for i in self.selected) def __len__(self): return len(self.selected) def __iter__(self): for i in self.selected: yield i class Implementation(object): """Implementation of loading a yml file""" name = None # type: str def __repr__(self): return self.name @classmethod def option(cls, default="zyaml,ruamel", count=None, **kwargs): """ Args: default (str | None): Default implementation(s) to use count (int | None): Optional: exact number of implementations that have to specified **kwargs: Passed-through to click """ kwargs["default"] = default def _callback(_ctx, _param, value): if not value: return None impls = ImplementationCollection(value, default=default) if impls.unknown: raise click.BadParameter("Unknown implementation(s): %s" % ", ".join(impls.unknown)) if count and len(impls) != count: if count == 1: raise click.BadParameter("Need exactly 1 implementation") raise click.BadParameter("Need exactly %s" % runez.plural(count, "implementation")) if count == 1: return impls.selected[0] return impls metavar = "I1,..." hlp = "Implementation(s)" if count: hlp = runez.plural(count, "implementation") metavar = ",".join("I%s" % (i + 1) for i in range(count)) kwargs.setdefault("help", "%s to use" % hlp) kwargs.setdefault("show_default", True) kwargs.setdefault("metavar", metavar) name = "implementation" if count == 1 else "implementations" return click.option(name, "-i", callback=_callback, **kwargs) def show_result(self, data, tokens=False): rtype = "tokens" if tokens else data.__class__.__name__ if data is not None else "None" rep = data if not tokens or isinstance(data, Exception): rep = TestSettings.represented(data) message = "---- %s: %s" % (runez.bold(self.name), runez.dim(rtype)) if isinstance(data, NotImplementedError): print("%s - %s" % (message, rep)) return print(message) print(rep) def get_outcome(self, content, tokens=False): if tokens: data = self.tokens(content) if isinstance(data, list): data = "\n".join(self.represented_token(t) for t in data) return data return self.deserialized(content) def deserialized(self, source): value = TestSettings.protected_call(self._deserialized, source) return self._simplified(value) def tokens(self, source): return TestSettings.protected_call(self._tokenize, source) def represented_token(self, token): return str(token) def _deserialized(self, source): if hasattr(source, "path"): return self._deserialized_from_path(source.path) return self._deserialized_from_string(source) def _deserialized_from_path(self, path): with open(path) as fh: return self._deserialized_from_string(fh.read()) def _deserialized_from_string(self, source): raise NotImplementedError() def _tokenize(self, source): if hasattr(source, "path"): return self._tokens_from_path(source.path) return self._tokens_from_string(source) def _tokens_from_path(self, path): with open(path) as fh: return TestSettings.unwrapped(self._tokens_from_string(fh.read())) def _tokens_from_string(self, source): raise NotImplementedError() def _simplified(self, value): if isinstance(value, list) and len(value) == 1: return value[0] return value class ZyamlImplementation(Implementation): name = "zyaml" def _deserialized_from_path(self, path): return load_path(path) def _deserialized_from_string(self, source): return load_string(source) def _tokens_from_path(self, path): return tokens_from_path(path) def _tokens_from_string(self, source): return tokens_from_string(source) def _simplified(self, value): return value def ruamel_passthrough_tags(loader, tag, node): name = node.__class__.__name__ if "Seq" in name: result = [] for v in node.value: result.append(ruamel_passthrough_tags(loader, tag, v)) return result if "Map" in name: result = {} for k, v in node.value: k = ruamel_passthrough_tags(loader, tag, k) v = ruamel_passthrough_tags(loader, tag, v) result[k] = v return result return default_marshal(node.value) class RuamelImplementation(Implementation): name = "ruamel" def _deserialized_from_string(self, source): y = ruamel.yaml.YAML(typ="safe") ruamel.yaml.add_multi_constructor("", ruamel_passthrough_tags, Loader=ruamel.yaml.SafeLoader) return y.load_all(source) def _tokens_from_string(self, source): return ruamel.yaml.main.scan(source) class PyyamlBaseImplementation(Implementation): name = "pyyaml" def _deserialized_from_string(self, source): return pyyaml.load_all(source, Loader=pyyaml.BaseLoader) def _tokens_from_string(self, source): yaml_loader = pyyaml.BaseLoader(source) curr = yaml_loader.get_token() while curr is not None: yield curr curr = yaml_loader.get_token() def represented_token(self, token): linenum = token.start_mark.line + 1 column = token.start_mark.column + 1 result = "%s[%s,%s]" % (token.__class__.__name__, linenum, column) value = getattr(token, "value", None) if value is not None: if token.id == "<scalar>": value = represented_scalar(token.style, value) elif token.id == "<anchor>": value = "&%s" % value elif token.id == "<alias>": value = "*%s" % value elif token.id == "<tag>": assert isinstance(value, tuple) value = " ".join(str(s) for s in runez.flattened(value)) elif token.id == "<directive>": result += " %s" % token.name value = " ".join(str(s) for s in runez.flattened(value)) else: assert False result = "%s %s" % (result, value) return result class PoyoImplementation(Implementation): name = "poyo" def _deserialized_from_string(self, source): return [poyo.parse_string(source)] class StrictImplementation(Implementation): name = "strict" def _deserialized_from_string(self, source): obj = strictyaml.dirty_load(source, allow_flow_style=True) return obj.data
30.233108
124
0.598391
1,018
8,949
5.094303
0.193517
0.030852
0.026996
0.038565
0.251253
0.183186
0.110875
0.055534
0.02931
0.02931
0
0.003341
0.297575
8,949
295
125
30.335593
0.821667
0.026707
0
0.18932
0
0
0.044473
0
0
0
0
0
0.009709
1
0.160194
false
0.024272
0.043689
0.063107
0.436893
0.014563
0
0
0
null
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
null
0
0
0
0
0
0
0
0
0
0
0
0
1
0
6ab6c4226f6262d47cafb69a5403744916d50994
17,464
py
Python
mummi_ras/online/aa/aa_get_tiltrot_z_state.py
mummi-framework/mummi-ras
7f4522aad36661e4530e39c830ab8c2a6f134060
[ "MIT" ]
4
2021-11-16T07:16:36.000Z
2022-02-16T23:33:46.000Z
mummi_ras/online/aa/aa_get_tiltrot_z_state.py
mummi-framework/mummi-ras
7f4522aad36661e4530e39c830ab8c2a6f134060
[ "MIT" ]
1
2021-11-23T20:23:28.000Z
2021-12-03T09:08:34.000Z
mummi_ras/online/aa/aa_get_tiltrot_z_state.py
mummi-framework/mummi-ras
7f4522aad36661e4530e39c830ab8c2a6f134060
[ "MIT" ]
2
2021-11-23T19:54:59.000Z
2022-02-16T23:32:17.000Z
############################################################################### # @todo add Pilot2-splash-app disclaimer ############################################################################### """ Get's KRAS states """ import MDAnalysis as mda from MDAnalysis.analysis import align from MDAnalysis.lib.mdamath import make_whole import os import numpy as np import math ############## Below section needs to be uncommented ############ import mummi_core import mummi_ras from mummi_core.utils import Naming # # Logger has to be initialized the first thing in the script from logging import getLogger LOGGER = getLogger(__name__) # # Innitilize MuMMI if it has not been done before # MUMMI_ROOT = mummi.init(True) # This is needed so the Naming works below #@TODO fix this so we don't have these on import make them as an init mummi_core.init() dirKRASStates = Naming.dir_res('states') dirKRASStructures = Naming.dir_res('structures') # #RAS_ONLY_macrostate = np.loadtxt(os.path.join(dirKRASStates, "RAS-ONLY.microstates.txt")) RAS_ONLY_macrostate = np.loadtxt(os.path.join(dirKRASStates, "ras-states.txt"),comments='#') # #RAS_RAF_macrostate = np.loadtxt(os.path.join(dirKRASStates, "RAS-RAF.microstates.txt")) RAS_RAF_macrostate = np.loadtxt(os.path.join(dirKRASStates, "ras-raf-states.txt"),comments='#') # Note diffrent number of columns so index change below # TODO: CS, my edits to test # RAS_ONLY_macrostate = np.loadtxt('ras-states.txt') # RAS_RAF_macrostate = np.loadtxt('ras-raf-states.txt') ############## above section needs to be uncommented ############ # TODO: CS, my edits to test # TODO: TSC, The reference structure has to currently be set as the 'RAS-ONLY-reference-structure.gro' # TODO: TSC, path to the reference structure is: mummi_resources/structures/ kras_ref_universe = mda.Universe(os.path.join(dirKRASStructures, "RAS-ONLY-reference-structure.gro")) # kras_ref_universe = mda.Universe("RAS-ONLY-reference-structure.gro") # kras_ref_universe = mda.Universe('AA_pfpatch_000000004641_RAS_RAF2_411.gro') # TODO: CS, not using these for x4 proteins; instead using protein_systems below to set num_res ######### Below hard codes the number of residues within RAS-only and RAS-RAF ########## RAS_only_num_res = 184 RAS_RAF_num_res = 320 ######### Above hard codes the number of residues within RAS-only and RAS-RAF ########## ####### This can be removed # def get_kras(syst, kras_start): # """Gets all atoms for a KRAS protein starting at 'kras_start'.""" # return syst.atoms[kras_start:kras_start+428] ####### This can be removed def get_segids(u): """Identifies the list of segments within the system. Only needs to be called x1 time""" segs = u.segments segs = segs.segids ras_segids = [] rasraf_segids = [] for i in range(len(segs)): # print(segs[i]) if segs[i][-3:] == 'RAS': ras_segids.append(segs[i]) if segs[i][-3:] == 'RAF': rasraf_segids.append(segs[i]) return ras_segids, rasraf_segids def get_protein_info(u,tag): """Uses the segments identified in get_segids to make a list of all proteins in the systems.\ Outputs a list of the first residue number of the protein, and whether it is 'RAS-ONLY', or 'RAS-RAF'.\ The 'tag' input defines what is used to identify the first residue of the protein. i.e. 'resname ACE1 and name BB'.\ Only needs to be called x1 time""" ras_segids, rasraf_segids = get_segids(u) if len(ras_segids) > 0: RAS = u.select_atoms('segid '+ras_segids[0]+' and '+str(tag)) else: RAS = [] if len(rasraf_segids) > 0: RAF = u.select_atoms('segid '+rasraf_segids[0]+' and '+str(tag)) else: RAF = [] protein_info = []#np.empty([len(RAS)+len(RAF),2]) for i in range(len(RAS)): protein_info.append((RAS[i].resid,'RAS-ONLY')) for i in range(len(RAF)): protein_info.append((RAF[i].resid,'RAS-RAF')) ######## sort protein info protein_info = sorted(protein_info) ######## sort protein info return protein_info def get_ref_kras(): """Gets the reference KRAS struct. Only called x1 time when class is loaded""" start_of_g_ref = kras_ref_universe.residues[0].resid ref_selection = 'resid '+str(start_of_g_ref)+':'+str(start_of_g_ref+24)+' ' +\ str(start_of_g_ref+38)+':'+str(start_of_g_ref+54)+' ' +\ str(start_of_g_ref+67)+':'+str(start_of_g_ref+164)+' ' +\ 'and (name CA or name BB)' r2_26r40_56r69_166_ref = kras_ref_universe.select_atoms(str(ref_selection)) return kras_ref_universe.select_atoms(str(ref_selection)).positions - kras_ref_universe.select_atoms(str(ref_selection)).center_of_mass() # Load inital ref frames (only need to do this once) ref0 = get_ref_kras() def getKRASstates(u,kras_indices): """Gets states for all KRAS proteins in path.""" # res_shift = 8 # all_glycine = u.select_atoms("resname GLY") # kras_indices = [] # for i in range(0, len(all_glycine), 26): # kras_indices.append(all_glycine[i].index) ########## Below is taken out of the function so it is only done once ######### # kras_indices = get_protein_info(u,'resname ACE1 and name BB') ########## Above is taken out of the function so it is only done once ######### # CS, for x4 cases: # [{protein_x4: (protein_type, num_res)}] protein_systems = [{'ras4a': ('RAS-ONLY', 185), 'ras4araf': ('RAS-RAF', 321), 'ras': ('RAS-ONLY', 184), 'rasraf': ('RAS-RAF', 320)}] ALLOUT = [] for k in range(len(kras_indices)): start_of_g = kras_indices[k][0] protein_x4 = str(kras_indices[k][1]) try: protein_type = [item[protein_x4] for item in protein_systems][0][0] # 'RAS-ONLY' OR 'RAS-RAF' num_res = [item[protein_x4] for item in protein_systems][0][1] except: LOGGER.error('Check KRas naming between modules') raise Exception('Error: unknown KRas name') # TODO: CS, replacing this comment section with the above, to handle x4 protein types # --------------------------------------- # ALLOUT = [] # for k in range(len(kras_indices)): # start_of_g = kras_indices[k][0] # protein_type = str(kras_indices[k][1]) # ########## BELOW SECTION TO DETERMINE WHICH RESIDUES ARE PART OF THE PROTEIN GROUP - NEEDED FOR PBC REMOVAL ############## # ########## POTENTIALLY REDO WITH A 'HARD-CODED' NUMBER OF RESIDUES PER PROTEIN GROUP (WHETHER RAS-ONLY OR RAS-RAF) ####### # ########## HAS BEEN REDONE WITH A 'HARD-CODED' NUMBER OF RESIDUES PER PROTEIN GROUP (WHETHER RAS-ONLY OR RAS-RAF) ######## # # if len(kras_indices) == 1: # # krases0_BB = u.select_atoms('resid '+str(start_of_g)+':'+str(len(u.residues))+' and name BB') ####### HAS TO BE FIXED FOR BACKBONE ATOMS FOR SPECIFIC PROTEIN # # elif len(kras_indices) > 1: # # if k == len(kras_indices)-1: # # krases0_BB = u.select_atoms('resid '+str(start_of_g)+':'+str(len(u.residues))+' and name BB') # # else: # # krases0_BB = u.select_atoms('resid '+str(start_of_g)+':'+str(kras_indices[k+1][0])+' and name BB') # ########## ABOVE SECTION TO DETERMINE WHICH RESIDUES ARE PART OF THE PROTEIN GROUP - NEEDED FOR PBC REMOVAL ############## # # ########## Below hard codes the number of residues/beads in the RAS-ONLY and RAS-RAF simulations ######################### # if protein_type == 'RAS-ONLY': # num_res = RAS_only_num_res # elif protein_type == 'RAS-RAF': # num_res = RAS_RAF_num_res # ########## Above hard codes the number of residues/beads in the RAS-ONLY and RAS-RAF simulations ######################### # --------------------------------------- # TODO: TSC, I changed the selection below, which can be used for the make_whole... # krases0_BB = u.select_atoms('resid '+str(start_of_g)+':'+str(start_of_g+num_res)+' and (name CA or name BB)') krases0_BB = u.select_atoms('resid '+str(start_of_g)+':'+str(start_of_g+num_res)) krases0_BB.guess_bonds() r2_26r40_56r69_166 = u.select_atoms('resid '+str(start_of_g)+':'+str(start_of_g+24)+' ' +\ str(start_of_g+38)+':'+str(start_of_g+54)+' ' +\ str(start_of_g+67)+':'+str(start_of_g+164)+\ ' and (name CA or name BB)') u_selection = \ 'resid '+str(start_of_g)+':'+str(start_of_g+24)+' '+str(start_of_g+38)+':'+str(start_of_g+54)+' ' +\ str(start_of_g+67)+':'+str(start_of_g+164)+' and (name CA or name BB)' mobile0 = u.select_atoms(str(u_selection)).positions - u.select_atoms(str(u_selection)).center_of_mass() # TODO: CS, something wrong with ref0 from get_kras_ref() # just making ref0 = mobile0 to test for now # ref0 = mobile0 # TSC removed this R, RMSD_junk = align.rotation_matrix(mobile0, ref0) ######## TODO: TSC, Adjusted for AA lipid names ######## # lipids = u.select_atoms('resname POPX POPC PAPC POPE DIPE DPSM PAPS PAP6 CHOL') lipids = u.select_atoms('resname POPC PAPC POPE DIPE SSM PAPS SAPI CHL1') coords = ref0 RotMat = [] OS = [] r152_165 = krases0_BB.select_atoms('resid '+str(start_of_g+150)+':'+str(start_of_g+163)+' and (name CA or name BB)') r65_74 = krases0_BB.select_atoms('resid '+str(start_of_g+63)+':'+str(start_of_g+72)+' and (name CA or name BB)') timeframes = [] # TODO: CS, for AA need bonds to run make_whole() # krases0_BB.guess_bonds() # TODO: CS, turn off for now to test beyond this point ''' *** for AA, need to bring that back on once all else runs *** ''' # @Tim and Chris S. this was commented out - please check. #make_whole(krases0_BB) j, rmsd_junk = mda.analysis.align.rotation_matrix((r2_26r40_56r69_166.positions-r2_26r40_56r69_166.center_of_mass()), coords) RotMat.append(j) OS.append(r65_74.center_of_mass()-r152_165.center_of_mass()) timeframes.append(u.trajectory.time) if protein_type == 'RAS-RAF': z_pos = [] ############### NEED TO CONFIRM THE SELECTION OF THE RAF LOOP RESIDUES BELOW #################### ############### TODO: TSC, zshifting is set to -1 (instead of -2), as there are ACE caps that are separate residues in AA #zshifting=-1 if protein_x4 == 'rasraf': zshifting = -1 elif protein_x4 == 'ras4araf': zshifting = 0 else: zshifting = 0 LOGGER.error('Found unsupported protein_x4 type') raf_loops_selection = u.select_atoms('resid '+str(start_of_g+zshifting+291)+':'+str(start_of_g+zshifting+294)+' ' +\ str(start_of_g+zshifting+278)+':'+str(start_of_g+zshifting+281)+' ' +\ ' and (name CA or name BB)') ############### NEED TO CONFIRM THE SELECTION OF THE RAF LOOP RESIDUES ABOVE #################### diff = (lipids.center_of_mass()[2]-raf_loops_selection.center_of_mass(unwrap=True)[2])/10 if diff < 0: diff = diff+(u.dimensions[2]/10) z_pos.append(diff) z_pos = np.array(z_pos) RotMatNP = np.array(RotMat) OS = np.array(OS) OA = RotMatNP[:, 2, :]/(((RotMatNP[:, 2, 0]**2)+(RotMatNP[:, 2, 1]**2)+(RotMatNP[:, 2, 2]**2))**0.5)[:, None] OWAS = np.arccos(RotMatNP[:, 2, 2])*180/math.pi OC_temp = np.concatenate((OA, OS), axis=1) t = ((OC_temp[:, 0]*OC_temp[:, 3])+(OC_temp[:, 1]*OC_temp[:, 4]) + (OC_temp[:, 2]*OC_temp[:, 5]))/((OC_temp[:, 0]**2)+(OC_temp[:, 1]**2)+(OC_temp[:, 2]**2)) OC = OA*t[:, None] ORS_tp = np.concatenate((OC, OS), axis=1) ORS_norm = (((ORS_tp[:, 3]-ORS_tp[:, 0])**2)+((ORS_tp[:, 4]-ORS_tp[:, 1])**2)+((ORS_tp[:, 5]-ORS_tp[:, 2])**2))**0.5 ORS = (OS - OC)/ORS_norm[:, None] OACRS = np.cross(OA, ORS) OZCA = OA * OA[:, 2][:, None] Z_unit = np.full([len(OZCA), 3], 1) Z_adjust = np.array([0, 0, 1]) Z_unit = Z_unit*Z_adjust Z_OZCA = Z_unit-OZCA OZPACB = Z_OZCA/((Z_OZCA[:, 0]**2+Z_OZCA[:, 1]**2+Z_OZCA[:, 2]**2)**0.5)[:, None] OROTNOTSIGNED = np.zeros([len(ORS)]) for i in range(len(ORS)): OROTNOTSIGNED[i] = np.arccos(np.dot(OZPACB[i, :], ORS[i, :]) / (np.sqrt(np.dot(OZPACB[i, :], OZPACB[i, :]))) * (np.sqrt(np.dot(ORS[i, :], ORS[i, :]))))*180/math.pi OZPACBCRS_cross = np.cross(OZPACB, ORS) OZPACBCRS = OZPACBCRS_cross/((OZPACBCRS_cross[:, 0]**2+OZPACBCRS_cross[:, 1]**2+OZPACBCRS_cross[:, 2]**2)**0.5)[:, None] OFORSIGN_temp = (OA - OZPACBCRS)**2 OFORSIGN = OFORSIGN_temp[:, 0]+OFORSIGN_temp[:, 1]+OFORSIGN_temp[:, 2] OROT = OROTNOTSIGNED for i in range(len(OROT)): if OROT[i] < 0: OROT[i] = -(OROT[i]) for i in range(len(OROT)): if OFORSIGN[i] < 0.25: OROT[i] = -(OROT[i]) ###### Below introduces new shift to account for upper vs. lower leaflet ##### for i in range(len(OWAS)): OWAS[i] = abs(-(OWAS[i])+180) # made this an absolute value so that the tilt remains positive for i in range(len(OROT)): if OROT[i] < 0: OROT[i] = OROT[i]+180 elif OROT[i] > 0: OROT[i] = OROT[i]-180 ###### Above introduces new shift to account for upper vs. lower leaflet ##### ###### Below might have to be updated to take into account the periodic nature of the rotation ###### if protein_type == 'RAS-ONLY': states = np.zeros(len(OROT)) for j in range(len(OROT)): diff0 = [] for i in range(len(RAS_ONLY_macrostate)): #diff0.append([((RAS_ONLY_macrostate[i,0]-OWAS[j])**2+(RAS_ONLY_macrostate[i,1]-OROT[j])**2)**0.5, RAS_ONLY_macrostate[i,6]]) diff0.append([((RAS_ONLY_macrostate[i,1]-OWAS[j])**2+(RAS_ONLY_macrostate[i,0]-OROT[j])**2)**0.5, RAS_ONLY_macrostate[i,5]]) diff0.sort() states[j] = diff0[0][1] elif protein_type == 'RAS-RAF': states = np.zeros(len(OROT)) for j in range(len(OROT)): ### below: adding in the requirements for the 'high-z' state ### if (OROT[j] < -45 or OROT[j] > 140) and z_pos[j] > 4.8: states[j] = 3 else: ### above: adding in the requirements for the 'high-z' state ### diff0 = [] for i in range(len(RAS_RAF_macrostate)): #diff0.append([((RAS_RAF_macrostate[i,0]-OWAS[j])**2+(RAS_RAF_macrostate[i,1]-OROT[j])**2)**0.5, RAS_RAF_macrostate[i,6]]) diff0.append([((RAS_RAF_macrostate[i,1]-OWAS[j])**2+(RAS_RAF_macrostate[i,0]-OROT[j])**2)**0.5, RAS_RAF_macrostate[i,4]]) diff0.sort() states[j] = diff0[0][1] ###### Above might have to be updated to take into account the periodic nature of the rotation ###### ###### Assume we want to remove this? Where is the code that reads this information? i.e. will there be knock-on effects? ###### ###### If feedback code needs index 5 (two_states) from the output, deleting this four_states will shift that to index 4 ####### # four_states = np.zeros(len(OROT)) # for j in range(len(OROT)): # diff0 = [] # for i in range(len(macrostate4)): # diff0.append([((macrostate4[i,0]-OWAS[j])**2+(macrostate4[i,1]-OROT[j])**2)**0.5, macrostate4[i,6]]) # diff0.sort() # four_states[j] = diff0[0][1]+1 ###### below: old output details.... ###################################### ###### Updated - RAS-only to NOT HAVE the Z-distance ###################### ###### Updated - Added in the protein 'tag', i.e. RAS-ONLY or RAS-RAF ##### # OUTPUT = np.zeros([len(OROT), 6]) # for i in range(len(OROT)): # OUTPUT[i] = timeframes[i], OWAS[i], OROT[i], z_pos[i], four_states[i], two_states[i] ###### above: old output details.... ###################################### ###### below: NEW output details.... ###################################### if protein_type == 'RAS-ONLY': OUTPUT = np.zeros([len(OROT), 6]).astype(object) for i in range(len(OROT)): OUTPUT[i] = str(protein_type), timeframes[i], OWAS[i], OROT[i], 'n/a', int(states[i]) elif protein_type == 'RAS-RAF': OUTPUT = np.zeros([len(OROT), 6]).astype(object) for i in range(len(OROT)): OUTPUT[i] = str(protein_type), timeframes[i], OWAS[i], OROT[i], z_pos[i], int(states[i]) ALLOUT.append(OUTPUT) return np.asarray(ALLOUT) #np.savetxt(str(tpr)+"_tilt_rot_z_state.KRAS_"+str(k+1)+".txt", OUTPUT, fmt=['%i','%10.3f','%10.3f','%10.3f','%i','%i'], delimiter=' ')
47.072776
173
0.57129
2,476
17,464
3.874394
0.173667
0.026269
0.030022
0.03784
0.450328
0.377254
0.333472
0.303346
0.279266
0.237048
0
0.030961
0.243587
17,464
370
174
47.2
0.695231
0.398477
0
0.183333
0
0
0.061358
0.003379
0
0
0
0.008108
0
1
0.022222
false
0
0.055556
0
0.1
0
0
0
0
null
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
null
0
0
0
0
0
0
0
0
0
0
0
0
1
0
6ab82df482a2f9c96080ef85619210a77bdeb9a0
3,676
py
Python
homeassistant/components/switch/hikvisioncam.py
maddox/home-assistant
6624cfefd6ea81b559085779173b91a3dc6bd349
[ "MIT" ]
1
2015-09-13T21:10:09.000Z
2015-09-13T21:10:09.000Z
homeassistant/components/switch/hikvisioncam.py
michaelarnauts/home-assistant
7d905e6c0c99a4454de26d63af0581b454f01ca1
[ "MIT" ]
null
null
null
homeassistant/components/switch/hikvisioncam.py
michaelarnauts/home-assistant
7d905e6c0c99a4454de26d63af0581b454f01ca1
[ "MIT" ]
1
2020-05-07T08:48:36.000Z
2020-05-07T08:48:36.000Z
""" homeassistant.components.switch.hikvision ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ Support turning on/off motion detection on Hikvision cameras. Note: Currently works using default https port only. CGI API Guide: http://bit.ly/1RuyUuF Configuration: To use the Hikvision motion detection switch you will need to add something like the following to your config/configuration.yaml switch: platform: hikvisioncam name: Hikvision Cam 1 Motion Detection host: 192.168.1.32 username: YOUR_USERNAME password: YOUR_PASSWORD Variables: host *Required This is the IP address of your Hikvision camera. Example: 192.168.1.32 username *Required Your Hikvision camera username. password *Required Your Hikvision camera username. name *Optional The name to use when displaying this switch instance. """ from homeassistant.helpers.entity import ToggleEntity from homeassistant.const import STATE_ON, STATE_OFF from homeassistant.const import CONF_HOST, CONF_USERNAME, CONF_PASSWORD import logging try: import hikvision.api from hikvision.error import HikvisionError, MissingParamError except ImportError: hikvision.api = None _LOGGING = logging.getLogger(__name__) REQUIREMENTS = ['hikvision==0.4'] # pylint: disable=too-many-arguments # pylint: disable=too-many-instance-attributes def setup_platform(hass, config, add_devices_callback, discovery_info=None): """ Setup Hikvision Camera config. """ host = config.get(CONF_HOST, None) port = config.get('port', "80") name = config.get('name', "Hikvision Camera Motion Detection") username = config.get(CONF_USERNAME, "admin") password = config.get(CONF_PASSWORD, "12345") if hikvision.api is None: _LOGGING.error(( "Failed to import hikvision. Did you maybe not install the " "'hikvision' dependency?")) return False try: hikvision_cam = hikvision.api.CreateDevice( host, port=port, username=username, password=password, is_https=False) except MissingParamError as param_err: _LOGGING.error("Missing required param: %s", param_err) return False except HikvisionError as conn_err: _LOGGING.error("Unable to connect: %s", conn_err) return False add_devices_callback([ HikvisionMotionSwitch(name, hikvision_cam) ]) class HikvisionMotionSwitch(ToggleEntity): """ Provides a switch to toggle on/off motion detection. """ def __init__(self, name, hikvision_cam): self._name = name self._hikvision_cam = hikvision_cam self._state = STATE_OFF @property def should_poll(self): """ Poll for status regularly. """ return True @property def name(self): """ Returns the name of the device if any. """ return self._name @property def state(self): """ Returns the state of the device if any. """ return self._state @property def is_on(self): """ True if device is on. """ return self._state == STATE_ON def turn_on(self, **kwargs): """ Turn the device on. """ _LOGGING.info("Turning on Motion Detection ") self._hikvision_cam.enable_motion_detection() def turn_off(self, **kwargs): """ Turn the device off. """ _LOGGING.info("Turning off Motion Detection ") self._hikvision_cam.disable_motion_detection() def update(self): """ Update Motion Detection state """ enabled = self._hikvision_cam.is_motion_detection_enabled() _LOGGING.info('enabled: %s', enabled) self._state = STATE_ON if enabled else STATE_OFF
27.029412
76
0.681991
447
3,676
5.454139
0.317673
0.067678
0.026251
0.016407
0.108285
0.021329
0.021329
0
0
0
0
0.010094
0.218444
3,676
135
77
27.22963
0.838496
0.322905
0
0.145161
0
0
0.108409
0
0
0
0
0
0
1
0.145161
false
0.048387
0.129032
0
0.403226
0
0
0
0
null
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
null
0
0
0
0
0
0
0
0
0
0
0
0
1
0
6ab942559c3b1955ee240520738d5bee4d16cc10
5,689
py
Python
src/richie/apps/search/filter_definitions/mixins.py
leduong/richie
bf7ed379b7e2528cd790dadcec10ac2656efd189
[ "MIT" ]
null
null
null
src/richie/apps/search/filter_definitions/mixins.py
leduong/richie
bf7ed379b7e2528cd790dadcec10ac2656efd189
[ "MIT" ]
null
null
null
src/richie/apps/search/filter_definitions/mixins.py
leduong/richie
bf7ed379b7e2528cd790dadcec10ac2656efd189
[ "MIT" ]
null
null
null
"""Define mixins to easily compose custom FilterDefinition classes.""" class TermsQueryMixin: """A mixin for filter definitions that need to apply term queries.""" def get_query_fragment(self, data): """Build the query fragments as term queries for each selected value.""" value_list = data.get(self.name) # For terms filters, as the name implies, it's a simple terms fragment return ( [{"key": self.name, "fragment": [{"terms": {self.term: value_list}}]}] if value_list else [] ) class ChoicesQueryMixin: """A mixin for filter definitions that need to apply predefined queries.""" def get_query_fragment(self, data): """Pick the hardcoded query fragment for each selected value.""" fragment_map = self.get_fragment_map() return [ {"key": self.name, "fragment": fragment_map[value]} for value in data.get(self.name, []) ] class ChoicesAggsMixin: """A mixin for filter definitions that need to apply aggregations for predefined choices.""" # pylint: disable=unused-argument def get_aggs_fragment(self, queries, *args, **kwargs): """ Build the aggregations as a set of filters, one for each possible value of the field. """ return { # Create a custom aggregation for each possible choice for this filter # eg `availability@coming_soon` & `availability@current` & `availability@open` "{:s}@{:s}".format(self.name, choice_key): { "filter": { "bool": { # Use all the query fragments from the queries *but* the one(s) that # filter on the current filter: we manually add back the only one that # is relevant to the current choice. "must": choice_fragment + [ clause for kf_pair in queries for clause in kf_pair["fragment"] if kf_pair["key"] is not self.name ] } } } for choice_key, choice_fragment in self.get_fragment_map().items() } class NestedChoicesAggsMixin: """ A mixin for filter definitions that are related to a nested field. The aggregation filter can only be recomputed at the level of the parent because it should group all queries of fields nested below the parent. """ # pylint: disable=unused-argument def get_aggs_fragment(self, queries, data, parent, *args, **kwargs): """ Computing aggregations for a nested field is DIFFICULT because query fragments related to nested fields are grouped under their common path. For example combined filters on availability and languages would lead to a query like: { "query": { "nested": { "path": "course_runs", "query": { "bool": { "must": [ {"range": {"course_runs.end": {"lte": "01-01-2019"}}}, {"terms": {"course_runs.languages": ["de", "en", fr"]}}, ] } }, } } } In this example, computing the facet count for the French filter, is done with the following filter (excluding the filter on English and German so we only count French): { "query": { "nested": { "path": "course_runs", "query": { "bool": { "must": [ {"range": {"course_runs.end": {"lte": "01-01-2019"}}}, {"terms": {"course_runs.languages": ["fr"]}}, ] } }, } } } This can only be built by calling the parent NestingWrapper with customized filter data. """ return { # Create a custom aggregation for each possible choice for this filter # eg `availability@coming_soon` & `availability@current` & `availability@open` "{:s}@{:s}".format(self.name, choice_key): { "filter": { "bool": { # Use all the query fragments from the queries (the nesting parent is # responsible for excluding the queries related to nested fields so we # have to manually add them, making sure to apply on the current field # only the current choice. "must": [ clause for kf_pair in ( queries + parent.get_query_fragment( # override data with only the current choice {**data, self.name: [choice_key]} ) ) for clause in kf_pair["fragment"] ] } } } for choice_key, choice_fragment in self.get_fragment_map().items() }
41.830882
97
0.4746
542
5,689
4.904059
0.289668
0.024078
0.013544
0.022573
0.434537
0.415726
0.36757
0.341986
0.341986
0.295711
0
0.005041
0.442081
5,689
135
98
42.140741
0.832388
0.51749
0
0.296296
0
0
0.039132
0
0
0
0
0
0
1
0.074074
false
0
0
0
0.222222
0
0
0
0
null
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
null
0
0
0
0
0
0
0
0
0
0
0
0
1
0
6ab9a4f6d4ca5cd5f443cec5fb87c6e2f96318a3
12,830
py
Python
electrumsv/gui/qt/receive_view.py
AustEcon/electrumsv
db924efc69f091f39e7d02e7f2d7a71350f4e6af
[ "MIT" ]
1
2019-07-04T03:35:32.000Z
2019-07-04T03:35:32.000Z
electrumsv/gui/qt/receive_view.py
AustEcon/electrumsv
db924efc69f091f39e7d02e7f2d7a71350f4e6af
[ "MIT" ]
null
null
null
electrumsv/gui/qt/receive_view.py
AustEcon/electrumsv
db924efc69f091f39e7d02e7f2d7a71350f4e6af
[ "MIT" ]
null
null
null
from typing import List, Optional, TYPE_CHECKING import weakref from PyQt5.QtCore import QEvent, Qt from PyQt5.QtWidgets import (QComboBox, QGridLayout, QGroupBox, QHBoxLayout, QLabel, QLineEdit, QVBoxLayout, QWidget) from electrumsv.app_state import app_state from electrumsv.bitcoin import script_template_to_string from electrumsv.constants import PaymentFlag, RECEIVING_SUBPATH from electrumsv.i18n import _ from electrumsv.logs import logs from electrumsv.wallet_database.tables import KeyInstanceRow from electrumsv import web from .amountedit import AmountEdit, BTCAmountEdit from .constants import expiration_values if TYPE_CHECKING: from .main_window import ElectrumWindow from .qrcodewidget import QRCodeWidget from .qrwindow import QR_Window from .request_list import RequestList from .table_widgets import TableTopButtonLayout from .util import ButtonsLineEdit, EnterButton, HelpLabel class ReceiveView(QWidget): _qr_window: Optional[QR_Window] = None def __init__(self, main_window: 'ElectrumWindow', account_id: int) -> None: super().__init__(main_window) self._main_window = weakref.proxy(main_window) self._account_id = account_id self._account = main_window._wallet.get_account(account_id) self._logger = logs.get_logger(f"receive-view[{self._account_id}]") self._receive_key_id: Optional[int] = None self._request_list_toolbar_layout = TableTopButtonLayout() self._request_list_toolbar_layout.refresh_signal.connect( self._main_window.refresh_wallet_display) self._request_list_toolbar_layout.filter_signal.connect(self._filter_request_list) form_layout = self.create_form_layout() self._request_list = RequestList(self, main_window) request_container = self.create_request_list_container() vbox = QVBoxLayout(self) vbox.addLayout(form_layout) vbox.addSpacing(20) vbox.addWidget(request_container, 1) self.setLayout(vbox) def clean_up(self) -> None: # If there are no accounts there won't be a receive QR code object created yet. if self._receive_qr is not None: self._receive_qr.clean_up() if self._qr_window is not None: self._qr_window.close() def create_form_layout(self) -> QHBoxLayout: # A 4-column grid layout. All the stretch is in the last column. # The exchange rate plugin adds a fiat widget in column 2 grid = QGridLayout() grid.setSpacing(8) grid.setColumnStretch(3, 1) self._receive_destination_e = ButtonsLineEdit() self._receive_destination_e.addCopyButton(app_state.app) self._receive_destination_e.setReadOnly(True) msg = _('Bitcoin SV payment destination where the payment should be received. ' 'Note that each payment request uses a different Bitcoin SV payment destination.') receive_address_label = HelpLabel(_('Receiving destination'), msg) self._receive_destination_e.textChanged.connect(self._update_receive_qr) self._receive_destination_e.setFocusPolicy(Qt.NoFocus) grid.addWidget(receive_address_label, 0, 0) grid.addWidget(self._receive_destination_e, 0, 1, 1, -1) self._receive_message_e = QLineEdit() grid.addWidget(QLabel(_('Description')), 1, 0) grid.addWidget(self._receive_message_e, 1, 1, 1, -1) self._receive_message_e.textChanged.connect(self._update_receive_qr) self._receive_amount_e = BTCAmountEdit() grid.addWidget(QLabel(_('Requested amount')), 2, 0) grid.addWidget(self._receive_amount_e, 2, 1) self._receive_amount_e.textChanged.connect(self._update_receive_qr) self._fiat_receive_e = AmountEdit(app_state.fx.get_currency if app_state.fx else '') if not app_state.fx or not app_state.fx.is_enabled(): self._fiat_receive_e.setVisible(False) grid.addWidget(self._fiat_receive_e, 2, 2, Qt.AlignLeft) self._main_window.connect_fields(self._receive_amount_e, self._fiat_receive_e) self._expires_combo = QComboBox() self._expires_combo.addItems([i[0] for i in expiration_values]) self._expires_combo.setCurrentIndex(3) self._expires_combo.setFixedWidth(self._receive_amount_e.width()) msg = ' '.join([ _('Expiration date of your request.'), _('This information is seen by the recipient if you send them ' 'a signed payment request.'), _('Expired requests have to be deleted manually from your list, ' 'in order to free the corresponding Bitcoin SV addresses.'), _('The Bitcoin SV address never expires and will always be part ' 'of this ElectrumSV wallet.'), ]) grid.addWidget(HelpLabel(_('Request expires'), msg), 3, 0) grid.addWidget(self._expires_combo, 3, 1) self._expires_label = QLineEdit('') self._expires_label.setReadOnly(1) self._expires_label.setFocusPolicy(Qt.NoFocus) self._expires_label.hide() grid.addWidget(self._expires_label, 3, 1) self._save_request_button = EnterButton(_('Save request'), self._save_form_as_request) self._new_request_button = EnterButton(_('New'), self._new_payment_request) self._receive_qr = QRCodeWidget(fixedSize=200) self._receive_qr.link_to_window(self._toggle_qr_window) buttons = QHBoxLayout() buttons.addStretch(1) buttons.addWidget(self._save_request_button) buttons.addWidget(self._new_request_button) grid.addLayout(buttons, 4, 1, 1, 2) vbox_g = QVBoxLayout() vbox_g.addLayout(grid) vbox_g.addStretch() hbox = QHBoxLayout() hbox.addLayout(vbox_g) hbox.addWidget(self._receive_qr) return hbox def create_request_list_container(self) -> QGroupBox: layout = QVBoxLayout() layout.setSpacing(0) layout.setContentsMargins(6, 0, 6, 6) layout.addLayout(self._request_list_toolbar_layout) layout.addWidget(self._request_list) request_box = QGroupBox() request_box.setTitle(_('Requests')) request_box.setAlignment(Qt.AlignCenter) request_box.setContentsMargins(0, 0, 0, 0) request_box.setLayout(layout) return request_box def update_widgets(self) -> None: self._request_list.update() def update_destination(self) -> None: text = "" if self._receive_key_id is not None: script_template = self._account.get_script_template_for_id(self._receive_key_id) if script_template is not None: text = script_template_to_string(script_template) self._receive_destination_e.setText(text) def update_contents(self) -> None: self._expires_label.hide() self._expires_combo.show() if self._account.is_deterministic(): fresh_key = self._account.get_fresh_keys(RECEIVING_SUBPATH, 1)[0] self.set_receive_key(fresh_key) def update_for_fx_quotes(self) -> None: if self._account_id is not None: edit = (self._fiat_receive_e if self._fiat_receive_e.is_last_edited else self._receive_amount_e) edit.textEdited.emit(edit.text()) # Bound to text fields in `_create_receive_form_layout`. def _update_receive_qr(self) -> None: if self._receive_key_id is None: return amount = self._receive_amount_e.get_amount() message = self._receive_message_e.text() self._save_request_button.setEnabled((amount is not None) or (message != "")) script_template = self._account.get_script_template_for_id(self._receive_key_id) address_text = script_template_to_string(script_template) uri = web.create_URI(address_text, amount, message) self._receive_qr.setData(uri) if self._qr_window and self._qr_window.isVisible(): self._qr_window.set_content(self._receive_destination_e.text(), amount, message, uri) def _toggle_qr_window(self, event: QEvent) -> None: if self._receive_key_id is None: self.show_message(_("No available receiving destination.")) return if not self._qr_window: self._qr_window = QR_Window(self) self._qr_window.setVisible(True) self._qr_window_geometry = self._qr_window.geometry() else: if not self._qr_window.isVisible(): self._qr_window.setVisible(True) self._qr_window.setGeometry(self._qr_window_geometry) else: self._qr_window_geometry = self._qr_window.geometry() self._qr_window.setVisible(False) self._update_receive_qr() def set_fiat_ccy_enabled(self, flag: bool) -> None: self._fiat_receive_e.setVisible(flag) def get_bsv_edits(self) -> List[BTCAmountEdit]: return [ self._receive_amount_e ] def _save_form_as_request(self) -> None: if not self._receive_key_id: self._main_window.show_error(_('No receiving payment destination')) return amount = self._receive_amount_e.get_amount() message = self._receive_message_e.text() if not message and not amount: self._main_window.show_error(_('No message or amount')) return def callback(exc_value: Optional[Exception]=None) -> None: if exc_value is not None: raise exc_value # pylint: disable=raising-bad-type self._request_list.update_signal.emit() i = self._expires_combo.currentIndex() expiration = [x[1] for x in expiration_values][i] row = self._account.requests.get_request_for_key_id(self._receive_key_id) if row is None: row = self._account.requests.create_request(self._receive_key_id, PaymentFlag.UNPAID, amount, expiration, message, callback) else: # Expiration is just a label, so we don't use the value. self._account.requests.update_request(row.paymentrequest_id, row.state, amount, row.expiration, message, callback) self._save_request_button.setEnabled(False) def _new_payment_request(self) -> None: keyinstances: List[KeyInstanceRow] = [] if self._account.is_deterministic(): keyinstances = self._account.get_fresh_keys(RECEIVING_SUBPATH, 1) if not len(keyinstances): if not self._account.is_deterministic(): msg = [ _('No more payment destinations in your wallet.'), _('You are using a non-deterministic account, which ' 'cannot create new payment destinations.'), _('If you want to create new payment destinations, ' 'use a deterministic account instead.') ] self._main_window.show_message(' '.join(msg)) return self._main_window.show_message( _('Your wallet is broken and could not allocate a new payment destination.')) self.update_contents() self._new_request_button.setEnabled(False) self._receive_message_e.setFocus(1) def get_receive_key_id(self) -> Optional[int]: return self._receive_key_id # Only called from key list menu. def receive_at_id(self, key_id: int) -> None: self._receive_key_id = key_id self._new_request_button.setEnabled(True) self.update_destination() self._main_window.show_receive_tab() def set_receive_key_id(self, key_id: int) -> None: self._receive_key_id = key_id def set_receive_key(self, keyinstance: KeyInstanceRow) -> None: self._receive_key_id = keyinstance.keyinstance_id self._receive_message_e.setText("") self._receive_amount_e.setAmount(None) self.update_destination() def set_form_contents(self, address_text: str, value: int, description: Optional[str]=None, expires_description: str="") -> None: self._receive_destination_e.setText(address_text) self._receive_message_e.setText(description or "") self._receive_amount_e.setAmount(value) self._expires_combo.hide() self._expires_label.show() self._expires_label.setText(expires_description) self._new_request_button.setEnabled(True) def set_new_button_enabled(self, flag: bool) -> None: self._new_request_button.setEnabled(flag) def _filter_request_list(self, text: str) -> None: self._request_list.filter(text)
