SentenceTransformer based on BAAI/bge-m3
This is a sentence-transformers model finetuned from BAAI/bge-m3. It maps sentences & paragraphs to a 1024-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
Model Details
Model Description
- Model Type: Sentence Transformer
- Base model: BAAI/bge-m3
- Maximum Sequence Length: 8192 tokens
- Output Dimensionality: 1024 dimensions
- Similarity Function: Cosine Similarity
Model Sources
- Documentation: Sentence Transformers Documentation
- Repository: Sentence Transformers on GitHub
- Hugging Face: Sentence Transformers on Hugging Face
Full Model Architecture
SentenceTransformer(
(0): Transformer({'max_seq_length': 8192, 'do_lower_case': False}) with Transformer model: XLMRobertaModel
(1): Pooling({'word_embedding_dimension': 1024, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
)
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("sentence_transformers_model_id")
# Run inference
sentences = [
"What factors are contributing to pressure on Apple's market share in China?",
"The company forecast low-to-mid single-digit\nrevenue growth, in line with muted expectations. In China, Apple posted $16 billion in revenue, slightly\nabove forecasts, though competition from Huawei and slower AI\nrollout continue to pressure market share. If losses hold, Apple is on track to shed more than $150\nbillion in market value, while a bullish outlook from Microsoft\n<MSFT.O> earlier this week has helped the Windows-maker become\nthe world's most valuable company.",
'With recent\nexchange rate fluctuations adding to the uncertainty, we are\ntaking a more cautious outlook for the near future." While Washington and Beijing on Monday agreed to slash\ntariffs for at least 90 days, the cheer over the temporary truce\nwas tempered by caution given a more permanent trade deal needs\nto be struck, while higher tariffs overall could still weigh on\nthe global economy. Most of the iPhones Foxconn makes for Apple are assembled in\nChina.',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 1024]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
Evaluation
Metrics
Information Retrieval
- Evaluated with
InformationRetrievalEvaluator
| Metric | Value |
|---|---|
| cosine_accuracy@1 | 0.3454 |
| cosine_accuracy@3 | 0.6057 |
| cosine_accuracy@5 | 0.7223 |
| cosine_accuracy@10 | 0.8465 |
| cosine_precision@1 | 0.3454 |
| cosine_precision@3 | 0.2019 |
| cosine_precision@5 | 0.1445 |
| cosine_precision@10 | 0.0847 |
| cosine_recall@1 | 0.3454 |
| cosine_recall@3 | 0.6057 |
| cosine_recall@5 | 0.7223 |
| cosine_recall@10 | 0.8465 |
| cosine_ndcg@10 | 0.5859 |
| cosine_mrr@10 | 0.5034 |
| cosine_map@100 | 0.5105 |
Training Details
Training Dataset
Unnamed Dataset
- Size: 23,404 training samples
- Columns:
sentence_0andsentence_1 - Approximate statistics based on the first 1000 samples:
sentence_0 sentence_1 type string string details - min: 10 tokens
- mean: 24.88 tokens
- max: 53 tokens
- min: 10 tokens
- mean: 257.76 tokens
- max: 8022 tokens
- Samples:
