ChronoMind-ฮฉ
ChronoMind-ฮฉ is a Level-5 causal time-series forecasting engine designed to perform multi-horizon predictions with explainable trend attribution and uncertainty estimation.
It fuses temporal transformer modeling, causal inference, regime change detection, and confidence interval modeling into a single, research-grade forecasting system.
๐ Key Capabilities
- ๐ฎ Multi-Horizon Forecasting
- ๐ง Temporal Transformers
- ๐ Causal Inference
- ๐ Regime Change Detection
- ๐ Uncertainty & Confidence Intervals
- ๐งฉ Explainable Trend Attribution
- ๐ค Hugging FaceโReady (
time-series-forecasting)
๐ง System Architecture
Raw Time-Series
โ
Data Loader & Normalization
โ
Temporal Transformer Encoder
โ
Causal Inference Module
โ
Regime Change Detector
โ
Multi-Horizon Forecaster
โ
Uncertainty & Confidence Intervals
โ
Trend Attribution Explainer
๐ฅ Input Format
{
"series": [0.1, 0.2, 0.35, 0.3, 0.45, 0.6],
"horizons": [1, 6, 12],
"causal_features": {
"holiday_effect": [0, 0, 1, 0, 0, 1]
},
"confidence_levels": [0.8, 0.95]
}
๐ค Output Format
{
"forecasts": {
"1": 0.63,
"6": 0.79,
"12": 0.95
},
"confidence_intervals": {
"1": {
"0.8": [0.58, 0.68],
"0.95": [0.54, 0.72]
}
},
"causal_effect": 0.12,
"regimes": [0, 0, 1, 0, 1],
"trend": "upward"
}
๐ ๏ธ Installation & Usage
git clone https://huggingface.co/<your-username>/chronomind-omega
cd chronomind-omega
python inference.py
๐ Project Structure
chronomind-omega/
โโโ configs/
โโโ data/
โโโ src/
โโโ inference.py
โโโ evaluation.py
โโโ README.md
โโโ model_card.md
โโโ LICENSE
โโโ requirements.txt
๐ฏ Use Cases
- Financial market forecasting
- Demand & sales prediction
- Energy & climate modeling
- Supply chain forecasting
- Causal time-series analysis
๐ฎ Future Improvements
- Full transformer encoder
- Bayesian uncertainty modeling
- Multivariate forecasting
- Interactive dashboard
๐ License
Apache License 2.0
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
๐
Ask for provider support