41.928105
98
0.676695
1,584
12,830
5.128157
0.183712
0.063646
0.025114
0.025606
0.236366
0.14342
0.117075
0.093808
0.054167
0.042103
0
0.006231
0.237023
12,830
305
99
42.065574
0.823577
0.028995
0
0.122449
0
0
0.078394
0.00257
0
0
0
0
0
1
0.089796
false
0
0.077551
0.008163
0.212245
0
0
0
0
null
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
null
0
0
0
0
0
0
0
0
0
0
0
0
1
0
6ab9d713b15cf7e2722180a91c20d945c012ee0e
514
py
Python
test/crossrunner/compat.py
BluechipSystems/thrift
c595aa18cba0032e074f9585aa2d6ca548f07197
[ "Apache-2.0" ]
null
null
null
test/crossrunner/compat.py
BluechipSystems/thrift
c595aa18cba0032e074f9585aa2d6ca548f07197
[ "Apache-2.0" ]
null
null
null
test/crossrunner/compat.py
BluechipSystems/thrift
c595aa18cba0032e074f9585aa2d6ca548f07197
[ "Apache-2.0" ]
null
null
null
import os import sys if sys.version_info[0] == 2: _ENCODE = sys.getfilesystemencoding() def path_join(*args): bin_args = map(lambda a: a.decode(_ENCODE), args) return os.path.join(*bin_args).encode(_ENCODE) def str_join(s, l): bin_args = map(lambda a: a.decode(_ENCODE), l) b = s.decode(_ENCODE) return b.join(bin_args).encode(_ENCODE) logfile_open = open else: path_join = os.path.join str_join = str.join def logfile_open(*args): return open(*args, errors='replace')
20.56
53
0.678988
81
514
4.098765
0.358025
0.096386
0.060241
0.096386
0.319277
0.180723
0.180723
0.180723
0
0
0
0.004773
0.184825
514
24
54
21.416667
0.78759
0
0
0
0
0
0.013619
0
0
0
0
0
0
1
0.176471
false
0
0.117647
0.058824
0.470588
0
0
0
0
null
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
null
0
0
0
0
0
0
0
0
0
0
0
0
1
0
6aba555a9c95d6e5cd6afe857fa51108b432e61a
1,518
py
Python
test/test_vom.py
usamaahmadkhan/vpp
cece3e682f6dba68ba86b66b295f99a33496d9ee
[ "Apache-2.0" ]
null
null
null
test/test_vom.py
usamaahmadkhan/vpp
cece3e682f6dba68ba86b66b295f99a33496d9ee
[ "Apache-2.0" ]
null
null
null
test/test_vom.py
usamaahmadkhan/vpp
cece3e682f6dba68ba86b66b295f99a33496d9ee
[ "Apache-2.0" ]
null
null
null
#!/usr/bin/env python """ VAPI test """ import unittest import os import signal from framework import VppTestCase, running_extended_tests, \ VppTestRunner, Worker @unittest.skipUnless(running_extended_tests(), "part of extended tests") class VOMTestCase(VppTestCase): """ VPP Object Model Test """ def test_vom_cpp(self): """ run C++ VOM tests """ var = "TEST_DIR" built_root = os.getenv(var, None) self.assertIsNotNone(built_root, "Environment variable `%s' not set" % var) executable = "%s/build/vom_test/vom_test" % built_root worker = Worker( [executable, "vpp object model", self.shm_prefix], self.logger) worker.start() timeout = 120 worker.join(timeout) self.logger.info("Worker result is `%s'" % worker.result) error = False if worker.result is None: try: error = True self.logger.error( "Timeout! Worker did not finish in %ss" % timeout) os.killpg(os.getpgid(worker.process.pid), signal.SIGTERM) worker.join() except: raise Exception("Couldn't kill worker-spawned process") if error: raise Exception( "Timeout! Worker did not finish in %ss" % timeout) self.assert_equal(worker.result, 0, "Binary test return code") if __name__ == '__main__': unittest.main(testRunner=VppTestRunner)
33
75
0.590909
171
1,518
5.116959
0.502924
0.054857
0.045714
0.043429
0.082286
0.082286
0.082286
0.082286
0
0
0
0.003788
0.304348
1,518
45
76
33.733333
0.824811
0.04809
0
0.057143
0
0
0.187237
0.018233
0
0
0
0
0.057143
1
0.028571
false
0
0.114286
0
0.171429
0
0
0
0
null
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
null
0
0
0
0
0
0
0
0
0
0
0
0
1
0
6abaa4631fe046cd2892f35a91bca62bc7f0f887
3,096
py
Python
locations/spiders/tesco.py
bealbrown/allhours
f750ee7644246a97bd16879f14115d7845f76b89
[ "MIT" ]
null
null
null
locations/spiders/tesco.py
bealbrown/allhours
f750ee7644246a97bd16879f14115d7845f76b89
[ "MIT" ]
null
null
null
locations/spiders/tesco.py
bealbrown/allhours
f750ee7644246a97bd16879f14115d7845f76b89
[ "MIT" ]
null
null
null
import json import re import scrapy from locations.hourstudy import inputoutput DAYS = { 'mo': 'Mo', 'tu': 'Tu', 'we': 'We', 'fr': 'Fr', 'th': 'Th', 'sa': 'Sa', 'su': 'Su', } class TescoSpider(scrapy.Spider): name = "tesco" allowed_domains = ["tescolocation.api.tesco.com"] def store_hours(self, store_hours): clean_time='' for key, value in store_hours.items(): if('isOpen' in value and 'open' in value and 'close' in value): if(value['isOpen']=='true'): clean_time = clean_time + DAYS[key]+' '+value['open'][0:2]+':'+value['open'][2:]+'-'+value['close'][0:2]+':'+value['close'][2:]+';' else: clean_time = clean_time + DAYS[key]+' '+'Closed'+';' return clean_time def start_requests(self): url = 'https://tescolocation.api.tesco.com/v3/locations/search?offset=0&limit=1000000&sort=near:%2251.499207299999995,-0.08800609999999999%22&filter=category:Store%20AND%20isoCountryCode:x-uk&fields=name,geo,openingHours,altIds.branchNumber,contact' headers = { 'Accept-Language': 'en-US,en;q=0.9', 'Origin': 'https://www.tesco.com', 'Accept-Encoding': 'gzip, deflate, br', 'Accept': 'application/json, text/javascript, */*; q=0.01', 'Referer': 'https://www.kfc.com/store-locator?query=90210', 'Content-Type': 'application/x-www-form-urlencoded; charset=UTF-8', 'X-Requested-With': 'XMLHttpRequest', 'x-appkey':'store-locator-web-cde' } yield scrapy.http.FormRequest( url=url, method='GET', headers=headers, callback=self.parse ) def parse(self, response): data = json.loads(response.body_as_unicode()) stores = data['results'] for store in stores: addr_full='' for add in store['location']['contact']['address']['lines']: addr_full=addr_full+' '+add['text'] properties = { 'ref': store['location']['id'], 'name': store['location']['name'], 'addr_full': addr_full, 'city': store['location']['contact']['address']['town'], 'state': '', 'country':'United Kingdom', 'postcode': store['location']['contact']['address']['postcode'], 'lat': store['location']['geo']['coordinates']['latitude'], 'lon': store['location']['geo']['coordinates']['longitude'], 'phone': store['location']['contact']['phoneNumbers'][0]['number'], } opening_hours = self.store_hours(store['location']['openingHours'][0]['standardOpeningHours']) if opening_hours: properties['opening_hours'] = opening_hours raw = store['location']['openingHours'][0]['standardOpeningHours'] formatted = opening_hours yield inputoutput(raw,formatted) # yield inputoutput(**properties)
38.222222
257
0.549096
323
3,096
5.188854
0.473684
0.077566
0.047733
0.048329
0.084726
0.029833
0
0
0
0
0
0.031929
0.271641
3,096
80
258
38.7
0.711308
0.010013
0
0
0
0.015152
0.33998
0.026806
0
0
0
0
0
1
0.045455
false
0
0.060606
0
0.166667
0
0
0
0
null
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
null
0
0
0
0
0
0
0
0
0
0
0
0
1
0
6abb4495b3d52a4655573442ecead7d8db0e2301
12,883
py
Python
astropy/table/serialize.py
tacaswell/astropy
75046e61916da36dffe87ddf59a7c6bfb00de81c
[ "BSD-3-Clause" ]
1
2019-10-05T18:20:27.000Z
2019-10-05T18:20:27.000Z
astropy/table/serialize.py
tacaswell/astropy
75046e61916da36dffe87ddf59a7c6bfb00de81c
[ "BSD-3-Clause" ]
null
null
null
astropy/table/serialize.py
tacaswell/astropy
75046e61916da36dffe87ddf59a7c6bfb00de81c
[ "BSD-3-Clause" ]
null
null
null
from importlib import import_module import re from copy import deepcopy from collections import OrderedDict from astropy.utils.data_info import MixinInfo from .column import Column from .table import Table, QTable, has_info_class from astropy.units.quantity import QuantityInfo __construct_mixin_classes = ('astropy.time.core.Time', 'astropy.time.core.TimeDelta', 'astropy.units.quantity.Quantity', 'astropy.coordinates.angles.Latitude', 'astropy.coordinates.angles.Longitude', 'astropy.coordinates.angles.Angle', 'astropy.coordinates.distances.Distance', 'astropy.coordinates.earth.EarthLocation', 'astropy.coordinates.sky_coordinate.SkyCoord', 'astropy.table.table.NdarrayMixin', 'astropy.table.column.MaskedColumn') class SerializedColumn(dict): """ Subclass of dict that is a used in the representation to contain the name (and possible other info) for a mixin attribute (either primary data or an array-like attribute) that is serialized as a column in the table. Normally contains the single key ``name`` with the name of the column in the table. """ pass def _represent_mixin_as_column(col, name, new_cols, mixin_cols, exclude_classes=()): """Carry out processing needed to serialize ``col`` in an output table consisting purely of plain ``Column`` or ``MaskedColumn`` columns. This relies on the object determine if any transformation is required and may depend on the ``serialize_method`` and ``serialize_context`` context variables. For instance a ``MaskedColumn`` may be stored directly to FITS, but can also be serialized as separate data and mask columns. This function builds up a list of plain columns in the ``new_cols`` arg (which is passed as a persistent list). This includes both plain columns from the original table and plain columns that represent data from serialized columns (e.g. ``jd1`` and ``jd2`` arrays from a ``Time`` column). For serialized columns the ``mixin_cols`` dict is updated with required attributes and information to subsequently reconstruct the table. Table mixin columns are always serialized and get represented by one or more data columns. In earlier versions of the code *only* mixin columns were serialized, hence the use within this code of "mixin" to imply serialization. Starting with version 3.1, the non-mixin ``MaskedColumn`` can also be serialized. """ obj_attrs = col.info._represent_as_dict() ordered_keys = col.info._represent_as_dict_attrs # If serialization is not required (see function docstring above) # or explicitly specified as excluded, then treat as a normal column. if not obj_attrs or col.__class__ in exclude_classes: new_cols.append(col) return # Subtlety here is handling mixin info attributes. The basic list of such # attributes is: 'name', 'unit', 'dtype', 'format', 'description', 'meta'. # - name: handled directly [DON'T store] # - unit: DON'T store if this is a parent attribute # - dtype: captured in plain Column if relevant [DON'T store] # - format: possibly irrelevant but settable post-object creation [DO store] # - description: DO store # - meta: DO store info = {} for attr, nontrivial, xform in (('unit', lambda x: x is not None and x != '', str), ('format', lambda x: x is not None, None), ('description', lambda x: x is not None, None), ('meta', lambda x: x, None)): col_attr = getattr(col.info, attr) if nontrivial(col_attr): info[attr] = xform(col_attr) if xform else col_attr data_attrs = [key for key in ordered_keys if key in obj_attrs and getattr(obj_attrs[key], 'shape', ())[:1] == col.shape[:1]] for data_attr in data_attrs: data = obj_attrs[data_attr] # New column name combines the old name and attribute # (e.g. skycoord.ra, skycoord.dec).unless it is the primary data # attribute for the column (e.g. value for Quantity or data # for MaskedColumn) if data_attr == col.info._represent_as_dict_primary_data: new_name = name else: new_name = name + '.' + data_attr if not has_info_class(data, MixinInfo): new_cols.append(Column(data, name=new_name, **info)) obj_attrs[data_attr] = SerializedColumn({'name': new_name}) else: # recurse. This will define obj_attrs[new_name]. _represent_mixin_as_column(data, new_name, new_cols, obj_attrs) obj_attrs[data_attr] = SerializedColumn(obj_attrs.pop(new_name)) # Strip out from info any attributes defined by the parent for attr in col.info.attrs_from_parent: if attr in info: del info[attr] if info: obj_attrs['__info__'] = info # Store the fully qualified class name obj_attrs['__class__'] = col.__module__ + '.' + col.__class__.__name__ mixin_cols[name] = obj_attrs def represent_mixins_as_columns(tbl, exclude_classes=()): """Represent input Table ``tbl`` using only `~astropy.table.Column` or `~astropy.table.MaskedColumn` objects. This function represents any mixin columns like `~astropy.time.Time` in ``tbl`` to one or more plain ``~astropy.table.Column`` objects and returns a new Table. A single mixin column may be split into multiple column components as needed for fully representing the column. This includes the possibility of recursive splitting, as shown in the example below. The new column names are formed as ``<column_name>.<component>``, e.g. ``sc.ra`` for a `~astropy.coordinates.SkyCoord` column named ``sc``. In addition to splitting columns, this function updates the table ``meta`` dictionary to include a dict named ``__serialized_columns__`` which provides additional information needed to construct the original mixin columns from the split columns. This function is used by astropy I/O when writing tables to ECSV, FITS, HDF5 formats. Note that if the table does not include any mixin columns then the original table is returned with no update to ``meta``. Parameters ---------- tbl : `~astropy.table.Table` or subclass Table to represent mixins as Columns exclude_classes : tuple of classes Exclude any mixin columns which are instannces of any classes in the tuple Returns ------- tbl : `~astropy.table.Table` New Table with updated columns, or else the original input ``tbl`` Examples -------- >>> from astropy.table import Table, represent_mixins_as_columns >>> from astropy.time import Time >>> from astropy.coordinates import SkyCoord >>> x = [100.0, 200.0] >>> obstime = Time([1999.0, 2000.0], format='jyear') >>> sc = SkyCoord([1, 2], [3, 4], unit='deg', obstime=obstime) >>> tbl = Table([sc, x], names=['sc', 'x']) >>> represent_mixins_as_columns(tbl) <Table length=2> sc.ra sc.dec sc.obstime.jd1 sc.obstime.jd2 x deg deg float64 float64 float64 float64 float64 ------- ------- -------------- -------------- ------- 1.0 3.0 2451180.0 -0.25 100.0 2.0 4.0 2451545.0 0.0 200.0 """ # Dict of metadata for serializing each column, keyed by column name. # Gets filled in place by _represent_mixin_as_column(). mixin_cols = {} # List of columns for the output table. For plain Column objects # this will just be the original column object. new_cols = [] # Go through table columns and represent each column as one or more # plain Column objects (in new_cols) + metadata (in mixin_cols). for col in tbl.itercols(): _represent_mixin_as_column(col, col.info.name, new_cols, mixin_cols, exclude_classes=exclude_classes) # If no metadata was created then just return the original table. if not mixin_cols: return tbl meta = deepcopy(tbl.meta) meta['__serialized_columns__'] = mixin_cols out = Table(new_cols, meta=meta, copy=False) return out def _construct_mixin_from_obj_attrs_and_info(obj_attrs, info): cls_full_name = obj_attrs.pop('__class__') # If this is a supported class then import the class and run # the _construct_from_col method. Prevent accidentally running # untrusted code by only importing known astropy classes. if cls_full_name not in __construct_mixin_classes: raise ValueError('unsupported class for construct {}'.format(cls_full_name)) mod_name, cls_name = re.match(r'(.+)\.(\w+)', cls_full_name).groups() module = import_module(mod_name) cls = getattr(module, cls_name) for attr, value in info.items(): if attr in cls.info.attrs_from_parent: obj_attrs[attr] = value mixin = cls.info._construct_from_dict(obj_attrs) for attr, value in info.items(): if attr not in obj_attrs: setattr(mixin.info, attr, value) return mixin class _TableLite(OrderedDict): """ Minimal table-like object for _construct_mixin_from_columns. This allows manipulating the object like a Table but without the actual overhead for a full Table. More pressing, there is an issue with constructing MaskedColumn, where the encoded Column components (data, mask) are turned into a MaskedColumn. When this happens in a real table then all other columns are immediately Masked and a warning is issued. This is not desirable. """ def add_column(self, col, index=0): colnames = self.colnames self[col.info.name] = col for ii, name in enumerate(colnames): if ii >= index: self.move_to_end(name) @property def colnames(self): return list(self.keys()) def itercols(self): return self.values() def _construct_mixin_from_columns(new_name, obj_attrs, out): data_attrs_map = {} for name, val in obj_attrs.items(): if isinstance(val, SerializedColumn): if 'name' in val: data_attrs_map[val['name']] = name else: _construct_mixin_from_columns(name, val, out) data_attrs_map[name] = name for name in data_attrs_map.values(): del obj_attrs[name] # Get the index where to add new column idx = min(out.colnames.index(name) for name in data_attrs_map) # Name is the column name in the table (e.g. "coord.ra") and # data_attr is the object attribute name (e.g. "ra"). A different # example would be a formatted time object that would have (e.g.) # "time_col" and "value", respectively. for name, data_attr in data_attrs_map.items(): col = out[name] obj_attrs[data_attr] = col del out[name] info = obj_attrs.pop('__info__', {}) if len(data_attrs_map) == 1: # col is the first and only serialized column; in that case, use info # stored on the column. for attr, nontrivial in (('unit', lambda x: x not in (None, '')), ('format', lambda x: x is not None), ('description', lambda x: x is not None), ('meta', lambda x: x)): col_attr = getattr(col.info, attr) if nontrivial(col_attr): info[attr] = col_attr info['name'] = new_name col = _construct_mixin_from_obj_attrs_and_info(obj_attrs, info) out.add_column(col, index=idx) def _construct_mixins_from_columns(tbl): if '__serialized_columns__' not in tbl.meta: return tbl meta = tbl.meta.copy() mixin_cols = meta.pop('__serialized_columns__') out = _TableLite(tbl.columns) for new_name, obj_attrs in mixin_cols.items(): _construct_mixin_from_columns(new_name, obj_attrs, out) # If no quantity subclasses are in the output then output as Table. # For instance ascii.read(file, format='ecsv') doesn't specify an # output class and should return the minimal table class that # represents the table file. has_quantities = any(isinstance(col.info, QuantityInfo) for col in out.itercols()) out_cls = QTable if has_quantities else Table return out_cls(list(out.values()), names=out.colnames, copy=False, meta=meta)
41.028662
87
0.645579
1,735
12,883
4.637464
0.214409
0.02784
0.007954
0.006214
0.111733
0.072458
0.070346
0.049963
0.0348
0.024111
0
0.00855
0.264612
12,883
313
88
41.159744
0.840722
0.468292
0
0.080882
0
0
0.090362
0.066924
0
0
0
0
0
1
0.058824
false
0.007353
0.066176
0.014706
0.198529
0
0
0
0
null
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
null
0
0
0
0
0
0
0
0
0
0
0
0
1
0
6abe0f56148406c214bae2a7180acf428b205f37
1,914
py
Python
UVa 573 - The Snail/sample/main.py
tadvi/uva
0ac0cbdf593879b4fb02a3efc09adbb031cb47d5
[ "MIT" ]
1
2020-11-24T03:17:21.000Z
2020-11-24T03:17:21.000Z
UVa 573 - The Snail/sample/main.py
tadvi/uva
0ac0cbdf593879b4fb02a3efc09adbb031cb47d5
[ "MIT" ]
null
null
null
UVa 573 - The Snail/sample/main.py
tadvi/uva
0ac0cbdf593879b4fb02a3efc09adbb031cb47d5
[ "MIT" ]
1
2021-04-11T16:22:31.000Z
2021-04-11T16:22:31.000Z
''' Created on Jun 18, 2013 @author: Yubin Bai All rights reserved. ''' import time from multiprocessing.pool import Pool parallelSolve = False infinity = 1 << 30 def solve(par): H, U, D, F = par day = 0 amountRise = U currH = 0 while True: amountRise = U * (1 - 0.01 * F * day) currH += amountRise if currH > H: return 'success on day %d' % (day + 1) currH -= D if currH < 0: return 'failure on day %d' % (day + 1) day += 1 class Solver: def getInput(self): self.input = [] self.numOfTests = 0 while True: H, U, D, F = map(int, self.fIn.readline().strip().split()) if H == 0: break self.numOfTests += 1 self.input.append((H, U, D, F)) def __init__(self): self.fIn = open('input.txt') self.fOut = open('output.txt', 'w') self.results = [] def parallel(self): self.getInput() p = Pool(4) millis1 = int(round(time.time() * 1000)) self.results = p.map(solve, self.input) millis2 = int(round(time.time() * 1000)) print("Time in milliseconds: %d " % (millis2 - millis1)) self.makeOutput() def sequential(self): self.getInput() millis1 = int(round(time.time() * 1000)) for i in self.input: self.results.append(solve(i)) millis2 = int(round(time.time() * 1000)) print("Time in milliseconds: %d " % (millis2 - millis1)) self.makeOutput() def makeOutput(self): for test in range(self.numOfTests): self.fOut.write("Case #%d: %s\n" % (test + 1, self.results[test])) self.fIn.close() self.fOut.close() if __name__ == '__main__': solver = Solver() if parallelSolve: solver.parallel() else: solver.sequential()
24.538462
78
0.527168
236
1,914
4.224576
0.355932
0.032096
0.048144
0.064193
0.238716
0.218656
0.164493
0.164493
0.164493
0.164493
0
0.037618
0.333333
1,914
77
79
24.857143
0.74373
0.03396
0
0.20339
0
0
0.068441
0
0
0
0
0
0
1
0.101695
false
0
0.033898
0
0.186441
0.033898
0
0
0
null
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
null
0
0
0
0
0
0
0
0
0
0
0
0
1
0
6abe9ac6695fe5a1d34b503ad56c8e41374a9ea6
5,074
py
Python
scibert/models/text_classifier.py
tomhoper/scibert
3cc65f433808f7879c973dc4fc41bd25e465dc15
[ "Apache-2.0" ]
1,143
2019-03-27T01:49:11.000Z
2022-03-24T10:43:47.000Z
scibert/models/text_classifier.py
tomhoper/scibert
3cc65f433808f7879c973dc4fc41bd25e465dc15
[ "Apache-2.0" ]
91
2019-03-27T17:20:27.000Z
2022-03-29T09:29:58.000Z
scibert/models/text_classifier.py
tomhoper/scibert
3cc65f433808f7879c973dc4fc41bd25e465dc15
[ "Apache-2.0" ]
206
2019-03-28T02:22:30.000Z
2022-03-30T07:07:05.000Z
from typing import Dict, Optional, List, Any import torch import torch.nn.functional as F from allennlp.data import Vocabulary from allennlp.models.model import Model from allennlp.modules import FeedForward, TextFieldEmbedder, Seq2SeqEncoder from allennlp.nn import InitializerApplicator, RegularizerApplicator from allennlp.nn import util from allennlp.training.metrics import CategoricalAccuracy, F1Measure from overrides import overrides @Model.register("text_classifier") class TextClassifier(Model): """ Implements a basic text classifier: 1) Embed tokens using `text_field_embedder` 2) Seq2SeqEncoder, e.g. BiLSTM 3) Append the first and last encoder states 4) Final feedforward layer Optimized with CrossEntropyLoss. Evaluated with CategoricalAccuracy & F1. """ def __init__(self, vocab: Vocabulary, text_field_embedder: TextFieldEmbedder, text_encoder: Seq2SeqEncoder, classifier_feedforward: FeedForward, verbose_metrics: False, initializer: InitializerApplicator = InitializerApplicator(), regularizer: Optional[RegularizerApplicator] = None, ) -> None: super(TextClassifier, self).__init__(vocab, regularizer) self.text_field_embedder = text_field_embedder self.num_classes = self.vocab.get_vocab_size("labels") self.text_encoder = text_encoder self.classifier_feedforward = classifier_feedforward self.prediction_layer = torch.nn.Linear(self.classifier_feedforward.get_output_dim() , self.num_classes) self.label_accuracy = CategoricalAccuracy() self.label_f1_metrics = {} self.verbose_metrics = verbose_metrics for i in range(self.num_classes): self.label_f1_metrics[vocab.get_token_from_index(index=i, namespace="labels")] = F1Measure(positive_label=i) self.loss = torch.nn.CrossEntropyLoss() self.pool = lambda text, mask: util.get_final_encoder_states(text, mask, bidirectional=True) initializer(self) @overrides def forward(self, text: Dict[str, torch.LongTensor], label: torch.IntTensor = None, metadata: List[Dict[str, Any]] = None) -> Dict[str, torch.Tensor]: """ Parameters ---------- text : Dict[str, torch.LongTensor] From a ``TextField`` label : torch.IntTensor, optional (default = None) From a ``LabelField`` metadata : ``List[Dict[str, Any]]``, optional, (default = None) Metadata containing the original tokenization of the premise and hypothesis with 'premise_tokens' and 'hypothesis_tokens' keys respectively. Returns ------- An output dictionary consisting of: label_logits : torch.FloatTensor A tensor of shape ``(batch_size, num_labels)`` representing unnormalised log probabilities of the label. label_probs : torch.FloatTensor A tensor of shape ``(batch_size, num_labels)`` representing probabilities of the label. loss : torch.FloatTensor, optional A scalar loss to be optimised. """ embedded_text = self.text_field_embedder(text) mask = util.get_text_field_mask(text) encoded_text = self.text_encoder(embedded_text, mask) pooled = self.pool(encoded_text, mask) ff_hidden = self.classifier_feedforward(pooled) logits = self.prediction_layer(ff_hidden) class_probs = F.softmax(logits, dim=1) output_dict = {"logits": logits} if label is not None: loss = self.loss(logits, label) output_dict["loss"] = loss # compute F1 per label for i in range(self.num_classes): metric = self.label_f1_metrics[self.vocab.get_token_from_index(index=i, namespace="labels")] metric(class_probs, label) self.label_accuracy(logits, label) return output_dict @overrides def decode(self, output_dict: Dict[str, torch.Tensor]) -> Dict[str, torch.Tensor]: class_probabilities = F.softmax(output_dict['logits'], dim=-1) output_dict['class_probs'] = class_probabilities return output_dict def get_metrics(self, reset: bool = False) -> Dict[str, float]: metric_dict = {} sum_f1 = 0.0 for name, metric in self.label_f1_metrics.items(): metric_val = metric.get_metric(reset) if self.verbose_metrics: metric_dict[name + '_P'] = metric_val[0] metric_dict[name + '_R'] = metric_val[1] metric_dict[name + '_F1'] = metric_val[2] sum_f1 += metric_val[2] names = list(self.label_f1_metrics.keys()) total_len = len(names) average_f1 = sum_f1 / total_len metric_dict['average_F1'] = average_f1 metric_dict['accuracy'] = self.label_accuracy.get_metric(reset) return metric_dict
40.919355
120
0.653331
579
5,074
5.518135
0.278066
0.022535
0.026604
0.028169
0.162128
0.080125
0.080125
0.064476
0.064476
0.037559
0
0.008225
0.257194
5,074
123
121
41.252033
0.83948
0.204769
0
0.078947
0
0
0.022135
0
0
0
0
0
0
1
0.052632
false
0
0.131579
0
0.236842
0
0
0
0
null
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
null
0
0
0
0
0
0
0
0
0
0
0
0
1
0
6abec40d890d6b8f05f738693cce2c79127a8924
4,716
py
Python
plugins/template/tasks.py
crotwell/cmd2
5ce3a64e41258b6a694ad45bb1c604be53a1e974
[ "MIT" ]
469
2016-02-16T16:18:48.000Z
2022-03-31T15:24:40.000Z
plugins/template/tasks.py
crotwell/cmd2
5ce3a64e41258b6a694ad45bb1c604be53a1e974
[ "MIT" ]
1,076
2016-02-19T02:50:47.000Z
2022-03-22T03:08:06.000Z
plugins/template/tasks.py
crotwell/cmd2
5ce3a64e41258b6a694ad45bb1c604be53a1e974
[ "MIT" ]
138
2016-02-19T02:46:23.000Z
2022-03-30T13:13:01.000Z
# # -*- coding: utf-8 -*- """Development related tasks to be run with 'invoke'""" import os import pathlib import shutil import invoke TASK_ROOT = pathlib.Path(__file__).resolve().parent TASK_ROOT_STR = str(TASK_ROOT) # shared function def rmrf(items, verbose=True): """Silently remove a list of directories or files""" if isinstance(items, str): items = [items] for item in items: if verbose: print("Removing {}".format(item)) shutil.rmtree(item, ignore_errors=True) # rmtree doesn't remove bare files try: os.remove(item) except FileNotFoundError: pass # create namespaces namespace = invoke.Collection() namespace_clean = invoke.Collection('clean') namespace.add_collection(namespace_clean, 'clean') ##### # # pytest, pylint, and codecov # ##### @invoke.task def pytest(context, junit=False, pty=True, append_cov=False): """Run tests and code coverage using pytest""" ROOT_PATH = TASK_ROOT.parent.parent with context.cd(str(ROOT_PATH)): command_str = 'pytest --cov=cmd2_myplugin --cov-report=term --cov-report=html' if append_cov: command_str += ' --cov-append' if junit: command_str += ' --junitxml=junit/test-results.xml' command_str += ' ' + str((TASK_ROOT / 'tests').relative_to(ROOT_PATH)) context.run(command_str, pty=pty) namespace.add_task(pytest) @invoke.task def pytest_clean(context): """Remove pytest cache and code coverage files and directories""" # pylint: disable=unused-argument with context.cd(TASK_ROOT_STR): dirs = ['.pytest_cache', '.cache', '.coverage'] rmrf(dirs) namespace_clean.add_task(pytest_clean, 'pytest') @invoke.task def pylint(context): """Check code quality using pylint""" context.run('pylint --rcfile=cmd2_myplugin/pylintrc cmd2_myplugin') namespace.add_task(pylint) @invoke.task def pylint_tests(context): """Check code quality of test suite using pylint""" context.run('pylint --rcfile=tests/pylintrc tests') namespace.add_task(pylint_tests) ##### # # build and distribute # ##### BUILDDIR = 'build' DISTDIR = 'dist' @invoke.task def build_clean(context): """Remove the build directory""" # pylint: disable=unused-argument rmrf(BUILDDIR) namespace_clean.add_task(build_clean, 'build') @invoke.task def dist_clean(context): """Remove the dist directory""" # pylint: disable=unused-argument rmrf(DISTDIR) namespace_clean.add_task(dist_clean, 'dist') @invoke.task def eggs_clean(context): """Remove egg directories""" # pylint: disable=unused-argument dirs = set() dirs.add('.eggs') for name in os.listdir(os.curdir): if name.endswith('.egg-info'): dirs.add(name) if name.endswith('.egg'): dirs.add(name) rmrf(dirs) namespace_clean.add_task(eggs_clean, 'eggs') @invoke.task def bytecode_clean(context): """Remove __pycache__ directories and *.pyc files""" # pylint: disable=unused-argument dirs = set() for root, dirnames, files in os.walk(os.curdir): if '__pycache__' in dirnames: dirs.add(os.path.join(root, '__pycache__')) for file in files: if file.endswith(".pyc"): dirs.add(os.path.join(root, file)) print("Removing __pycache__ directories and .pyc files") rmrf(dirs, verbose=False) namespace_clean.add_task(bytecode_clean, 'bytecode') # # make a dummy clean task which runs all the tasks in the clean namespace clean_tasks = list(namespace_clean.tasks.values()) @invoke.task(pre=list(namespace_clean.tasks.values()), default=True) def clean_all(context): """Run all clean tasks""" # pylint: disable=unused-argument pass namespace_clean.add_task(clean_all, 'all') @invoke.task(pre=[clean_all]) def sdist(context): """Create a source distribution""" context.run('python setup.py sdist') namespace.add_task(sdist) @invoke.task(pre=[clean_all]) def wheel(context): """Build a wheel distribution""" context.run('python setup.py bdist_wheel') namespace.add_task(wheel) # # these two tasks are commented out so you don't # accidentally run them and upload this template to pypi # # @invoke.task(pre=[sdist, wheel]) # def pypi(context): # """Build and upload a distribution to pypi""" # context.run('twine upload dist/*') # namespace.add_task(pypi) # @invoke.task(pre=[sdist, wheel]) # def pypi_test(context): # """Build and upload a distribution to https://test.pypi.org""" # context.run('twine upload --repository-url https://test.pypi.org/legacy/ dist/*') # namespace.add_task(pypi_test)
23.231527
87
0.671968
617
4,716
4.993517
0.249595
0.04544
0.033755
0.05258
0.253489
0.185654
0.04544
0.022071
0
0
0
0.00105
0.192112
4,716
202
88
23.346535
0.807612
0.293681
0
0.195652
0
0
0.133831
0.027078
0
0
0
0
0
1
0.130435
false
0.021739
0.043478
0
0.173913
0.021739
0
0
0
null
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
null
0
0
0
0
0
0
0
0
0
0
0
0
1
0
6abf04d8aaa93e623f487cf9322ec9b114c31f92
2,590
py
Python
homeassistant/components/epsonworkforce/sensor.py
maexono/home-assistant
c174b83f5408124fc7834e8282969a1e8f9cca16
[ "Apache-2.0" ]
2
2019-12-30T14:12:33.000Z
2021-07-05T10:33:08.000Z
homeassistant/components/epsonworkforce/sensor.py
maexono/home-assistant
c174b83f5408124fc7834e8282969a1e8f9cca16
[ "Apache-2.0" ]
2
2022-01-13T04:00:03.000Z
2022-03-12T01:02:40.000Z
homeassistant/components/epsonworkforce/sensor.py
maexono/home-assistant
c174b83f5408124fc7834e8282969a1e8f9cca16
[ "Apache-2.0" ]
3
2019-04-28T16:35:45.000Z
2020-05-28T15:21:59.000Z
"""Support for Epson Workforce Printer.""" from datetime import timedelta import logging import voluptuous as vol from homeassistant.components.sensor import PLATFORM_SCHEMA from homeassistant.const import CONF_HOST, CONF_MONITORED_CONDITIONS from homeassistant.exceptions import PlatformNotReady import homeassistant.helpers.config_validation as cv from homeassistant.helpers.entity import Entity REQUIREMENTS = ['epsonprinter==0.0.8'] _LOGGER = logging.getLogger(__name__) MONITORED_CONDITIONS = { 'black': ['Inklevel Black', '%', 'mdi:water'], 'magenta': ['Inklevel Magenta', '%', 'mdi:water'], 'cyan': ['Inklevel Cyan', '%', 'mdi:water'], 'yellow': ['Inklevel Yellow', '%', 'mdi:water'], 'clean': ['Inklevel Cleaning', '%', 'mdi:water'], } PLATFORM_SCHEMA = PLATFORM_SCHEMA.extend({ vol.Required(CONF_HOST): cv.string, vol.Required(CONF_MONITORED_CONDITIONS): vol.All(cv.ensure_list, [vol.In(MONITORED_CONDITIONS)]), }) SCAN_INTERVAL = timedelta(minutes=60) def setup_platform(hass, config, add_devices, discovery_info=None): """Set up the cartridge sensor.""" host = config.get(CONF_HOST) from epsonprinter_pkg.epsonprinterapi import EpsonPrinterAPI api = EpsonPrinterAPI(host) if not api.available: raise PlatformNotReady() sensors = [EpsonPrinterCartridge(api, condition) for condition in config[CONF_MONITORED_CONDITIONS]] add_devices(sensors, True) class EpsonPrinterCartridge(Entity): """Representation of a cartridge sensor.""" def __init__(self, api, cartridgeidx): """Initialize a cartridge sensor.""" self._api = api self._id = cartridgeidx self._name = MONITORED_CONDITIONS[self._id][0] self._unit = MONITORED_CONDITIONS[self._id][1] self._icon = MONITORED_CONDITIONS[self._id][2] @property def name(self): """Return the name of the sensor.""" return self._name @property def icon(self): """Icon to use in the frontend, if any.""" return self._icon @property def unit_of_measurement(self): """Return the unit the value is expressed in.""" return self._unit @property def state(self): """Return the state of the device.""" return self._api.getSensorValue(self._id) @property def available(self): """Could the device be accessed during the last update call.""" return self._api.available def update(self): """Get the latest data from the Epson printer.""" self._api.update()
30.116279
71
0.679151
302
2,590
5.655629
0.384106
0.088993
0.040398
0.043911
0
0
0
0
0
0
0
0.003872
0.202317
2,590
85
72
30.470588
0.822846
0.146332
0
0.089286
0
0
0.079167
0
0
0
0
0
0
1
0.142857
false
0
0.160714
0
0.410714
0.035714
0
0
0
null
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
null
0
0
0
0
0
0
0
0
0
0
0
0
1
0
6abf99810278b3e6bb4dfbe19a2991c6db839dec
19,661
py
Python
bot/exts/help_channels/_cog.py
bast0006/bot
dec9a9dba77aa4322f9dc37b6493a8410e7482ec
[ "MIT", "BSD-3-Clause" ]
null
null
null
bot/exts/help_channels/_cog.py
bast0006/bot
dec9a9dba77aa4322f9dc37b6493a8410e7482ec
[ "MIT", "BSD-3-Clause" ]
null
null
null
bot/exts/help_channels/_cog.py
bast0006/bot
dec9a9dba77aa4322f9dc37b6493a8410e7482ec
[ "MIT", "BSD-3-Clause" ]
null
null
null
import asyncio import logging import random import typing as t from datetime import datetime, timezone from operator import attrgetter import discord import discord.abc from discord.ext import commands from bot import constants from bot.bot import Bot from bot.exts.help_channels import _caches, _channel, _cooldown, _message, _name, _stats from bot.utils import channel as channel_utils, lock, scheduling log = logging.getLogger(__name__) NAMESPACE = "help" HELP_CHANNEL_TOPIC = """ This is a Python help channel. You can claim your own help channel in the Python Help: Available category. """ class HelpChannels(commands.Cog): """ Manage the help channel system of the guild. The system is based on a 3-category system: Available Category * Contains channels which are ready to be occupied by someone who needs help * Will always contain `constants.HelpChannels.max_available` channels; refilled automatically from the pool of dormant channels * Prioritise using the channels which have been dormant for the longest amount of time * If there are no more dormant channels, the bot will automatically create a new one * If there are no dormant channels to move, helpers will be notified (see `notify()`) * When a channel becomes available, the dormant embed will be edited to show `AVAILABLE_MSG` * User can only claim a channel at an interval `constants.HelpChannels.claim_minutes` * To keep track of cooldowns, user which claimed a channel will have a temporary role In Use Category * Contains all channels which are occupied by someone needing help * Channel moves to dormant category after `constants.HelpChannels.idle_minutes` of being idle * Command can prematurely mark a channel as dormant * Channel claimant is allowed to use the command * Allowed roles for the command are configurable with `constants.HelpChannels.cmd_whitelist` * When a channel becomes dormant, an embed with `DORMANT_MSG` will be sent Dormant Category * Contains channels which aren't in use * Channels are used to refill the Available category Help channels are named after the chemical elements in `bot/resources/elements.json`. """ def __init__(self, bot: Bot): self.bot = bot self.scheduler = scheduling.Scheduler(self.__class__.