sentence_0 sentence_1 By approximately what percentage did Meta's shares increase in after-hours trading following the announcement of its results?Its shares
jumped around 7% in after-hours trade on the news of the results. Meanwhile,
Meta beat estimates with $42 billion in revenue last quarter. It's also said
its daily active users across Facebook, Instagram, and the rest of its
services rose 6% year-on-year, marking welcome news for advertisers.How have drugmakers responded to proposed tariffs on imported pharmaceutical products during the Commerce Department's investigation?The move triggered a 21-day public comment period as part of
the investigation led by the Commerce Department. Drugmakers see the probe as a chance to show the
administration that high tariffs would hinder their efforts to
swiftly ramp up U.S. production, and to propose alternatives,
said Ted Murphy, a trade lawyer at law firm Sidley Austin, which
is advising companies on their submissions to the Commerce
Department. Drugmakers have also lobbied Trump to phase in tariffs on
imported pharmaceutical products in hopes of reducing the sting
from the charges.Which South American companies currently use the company's regional services, and what growth expectations does Estevez have for the area?The company already has 36 regions and 114 availability
zones worldwide used by companies such as Netflix, General
Electric and Sony for storage, networking and remote security. Chilean retailer Cencosud, online retail giant MercadoLibre,
and mining companies already use the company's other regional
services, it said. Amazon's first-quarter cloud revenue and income forecast
came in below estimates last Thursday, but Estevez said he's
expecting strong growth in Chile and across the region. - Loss:
MultipleNegativesRankingLosswith these parameters:{ "scale": 20.0, "similarity_fct": "cos_sim" }
Training Hyperparameters
Non-Default Hyperparameters
eval_strategy: stepsper_device_train_batch_size: 3per_device_eval_batch_size: 3num_train_epochs: 2multi_dataset_batch_sampler: round_robin
All Hyperparameters
Click to expand
overwrite_output_dir: Falsedo_predict: Falseeval_strategy: stepsprediction_loss_only: Trueper_device_train_batch_size: 3per_device_eval_batch_size: 3per_gpu_train_batch_size: Noneper_gpu_eval_batch_size: Nonegradient_accumulation_steps: 1eval_accumulation_steps: Nonetorch_empty_cache_steps: Nonelearning_rate: 5e-05weight_decay: 0.0adam_beta1: 0.9adam_beta2: 0.999adam_epsilon: 1e-08max_grad_norm: 1num_train_epochs: 2max_steps: -1lr_scheduler_type: linearlr_scheduler_kwargs: {}warmup_ratio: 0.0warmup_steps: 0log_level: passivelog_level_replica: warninglog_on_each_node: Truelogging_nan_inf_filter: Truesave_safetensors: Truesave_on_each_node: Falsesave_only_model: Falserestore_callback_states_from_checkpoint: Falseno_cuda: Falseuse_cpu: Falseuse_mps_device: Falseseed: 42data_seed: Nonejit_mode_eval: Falseuse_ipex: Falsebf16: Falsefp16: Falsefp16_opt_level: O1half_precision_backend: autobf16_full_eval: Falsefp16_full_eval: Falsetf32: Nonelocal_rank: 0ddp_backend: Nonetpu_num_cores: Nonetpu_metrics_debug: Falsedebug: []dataloader_drop_last: Falsedataloader_num_workers: 0dataloader_prefetch_factor: Nonepast_index: -1disable_tqdm: Falseremove_unused_columns: Truelabel_names: Noneload_best_model_at_end: Falseignore_data_skip: Falsefsdp: []fsdp_min_num_params: 0fsdp_config: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}fsdp_transformer_layer_cls_to_wrap: Noneaccelerator_config: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}deepspeed: Nonelabel_smoothing_factor: 0.0optim: adamw_torchoptim_args: Noneadafactor: Falsegroup_by_length: Falselength_column_name: lengthddp_find_unused_parameters: Noneddp_bucket_cap_mb: Noneddp_broadcast_buffers: Falsedataloader_pin_memory: Truedataloader_persistent_workers: Falseskip_memory_metrics: Trueuse_legacy_prediction_loop: Falsepush_to_hub: Falseresume_from_checkpoint: Nonehub_model_id: Nonehub_strategy: every_savehub_private_repo: Nonehub_always_push: Falsehub_revision: Nonegradient_checkpointing: Falsegradient_checkpointing_kwargs: Noneinclude_inputs_for_metrics: Falseinclude_for_metrics: []eval_do_concat_batches: Truefp16_backend: autopush_to_hub_model_id: Nonepush_to_hub_organization: Nonemp_parameters:auto_find_batch_size: Falsefull_determinism: Falsetorchdynamo: Noneray_scope: lastddp_timeout: 1800torch_compile: Falsetorch_compile_backend: Nonetorch_compile_mode: Noneinclude_tokens_per_second: Falseinclude_num_input_tokens_seen: Falseneftune_noise_alpha: Noneoptim_target_modules: Nonebatch_eval_metrics: Falseeval_on_start: Falseuse_liger_kernel: Falseliger_kernel_config: Noneeval_use_gather_object: Falseaverage_tokens_across_devices: Falseprompts: Nonebatch_sampler: batch_samplermulti_dataset_batch_sampler: round_robin
Training Logs
Click to expand
| Epoch | Step | Training Loss | cosine_ndcg@10 |
|---|---|---|---|
| 0.0192 | 50 | - | 0.5170 |
| 0.0384 | 100 | - | 0.5279 |
| 0.0577 | 150 | - | 0.5324 |
| 0.0769 | 200 | - | 0.5336 |
| 0.0961 | 250 | - | 0.5456 |
| 0.1153 | 300 | - | 0.5535 |
| 0.1346 | 350 | - | 0.5507 |
| 0.1538 | 400 | - | 0.5532 |
| 0.1730 | 450 | - | 0.5591 |
| 0.1922 | 500 | 0.2091 | 0.5693 |
| 0.2115 | 550 | - | 0.5666 |
| 0.2307 | 600 | - | 0.5669 |
| 0.2499 | 650 | - | 0.5668 |
| 0.2691 | 700 | - | 0.5636 |
| 0.2884 | 750 | - | 0.5650 |
| 0.3076 | 800 | - | 0.5636 |
| 0.3268 | 850 | - | 0.5677 |
| 0.3460 | 900 | - | 0.5686 |
| 0.3652 | 950 | - | 0.5678 |
| 0.3845 | 1000 | 0.0546 | 0.5624 |
| 0.4037 | 1050 | - | 0.5659 |
| 0.4229 | 1100 | - | 0.5687 |
| 0.4421 | 1150 | - | 0.5704 |
| 0.4614 | 1200 | - | 0.5695 |
| 0.4806 | 1250 | - | 0.5702 |
| 0.4998 | 1300 | - | 0.5582 |
| 0.5190 | 1350 | - | 0.5703 |
| 0.5383 | 1400 | - | 0.5688 |
| 0.5575 | 1450 | - | 0.5722 |
| 0.5767 | 1500 | 0.0529 | 0.5673 |
| 0.5959 | 1550 | - | 0.5669 |
| 0.6151 | 1600 | - | 0.5597 |
| 0.6344 | 1650 | - | 0.5666 |
| 0.6536 | 1700 | - | 0.5626 |
| 0.6728 | 1750 | - | 0.5627 |
| 0.6920 | 1800 | - | 0.5641 |
| 0.7113 | 1850 | - | 0.5572 |
| 0.7305 | 1900 | - | 0.5632 |
| 0.7497 | 1950 | - | 0.5733 |
| 0.7689 | 2000 | 0.0478 | 0.5644 |
| 0.7882 | 2050 | - | 0.5658 |
| 0.8074 | 2100 | - | 0.5608 |
| 0.8266 | 2150 | - | 0.5687 |