__name__) # Categories self.available_category: discord.CategoryChannel = None self.in_use_category: discord.CategoryChannel = None self.dormant_category: discord.CategoryChannel = None # Queues self.channel_queue: asyncio.Queue[discord.TextChannel] = None self.name_queue: t.Deque[str] = None self.last_notification: t.Optional[datetime] = None # Asyncio stuff self.queue_tasks: t.List[asyncio.Task] = [] self.init_task = self.bot.loop.create_task(self.init_cog()) def cog_unload(self) -> None: """Cancel the init task and scheduled tasks when the cog unloads.""" log.trace("Cog unload: cancelling the init_cog task") self.init_task.cancel() log.trace("Cog unload: cancelling the channel queue tasks") for task in self.queue_tasks: task.cancel() self.scheduler.cancel_all() @lock.lock_arg(NAMESPACE, "message", attrgetter("channel.id")) @lock.lock_arg(NAMESPACE, "message", attrgetter("author.id")) @lock.lock_arg(f"{NAMESPACE}.unclaim", "message", attrgetter("author.id"), wait=True) async def claim_channel(self, message: discord.Message) -> None: """ Claim the channel in which the question `message` was sent. Move the channel to the In Use category and pin the `message`. Add a cooldown to the claimant to prevent them from asking another question. Lastly, make a new channel available. """ log.info(f"Channel #{message.channel} was claimed by `{message.author.id}`.") await self.move_to_in_use(message.channel) await _cooldown.revoke_send_permissions(message.author, self.scheduler) await _message.pin(message) try: await _message.dm_on_open(message) except Exception as e: log.warning("Error occurred while sending DM:", exc_info=e) # Add user with channel for dormant check. await _caches.claimants.set(message.channel.id, message.author.id) self.bot.stats.incr("help.claimed") # Must use a timezone-aware datetime to ensure a correct POSIX timestamp. timestamp = datetime.now(timezone.utc).timestamp() await _caches.claim_times.set(message.channel.id, timestamp) await _caches.unanswered.set(message.channel.id, True) # Not awaited because it may indefinitely hold the lock while waiting for a channel. scheduling.create_task(self.move_to_available(), name=f"help_claim_{message.id}") def create_channel_queue(self) -> asyncio.Queue: """ Return a queue of dormant channels to use for getting the next available channel. The channels are added to the queue in a random order. """ log.trace("Creating the channel queue.") channels = list(_channel.get_category_channels(self.dormant_category)) random.shuffle(channels) log.trace("Populating the channel queue with channels.") queue = asyncio.Queue() for channel in channels: queue.put_nowait(channel) return queue async def create_dormant(self) -> t.Optional[discord.TextChannel]: """ Create and return a new channel in the Dormant category. The new channel will sync its permission overwrites with the category. Return None if no more channel names are available. """ log.trace("Getting a name for a new dormant channel.") try: name = self.name_queue.popleft() except IndexError: log.debug("No more names available for new dormant channels.") return None log.debug(f"Creating a new dormant channel named {name}.") return await self.dormant_category.create_text_channel(name, topic=HELP_CHANNEL_TOPIC) async def close_check(self, ctx: commands.Context) -> bool: """Return True if the channel is in use and the user is the claimant or has a whitelisted role.""" if ctx.channel.category != self.in_use_category: log.debug(f"{ctx.author} invoked command 'close' outside an in-use help channel") return False if await _caches.claimants.get(ctx.channel.id) == ctx.author.id: log.trace(f"{ctx.author} is the help channel claimant, passing the check for dormant.") self.bot.stats.incr("help.dormant_invoke.claimant") return True log.trace(f"{ctx.author} is not the help channel claimant, checking roles.") has_role = await commands.has_any_role(*constants.HelpChannels.cmd_whitelist).predicate(ctx) if has_role: self.bot.stats.incr("help.dormant_invoke.staff") return has_role @commands.command(name="close", aliases=["dormant", "solved"], enabled=False) async def close_command(self, ctx: commands.Context) -> None: """ Make the current in-use help channel dormant. May only be invoked by the channel's claimant or by staff. """ # Don't use a discord.py check because the check needs to fail silently. if await self.close_check(ctx): log.info(f"Close command invoked by {ctx.author} in #{ctx.channel}.") await self.unclaim_channel(ctx.channel, is_auto=False) async def get_available_candidate(self) -> discord.TextChannel: """ Return a dormant channel to turn into an available channel. If no channel is available, wait indefinitely until one becomes available. """ log.trace("Getting an available channel candidate.") try: channel = self.channel_queue.get_nowait() except asyncio.QueueEmpty: log.info("No candidate channels in the queue; creating a new channel.") channel = await self.create_dormant() if not channel: log.info("Couldn't create a candidate channel; waiting to get one from the queue.") notify_channel = self.bot.get_channel(constants.HelpChannels.notify_channel) last_notification = await _message.notify(notify_channel, self.last_notification) if last_notification: self.last_notification = last_notification self.bot.stats.incr("help.out_of_channel_alerts") channel = await self.wait_for_dormant_channel() return channel async def init_available(self) -> None: """Initialise the Available category with channels.""" log.trace("Initialising the Available category with channels.") channels = list(_channel.get_category_channels(self.available_category)) missing = constants.HelpChannels.max_available - len(channels) # If we've got less than `max_available` channel available, we should add some. if missing > 0: log.trace(f"Moving {missing} missing channels to the Available category.") for _ in range(missing): await self.move_to_available() # If for some reason we have more than `max_available` channels available, # we should move the superfluous ones over to dormant. elif missing < 0: log.trace(f"Moving {abs(missing)} superfluous available channels over to the Dormant category.") for channel in channels[:abs(missing)]: await self.unclaim_channel(channel) async def init_categories(self) -> None: """Get the help category objects. Remove the cog if retrieval fails.""" log.trace("Getting the CategoryChannel objects for the help categories.") try: self.available_category = await channel_utils.try_get_channel( constants.Categories.help_available ) self.in_use_category = await channel_utils.try_get_channel( constants.Categories.help_in_use ) self.dormant_category = await channel_utils.try_get_channel( constants.Categories.help_dormant ) except discord.HTTPException: log.exception("Failed to get a category; cog will be removed") self.bot.remove_cog(self.qualified_name) async def init_cog(self) -> None: """Initialise the help channel system.""" log.trace("Waiting for the guild to be available before initialisation.") await self.bot.wait_until_guild_available() log.trace("Initialising the cog.") await self.init_categories() await _cooldown.check_cooldowns(self.scheduler) self.channel_queue = self.create_channel_queue() self.name_queue = _name.create_name_queue( self.available_category, self.in_use_category, self.dormant_category, ) log.trace("Moving or rescheduling in-use channels.") for channel in _channel.get_category_channels(self.in_use_category): await self.move_idle_channel(channel, has_task=False) # Prevent the command from being used until ready. # The ready event wasn't used because channels could change categories between the time # the command is invoked and the cog is ready (e.g. if move_idle_channel wasn't called yet). # This may confuse users. So would potentially long delays for the cog to become ready. self.close_command.enabled = True await self.init_available() _stats.report_counts() log.info("Cog is ready!") async def move_idle_channel(self, channel: discord.TextChannel, has_task: bool = True) -> None: """ Make the `channel` dormant if idle or schedule the move if still active. If `has_task` is True and rescheduling is required, the extant task to make the channel dormant will first be cancelled. """ log.trace(f"Handling in-use channel #{channel} ({channel.id}).") if not await _message.is_empty(channel): idle_seconds = constants.HelpChannels.idle_minutes * 60 else: idle_seconds = constants.HelpChannels.deleted_idle_minutes * 60 time_elapsed = await _channel.get_idle_time(channel) if time_elapsed is None or time_elapsed >= idle_seconds: log.info( f"#{channel} ({channel.id}) is idle longer than {idle_seconds} seconds " f"and will be made dormant." ) await self.unclaim_channel(channel) else: # Cancel the existing task, if any. if has_task: self.scheduler.cancel(channel.id) delay = idle_seconds - time_elapsed log.info( f"#{channel} ({channel.id}) is still active; " f"scheduling it to be moved after {delay} seconds." ) self.scheduler.schedule_later(delay, channel.id, self.move_idle_channel(channel)) async def move_to_available(self) -> None: """Make a channel available.""" log.trace("Making a channel available.") channel = await self.get_available_candidate() log.info(f"Making #{channel} ({channel.id}) available.") await _message.send_available_message(channel) log.trace(f"Moving #{channel} ({channel.id}) to the Available category.") await _channel.move_to_bottom( channel=channel, category_id=constants.Categories.help_available, ) _stats.report_counts() async def move_to_dormant(self, channel: discord.TextChannel) -> None: """Make the `channel` dormant.""" log.info(f"Moving #{channel} ({channel.id}) to the Dormant category.") await _channel.move_to_bottom( channel=channel, category_id=constants.Categories.help_dormant, ) log.trace(f"Sending dormant message for #{channel} ({channel.id}).") embed = discord.Embed(description=_message.DORMANT_MSG) await channel.send(embed=embed) log.trace(f"Pushing #{channel} ({channel.id}) into the channel queue.") self.channel_queue.put_nowait(channel) _stats.report_counts() @lock.lock_arg(f"{NAMESPACE}.unclaim", "channel") async def unclaim_channel(self, channel: discord.TextChannel, *, is_auto: bool = True) -> None: """ Unclaim an in-use help `channel` to make it dormant. Unpin the claimant's question message and move the channel to the Dormant category. Remove the cooldown role from the channel claimant if they have no other channels claimed. Cancel the scheduled cooldown role removal task. Set `is_auto` to True if the channel was automatically closed or False if manually closed. """ claimant_id = await _caches.claimants.get(channel.id) _unclaim_channel = self._unclaim_channel # It could be possible that there is no claimant cached. In such case, it'd be useless and # possibly incorrect to lock on None. Therefore, the lock is applied conditionally. if claimant_id is not None: decorator = lock.lock_arg(f"{NAMESPACE}.unclaim", "claimant_id", wait=True) _unclaim_channel = decorator(_unclaim_channel) return await _unclaim_channel(channel, claimant_id, is_auto) async def _unclaim_channel(self, channel: discord.TextChannel, claimant_id: int, is_auto: bool) -> None: """Actual implementation of `unclaim_channel`. See that for full documentation.""" await _caches.claimants.delete(channel.id) # Ignore missing tasks because a channel may still be dormant after the cooldown expires. if claimant_id in self.scheduler: self.scheduler.cancel(claimant_id) claimant = self.bot.get_guild(constants.Guild.id).get_member(claimant_id) if claimant is None: log.info(f"{claimant_id} left the guild during their help session; the cooldown role won't be removed") elif not any(claimant.id == user_id for _, user_id in await _caches.claimants.items()): # Remove the cooldown role if the claimant has no other channels left await _cooldown.remove_cooldown_role(claimant) await _message.unpin(channel) await _stats.report_complete_session(channel.id, is_auto) await self.move_to_dormant(channel) # Cancel the task that makes the channel dormant only if called by the close command. # In other cases, the task is either already done or not-existent. if not is_auto: self.scheduler.cancel(channel.id) async def move_to_in_use(self, channel: discord.TextChannel) -> None: """Make a channel in-use and schedule it to be made dormant.""" log.info(f"Moving #{channel} ({channel.id}) to the In Use category.") await _channel.move_to_bottom( channel=channel, category_id=constants.Categories.help_in_use, ) timeout = constants.HelpChannels.idle_minutes * 60 log.trace(f"Scheduling #{channel} ({channel.id}) to become dormant in {timeout} sec.") self.scheduler.schedule_later(timeout, channel.id, self.move_idle_channel(channel)) _stats.report_counts() @commands.Cog.listener() async def on_message(self, message: discord.Message) -> None: """Move an available channel to the In Use category and replace it with a dormant one.""" if message.author.bot: return # Ignore messages sent by bots. await self.init_task if channel_utils.is_in_category(message.channel, constants.Categories.help_available): if not _channel.is_excluded_channel(message.channel): await self.claim_channel(message) else: await _message.check_for_answer(message) @commands.Cog.listener() async def on_message_delete(self, msg: discord.Message) -> None: """ Reschedule an in-use channel to become dormant sooner if the channel is empty. The new time for the dormant task is configured with `HelpChannels.deleted_idle_minutes`. """ await self.init_task if not channel_utils.is_in_category(msg.channel, constants.Categories.help_in_use): return if not await _message.is_empty(msg.channel): return log.info(f"Claimant of #{msg.channel} ({msg.author}) deleted message, channel is empty now. Rescheduling task.") # Cancel existing dormant task before scheduling new. self.scheduler.cancel(msg.channel.id) delay = constants.HelpChannels.deleted_idle_minutes * 60 self.scheduler.schedule_later(delay, msg.channel.id, self.move_idle_channel(msg.channel)) async def wait_for_dormant_channel(self) -> discord.TextChannel: """Wait for a dormant channel to become available in the queue and return it.""" log.trace("Waiting for a dormant channel.") task = asyncio.create_task(self.channel_queue.get()) self.queue_tasks.append(task) channel = await task log.trace(f"Channel #{channel} ({channel.id}) finally retrieved from the queue.") self.queue_tasks.remove(task) return channel
42.010684
120
0.670363
2,540
19,661
5.055118
0.159843
0.017523
0.013707
0.00662
0.195016
0.125389
0.08053
0.047196
0.039252
0.039252
0
0.000743
0.247088
19,661
467
121
42.100642
0.866649
0.15869
0
0.123552
0
0.007722
0.181683
0.008811
0
0
0
0
0
1
0.011583
false
0.003861
0.050193
0
0.111969
0
0
0
0
null
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
null
0
0
0
0
0
0
0
0
0
0
0
0
1
0
6ac05bd39a70de6163a586a9ee9a2b3649ee2eef
16,516
py
Python
code/menu/screens/shopmenu.py
LordZagreus/LodeRunner
68aab36be47cabe31e52f3ee43520bdafcdf3c95
[ "MIT" ]
1
2017-10-31T22:26:22.000Z
2017-10-31T22:26:22.000Z
code/menu/screens/shopmenu.py
team-sparrow/LodeRunner
68aab36be47cabe31e52f3ee43520bdafcdf3c95
[ "MIT" ]
2
2019-07-05T03:17:18.000Z
2019-07-08T16:15:29.000Z
code/menu/screens/shopmenu.py
team-sparrow/LodeRunner
68aab36be47cabe31e52f3ee43520bdafcdf3c95
[ "MIT" ]
1
2020-10-15T09:03:20.000Z
2020-10-15T09:03:20.000Z
import os import math import random import time from code.menu.menu import Menu from code.tools.eventqueue import EventQueue from code.tools.xml import XMLParser from code.utils.common import coalesce, intersect, offset_rect, log, log2, xml_encode, xml_decode, translate_rgb_to_string from code.constants.common import SCREEN_WIDTH, SCREEN_HEIGHT, PAUSE_MENU_X, PAUSE_MENU_Y, PAUSE_MENU_WIDTH, PAUSE_MENU_HEIGHT, MODE_GAME, TILE_WIDTH, TILE_HEIGHT, DIR_UP, DIR_RIGHT, DIR_DOWN, DIR_LEFT, SPLASH_MODE_GREYSCALE_ANIMATED from code.constants.states import STATUS_ACTIVE, STATUS_INACTIVE, GAME_STATE_ACTIVE, GAME_STATE_NOT_READY from code.constants.newsfeeder import * class ShopMenu(Menu): def __init__(self): Menu.__init__(self) # Assume all shop menus come from already-lightboxed dialogues. self.lightbox_controller.set_interval( self.lightbox_controller.get_target() ) # We're going to keep a handle to the seller so that we can # remove items from their inventory after a purchase... self.vendor = None#seller # Shop title (e.g. "Bob's Fine Items") self.title = "Shoppe" # Salutation (e.g. "Look at these great items") self.message = "Take a look at my inventory." # Before we begin populating the shop menu, we'll first # make sure the NPC seller stocks any specified "required" items... self.required_item_names = [] # Track item quality threshholds (low and high) self.min_item_quality = 0 self.max_item_quality = 0 # Items in stock at any given time self.max_items_stocked = 1 # Number of times the vendor can restock self.max_item_reloads = 1 # Track whether this is the first build or a refresh self.first_build = True # Fire build event self.fire_event("build") def handle_event(self, event, control_center, universe):#params, user_input, network_controller, universe, active_map, session, widget_dispatcher, text_renderer, save_controller, refresh = False): # Events that result from event handling results = EventQueue() # Convenience (action, params) = ( event.get_action(), event.get_params() ) # Build root menu if ( action == "build" ): results.append( self.handle_build_event(event, control_center, universe) ) # Select an item, get confirmation... elif ( action == "show:confirm-purchase" ): results.append( self.handle_show_confirm_purchase_event(event, control_center, universe) ) # Commit an item purchase elif ( action == "game:buy-item" ): results.append( self.handle_shop_buy_item_event(event, control_center, universe) ) # Go to the previous page (e.g. close buy item confirm dialog) elif ( action == "back" ): results.append( self.handle_back_event(event, control_center, universe) ) # Finalize a "back" call elif ( action == "previous-page" ): # Let's just go back one page self.page_back(1) # Leave shop, resume game elif ( action == "resume-game" ): results.append( self.handle_resume_game_event(event, control_center, universe) ) # Restore the universe to active game state, set this very menu to inactive elif ( action == "kill" ): results.append( self.handle_kill_event(event, control_center, universe) ) # Return events return results # Configure the shop menu (more options than your typical menu, we need to define many parameters) def configure(self, options): # Common menu configuration self.__std_configure__(options) if ( "vendor" in options ): self.vendor = options["vendor"] if ( "title" in options ): self.title = options["title"] if ( "message" in options ): self.message = options["message"] if ( "required-item-names" in options ): self.required_item_names.extend( options["required-item-names"] )#.split(";") ) if ( "min-quality" in options ): self.min_item_quality = int( options["min-quality"] ) if ( "max-quality" in options ): self.max_item_quality = int( options["max-quality"] ) if ( "max-items" in options ): self.max_items_stocked = int( options["max-items"] ) if ( "max-reloads" in options ): self.max_item_reloads = int( options["max-reloads"] ) # For chaining return self # Build the shop menu def handle_build_event(self, event, control_center, universe): # Events that result from handling this event (on-birth events, etc.) results = EventQueue() # Convenience params = event.get_params() # Fetch the widget dispatcher widget_dispatcher = control_center.get_widget_dispatcher() # Pause the game so that we can shop, if this is the first build... if (self.first_build): # Pause universe.pause() # Call in the pause splash control_center.get_splash_controller().set_mode(SPLASH_MODE_GREYSCALE_ANIMATED) # Before populating the vendor's inventory (or re-populating), # clear it of any items the player has acquired since last shopping with this vendor... self.vendor.remove_erstwhile_acquired_items_from_inventory(universe) # Populate inventory for this shoppe's vendor... self.vendor.populate_vendor_inventory( min_quality = self.min_item_quality,#int( node.get_attribute("min-quality") ), max_quality = self.max_item_quality,#int( node.get_attribute("min-quality") ), required_item_names = self.required_item_names, max_items = self.max_items_stocked,#int( node.get_attribute("max-items") ), max_reloads = self.max_item_reloads,#int( node.get_attribute("max-reloads") ), universe = universe ) # Scope root = None # Does the vendor have anything in stock? Use this data # to determine which template we load... if ( self.vendor.get_vendor_inventory_count() == 0 ): # Fetch the "nothing in stock" template template = self.fetch_xml_template( "shop.directory", version = "out-of-items" ).add_parameters({ "@x": xml_encode( "%d" % (SCREEN_WIDTH - (int( (SCREEN_WIDTH - PAUSE_MENU_WIDTH) / 2 ))) ), "@y": xml_encode( "%d" % PAUSE_MENU_Y ), "@width": xml_encode( "%d" % int(PAUSE_MENU_WIDTH / 2) ), "@height": xml_encode( "%d" % PAUSE_MENU_HEIGHT ), "@shop-title": xml_encode( self.title ) }) # Compile template root = template.compile_node_by_id("menu") # We have items to sell... else: # Fetch the "shopping directory" template template = self.fetch_xml_template( "shop.directory", version = "default" ).add_parameters({ "@x": xml_encode( "%d" % (SCREEN_WIDTH - (int( (SCREEN_WIDTH - PAUSE_MENU_WIDTH) / 2 ))) ), "@y": xml_encode( "%d" % PAUSE_MENU_Y ), "@width": xml_encode( "%d" % int(PAUSE_MENU_WIDTH / 2) ), "@height": xml_encode( "%d" % PAUSE_MENU_HEIGHT ), "@shop-title": xml_encode( self.title ), "@salutation": xml_encode( self.message ) }) # Compile template root = template.compile_node_by_id("menu") # Now we'll add an entry for each available item... for item_name in self.vendor.get_vendor_inventory_item_names(): # Grab handle item = universe.get_item_by_name(item_name) # Validate if (item): # How much money do we currently have? money = int( universe.get_session_variable("core.gold.wallet").get_value() ) # Template version for this item depends on whether we can afford it... template_version = ( "affordable" if (money >= item.cost) else "unaffordable" ) # Fetch the appropriate template for an individual item template = self.fetch_xml_template( "shop.directory.insert", version = template_version ).add_parameters({ "@item-name": xml_encode( item.name ), "@item-title": xml_encode( item.title ), "@item-cost": xml_encode( "%d" % item.cost ), "@item-advertisement": xml_encode( item.description ) }) # Compile node = template.compile_node_by_id("insert") # Inject into inventory area... root.find_node_by_id("ext.inventory").add_node(node) # Create widget widget = widget_dispatcher.convert_node_to_widget(root, control_center, universe) widget.set_id("root") # We have definitely completed the first build now self.first_build = False # Add the new page self.add_widget_via_event(widget, event) # Return events return results # Show the "are you sure you wanna buy this?" page def handle_show_confirm_purchase_event(self, event, control_center, universe): # Events that result from handling this event (on-birth events, etc.) results = EventQueue() # Convenience params = event.get_params() # Fetch the widget dispatcher widget_dispatcher = control_center.get_widget_dispatcher() # Get a handle to the actual item... item = universe.get_item_by_name( params["item-name"] ) # Validate if (item): # Fetch confirm purchase template template = self.fetch_xml_template("shop.buy.confirm").add_parameters({ "@width": xml_encode( "%d" % int(PAUSE_MENU_WIDTH / 2) ), "@height": xml_encode( "%d" % SCREEN_HEIGHT ), "@item-name": xml_encode( item.get_name() ), "@item-title": xml_encode( item.get_title() ), "@item-cost": xml_encode( "%d" % item.get_cost() ) }) # Compile template root = template.compile_node_by_id("menu") # Create widget widget = widget_dispatcher.convert_node_to_widget(root, control_center, universe) widget.set_id("confirm-shop-purchase") # Add the new page self.add_widget_via_event(widget, event, exclusive = False) # Return events return results # Commit an item purchase def handle_shop_buy_item_event(self, event, control_center, universe): # Events that result from handling this event (on-birth events, etc.) results = EventQueue() # Convenience params = event.get_params() # Get a reference to the item (for cost info, etc.) item = universe.get_item_by_name( params["item-name"] ) # Acquire the item by its name universe.acquire_item_by_name( item.get_name() ) # Post a newsfeeder notice control_center.get_window_controller().get_newsfeeder().post({ "type": NEWS_ITEM_NEW, "title": control_center.get_localization_controller().get_label("new-item-purchased:header"), "content": item.get_title() }) # Add a historical record universe.add_historical_record( "purchases", control_center.get_localization_controller().get_label( "purchased-m-from-n-for-g:message", { "@m": item.get_title(), "@n": self.vendor.nick, "@g": item.get_cost() } ) #"Bought [color=special]%s[/color] for [color=special]%s[/color] gold." % ( item.get_title(), item.get_cost() ) ) # Remove from seller's inventory self.vendor.remove_item_from_vendor_inventory( item.get_name() ) # Increase sales count for vendor self.vendor.increase_sales_count(1) # Reduce player's wallet amount by the cost... universe.increment_session_variable( "core.gold.wallet", -1 * item.get_cost() ) # Count as gold spent universe.increment_session_variable( "stats.gold-spent", item.get_cost() ) # Execute the "wallet-changed" achievement hook universe.execute_achievement_hook( "wallet-changed", control_center ) # Increase universe stats for items bought universe.get_session_variable("stats.items-bought").increment_value(1) # Execute the "bought-item" achievement hook universe.execute_achievement_hook( "bought-item", control_center ) # Get the active map m = universe.get_active_map() # Check for a generic "onpurchase" script for the vendor m.run_script( "%s.onpurchase" % self.vendor.get_name(), control_center, universe, execute_all = True # Try to loop entire script (?) ) # Check for an onpurchase script (perhaps the game reacts in some way to an item you might have bought) m.run_script( name = "%s.onpurchase" % item.get_name(), control_center = control_center, universe = universe, execute_all = True ) # Refresh UI self.refresh_pages(control_center, universe, curtailed_count = 1) # After rebuilding the UI, we will have restocked the NPC's inventory. # Thus, if the NPC has no inventory available, we have just bought their last item... if ( self.vendor.get_vendor_inventory_count() == 0 ): # Execute the "bought-all-items" achievement hook universe.execute_achievement_hook( "bought-all-items", control_center ) # I'm going to set the cursor at "home" position for the shop self.get_widget_by_id("root").set_cursor_at_beginning()#finalize = True) # Return events return results # Go back a page (animated) def handle_back_event(self, event, control_center, universe): # Events that result from handling this event (on-birth events, etc.) results = EventQueue() # Convenience params = event.get_params() # Get the active page page = self.get_active_page() # Validate if (page): # Dismiss the page page.hide( on_complete = "previous-page" ) # Return events return results # Leave the shop and resume play def handle_resume_game_event(self, event, control_center, universe): # Events that result from handling this event (on-birth events, etc.) results = EventQueue() # Convenience params = event.get_params() # Dismiss lightbox effect self.lightbox_controller.set_target(0) # Dismiss the splash controller, calling to resume game action once done... control_center.get_splash_controller().dismiss( on_complete = "game:unpause" ) #hmenu.slide(DIR_LEFT, percent = 1.0) #row_menu.slide(DIR_RIGHT, percent = 1.0) # Resume game, killing shop menu when widget disappears self.get_widget_by_id("root").hide( on_complete = "kill" ) # Return events return results # Kill event. Set game status back to active when shopping is done. def handle_kill_event(self, event, control_center, universe): # Events that result from handling this event (on-birth events, etc.) results = EventQueue() # Convenience params = event.get_params() # Done with the shop menu widget; trash it. self.set_status(STATUS_INACTIVE) # Return events return results
31.339658
233
0.60069
1,928
16,516
4.946058
0.194502
0.039534
0.039639
0.035445
0.356544
0.27716
0.256292
0.221791
0.205852
0.171456
0
0.001921
0.306491
16,516
526
234
31.39924
0.830627
0.273311
0
0.261062
0
0
0.075
0.010101
0
0
0
0
0
1
0.039823
false
0
0.048673
0
0.128319
0
0
0
0
null
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
null
0
0
0
0
0
0
0
0
0
0
0
0
1
0
6ac069f3cef035db6da504010b64c5c2110dea99
3,665
py
Python
lib/bridgedb/runner.py
liudonghua123/bridgedb
94dd10673f9e6650e8a00e162f348e64f7a1ecab
[ "BSD-3-Clause-Clear" ]
null
null
null
lib/bridgedb/runner.py
liudonghua123/bridgedb
94dd10673f9e6650e8a00e162f348e64f7a1ecab
[ "BSD-3-Clause-Clear" ]
null
null
null
lib/bridgedb/runner.py
liudonghua123/bridgedb
94dd10673f9e6650e8a00e162f348e64f7a1ecab
[ "BSD-3-Clause-Clear" ]
null
null
null
# -*- coding: utf-8 ; test-case-name: bridgedb.test.test_runner -*- # # This file is part of BridgeDB, a Tor bridge distribution system. # # :authors: Isis Lovecruft 0xA3ADB67A2CDB8B35 <[email protected]> # please also see AUTHORS file # :copyright: (c) 2007-2015, The Tor Project, Inc. # (c) 2007-2015, all entities within the AUTHORS file # (c) 2012-2015, Isis Lovecruft # :license: 3-clause BSD, see included LICENSE for information """Classes for running components and servers, as well as daemonisation. ** Module Overview: ** """ from __future__ import print_function import logging import sys import os from twisted.python import procutils def find(filename): """Find the executable ``filename``. :param string filename: The executable to search for. Must be in the effective user ID's $PATH. :rtype: string :returns: The location of the executable, if found. Otherwise, returns None. """ executable = None logging.debug("Searching for installed '%s'..." % filename) which = procutils.which(filename, os.X_OK) if len(which) > 0: for that in which: if os.stat(that).st_uid == os.geteuid(): executable = that break if not executable: return None logging.debug("Found installed script at '%s'" % executable) return executable def generateDescriptors(count=None, rundir=None): """Run a script which creates fake bridge descriptors for testing purposes. This will run Leekspin_ to create bridge server descriptors, bridge extra-info descriptors, and networkstatus document. .. warning: This function can take a very long time to run, especially in headless environments where entropy sources are minimal, because it creates the keys for each mocked OR, which are embedded in the server descriptors, used to calculate the OR fingerprints, and sign the descriptors, among other things. .. _Leekspin: https://gitweb.torproject.org/user/isis/leekspin.git :param integer count: Number of mocked bridges to generate descriptor for. (default: 3) :type rundir: string or None :param rundir: If given, use this directory as the current working directory for the bridge descriptor generator script to run in. The directory MUST already exist, and the descriptor files will be created in it. If None, use the whatever directory we are currently in. """ import subprocess import os.path proc = None statuscode = 0 script = 'leekspin' rundir = rundir if os.path.isdir(rundir) else None count = count if count else 3 try: proc = subprocess.Popen([script, '-n', str(count)], close_fds=True, cwd=rundir) finally: if proc is not None: proc.wait() if proc.returncode: print("There was an error generating bridge descriptors.", "(Returncode: %d)" % proc.returncode) statuscode = proc.returncode else: print("Sucessfully generated %s descriptors." % str(count)) del subprocess return statuscode def doDumpBridges(config): """Dump bridges by assignment to a file. This function handles the commandline '--dump-bridges' option. :type config: :class:`bridgedb.Main.Conf` :param config: The current configuration. """ import bridgedb.Bucket as bucket bucketManager = bucket.BucketManager(config) bucketManager.assignBridgesToBuckets() bucketManager.dumpBridges()
33.318182
79
0.661937
452
3,665
5.34292
0.477876
0.016149
0.007453
0
0
0
0
0
0
0
0
0.013965
0.257572
3,665
109
80
33.623853
0.873576
0.53397
0
0
0
0
0.110261
0
0
0
0
0
0
1
0.066667
false
0
0.177778
0
0.311111
0.066667
0
0
0
null
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
null
0
0
0
0
0
0
0
0
0
0
0
0
1
0
6ac297a5895de04303f5fe688063a599cff885d4
4,053
py
Python
batch_processing_dataflow/play_store_flow.py
KeeplerIO/meetup-hands-on-gcp-2019
3674922d89d2be8984eb5719f0faaae127823ab4
[ "MIT" ]
1
2019-04-03T17:47:04.000Z
2019-04-03T17:47:04.000Z
batch_processing_dataflow/play_store_flow.py
KeeplerIO/meetup-hands-on-gcp-2019
3674922d89d2be8984eb5719f0faaae127823ab4
[ "MIT" ]
2
2020-08-10T10:52:57.000Z
2022-01-22T04:18:42.000Z
batch_processing_dataflow/play_store_flow.py
KeeplerIO/meetup-hands-on-gcp-2019
3674922d89d2be8984eb5719f0faaae127823ab4
[ "MIT" ]
null
null
null
import argparse import logging import apache_beam as beam from apache_beam.io import WriteToBigQuery from apache_beam.io import ReadFromText, WriteToText from apache_beam.options.pipeline_options import PipelineOptions class ProcessCSV(beam.DoFn): def process(self, element, *args, **kwargs): import csv formated_element = [element.encode('utf8')] processed_csv = csv.DictReader(formated_element, fieldnames=['App', 'Category', 'Rating', 'Reviews', 'Size', 'Installs', 'Type', 'Price', 'Content_Rating', 'Genres', 'Last_Updated', 'Current_Ver', 'Android_Ver'], delimiter=',') processed_fields = processed_csv.next() if processed_fields.get('Category').replace('.','').isdigit(): return None return [processed_fields] class ParseRecord(beam.DoFn): def process(self, element, *args, **kwargs): from datetime import datetime import math def string_to_megabyte(raw_string): if raw_string.upper().endswith('K'): multiplier = 1000 elif raw_string.upper().endswith('M'): multiplier = 1000 * 1000 else: return None return (float(raw_string[:-1]) * multiplier) / 1000000 new_element = {} rating = float(element['Rating']) new_element['Rating'] = rating if not math.isnan(rating) else None new_element['Size'] = string_to_megabyte(element['Size']) new_element['Price'] = float(element['Price'].replace("$","")) new_element['Installs'] = int(element['Installs'].replace("+", "").replace(",","")) new_element['Last_Updated'] = datetime.strptime(element['Last_Updated'], '%B %d, %Y').strftime('%Y-%m-%d') new_element['Category'] = element['Category'] new_element['Genres'] = element['Genres'] new_element['App'] = element['App'] new_element['Content_Rating'] = element['Content_Rating'] new_element['Reviews'] = element['Reviews'] new_element['Android_Ver'] = element['Android_Ver'] new_element['Type'] = element['Type'] new_element['Current_Ver'] = element['Current_Ver'] logging.info(new_element) return [new_element] def run(argv=None): """Main entry point. It defines and runs the pipeline.""" parser = argparse.ArgumentParser() parser.add_argument('--input', dest='input', default='gs://meetup-batch-processing/input/googleplaystore.csv', help='Input file to process.') parser.add_argument('--output', dest='output', default='gs://meetup-batch-processing/output/googleplaystore.csv', help='Output file to process.') parser.add_argument('--table-output', dest='table_output', default='meetup-hands-on-gcp-2019:googleplaystore_batch_dataflow.play_store', help='Bigquery table name for output.') known_args, pipeline_args = parser.parse_known_args(argv) pipeline_options = PipelineOptions(pipeline_args) with beam.Pipeline(options=pipeline_options) as pipeline: raw_lines = pipeline | 'ReadFromCsv' >> ReadFromText(known_args.input, skip_header_lines=1) lines = raw_lines | 'processCsv' >> beam.ParDo(ProcessCSV()) output = lines | 'parseRecord' >> beam.ParDo(ParseRecord()) output | 'writeBigQuery' >> WriteToBigQuery(known_args.table_output, write_disposition=beam.io.BigQueryDisposition.WRITE_TRUNCATE, create_disposition=beam.io.BigQueryDisposition.CREATE_NEVER) logging.info('Finished.') if __name__ == '__main__': logging.getLogger().setLevel(logging.INFO) run()
42.663158
116
0.593881
406
4,053
5.729064
0.334975
0.068788
0.018057
0.013758
0.104041
0.059329
0.033534
0.033534
0
0
0
0.008895
0.278806
4,053
94
117
43.117021
0.786863
0.012583
0
0.054054
0
0
0.174718
0.043805
0
0
0
0
0
1
0.054054
false
0
0.121622
0
0.27027
0
0
0
0
null
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
null
0
0
0
0
0
0
0
0
0
0
0
0
1
0
6ac30849631c3b7df115a92dba1c94f0bb05ed26
4,259
py
Python
backend/main/server/resources/Message.py
Manotomo-Alliance-Support-Squad/WWS
3df21a3f715eeb3b57314bf08c38f2239b2ba399
[ "MIT" ]
null
null
null
backend/main/server/resources/Message.py
Manotomo-Alliance-Support-Squad/WWS
3df21a3f715eeb3b57314bf08c38f2239b2ba399
[ "MIT" ]
20
2021-03-15T20:30:35.000Z
2021-06-02T19:16:55.000Z
backend/main/server/resources/Message.py
Manotomo-Alliance-Support-Squad/WWS
3df21a3f715eeb3b57314bf08c38f2239b2ba399
[ "MIT" ]
null
null
null
from flask import request from flask_jwt import jwt_required from flask_restful import Resource from main.server import app, cache, db from main.server.models import Message, MessageSchema messages_schema = MessageSchema(many=True) message_schema = MessageSchema() @app.after_request def add_header(response): response.headers['Access-Control-Allow-Origin'] = '*' response.headers['Access-Control-Allow-Credentials'] = 'true' response.headers['Access-Control-Allow-Methods'] = 'GET, POST' response.headers[ 'Access-Control-Allow-Headers'] = 'Access-Control-Allow-Headers, Origin,Accept, X-Requested-With, Content-Type, Access-Control-Request-Method, Access-Control-Request-Headers' return response class MessageCount(Resource): @cache.cached(timeout=100) def get(self): """Gets the number of messages available on the server""" return {'status': 'success', 'count': Message.query.count()}, 200 class MessageListRangeResource(Resource): @cache.cached(timeout=100) def get(self, lower, upper): """Gets a range of messages on the server""" if int(lower) < 1: return {'status': 'fail', 'messages': 'Invalid index: ' + str(lower)}, 400 if int(lower) > int(upper): return {'status': 'fail', 'messages': 'Upper range cannot be less than lower range: ' + str(lower) + '>' + str(upper)}, 400 messages = Message.query.filter(Message.messageID >= int(lower)).filter(Message.messageID <= int(upper)) if not messages: return {'status': 'fail', 'messages': 'Out of range: ' + str(lower) + ' - ' + str(upper) + ' does not exist'}, 404 messages = messages_schema.dump(messages) if not Message.query.filter_by(messageID=upper).first(): # the last item in the range return {'status': 'success', 'messages': messages}, 206 # Partial Content Served return {'status': 'success', 'messages': messages}, 200 class MessageListResource(Resource): @cache.cached(timeout=100) def get(self): """Gets all messages on the server""" messages = Message.query.all() messages = messages_schema.dump(messages) if not messages: return {'status': 'success', 'messages': messages}, 206 # Partial Content Served return {'status': 'success', 'messages': messages}, 200 @jwt_required() def post(self): """Add message""" json_data = request.get_json(force=True) if not json_data: return {'status': 'fail', 'message': 'No input data'}, 400 errors = message_schema.validate(json_data) if errors: return {'status': 'fail', 'message': 'Error handling request'}, 422 data = message_schema.load(json_data) message = Message.query.filter_by(orig_msg=data.get('orig_msg')).first() if message: return {'status': 'fail', 'message': 'Message already exists'}, 400 message = Message(orig_msg=data.get('orig_msg'), tl_msg=data.get('tl_msg'), country=data.get('country'), username=data.get('username')) db.session.add(message) db.session.commit() return {'status': 'success', 'message': 'Message successfully created'}, 201 class MessageResource(Resource): @cache.cached(timeout=100) def get(self, messageID): """"Get a message by message ID""" message = Message.query.filter_by(messageID=messageID) if not message.first(): return {'status': 'fail', 'message': 'No message with ID ' + str(messageID) + ' exists'}, 404 message = messages_schema.dump(message) return {'status': 'success', 'messages': message}, 200 @jwt_required() def delete(self, messageID): """delete a message by ID""" message = Message.query.filter_by(messageID=messageID) if not message.first(): return {'status': 'fail', 'message': 'No message with ID ' + str(messageID) + ' exists'}, 404 message.delete() db.session.commit() return {'status': 'sucess', 'message': 'Message Deleted'}, 200
35.789916
182
0.621273
487
4,259
5.373717
0.250513
0.073366
0.048911
0.047765
0.42415
0.281238
0.265189
0.235384
0.205579
0.172717
0
0.01885
0.240197
4,259
118
183
36.09322
0.789864
0.061047
0
0.333333
0
0.012821
0.214322
0.051437
0
0
0
0
0
1
0.089744
false
0
0.064103
0
0.423077
0
0
0
0
null
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
null
0
0
0
0
0
0
0
0
0
0
0
0
1
0
6ac35d88701fa7c3171d4b1e9eb134859f289cd2
5,380
py
Python
volttron/platform/vip/agent/subsystems/heartbeat.py
rmay-intwine/volttron
a449f70e32f73ff0136a838d0feddb928ede6298
[ "Apache-2.0" ]
null
null
null
volttron/platform/vip/agent/subsystems/heartbeat.py
rmay-intwine/volttron
a449f70e32f73ff0136a838d0feddb928ede6298
[ "Apache-2.0" ]
null
null
null
volttron/platform/vip/agent/subsystems/heartbeat.py
rmay-intwine/volttron
a449f70e32f73ff0136a838d0feddb928ede6298
[ "Apache-2.0" ]
null
null
null
# -*- coding: utf-8 -*- {{{ # vim: set fenc=utf-8 ft=python sw=4 ts=4 sts=4 et: # # Copyright 2017, Battelle Memorial Institute. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # # This material was prepared as an account of work sponsored by an agency of # the United States Government. Neither the United States Government nor the # United States Department of Energy, nor Battelle, nor any of their # employees, nor any jurisdiction or organization that has cooperated in the # development of these materials, makes any warranty, express or # implied, or assumes any legal liability or responsibility for the accuracy, # completeness, or usefulness or any information, apparatus, product, # software, or process disclosed, or represents that its use would not infringe # privately owned rights. Reference herein to any specific commercial product, # process, or service by trade name, trademark, manufacturer, or otherwise # does not necessarily constitute or imply its endorsement, recommendation, or # favoring by the United States Government or any agency thereof, or # Battelle Memorial Institute. The views and opinions of authors expressed # herein do not necessarily state or reflect those of the # United States Government or any agency thereof. # # PACIFIC NORTHWEST NATIONAL LABORATORY operated by # BATTELLE for the UNITED STATES DEPARTMENT OF ENERGY # under Contract DE-AC05-76RL01830 # }}} import os import weakref from datetime import datetime from .base import SubsystemBase from volttron.platform.messaging.headers import TIMESTAMP from volttron.platform.agent.utils import (get_aware_utc_now, format_timestamp) from volttron.platform.scheduling import periodic from ..errors import Unreachable, VIPError """The heartbeat subsystem adds an optional periodic publish to all agents. Heartbeats can be started with agents and toggled on and off at runtime. """ __docformat__ = 'reStructuredText' __version__ = '1.0' class Heartbeat(SubsystemBase): def __init__(self, owner, core, rpc, pubsub, heartbeat_autostart, heartbeat_period): self.owner = owner self.core = weakref.ref(core) self.pubsub = weakref.ref(pubsub) self.autostart = heartbeat_autostart self.period = heartbeat_period self.enabled = False self.connect_error = False def onsetup(sender, **kwargs): rpc.export(self.start, 'heartbeat.start') rpc.export(self.start_with_period, 'heartbeat.start_with_period') rpc.export(self.stop, 'heartbeat.stop') rpc.export(self.restart, 'heartbeat.restart') rpc.export(self.set_period, 'heartbeat.set_period') def onstart(sender, **kwargs): if self.autostart: self.start() core.onsetup.connect(onsetup, self) core.onstart.connect(onstart, self) core.onconnected.connect(self.reconnect) def start(self): """RPC method Starts an agent's heartbeat. """ if not self.enabled: self.scheduled = self.core().schedule(periodic(self.period), self.publish) self.enabled = True def start_with_period(self, period): """RPC method Set period and start heartbeat. :param period: Time in seconds between publishes. """ self.set_period(period) self.start() def reconnect(self, sender, **kwargs): if self.connect_error: self.restart() self.connect_error = False def stop(self): """RPC method Stop an agent's heartbeat. """ if self.enabled: # Trap the fact that scheduled may not have been # set yet if the start hasn't been called. try: self.scheduled.cancel() except AttributeError: pass self.enabled = False def restart(self): """RPC method Restart the heartbeat with the current period. The heartbeat will be immediately sending the heartbeat to the message bus. """ self.stop() self.start() def set_period(self, period): """RPC method Set heartbeat period. :param period: Time in seconds between publishes. """ if self.enabled: self.stop() self.period = period self.start() else: self.period = period def publish(self): topic = 'heartbeat/' + self.core().identity headers = {TIMESTAMP: format_timestamp(get_aware_utc_now())} message = self.owner.vip.health.get_status_value() try: self.pubsub().publish('pubsub', topic, headers, message) except Unreachable as exc: self.connect_error = True self.stop()
34.487179
86
0.666729
669
5,380
5.301943
0.38864
0.019735
0.025374
0.028193
0.113617
0.081195
0.0468
0.024246
0
0
0
0.005987
0.254833
5,380
155
87
34.709677
0.878773
0.429368
0
0.242857
0
0
0.046647
0.00984
0
0
0
0
0
1
0.142857
false
0.014286
0.114286
0
0.271429
0
0
0
0
null
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
null
0
0
0
0
0
0
0
0
0
0
0
0
1
0
6ac367d8d5ec9f368f230df751f19e5799e20bdd
18,984
py
Python
datasets/experimental/ni_superalloys/Ni_superalloy.py
kyawlin/smlb
79c757d7fc040fb30ad44410be158b3ce3bdf30d
[ "Apache-2.0" ]
null
null
null
datasets/experimental/ni_superalloys/Ni_superalloy.py
kyawlin/smlb
79c757d7fc040fb30ad44410be158b3ce3bdf30d
[ "Apache-2.0" ]
null
null
null
datasets/experimental/ni_superalloys/Ni_superalloy.py
kyawlin/smlb
79c757d7fc040fb30ad44410be158b3ce3bdf30d
[ "Apache-2.0" ]
null
null
null
"""Ni-Superalloy dataset. Scientific Machine Learning Benchmark A benchmark of regression models in chem- and materials informatics. 2019, Brendan Folie, Citrine Informatics. See class NiSuperalloyDataset for details. """ import os import json import zipfile from typing import List, Optional, Tuple, Union import numpy as np from smlb.exceptions import InvalidParameterError from smlb.parameters import params from smlb.tabular_data import TabularData class NiSuperalloyDataset(TabularData): """ Ni-Superalloy dataset. Based on: Bryce D. Conduit, Nicholas G. Jones, Howard J. Stone, Gareth John Conduit: Design of a nickel-base superalloy using a neural network, Materials & Design 131: 358-365, Elsevier, 2017. DOI 10.1016/j.matdes.2017.06.007 The dataset was downloaded from the Citrination platform (https://citrination.com), dataset identifier #153493, Version 10. There are 2800 rows. The data have columns for composition (25 elements are present in at least one row), whether the alloy was powder processed (0 or 1), whether it was pressure treated (0 or 1), heat treatment time (hours) and temperature (degrees Celcius) for up to 4 heat treatment steps, the total time spent in heat treatment (hours), the maximum heat treatment temperature (degrees Celcius), and the area under the time-temperature curve (degrees Celcius * hours). A value of 0 generally implies that the heat treatment step was not done, but there are some missing values. The total time and max temperature are generally more reliable than the individual heating steps. The total compositions do not always add up to 100%, but with about a dozen exceptions they always add up to somewhere between 95% and 105%. There are also three columns for a pressure treatment step (temperature, time, pressure), but since only 51 rows have non-zero entries, this information is not used. There are 5 labels: ultimate tensile strength (MPa), elongation (unitless), stress rupture stress (MPa), stress rupture time (hours), and yield strength (MPa). Tensile strength and elongation occur together in 898 rows, stress rupture stress and time occur together in 856 rows, and yield strength occurs in 1046 rows. 898+856+1046=2800, so every row has exactly one output set. The other values are denoted as NaN. """ DEFAULT_PATH = os.path.split(os.path.realpath(__file__))[0] + "/ni_superalloys_3.json.zip" POWDER_PROCESSED_NO = 0 POWDER_PROCESSED_YES = 1 def __init__( self, labels_to_load: Optional[Union[str, List[str]]] = None, ignore_dubious: bool = False ): """Initialize Ni-superalloy dataset with specified labels. Parameters: labels_to_load (str or List[str]): which labels to load. Options are 'Yield Strength', 'Ultimate Tensile Strength', 'Stress Rupture Time', 'Stress Rupture Stress', and 'Elongation'. If None, then all labels are loaded. ignore_dubious: whether or not to ignore samples that have something questionable about them """ labels_to_load = params.optional_( labels_to_load, lambda arg: params.any_( arg, params.string, lambda arg: params.sequence(arg, type_=str), ), ) ignore_dubious = params.boolean(ignore_dubious) filepath = self.DEFAULT_PATH data, labels = self._load_data_and_labels(filepath, labels_to_load, ignore_dubious) super().__init__(data=data, labels=labels) def _load_data_and_labels( self, filepath: str, labels_to_load: Optional[List[str]] = None, ignore_dubious: bool = False, ): """Load data and labels from .json file.""" raw = self._unzip_json_file(filepath) if ignore_dubious: raw = [e for e in raw if self._filter_dubious(e)] # dtype=object is necessary because this is a mixed-type array (float and string) data = np.array([self._parse_json_data(e) for e in raw], dtype=object) labels = np.array([self._parse_json_labels(e, labels_to_load) for e in raw], dtype=float) return data, labels @staticmethod def _unzip_json_file(filepath: str): """Open and read zipped json file.""" filename = os.path.basename(filepath) assert ( filename[-4:] == ".zip" ), f"File path must point to a .zip file, instead got '{filepath}'" with zipfile.ZipFile(filepath) as zf: unzipped_filename = filename[:-4] with zf.open(unzipped_filename) as fp: raw = json.load(fp) return raw @staticmethod def _extract_raw_composition(entry: dict) -> List[dict]: """Get composition in its raw form.""" raw_composition = entry.get("composition") if raw_composition is None or not isinstance(raw_composition, list): raise InvalidParameterError( expected="Chemical composition as a list", got=raw_composition ) return raw_composition @staticmethod def _filter_dubious(entry: dict) -> bool: """ Determine whether or not a json entry has something questionable about it. Currently, the only thing filtered on is if the composition has an asterisk in it, which occurs for 6 samples. Parameters: entry (dict): A json entry corresponding to a row in the dataset. Returns: bool True if the composition contains an asterisk. """ raw_composition = NiSuperalloyDataset._extract_raw_composition(entry) composition_dict = NiSuperalloyDataset._parse_composition_as_dict(raw_composition) composition_dict_float, exception_caught = NiSuperalloyDataset._dict_values_to_float( composition_dict ) return not exception_caught def _parse_json_data(self, entry: dict): """ Helper function to parse data in a single row from the raw json. Parameters: entry (dict): A json entry corresponding to a row in the dataset. Returns: array Array of data in this row. """ assert entry["category"] == "system.chemical" raw_composition = NiSuperalloyDataset._extract_raw_composition(entry) composition: str = self._parse_composition(raw_composition) properties = entry.get("properties") if properties is None or not isinstance(properties, list): raise InvalidParameterError( expected="A list of dictionaries, one for each property", got=properties ) heat_treatment_1_time = self._get_scalar_property( properties, "Heat treatment 1 Time", units="hours", default_value=0 ) heat_treatment_1_temp = self._get_scalar_property( properties, "Heat treatment 1 Temperature", units="$^{\\circ}$C", default_value=0 ) heat_treatment_2_time = self._get_scalar_property( properties, "Heat treatment 2 Time", units="hours", default_value=0 ) heat_treatment_2_temp = self._get_scalar_property( properties, "Heat treatment 2 Temperature", units="$^{\\circ}$C", default_value=0 ) heat_treatment_3_time = self._get_scalar_property( properties, "Heat treatment 3 Time", units="hours", default_value=0 ) heat_treatment_3_temp = self._get_scalar_property( properties, "Heat treatment 3 Temperature", units="$^{\\circ}$C", default_value=0 ) heat_treatment_4_time = self._get_scalar_property( properties, "Heat treatment 4 Time", units="hours", default_value=0 ) heat_treatment_4_temp = self._get_scalar_property( properties, "Heat treatment 4 Temperature", units="$^{\\circ}$C", default_value=0 ) total_heat_treatment_time = self._get_scalar_property( properties, "Total heat treatment time", units="hours" ) max_heat_treatment_temp = self._get_scalar_property( properties, "Max Heat Treatment Temperature", units="$^{\\circ}$C" ) area_under_heat_treatment_curve = self._get_scalar_property( properties, "Area under heat treatment curve", units="$^{\\circ}$C * hours" ) powder_processed_dict = {"No": self.POWDER_PROCESSED_NO, "Yes": self.POWDER_PROCESSED_YES} powder_processed = self._get_categorical_property( properties, "Powder processed", categories_dict=powder_processed_dict ) data_array = [ composition, heat_treatment_1_time, heat_treatment_1_temp, heat_treatment_2_time, heat_treatment_2_temp, heat_treatment_3_time, heat_treatment_3_temp, heat_treatment_4_time, heat_treatment_4_temp, total_heat_treatment_time, max_heat_treatment_temp, area_under_heat_treatment_curve, powder_processed, ] return data_array def _parse_json_labels(self, entry: dict, labels_to_load: Optional[List[str]] = None): """ Helper function to parse labels in a single row from the raw json. Parameters: entry (dict): A json entry corresponding to a row in the dataset. labels_to_load (List[str]): Optional list of labels to load. Returns: array Array of labels in this row that we are interested in. """ if labels_to_load is None: labels_to_load = [ "Yield Strength", "Ultimate Tensile Strength", "Stress Rupture Time", "Stress Rupture Stress", "Elongation", ] properties = entry.get("properties") if properties is None or not isinstance(properties, list): raise InvalidParameterError( expected="A list of dictionaries, one for each property", got=properties ) labels_array = [] for label in labels_to_load: labels_array.append(self._get_scalar_property(properties, label, default_value=None)) return labels_array @staticmethod def _parse_composition(raw_composition: List[dict]) -> str: """ Helper function to parse composition as a string. Parameters: raw_composition (List[dict]): A list, each entry of which corresponds to an element. An entry is a dict with an 'element' key and an 'idealWeightPercent' key. The element is a string (e.g., 'Cu') and the weight percent is another dict with a single key, 'value', pointing to a floating point number. The values are in percentage points, and add up to ~100. Returns: str Chemical composition as string, e.g. 'Al5.5Ni94.0W0.5' """ composition_dict = NiSuperalloyDataset._parse_composition_as_dict(raw_composition) composition_dict_float, _ = NiSuperalloyDataset._dict_values_to_float(composition_dict) composition_str: str = "" for element_name, element_amount in composition_dict_float.items(): if element_amount > 0: composition_str += element_name + str(element_amount) return composition_str @staticmethod def _parse_composition_as_dict(raw_composition: List[dict]) -> dict: """ Helper function to parse composition as a dictionary. Parameters: raw_composition (List[dict]): A list, each entry of which corresponds to an element. An entry is a dict with an 'element' key and an 'idealWeightPercent' key. The element is a string (e.g., 'Cu') and the weight percent is another dict with a single key, 'value', pointing to a floating point number. The values are in percentage points, and add up to ~100 (but not exactly). Returns: dict Chemical composition as a dictionary with the elements as keys and their raw amounts as values """ composition_dict = dict() for entry in raw_composition: try: element_name = entry["element"] element_amount = entry["idealWeightPercent"]["value"] except KeyError: raise InvalidParameterError( expected="Element amount as a dictionary of the form\n" "{'element': <element name>," "'idealWeightPercent': " "{'value': <element amount>}}", got=entry, ) composition_dict[element_name] = element_amount return composition_dict @staticmethod def _dict_values_to_float(d: dict) -> Tuple[dict, bool]: """ Convert a dictionary's values to their floating point representations, if possible. Parameters: d: a dictionary Returns: dict, bool A modified version of `d`, and a boolean flag indicating whether or not an Exception was caught """ d_copy = dict() exception_caught = False for key, value in d.items(): try: value_float = float(value) except ValueError: exception_caught = True value_float = NiSuperalloyDataset._parse_peculiar_amount(value) d_copy[key] = value_float return d_copy, exception_caught @staticmethod def _parse_peculiar_amount(x: str) -> float: """ Deals with dataset-specific-peculiarities in composition amounts. Some composition amounts have a trailing asterisk, e.g., '2*'. The meaning is unclear. Perhaps it denotes that the amount is imprecise. In any case, they only occur in 6 samples. The trailing asterisk will be ignored. """ if x[-1] == "*": x = x[:-1] try: return float(x) except ValueError: raise InvalidParameterError("Amount as a float", x) def _get_scalar_property( self, properties: List[dict], property_name: str, units: Optional[str] = None, default_value: Optional[float] = None, ) -> float: """ A helper function to get a single scalar property. This calls _get_single_property and then checks that the result can be turned into a float. Parameters: properties: A list of dicts, each of which is a single property. property_name: The name of the property to get the value of. units: Optional expected units string. default_value: Value to return if `property_name` is not present. Raises: InvalidParameterError: if the value cannot be expressed as a float Returns: float The value of the desired property. """ try: val = self._get_single_property(properties, property_name, units, default_value) if val is None: return None return float(val) except ValueError: raise InvalidParameterError( expected=f"Property {property_name} should have a value " f"that can be expressed as a float", got=properties, ) def _get_categorical_property( self, properties: List[dict], property_name: str, categories_dict: dict ) -> int: """ Helper function to get a single categorical property as an int. Parameters: properties: A list of dicts, each of which is a single property. property_name: The name of the property to get the value of. categories_dict: Dict from the categorical property (string) to a unique integer value. Raises: InvalidParameterError: if the value is not in the expected list of possible categories as given by the keys in `categories_dict` Returns: int An integer that corresponds to the value of the desired property. """ category = self._get_single_property(properties, property_name) try: return categories_dict[category] except KeyError: raise InvalidParameterError( f"A value in the array: {categories_dict.keys()}", category ) @staticmethod def _get_single_property( properties: List[dict], property_name: str, units: Optional[str] = None, default_value=None ): """ Helper function to get a single property. Parameters: properties: A list of dicts, each of which is a single property. Each entry is expected to have a 'name' field that corresponds to the property name and a `scalars` field that is a list with one entry, a dict of the form {'value': <property value>}. It may also have a 'units' field. property_name: The name of the property to get the value of. `properties` is expected to have exactly one entry with the 'name' field equal to `property_name`. units: Optional expected value of 'units' field. If specified, then there must be a 'units' field and its value must correspond to `units`. default_value: Value to return if `property_name` is not present. Raises: InvalidParameterError: if `properties` does not conform to the expected structure Returns: The value of the property `property_name` """ matching_props = [prop for prop in properties if prop.get("name") == property_name] if len(matching_props) == 0: return default_value elif len(matching_props) > 1: raise InvalidParameterError( expected=f"Only one entry in properties should have name" f" '{property_name}'", got=properties, ) matching_prop = matching_props[0] try: scalars = matching_prop["scalars"] assert len(scalars) == 1 val = scalars[0]["value"] if units is not None: assert matching_prop["units"] == units except (KeyError, AssertionError): units_str = "" if units is None else f", 'units': {units}" raise InvalidParameterError( expected="Property as a dictionary of the form\n" "{'name': <property name>, 'scalars': " "[{'value': <property value>}]" + units_str + "}", got=matching_prop, ) return val
40.650964
99
0.629794
2,284
18,984
5.073555
0.171629
0.04263
0.014498
0.021747
0.346911
0.313687
0.292458
0.253193
0.189506
0.177339
0
0.011178
0.29783
18,984
466
100
40.738197
0.85814
0.372314
0
0.178862
0
0
0.115858
0.006523
0
0
0
0
0.020325
1
0.056911
false
0
0.03252
0
0.166667
0
0
0
0
null
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
null
0
0
0
0
0
0
0
0
0
0
0
0
1
0
6ac43cedb06c0b3488172628809f67d3f8c8275d
2,520
py
Python
pytorch_lightning/accelerators/cpu_backend.py
ozen/pytorch-lightning
3b0b402d30fa19e0fef7d150c30ff4bb14a64230
[ "Apache-2.0" ]
null
null
null
pytorch_lightning/accelerators/cpu_backend.py
ozen/pytorch-lightning
3b0b402d30fa19e0fef7d150c30ff4bb14a64230
[ "Apache-2.0" ]
null
null
null
pytorch_lightning/accelerators/cpu_backend.py
ozen/pytorch-lightning
3b0b402d30fa19e0fef7d150c30ff4bb14a64230
[ "Apache-2.0" ]
null
null
null
# Copyright The PyTorch Lightning team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import torch from pytorch_lightning.accelerators.base_backend import Accelerator from pytorch_lightning.utilities import AMPType, rank_zero_warn from pytorch_lightning.utilities.exceptions import MisconfigurationException class CPUBackend(Accelerator): def __init__(self, trainer, cluster_environment=None): super().__init__(trainer, cluster_environment) def setup(self, model): # run through amp wrapper if self.trainer.amp_backend: raise MisconfigurationException('amp + cpu is not supported. Please use a GPU option') # call setup after the ddp process has connected self.trainer.call_setup_hook(model) # CHOOSE OPTIMIZER # allow for lr schedulers as well self.setup_optimizers(model) self.trainer.model = model def train(self): model = self.trainer.model # set up training routine self.trainer.train_loop.setup_training(model) # train or test results = self.train_or_test() return results def training_step(self, args): if self.trainer.amp_backend == AMPType.NATIVE: with torch.cuda.amp.autocast(): output = self.trainer.model.training_step(*args) else: output = self.trainer.model.training_step(*args) return output def validation_step(self, args): if self.trainer.amp_backend == AMPType.NATIVE: with torch.cuda.amp.autocast(): output = self.trainer.model.validation_step(*args) else: output = self.trainer.model.validation_step(*args) return output def test_step(self, args): if self.trainer.amp_backend == AMPType.NATIVE: with torch.cuda.amp.autocast(): output = self.trainer.model.test_step(*args) else: output = self.trainer.model.test_step(*args) return output
34.520548
99
0.681746
317
2,520
5.305994
0.413249
0.098098
0.0761
0.078478
0.300238
0.268728
0.268728
0.167658
0.167658
0.167658
0
0.00209
0.240476
2,520
72
100
35
0.876698
0.284524
0
0.461538
0
0
0.029164
0
0
0
0
0
0
1
0.153846
false
0
0.102564
0
0.384615
0
0
0
0
null
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
null
0
0
0
0
0
0
0
0
0
0
0
0
1
0
6ac4e4fc48c67f3dafab5b728a225aa95eec15e2
7,668
py
Python
st2common/st2common/util/pack.py
timgates42/st2
0e8ae756f30ffe2e017c64bff67830abdee7f7c9
[ "Apache-2.0" ]
null
null
null
st2common/st2common/util/pack.py
timgates42/st2
0e8ae756f30ffe2e017c64bff67830abdee7f7c9
[ "Apache-2.0" ]
15
2021-02-11T22:58:54.000Z
2021-08-06T18:03:47.000Z
st2common/st2common/util/pack.py
timgates42/st2
0e8ae756f30ffe2e017c64bff67830abdee7f7c9
[ "Apache-2.0" ]
null
null
null
# Copyright 2020 The StackStorm Authors. # Copyright 2019 Extreme Networks, Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from __future__ import absolute_import import os import re import collections import six from st2common.util import schema as util_schema from st2common.constants.pack import MANIFEST_FILE_NAME from st2common.constants.pack import PACK_REF_WHITELIST_REGEX from st2common.content.loader import MetaLoader from st2common.persistence.pack import Pack from st2common.exceptions.apivalidation import ValueValidationException from st2common.util import jinja as jinja_utils __all__ = [ 'get_pack_ref_from_metadata', 'get_pack_metadata', 'get_pack_warnings', 'get_pack_common_libs_path_for_pack_ref', 'get_pack_common_libs_path_for_pack_db', 'validate_config_against_schema', 'normalize_pack_version' ] # Common format for python 2.7 warning if six.PY2: PACK_PYTHON2_WARNING = "DEPRECATION WARNING: Pack %s only supports Python 2.x. " \ "Python 2 support will be dropped in future releases. " \ "Please consider updating your packs to work with Python 3.x" else: PACK_PYTHON2_WARNING = "DEPRECATION WARNING: Pack %s only supports Python 2.x. " \ "Python 2 support has been removed since st2 v3.4.0. " \ "Please update your packs to work with Python 3.x" def get_pack_ref_from_metadata(metadata, pack_directory_name=None): """ Utility function which retrieves pack "ref" attribute from the pack metadata file. If this attribute is not provided, an attempt is made to infer "ref" from the "name" attribute. :rtype: ``str`` """ pack_ref = None # The rules for the pack ref are as follows: # 1. If ref attribute is available, we used that # 2. If pack_directory_name is available we use that (this only applies to packs # which are in sub-directories) # 2. If attribute is not available, but pack name is and pack name meets the valid name # criteria, we use that if metadata.get('ref', None): pack_ref = metadata['ref'] elif pack_directory_name and re.match(PACK_REF_WHITELIST_REGEX, pack_directory_name): pack_ref = pack_directory_name else: if re.match(PACK_REF_WHITELIST_REGEX, metadata['name']): pack_ref = metadata['name'] else: msg = ('Pack name "%s" contains invalid characters and "ref" attribute is not ' 'available. You either need to add "ref" attribute which contains only word ' 'characters to the pack metadata file or update name attribute to contain only' 'word characters.') raise ValueError(msg % (metadata['name'])) return pack_ref def get_pack_metadata(pack_dir): """ Return parsed metadata for a particular pack directory. :rtype: ``dict`` """ manifest_path = os.path.join(pack_dir, MANIFEST_FILE_NAME) if not os.path.isfile(manifest_path): raise ValueError('Pack "%s" is missing %s file' % (pack_dir, MANIFEST_FILE_NAME)) meta_loader = MetaLoader() content = meta_loader.load(manifest_path) if not content: raise ValueError('Pack "%s" metadata file is empty' % (pack_dir)) return content def get_pack_warnings(pack_metadata): """ Return warning string if pack metadata indicates only python 2 is supported :rtype: ``str`` """ warning = None versions = pack_metadata.get('python_versions', None) pack_name = pack_metadata.get('name', None) if versions and set(versions) == set(['2']): warning = PACK_PYTHON2_WARNING % pack_name return warning def validate_config_against_schema(config_schema, config_object, config_path, pack_name=None): """ Validate provided config dictionary against the provided config schema dictionary. """ # NOTE: Lazy improt to avoid performance overhead of importing this module when it's not used import jsonschema pack_name = pack_name or 'unknown' schema = util_schema.get_schema_for_resource_parameters(parameters_schema=config_schema, allow_additional_properties=True) instance = config_object try: cleaned = util_schema.validate(instance=instance, schema=schema, cls=util_schema.CustomValidator, use_default=True, allow_default_none=True) for key in cleaned: if (jinja_utils.is_jinja_expression(value=cleaned.get(key)) and "decrypt_kv" in cleaned.get(key) and config_schema.get(key).get('secret')): raise ValueValidationException('Values specified as "secret: True" in config ' 'schema are automatically decrypted by default. Use ' 'of "decrypt_kv" jinja filter is not allowed for ' 'such values. Please check the specified values in ' 'the config or the default values in the schema.') except jsonschema.ValidationError as e: attribute = getattr(e, 'path', []) if isinstance(attribute, (tuple, list, collections.Iterable)): attribute = [str(item) for item in attribute] attribute = '.'.join(attribute) else: attribute = str(attribute) msg = ('Failed validating attribute "%s" in config for pack "%s" (%s): %s' % (attribute, pack_name, config_path, six.text_type(e))) raise jsonschema.ValidationError(msg) return cleaned def get_pack_common_libs_path_for_pack_ref(pack_ref): pack_db = Pack.get_by_ref(pack_ref) pack_common_libs_path = get_pack_common_libs_path_for_pack_db(pack_db=pack_db) return pack_common_libs_path def get_pack_common_libs_path_for_pack_db(pack_db): """ Return the pack's common lib path. This is the path where common code for sensors and actions are placed. For example, if the pack is at /opt/stackstorm/packs/my_pack, you can place common library code for actions and sensors in /opt/stackstorm/packs/my_pack/lib/. This common library code is only available for python sensors and actions. The lib structure also needs to follow a python convention with a __init__.py file. :param pack_db: Pack DB model :type pack_db: :class:`PackDB` :rtype: ``str`` """ pack_dir = getattr(pack_db, 'path', None) if not pack_dir: return None libs_path = os.path.join(pack_dir, 'lib') return libs_path def normalize_pack_version(version): """ Normalize old, pre StackStorm v2.1 non valid semver version string (e.g. 0.2) to a valid semver version string (0.2.0). :rtype: ``str`` """ version = str(version) version_seperator_count = version.count('.') if version_seperator_count == 1: version = version + '.0' return version
36.514286
100
0.666275
1,013
7,668
4.860809
0.27542
0.022746
0.019903
0.025589
0.139115
0.095857
0.075955
0.075955
0.045085
0.045085
0
0.008607
0.257564
7,668
209
101
36.688995
0.856315
0.276865
0
0.056075
0
0
0.221292
0.028476
0
0
0
0
0
1
0.065421
false
0
0.121495
0
0.261682
0
0
0
0
null
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
null
0
0
0
0
0
0
0
0
0
0
0
0
1
0
6ac65f8d4a911234497385069b667c9dd2f68934
21,364
py
Python
pixelproject/grid.py
MickaelRigault/pixelproject
d98db99a8e69eafa7a979c02a099e4c07f5fd568
[ "Apache-2.0" ]
null
null
null
pixelproject/grid.py
MickaelRigault/pixelproject
d98db99a8e69eafa7a979c02a099e4c07f5fd568
[ "Apache-2.0" ]
null
null
null
pixelproject/grid.py
MickaelRigault/pixelproject
d98db99a8e69eafa7a979c02a099e4c07f5fd568
[ "Apache-2.0" ]
null
null
null
#! /usr/bin/env python # import warnings import numpy as np UNIT_SQUARE = np.asarray([[0,0],[0,1],[1,1],[1,0]])-0.5 from propobject import BaseObject from shapely import geometry import pandas import geopandas # ======================= # # # # Functions # # # # ======================= # def get_simple_grid(xbounds, ybounds, shift_origin=None): """ """ xbounds = np.atleast_1d(xbounds) if len(xbounds)==1: xmin,xmax = 0,xbounds[0] else: xmin,xmax = xbounds ybounds = np.atleast_1d(ybounds) if len(ybounds)==1: ymin,ymax = 0,ybounds[0] else: ymin,ymax = ybounds pixels = np.mgrid[xmin:xmax,ymin:ymax] pixels2_flat = np.concatenate(pixels.T, axis=0) if shift_origin is not None: # not += because conflict between int and float array pixels2_flat = pixels2_flat+ shift_origin return Grid(pixels2_flat, UNIT_SQUARE) # ======================= # # # # Classes # # # # ======================= # class GridProjector( BaseObject ): """ """ PROPERTIES = ["gridin", "gridout"] DERIVED_PROPERTIES = ["gridinterest"] def __init__(self, grid_in=None, grid_out=None): """ """ if grid_in is not None: self.set_grid(grid_in, "in") if grid_out is not None: self.set_grid(grid_out, "out") # =================== # # Methods # # =================== # # --------- # # SETTER # # --------- # def set_grid(self, grid, which="in"): """ """ if which not in ["in","out"]: raise ValueError("Which should either be 'in' our 'out'") self._properties["grid%s"%which] = grid self._derived_properties["gridinterest"] = None def _measure_gridinterest_(self): """ """ # -- internal -- # def localdef_get_area(l): return l.geometry.area/self.gridin.geodataframe.iloc[l.id_1].geometry.area # -------------- # if self.gridin is not None and self.gridout is not None: # # Most likely there is a faster method if is_shape_unique # self._derived_properties["gridinterest"] = geopandas.overlay(self.gridin.geodataframe, self.gridout.geodataframe, how='intersection') self.gridinterest["area"] = self.gridinterest.apply(localdef_get_area, axis=1) else: warnings.warn("Cannot measure gridinterest, because gridin and/or gridout is/are None") # -------------- # # Measurement # # -------------- # def project_data(self, data, as_serie=True, use="sum"): """ Use gridinteresect Parameters ---------- data: [ndarray or string or pandas.Serie] data associated to gridin that should be projected in gridout. could be: - ndarray: must have the same length as gridin - string: name of a gridin column (pandas) - pandas.Serie: serie that will be matched with gridin """ # Calcul itself projected_data = self._project_data_(self._parse_data_(data), use=use) if as_serie: return projected_data projected_data_array = np.zeros( len(self.gridout.geodataframe) ) projected_data_array[projected_data.index.values] = projected_data.values return projected_data_array def _project_data_(self, data, use="sum"): """ """ self.gridinterest["_tmp"] = data[ self.gridin.geodataframe.loc[ self.gridinterest["id_1"]].index ] * self.gridinterest["area"] return getattr(self.gridinterest.groupby("id_2")["_tmp"],use)() def _parse_data_(self,data): """ Parameters ---------- data: [ndarray or string or pandas.Serie] data associated to gridin that should be projected in gridout. could be: - ndarray: must have the same length as gridin - string: name of a gridin column (pandas) - pandas.Serie: serie that will be matched with gridin Returns ------- ndarray """ if type(data) == str: if data not in self.gridin.geodataframe.columns: raise ValueError("Unknown gridin column '%s'"%data) return self.gridin.geodataframe[data].values elif type(data) == pandas.Series: return data.values elif len(data) != len(self.gridin.geodataframe): raise ValueError("data given as ndarray but lengthes do not match") return data # =================== # # Properties # # =================== # @property def gridin(self): """ """ return self._properties["gridin"] @property def gridout(self): """ """ return self._properties["gridout"] @property def gridinterest(self): """ """ if self._derived_properties["gridinterest"] is None: self._measure_gridinterest_() return self._derived_properties["gridinterest"] class Grid( BaseObject ): PROPERTIES = ["pixels", "shape"] SIDE_PROPERTIES = ["indexes"] DERIVED_PROPERTIES = ["vertices","geodataframe", "triangulation"] def __init__(self, pixels=None, shape=UNIT_SQUARE, indexes=None): """ """ if pixels is not None: self.set_pixels(pixels,shape=shape) if indexes is not None: self.set_indexes(indexes) # =================== # # Methods # # =================== # @classmethod def from_stamps(cls, stamp, origin=[0,0]): """ stamps are 2d array, something you could to ax.imshow(stamps) data will be stored as 'data' in the grid's dataframe """ this = get_simple_grid(*np.shape(stamp), shift_origin=origin) this.add_data(np.ravel(stamp), "data") return this @classmethod def from_vertices(cls, vertices, indexes=None): """ directly provide the vertices Parameters: ----------- vertices: [list of array or dictionary] The vertices of all the grid entries. Could have two format: - list of array: [[vert_1],[vert_2],....], then you may want to provide indexes - dictionary: {id_1:vert_1,id_2: vert_2, ...} if a dictionary is provided, the indexes will be set by the vertices. indexes: [list or None] -optional- (Ignored if vertices is a dict) If you provide vertices as a list of vertices, you can provide the indexes of each of the vertices. -> if None, then indexes = np.arange(len(vertices)) Returns ------- Grid """ this = cls() if type(vertices) is dict: indexes, vertices = list(vertices.keys()), list(vertices.values()) this.set_vertices(vertices) if indexes is not None: this.set_indexes(indexes) return this @classmethod def set_from(cls, datainput): """ Creates a new Grid objects from the given input data: Parameters ---------- datainput: [geopandas.geodataframe.GeoDataFrame or ndarray] this could either be a: - geodataframe (and this calls self.set_geodataframe) - geoSeries - ndarray: if 3-shaped, this calls set_vertices ; if 2-shaped, this calls set_pixels. Returns ------- Grid """ this = cls() if type(datainput) == geopandas.geodataframe.GeoDataFrame: this.set_geodataframe(datainput) return this if type(datainput) == np.ndarray: if len(np.shape( datainput) ) == 3: # vertices this.set_vertices(datainput) elif len(np.shape( datainput) ) == 3: # pixels this.set_pixels(datainput) else: raise TypeError("cannot parse the shape of the given datainput") return this raise TypeError("cannot parse the format of the given input") # --------- # # SETTER # # --------- # def set_indexes(self, indexes, update=True): """ provide the indexes associated to each pixels Parameters ---------- indexes: [ndarray] indexes associated to the pixels. This should have the length equal to th number of pixels (if any). update: [bool] -optional- should the geodataframe be updated ? [use True if you are not sure] Returns ------- Void """ if self.pixels is not None and len(indexes) != self.npixels: raise AssertionError("not the same number of indexes as the number of pixels") self._side_properties["indexes"] = indexes if update: self._update_geodataframe_() def set_pixels(self, pixels, shape=None, update=True): """ provide the pixels. Pixels define the position up on which the geometries are defined. NB: vertices = pixels+shape """ # Setting the pixels if np.shape(pixels)[-1] != 2: raise ValueError("pixels must be [N,2] arrays") self._properties["pixels"] = np.asarray(pixels) if shape is not None: self.set_pixelshapes(shape, update=False) if update: self._update_geodataframe_() def set_pixelshapes(self, shape, update=True): """ """ # Setting the pixel shape.s if len(np.shape(shape))==2: self._properties["shape"] = np.asarray(shape) elif len(np.shape(shape))==3: if self.pixels is not None and np.shape(shape)[0] != self.npixels: raise AssertionError("`shape` must be unique or have the same lenth as pixels") self._properties["shape"] = np.asarray(shape) else: raise ValueError("Cannot parse the given shape, must be [M,2] or [N,M,2] when N is the number of pixel and M the number of vertices") if update: self._update_geodataframe_() def set_vertices(self, vertices, overwrite=False, **kwargs): """ """ if not overwrite and (self.pixels is not None and self.shape is not None): raise ValueError("Pixels and shape already defined. set the overwrite option to true, to update vertices") try: pixels = np.mean(vertices, axis=1) except: # Means vertices have different size. self._derived_properties["vertices"] = vertices pixels = np.asarray([np.mean(v_, axis=0) for v_ in vertices]) self.set_pixels(pixels, None, **kwargs) return self._derived_properties["vertices"] = np.asarray(vertices) shape = self.vertices - pixels[:,None] shape_unique = np.unique(shape, axis=0) if len(shape_unique)==1: shape = shape_unique[0] self.set_pixels(pixels, shape, **kwargs) def set_geodataframe(self, geodataframe, overwrite=False): """ """ if not overwrite and (self.pixels is not None and self.shape is not None): raise ValueError("Pixels and shape already defined. set the overwrite option to true, to update geodataframe") if "geometry" not in geodataframe.columns: raise TypeError("The given geodataframe does not have 'geometry' column. It is required") self._derived_properties["geodataframe"] = geodataframe if "id" not in geodataframe.columns: self.geodataframe["id"] = self.indexes if self.pixels is not None else np.arange( len(geodataframe) ) # - get the vertices: def get_verts(poly_): return np.stack(poly_.exterior.xy).T[:-1] vertices = geodataframe["geometry"].apply(get_verts).values self.set_vertices(vertices, update=False) # don't update the geodataframe # --------- # # UPDATE # # --------- # def _update_geodataframe_(self): """ """ dataseries = self.get_geoseries() x,y = self.pixels.T self._derived_properties["geodataframe"] = \ geopandas.GeoDataFrame({'geometry': dataseries, 'id':self.indexes, 'x':x,'y':y}) def add_data(self, data, name, indexes=None, inplace=True): """ """ if indexes is None: indexes = self.indexes s_ = pandas.Series(data, name=name, index=indexes) if not inplace: return self.geodataframe.join(s_) self._derived_properties["geodataframe"] = self.geodataframe.join(s_) # --------- # # GETTER # # --------- # def get_geoseries(self): """ build a new geodataframe and returns it. """ import geopandas return geopandas.GeoSeries([geometry.Polygon(v) for v in self.vertices]) def get_triangulation_grid(self): """ Returns a grid of triangulation. """ return Grid.set_from( np.concatenate(self.triangulation, axis=0) ) def get_pixels_in(self, polygon, invert=False): """ checks if the centroid of the pixel is in or out the given shapely polygon. Parameters ---------- polygon: [shapely.geometry] reference polygon invert: [bool] -optional- Get the pixel inside the polygon [invert=False] or outsite [invert=True] Returns ------- list of pixels and boolean mask """ from shapely import vectorized flagin = vectorized.contains(polygon, *self.pixels.T) if invert: flagin = ~flagin return self.pixels[flagin], flagin # --------- # # Project # # --------- # def project_to(self, othergrid, column="*", asgrid=True, use="sum"): """ project data in the given grid Parameters ---------- othergrid: [Grid] New grid where data should be projected to column: [str/None/list of] -optional- Which data should be projected ? If None or '*' all the non-structural columns will be (structural columns are 'geometry', 'id', 'x', 'y') asgrid: [bool] -optional- Should this return a new Grid (actually same object as othergrid) or a dict [asgrid=False]? Returns ------- Grid or dict (see asgrid) """ gproj = GridProjector(self, othergrid) if column is None or column in ["*","all"]: column = [k for k in self.geodataframe if k not in ['geometry', 'id', 'x', 'y']] datas = {k:gproj.project_data(k, use=use) for k in column} if not asgrid: return datas # building and setting the new grid gout = othergrid.__class__.set_from(othergrid.geodataframe) for k in column: gout.add_data(datas[k],k) return gout def project_to_wcs(self, wcs_, asgrid=True, **kwargs): """ provide an astropy.wcs.WCS and this will project the current grid into it (assuming grid's vertices coordinates are in pixels) Parameters ---------- wcs_: [astropy.wcs.WCS] The world coordinate solution asgrid: [bool] -optional- Should this return a load Grid object or an array of vertices (in degree) **kwargs goes to wcs_.all_pix2world Returns ------- Grid or array (see asgrid) """ verts = self.vertices verts_shape = np.shape(verts) flatten_verts = np.concatenate(verts, axis=0) # flatten_verts_wcs = np.asarray(wcs_.all_pix2world(flatten_verts[:,0], flatten_verts[:,1], 0, **kwargs)).T # verts_wcs = flatten_verts_wcs.reshape(verts_shape) if not asgrid: return verts_wcs g_wcs = Grid.set_from(verts_wcs) g_wcs.geodataframe["x_pix"],g_wcs.geodataframe["y_pix"] = self.pixels.T return g_wcs def evaluate(self, func, vectorized=True): """ Evaluate the given function throughout the grid. This evulation is using polynome triangulation to integrate the given function inside the polyname using triangle integration. -> dependency: the integration is made using quadpy. Examples: # Remark the np.stack(x, axis=-1). # This is mandatory since integration is going to send # x = [ [[....],[...]], [[....],[...]], ... ] for triangles ```python def get_2dgauss(x, mu=[4,4], cov=[[1,0],[0,2]]): """ """ return stats.multivariate_normal.pdf(np.stack(x, axis=-1), mean=mu, cov=cov) ``` """ try: import quadpy except ImportError: raise ImportError("Integration is made using quadpy. pip install quadpy") # Is Triangulation made ? if self._derived_properties["triangulation"] is None: warnings.warn("triangles not defined: deriving triangulation.") self.derive_triangulation() # Let's get the triangles trs = np.stack(self.triangulation) shape_trs = np.shape(trs) if len(shape_trs)==4 and vectorized: # All Polygon have the same topology (same amount of vertices) tr_flat = np.stack(np.concatenate(trs, axis=0), axis=-2) val = quadpy.triangle.strang_fix_cowper_09().integrate(func,tr_flat).reshape(shape_trs[:2]) else: val = np.asarray([quadpy.triangle.strang_fix_cowper_09().integrate(func,np.stack(t_, axis=-2)) for t_ in trs]) return np.sum(val, axis=1) def derive_triangulation(self, fast_unique=True): """ """ def triangulate(geom): """ Return triangulate format that quadpy likes """ from shapely import ops triangles = ops.triangulate(geom) return np.stack([np.asarray(t.exterior.coords.xy).T[:-1] for t in triangles]) if not self.is_shape_unique or not fast_unique: self._derived_properties["triangulation"] = self.geodataframe["geometry"].apply(triangulate) else: self._derived_properties["triangulation"] = self.pixels[:,None,None] + triangulate(geometry.Polygon(self.shape)) # --------- # # PLOTTER # # --------- # def show(self, column=None, ax=None, edgecolor="0.7", facecolor="None", **kwargs): """ """ if column is not None: facecolor=None return self.geodataframe.plot(column, ax=ax,facecolor=facecolor, edgecolor=edgecolor, **kwargs) # =================== # # Properties # # =================== # @property def pixels(self): """ """ return self._properties["pixels"] @property def npixels(self): """ """ return len(self.pixels) @property def shape(self): """ """ if self._properties["shape"] is None: self._properties["shape"] = UNIT_SQUARE return self._properties["shape"] # -- Side @property def indexes(self): """ """ if self._side_properties["indexes"] is None: self._side_properties["indexes"] = np.arange(self.npixels) return self._side_properties["indexes"] # -- Derived @property def vertices(self): """ """ if self._derived_properties["vertices"] is None and (self.pixels is not None and self.shape is not None): self._derived_properties["vertices"] = self.pixels[:,None]+self.shape return self._derived_properties["vertices"] @property def is_shape_unique(self): """ """ return len(np.shape(self.shape))==2 @property def geodataframe(self): """ """ if self._derived_properties["geodataframe"] is None: self._update_geodataframe_() return self._derived_properties["geodataframe"] @property def triangulation(self): """ Triangulation of the vertices. Based on Delaunay tesselation, see shapely.ops.triangulate """ if self._derived_properties["triangulation"] is None: self.derive_triangulation() return self._derived_properties["triangulation"]