| 0.8458 | 2200 | - | 0.5728 |
| 0.8651 | 2250 | - | 0.5581 |
| 0.8843 | 2300 | - | 0.5612 |
| 0.9035 | 2350 | - | 0.5616 |
| 0.9227 | 2400 | - | 0.5650 |
| 0.9419 | 2450 | - | 0.5626 |
| 0.9612 | 2500 | 0.0482 | 0.5665 |
| 0.9804 | 2550 | - | 0.5668 |
| 0.9996 | 2600 | - | 0.5552 |
| 1.0 | 2601 | - | 0.5556 |
| 1.0188 | 2650 | - | 0.5681 |
| 1.0381 | 2700 | - | 0.5620 |
| 1.0573 | 2750 | - | 0.5639 |
| 1.0765 | 2800 | - | 0.5646 |
| 1.0957 | 2850 | - | 0.5714 |
| 1.1150 | 2900 | - | 0.5748 |
| 1.1342 | 2950 | - | 0.5739 |
| 1.1534 | 3000 | 0.033 | 0.5630 |
| 1.1726 | 3050 | - | 0.5655 |
| 1.1918 | 3100 | - | 0.5711 |
| 1.2111 | 3150 | - | 0.5680 |
| 1.2303 | 3200 | - | 0.5742 |
| 1.2495 | 3250 | - | 0.5714 |
| 1.2687 | 3300 | - | 0.5657 |
| 1.2880 | 3350 | - | 0.5636 |
| 1.3072 | 3400 | - | 0.5701 |
| 1.3264 | 3450 | - | 0.5720 |
| 1.3456 | 3500 | 0.0276 | 0.5733 |
| 1.3649 | 3550 | - | 0.5738 |
| 1.3841 | 3600 | - | 0.5743 |
| 1.4033 | 3650 | - | 0.5702 |
| 1.4225 | 3700 | - | 0.5732 |
| 1.4418 | 3750 | - | 0.5705 |
| 1.4610 | 3800 | - | 0.5774 |
| 1.4802 | 3850 | - | 0.5735 |
| 1.4994 | 3900 | - | 0.5781 |
| 1.5186 | 3950 | - | 0.5691 |
| 1.5379 | 4000 | 0.0266 | 0.5729 |
| 1.5571 | 4050 | - | 0.5712 |
| 1.5763 | 4100 | - | 0.5685 |
| 1.5955 | 4150 | - | 0.5711 |
| 1.6148 | 4200 | - | 0.5712 |
| 1.6340 | 4250 | - | 0.5716 |
| 1.6532 | 4300 | - | 0.5762 |
| 1.6724 | 4350 | - | 0.5813 |
| 1.6917 | 4400 | - | 0.5822 |
| 1.7109 | 4450 | - | 0.5805 |
| 1.7301 | 4500 | 0.0337 | 0.5789 |
| 1.7493 | 4550 | - | 0.5745 |
| 1.7686 | 4600 | - | 0.5752 |
| 1.7878 | 4650 | - | 0.5780 |
| 1.8070 | 4700 | - | 0.5815 |
| 1.8262 | 4750 | - | 0.5833 |
| 1.8454 | 4800 | - | 0.5809 |
| 1.8647 | 4850 | - | 0.5711 |
| 1.8839 | 4900 | - | 0.5716 |
| 1.9031 | 4950 | - | 0.5816 |
| 1.9223 | 5000 | 0.0299 | 0.5815 |
| 1.9416 | 5050 | - | 0.5816 |
| 1.9608 | 5100 | - | 0.5847 |
| 1.9800 | 5150 | - | 0.5831 |
| 1.9992 | 5200 | - | 0.5847 |
| 2.0 | 5202 | - | 0.5859 |
Framework Versions
- Python: 3.10.12
- Sentence Transformers: 3.4.1
- Transformers: 4.53.0
- PyTorch: 2.2.0+cu121
- Accelerate: 1.8.1
- Datasets: 3.6.0
- Tokenizers: 0.21.2
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
MultipleNegativesRankingLoss
@misc{henderson2017efficient,
title={Efficient Natural Language Response Suggestion for Smart Reply},
author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
year={2017},
eprint={1705.00652},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
- Downloads last month
- 8
Model tree for irene93/RAG_enhance
Base model
BAAI/bge-m3Evaluation results
- Cosine Accuracy@1 on Unknownself-reported0.345
- Cosine Accuracy@3 on Unknownself-reported0.606
- Cosine Accuracy@5 on Unknownself-reported0.722
- Cosine Accuracy@10 on Unknownself-reported0.847
- Cosine Precision@1 on Unknownself-reported0.345
- Cosine Precision@3 on Unknownself-reported0.202
- Cosine Precision@5 on Unknownself-reported0.144
- Cosine Precision@10 on Unknownself-reported0.085
- Cosine Recall@1 on Unknownself-reported0.345
- Cosine Recall@3 on Unknownself-reported0.606