35.08046
145
0.550178
2,326
21,364
4.94196
0.155632
0.031057
0.014876
0.009134
0.165811
0.114485
0.10274
0.071596
0.063941
0.063941
0
0.005833
0.325969
21,364
608
146
35.138158
0.792431
0.252294
0
0.181818
0
0.006993
0.100605
0.002789
0
0
0
0
0.006993
1
0.13986
false
0
0.041958
0.006993
0.335664
0
0
0
0
null
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
null
0
0
0
0
0
0
0
0
0
0
0
0
1
0
6ac66c22ad3d5b81a13742eecef45d93fd664ee6
31,445
py
Python
numpy/lib/format.py
AnirudhDagar/numpy
77bc3225e6f4badf83190ec300a0e10e56949644
[ "BSD-3-Clause" ]
5
2021-08-23T06:23:15.000Z
2022-02-05T07:27:30.000Z
numpy/lib/format.py
AnirudhDagar/numpy
77bc3225e6f4badf83190ec300a0e10e56949644
[ "BSD-3-Clause" ]
75
2021-07-12T01:28:50.000Z
2022-03-28T20:09:00.000Z
numpy/lib/format.py
AnirudhDagar/numpy
77bc3225e6f4badf83190ec300a0e10e56949644
[ "BSD-3-Clause" ]
1
2019-11-05T15:23:08.000Z
2019-11-05T15:23:08.000Z
""" Binary serialization NPY format ========== A simple format for saving numpy arrays to disk with the full information about them. The ``.npy`` format is the standard binary file format in NumPy for persisting a *single* arbitrary NumPy array on disk. The format stores all of the shape and dtype information necessary to reconstruct the array correctly even on another machine with a different architecture. The format is designed to be as simple as possible while achieving its limited goals. The ``.npz`` format is the standard format for persisting *multiple* NumPy arrays on disk. A ``.npz`` file is a zip file containing multiple ``.npy`` files, one for each array. Capabilities ------------ - Can represent all NumPy arrays including nested record arrays and object arrays. - Represents the data in its native binary form. - Supports Fortran-contiguous arrays directly. - Stores all of the necessary information to reconstruct the array including shape and dtype on a machine of a different architecture. Both little-endian and big-endian arrays are supported, and a file with little-endian numbers will yield a little-endian array on any machine reading the file. The types are described in terms of their actual sizes. For example, if a machine with a 64-bit C "long int" writes out an array with "long ints", a reading machine with 32-bit C "long ints" will yield an array with 64-bit integers. - Is straightforward to reverse engineer. Datasets often live longer than the programs that created them. A competent developer should be able to create a solution in their preferred programming language to read most ``.npy`` files that they have been given without much documentation. - Allows memory-mapping of the data. See `open_memmap`. - Can be read from a filelike stream object instead of an actual file. - Stores object arrays, i.e. arrays containing elements that are arbitrary Python objects. Files with object arrays are not to be mmapable, but can be read and written to disk. Limitations ----------- - Arbitrary subclasses of numpy.ndarray are not completely preserved. Subclasses will be accepted for writing, but only the array data will be written out. A regular numpy.ndarray object will be created upon reading the file. .. warning:: Due to limitations in the interpretation of structured dtypes, dtypes with fields with empty names will have the names replaced by 'f0', 'f1', etc. Such arrays will not round-trip through the format entirely accurately. The data is intact; only the field names will differ. We are working on a fix for this. This fix will not require a change in the file format. The arrays with such structures can still be saved and restored, and the correct dtype may be restored by using the ``loadedarray.view(correct_dtype)`` method. File extensions --------------- We recommend using the ``.npy`` and ``.npz`` extensions for files saved in this format. This is by no means a requirement; applications may wish to use these file formats but use an extension specific to the application. In the absence of an obvious alternative, however, we suggest using ``.npy`` and ``.npz``. Version numbering ----------------- The version numbering of these formats is independent of NumPy version numbering. If the format is upgraded, the code in `numpy.io` will still be able to read and write Version 1.0 files. Format Version 1.0 ------------------ The first 6 bytes are a magic string: exactly ``\\x93NUMPY``. The next 1 byte is an unsigned byte: the major version number of the file format, e.g. ``\\x01``. The next 1 byte is an unsigned byte: the minor version number of the file format, e.g. ``\\x00``. Note: the version of the file format is not tied to the version of the numpy package. The next 2 bytes form a little-endian unsigned short int: the length of the header data HEADER_LEN. The next HEADER_LEN bytes form the header data describing the array's format. It is an ASCII string which contains a Python literal expression of a dictionary. It is terminated by a newline (``\\n``) and padded with spaces (``\\x20``) to make the total of ``len(magic string) + 2 + len(length) + HEADER_LEN`` be evenly divisible by 64 for alignment purposes. The dictionary contains three keys: "descr" : dtype.descr An object that can be passed as an argument to the `numpy.dtype` constructor to create the array's dtype. "fortran_order" : bool Whether the array data is Fortran-contiguous or not. Since Fortran-contiguous arrays are a common form of non-C-contiguity, we allow them to be written directly to disk for efficiency. "shape" : tuple of int The shape of the array. For repeatability and readability, the dictionary keys are sorted in alphabetic order. This is for convenience only. A writer SHOULD implement this if possible. A reader MUST NOT depend on this. Following the header comes the array data. If the dtype contains Python objects (i.e. ``dtype.hasobject is True``), then the data is a Python pickle of the array. Otherwise the data is the contiguous (either C- or Fortran-, depending on ``fortran_order``) bytes of the array. Consumers can figure out the number of bytes by multiplying the number of elements given by the shape (noting that ``shape=()`` means there is 1 element) by ``dtype.itemsize``. Format Version 2.0 ------------------ The version 1.0 format only allowed the array header to have a total size of 65535 bytes. This can be exceeded by structured arrays with a large number of columns. The version 2.0 format extends the header size to 4 GiB. `numpy.save` will automatically save in 2.0 format if the data requires it, else it will always use the more compatible 1.0 format. The description of the fourth element of the header therefore has become: "The next 4 bytes form a little-endian unsigned int: the length of the header data HEADER_LEN." Format Version 3.0 ------------------ This version replaces the ASCII string (which in practice was latin1) with a utf8-encoded string, so supports structured types with any unicode field names. Notes ----- The ``.npy`` format, including motivation for creating it and a comparison of alternatives, is described in the :doc:`"npy-format" NEP <neps:nep-0001-npy-format>`, however details have evolved with time and this document is more current. """ import numpy import io import warnings from numpy.lib.utils import safe_eval from numpy.compat import ( isfileobj, os_fspath, pickle ) __all__ = [] EXPECTED_KEYS = {'descr', 'fortran_order', 'shape'} MAGIC_PREFIX = b'\x93NUMPY' MAGIC_LEN = len(MAGIC_PREFIX) + 2 ARRAY_ALIGN = 64 # plausible values are powers of 2 between 16 and 4096 BUFFER_SIZE = 2**18 # size of buffer for reading npz files in bytes # difference between version 1.0 and 2.0 is a 4 byte (I) header length # instead of 2 bytes (H) allowing storage of large structured arrays _header_size_info = { (1, 0): ('<H', 'latin1'), (2, 0): ('<I', 'latin1'), (3, 0): ('<I', 'utf8'), } def _check_version(version): if version not in [(1, 0), (2, 0), (3, 0), None]: msg = "we only support format version (1,0), (2,0), and (3,0), not %s" raise ValueError(msg % (version,)) def magic(major, minor): """ Return the magic string for the given file format version. Parameters ---------- major : int in [0, 255] minor : int in [0, 255] Returns ------- magic : str Raises ------ ValueError if the version cannot be formatted. """ if major < 0 or major > 255: raise ValueError("major version must be 0 <= major < 256") if minor < 0 or minor > 255: raise ValueError("minor version must be 0 <= minor < 256") return MAGIC_PREFIX + bytes([major, minor]) def read_magic(fp): """ Read the magic string to get the version of the file format. Parameters ---------- fp : filelike object Returns ------- major : int minor : int """ magic_str = _read_bytes(fp, MAGIC_LEN, "magic string") if magic_str[:-2] != MAGIC_PREFIX: msg = "the magic string is not correct; expected %r, got %r" raise ValueError(msg % (MAGIC_PREFIX, magic_str[:-2])) major, minor = magic_str[-2:] return major, minor def _has_metadata(dt): if dt.metadata is not None: return True elif dt.names is not None: return any(_has_metadata(dt[k]) for k in dt.names) elif dt.subdtype is not None: return _has_metadata(dt.base) else: return False def dtype_to_descr(dtype): """ Get a serializable descriptor from the dtype. The .descr attribute of a dtype object cannot be round-tripped through the dtype() constructor. Simple types, like dtype('float32'), have a descr which looks like a record array with one field with '' as a name. The dtype() constructor interprets this as a request to give a default name. Instead, we construct descriptor that can be passed to dtype(). Parameters ---------- dtype : dtype The dtype of the array that will be written to disk. Returns ------- descr : object An object that can be passed to `numpy.dtype()` in order to replicate the input dtype. """ if _has_metadata(dtype): warnings.warn("metadata on a dtype may be saved or ignored, but will " "raise if saved when read. Use another form of storage.", UserWarning, stacklevel=2) if dtype.names is not None: # This is a record array. The .descr is fine. XXX: parts of the # record array with an empty name, like padding bytes, still get # fiddled with. This needs to be fixed in the C implementation of # dtype(). return dtype.descr else: return dtype.str def descr_to_dtype(descr): """ Returns a dtype based off the given description. This is essentially the reverse of `dtype_to_descr()`. It will remove the valueless padding fields created by, i.e. simple fields like dtype('float32'), and then convert the description to its corresponding dtype. Parameters ---------- descr : object The object retreived by dtype.descr. Can be passed to `numpy.dtype()` in order to replicate the input dtype. Returns ------- dtype : dtype The dtype constructed by the description. """ if isinstance(descr, str): # No padding removal needed return numpy.dtype(descr) elif isinstance(descr, tuple): # subtype, will always have a shape descr[1] dt = descr_to_dtype(descr[0]) return numpy.dtype((dt, descr[1])) titles = [] names = [] formats = [] offsets = [] offset = 0 for field in descr: if len(field) == 2: name, descr_str = field dt = descr_to_dtype(descr_str) else: name, descr_str, shape = field dt = numpy.dtype((descr_to_dtype(descr_str), shape)) # Ignore padding bytes, which will be void bytes with '' as name # Once support for blank names is removed, only "if name == ''" needed) is_pad = (name == '' and dt.type is numpy.void and dt.names is None) if not is_pad: title, name = name if isinstance(name, tuple) else (None, name) titles.append(title) names.append(name) formats.append(dt) offsets.append(offset) offset += dt.itemsize return numpy.dtype({'names': names, 'formats': formats, 'titles': titles, 'offsets': offsets, 'itemsize': offset}) def header_data_from_array_1_0(array): """ Get the dictionary of header metadata from a numpy.ndarray. Parameters ---------- array : numpy.ndarray Returns ------- d : dict This has the appropriate entries for writing its string representation to the header of the file. """ d = {'shape': array.shape} if array.flags.c_contiguous: d['fortran_order'] = False elif array.flags.f_contiguous: d['fortran_order'] = True else: # Totally non-contiguous data. We will have to make it C-contiguous # before writing. Note that we need to test for C_CONTIGUOUS first # because a 1-D array is both C_CONTIGUOUS and F_CONTIGUOUS. d['fortran_order'] = False d['descr'] = dtype_to_descr(array.dtype) return d def _wrap_header(header, version): """ Takes a stringified header, and attaches the prefix and padding to it """ import struct assert version is not None fmt, encoding = _header_size_info[version] if not isinstance(header, bytes): # always true on python 3 header = header.encode(encoding) hlen = len(header) + 1 padlen = ARRAY_ALIGN - ((MAGIC_LEN + struct.calcsize(fmt) + hlen) % ARRAY_ALIGN) try: header_prefix = magic(*version) + struct.pack(fmt, hlen + padlen) except struct.error: msg = "Header length {} too big for version={}".format(hlen, version) raise ValueError(msg) from None # Pad the header with spaces and a final newline such that the magic # string, the header-length short and the header are aligned on a # ARRAY_ALIGN byte boundary. This supports memory mapping of dtypes # aligned up to ARRAY_ALIGN on systems like Linux where mmap() # offset must be page-aligned (i.e. the beginning of the file). return header_prefix + header + b' '*padlen + b'\n' def _wrap_header_guess_version(header): """ Like `_wrap_header`, but chooses an appropriate version given the contents """ try: return _wrap_header(header, (1, 0)) except ValueError: pass try: ret = _wrap_header(header, (2, 0)) except UnicodeEncodeError: pass else: warnings.warn("Stored array in format 2.0. It can only be" "read by NumPy >= 1.9", UserWarning, stacklevel=2) return ret header = _wrap_header(header, (3, 0)) warnings.warn("Stored array in format 3.0. It can only be " "read by NumPy >= 1.17", UserWarning, stacklevel=2) return header def _write_array_header(fp, d, version=None): """ Write the header for an array and returns the version used Parameters ---------- fp : filelike object d : dict This has the appropriate entries for writing its string representation to the header of the file. version: tuple or None None means use oldest that works explicit version will raise a ValueError if the format does not allow saving this data. Default: None """ header = ["{"] for key, value in sorted(d.items()): # Need to use repr here, since we eval these when reading header.append("'%s': %s, " % (key, repr(value))) header.append("}") header = "".join(header) if version is None: header = _wrap_header_guess_version(header) else: header = _wrap_header(header, version) fp.write(header) def write_array_header_1_0(fp, d): """ Write the header for an array using the 1.0 format. Parameters ---------- fp : filelike object d : dict This has the appropriate entries for writing its string representation to the header of the file. """ _write_array_header(fp, d, (1, 0)) def write_array_header_2_0(fp, d): """ Write the header for an array using the 2.0 format. The 2.0 format allows storing very large structured arrays. .. versionadded:: 1.9.0 Parameters ---------- fp : filelike object d : dict This has the appropriate entries for writing its string representation to the header of the file. """ _write_array_header(fp, d, (2, 0)) def read_array_header_1_0(fp): """ Read an array header from a filelike object using the 1.0 file format version. This will leave the file object located just after the header. Parameters ---------- fp : filelike object A file object or something with a `.read()` method like a file. Returns ------- shape : tuple of int The shape of the array. fortran_order : bool The array data will be written out directly if it is either C-contiguous or Fortran-contiguous. Otherwise, it will be made contiguous before writing it out. dtype : dtype The dtype of the file's data. Raises ------ ValueError If the data is invalid. """ return _read_array_header(fp, version=(1, 0)) def read_array_header_2_0(fp): """ Read an array header from a filelike object using the 2.0 file format version. This will leave the file object located just after the header. .. versionadded:: 1.9.0 Parameters ---------- fp : filelike object A file object or something with a `.read()` method like a file. Returns ------- shape : tuple of int The shape of the array. fortran_order : bool The array data will be written out directly if it is either C-contiguous or Fortran-contiguous. Otherwise, it will be made contiguous before writing it out. dtype : dtype The dtype of the file's data. Raises ------ ValueError If the data is invalid. """ return _read_array_header(fp, version=(2, 0)) def _filter_header(s): """Clean up 'L' in npz header ints. Cleans up the 'L' in strings representing integers. Needed to allow npz headers produced in Python2 to be read in Python3. Parameters ---------- s : string Npy file header. Returns ------- header : str Cleaned up header. """ import tokenize from io import StringIO tokens = [] last_token_was_number = False for token in tokenize.generate_tokens(StringIO(s).readline): token_type = token[0] token_string = token[1] if (last_token_was_number and token_type == tokenize.NAME and token_string == "L"): continue else: tokens.append(token) last_token_was_number = (token_type == tokenize.NUMBER) return tokenize.untokenize(tokens) def _read_array_header(fp, version): """ see read_array_header_1_0 """ # Read an unsigned, little-endian short int which has the length of the # header. import struct hinfo = _header_size_info.get(version) if hinfo is None: raise ValueError("Invalid version {!r}".format(version)) hlength_type, encoding = hinfo hlength_str = _read_bytes(fp, struct.calcsize(hlength_type), "array header length") header_length = struct.unpack(hlength_type, hlength_str)[0] header = _read_bytes(fp, header_length, "array header") header = header.decode(encoding) # The header is a pretty-printed string representation of a literal # Python dictionary with trailing newlines padded to a ARRAY_ALIGN byte # boundary. The keys are strings. # "shape" : tuple of int # "fortran_order" : bool # "descr" : dtype.descr # Versions (2, 0) and (1, 0) could have been created by a Python 2 # implementation before header filtering was implemented. if version <= (2, 0): header = _filter_header(header) try: d = safe_eval(header) except SyntaxError as e: msg = "Cannot parse header: {!r}" raise ValueError(msg.format(header)) from e if not isinstance(d, dict): msg = "Header is not a dictionary: {!r}" raise ValueError(msg.format(d)) if EXPECTED_KEYS != d.keys(): keys = sorted(d.keys()) msg = "Header does not contain the correct keys: {!r}" raise ValueError(msg.format(keys)) # Sanity-check the values. if (not isinstance(d['shape'], tuple) or not all(isinstance(x, int) for x in d['shape'])): msg = "shape is not valid: {!r}" raise ValueError(msg.format(d['shape'])) if not isinstance(d['fortran_order'], bool): msg = "fortran_order is not a valid bool: {!r}" raise ValueError(msg.format(d['fortran_order'])) try: dtype = descr_to_dtype(d['descr']) except TypeError as e: msg = "descr is not a valid dtype descriptor: {!r}" raise ValueError(msg.format(d['descr'])) from e return d['shape'], d['fortran_order'], dtype def write_array(fp, array, version=None, allow_pickle=True, pickle_kwargs=None): """ Write an array to an NPY file, including a header. If the array is neither C-contiguous nor Fortran-contiguous AND the file_like object is not a real file object, this function will have to copy data in memory. Parameters ---------- fp : file_like object An open, writable file object, or similar object with a ``.write()`` method. array : ndarray The array to write to disk. version : (int, int) or None, optional The version number of the format. None means use the oldest supported version that is able to store the data. Default: None allow_pickle : bool, optional Whether to allow writing pickled data. Default: True pickle_kwargs : dict, optional Additional keyword arguments to pass to pickle.dump, excluding 'protocol'. These are only useful when pickling objects in object arrays on Python 3 to Python 2 compatible format. Raises ------ ValueError If the array cannot be persisted. This includes the case of allow_pickle=False and array being an object array. Various other errors If the array contains Python objects as part of its dtype, the process of pickling them may raise various errors if the objects are not picklable. """ _check_version(version) _write_array_header(fp, header_data_from_array_1_0(array), version) if array.itemsize == 0: buffersize = 0 else: # Set buffer size to 16 MiB to hide the Python loop overhead. buffersize = max(16 * 1024 ** 2 // array.itemsize, 1) if array.dtype.hasobject: # We contain Python objects so we cannot write out the data # directly. Instead, we will pickle it out if not allow_pickle: raise ValueError("Object arrays cannot be saved when " "allow_pickle=False") if pickle_kwargs is None: pickle_kwargs = {} pickle.dump(array, fp, protocol=3, **pickle_kwargs) elif array.flags.f_contiguous and not array.flags.c_contiguous: if isfileobj(fp): array.T.tofile(fp) else: for chunk in numpy.nditer( array, flags=['external_loop', 'buffered', 'zerosize_ok'], buffersize=buffersize, order='F'): fp.write(chunk.tobytes('C')) else: if isfileobj(fp): array.tofile(fp) else: for chunk in numpy.nditer( array, flags=['external_loop', 'buffered', 'zerosize_ok'], buffersize=buffersize, order='C'): fp.write(chunk.tobytes('C')) def read_array(fp, allow_pickle=False, pickle_kwargs=None): """ Read an array from an NPY file. Parameters ---------- fp : file_like object If this is not a real file object, then this may take extra memory and time. allow_pickle : bool, optional Whether to allow writing pickled data. Default: False .. versionchanged:: 1.16.3 Made default False in response to CVE-2019-6446. pickle_kwargs : dict Additional keyword arguments to pass to pickle.load. These are only useful when loading object arrays saved on Python 2 when using Python 3. Returns ------- array : ndarray The array from the data on disk. Raises ------ ValueError If the data is invalid, or allow_pickle=False and the file contains an object array. """ version = read_magic(fp) _check_version(version) shape, fortran_order, dtype = _read_array_header(fp, version) if len(shape) == 0: count = 1 else: count = numpy.multiply.reduce(shape, dtype=numpy.int64) # Now read the actual data. if dtype.hasobject: # The array contained Python objects. We need to unpickle the data. if not allow_pickle: raise ValueError("Object arrays cannot be loaded when " "allow_pickle=False") if pickle_kwargs is None: pickle_kwargs = {} try: array = pickle.load(fp, **pickle_kwargs) except UnicodeError as err: # Friendlier error message raise UnicodeError("Unpickling a python object failed: %r\n" "You may need to pass the encoding= option " "to numpy.load" % (err,)) from err else: if isfileobj(fp): # We can use the fast fromfile() function. array = numpy.fromfile(fp, dtype=dtype, count=count) else: # This is not a real file. We have to read it the # memory-intensive way. # crc32 module fails on reads greater than 2 ** 32 bytes, # breaking large reads from gzip streams. Chunk reads to # BUFFER_SIZE bytes to avoid issue and reduce memory overhead # of the read. In non-chunked case count < max_read_count, so # only one read is performed. # Use np.ndarray instead of np.empty since the latter does # not correctly instantiate zero-width string dtypes; see # https://github.com/numpy/numpy/pull/6430 array = numpy.ndarray(count, dtype=dtype) if dtype.itemsize > 0: # If dtype.itemsize == 0 then there's nothing more to read max_read_count = BUFFER_SIZE // min(BUFFER_SIZE, dtype.itemsize) for i in range(0, count, max_read_count): read_count = min(max_read_count, count - i) read_size = int(read_count * dtype.itemsize) data = _read_bytes(fp, read_size, "array data") array[i:i+read_count] = numpy.frombuffer(data, dtype=dtype, count=read_count) if fortran_order: array.shape = shape[::-1] array = array.transpose() else: array.shape = shape return array def open_memmap(filename, mode='r+', dtype=None, shape=None, fortran_order=False, version=None): """ Open a .npy file as a memory-mapped array. This may be used to read an existing file or create a new one. Parameters ---------- filename : str or path-like The name of the file on disk. This may *not* be a file-like object. mode : str, optional The mode in which to open the file; the default is 'r+'. In addition to the standard file modes, 'c' is also accepted to mean "copy on write." See `memmap` for the available mode strings. dtype : data-type, optional The data type of the array if we are creating a new file in "write" mode, if not, `dtype` is ignored. The default value is None, which results in a data-type of `float64`. shape : tuple of int The shape of the array if we are creating a new file in "write" mode, in which case this parameter is required. Otherwise, this parameter is ignored and is thus optional. fortran_order : bool, optional Whether the array should be Fortran-contiguous (True) or C-contiguous (False, the default) if we are creating a new file in "write" mode. version : tuple of int (major, minor) or None If the mode is a "write" mode, then this is the version of the file format used to create the file. None means use the oldest supported version that is able to store the data. Default: None Returns ------- marray : memmap The memory-mapped array. Raises ------ ValueError If the data or the mode is invalid. IOError If the file is not found or cannot be opened correctly. See Also -------- numpy.memmap """ if isfileobj(filename): raise ValueError("Filename must be a string or a path-like object." " Memmap cannot use existing file handles.") if 'w' in mode: # We are creating the file, not reading it. # Check if we ought to create the file. _check_version(version) # Ensure that the given dtype is an authentic dtype object rather # than just something that can be interpreted as a dtype object. dtype = numpy.dtype(dtype) if dtype.hasobject: msg = "Array can't be memory-mapped: Python objects in dtype." raise ValueError(msg) d = dict( descr=dtype_to_descr(dtype), fortran_order=fortran_order, shape=shape, ) # If we got here, then it should be safe to create the file. with open(os_fspath(filename), mode+'b') as fp: _write_array_header(fp, d, version) offset = fp.tell() else: # Read the header of the file first. with open(os_fspath(filename), 'rb') as fp: version = read_magic(fp) _check_version(version) shape, fortran_order, dtype = _read_array_header(fp, version) if dtype.hasobject: msg = "Array can't be memory-mapped: Python objects in dtype." raise ValueError(msg) offset = fp.tell() if fortran_order: order = 'F' else: order = 'C' # We need to change a write-only mode to a read-write mode since we've # already written data to the file. if mode == 'w+': mode = 'r+' marray = numpy.memmap(filename, dtype=dtype, shape=shape, order=order, mode=mode, offset=offset) return marray def _read_bytes(fp, size, error_template="ran out of data"): """ Read from file-like object until size bytes are read. Raises ValueError if not EOF is encountered before size bytes are read. Non-blocking objects only supported if they derive from io objects. Required as e.g. ZipExtFile in python 2.6 can return less data than requested. """ data = bytes() while True: # io files (default in python3) return None or raise on # would-block, python2 file will truncate, probably nothing can be # done about that. note that regular files can't be non-blocking try: r = fp.read(size - len(data)) data += r if len(r) == 0 or len(data) == size: break except io.BlockingIOError: pass if len(data) != size: msg = "EOF: reading %s, expected %d bytes got %d" raise ValueError(msg % (error_template, size, len(data))) else: return data
34.21654
87
0.641437
4,430
31,445
4.488713
0.16298
0.008549
0.006336
0.006688
0.224793
0.186724
0.16173
0.151974
0.147448
0.135479
0
0.011151
0.272794
31,445
918
88
34.253813
0.858442
0.558181
0
0.215873
0
0.003175
0.118329
0
0
0
0
0
0.003175
1
0.063492
false
0.012698
0.028571
0
0.165079
0
0
0
0
null
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
null
0
0
0
0
0
0
0
0
0
0
0
0
1
0
6ac8631a21e5b850ca9b81ac1543a63108f70e71
6,090
py
Python
bin/focus_scan.py
desihub/desicmx
6f7c9a3cff25c970af57de20e3a12001382deb23
[ "BSD-3-Clause" ]
3
2019-11-15T23:17:23.000Z
2019-11-27T17:19:33.000Z
bin/focus_scan.py
desihub/desicmx
6f7c9a3cff25c970af57de20e3a12001382deb23
[ "BSD-3-Clause" ]
4
2019-12-12T03:37:32.000Z
2020-01-28T21:29:51.000Z
bin/focus_scan.py
desihub/desicmx
6f7c9a3cff25c970af57de20e3a12001382deb23
[ "BSD-3-Clause" ]
2
2019-12-20T08:21:52.000Z
2020-06-30T15:21:53.000Z
#!/usr/bin/env python import astropy.io.fits as fits import numpy as np import os import matplotlib.pyplot as plt import argparse def _fname(expid, night, basedir='/n/home/datasystems/users/ameisner/reduced/focus', ccds=False): fname = basedir + '/' + night + '/' + str(expid).zfill(8) + '/gfa-' + str(expid).zfill(8) + '_psfs.fits' if ccds: fname = fname.replace('_psfs.fits', '_ccds.fits') return fname def _actual_expid_list(expids, night, basedir='/n/home/datasystems/users/ameisner/reduced/focus'): keep = [] for i, expid in enumerate(expids): fname = _fname(expid, night, basedir=basedir, ccds=True) if not os.path.exists(fname): continue tab = fits.getdata(fname) # try to handle case where observer accidentally lists the 'setup focus scan' # 1 second exposure as the start of the focus scan if (i == 0) & (tab[0]['EXPTIME'] < 1.1): print('SKIPPING DUMMY SETUP EXPOSURE') continue program = tab[0]['PROGRAM'].strip() if program != 'focus scan': break keep.append(expid) return keep def focus_plots(night, expids, basedir='/n/home/datasystems/users/ameisner/reduced/focus', outdir='/n/home/desiobserver/focus_scan_pngs', no_popups=False): expids = _actual_expid_list(expids, night, basedir=basedir) if len(expids) == 0: print('NO FOCUS SCAN EXPOSURES TO ANALYZE ??') assert(False) plt.figure(1, figsize=(12.0*(len(expids)/7.0), 9)) extnames = ['GUIDE0', 'GUIDE2', 'GUIDE3', 'GUIDE5', 'GUIDE7', 'GUIDE8'] focus_z = [] fwhm_pix = [] # PSF stamps plot plt.subplots_adjust(hspace=0.01, wspace=0.01) for i, expid in enumerate(expids): fname = _fname(expid, night, basedir=basedir) print(fname) fname_ccds = _fname(expid, night, basedir=basedir, ccds=True) if not os.path.exists(fname): continue ccds = fits.getdata(fname_ccds) if np.sum(np.isfinite(ccds['PSF_FWHM_PIX'])) != 0: fwhm_pix.append(np.median(ccds['PSF_FWHM_PIX'][np.isfinite(ccds['PSF_FWHM_PIX'])])) focus_z.append(float(ccds[0]['FOCUS'].split(',')[2])) hdul = fits.open(fname) extnames_present = [hdu.header['EXTNAME'] for hdu in hdul] for j, extname in enumerate(extnames): if extname not in extnames_present: continue print(i, j) plt.subplot(6, len(expids), len(expids)*j + i + 1) plt.xticks([]) plt.yticks([]) im = fits.getdata(fname, extname=extname) plt.imshow(im, interpolation='nearest', origin='lower', cmap='gray_r', vmin=0.01) plt.text(5, 44, str(expid) + '; ' + extname, color='r', fontsize=9) plt.text(10, 3.5, 'z = ' + str(int(float(ccds[0]['FOCUS'].split(',')[2]))), color='r') if np.isfinite(ccds[j]['XCENTROID_PSF']) and np.isfinite(ccds[j]['YCENTROID_PSF']): plt.scatter([ccds[j]['XCENTROID_PSF']], [ccds[j]['YCENTROID_PSF']], marker='.', c='r') expid_min = int(np.min(expids)) print(focus_z) print(fwhm_pix) plt.savefig(os.path.join(outdir, 'stamps_focus_scan-' + str(expid_min).zfill(8)+'.png'), bbox_inches='tight') #plt.cla() plt.figure(200) asec_per_pix = 0.205 focus_z = np.array(focus_z) fwhm_asec = np.array(fwhm_pix)*asec_per_pix plt.scatter(focus_z, fwhm_asec) plt.xlabel('focus z (micron)') plt.ylabel('FWHM (asec)') coeff = np.polyfit(focus_z, fwhm_asec, 2) xsamp = np.arange(np.min(focus_z), np.max(focus_z)) ysamp = coeff[0]*(np.power(xsamp, 2)) + coeff[1]*xsamp + coeff[2] plt.title('focus scan starting with EXPID = ' + str(expid_min)) plt.plot(xsamp, ysamp) zmin = -coeff[1]/(2*coeff[0]) min_fwhm_fit_asec = coeff[0]*(zmin**2) + coeff[1]*zmin + coeff[2] yrange = [np.min(fwhm_asec), np.max(fwhm_asec)] plt.text(focus_z[2], yrange[0] + 0.8*(yrange[1]-yrange[0]), 'best FWHM (meas) : ' + '{:.2f}'.format(np.min(fwhm_asec))) plt.text(focus_z[2], yrange[0] + 0.7*(yrange[1]-yrange[0]), 'best FWHM (fit) : ' + '{:.2f}'.format(min_fwhm_fit_asec)) plt.text(focus_z[2], yrange[0] + 0.9*(yrange[1]-yrange[0]), 'best focus : ' + str(int(np.round(zmin)))) plt.savefig(os.path.join(outdir, 'fit_focus_scan-' + str(expid_min).zfill(8) + '.png'), bbox_inches='tight') if not no_popups: plt.show() def _test(): night = '20200131' expids = 45446 + np.arange(7) focus_plots(night, expids, basedir='/project/projectdirs/desi/users/ameisner/GFA/run/psf_flux_weighted_centroid', outdir='.') def _test_missing_cam(): night = '20200131' expids = 45485 + np.arange(7) focus_plots(night, expids, basedir='/project/projectdirs/desi/users/ameisner/GFA/run/psf_flux_weighted_centroid') if __name__ == "__main__": descr = 'GFA focus sequence plots/analysis' parser = argparse.ArgumentParser(description=descr) parser.add_argument('first_expid', type=int, nargs=1) parser.add_argument('night', type=str, nargs=1) parser.add_argument('--basedir', default='/n/home/datasystems/users/ameisner/reduced/focus', type=str, help='base directory for GFA reductions') parser.add_argument('--outdir', default='/n/home/desiobserver/focus_scan_pngs', type=str, help='output directory for plot PNGs') parser.add_argument('--no_popups', default=False, action='store_true', help='write PNGs without popping up plot windows') args = parser.parse_args() expids = args.first_expid + np.arange(16, dtype=int) print(expids) print(args.night[0]) print(args.basedir) outdir = args.outdir if os.path.exists(args.outdir) else '.' focus_plots(args.night[0], expids, basedir=args.basedir, outdir=outdir, no_popups=args.no_popups)
35.614035
129
0.612315
836
6,090
4.327751
0.276316
0.021559
0.023494
0.024323
0.326423
0.30293
0.220011
0.208679
0.195412
0.158928
0
0.02575
0.228407
6,090
170
130
35.823529
0.744201
0.027915
0
0.104348
0
0
0.186475
0.069992
0
0
0
0
0.008696
1
0.043478
false
0
0.043478
0
0.104348
0.078261
0
0
0
null
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
null
0
0
0
0
0
0
0
0
0
0
0
0
1
0
6ac951af97aa3d1a0ef9e931276c0e45ff2d14cc
4,344
py
Python
pythia/utils/logger.py
abhiskk/pythia
c33fb45d74353c25b6269b44551bcafefecb5c7e
[ "BSD-3-Clause" ]
2
2019-05-23T02:07:03.000Z
2019-06-08T18:56:05.000Z
pythia/utils/logger.py
abhiskk/pythia
c33fb45d74353c25b6269b44551bcafefecb5c7e
[ "BSD-3-Clause" ]
null
null
null
pythia/utils/logger.py
abhiskk/pythia
c33fb45d74353c25b6269b44551bcafefecb5c7e
[ "BSD-3-Clause" ]
null
null
null
# Copyright (c) Facebook, Inc. and its affiliates. import base64 import logging import os import sys from tensorboardX import SummaryWriter from pythia.utils.distributed_utils import is_main_process from pythia.utils.general import (ckpt_name_from_core_args, foldername_from_config_override) from pythia.utils.timer import Timer class Logger: def __init__(self, config): self.logger = None self.summary_writer = None if not is_main_process(): return self.timer = Timer() self.config = config self.save_dir = config.training_parameters.save_dir self.log_folder = ckpt_name_from_core_args(config) self.log_folder += foldername_from_config_override(config) time_format = "%Y-%m-%dT%H:%M:%S" self.log_filename = ckpt_name_from_core_args(config) + "_" self.log_filename += self.timer.get_time_hhmmss(None, format=time_format) self.log_filename += ".log" self.log_folder = os.path.join(self.save_dir, self.log_folder, "logs") arg_log_dir = self.config.get("log_dir", None) if arg_log_dir: self.log_folder = arg_log_dir if not os.path.exists(self.log_folder): os.makedirs(self.log_folder) tensorboard_folder = os.path.join(self.log_folder, "tensorboard") self.summary_writer = SummaryWriter(tensorboard_folder) self.log_filename = os.path.join(self.log_folder, self.log_filename) print("Logging to:", self.log_filename) logging.captureWarnings(True) self.logger = logging.getLogger(__name__) self._file_only_logger = logging.getLogger(__name__) warnings_logger = logging.getLogger("py.warnings") # Set level level = config["training_parameters"].get("logger_level", "info") self.logger.setLevel(getattr(logging, level.upper())) self._file_only_logger.setLevel(getattr(logging, level.upper())) formatter = logging.Formatter( "%(asctime)s %(levelname)s: %(message)s", datefmt="%Y-%m-%dT%H:%M:%S" ) # Add handler to file channel = logging.FileHandler(filename=self.log_filename, mode="a") channel.setFormatter(formatter) self.logger.addHandler(channel) self._file_only_logger.addHandler(channel) warnings_logger.addHandler(channel) # Add handler to stdout channel = logging.StreamHandler(sys.stdout) channel.setFormatter(formatter) self.logger.addHandler(channel) warnings_logger.addHandler(channel) should_not_log = self.config["training_parameters"]["should_not_log"] self.should_log = not should_not_log # Single log wrapper map self._single_log_map = set() def __del__(self): if getattr(self, "summary_writer", None) is not None: self.summary_writer.close() def write(self, x, level="info", donot_print=False): if self.logger is None: return # if it should not log then just print it if self.should_log: if hasattr(self.logger, level): if donot_print: getattr(self._file_only_logger, level)(str(x)) else: getattr(self.logger, level)(str(x)) else: self.logger.error("Unknown log level type: %s" % level) else: print(str(x) + "\n") def single_write(self, x, level="info"): if x + "_" + level in self._single_log_map: return else: self.write(x, level) def add_scalar(self, key, value, iteration): if self.summary_writer is None: return self.summary_writer.add_scalar(key, value, iteration) def add_scalars(self, scalar_dict, iteration): if self.summary_writer is None: return for key, val in scalar_dict.items(): self.summary_writer.add_scalar(key, val, iteration) def add_histogram_for_model(self, model, iteration): if self.summary_writer is None: return for name, param in model.named_parameters(): np_param = param.clone().cpu().data.numpy() self.summary_writer.add_histogram(name, np_param, iteration)
34.204724
81
0.63628
540
4,344
4.874074
0.246296
0.042553
0.06459
0.027356
0.282295
0.220745
0.147036
0.072948
0.032675
0
0
0.000625
0.263352
4,344
126
82
34.47619
0.821875
0.037523
0
0.206522
0
0
0.057738
0
0
0
0
0
0
1
0.076087
false
0
0.086957
0
0.23913
0.043478
0
0
0
null
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
null
0
0
0
0
0
0
0
0
0
0
0
0
1
0
6acd5e71b7f337a2cb3ca947d7cf6d05f0a0b474
851
py
Python
setup.py
chearon/macpack
1cf6ce453dd33a811343e4bb6ee5575bc9fe919d
[ "MIT" ]
24
2016-11-14T14:09:57.000Z
2022-01-26T02:22:45.000Z
setup.py
najiji/macpack
20b518e9bc0f4e58d47c5416a686a4b246a3764d
[ "MIT" ]
5
2016-11-14T14:09:53.000Z
2019-04-18T15:49:14.000Z
setup.py
najiji/macpack
20b518e9bc0f4e58d47c5416a686a4b246a3764d
[ "MIT" ]
3
2018-01-27T15:38:46.000Z
2019-04-09T16:21:23.000Z
import setuptools import os try: import pypandoc description = pypandoc.convert('README.md', 'rst') if os.path.exists('README.md') else '' except ImportError: description = '' setuptools.setup( name = 'macpack', packages = setuptools.find_packages(), version = '1.0.3', description = 'Makes a macOS binary redistributable by searching the dependency tree and copying/patching non-system libraries.', long_description = description, author = 'Caleb Hearon', author_email = '[email protected]', url = 'https://github.com/chearon/macpack', download_url = 'https://github.com/chearon/macpack/tarball/v1.0.3', keywords = ['macos', 'bundle', 'package', 'redistribute', 'redistributable', 'install_name_tool', 'otool', 'mach'], classifiers = [], entry_points = { 'console_scripts': ['macpack=macpack.patcher:main'], } )
32.730769
131
0.706228
100
851
5.93
0.7
0.026981
0.047218
0.057336
0.104553
0.104553
0
0
0
0
0
0.008208
0.141011
851
25
132
34.04
0.80301
0
0
0
0
0
0.435958
0.032902
0
0
0
0
0
1
0
false
0
0.173913
0
0.173913
0
0
0
0
null
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
null
0
0
0
0
0
0
0
0
0
0
0
0
1
0
6acdf3a0dc36f1ce88eb6431d38ef46ea81f633b
1,371
py
Python
WEEK2/day5/scripts/06_NB_Challenges_Isolines.py
tizon9804/SS2017
7cb374ad21cdfeeef223ac4a65cbbf40dab22e06
[ "MIT" ]
null
null
null
WEEK2/day5/scripts/06_NB_Challenges_Isolines.py
tizon9804/SS2017
7cb374ad21cdfeeef223ac4a65cbbf40dab22e06
[ "MIT" ]
null
null
null
WEEK2/day5/scripts/06_NB_Challenges_Isolines.py
tizon9804/SS2017
7cb374ad21cdfeeef223ac4a65cbbf40dab22e06
[ "MIT" ]
null
null
null
import vtk # Read the file (to test that it was written correctly) reader = vtk.vtkXMLImageDataReader() reader.SetFileName("../data/wind_image.vti") reader.Update() print(reader.GetOutput()) # Convert the image to a polydata imageDataGeometryFilter = vtk.vtkImageDataGeometryFilter() imageDataGeometryFilter.SetInputConnection(reader.GetOutputPort()) imageDataGeometryFilter.Update() scalarRange = reader.GetOutput().GetPointData().GetScalars().GetRange(-1) contoursFilter = vtk.vtkContourFilter() contoursFilter.SetInputConnection(imageDataGeometryFilter.GetOutputPort()) contoursFilter.GenerateValues(60, scalarRange) contoursMapper = vtk.vtkPolyDataMapper() contoursMapper.SetInputConnection(contoursFilter.GetOutputPort()) contoursMapper.SetColorModeToMapScalars() contoursMapper.ScalarVisibilityOn() contoursMapper.SelectColorArray("JPEGImage") contoursMapper.SetScalarRange(scalarRange) contoursActor = vtk.vtkActor() contoursActor.SetMapper(contoursMapper) actor = vtk.vtkActor() actor.SetMapper(contoursMapper) # Setup rendering renderer = vtk.vtkRenderer() renderer.AddActor(actor) renderer.SetBackground(1,1,1) renderer.ResetCamera() renderWindow = vtk.vtkRenderWindow() renderWindow.AddRenderer(renderer) renderWindowInteractor = vtk.vtkRenderWindowInteractor() renderWindowInteractor.SetRenderWindow(renderWindow) renderWindowInteractor.Start()
30.466667
74
0.835157
117
1,371
9.777778
0.538462
0.026224
0
0
0
0
0
0
0
0
0
0.004677
0.064187
1,371
44
75
31.159091
0.886984
0.073669
0
0
0
0
0.024506
0.017391
0
0
0
0
0
1
0
false
0
0.032258
0
0.032258
0.032258
0
0
0
null
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
null
0
0
0
0
0
0
0
0
0
0
0
0
1
0
6ace6e18f6860e091c836de50634b3a607e70811
11,303
py
Python
mbbl_envs/mbbl/env/gym_env/invertedPendulum.py
hbutsuak95/iv_rl
0f72a8f077a238237027ea96b7d1160c35ac9959
[ "MIT" ]
9
2022-01-16T11:27:00.000Z
2022-03-13T14:04:48.000Z
mbbl_envs/mbbl/env/gym_env/invertedPendulum.py
hbutsuak95/iv_rl
0f72a8f077a238237027ea96b7d1160c35ac9959
[ "MIT" ]
null
null
null
mbbl_envs/mbbl/env/gym_env/invertedPendulum.py
hbutsuak95/iv_rl
0f72a8f077a238237027ea96b7d1160c35ac9959
[ "MIT" ]
null
null
null
""" # ----------------------------------------------------------------------------- # @brief: # Tingwu: reset the reward function so that it's more similar to the one # defined in GYM # ----------------------------------------------------------------------------- """ import numpy as np from mbbl.config import init_path from mbbl.env import base_env_wrapper as bew from mbbl.env import env_register from mbbl.env import env_util from mbbl.util.common import logger class env(bew.base_env): # acrobot has applied sin/cos obs PENDULUM = ['gym_invertedPendulum'] def __init__(self, env_name, rand_seed, misc_info): super(env, self).__init__(env_name, rand_seed, misc_info) self._base_path = init_path.get_abs_base_dir() self._len_qpos, self._len_qvel = \ env_util.get_gym_q_info(self._env, self._current_version) # return the reset as the gym? if 'reset_type' in misc_info and misc_info['reset_type'] == 'gym': self._reset_return_obs_only = True self.observation_space, self.action_space = \ self._env.observation_space, self._env.action_space # it's possible some environments have different obs self.observation_space = \ env_util.box(self._env_info['ob_size'], -1, 1) else: self._reset_return_obs_only = False def step(self, action): _, _, _, info = self._env.step(action) ob = self._get_observation() # get the reward reward = self.reward( {'end_state': ob, 'start_state': self._old_ob, 'action': action} ) # from mbbl.util.common.fpdb import fpdb; fpdb().set_trace() # get the end signal self._current_step += 1 info['current_step'] = self._current_step if self._current_step > self._env_info['max_length']: done = True else: done = False # will raise warnings -> set logger flag to ignore self._old_ob = np.array(ob) return ob, reward, done, info def reset(self, control_info={}): self._current_step = 0 self._env.reset() # the following is a hack, there is some precision issue in mujoco_py self._old_ob = self._get_observation() self._env.reset() self.set_state({'start_state': self._old_ob.copy()}) self._old_ob = self._get_observation() if self._reset_return_obs_only: return self._old_ob.copy() else: return self._old_ob.copy(), 0.0, False, {} def _get_observation(self): if self._current_version in ['0.7.4', '0.9.4']: qpos = self._env.env.data.qpos qvel = self._env.env.data.qvel else: qpos = self._env.env.sim.data.qpos qvel = self._env.env.sim.data.qvel """ if self._env_name == 'gym_doublePendulum': if self._current_version in ['0.7.4', '0.9.4']: site_xpos = self._env.env.data.site_xpos[:, [0, 2]] else: site_xpos = self._env.env.sim.data.site_xpos[:, [0, 2]] site_xpos = np.transpose(site_xpos) return np.concatenate([qpos, qvel, site_xpos]).ravel() else: """ assert self._env_name == 'gym_invertedPendulum' return np.concatenate([qpos, qvel]).ravel() def _build_env(self): import gym self._current_version = gym.__version__ if self._current_version in ['0.7.4', '0.9.4']: _env_name = { 'gym_invertedPendulum': 'InvertedPendulum-v1', } elif self._current_version == NotImplementedError: # TODO: other gym versions here _env_name = { 'gym_invertedPendulum': 'InvertedPendulum-v2', } else: raise ValueError("Invalid gym-{}".format(self._current_version)) # make the environments self._env_info = env_register.get_env_info(self._env_name) self._env_name = self._env_name.split('-')[0] self._env = gym.make(_env_name[self._env_name]) def _set_groundtruth_api(self): """ @brief: In this function, we could provide the ground-truth dynamics and rewards APIs for the agent to call. For the new environments, if we don't set their ground-truth apis, then we cannot test the algorithm using ground-truth dynamics or reward """ self._set_reward_api() self._set_dynamics_api() def _set_dynamics_api(self): def set_state(data_dict): qpos = np.zeros([self._len_qpos]) qvel = np.zeros([self._len_qvel]) qpos[:] = data_dict['start_state'][:self._len_qpos] qvel[:] = data_dict['start_state'][ self._len_qpos: self._len_qpos + self._len_qvel ] # reset the state if self._current_version in ['0.7.4', '0.9.4']: self._env.env.data.qpos = qpos.reshape([-1, 1]) self._env.env.data.qvel = qvel.reshape([-1, 1]) else: self._env.env.sim.data.qpos = qpos.reshape([-1]) self._env.env.sim.data.qvel = qpos.reshape([-1]) self._env.env.model._compute_subtree() # pylint: disable=W0212 self._env.env.model.forward() self._old_ob = self._get_observation() self.set_state = set_state def fdynamics(data_dict): # make sure reset is called before using self.fynamics() self.set_state(data_dict) return self.step(data_dict['action'])[0] self.fdynamics = fdynamics def _set_reward_api(self): """ def _step(self, a): reward = 1.0 self.do_simulation(a, self.frame_skip) ob = self._get_obs() notdone = np.isfinite(ob).all() and (np.abs(ob[1]) <= .2) done = not notdone self.do_simulation(action, self.frame_skip) ob = self._get_obs() x, _, y = self.model.data.site_xpos[0] dist_penalty = 0.01 * x ** 2 + (y - 2) ** 2 v1, v2 = self.model.data.qvel[1:3] vel_penalty = 1e-3 * v1**2 + 5e-3 * v2**2 alive_bonus = 10 r = (alive_bonus - dist_penalty - vel_penalty)[0] done = bool(y <= 1) return ob, r, done, {} reward: @xpos_penalty: x ** 2 @ypos_penalty: (y - 2) ** 2 pendulum: (slide, hinge) qpos: 2 (0, 1) qvel: 2 (2, 3) double_pendulum: (slide, hinge, hinge) qpos: 3 (0, 1, 2) qvel: 3 (3, 4, 5) site_pose: 2 (6, 7) """ # step 1, set the zero-order reward function assert self._env_name in self.PENDULUM """ xpos_ob_pos = \ {'gym_pendulum': 0, 'gym_doublePendulum': 6}[self._env_name] ypos_ob_pos = \ {'gym_pendulum': 1, 'gym_doublePendulum': 7}[self._env_name] ypos_target = \ {'gym_pendulum': 0.0, 'gym_doublePendulum': 2}[self._env_name] xpos_coeff = \ {'gym_pendulum': 0.0, 'gym_doublePendulum': 0.01}[self._env_name] """ xpos_ob_pos = 0 ypos_ob_pos = 1 ypos_target = 0.0 xpos_coeff = 0.0 def reward(data_dict): # xpos penalty xpos = data_dict['start_state'][xpos_ob_pos] xpos_reward = -(xpos ** 2) * xpos_coeff # ypos penalty ypos = data_dict['start_state'][ypos_ob_pos] ypos_reward = -(ypos - ypos_target) ** 2 return xpos_reward + ypos_reward self.reward = reward def reward_derivative(data_dict, target): num_data = len(data_dict['start_state']) if target == 'state': derivative_data = np.zeros( [num_data, self._env_info['ob_size']], dtype=np.float ) # the xpos reward part derivative_data[:, xpos_ob_pos] += - 2.0 * xpos_coeff * \ (data_dict['start_state'][:, xpos_ob_pos]) # the ypos reward part derivative_data[:, ypos_ob_pos] += - 2.0 * \ (data_dict['start_state'][:, ypos_ob_pos] - ypos_target) elif target == 'action': derivative_data = np.zeros( [num_data, self._env_info['action_size']], dtype=np.float ) elif target == 'state-state': derivative_data = np.zeros( [num_data, self._env_info['ob_size'], self._env_info['ob_size']], dtype=np.float ) # the xpos reward derivative_data[:, xpos_ob_pos, xpos_ob_pos] += \ - 2.0 * xpos_coeff # the ypos reward derivative_data[:, ypos_ob_pos, ypos_ob_pos] += \ - 2.0 elif target == 'action-state': derivative_data = np.zeros( [num_data, self._env_info['action_size'], self._env_info['ob_size']], dtype=np.float ) elif target == 'state-action': derivative_data = np.zeros( [num_data, self._env_info['ob_size'], self._env_info['action_size']], dtype=np.float ) elif target == 'action-action': derivative_data = np.zeros( [num_data, self._env_info['action_size'], self._env_info['action_size']], dtype=np.float ) else: assert False, logger.error('Invalid target {}'.format(target)) return derivative_data self.reward_derivative = reward_derivative def render(self, *args, **kwargs): return if __name__ == '__main__': # test_env_name = ['gym_doublePendulum'] test_env_name = ['gym_invertedPendulum'] for env_name in test_env_name: test_env = env(env_name, 1234, {}) api_env = env(env_name, 1234, {}) api_env.reset() ob, reward, _, _ = test_env.reset() for _ in range(100): action = np.random.uniform(-1, 1, test_env._env.action_space.shape) new_ob, reward, _, _ = test_env.step(action) # test the reward api reward_from_api = \ api_env.reward({'start_state': ob, 'action': action}) reward_error = np.sum(np.abs(reward_from_api - reward)) # test the dynamics api newob_from_api = \ api_env.fdynamics({'start_state': ob, 'action': action}) ob_error = np.sum(np.abs(newob_from_api - new_ob)) ob = new_ob print('reward error: {}, dynamics error: {}'.format( reward_error, ob_error) )
35.656151
79
0.529594
1,356
11,303
4.106195
0.168879
0.055316
0.025682
0.022629
0.363865
0.244971
0.181394
0.122665
0.11153
0.104346
0
0.018529
0.345837
11,303
316
80
35.768987
0.734514
0.178714
0
0.175141
0
0
0.074819
0
0
0
0
0.003165
0.016949
1
0.073446
false
0
0.039548
0.00565
0.169492
0.00565
0
0
0
null
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
null
0
0
0
0
0
0
0
0
0
0
0
0
1
0
6ad0bc72be93fcbf7c2b0d3f4185b26d3bfb3b1c
1,426
py
Python
web/pingpongpiweb.py
andrewdyersmith/pingpongpi
63e969468da24b2d00e86033dfcb22de75f264bc
[ "MIT" ]
null
null
null
web/pingpongpiweb.py
andrewdyersmith/pingpongpi
63e969468da24b2d00e86033dfcb22de75f264bc
[ "MIT" ]
null
null
null
web/pingpongpiweb.py
andrewdyersmith/pingpongpi
63e969468da24b2d00e86033dfcb22de75f264bc
[ "MIT" ]
null
null
null
# Ping Pong Pi web UI running on flask. # Uses zmq to speak to daemon controlling screen. from flask import Flask, render_template, appcontext_tearing_down, request from multiprocessing import Process, Queue from multiprocessing.connection import Client import atexit import time import zmq app = Flask(__name__) @app.route('/') def index(): return render_template('index.html') MODE="mode" @app.route('/mode/<name>', methods=['POST']) def mode(name): text = request.args.get("val", default="", type=str) message_queue.put([MODE,name,text]) return "\"OK\"" message_queue = Queue() message_process = None def message_loop(message_queue): print("Starting message loop") context = zmq.Context() while True: try: socket = context.socket(zmq.REQ) socket.connect("tcp://localhost:5555") print("Connected to daemon") while True: msg = message_queue.get() print("Sending ", msg) socket.send_json(msg) socket.recv() except Exception as ex: print(ex) time.sleep(5) def stop_message_loop(): print("Terminating") if message_process: message_process.terminate() atexit.register(stop_message_loop) @app.before_first_request def setup_ipc(): global message_process message_process = Process(target=message_loop, args=(message_queue,)) message_process.start() if __name__ == '__main__': app.run(debug=True, host='0.0.0.0')
22.634921
74
0.704067
191
1,426
5.062827
0.486911
0.086867
0.024819
0.057911
0
0
0
0
0
0
0
0.007608
0.170407
1,426
62
75
23
0.809806
0.059607
0
0.043478
0
0
0.096413
0
0
0
0
0
0
1
0.108696
false
0
0.130435
0.021739
0.282609
0.108696
0
0
0
null
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
null
0
0
0
0
0
0
0
0
0
0
0
0
1
0
6ad190f41233de2c7f9d3aa69edc83f906187598
5,171
py
Python
watcher/tests/decision_engine/strategy/strategies/test_base.py
ajaytikoo/watcher
6dbac1f6ae7f3e10dfdcef5721fa4af7af54e159
[ "Apache-2.0" ]
64
2015-10-18T02:57:24.000Z
2022-01-13T11:27:51.000Z
watcher/tests/decision_engine/strategy/strategies/test_base.py
ajaytikoo/watcher
6dbac1f6ae7f3e10dfdcef5721fa4af7af54e159
[ "Apache-2.0" ]
null
null
null
watcher/tests/decision_engine/strategy/strategies/test_base.py
ajaytikoo/watcher
6dbac1f6ae7f3e10dfdcef5721fa4af7af54e159
[ "Apache-2.0" ]
35
2015-12-25T13:53:21.000Z
2021-07-19T15:50:16.000Z
# -*- encoding: utf-8 -*- # Copyright (c) 2019 European Organization for Nuclear Research (CERN) # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or # implied. # See the License for the specific language governing permissions and # limitations under the License. from unittest import mock from watcher.common import exception from watcher.decision_engine.datasources import manager from watcher.decision_engine.model import model_root from watcher.decision_engine.strategy import strategies from watcher.tests import base from watcher.tests.decision_engine.model import faker_cluster_state class TestBaseStrategy(base.TestCase): def setUp(self): super(TestBaseStrategy, self).setUp() # fake cluster self.fake_c_cluster = faker_cluster_state.FakerModelCollector() p_c_model = mock.patch.object( strategies.BaseStrategy, "compute_model", new_callable=mock.PropertyMock) self.m_c_model = p_c_model.start() self.addCleanup(p_c_model.stop) p_audit_scope = mock.patch.object( strategies.BaseStrategy, "audit_scope", new_callable=mock.PropertyMock) self.m_audit_scope = p_audit_scope.start() self.addCleanup(p_audit_scope.stop) self.m_audit_scope.return_value = mock.Mock() self.m_c_model.return_value = model_root.ModelRoot() self.strategy = strategies.DummyStrategy(config=mock.Mock()) class TestBaseStrategyDatasource(TestBaseStrategy): def setUp(self): super(TestBaseStrategyDatasource, self).setUp() self.strategy = strategies.DummyStrategy( config=mock.Mock(datasources=None)) @mock.patch.object(strategies.BaseStrategy, 'osc', None) @mock.patch.object(manager, 'DataSourceManager') @mock.patch.object(strategies.base, 'CONF') def test_global_preference(self, m_conf, m_manager): """Test if the global preference is used""" m_conf.watcher_datasources.datasources = \ ['gnocchi', 'monasca', 'ceilometer'] # Make sure we access the property and not the underlying function. m_manager.return_value.get_backend.return_value = \ mock.NonCallableMock() # Access the property so that the configuration is read in order to # get the correct datasource self.strategy.datasource_backend m_manager.assert_called_once_with( config=m_conf.watcher_datasources, osc=None) @mock.patch.object(strategies.BaseStrategy, 'osc', None) @mock.patch.object(manager, 'DataSourceManager') @mock.patch.object(strategies.base, 'CONF') def test_global_preference_reverse(self, m_conf, m_manager): """Test if the global preference is used with another order""" m_conf.watcher_datasources.datasources = \ ['ceilometer', 'monasca', 'gnocchi'] # Make sure we access the property and not the underlying function. m_manager.return_value.get_backend.return_value = \ mock.NonCallableMock() # Access the property so that the configuration is read in order to # get the correct datasource self.strategy.datasource_backend m_manager.assert_called_once_with( config=m_conf.watcher_datasources, osc=None) @mock.patch.object(strategies.BaseStrategy, 'osc', None) @mock.patch.object(manager, 'DataSourceManager') @mock.patch.object(strategies.base, 'CONF') def test_strategy_preference_override(self, m_conf, m_manager): """Test if the global preference can be overridden""" datasources = mock.Mock(datasources=['ceilometer']) self.strategy = strategies.DummyStrategy( config=datasources) m_conf.watcher_datasources.datasources = \ ['ceilometer', 'monasca', 'gnocchi'] # Access the property so that the configuration is read in order to # get the correct datasource self.strategy.datasource_backend m_manager.assert_called_once_with( config=datasources, osc=None) class TestBaseStrategyException(TestBaseStrategy): def setUp(self): super(TestBaseStrategyException, self).setUp() def test_exception_model(self): self.m_c_model.return_value = None self.assertRaises( exception.ClusterStateNotDefined, self.strategy.execute) def test_exception_stale_cdm(self): self.fake_c_cluster.set_cluster_data_model_as_stale() self.m_c_model.return_value = self.fake_c_cluster.cluster_data_model self.assertRaises( # TODO(Dantali0n) This should return ClusterStale, # improve set_cluster_data_model_as_stale(). exception.ClusterStateNotDefined, self.strategy.execute)
36.673759
76
0.705473
623
5,171
5.675762
0.272873
0.027998
0.046663
0.056561
0.554299
0.465215
0.413744
0.386029
0.353224
0.353224
0
0.002446
0.209244
5,171
140
77
36.935714
0.862314
0.245794
0
0.460526
0
0
0.046126
0
0
0
0
0.007143
0.065789
1
0.105263
false
0
0.092105
0
0.236842
0
0
0
0
null
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
null
0
0
0
0
0
0
0
0
0
0
0
0
1
0
6ad243bce2bf880a6b70228da5819c87e92c557b
776
py
Python
test/test_sampler.py
pfnet-research/autogbt-alt
57f7ae1bce2923d11f73c3631e34be49c7dd25da
[ "MIT" ]
83
2019-04-01T05:45:37.000Z
2021-04-13T02:33:04.000Z
test/test_sampler.py
pfnet-research/autogbt-alt
57f7ae1bce2923d11f73c3631e34be49c7dd25da
[ "MIT" ]
null
null
null
test/test_sampler.py
pfnet-research/autogbt-alt
57f7ae1bce2923d11f73c3631e34be49c7dd25da
[ "MIT" ]
10
2019-04-15T03:15:42.000Z
2020-03-30T11:52:12.000Z
import numpy as np import pandas as pd from autogbt.sampler import MajorityUnderSampler def _test_sample(y): sampler = MajorityUnderSampler() idx = sampler.sample(y, 40000, 3.0) assert len(idx) == 40000 assert y[idx].sum() == 10000 def test_sample_with_series(): y = pd.Series(np.concatenate([np.ones((10000)), np.zeros((100000))])) y = y.sample(frac=1.0) _test_sample(y) def test_sample_with_ndarray(): y = np.concatenate([np.ones((10000)), np.zeros((100000))]) _test_sample(y) def test_sample_for_regression(): y = np.concatenate([ 2*np.ones((10000)), 1*np.ones((10000)), 0*np.ones((10000)), ]) sampler = MajorityUnderSampler() idx = sampler.sample(y, 0.1, 3.0) assert len(idx) == 3000
23.515152
73
0.640464
111
776
4.342342
0.315315
0.124481
0.114108
0.153527
0.493776
0.435685
0.153527
0.153527
0
0
0
0.108065
0.201031
776
32
74
24.25
0.669355
0
0
0.166667
0
0
0
0
0
0
0
0
0.125
1
0.166667
false
0
0.125
0
0.291667
0
0
0
0
null
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
null
0
0
0
0
0
0
0
0
0
0
0
0
1
0
6ad3e60ef95d7e5c040fd394c92201b95875defd
1,155
py
Python
main.py
thewhiteninja/twitch-recorder
815b571e22917daa906d054a8ab2fe794e99bb8a
[ "MIT" ]
null
null
null
main.py
thewhiteninja/twitch-recorder
815b571e22917daa906d054a8ab2fe794e99bb8a
[ "MIT" ]
null
null
null
main.py
thewhiteninja/twitch-recorder
815b571e22917daa906d054a8ab2fe794e99bb8a
[ "MIT" ]
null
null
null
import glob import os import sys import utils from recorder import StreamRec OUTDIR = "" def parse_args(a): global OUTDIR i = 1 while i < len(a): if a[i] in ["-h", "--help", "/?"]: usage() if a[i] in ["-d", "--dir"]: OUTDIR = a[i + 1] i += 1 i += 1 def usage(): print("Record your favorite Twitch streams!") print("Check an example of .stream file in data/ to see how to add a stream to record") print() print("Usage: %s [Options]" % (os.path.basename(sys.argv[0]))) print() print("Options :") print(" -d, --dir : Output directory") print(" -h, --help : Help") sys.exit(1) def load_streams(): all_inst = [] stream_files = glob.glob('data/**/*.stream', recursive=True) for stream_file in stream_files: inst = StreamRec(stream_file, OUTDIR) all_inst.append(inst) for inst in all_inst: inst.start() for inst in all_inst: inst.join() def main(): utils.welcome() parse_args(sys.argv) utils.make_directory(OUTDIR) load_streams() if __name__ == '__main__': main()
20.625
91
0.565368
158
1,155
4
0.411392
0.012658
0.012658
0.018987
0.063291
0.063291
0
0
0
0
0
0.007282
0.28658
1,155
55
92
21
0.759709
0
0
0.139535
0
0
0.204329
0
0
0
0
0
0
1
0.093023
false
0
0.116279
0
0.209302
0.186047
0
0
0
null
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
null
0
0
0
0
0
0
0
0
0
0
0
0
1
0
6ad40da9c9320f7c8df4a83d064f6172f24c03ec
2,268
py
Python
karbor-1.3.0/karbor/policies/protectables.py
scottwedge/OpenStack-Stein
7077d1f602031dace92916f14e36b124f474de15
[ "Apache-2.0" ]
null
null
null
karbor-1.3.0/karbor/policies/protectables.py
scottwedge/OpenStack-Stein
7077d1f602031dace92916f14e36b124f474de15
[ "Apache-2.0" ]
5
2019-08-14T06:46:03.000Z
2021-12-13T20:01:25.000Z
karbor-1.3.0/karbor/policies/protectables.py
scottwedge/OpenStack-Stein
7077d1f602031dace92916f14e36b124f474de15
[ "Apache-2.0" ]
2
2020-03-15T01:24:15.000Z
2020-07-22T20:34:26.000Z
# Copyright (c) 2017 Huawei Technologies Co., Ltd. # All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. You may obtain # a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. from oslo_policy import policy from karbor.policies import base GET_POLICY = 'protectable:get' GET_ALL_POLICY = 'protectable:get_all' INSTANCES_GET_POLICY = 'protectable:instance_get' INSTANCES_GET_ALL_POLICY = 'protectable:instance_get_all' protectables_policies = [ policy.DocumentedRuleDefault( name=GET_POLICY, check_str=base.RULE_ADMIN_OR_OWNER, description='Show a protectable type.', operations=[ { 'method': 'GET', 'path': '/protectables/{protectable_type}' } ]), policy.DocumentedRuleDefault( name=GET_ALL_POLICY, check_str=base.RULE_ADMIN_OR_OWNER, description='List protectable types.', operations=[ { 'method': 'GET', 'path': '/protectables' } ]), policy.DocumentedRuleDefault( name=INSTANCES_GET_POLICY, check_str=base.RULE_ADMIN_OR_OWNER, description='Show a protectable instance.', operations=[ { 'method': 'GET', 'path': '/protectables/{protectable_type}/' 'instances/{resource_id}' } ]), policy.DocumentedRuleDefault( name=INSTANCES_GET_ALL_POLICY, check_str=base.RULE_ADMIN_OR_OWNER, description='List protectable instances.', operations=[ { 'method': 'GET', 'path': '/protectables/{protectable_type}/instances' } ]), ] def list_rules(): return protectables_policies
31.068493
78
0.619489
238
2,268
5.718487
0.42437
0.044085
0.035268
0.052902
0.398971
0.314475
0.314475
0.277737
0.191036
0.191036
0
0.004963
0.289242
2,268
72
79
31.5
0.83933
0.272928
0
0.392157
0
0
0.234394
0.111383
0
0
0
0
0
1
0.019608
false
0
0.039216
0.019608
0.078431
0
0
0
0
null
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
null
0
0
0
0
0
0
0
0
0
0
0
0
1
0
6ad467fa9905c0ca84ad3c1dc298047956f35818
252
py
Python
notebooks/2018.11.09 Meeting.py
costrouc/uarray
c3c42147181a88265942ad5f9cf439467f746782
[ "BSD-3-Clause" ]
null
null
null
notebooks/2018.11.09 Meeting.py
costrouc/uarray
c3c42147181a88265942ad5f9cf439467f746782
[ "BSD-3-Clause" ]
null
null
null
notebooks/2018.11.09 Meeting.py
costrouc/uarray
c3c42147181a88265942ad5f9cf439467f746782
[ "BSD-3-Clause" ]
null
null
null
#%% from uarray.core import * #%% s = Scalar(Int(10)) #%% @operation def Always(a: T) -> CCallableUnary[T, CContent]: ... #%% register(Call(Always(w("a")), w("idx")), lambda a, idx: a) #%% a_ten = Always(s) #%% s = Sequence(Int(10), a_ten)
10.956522
58
0.559524
37
252
3.756757
0.594595
0.071942
0
0
0
0
0
0
0
0
0
0.019417
0.18254
252
22
59
11.454545
0.65534
0.047619
0
0
0
0
0.017094
0
0
0
0
0
0
1
0.125
false
0
0.125
0
0.25
0
0
0
0
null
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
null
0
0
0
0
0
0
0
0
0
0
0
0
1
0
6ad4fd638f3c8440ee1f4046774d447aac8466fb
2,540
py
Python
var/spack/repos/builtin/packages/py-black/package.py
dwstreetNNL/spack
8f929707147c49606d00386a10161529dad4ec56
[ "ECL-2.0", "Apache-2.0", "MIT-0", "MIT" ]
null
null
null
var/spack/repos/builtin/packages/py-black/package.py
dwstreetNNL/spack
8f929707147c49606d00386a10161529dad4ec56
[ "ECL-2.0", "Apache-2.0", "MIT-0", "MIT" ]
null
null
null
var/spack/repos/builtin/packages/py-black/package.py
dwstreetNNL/spack
8f929707147c49606d00386a10161529dad4ec56
[ "ECL-2.0", "Apache-2.0", "MIT-0", "MIT" ]
null
null
null
# Copyright 2013-2020 Lawrence Livermore National Security, LLC and other # Spack Project Developers. See the top-level COPYRIGHT file for details. # # SPDX-License-Identifier: (Apache-2.0 OR MIT) from spack import * class PyBlack(PythonPackage): """Black is the uncompromising Python code formatter. By using it, you agree to cede control over minutiae of hand-formatting. In return, Black gives you speed, determinism, and freedom from pycodestyle nagging about formatting. """ homepage = "https://github.com/psf/black" url = "https://pypi.io/packages/source/b/black/black-20.8b1.tar.gz" version('20.8b1', sha256='1c02557aa099101b9d21496f8a914e9ed2222ef70336404eeeac8edba836fbea') version('19.3b0', sha256='68950ffd4d9169716bcb8719a56c07a2f4485354fec061cdd5910aa07369731c') version('18.9b0', sha256='e030a9a28f542debc08acceb273f228ac422798e5215ba2a791a6ddeaaca22a5') variant('d', default=False, description='enable blackd HTTP server') depends_on('[email protected]:') # Needs setuptools at runtime so that `import pkg_resources` succeeds # See #8843 and #8689 for examples of setuptools added as a runtime dep depends_on('py-setuptools', type=('build', 'run')) # Translated from black's setup.py: # https://github.com/ambv/black/blob/master/setup.py depends_on('[email protected]:', type=('build', 'run')) depends_on('[email protected]:', when='@20.8b1:', type=('build', 'run')) depends_on('[email protected]:', when='@:20.8b0', type=('build', 'run')) depends_on('py-appdirs', type=('build', 'run')) depends_on('[email protected]:', type=('build', 'run')) depends_on('[email protected]:', when='@20.8b1:', type=('build', 'run')) depends_on('[email protected]:', when='@19.10b0:', type=('build', 'run')) depends_on('[email protected]:', when='@20.8b0:', type=('build', 'run')) depends_on('[email protected]:0.999', when='@19.10b0:', type=('build', 'run')) depends_on('[email protected]:', when='@20.8b0:^python@:3.6', type=('build', 'run')) depends_on('[email protected]:', when='@20.8b0:', type=('build', 'run')) depends_on('[email protected]:', when='@20.8b0:', type=('build', 'run')) depends_on('[email protected]:', when='+d', type=('build', 'run')) depends_on('py-aiohttp-cors', when='+d', type=('build', 'run')) @property def import_modules(self): modules = ['blib2to3', 'blib2to3.pgen2', 'black'] if '+d' in self.spec: modules.append('blackd') return modules
47.924528
96
0.663386
354
2,540
4.70904
0.446328
0.086383
0.09898
0.14817
0.25135
0.238152
0.210558
0.188362
0.154769
0
0
0.115509
0.144488
2,540
52
97
48.846154
0.651634
0.250394
0
0
0
0.033333
0.446695
0.141258
0
0
0
0
0
1
0.033333
false
0
0.066667
0
0.233333
0
0
0
0
null
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
null
0
0
0
0
0
0
0
0
0
0
0
0
1
0
6ad54c23aea43b34f6b32a39f371e9919e5e2f64
3,772
py
Python
store/adminshop/templatetags/admin_extras.py
vallemrv/my_store_test
2da624fd02c5f1784464f15b751b488f3dd2bae6
[ "Apache-2.0" ]
null
null
null
store/adminshop/templatetags/admin_extras.py
vallemrv/my_store_test
2da624fd02c5f1784464f15b751b488f3dd2bae6
[ "Apache-2.0" ]
null
null
null
store/adminshop/templatetags/admin_extras.py
vallemrv/my_store_test
2da624fd02c5f1784464f15b751b488f3dd2bae6
[ "Apache-2.0" ]
null
null
null
# -*- coding: utf-8 -*- # @Author: Manuel Rodriguez <valle> # @Date: 27-Aug-2017 # @Email: [email protected] # @Filename: admin_extras.py # @Last modified by: valle # @Last modified time: 02-Feb-2018 # @License: Apache license vesion 2.0 from django import template from django.db.models import Q try: from django.core.urlresolvers import reverse except ImportError: from django.urls import reverse from adminshop.models import Testeo, Compras, Presupuesto import json import sys register = template.Library() @register.filter(name='get_nombre_cliente') def get_nombre_cliente(f): return f.get_nombre_cliente() @register.filter(name='enviado') def enviado(f): return "No" if not f.enviado else "Si" @register.filter(name='get_user') def get_user(f): return f.get_user() @register.filter(name='get_ns_imei') def get_ns_imei(f): return f.get_ns_imei() @register.filter(name='get_producto_pk') def get_producto_pk(f): return f.get_producto_pk() @register.filter(name='addcss') def addcss(field, css): return field.as_widget(attrs={"class":css}) @register.filter(name='reparacion') def reparacion(p): try: pres = Presupuesto.objects.filter(producto__pk=p.id)[0] return pres.notas_cliente except: return "" @register.filter(name='num_pres') def num_pres(p): try: pres = Presupuesto.objects.filter(producto__pk=p.id)[0] return pres.pk except: return -1 @register.filter(name='precio_venta') def precio_venta(p): precio = 0 if p.precio_venta == None else p.precio_venta return "{0:.2f} €".format(precio) @register.filter(name='precio_usado') def precio_usado(p): return "{0:.2f} €".format(p.modelo.precio_usado * p.tipo.incremento) @register.filter(name='document_show') def document_show(p): compras = Compras.objects.filter(producto__id=p.pk) if len(compras) > 0: compra = compras[0] else: compra = Compras() return p.estado in ["ST", "VD", "OL", "VT"] @register.filter(name='document_href') def document_href(p): if p.estado in ["ST", "VT", "OL"]: return reverse("get_document_by_id", args=[p.pk]) elif p.estado in ["RP", "OK", "PD"]: return reverse("get_presupuesto_pdf", args=[p.pk]) elif p.estado == "VD": return reverse("get_all_document", args=[p.pk]) else: return "#" @register.filter(name='have_sign') def have_sign(p): compras = Compras.objects.filter(producto__id=p.pk) compra = Compras() if len(compras) > 0: compra = compras[0] return p.estado in ["ST", "VD", "OL", "VT"] and compra.firma == "" @register.filter(name='editable') def editable(p): return p.estado in ["ST", "OL", "VT"] @register.simple_tag(name='get_estado_value') def get_estado_value(test_id, p_id, estado): testeos = Testeo.objects.filter(Q(descripcion__pk=test_id) & Q(producto__pk=p_id)) send = "" if len(testeos) > 0 and testeos[0].estado == estado: send = "selected" return send @register.filter(name='addattrs') def addattrs(field, args): attr = {} try: args_parse = args.replace("'", '"') attr = json.loads(args_parse) except Exception as error: print(error) return field.as_widget(attrs=attr) @register.filter('klass') def klass(ob): return ob.field.widget.__class__.__name__ @register.filter('display') def display(form, value): return dict(form.field.choices)[value] @register.filter('modelo') def modelo(p): if p.modelo != None: return str(p.modelo) else: return p.detalle @register.filter('marca') def marca(p): if p.modelo != None: return str(p.modelo.marca) else: return ""
24.980132
72
0.656946
535
3,772
4.48972
0.271028
0.110741
0.112406
0.034971
0.202748
0.162365
0.147377
0.124896
0.105745
0.046628
0
0.009539
0.194062
3,772
150
73
25.146667
0.779934
0.060445
0
0.214286
0
0
0.091655
0
0
0
0
0
0
1
0.178571
false
0
0.071429
0.089286
0.491071
0.008929
0
0
0
null
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
null
0
0
0
0
0
0
0
0
0
0
0
0
1
0
6ad59b00bcc766f57088e62e448110d102b95431
17,165
py
Python
doc/tutorial/using_gpu_solution_1.py
abdalazizrashid/Theano-PyMC
90fa750461e91fb6281d494ae86404e2153fd7eb
[ "BSD-3-Clause" ]
null
null
null
doc/tutorial/using_gpu_solution_1.py
abdalazizrashid/Theano-PyMC
90fa750461e91fb6281d494ae86404e2153fd7eb
[ "BSD-3-Clause" ]
null
null
null
doc/tutorial/using_gpu_solution_1.py
abdalazizrashid/Theano-PyMC
90fa750461e91fb6281d494ae86404e2153fd7eb
[ "BSD-3-Clause" ]
null
null
null
#!/usr/bin/env python # Aesara tutorial # Solution to Exercise in section 'Using the GPU' # 1. Raw results import numpy as np import aesara import aesara.tensor as tt aesara.config.floatX = "float32" rng = np.random N = 400 feats = 784 D = ( rng.randn(N, feats).astype(aesara.config.floatX), rng.randint(size=N, low=0, high=2).astype(aesara.config.floatX), ) training_steps = 10000 # Declare Aesara symbolic variables x = aesara.shared(D[0], name="x") y = aesara.shared(D[1], name="y") w = aesara.shared(rng.randn(feats).astype(aesara.config.floatX), name="w") b = aesara.shared(np.asarray(0.0, dtype=aesara.config.floatX), name="b") x.tag.test_value = D[0] y.tag.test_value = D[1] # print "Initial model:" # print w.get_value(), b.get_value() # Construct Aesara expression graph p_1 = 1 / (1 + tt.exp(-tt.dot(x, w) - b)) # Probability of having a one prediction = p_1 > 0.5 # The prediction that is done: 0 or 1 xent = -y * tt.log(p_1) - (1 - y) * tt.log(1 - p_1) # Cross-entropy cost = tt.cast(xent.mean(), "float32") + 0.01 * (w ** 2).sum() # The cost to optimize gw, gb = tt.grad(cost, [w, b]) # Compile expressions to functions train = aesara.function( inputs=[], outputs=[prediction, xent], updates=[(w, w - 0.01 * gw), (b, b - 0.01 * gb)], name="train", ) predict = aesara.function(inputs=[], outputs=prediction, name="predict") if any( [ n.op.__class__.__name__ in ["Gemv", "CGemv", "Gemm", "CGemm"] for n in train.maker.fgraph.toposort() ] ): print("Used the cpu") elif any( [ n.op.__class__.__name__ in ["GpuGemm", "GpuGemv"] for n in train.maker.fgraph.toposort() ] ): print("Used the gpu") else: print("ERROR, not able to tell if aesara used the cpu or the gpu") print(train.maker.fgraph.toposort()) for i in range(training_steps): pred, err = train() # print "Final model:" # print w.get_value(), b.get_value() print("target values for D") print(D[1]) print("prediction on D") print(predict()) """ # 2. Profiling # 2.1 Profiling for CPU computations # In your terminal, type: $ THEANO_FLAGS=profile=True,device=cpu python using_gpu_solution_1.py # You'll see first the output of the script: Used the cpu target values for D prediction on D # Followed by the output of profiling.. You'll see profiling results for each function # in the script, followed by a summary for all functions. # We'll show here only the summary: Results were produced using an Intel(R) Core(TM) i7-5930K CPU @ 3.50GHz Function profiling ================== Message: Sum of all(2) printed profiles at exit excluding Scan op profile. Time in 10001 calls to Function.__call__: 1.300452e+00s Time in Function.fn.__call__: 1.215823e+00s (93.492%) Time in thunks: 1.157602e+00s (89.015%) Total compile time: 8.922548e-01s Number of Apply nodes: 17 Aesara Optimizer time: 6.270301e-01s Aesara validate time: 5.993605e-03s Aesara Linker time (includes C, CUDA code generation/compiling): 2.949309e-02s Import time 3.543139e-03s Time in all call to aesara.grad() 1.848292e-02s Time since aesara import 2.864s Class --- <% time> <sum %> <apply time> <time per call> <type> <#call> <#apply> <Class name> 64.5% 64.5% 0.747s 3.73e-05s C 20001 3 aesara.tensor.blas_c.CGemv 33.1% 97.7% 0.384s 4.79e-06s C 80001 9 aesara.tensor.elemwise.Elemwise 1.0% 98.6% 0.011s 1.14e-06s C 10000 1 aesara.tensor.elemwise.Sum 0.7% 99.4% 0.009s 2.85e-07s C 30001 4 aesara.tensor.elemwise.DimShuffle 0.3% 99.7% 0.004s 3.64e-07s C 10001 2 aesara.tensor.basic.AllocEmpty 0.3% 100.0% 0.004s 1.78e-07s C 20001 3 aesara.compile.ops.Shape_i ... (remaining 0 Classes account for 0.00%(0.00s) of the runtime) Ops --- <% time> <sum %> <apply time> <time per call> <type> <#call> <#apply> <Op name> 64.5% 64.5% 0.747s 3.73e-05s C 20001 3 CGemv{inplace} 18.7% 83.2% 0.217s 2.17e-05s C 10000 1 Elemwise{Composite{((i0 * scalar_softplus(i1)) - (i2 * i3 * scalar_softplus(i4)))}}[(0, 4)] 8.9% 92.1% 0.103s 1.03e-05s C 10000 1 Elemwise{Composite{(((scalar_sigmoid(i0) * i1 * i2) / i3) - ((scalar_sigmoid((-i0)) * i1 * i4) / i3))}}[(0, 0)] 4.3% 96.4% 0.050s 4.98e-06s C 10000 1 Elemwise{Composite{GT(scalar_sigmoid(i0), i1)}} 1.0% 97.4% 0.011s 1.14e-06s C 10000 1 Sum{acc_dtype=float64} 0.5% 97.9% 0.006s 2.83e-07s C 20001 3 InplaceDimShuffle{x} 0.4% 98.3% 0.004s 4.22e-07s C 10000 1 Elemwise{sub,no_inplace} 0.3% 98.6% 0.004s 3.70e-07s C 10000 1 Elemwise{neg,no_inplace} 0.3% 98.9% 0.004s 3.64e-07s C 10001 2 AllocEmpty{dtype='float32'} 0.3% 99.2% 0.004s 1.78e-07s C 20001 3 Shape_i{0} 0.2% 99.5% 0.003s 2.88e-07s C 10000 1 InplaceDimShuffle{1,0} 0.2% 99.7% 0.003s 2.65e-07s C 10000 1 Elemwise{Composite{((-i0) - i1)}}[(0, 0)] 0.2% 99.9% 0.002s 1.98e-07s C 10000 1 Elemwise{Cast{float32}} 0.1% 100.0% 0.002s 1.54e-07s C 10000 1 Elemwise{Composite{(i0 - (i1 * i2))}}[(0, 0)] 0.0% 100.0% 0.000s 4.77e-06s C 1 1 Elemwise{Composite{GT(scalar_sigmoid((-((-i0) - i1))), i2)}} ... (remaining 0 Ops account for 0.00%(0.00s) of the runtime) Apply ------ <% time> <sum %> <apply time> <time per call> <#call> <id> <Apply name> 34.0% 34.0% 0.394s 3.94e-05s 10000 7 CGemv{inplace}(AllocEmpty{dtype='float32'}.0, TensorConstant{1.0}, x, w, TensorConstant{0.0}) 30.5% 64.5% 0.353s 3.53e-05s 10000 15 CGemv{inplace}(w, TensorConstant{-0.00999999977648}, x.T, Elemwise{Composite{(((scalar_sigmoid(i0) * i1 * i2) / i3) - ((scalar_sigmoid((-i0)) * i1 * i4) / i3))}}[(0, 0)].0, TensorConstant{0.999800026417}) 18.7% 83.2% 0.217s 2.17e-05s 10000 12 Elemwise{Composite{((i0 * scalar_softplus(i1)) - (i2 * i3 * scalar_softplus(i4)))}}[(0, 4)](y, Elemwise{Composite{((-i0) - i1)}}[(0, 0)].0, TensorConstant{(1,) of -1.0}, Elemwise{sub,no_inplace}.0, Elemwise{neg,no_inplace}.0) 8.9% 92.1% 0.103s 1.03e-05s 10000 13 Elemwise{Composite{(((scalar_sigmoid(i0) * i1 * i2) / i3) - ((scalar_sigmoid((-i0)) * i1 * i4) / i3))}}[(0, 0)](Elemwise{Composite{((-i0) - i1)}}[(0, 0)].0, TensorConstant{(1,) of -1.0}, y, Elemwise{Cast{float32}}.0, Elemwise{sub,no_inplace}.0) 4.3% 96.4% 0.050s 4.98e-06s 10000 11 Elemwise{Composite{GT(scalar_sigmoid(i0), i1)}}(Elemwise{neg,no_inplace}.0, TensorConstant{(1,) of 0.5}) 1.0% 97.4% 0.011s 1.14e-06s 10000 14 Sum{acc_dtype=float64}(Elemwise{Composite{(((scalar_sigmoid(i0) * i1 * i2) / i3) - ((scalar_sigmoid((-i0)) * i1 * i4) / i3))}}[(0, 0)].0) 0.4% 97.8% 0.004s 4.22e-07s 10000 4 Elemwise{sub,no_inplace}(TensorConstant{(1,) of 1.0}, y) 0.3% 98.1% 0.004s 3.76e-07s 10000 0 InplaceDimShuffle{x}(b) 0.3% 98.4% 0.004s 3.70e-07s 10000 10 Elemwise{neg,no_inplace}(Elemwise{Composite{((-i0) - i1)}}[(0, 0)].0) 0.3% 98.7% 0.004s 3.64e-07s 10000 5 AllocEmpty{dtype='float32'}(Shape_i{0}.0) 0.2% 99.0% 0.003s 2.88e-07s 10000 2 InplaceDimShuffle{1,0}(x) 0.2% 99.2% 0.003s 2.65e-07s 10000 9 Elemwise{Composite{((-i0) - i1)}}[(0, 0)](CGemv{inplace}.0, InplaceDimShuffle{x}.0) 0.2% 99.4% 0.002s 2.21e-07s 10000 1 Shape_i{0}(x) 0.2% 99.6% 0.002s 1.98e-07s 10000 8 Elemwise{Cast{float32}}(InplaceDimShuffle{x}.0) 0.2% 99.7% 0.002s 1.90e-07s 10000 6 InplaceDimShuffle{x}(Shape_i{0}.0) 0.1% 99.9% 0.002s 1.54e-07s 10000 16 Elemwise{Composite{(i0 - (i1 * i2))}}[(0, 0)](b, TensorConstant{0.00999999977648}, Sum{acc_dtype=float64}.0) 0.1% 100.0% 0.001s 1.34e-07s 10000 3 Shape_i{0}(y) 0.0% 100.0% 0.000s 3.89e-05s 1 3 CGemv{inplace}(AllocEmpty{dtype='float32'}.0, TensorConstant{1.0}, x, w, TensorConstant{0.0}) 0.0% 100.0% 0.000s 4.77e-06s 1 4 Elemwise{Composite{GT(scalar_sigmoid((-((-i0) - i1))), i2)}}(CGemv{inplace}.0, InplaceDimShuffle{x}.0, TensorConstant{(1,) of 0.5}) 0.0% 100.0% 0.000s 1.19e-06s 1 0 InplaceDimShuffle{x}(b) ... (remaining 2 Apply instances account for 0.00%(0.00s) of the runtime) # 2.2 Profiling for GPU computations # In your terminal, type: $ CUDA_LAUNCH_BLOCKING=1 THEANO_FLAGS=profile=True,device=cuda python using_gpu_solution_1.py # You'll see first the output of the script: Used the gpu target values for D prediction on D Results were produced using a GeForce GTX TITAN X # Profiling summary for all functions: Function profiling ================== Message: Sum of all(2) printed profiles at exit excluding Scan op profile. Time in 10001 calls to Function.__call__: 4.181247e+00s Time in Function.fn.__call__: 4.081113e+00s (97.605%) Time in thunks: 3.915566e+00s (93.646%) Total compile time: 9.256095e+00s Number of Apply nodes: 21 Aesara Optimizer time: 9.996419e-01s Aesara validate time: 6.523132e-03s Aesara Linker time (includes C, CUDA code generation/compiling): 8.239602e+00s Import time 4.228115e-03s Time in all call to aesara.grad() 3.286195e-02s Time since aesara import 15.415s Class --- <% time> <sum %> <apply time> <time per call> <type> <#call> <#apply> <Class name> 59.5% 59.5% 2.329s 1.16e-04s C 20001 3 aesara.sandbox.gpuarray.blas.GpuGemv 29.8% 89.3% 1.166s 1.30e-05s C 90001 10 aesara.sandbox.gpuarray.elemwise.GpuElemwise 4.1% 93.4% 0.162s 8.10e-06s C 20001 3 aesara.sandbox.gpuarray.basic_ops.HostFromGpu 3.3% 96.7% 0.131s 1.31e-05s C 10000 1 aesara.sandbox.gpuarray.elemwise.GpuCAReduceCuda 1.6% 98.3% 0.061s 6.10e-06s C 10000 1 aesara.sandbox.gpuarray.basic_ops.GpuFromHost 0.8% 99.1% 0.033s 1.09e-06s C 30001 4 aesara.sandbox.gpuarray.elemwise.GpuDimShuffle 0.7% 99.8% 0.026s 2.59e-06s C 10001 2 aesara.sandbox.gpuarray.basic_ops.GpuAllocEmpty 0.2% 100.0% 0.008s 3.95e-07s C 20001 3 aesara.compile.ops.Shape_i ... (remaining 0 Classes account for 0.00%(0.00s) of the runtime) Ops --- <% time> <sum %> <apply time> <time per call> <type> <#call> <#apply> <Op name> 59.5% 59.5% 2.329s 1.16e-04s C 20001 3 GpuGemv{inplace=True} 4.1% 63.6% 0.162s 8.10e-06s C 20001 3 HostFromGpu(gpuarray) 4.0% 67.6% 0.157s 1.57e-05s C 10000 1 GpuElemwise{Composite{((i0 * scalar_softplus(i1)) - (i2 * i3 * scalar_softplus(i4)))}}[]<gpuarray> 3.8% 71.4% 0.149s 1.49e-05s C 10000 1 GpuElemwise{Composite{(((scalar_sigmoid(i0) * i1 * i2) / i3) - ((i4 * i1 * i5) / i3))}}[(0, 0)]<gpuarray> 3.7% 75.1% 0.144s 1.44e-05s C 10000 1 GpuElemwise{sub,no_inplace} 3.6% 78.7% 0.141s 1.41e-05s C 10000 1 GpuElemwise{gt,no_inplace} 3.4% 82.1% 0.133s 1.33e-05s C 10000 1 GpuElemwise{Cast{float32}}[]<gpuarray> 3.4% 85.5% 0.133s 1.33e-05s C 10000 1 GpuElemwise{Composite{((-i0) - i1)}}[(0, 0)]<gpuarray> 3.3% 88.8% 0.131s 1.31e-05s C 10000 1 GpuCAReduceCuda{add} 2.9% 91.7% 0.112s 1.12e-05s C 10000 1 GpuElemwise{neg,no_inplace} 2.6% 94.3% 0.102s 1.02e-05s C 10000 1 GpuElemwise{Composite{(i0 - (i1 * i2))}}[(0, 0)]<gpuarray> 2.5% 96.7% 0.096s 9.63e-06s C 10000 1 GpuElemwise{ScalarSigmoid}[(0, 0)]<gpuarray> 1.6% 98.3% 0.061s 6.10e-06s C 10000 1 GpuFromHost<None> 0.7% 99.0% 0.026s 2.59e-06s C 10001 2 GpuAllocEmpty{dtype='float32', context_name=None} 0.5% 99.5% 0.021s 1.06e-06s C 20001 3 InplaceGpuDimShuffle{x} 0.3% 99.8% 0.011s 1.14e-06s C 10000 1 InplaceGpuDimShuffle{1,0} 0.2% 100.0% 0.008s 3.95e-07s C 20001 3 Shape_i{0} 0.0% 100.0% 0.000s 2.00e-05s C 1 1 GpuElemwise{Composite{GT(scalar_sigmoid((-((-i0) - i1))), i2)}}[]<gpuarray> ... (remaining 0 Ops account for 0.00%(0.00s) of the runtime) Apply ------ <% time> <sum %> <apply time> <time per call> <#call> <id> <Apply name> 55.0% 55.0% 2.154s 2.15e-04s 10000 7 GpuGemv{inplace=True}(GpuAllocEmpty{dtype='float32', context_name=None}.0, TensorConstant{1.0}, x, w, TensorConstant{0.0}) 4.5% 59.5% 0.176s 1.76e-05s 10000 18 GpuGemv{inplace=True}(w, TensorConstant{-0.00999999977648}, InplaceGpuDimShuffle{1,0}.0, GpuElemwise{Composite{(((scalar_sigmoid(i0) * i1 * i2) / i3) - ((i4 * i1 * i5) / i3))}}[(0, 0)]<gpuarray>.0, TensorConstant{0.999800026417}) 4.0% 63.5% 0.157s 1.57e-05s 10000 12 GpuElemwise{Composite{((i0 * scalar_softplus(i1)) - (i2 * i3 * scalar_softplus(i4)))}}[]<gpuarray>(y, GpuElemwise{Composite{((-i0) - i1)}}[(0, 0)]<gpuarray>.0, GpuArrayConstant{[-1.]}, GpuElemwise{sub,no_inplace}.0, GpuElemwise{neg,no_inplace}.0) 3.8% 67.3% 0.149s 1.49e-05s 10000 15 GpuElemwise{Composite{(((scalar_sigmoid(i0) * i1 * i2) / i3) - ((i4 * i1 * i5) / i3))}}[(0, 0)]<gpuarray>(GpuElemwise{Composite{((-i0) - i1)}}[(0, 0)]<gpuarray>.0, GpuArrayConstant{[-1.]}, y, GpuElemwise{Cast{float32}}[]<gpuarray>.0, GpuElemwise{ScalarSigmoid}[(0, 0)]<gpuarray>.0, GpuElemwise{sub,no_inplace}.0) 3.7% 71.0% 0.144s 1.44e-05s 10000 4 GpuElemwise{sub,no_inplace}(GpuArrayConstant{[ 1.]}, y) 3.6% 74.6% 0.141s 1.41e-05s 10000 16 GpuElemwise{gt,no_inplace}(GpuElemwise{ScalarSigmoid}[(0, 0)]<gpuarray>.0, GpuArrayConstant{[ 0.5]}) 3.4% 78.0% 0.133s 1.33e-05s 10000 10 GpuElemwise{Cast{float32}}[]<gpuarray>(InplaceGpuDimShuffle{x}.0) 3.4% 81.4% 0.133s 1.33e-05s 10000 9 GpuElemwise{Composite{((-i0) - i1)}}[(0, 0)]<gpuarray>(GpuGemv{inplace=True}.0, InplaceGpuDimShuffle{x}.0) 3.3% 84.7% 0.131s 1.31e-05s 10000 17 GpuCAReduceCuda{add}(GpuElemwise{Composite{(((scalar_sigmoid(i0) * i1 * i2) / i3) - ((i4 * i1 * i5) / i3))}}[(0, 0)]<gpuarray>.0) 2.9% 87.5% 0.112s 1.12e-05s 10000 11 GpuElemwise{neg,no_inplace}(GpuElemwise{Composite{((-i0) - i1)}}[(0, 0)]<gpuarray>.0) 2.6% 90.1% 0.102s 1.02e-05s 10000 20 GpuElemwise{Composite{(i0 - (i1 * i2))}}[(0, 0)]<gpuarray>(b, GpuArrayConstant{0.00999999977648}, GpuCAReduceCuda{add}.0) 2.5% 92.6% 0.096s 9.63e-06s 10000 13 GpuElemwise{ScalarSigmoid}[(0, 0)]<gpuarray>(GpuElemwise{neg,no_inplace}.0) 2.3% 94.9% 0.090s 9.04e-06s 10000 19 HostFromGpu(gpuarray)(GpuElemwise{gt,no_inplace}.0) 1.8% 96.7% 0.072s 7.16e-06s 10000 14 HostFromGpu(gpuarray)(GpuElemwise{Composite{((i0 * scalar_softplus(i1)) - (i2 * i3 * scalar_softplus(i4)))}}[]<gpuarray>.0) 1.6% 98.3% 0.061s 6.10e-06s 10000 6 GpuFromHost<None>(Shape_i{0}.0) 0.7% 99.0% 0.026s 2.59e-06s 10000 5 GpuAllocEmpty{dtype='float32', context_name=None}(Shape_i{0}.0) 0.3% 99.3% 0.013s 1.33e-06s 10000 0 InplaceGpuDimShuffle{x}(b) 0.3% 99.6% 0.011s 1.14e-06s 10000 2 InplaceGpuDimShuffle{1,0}(x) 0.2% 99.8% 0.008s 7.94e-07s 10000 8 InplaceGpuDimShuffle{x}(GpuFromHost<None>.0) 0.1% 99.9% 0.005s 5.27e-07s 10000 1 Shape_i{0}(x) ... (remaining 7 Apply instances account for 0.07%(0.00s) of the runtime) # 3. Conclusions Examine and compare 'Ops' summaries for CPU and GPU. Usually GPU ops 'GpuFromHost' and 'HostFromGpu' by themselves consume a large amount of extra time, but by making as few as possible data transfers between GPU and CPU, you can minimize their overhead. Notice that each of the GPU ops consumes more time than its CPU counterpart. This is because the ops operate on small inputs; if you increase the input data size (e.g. set N = 4000), you will see a gain from using the GPU. """
62.192029
374
0.579435
2,707
17,165
3.629479
0.16956
0.015878
0.017812
0.029415
0.567226
0.45028
0.381069
0.344733
0.27888
0.250483
0
0.197341
0.268162
17,165
275
375
62.418182
0.584779
0.024061
0
0.075472
0
0
0.111111
0
0
0
0
0
0
1
0
false
0
0.056604
0
0.056604
0.150943
0
0
0
null
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
null
0
0
0
0
0
0
0
0
0
0
0
0
1
0
6ad5dcf7e9f96dc2d1c33142dc858481b208540e
1,242
py
Python
chainercv/transforms/bbox/translate_bbox.py
souravsingh/chainercv
8f76510472bc95018c183e72f37bc6c34a89969c
[ "MIT" ]
1
2018-08-24T02:28:31.000Z
2018-08-24T02:28:31.000Z
chainercv/transforms/bbox/translate_bbox.py
souravsingh/chainercv
8f76510472bc95018c183e72f37bc6c34a89969c
[ "MIT" ]
null
null
null
chainercv/transforms/bbox/translate_bbox.py
souravsingh/chainercv
8f76510472bc95018c183e72f37bc6c34a89969c
[ "MIT" ]
2
2019-12-16T02:20:26.000Z
2022-01-17T02:00:49.000Z
def translate_bbox(bbox, y_offset=0, x_offset=0): """Translate bounding boxes. This method is mainly used together with image transforms, such as padding and cropping, which translates the left top point of the image from coordinate :math:`(0, 0)` to coordinate :math:`(y, x) = (y_{offset}, x_{offset})`. The bounding boxes are expected to be packed into a two dimensional tensor of shape :math:`(R, 4)`, where :math:`R` is the number of bounding boxes in the image. The second axis represents attributes of the bounding box. They are :math:`(y_{min}, x_{min}, y_{max}, x_{max})`, where the four attributes are coordinates of the top left and the bottom right vertices. Args: bbox (~numpy.ndarray): Bounding boxes to be transformed. The shape is :math:`(R, 4)`. :math:`R` is the number of bounding boxes. y_offset (int or float): The offset along y axis. x_offset (int or float): The offset along x axis. Returns: ~numpy.ndarray: Bounding boxes translated according to the given offsets. """ out_bbox = bbox.copy() out_bbox[:, :2] += (y_offset, x_offset) out_bbox[:, 2:] += (y_offset, x_offset) return out_bbox
37.636364
78
0.65942
190
1,242
4.210526
0.415789
0.0975
0.03
0.0525
0.2075
0.2075
0.2075
0.0775
0
0
0
0.008439
0.236715
1,242
32
79
38.8125
0.835443
0.777778
0
0
0
0
0
0
0
0
0
0
0
1
0.2
false
0
0
0
0.4
0
0
0
0
null
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
null
0
0
0
0
0
0
0
0
0
0
0
0
1
0
6ad9fa52c59620d080c895b1dcbcc37ef6f3e407
504
py
Python
behave/features/environment.py
ministryofjustice/cla-end-to-end-tests
3d7e525c17f38403a91087c2b1af460ca1109a9b
[ "MIT" ]
1
2022-02-09T13:12:57.000Z
2022-02-09T13:12:57.000Z
behave/features/environment.py
ministryofjustice/cla-end-to-end-tests
3d7e525c17f38403a91087c2b1af460ca1109a9b
[ "MIT" ]
3
2021-09-16T12:24:44.000Z
2022-03-08T10:21:26.000Z
behave/features/environment.py
ministryofjustice/cla-end-to-end-tests
3d7e525c17f38403a91087c2b1af460ca1109a9b
[ "MIT" ]
null
null
null
import os from configparser import ConfigParser from helper.helper_web import get_browser def before_all(context): config = ConfigParser() print((os.path.join(os.getcwd(), 'setup.cfg'))) my_file = (os.path.join(os.getcwd(), 'setup.cfg')) config.read(my_file) # Reading the browser type from the configuration file helper_func = get_browser(config.get('Environment', 'Browser')) context.helperfunc = helper_func def after_all(context): context.helperfunc.close()
28
67
0.71627
67
504
5.253731
0.462687
0.056818
0.056818
0.068182
0.147727
0.147727
0.147727
0
0
0
0
0
0.164683
504
18
68
28
0.836105
0.103175
0
0
0
0
0.079823
0
0
0
0
0
0
1
0.166667
false
0
0.25
0
0.416667
0.083333
0
0
0
null
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
null
0
0
0
0
0
0
0
0
0
0
0
0
1
0
6ada8f8c31036f868e794a58c29dd691ac89f964
2,422
py
Python
recipe_organizer/gui/recipe_list/recipe_source.py
j-sommer/recipe-organizer
91d39e12c453ecf3d3254645b565bbceacaecde9
[ "MIT" ]
null
null
null
recipe_organizer/gui/recipe_list/recipe_source.py
j-sommer/recipe-organizer
91d39e12c453ecf3d3254645b565bbceacaecde9
[ "MIT" ]
null
null
null
recipe_organizer/gui/recipe_list/recipe_source.py
j-sommer/recipe-organizer
91d39e12c453ecf3d3254645b565bbceacaecde9
[ "MIT" ]
null
null
null
from pathlib import Path from tkinter import Frame, Label from recipe_organizer.events.event import Event, EventType from recipe_organizer.events.event_observer import EventObserver from recipe_organizer.events.event_publisher import EventPublisher from recipe_organizer.gui.interfaces.widget_container import WidgetContainer from recipe_organizer.gui.recipe_summary.recipe_summary import RecipeSummary from recipe_organizer.recipe.recipe import Recipe class RecipeSource(Frame, WidgetContainer, EventObserver): _MAX_COLUMN_COUNT = 6 _label_source_directory: Label _recipe_summaries: [RecipeSummary] = [] _row_index = 0 def __init__(self, parent): Frame.__init__(self, parent) self.define_widgets() self.define_layout() EventPublisher.add(self) def define_widgets(self) -> None: self._label_source_directory = Label(self, text="-") def define_layout(self) -> None: self._label_source_directory.grid(row=self.__get_row_index()) def notify(self, event: Event) -> None: if event.event_type == EventType.SOURCE_SET: self._label_source_directory.configure(text=event.payload.name) self.__load_recipes(event.payload) def __get_row_index(self) -> int: current_index = self._row_index self._row_index += 1 return current_index def __load_recipes(self, directory: Path): recipes: [Recipe] = [] file_paths = directory.glob("**/*.json") for file_path in file_paths: with open(file_path, "r", encoding="utf-8") as file: json_data = file.read() try: recipe = Recipe.from_json(json_data) except KeyError: pass else: recipes.append(recipe) self.__create_list(recipes) def __create_list(self, recipes: [Recipe]): current_row_index = self.__get_row_index() for index, recipe in enumerate(recipes): if index % self._MAX_COLUMN_COUNT == 0: current_row_index = self.__get_row_index() recipe_summary = RecipeSummary(self, recipe) recipe_summary.grid(row=current_row_index, column=index % self._MAX_COLUMN_COUNT, padx=16, pady=10) self.columnconfigure(index, minsize=200) self._recipe_summaries.append(recipe_summary)
34.112676
111
0.671346
284
2,422
5.366197
0.320423
0.052493
0.074803
0.049213
0.170604
0.081365
0.03937
0
0
0
0
0.006547
0.243187
2,422
70
112
34.6
0.824877
0
0
0.038462
0
0
0.006606
0
0
0
0
0
0
1
0.134615
false
0.019231
0.153846
0
0.403846
0
0
0
0
null
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
null
0
0
0
0
0
0
0
0
0
0
0
0
1
0
6ada8fe0ced127e4eb158cbef0bc674aa2bd2da2
917
py
Python
var/spack/repos/builtin/packages/spot/package.py
xiki-tempula/spack
9d66c05e93ab8a933fc59915040c0e0c86a4aac4
[ "ECL-2.0", "Apache-2.0", "MIT" ]
1
2020-05-24T15:23:12.000Z
2020-05-24T15:23:12.000Z
var/spack/repos/builtin/packages/spot/package.py
xiki-tempula/spack
9d66c05e93ab8a933fc59915040c0e0c86a4aac4
[ "ECL-2.0", "Apache-2.0", "MIT" ]
6
2022-02-26T11:44:34.000Z
2022-03-12T12:14:50.000Z
var/spack/repos/builtin/packages/spot/package.py
xiki-tempula/spack
9d66c05e93ab8a933fc59915040c0e0c86a4aac4
[ "ECL-2.0", "Apache-2.0", "MIT" ]
1
2021-01-06T18:58:26.000Z
2021-01-06T18:58:26.000Z
# Copyright 2013-2020 Lawrence Livermore National Security, LLC and other # Spack Project Developers. See the top-level COPYRIGHT file for details. # # SPDX-License-Identifier: (Apache-2.0 OR MIT) from spack import * class Spot(AutotoolsPackage): """Spot is a C++11 library for omega-automata manipulation and model checking.""" homepage = "https://spot.lrde.epita.fr/" url = "http://www.lrde.epita.fr/dload/spot/spot-1.99.3.tar.gz" version('1.99.3', sha256='86964af559994af4451a8dca663a9e1db6e869ed60e747ab60ce72dddc31b61b') version('1.2.6', sha256='360678c75f6741f697e8e56cdbc9937f104eb723a839c3629f0dc5dc6de11bfc') variant('python', default=True, description='Enable python API') depends_on("[email protected]:", when='@1.99.5: +python') depends_on("[email protected]:", when='@1.99: +python') depends_on("python@2:", when='+python') depends_on('boost', when='@:1.2.6')
38.208333
96
0.707743
120
917
5.375
0.616667
0.018605
0.069767
0.049612
0
0
0
0
0
0
0
0.15443
0.138495
917
23
97
39.869565
0.662025
0.288986
0
0
0
0.090909
0.507862
0.201258
0
0
0
0
0
1
0
false
0
0.090909
0
0.363636
0
0
0
0
null
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
null
0
0
0
0
0
0
0
0
0
0
0
0
1
0
6adce2d4edcce50b7803e777bec26f0e2dbe1ef5
8,165
py
Python
GPT-distributed.py
wenhuchen/LogicNLG
e986516e5b6d310219215510b3fe1603d03215cd
[ "MIT" ]
141
2020-04-23T03:30:16.000Z
2022-03-19T08:36:31.000Z
GPT-distributed.py
wenhuchen/LogicNLG
e986516e5b6d310219215510b3fe1603d03215cd
[ "MIT" ]
15
2020-04-26T07:12:30.000Z
2021-06-10T16:40:35.000Z
GPT-distributed.py
wenhuchen/LogicNLG
e986516e5b6d310219215510b3fe1603d03215cd
[ "MIT" ]
20
2020-04-27T03:07:10.000Z
2022-01-22T22:13:15.000Z
import argparse import logging import torch import torch.nn.functional as F import numpy as np from torch import nn from torch.autograd import Variable from transformers import GPT2Config from transformers import GPT2LMHeadModel, GPT2Tokenizer, BertTokenizer from DataLoader import * from Model import BERTGen from utils import sample_sequence import torch.optim as optim import math import sys import pandas import os import numpy import nltk from torch.utils.tensorboard import SummaryWriter import warnings from tqdm import tqdm, trange from torch.utils.data import RandomSampler, SequentialSampler from torch.utils.data import DataLoader as DL import torch from torch.utils.data.distributed import DistributedSampler warnings.filterwarnings("ignore", category=UserWarning) device = torch.device('cuda') def set_seed(args): np.random.seed(args.seed) torch.manual_seed(args.seed) if args.n_gpu > 0: torch.cuda.manual_seed_all(args.seed) if __name__ == '__main__': parser = argparse.ArgumentParser() parser.add_argument("--model", default='gpt2', type=str) parser.add_argument("--top_k", type=int, default=0) parser.add_argument("--top_p", type=float, default=0.9) parser.add_argument('--seed', type=int, default=42, help="random seed for initialization") parser.add_argument('--do_train', default=False, action="store_true", help="whether to train or test the model") parser.add_argument('--do_rl', default=False, action="store_true", help="whether to train or test the model") parser.add_argument('--do_val', default=False, action="store_true", help="whether to train or test the model") parser.add_argument('--do_test', default=False, action="store_true", help="whether to compute the BLEU scores on test split") parser.add_argument('--do_test_challenge', default=False, action="store_true", help="whether to compute the BLEU scores on challenge split") parser.add_argument('--do_ppl', default=False, action="store_true", help="whether to compute perplexity of the model") parser.add_argument('--do_verify', default=False, action="store_true", help="whether compute the adv-acc score on test split") parser.add_argument('--do_verify_challenge', default=False, action="store_true", help="whether compute the adv-acc score on challenge split") parser.add_argument('--epoch', default=10, type=int, help="whether to train or test the model") parser.add_argument('--batch_size', default=6, type=int, help="whether to train or test the model") parser.add_argument('--local_rank', default=-1, type=int, help="whether to train or test the model") parser.add_argument('--learning_rate', default=2e-6, type=float, help="whether to train or test the model") parser.add_argument('--dataset', default='table', type=str, help="whether to train or test the model") parser.add_argument('--every', default=50, type=int, help="whether to train or test the model") parser.add_argument('--load_from', default='', type=str, help="whether to train or test the model") parser.add_argument('--id', default='models', type=str, help="specify the id of the experiment") parser.add_argument('--max_len', default=800, type=int, help="whether to train or test the model") parser.add_argument('--dim', default=768, type=int, help="whether to train or test the model") parser.add_argument('--layers', default=3, type=int, help="whether to train or test the model") parser.add_argument('--head', default=4, type=int, help="whether to train or test the model") parser.add_argument("--modelpath", type=str, default="bert-base-uncased", help="For distributed training: local_rank") parser.add_argument('--gradient_accumulation_steps', type=int, default=5, help="accumulation steps for gradient") parser.add_argument('--decode_first_K', type=int, default=10000, help="For debugging purpose") args = parser.parse_args() if args.local_rank == -1: device = torch.device("cuda") args.n_gpu = 1 else: torch.cuda.set_device(args.local_rank) device = torch.device('cuda', args.local_rank) torch.distributed.init_process_group(backend='nccl') args.n_gpu = 1 args.device = device if args.local_rank not in [-1, 0]: torch.distributed.barrier() tokenizer = GPT2Tokenizer.from_pretrained(args.model) model = GPT2LMHeadModel.from_pretrained(args.model) #model = nn.DataParallel(model) model.to(args.device) if args.local_rank == 0: torch.distributed.barrier() criterion = nn.CrossEntropyLoss(reduction='none', ignore_index=-1) if args.do_train: if args.local_rank in [-1, 0]: if not os.path.exists(args.id): os.mkdir(args.id) tb_writer = SummaryWriter(log_dir='tensorboard/GPT2-{}'.format(args.model)) dataset = GPTTableDataset2('data/train_lm_preprocessed.json', tokenizer, args.max_len) if args.local_rank == -1: sampler = RandomSampler(dataset) else: sampler = DistributedSampler(dataset) train_dataloader = DL(dataset, sampler=sampler, batch_size=args.batch_size, num_workers=0) model.train() optimizer = optim.Adam(model.parameters(), args.learning_rate) avg_loss = 0 global_step = 0 if args.local_rank != -1: model = torch.nn.parallel.DistributedDataParallel(model, device_ids=[args.local_rank], output_device=args.local_rank, find_unused_parameters=True) else: model = torch.nn.DataParallel(model) for epoch_idx in trange(0, args.epoch, desc='Epoch', disable=args.local_rank not in [-1, 0]): #for idx in range(0, dataset.train_len()): for idx, batch in enumerate(tqdm(train_dataloader, desc="Iteration", disable=args.local_rank not in [-1, 0])): batch = tuple(Variable(t).to(device) for t in batch) trg_inp, trg_out, mask, caption = batch inputs = torch.cat([caption, trg_inp], 1) model.zero_grad() optimizer.zero_grad() logits = model(inputs)[0] logits = logits[:, -trg_out.shape[1]:, :].contiguous() loss = criterion(logits.view(-1, logits.shape[-1]), trg_out.view(-1)) loss = loss * mask.view(-1) loss = loss.sum() / mask.sum() avg_loss += loss.item() loss.backward() optimizer.step() global_step += 1 if args.local_rank in [-1, 0] and idx % args.every == 0 and idx > 0: tb_writer.add_scalar("perplexity", math.exp(avg_loss / args.every), global_step) fake_inputs = caption gt_inputs = trg_out.cpu().data.numpy() #samples = model.sample(fake_inputs, tabfeat, caption, highlight_idx, bert) samples = sample_sequence(model, 30, fake_inputs, []) samples = samples[:, caption.shape[1]:] samples = samples.cpu().data.numpy() for s, gt in zip(samples, gt_inputs): text = tokenizer.decode(s, clean_up_tokenization_spaces=True) text = text[: text.find(tokenizer.eos_token)] print("PREDICTION |||||| ", text) text = tokenizer.decode(gt, clean_up_tokenization_spaces=True) text = text[: text.find(tokenizer.eos_token)] print("GROUNDTRUH |||||| ",text) break avg_loss = 0 if args.local_rank in [-1, 0]: if args.model == 'gpt2': torch.save(model.state_dict(), '{}/GPT_ep{}.pt'.format(args.id, epoch_idx)) else: torch.save(model.state_dict(), '{}/GPT_medium_ep{}.pt'.format(args.id, epoch_idx)) if args.local_rank in [-1, 0]: tb_writer.close()
47.196532
145
0.643846
1,068
8,165
4.779026
0.23221
0.04761
0.089929
0.049961
0.380486
0.330525
0.3029
0.27116
0.248824
0.239616
0
0.012314
0.23417
8,165
173
146
47.196532
0.803934
0.017759
0
0.135714
0
0
0.180095
0.012721
0
0
0
0
0
1
0.007143
false
0
0.185714
0
0.192857
0.014286
0
0
0
null
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
null
0
0
0
0
0
0
0
0
0
0
0
0
1
0
6addc56efc2458ffaaa37a8a1a9d3060123eac26
9,901
py
Python
bentoml/saved_bundle/loader.py
niits/BentoML
3954f36762e10f5df15af7e0ae6dd71f5f214261
[ "Apache-2.0" ]
3,451
2019-04-02T01:47:42.000Z
2022-03-31T16:20:49.000Z
bentoml/saved_bundle/loader.py
niits/BentoML
3954f36762e10f5df15af7e0ae6dd71f5f214261
[ "Apache-2.0" ]
1,925
2019-04-03T00:19:05.000Z
2022-03-31T22:41:54.000Z
bentoml/saved_bundle/loader.py
niits/BentoML
3954f36762e10f5df15af7e0ae6dd71f5f214261
[ "Apache-2.0" ]
451
2019-04-02T01:53:41.000Z
2022-03-29T08:49:06.000Z
# Copyright 2019 Atalaya Tech, Inc. # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # http://www.apache.org/licenses/LICENSE-2.0 # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import io import os import sys import tarfile import logging import tempfile import shutil from functools import wraps from contextlib import contextmanager from urllib.parse import urlparse from typing import TYPE_CHECKING from pathlib import PureWindowsPath, PurePosixPath from bentoml.utils.s3 import is_s3_url from bentoml.utils.gcs import is_gcs_url from bentoml.exceptions import BentoMLException from bentoml.saved_bundle.config import SavedBundleConfig from bentoml.saved_bundle.pip_pkg import ZIPIMPORT_DIR if TYPE_CHECKING: from bentoml.yatai.proto.repository_pb2 import BentoServiceMetadata logger = logging.getLogger(__name__) def _is_http_url(bundle_path) -> bool: try: return urlparse(bundle_path).scheme in ["http", "https"] except ValueError: return False def _is_remote_path(bundle_path) -> bool: return isinstance(bundle_path, str) and ( is_s3_url(bundle_path) or is_gcs_url(bundle_path) or _is_http_url(bundle_path) ) @contextmanager def _resolve_remote_bundle_path(bundle_path): if is_s3_url(bundle_path): import boto3 parsed_url = urlparse(bundle_path) bucket_name = parsed_url.netloc object_name = parsed_url.path.lstrip('/') s3 = boto3.client('s3') fileobj = io.BytesIO() s3.download_fileobj(bucket_name, object_name, fileobj) fileobj.seek(0, 0) elif is_gcs_url(bundle_path): try: from google.cloud import storage except ImportError: raise BentoMLException( '"google-cloud-storage" package is required. You can install it with ' 'pip: "pip install google-cloud-storage"' ) gcs = storage.Client() fileobj = io.BytesIO() gcs.download_blob_to_file(bundle_path, fileobj) fileobj.seek(0, 0) elif _is_http_url(bundle_path): import requests response = requests.get(bundle_path) if response.status_code != 200: raise BentoMLException( f"Error retrieving BentoService bundle. " f"{response.status_code}: {response.text}" ) fileobj = io.BytesIO() fileobj.write(response.content) fileobj.seek(0, 0) else: raise BentoMLException(f"Saved bundle path: '{bundle_path}' is not supported") with tarfile.open(mode="r:gz", fileobj=fileobj) as tar: with tempfile.TemporaryDirectory() as tmpdir: filename = tar.getmembers()[0].name tar.extractall(path=tmpdir) yield os.path.join(tmpdir, filename) def resolve_remote_bundle(func): """Decorate a function to handle remote bundles.""" @wraps(func) def wrapper(bundle_path, *args): if _is_remote_path(bundle_path): with _resolve_remote_bundle_path(bundle_path) as local_bundle_path: return func(local_bundle_path, *args) return func(bundle_path, *args) return wrapper @resolve_remote_bundle def load_saved_bundle_config(bundle_path) -> "SavedBundleConfig": try: return SavedBundleConfig.load(os.path.join(bundle_path, "bentoml.yml")) except FileNotFoundError: raise BentoMLException( "BentoML can't locate config file 'bentoml.yml'" " in saved bundle in path: {}".format(bundle_path) ) def load_bento_service_metadata(bundle_path: str) -> "BentoServiceMetadata": return load_saved_bundle_config(bundle_path).get_bento_service_metadata_pb() def _find_module_file(bundle_path, service_name, module_file): # Simply join full path when module_file is just a file name, # e.g. module_file=="iris_classifier.py" module_file_path = os.path.join(bundle_path, service_name, module_file) if not os.path.isfile(module_file_path): # Try loading without service_name prefix, for loading from a installed PyPi module_file_path = os.path.join(bundle_path, module_file) # When module_file is located in sub directory # e.g. module_file=="foo/bar/iris_classifier.py" # This needs to handle the path differences between posix and windows platform: if not os.path.isfile(module_file_path): if sys.platform == "win32": # Try load a saved bundle created from posix platform on windows module_file_path = os.path.join( bundle_path, service_name, str(PurePosixPath(module_file)) ) if not os.path.isfile(module_file_path): module_file_path = os.path.join( bundle_path, str(PurePosixPath(module_file)) ) else: # Try load a saved bundle created from windows platform on posix module_file_path = os.path.join( bundle_path, service_name, PureWindowsPath(module_file).as_posix() ) if not os.path.isfile(module_file_path): module_file_path = os.path.join( bundle_path, PureWindowsPath(module_file).as_posix() ) if not os.path.isfile(module_file_path): raise BentoMLException( "Can not locate module_file {} in saved bundle {}".format( module_file, bundle_path ) ) return module_file_path @resolve_remote_bundle def load_bento_service_class(bundle_path): """ Load a BentoService class from saved bundle in given path :param bundle_path: A path to Bento files generated from BentoService#save, #save_to_dir, or the path to pip installed BentoService directory :return: BentoService class """ config = load_saved_bundle_config(bundle_path) metadata = config["metadata"] # Find and load target module containing BentoService class from given path module_file_path = _find_module_file( bundle_path, metadata["service_name"], metadata["module_file"] ) # Prepend bundle_path to sys.path for loading extra python dependencies sys.path.insert(0, bundle_path) sys.path.insert(0, os.path.join(bundle_path, metadata["service_name"])) # Include zipimport modules zipimport_dir = os.path.join(bundle_path, metadata["service_name"], ZIPIMPORT_DIR) if os.path.exists(zipimport_dir): for p in os.listdir(zipimport_dir): logger.debug('adding %s to sys.path', p) sys.path.insert(0, os.path.join(zipimport_dir, p)) module_name = metadata["module_name"] if module_name in sys.modules: logger.warning( "Module `%s` already loaded, using existing imported module.", module_name ) module = sys.modules[module_name] elif sys.version_info >= (3, 5): import importlib.util spec = importlib.util.spec_from_file_location(module_name, module_file_path) module = importlib.util.module_from_spec(spec) spec.loader.exec_module(module) elif sys.version_info >= (3, 3): from importlib.machinery import SourceFileLoader # pylint:disable=deprecated-method module = SourceFileLoader(module_name, module_file_path).load_module( module_name ) # pylint:enable=deprecated-method else: raise BentoMLException("BentoML requires Python 3.4 and above") # Remove bundle_path from sys.path to avoid import naming conflicts sys.path.remove(bundle_path) model_service_class = module.__getattribute__(metadata["service_name"]) # Set _bento_service_bundle_path, where BentoService will load its artifacts model_service_class._bento_service_bundle_path = bundle_path # Set cls._version, service instance can access it via svc.version model_service_class._bento_service_bundle_version = metadata["service_version"] if ( model_service_class._env and model_service_class._env._requirements_txt_file is not None ): # Load `requirement.txt` from bundle directory instead of the user-provided # file path, which may only available during the bundle save process model_service_class._env._requirements_txt_file = os.path.join( bundle_path, "requirements.txt" ) return model_service_class @resolve_remote_bundle def safe_retrieve(bundle_path: str, target_dir: str): """Safely retrieve bento service to local path Args: bundle_path (:obj:`str`): The path that contains saved BentoService bundle, supporting both local file path and s3 path target_dir (:obj:`str`): Where the service contents should end up. Returns: :obj:`str`: location of safe local path """ shutil.copytree(bundle_path, target_dir) @resolve_remote_bundle def load_from_dir(bundle_path): """Load bento service from local file path or s3 path Args: bundle_path (str): The path that contains saved BentoService bundle, supporting both local file path and s3 path Returns: bentoml.service.BentoService: a loaded BentoService instance """ svc_cls = load_bento_service_class(bundle_path) return svc_cls() @resolve_remote_bundle def load_bento_service_api(bundle_path, api_name=None): bento_service = load_from_dir(bundle_path) return bento_service.get_inference_api(api_name)
35.487455
86
0.692051
1,287
9,901
5.094017
0.24087
0.089994
0.032032
0.024405
0.269372
0.202257
0.155583
0.109213
0.087401
0.087401
0
0.005518
0.23129
9,901
278
87
35.615108
0.855867
0.248965
0
0.174419
0
0
0.089266
0.009036
0
0
0
0
0
1
0.069767
false
0
0.180233
0.011628
0.319767
0
0
0
0
null
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
null
0
0
0
0
0
0
0
0
0
0
0
0
1
0
6adecc40e2158fa98b341e37dfb8d034335bed2b
1,267
py
Python
gen-post.py
younghk/younghk.netlify.com
605ab089252127c0b768d31afb027e8896ae33b4
[ "MIT" ]
null
null
null
gen-post.py
younghk/younghk.netlify.com
605ab089252127c0b768d31afb027e8896ae33b4
[ "MIT" ]
null
null
null
gen-post.py
younghk/younghk.netlify.com
605ab089252127c0b768d31afb027e8896ae33b4
[ "MIT" ]
null
null
null
import os import errno from datetime import datetime print("Generating A New Post\n") post_name = input('Input Post Name: ') date_time = datetime.now() date_time_dir = date_time.strftime("%Y-%m-%d") date_time_post = date_time.strftime("%Y-%m-%d %H:%M:%S") p_name = post_name.replace(" ","-") p_name = p_name.replace("[","") p_name = p_name.replace("]","") p_name = p_name.lower() f_name = date_time_dir+"---"+p_name dir = "./src/pages/articles/"+f_name+"/" f_dir = dir+f_name+".md" try: if not(os.path.isdir(dir)): os.makedirs(os.path.join(dir)) except OSError as e: if e.errno != errno.EEXIST: print("Failed to create directory!!!!!") raise print("Generating post : ",f_dir) with open(f_dir, 'w') as f: f.write('---') f.write('\n') f.write('draft: true') f.write('\n') f.write('title: \"'+post_name+'\"') f.write('\n') f.write('date: \"'+date_time_post+'\"') f.write('\n') f.write('layout: post') f.write('\n') f.write('path: \"/posts/'+p_name+'/\"') f.write('\n') f.write('category: \"\"') f.write('\n') f.write('tags: ') f.write('\n') f.write('description: ""') f.write('\n') f.write('---') f.write('\n') print("Done :)")
23.462963
56
0.561168
194
1,267
3.515464
0.314433
0.175953
0.102639
0.105572
0.35044
0.23607
0.080645
0.080645
0.080645
0.080645
0
0
0.195738
1,267
54
57
23.462963
0.669284
0
0
0.266667
0
0
0.235804
0.016562
0
0
0
0
0
1
0
false
0
0.066667
0
0.066667
0.088889
0
0
0
null
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
null
0
0
0
0
0
0
0
0
0
0
0
0
1
0
6ae0041ec06abb5f41acc8d9e0ad54c9727be449
39,758
py
Python
rmgpy/reactionTest.py
Lyle-zhang/RMG-Py
273eb51fa3c175562056c85d7d61814d5fa2986d
[ "MIT" ]
null
null
null
rmgpy/reactionTest.py
Lyle-zhang/RMG-Py
273eb51fa3c175562056c85d7d61814d5fa2986d
[ "MIT" ]
null
null
null
rmgpy/reactionTest.py
Lyle-zhang/RMG-Py
273eb51fa3c175562056c85d7d61814d5fa2986d
[ "MIT" ]
1
2021-08-14T13:47:18.000Z
2021-08-14T13:47:18.000Z
#!/usr/bin/env python # encoding: utf-8 -*- """ This module contains unit tests of the rmgpy.reaction module. """ import numpy import unittest from external.wip import work_in_progress from rmgpy.species import Species, TransitionState from rmgpy.reaction import Reaction from rmgpy.statmech.translation import Translation, IdealGasTranslation from rmgpy.statmech.rotation import Rotation, LinearRotor, NonlinearRotor, KRotor, SphericalTopRotor from rmgpy.statmech.vibration import Vibration, HarmonicOscillator from rmgpy.statmech.torsion import Torsion, HinderedRotor from rmgpy.statmech.conformer import Conformer from rmgpy.kinetics import Arrhenius from rmgpy.thermo import Wilhoit import rmgpy.constants as constants ################################################################################ class PseudoSpecies: """ Can be used in place of a :class:`rmg.species.Species` for isomorphism checks. PseudoSpecies('a') is isomorphic with PseudoSpecies('A') but nothing else. """ def __init__(self, label): self.label = label def __repr__(self): return "PseudoSpecies('{0}')".format(self.label) def __str__(self): return self.label def isIsomorphic(self, other): return self.label.lower() == other.label.lower() class TestReactionIsomorphism(unittest.TestCase): """ Contains unit tests of the isomorphism testing of the Reaction class. """ def makeReaction(self,reaction_string): """" Make a Reaction (containing PseudoSpecies) of from a string like 'Ab=CD' """ reactants, products = reaction_string.split('=') reactants = [PseudoSpecies(i) for i in reactants] products = [PseudoSpecies(i) for i in products] return Reaction(reactants=reactants, products=products) def test1to1(self): r1 = self.makeReaction('A=B') self.assertTrue(r1.isIsomorphic(self.makeReaction('a=B'))) self.assertTrue(r1.isIsomorphic(self.makeReaction('b=A'))) self.assertFalse(r1.isIsomorphic(self.makeReaction('B=a'),eitherDirection=False)) self.assertFalse(r1.isIsomorphic(self.makeReaction('A=C'))) self.assertFalse(r1.isIsomorphic(self.makeReaction('A=BB'))) def test1to2(self): r1 = self.makeReaction('A=BC') self.assertTrue(r1.isIsomorphic(self.makeReaction('a=Bc'))) self.assertTrue(r1.isIsomorphic(self.makeReaction('cb=a'))) self.assertTrue(r1.isIsomorphic(self.makeReaction('a=cb'),eitherDirection=False)) self.assertFalse(r1.isIsomorphic(self.makeReaction('bc=a'),eitherDirection=False)) self.assertFalse(r1.isIsomorphic(self.makeReaction('a=c'))) self.assertFalse(r1.isIsomorphic(self.makeReaction('ab=c'))) def test2to2(self): r1 = self.makeReaction('AB=CD') self.assertTrue(r1.isIsomorphic(self.makeReaction('ab=cd'))) self.assertTrue(r1.isIsomorphic(self.makeReaction('ab=dc'),eitherDirection=False)) self.assertTrue(r1.isIsomorphic(self.makeReaction('dc=ba'))) self.assertFalse(r1.isIsomorphic(self.makeReaction('cd=ab'),eitherDirection=False)) self.assertFalse(r1.isIsomorphic(self.makeReaction('ab=ab'))) self.assertFalse(r1.isIsomorphic(self.makeReaction('ab=cde'))) def test2to3(self): r1 = self.makeReaction('AB=CDE') self.assertTrue(r1.isIsomorphic(self.makeReaction('ab=cde'))) self.assertTrue(r1.isIsomorphic(self.makeReaction('ba=edc'),eitherDirection=False)) self.assertTrue(r1.isIsomorphic(self.makeReaction('dec=ba'))) self.assertFalse(r1.isIsomorphic(self.makeReaction('cde=ab'),eitherDirection=False)) self.assertFalse(r1.isIsomorphic(self.makeReaction('ab=abc'))) self.assertFalse(r1.isIsomorphic(self.makeReaction('abe=cde'))) class TestReaction(unittest.TestCase): """ Contains unit tests of the Reaction class. """ def setUp(self): """ A method that is called prior to each unit test in this class. """ ethylene = Species( label = 'C2H4', conformer = Conformer( E0 = (44.7127, 'kJ/mol'), modes = [ IdealGasTranslation( mass = (28.0313, 'amu'), ), NonlinearRotor( inertia = ( [3.41526, 16.6498, 20.065], 'amu*angstrom^2', ), symmetry = 4, ), HarmonicOscillator( frequencies = ( [828.397, 970.652, 977.223, 1052.93, 1233.55, 1367.56, 1465.09, 1672.25, 3098.46, 3111.7, 3165.79, 3193.54], 'cm^-1', ), ), ], spinMultiplicity = 1, opticalIsomers = 1, ), ) hydrogen = Species( label = 'H', conformer = Conformer( E0 = (211.794, 'kJ/mol'), modes = [ IdealGasTranslation( mass = (1.00783, 'amu'), ), ], spinMultiplicity = 2, opticalIsomers = 1, ), ) ethyl = Species( label = 'C2H5', conformer = Conformer( E0 = (111.603, 'kJ/mol'), modes = [ IdealGasTranslation( mass = (29.0391, 'amu'), ), NonlinearRotor( inertia = ( [4.8709, 22.2353, 23.9925], 'amu*angstrom^2', ), symmetry = 1, ), HarmonicOscillator( frequencies = ( [482.224, 791.876, 974.355, 1051.48, 1183.21, 1361.36, 1448.65, 1455.07, 1465.48, 2688.22, 2954.51, 3033.39, 3101.54, 3204.73], 'cm^-1', ), ), HinderedRotor( inertia = (1.11481, 'amu*angstrom^2'), symmetry = 6, barrier = (0.244029, 'kJ/mol'), semiclassical = None, ), ], spinMultiplicity = 2, opticalIsomers = 1, ), ) TS = TransitionState( label = 'TS', conformer = Conformer( E0 = (266.694, 'kJ/mol'), modes = [ IdealGasTranslation( mass = (29.0391, 'amu'), ), NonlinearRotor( inertia = ( [6.78512, 22.1437, 22.2114], 'amu*angstrom^2', ), symmetry = 1, ), HarmonicOscillator( frequencies = ( [412.75, 415.206, 821.495, 924.44, 982.714, 1024.16, 1224.21, 1326.36, 1455.06, 1600.35, 3101.46, 3110.55, 3175.34, 3201.88], 'cm^-1', ), ), ], spinMultiplicity = 2, opticalIsomers = 1, ), frequency = (-750.232, 'cm^-1'), ) self.reaction = Reaction( reactants = [hydrogen, ethylene], products = [ethyl], kinetics = Arrhenius( A = (501366000.0, 'cm^3/(mol*s)'), n = 1.637, Ea = (4.32508, 'kJ/mol'), T0 = (1, 'K'), Tmin = (300, 'K'), Tmax = (2500, 'K'), ), transitionState = TS, ) # CC(=O)O[O] acetylperoxy = Species( label='acetylperoxy', thermo=Wilhoit(Cp0=(4.0*constants.R,"J/(mol*K)"), CpInf=(21.0*constants.R,"J/(mol*K)"), a0=-3.95, a1=9.26, a2=-15.6, a3=8.55, B=(500.0,"K"), H0=(-6.151e+04,"J/mol"), S0=(-790.2,"J/(mol*K)")), ) # C[C]=O acetyl = Species( label='acetyl', thermo=Wilhoit(Cp0=(4.0*constants.R,"J/(mol*K)"), CpInf=(15.5*constants.R,"J/(mol*K)"), a0=0.2541, a1=-0.4712, a2=-4.434, a3=2.25, B=(500.0,"K"), H0=(-1.439e+05,"J/mol"), S0=(-524.6,"J/(mol*K)")), ) # [O][O] oxygen = Species( label='oxygen', thermo=Wilhoit(Cp0=(3.5*constants.R,"J/(mol*K)"), CpInf=(4.5*constants.R,"J/(mol*K)"), a0=-0.9324, a1=26.18, a2=-70.47, a3=44.12, B=(500.0,"K"), H0=(1.453e+04,"J/mol"), S0=(-12.19,"J/(mol*K)")), ) self.reaction2 = Reaction( reactants=[acetyl, oxygen], products=[acetylperoxy], kinetics = Arrhenius( A = (2.65e12, 'cm^3/(mol*s)'), n = 0.0, Ea = (0.0, 'kJ/mol'), T0 = (1, 'K'), Tmin = (300, 'K'), Tmax = (2000, 'K'), ), ) def testIsIsomerization(self): """ Test the Reaction.isIsomerization() method. """ isomerization = Reaction(reactants=[Species()], products=[Species()]) association = Reaction(reactants=[Species(),Species()], products=[Species()]) dissociation = Reaction(reactants=[Species()], products=[Species(),Species()]) bimolecular = Reaction(reactants=[Species(),Species()], products=[Species(),Species()]) self.assertTrue(isomerization.isIsomerization()) self.assertFalse(association.isIsomerization()) self.assertFalse(dissociation.isIsomerization()) self.assertFalse(bimolecular.isIsomerization()) def testIsAssociation(self): """ Test the Reaction.isAssociation() method. """ isomerization = Reaction(reactants=[Species()], products=[Species()]) association = Reaction(reactants=[Species(),Species()], products=[Species()]) dissociation = Reaction(reactants=[Species()], products=[Species(),Species()]) bimolecular = Reaction(reactants=[Species(),Species()], products=[Species(),Species()]) self.assertFalse(isomerization.isAssociation()) self.assertTrue(association.isAssociation()) self.assertFalse(dissociation.isAssociation()) self.assertFalse(bimolecular.isAssociation()) def testIsDissociation(self): """ Test the Reaction.isDissociation() method. """ isomerization = Reaction(reactants=[Species()], products=[Species()]) association = Reaction(reactants=[Species(),Species()], products=[Species()]) dissociation = Reaction(reactants=[Species()], products=[Species(),Species()]) bimolecular = Reaction(reactants=[Species(),Species()], products=[Species(),Species()]) self.assertFalse(isomerization.isDissociation()) self.assertFalse(association.isDissociation()) self.assertTrue(dissociation.isDissociation()) self.assertFalse(bimolecular.isDissociation()) def testHasTemplate(self): """ Test the Reaction.hasTemplate() method. """ reactants = self.reaction.reactants[:] products = self.reaction.products[:] self.assertTrue(self.reaction.hasTemplate(reactants, products)) self.assertTrue(self.reaction.hasTemplate(products, reactants)) self.assertFalse(self.reaction2.hasTemplate(reactants, products)) self.assertFalse(self.reaction2.hasTemplate(products, reactants)) reactants.reverse() products.reverse() self.assertTrue(self.reaction.hasTemplate(reactants, products)) self.assertTrue(self.reaction.hasTemplate(products, reactants)) self.assertFalse(self.reaction2.hasTemplate(reactants, products)) self.assertFalse(self.reaction2.hasTemplate(products, reactants)) reactants = self.reaction2.reactants[:] products = self.reaction2.products[:] self.assertFalse(self.reaction.hasTemplate(reactants, products)) self.assertFalse(self.reaction.hasTemplate(products, reactants)) self.assertTrue(self.reaction2.hasTemplate(reactants, products)) self.assertTrue(self.reaction2.hasTemplate(products, reactants)) reactants.reverse() products.reverse() self.assertFalse(self.reaction.hasTemplate(reactants, products)) self.assertFalse(self.reaction.hasTemplate(products, reactants)) self.assertTrue(self.reaction2.hasTemplate(reactants, products)) self.assertTrue(self.reaction2.hasTemplate(products, reactants)) def testEnthalpyOfReaction(self): """ Test the Reaction.getEnthalpyOfReaction() method. """ Tlist = numpy.arange(200.0, 2001.0, 200.0, numpy.float64) Hlist0 = [float(v) for v in ['-146007', '-145886', '-144195', '-141973', '-139633', '-137341', '-135155', '-133093', '-131150', '-129316']] Hlist = self.reaction2.getEnthalpiesOfReaction(Tlist) for i in range(len(Tlist)): self.assertAlmostEqual(Hlist[i] / 1000., Hlist0[i] / 1000., 2) def testEntropyOfReaction(self): """ Test the Reaction.getEntropyOfReaction() method. """ Tlist = numpy.arange(200.0, 2001.0, 200.0, numpy.float64) Slist0 = [float(v) for v in ['-156.793', '-156.872', '-153.504', '-150.317', '-147.707', '-145.616', '-143.93', '-142.552', '-141.407', '-140.441']] Slist = self.reaction2.getEntropiesOfReaction(Tlist) for i in range(len(Tlist)): self.assertAlmostEqual(Slist[i], Slist0[i], 2) def testFreeEnergyOfReaction(self): """ Test the Reaction.getFreeEnergyOfReaction() method. """ Tlist = numpy.arange(200.0, 2001.0, 200.0, numpy.float64) Glist0 = [float(v) for v in ['-114648', '-83137.2', '-52092.4', '-21719.3', '8073.53', '37398.1', '66346.8', '94990.6', '123383', '151565']] Glist = self.reaction2.getFreeEnergiesOfReaction(Tlist) for i in range(len(Tlist)): self.assertAlmostEqual(Glist[i] / 1000., Glist0[i] / 1000., 2) def testEquilibriumConstantKa(self): """ Test the Reaction.getEquilibriumConstant() method. """ Tlist = numpy.arange(200.0, 2001.0, 200.0, numpy.float64) Kalist0 = [float(v) for v in ['8.75951e+29', '7.1843e+10', '34272.7', '26.1877', '0.378696', '0.0235579', '0.00334673', '0.000792389', '0.000262777', '0.000110053']] Kalist = self.reaction2.getEquilibriumConstants(Tlist, type='Ka') for i in range(len(Tlist)): self.assertAlmostEqual(Kalist[i] / Kalist0[i], 1.0, 4) def testEquilibriumConstantKc(self): """ Test the Reaction.getEquilibriumConstant() method. """ Tlist = numpy.arange(200.0, 2001.0, 200.0, numpy.float64) Kclist0 = [float(v) for v in ['1.45661e+28', '2.38935e+09', '1709.76', '1.74189', '0.0314866', '0.00235045', '0.000389568', '0.000105413', '3.93273e-05', '1.83006e-05']] Kclist = self.reaction2.getEquilibriumConstants(Tlist, type='Kc') for i in range(len(Tlist)): self.assertAlmostEqual(Kclist[i] / Kclist0[i], 1.0, 4) def testEquilibriumConstantKp(self): """ Test the Reaction.getEquilibriumConstant() method. """ Tlist = numpy.arange(200.0, 2001.0, 200.0, numpy.float64) Kplist0 = [float(v) for v in ['8.75951e+24', '718430', '0.342727', '0.000261877', '3.78696e-06', '2.35579e-07', '3.34673e-08', '7.92389e-09', '2.62777e-09', '1.10053e-09']] Kplist = self.reaction2.getEquilibriumConstants(Tlist, type='Kp') for i in range(len(Tlist)): self.assertAlmostEqual(Kplist[i] / Kplist0[i], 1.0, 4) def testStoichiometricCoefficient(self): """ Test the Reaction.getStoichiometricCoefficient() method. """ for reactant in self.reaction.reactants: self.assertEqual(self.reaction.getStoichiometricCoefficient(reactant), -1) for product in self.reaction.products: self.assertEqual(self.reaction.getStoichiometricCoefficient(product), 1) for reactant in self.reaction2.reactants: self.assertEqual(self.reaction.getStoichiometricCoefficient(reactant), 0) for product in self.reaction2.products: self.assertEqual(self.reaction.getStoichiometricCoefficient(product), 0) def testRateCoefficient(self): """ Test the Reaction.getRateCoefficient() method. """ Tlist = numpy.arange(200.0, 2001.0, 200.0, numpy.float64) P = 1e5 for T in Tlist: self.assertAlmostEqual(self.reaction.getRateCoefficient(T, P) / self.reaction.kinetics.getRateCoefficient(T), 1.0, 6) def testGenerateReverseRateCoefficient(self): """ Test the Reaction.generateReverseRateCoefficient() method. """ Tlist = numpy.arange(200.0, 2001.0, 200.0, numpy.float64) P = 1e5 reverseKinetics = self.reaction2.generateReverseRateCoefficient() for T in Tlist: kr0 = self.reaction2.getRateCoefficient(T, P) / self.reaction2.getEquilibriumConstant(T) kr = reverseKinetics.getRateCoefficient(T) self.assertAlmostEqual(kr0 / kr, 1.0, 0) def testGenerateReverseRateCoefficientArrhenius(self): """ Test the Reaction.generateReverseRateCoefficient() method works for the Arrhenius format. """ original_kinetics = Arrhenius( A = (2.65e12, 'cm^3/(mol*s)'), n = 0.0, Ea = (0.0, 'kJ/mol'), T0 = (1, 'K'), Tmin = (300, 'K'), Tmax = (2000, 'K'), ) self.reaction2.kinetics = original_kinetics reverseKinetics = self.reaction2.generateReverseRateCoefficient() self.reaction2.kinetics = reverseKinetics # reverse reactants, products to ensure Keq is correctly computed self.reaction2.reactants, self.reaction2.products = self.reaction2.products, self.reaction2.reactants reversereverseKinetics = self.reaction2.generateReverseRateCoefficient() # check that reverting the reverse yields the original Tlist = numpy.arange(original_kinetics.Tmin.value_si, original_kinetics.Tmax.value_si, 200.0, numpy.float64) P = 1e5 for T in Tlist: korig = original_kinetics.getRateCoefficient(T, P) krevrev = reversereverseKinetics.getRateCoefficient(T, P) self.assertAlmostEqual(korig / krevrev, 1.0, 0) @work_in_progress def testGenerateReverseRateCoefficientArrheniusEP(self): """ Test the Reaction.generateReverseRateCoefficient() method works for the ArrheniusEP format. """ from rmgpy.kinetics import ArrheniusEP original_kinetics = ArrheniusEP( A = (2.65e12, 'cm^3/(mol*s)'), n = 0.0, alpha = 0.5, E0 = (41.84, 'kJ/mol'), Tmin = (300, 'K'), Tmax = (2000, 'K'), ) self.reaction2.kinetics = original_kinetics reverseKinetics = self.reaction2.generateReverseRateCoefficient() self.reaction2.kinetics = reverseKinetics # reverse reactants, products to ensure Keq is correctly computed self.reaction2.reactants, self.reaction2.products = self.reaction2.products, self.reaction2.reactants reversereverseKinetics = self.reaction2.generateReverseRateCoefficient() # check that reverting the reverse yields the original Tlist = numpy.arange(original_kinetics.Tmin, original_kinetics.Tmax, 200.0, numpy.float64) P = 1e5 for T in Tlist: korig = original_kinetics.getRateCoefficient(T, P) krevrev = reversereverseKinetics.getRateCoefficient(T, P) self.assertAlmostEqual(korig / krevrev, 1.0, 0) def testGenerateReverseRateCoefficientPDepArrhenius(self): """ Test the Reaction.generateReverseRateCoefficient() method works for the PDepArrhenius format. """ from rmgpy.kinetics import PDepArrhenius arrhenius0 = Arrhenius( A = (1.0e6,"s^-1"), n = 1.0, Ea = (10.0,"kJ/mol"), T0 = (300.0,"K"), Tmin = (300.0,"K"), Tmax = (2000.0,"K"), comment = """This data is completely made up""", ) arrhenius1 = Arrhenius( A = (1.0e12,"s^-1"), n = 1.0, Ea = (20.0,"kJ/mol"), T0 = (300.0,"K"), Tmin = (300.0,"K"), Tmax = (2000.0,"K"), comment = """This data is completely made up""", ) pressures = numpy.array([0.1, 10.0]) arrhenius = [arrhenius0, arrhenius1] Tmin = 300.0 Tmax = 2000.0 Pmin = 0.1 Pmax = 10.0 comment = """This data is completely made up""" original_kinetics = PDepArrhenius( pressures = (pressures,"bar"), arrhenius = arrhenius, Tmin = (Tmin,"K"), Tmax = (Tmax,"K"), Pmin = (Pmin,"bar"), Pmax = (Pmax,"bar"), comment = comment, ) self.reaction2.kinetics = original_kinetics reverseKinetics = self.reaction2.generateReverseRateCoefficient() self.reaction2.kinetics = reverseKinetics # reverse reactants, products to ensure Keq is correctly computed self.reaction2.reactants, self.reaction2.products = self.reaction2.products, self.reaction2.reactants reversereverseKinetics = self.reaction2.generateReverseRateCoefficient() # check that reverting the reverse yields the original Tlist = numpy.arange(Tmin, Tmax, 200.0, numpy.float64) P = 1e5 for T in Tlist: korig = original_kinetics.getRateCoefficient(T, P) krevrev = reversereverseKinetics.getRateCoefficient(T, P) self.assertAlmostEqual(korig / krevrev, 1.0, 0) def testGenerateReverseRateCoefficientMultiArrhenius(self): """ Test the Reaction.generateReverseRateCoefficient() method works for the MultiArrhenius format. """ from rmgpy.kinetics import MultiArrhenius pressures = numpy.array([0.1, 10.0]) Tmin = 300.0 Tmax = 2000.0 Pmin = 0.1 Pmax = 10.0 comment = """This data is completely made up""" arrhenius = [ Arrhenius( A = (9.3e-14,"cm^3/(molecule*s)"), n = 0.0, Ea = (4740*constants.R*0.001,"kJ/mol"), T0 = (1,"K"), Tmin = (Tmin,"K"), Tmax = (Tmax,"K"), comment = comment, ), Arrhenius( A = (1.4e-9,"cm^3/(molecule*s)"), n = 0.0, Ea = (11200*constants.R*0.001,"kJ/mol"), T0 = (1,"K"), Tmin = (Tmin,"K"), Tmax = (Tmax,"K"), comment = comment, ), ] original_kinetics = MultiArrhenius( arrhenius = arrhenius, Tmin = (Tmin,"K"), Tmax = (Tmax,"K"), comment = comment, ) self.reaction2.kinetics = original_kinetics reverseKinetics = self.reaction2.generateReverseRateCoefficient() self.reaction2.kinetics = reverseKinetics # reverse reactants, products to ensure Keq is correctly computed self.reaction2.reactants, self.reaction2.products = self.reaction2.products, self.reaction2.reactants reversereverseKinetics = self.reaction2.generateReverseRateCoefficient() # check that reverting the reverse yields the original Tlist = numpy.arange(Tmin, Tmax, 200.0, numpy.float64) P = 1e5 for T in Tlist: korig = original_kinetics.getRateCoefficient(T, P) krevrev = reversereverseKinetics.getRateCoefficient(T, P) self.assertAlmostEqual(korig / krevrev, 1.0, 0) def testGenerateReverseRateCoefficientMultiPDepArrhenius(self): """ Test the Reaction.generateReverseRateCoefficient() method works for the MultiPDepArrhenius format. """ from rmgpy.kinetics import PDepArrhenius, MultiPDepArrhenius Tmin = 350. Tmax = 1500. Pmin = 1e-1 Pmax = 1e1 pressures = numpy.array([1e-1,1e1]) comment = 'CH3 + C2H6 <=> CH4 + C2H5 (Baulch 2005)' arrhenius = [ PDepArrhenius( pressures = (pressures,"bar"), arrhenius = [ Arrhenius( A = (9.3e-16,"cm^3/(molecule*s)"), n = 0.0, Ea = (4740*constants.R*0.001,"kJ/mol"), T0 = (1,"K"), Tmin = (Tmin,"K"), Tmax = (Tmax,"K"), comment = comment, ), Arrhenius( A = (9.3e-14,"cm^3/(molecule*s)"), n = 0.0, Ea = (4740*constants.R*0.001,"kJ/mol"), T0 = (1,"K"), Tmin = (Tmin,"K"), Tmax = (Tmax,"K"), comment = comment, ), ], Tmin = (Tmin,"K"), Tmax = (Tmax,"K"), Pmin = (Pmin,"bar"), Pmax = (Pmax,"bar"), comment = comment, ), PDepArrhenius( pressures = (pressures,"bar"), arrhenius = [ Arrhenius( A = (1.4e-11,"cm^3/(molecule*s)"), n = 0.0, Ea = (11200*constants.R*0.001,"kJ/mol"), T0 = (1,"K"), Tmin = (Tmin,"K"), Tmax = (Tmax,"K"), comment = comment, ), Arrhenius( A = (1.4e-9,"cm^3/(molecule*s)"), n = 0.0, Ea = (11200*constants.R*0.001,"kJ/mol"), T0 = (1,"K"), Tmin = (Tmin,"K"), Tmax = (Tmax,"K"), comment = comment, ), ], Tmin = (Tmin,"K"), Tmax = (Tmax,"K"), Pmin = (Pmin,"bar"), Pmax = (Pmax,"bar"), comment = comment, ), ] original_kinetics = MultiPDepArrhenius( arrhenius = arrhenius, Tmin = (Tmin,"K"), Tmax = (Tmax,"K"), Pmin = (Pmin,"bar"), Pmax = (Pmax,"bar"), comment = comment, ) self.reaction2.kinetics = original_kinetics reverseKinetics = self.reaction2.generateReverseRateCoefficient() self.reaction2.kinetics = reverseKinetics # reverse reactants, products to ensure Keq is correctly computed self.reaction2.reactants, self.reaction2.products = self.reaction2.products, self.reaction2.reactants reversereverseKinetics = self.reaction2.generateReverseRateCoefficient() # check that reverting the reverse yields the original Tlist = numpy.arange(Tmin, Tmax, 200.0, numpy.float64) P = 1e5 for T in Tlist: korig = original_kinetics.getRateCoefficient(T, P) krevrev = reversereverseKinetics.getRateCoefficient(T, P) self.assertAlmostEqual(korig / krevrev, 1.0, 0) def testGenerateReverseRateCoefficientThirdBody(self): """ Test the Reaction.generateReverseRateCoefficient() method works for the ThirdBody format. """ from rmgpy.kinetics import ThirdBody arrheniusLow = Arrhenius( A = (2.62e+33,"cm^6/(mol^2*s)"), n = -4.76, Ea = (10.21,"kJ/mol"), T0 = (1,"K"), ) efficiencies = {"C": 3, "C(=O)=O": 2, "CC": 3, "O": 6, "[Ar]": 0.7, "[C]=O": 1.5, "[H][H]": 2} Tmin = 300. Tmax = 2000. Pmin = 0.01 Pmax = 100. comment = """H + CH3 -> CH4""" thirdBody = ThirdBody( arrheniusLow = arrheniusLow, Tmin = (Tmin,"K"), Tmax = (Tmax,"K"), Pmin = (Pmin,"bar"), Pmax = (Pmax,"bar"), efficiencies = efficiencies, comment = comment, ) original_kinetics = thirdBody self.reaction2.kinetics = original_kinetics reverseKinetics = self.reaction2.generateReverseRateCoefficient() self.reaction2.kinetics = reverseKinetics # reverse reactants, products to ensure Keq is correctly computed self.reaction2.reactants, self.reaction2.products = self.reaction2.products, self.reaction2.reactants reversereverseKinetics = self.reaction2.generateReverseRateCoefficient() # check that reverting the reverse yields the original Tlist = numpy.arange(Tmin, Tmax, 200.0, numpy.float64) P = 1e5 for T in Tlist: korig = original_kinetics.getRateCoefficient(T, P) krevrev = reversereverseKinetics.getRateCoefficient(T, P) self.assertAlmostEqual(korig / krevrev, 1.0, 0) def testGenerateReverseRateCoefficientLindemann(self): """ Test the Reaction.generateReverseRateCoefficient() method works for the Lindemann format. """ from rmgpy.kinetics import Lindemann arrheniusHigh = Arrhenius( A = (1.39e+16,"cm^3/(mol*s)"), n = -0.534, Ea = (2.243,"kJ/mol"), T0 = (1,"K"), ) arrheniusLow = Arrhenius( A = (2.62e+33,"cm^6/(mol^2*s)"), n = -4.76, Ea = (10.21,"kJ/mol"), T0 = (1,"K"), ) efficiencies = {"C": 3, "C(=O)=O": 2, "CC": 3, "O": 6, "[Ar]": 0.7, "[C]=O": 1.5, "[H][H]": 2} Tmin = 300. Tmax = 2000. Pmin = 0.01 Pmax = 100. comment = """H + CH3 -> CH4""" lindemann = Lindemann( arrheniusHigh = arrheniusHigh, arrheniusLow = arrheniusLow, Tmin = (Tmin,"K"), Tmax = (Tmax,"K"), Pmin = (Pmin,"bar"), Pmax = (Pmax,"bar"), efficiencies = efficiencies, comment = comment, ) original_kinetics = lindemann self.reaction2.kinetics = original_kinetics reverseKinetics = self.reaction2.generateReverseRateCoefficient() self.reaction2.kinetics = reverseKinetics # reverse reactants, products to ensure Keq is correctly computed self.reaction2.reactants, self.reaction2.products = self.reaction2.products, self.reaction2.reactants reversereverseKinetics = self.reaction2.generateReverseRateCoefficient() # check that reverting the reverse yields the original Tlist = numpy.arange(Tmin, Tmax, 200.0, numpy.float64) P = 1e5 for T in Tlist: korig = original_kinetics.getRateCoefficient(T, P) krevrev = reversereverseKinetics.getRateCoefficient(T, P) self.assertAlmostEqual(korig / krevrev, 1.0, 0) def testGenerateReverseRateCoefficientTroe(self): """ Test the Reaction.generateReverseRateCoefficient() method works for the Troe format. """ from rmgpy.kinetics import Troe arrheniusHigh = Arrhenius( A = (1.39e+16,"cm^3/(mol*s)"), n = -0.534, Ea = (2.243,"kJ/mol"), T0 = (1,"K"), ) arrheniusLow = Arrhenius( A = (2.62e+33,"cm^6/(mol^2*s)"), n = -4.76, Ea = (10.21,"kJ/mol"), T0 = (1,"K"), ) alpha = 0.783 T3 = 74 T1 = 2941 T2 = 6964 efficiencies = {"C": 3, "C(=O)=O": 2, "CC": 3, "O": 6, "[Ar]": 0.7, "[C]=O": 1.5, "[H][H]": 2} Tmin = 300. Tmax = 2000. Pmin = 0.01 Pmax = 100. comment = """H + CH3 -> CH4""" troe = Troe( arrheniusHigh = arrheniusHigh, arrheniusLow = arrheniusLow, alpha = alpha, T3 = (T3,"K"), T1 = (T1,"K"), T2 = (T2,"K"), Tmin = (Tmin,"K"), Tmax = (Tmax,"K"), Pmin = (Pmin,"bar"), Pmax = (Pmax,"bar"), efficiencies = efficiencies, comment = comment, ) original_kinetics = troe self.reaction2.kinetics = original_kinetics reverseKinetics = self.reaction2.generateReverseRateCoefficient() self.reaction2.kinetics = reverseKinetics # reverse reactants, products to ensure Keq is correctly computed self.reaction2.reactants, self.reaction2.products = self.reaction2.products, self.reaction2.reactants reversereverseKinetics = self.reaction2.generateReverseRateCoefficient() # check that reverting the reverse yields the original Tlist = numpy.arange(Tmin, Tmax, 200.0, numpy.float64) P = 1e5 for T in Tlist: korig = original_kinetics.getRateCoefficient(T, P) krevrev = reversereverseKinetics.getRateCoefficient(T, P) self.assertAlmostEqual(korig / krevrev, 1.0, 0) def testTSTCalculation(self): """ A test of the transition state theory k(T) calculation function, using the reaction H + C2H4 -> C2H5. """ Tlist = 1000.0/numpy.arange(0.4, 3.35, 0.01) klist = numpy.array([self.reaction.calculateTSTRateCoefficient(T) for T in Tlist]) arrhenius = Arrhenius().fitToData(Tlist, klist, kunits='m^3/(mol*s)') klist2 = numpy.array([arrhenius.getRateCoefficient(T) for T in Tlist]) # Check that the correct Arrhenius parameters are returned self.assertAlmostEqual(arrhenius.A.value_si, 2265.2488, delta=1e-2) self.assertAlmostEqual(arrhenius.n.value_si, 1.45419, delta=1e-4) self.assertAlmostEqual(arrhenius.Ea.value_si, 6645.24, delta=1e-2) # Check that the fit is satisfactory (defined here as always within 5%) for i in range(len(Tlist)): self.assertAlmostEqual(klist[i], klist2[i], delta=5e-2 * klist[i]) def testPickle(self): """ Test that a Reaction object can be successfully pickled and unpickled with no loss of information. """ import cPickle reaction = cPickle.loads(cPickle.dumps(self.reaction,-1)) self.assertEqual(len(self.reaction.reactants), len(reaction.reactants)) self.assertEqual(len(self.reaction.products), len(reaction.products)) for reactant0, reactant in zip(self.reaction.reactants, reaction.reactants): self.assertAlmostEqual(reactant0.conformer.E0.value_si / 1e6, reactant.conformer.E0.value_si / 1e6, 2) self.assertEqual(reactant0.conformer.E0.units, reactant.conformer.E0.units) for product0, product in zip(self.reaction.products, reaction.products): self.assertAlmostEqual(product0.conformer.E0.value_si / 1e6, product.conformer.E0.value_si / 1e6, 2) self.assertEqual(product0.conformer.E0.units, product.conformer.E0.units) self.assertAlmostEqual(self.reaction.transitionState.conformer.E0.value_si / 1e6, reaction.transitionState.conformer.E0.value_si / 1e6, 2) self.assertEqual(self.reaction.transitionState.conformer.E0.units, reaction.transitionState.conformer.E0.units) self.assertAlmostEqual(self.reaction.transitionState.frequency.value_si, reaction.transitionState.frequency.value_si, 2) self.assertEqual(self.reaction.transitionState.frequency.units, reaction.transitionState.frequency.units) self.assertAlmostEqual(self.reaction.kinetics.A.value_si, reaction.kinetics.A.value_si, delta=1e-6) self.assertAlmostEqual(self.reaction.kinetics.n.value_si, reaction.kinetics.n.value_si, delta=1e-6) self.assertAlmostEqual(self.reaction.kinetics.T0.value_si, reaction.kinetics.T0.value_si, delta=1e-6) self.assertAlmostEqual(self.reaction.kinetics.Ea.value_si, reaction.kinetics.Ea.value_si, delta=1e-6) self.assertEqual(self.reaction.kinetics.comment, reaction.kinetics.comment) self.assertEqual(self.reaction.duplicate, reaction.duplicate) self.assertEqual(self.reaction.degeneracy, reaction.degeneracy) def testOutput(self): """ Test that a Reaction object can be successfully reconstructed from its repr() output with no loss of information. """ exec('reaction = %r' % (self.reaction)) self.assertEqual(len(self.reaction.reactants), len(reaction.reactants)) self.assertEqual(len(self.reaction.products), len(reaction.products)) for reactant0, reactant in zip(self.reaction.reactants, reaction.reactants): self.assertAlmostEqual(reactant0.conformer.E0.value_si / 1e6, reactant.conformer.E0.value_si / 1e6, 2) self.assertEqual(reactant0.conformer.E0.units, reactant.conformer.E0.units) for product0, product in zip(self.reaction.products, reaction.products): self.assertAlmostEqual(product0.conformer.E0.value_si / 1e6, product.conformer.E0.value_si / 1e6, 2) self.assertEqual(product0.conformer.E0.units, product.conformer.E0.units) self.assertAlmostEqual(self.reaction.transitionState.conformer.E0.value_si / 1e6, reaction.transitionState.conformer.E0.value_si / 1e6, 2) self.assertEqual(self.reaction.transitionState.conformer.E0.units, reaction.transitionState.conformer.E0.units) self.assertAlmostEqual(self.reaction.transitionState.frequency.value_si, reaction.transitionState.frequency.value_si, 2) self.assertEqual(self.reaction.transitionState.frequency.units, reaction.transitionState.frequency.units) self.assertAlmostEqual(self.reaction.kinetics.A.value_si, reaction.kinetics.A.value_si, delta=1e-6) self.assertAlmostEqual(self.reaction.kinetics.n.value_si, reaction.kinetics.n.value_si, delta=1e-6) self.assertAlmostEqual(self.reaction.kinetics.T0.value_si, reaction.kinetics.T0.value_si, delta=1e-6) self.assertAlmostEqual(self.reaction.kinetics.Ea.value_si, reaction.kinetics.Ea.value_si, delta=1e-6) self.assertEqual(self.reaction.kinetics.comment, reaction.kinetics.comment) self.assertEqual(self.reaction.duplicate, reaction.duplicate) self.assertEqual(self.reaction.degeneracy, reaction.degeneracy) ################################################################################ if __name__ == '__main__': unittest.main(testRunner=unittest.TextTestRunner(verbosity=2))
42.567452
208
0.566452
4,000
39,758
5.6075
0.14475
0.049844
0.018457
0.030762
0.702185
0.672893
0.657289
0.61975
0.600713
0.566295
0
0.069843
0.303159
39,758
933
209
42.613076
0.739758
0.082575
0
0.626591
0
0
0.046929
0
0
0
0
0
0.154173
1
0.048091
false
0
0.029703
0.004243
0.087694
0
0
0
0
null
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
null
0
0
0
0
0
0
0
0
0
0
0
0
1
0
6ae09675e3f04c208d0aada0fe5dc7452f3a90fa
9,402
py
Python
python/video_ADG.py
alexberndt/mobile-AGV-optimization
76b97fd5aa3898fd6cb6f74f8d87140555c92af5
[ "MIT" ]
2
2021-12-22T03:07:08.000Z
2022-03-19T09:41:29.000Z
python/video_ADG.py
alexberndt/mobile-AGV-optimization
76b97fd5aa3898fd6cb6f74f8d87140555c92af5
[ "MIT" ]
null
null
null
python/video_ADG.py
alexberndt/mobile-AGV-optimization
76b97fd5aa3898fd6cb6f74f8d87140555c92af5
[ "MIT" ]
1
2021-11-22T10:58:38.000Z
2021-11-22T10:58:38.000Z
""" closed-loop MILP solved to determine optimal ordering defined by ADG """ import sys import yaml import time import matplotlib.colors as mcolors import matplotlib import matplotlib.pyplot as plt import random import logging import time import networkx as nx import csv import statistics as stat import os import sys from mip import Model, ProgressLog, xsum, maximize, minimize, BINARY, CONTINUOUS, Constr, ConstrList sys.path.insert(1, "functions/") from planners import * from visualizers import * from milp_formulation import * from robot import * from adg import * from adg_node import * from process_results import * logger = logging.getLogger(__name__) logging.basicConfig(format='%(name)s - %(levelname)s :: %(message)s', level=logging.INFO) def main(): """ --------------------------- INPUTS --------------------------------- """ show_visual = False show_ADG = True #not show_visual run_MILP = True #False #True save_file = False sim_timeout = 500 # define prediction and control horizons: H_prediction >= H_control H_prediction = np.NaN # integer value for forward node lookup H_control = 5 random_seed = 0 mu = 0.5 robust_param = 0.0 delay_amount = 5 delayed_robot_cnt = 2 w = 1.4 # sub-optimality bound: w = 1.0 -> CBS, else ECBS! fldr = "nuernberg_small" # auto_gen_01_nuernberg | auto_gen_00_large | auto_gen_02_simple | manual_03_maxplus random.seed(random_seed) np.random.seed(random_seed) """ -------------------------------------------------------------------- """ # start initial pwd = os.path.dirname(os.path.abspath(__file__)) logger.info(pwd) map_file = pwd + "/data/" + fldr + "/csv_map_yaml.yaml" robot_file = pwd + "/data/" + fldr + "/csv_robots_yaml.yaml" robot_file_tmp = pwd + "/data/tmp/robots.yaml" start_time = time.time() plans = run_CBS(map_file, robot_file, w=w) # if w > 1.0, run_CBS uses ECBS! logger.info(" with sub-optimality w={}".format(w)) logger.info(" plan statistics: {} \n".format(plans["statistics"])) logger.debug(plans["schedule"]) # show factory map # show_factory_map(map_file, robot_file, True) # plt.show() map_gen_robot_count = 10 map_gen_seedval = "NaN" try: map_gen_robot_count = int(sys.argv[1]) map_gen_seedval = int(sys.argv[2]) H_control = int(sys.argv[3]) robust_param = int(sys.argv[4]) random.seed(map_gen_seedval) # map_gen_seedval np.random.seed(map_gen_seedval) # map_gen_seedval except: print(" no valid inputs given, ignoring ...") # determine ADG, reverse ADG and dependency groups ADG, robot_plan, goal_positions = determine_ADG(plans, show_graph=False) nodes_all, edges_type_1, dependency_groups = analyze_ADG(ADG, plans, show_graph=False) ADG_reverse = ADG.reverse(copy=False) # initialize simulation robots = [] solve_time = [] robots_done = [] time_to_goal = {} colors = plt.cm.rainbow( np.arange(len(robot_plan))/len(robot_plan) ) for robot_id in robot_plan: plan = robot_plan[robot_id] logger.debug("Robot {} - plan: {} \t \t positions: {}".format(robot_id, plan["nodes"], plan["positions"])) new_robot = Robot(robot_id, plan, colors[robot_id], goal_positions[robot_id]) robots.append(new_robot) robots_done.append(False) time_to_goal[robot_id] = 0 if show_visual: visualizer = Visualizer(map_file, robots) # initialize optimization MIP object m_opt m_opt = Model('MILP_sequence', solver='CBC') # print(m_opt.max_nodes) pl_opt = ProgressLog() # pl_opt.settings = "objective_value" # print("pl_opt.settings: {}".format(pl_opt.settings)) # print("pl_opt.log: {}".format(pl_opt.log)) # pl_opt.instance = m_opt.name # print("pl_opt.instance: {}".format(pl_opt.instance)) ADG_fig = plt.figure(figsize=(12,8)) plt.subplots_adjust(left=0, bottom=0, right=1, top=1, wspace=0, hspace=0) metadata = dict(title='Movie Test', artist='Matplotlib', comment='Movie support!') writer = FFMpegWriter(fps=2, metadata=metadata) with writer.saving(ADG_fig, "ADG_video.mp4", 500): # run a simulation in time k = 0 robot_IDs_to_delay = [] while (not all(robots_done)) and (k < sim_timeout): print("pl_opt.log: {}".format(pl_opt.log)) m_opt.clear() # show current robot status logger.info("-------------------- @ time step k = {} --------------------".format(k)) for robot in robots: node_info = ADG.node[robot.current_node]["data"] logger.debug(" - Robot {} # {} @ {} => status: {}".format(robot.robot_ID, node_info.ID, node_info.s_loc, robot.status)) # solve MILP for the advanced ADG to potentially adjust ordering res, solve_t = solve_MILP(robots, dependency_groups, ADG, ADG_reverse, H_control, H_prediction, m_opt, pl_opt, run=run_MILP, uncertainty_bound=robust_param) solve_time.append(solve_t) if not (res is None or res == "OptimizationStatus.OPTIMAL"): ValueError("Optimization NOT optimal") # ADG after MILP if show_ADG: # draw_ADG(ADG, robots, "ADG after MILP ADG | k = {}".format(k), writer=writer) # plt.show() # check for cycles try: nx.find_cycle(ADG, orientation="original") logger.warning("Cycle detected!!") raise Exception("ADG has a cycle => deadlock! something is wrong with optimization") except nx.NetworkXNoCycle: logger.debug("no cycle detected in ADG => no deadlock. good!") pass if (k % delay_amount) == 0: robot_IDs = np.arange(map_gen_robot_count) robot_IDs_to_delay = np.random.choice(map_gen_robot_count, size=delayed_robot_cnt, replace=False) logger.info("delaying robots (ID): {}".format(robot_IDs_to_delay)) # Advance robots if possible (dependencies have been met) for robot in robots: # check if all dependencies have been met, to advance to next node node_info = ADG.node[robot.current_node]["data"] node_dependencies_list = list(ADG_reverse.neighbors(robot.current_node)) all_dependencies_completed = True for dependency in node_dependencies_list: if (ADG.node[dependency]["data"].status != Status.FINISHED): all_dependencies_completed = False # if all dependencies are completed, the robot can advance! # delay_amount = np.random.poisson(mu) # same sample every time if all_dependencies_completed and k > 0: # (robot.robot_ID == 2 or k > 5) if (not (robot.robot_ID in robot_IDs_to_delay)): # or (k < 10 or k > 20)): # or (robot.robot_ID == 3 or k > 8): ADG.node[robot.current_node]["data"].status = Status.FINISHED robot.advance() if not robot.is_done(): time_to_goal[robot.robot_ID] += 1 else: robots_done[robot.robot_ID] = True if show_visual: visualizer.redraw(robots, pause_length=0.1) # return 0 k += 1 # end of while loop total_time = 0 for idx, t in time_to_goal.items(): total_time += t logger.info("Total time to complete missions: {}".format(total_time)) logger.info("horizon = {}".format(H_control)) logger.info("") logger.info("Computation time:") logger.info(" - max: {}".format(max(solve_time))) logger.info(" - avg: {}".format(stat.mean(solve_time))) # create data to save to YAML file simulation_results = {} simulation_results["parameters"] = {} simulation_results["parameters"]["H_control"] = H_control simulation_results["parameters"]["random seed"] = random_seed simulation_results["parameters"]["ECBS w"] = w simulation_results["parameters"]["mu"] = mu simulation_results["parameters"]["robust param"] = robust_param simulation_results["parameters"]["delay amount"] = delay_amount simulation_results["map details"] = {} simulation_results["map details"]["robot_count"] = map_gen_robot_count simulation_results["map details"]["seed val"] = map_gen_seedval simulation_results["results"] = {} simulation_results["results"]["comp time"] = {} simulation_results["results"]["comp time"]["solve_time"] = [solve_time] simulation_results["results"]["comp time"]["max"] = max(solve_time) simulation_results["results"]["comp time"]["avg"] = stat.mean(solve_time) simulation_results["results"]["total time"] = total_time logger.info(simulation_results) file_name = pwd + "/results/robust_" +str(delayed_robot_cnt) + "x" + str(delay_amount) + "/res_robots_" + str(map_gen_robot_count) + "_horizon_" + str(H_control) + "_mapseed_" + str(map_gen_seedval) + "_robustparam_" + str(robust_param) + ".yaml" if save_file: save_to_yaml(simulation_results, file_name) if __name__ == "__main__": main()
40.008511
251
0.623591
1,199
9,402
4.654712
0.251043
0.057875
0.018635
0.017201
0.086364
0.0611
0.049812
0.035119
0
0
0
0.009113
0.241332
9,402
234
252
40.179487
0.773307
0.153903
0
0.073171
0
0
0.147679
0.008695
0
0
0
0
0
1
0.006098
false
0.006098
0.134146
0
0.140244
0.012195
0
0
0
null
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
null
0
0
0
0
0
0
0
0
0
0
0
0
1
0
6ae26b063b0fbd07c2ce06161f218674d84af1d4
1,119
py
Python
ice/consoles.py
reavessm/Ice
e78d046abfd6006b1a81d1cbdb516b7c3e141ac9
[ "MIT" ]
578
2015-01-02T12:43:52.000Z
2022-03-27T23:45:32.000Z
ice/consoles.py
reavessm/Ice
e78d046abfd6006b1a81d1cbdb516b7c3e141ac9
[ "MIT" ]
271
2015-01-05T01:56:38.000Z
2021-08-14T02:51:24.000Z
ice/consoles.py
reavessm/Ice
e78d046abfd6006b1a81d1cbdb516b7c3e141ac9
[ "MIT" ]
156
2015-01-07T15:43:20.000Z
2021-12-11T19:10:44.000Z
# encoding: utf-8 import os import roms def console_roms_directory(configuration, console): """ If the user has specified a custom ROMs directory in consoles.txt then return that. Otherwise, append the shortname of the console to the default ROMs directory given by config.txt. """ if console.custom_roms_directory: return console.custom_roms_directory return os.path.join(roms.roms_directory(configuration), console.shortname) def path_is_rom(console, path): """ This function determines if a given path is actually a valid ROM file. If a list of extensions is supplied for this console, we check if the path has a valid extension If no extensions are defined for this console, we just accept any file """ if console.extensions == "": return True # Normalize the extension based on the things we validly ignore. # Aka capitalization, whitespace, and leading dots normalize = lambda ext: ext.lower().strip().lstrip('.') (name, ext) = os.path.splitext(path) valid_extensions = console.extensions.split(',') return normalize(ext) in map(normalize, valid_extensions)
31.971429
98
0.747096
162
1,119
5.092593
0.475309
0.094545
0.069091
0.08
0.077576
0
0
0
0
0
0
0.001081
0.173369
1,119
34
99
32.911765
0.890811
0.49151
0
0
0
0
0.003745
0
0
0
0
0
0
1
0.153846
false
0
0.153846
0
0.615385
0
0
0
0
null
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
null
0
0
0
0
0
0
0
0
0
0
0
0
1
0
6ae285af81cb46f32301f55fbf5e2dcaee2e26e6
5,527
py
Python
clue/c3.py
dumpmemory/roformer-v2
95b71ae03b8bb910998285e194d7752b1e4104c0
[ "Apache-2.0" ]
44
2022-03-17T02:58:27.000Z
2022-03-31T13:08:29.000Z
clue/c3.py
dumpmemory/roformer-v2
95b71ae03b8bb910998285e194d7752b1e4104c0
[ "Apache-2.0" ]
null
null
null
clue/c3.py
dumpmemory/roformer-v2
95b71ae03b8bb910998285e194d7752b1e4104c0
[ "Apache-2.0" ]
2
2022-03-17T05:47:06.000Z
2022-03-22T10:33:54.000Z
#! -*- coding:utf-8 -*- # CLUE评测 # c3多项选择阅读理解 # 思路:每个选项分别与问题、篇章拼接后打分排序 import json import numpy as np from snippets import * from bert4keras.backend import keras from bert4keras.snippets import sequence_padding, DataGenerator from bert4keras.snippets import open from bert4keras.snippets import truncate_sequences from tqdm import tqdm # 基本参数 num_classes = 4 maxlen = 512 batch_size = 4 epochs = 10 def load_data(filename): """加载数据 格式:[(篇章, 问题, 选项, 答案id)] """ D = [] with open(filename) as f: data = json.load(f) for d in data: p = u'||'.join(d[0]) for qa in d[1]: q = qa['question'] while len(qa['choice']) < num_classes: qa['choice'].append(u'无效答案') c = qa['choice'][:num_classes] if 'answer' in qa: a = qa['choice'].index(qa['answer']) else: a = 0 D.append((p, q, c, a)) return D # 加载数据集 train_data = load_data(data_path + 'c3/m-train.json') train_data += load_data(data_path + 'c3/d-train.json') valid_data = load_data(data_path + 'c3/m-dev.json') valid_data += load_data(data_path + 'c3/d-dev.json') class data_generator(DataGenerator): """数据生成器 """ def __iter__(self, random=False): batch_token_ids, batch_segment_ids, batch_labels = [], [], [] for is_end, (p, q, cs, a) in self.sample(random): for c in cs: p_ids = tokenizer.encode(p)[0] q_ids = tokenizer.encode(q)[0][1:] c_ids = tokenizer.encode(c)[0][1:] truncate_sequences(maxlen, -2, c_ids, q_ids, p_ids) token_ids = p_ids + q_ids + c_ids batch_token_ids.append(token_ids) batch_segment_ids.append([0] * len(token_ids)) batch_labels.append([a]) if len(batch_token_ids) == self.batch_size * num_classes or is_end: batch_token_ids = sequence_padding(batch_token_ids) batch_segment_ids = sequence_padding(batch_segment_ids) batch_labels = sequence_padding(batch_labels) yield [batch_token_ids, batch_segment_ids], batch_labels batch_token_ids, batch_segment_ids, batch_labels = [], [], [] # 转换数据集 train_generator = data_generator(train_data, batch_size) valid_generator = data_generator(valid_data, batch_size) def multichoice_crossentropy(y_true, y_pred): """多项选择的交叉熵 """ y_true = K.cast(y_true, 'int32')[::num_classes] y_pred = K.reshape(y_pred, (-1, num_classes)) return K.mean( K.sparse_categorical_crossentropy(y_true, y_pred, from_logits=True) ) def multichoice_accuracy(y_true, y_pred): """多项选择的准确率 """ y_true = K.cast(y_true, 'int32')[::num_classes, 0] y_pred = K.reshape(y_pred, (-1, num_classes)) y_pred = K.cast(K.argmax(y_pred, axis=1), 'int32') return K.mean(K.cast(K.equal(y_true, y_pred), K.floatx())) # 构建模型 output = base.model.output output = keras.layers.Lambda(lambda x: x[:, 0])(output) output = keras.layers.Dense(units=1, kernel_initializer=base.initializer)(output) model = keras.models.Model(base.model.input, output) model.summary() model.compile( loss=multichoice_crossentropy, optimizer=optimizer4, metrics=[multichoice_accuracy] ) class Evaluator(keras.callbacks.Callback): """保存验证集acc最好的模型 """ def __init__(self): self.best_val_acc = 0. def on_epoch_end(self, epoch, logs=None): val_acc = self.evaluate(valid_generator) if val_acc > self.best_val_acc: self.best_val_acc = val_acc model.save_weights('weights/c3.weights') print( u'val_acc: %.5f, best_val_acc: %.5f\n' % (val_acc, self.best_val_acc) ) def evaluate(self, data): total, right = 0., 0. for x_true, y_true in data: y_pred = model.predict(x_true).reshape((-1, num_classes)) y_pred = y_pred.argmax(axis=1) y_true = y_true[::num_classes, 0] total += len(y_true) right += (y_true == y_pred).sum() return right / total def test_predict(in_file, out_file): """输出测试结果到文件 结果文件可以提交到 https://www.cluebenchmarks.com 评测。 """ test_data = load_data(in_file) test_generator = data_generator(test_data, batch_size) results = [] for x_true, _ in tqdm(test_generator, ncols=0): y_pred = model.predict(x_true).reshape((-1, num_classes)) y_pred = y_pred.argmax(axis=1) results.extend(y_pred) fw = open(out_file, 'w') with open(in_file) as fr: data = json.load(fr) i = 0 for d in data: for qa in d[1]: l = json.dumps({'id': str(qa['id']), 'label': str(results[i])}) fw.write(l + '\n') i += 1 fw.close() if __name__ == '__main__': evaluator = Evaluator() model.fit_generator( train_generator.forfit(), steps_per_epoch=len(train_generator), epochs=epochs, callbacks=[evaluator] ) model.load_weights('weights/c3.weights') test_predict( in_file=data_path + 'c3/test1.0.json', out_file='results/c310_predict.json' ) test_predict( in_file=data_path + 'c3/test1.1.json', out_file='results/c311_predict.json' ) else: model.load_weights('weights/c3.weights')
29.089474
79
0.599602
749
5,527
4.162884
0.256342
0.028865
0.029185
0.032072
0.257858
0.220334
0.173509
0.154907
0.076972
0.039128
0
0.01716
0.272481
5,527
189
80
29.243386
0.758269
0.041071
0
0.134328
0
0
0.059115
0.009535
0
0
0
0
0
1
0.059701
false
0
0.059701
0
0.164179
0.007463
0
0
0
null
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
null
0
0
0
0
0
0
0
0
0
0
0
0
1
0
6ae4d12e5b6c5a2ce81f0095493d76c6afcfb99b
3,481
py
Python
logpy/util.py
mrocklin/logpy
7e32f4da10a0ab5b86fb23947cfce9a4d49c6b3f
[ "BSD-3-Clause" ]
1
2016-09-20T16:05:12.000Z
2016-09-20T16:05:12.000Z
logpy/util.py
mrocklin/logpy
7e32f4da10a0ab5b86fb23947cfce9a4d49c6b3f
[ "BSD-3-Clause" ]
null
null
null
logpy/util.py
mrocklin/logpy
7e32f4da10a0ab5b86fb23947cfce9a4d49c6b3f
[ "BSD-3-Clause" ]
null
null
null
import itertools as it from toolz.compatibility import range, map, iteritems def hashable(x): try: hash(x) return True except TypeError: return False def transitive_get(key, d): """ Transitive dict.get >>> from logpy.util import transitive_get >>> d = {1: 2, 2: 3, 3: 4} >>> d.get(1) 2 >>> transitive_get(1, d) 4 """ while hashable(key) and key in d: key = d[key] return key def deep_transitive_get(key, d): """ Transitive get that propagates within tuples >>> from logpy.util import transitive_get, deep_transitive_get >>> d = {1: (2, 3), 2: 12, 3: 13} >>> transitive_get(1, d) (2, 3) >>> deep_transitive_get(1, d) (12, 13) """ key = transitive_get(key, d) if isinstance(key, tuple): return tuple(map(lambda k: deep_transitive_get(k, d), key)) else: return key def dicthash(d): return hash(frozenset(d.items())) def multihash(x): try: return hash(x) except TypeError: if isinstance(x, (list, tuple, set, frozenset)): return hash(tuple(map(multihash, x))) if type(x) is dict: return hash(frozenset(map(multihash, x.items()))) if type(x) is slice: return hash((x.start, x.stop, x.step)) raise TypeError('Hashing not covered for ' + str(x)) def unique(seq, key=lambda x: x): seen = set() for item in seq: try: if key(item) not in seen: seen.add(key(item)) yield item except TypeError: # item probably isn't hashable yield item # Just return it and hope for the best def interleave(seqs, pass_exceptions=()): iters = map(iter, seqs) while iters: newiters = [] for itr in iters: try: yield next(itr) newiters.append(itr) except (StopIteration,) + tuple(pass_exceptions): pass iters = newiters def take(n, seq): if n is None: return seq if n == 0: return tuple(seq) return tuple(it.islice(seq, 0, n)) def evalt(t): """ Evaluate tuple if unevaluated >>> from logpy.util import evalt >>> add = lambda x, y: x + y >>> evalt((add, 2, 3)) 5 >>> evalt(add(2, 3)) 5 """ if isinstance(t, tuple) and len(t) >= 1 and callable(t[0]): return t[0](*t[1:]) else: return t def intersection(*seqs): return (item for item in seqs[0] if all(item in seq for seq in seqs[1:])) def groupsizes(total, len): """ Groups of length len that add up to total >>> from logpy.util import groupsizes >>> tuple(groupsizes(4, 2)) ((1, 3), (2, 2), (3, 1)) """ if len == 1: yield (total,) else: for i in range(1, total - len + 1 + 1): for perm in groupsizes(total - i, len - 1): yield (i,) + perm def raises(err, lamda): try: lamda() raise Exception("Did not raise %s"%err) except err: pass def pprint(g): """ Pretty print a tree of goals """ if callable(g) and hasattr(g, '__name__'): return g.__name__ if isinstance(g, type): return g.__name__ if isinstance(g, tuple): return "(" + ', '.join(map(pprint, g)) + ")" return str(g) def index(tup, ind): """ Fancy indexing with tuples """ return tuple(tup[i] for i in ind)
24.687943
67
0.545246
482
3,481
3.879668
0.278008
0.076471
0.027807
0.040642
0.110695
0.059893
0
0
0
0
0
0.02292
0.323183
3,481
140
68
24.864286
0.770798
0.214019
0
0.215909
0
0
0.020046
0
0
0
0
0
0
1
0.159091
false
0.045455
0.022727
0.022727
0.420455
0.022727
0
0
0
null
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
null
0
0
0
0
0
0
0
0
0
0
0
0
1
0
6ae561e06496768e94110f91362d5a5eeb524bdb
545
py
Python
index.py
rinocloud/rinobot-plugin-shift
4f7f16a5e610b91b64377733d24b6ab4b63daa67
[ "MIT" ]
null
null
null
index.py
rinocloud/rinobot-plugin-shift
4f7f16a5e610b91b64377733d24b6ab4b63daa67
[ "MIT" ]
null
null
null
index.py
rinocloud/rinobot-plugin-shift
4f7f16a5e610b91b64377733d24b6ab4b63daa67
[ "MIT" ]
null
null
null
import rinobot_plugin as bot import numpy as np def main(): # lets get our parameters and data filepath = bot.filepath() data = bot.loadfile(filepath) # now comes the custom plugin logic shift = bot.get_arg('shift', type=float, required=True) index = bot.index_from_args(data) data[index] = data[index] + shift outname = bot.no_extension() + '-shift-%s.txt' % shift # then we set up the output outpath = bot.output_filepath(outname) np.savetxt(outpath, data) if __name__ == "__main__": main()
25.952381
59
0.669725
77
545
4.558442
0.584416
0.051282
0
0
0
0
0
0
0
0
0
0
0.218349
545
20
60
27.25
0.823944
0.168807
0
0
0
0
0.057906
0
0
0
0
0
0
1
0.076923
false
0
0.153846
0
0.230769
0
0
0
0
null
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
null
0
0
0
0
0
0
0
0
0
0
0
0
1
0