multilabel-mental-health-classifier-v3-iter3

This model is a fine-tuned version of bert-base-uncased on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.0013
  • Precision Macro: 1.0
  • Recall Macro: 0.9998
  • F1 Macro: 0.9999
  • Precision Micro: 1.0
  • Recall Micro: 0.9997
  • F1 Micro: 0.9999

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 764
  • optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • num_epochs: 10

Training results

Training Loss Epoch Step Validation Loss Precision Macro Recall Macro F1 Macro Precision Micro Recall Micro F1 Micro
0.1681 1.0 201 0.0308 0.9702 0.9923 0.9809 0.9849 0.9911 0.9880
0.0523 2.0 402 0.0158 0.9916 0.9956 0.9935 0.9970 0.9946 0.9958
0.0285 3.0 603 0.0121 0.9892 0.9969 0.9929 0.9929 0.9976 0.9953
0.01 4.0 804 0.0034 0.9992 0.9998 0.9995 0.9994 0.9997 0.9996
0.0074 5.0 1005 0.0026 1.0 0.9999 0.9999 1.0 0.9997 0.9999
0.0045 6.0 1206 0.0021 1.0 0.9996 0.9998 1.0 0.9994 0.9997
0.0031 7.0 1407 0.0015 1.0 1.0 1.0 1.0 1.0 1.0
0.0022 8.0 1608 0.0013 1.0 1.0 1.0 1.0 1.0 1.0
0.0018 9.0 1809 0.0014 1.0 0.9998 0.9999 1.0 0.9997 0.9999
0.0017 10.0 2010 0.0013 1.0 0.9998 0.9999 1.0 0.9997 0.9999

Framework versions

  • Transformers 4.56.2
  • Pytorch 2.4.1
  • Tokenizers 0.22.1
Downloads last month
14
Safetensors
Model size
0.1B params
Tensor type
F32
ยท
Inference Providers NEW
This model isn't deployed by any Inference Provider. ๐Ÿ™‹ Ask for provider support

Model tree for lucienbaumgartner/multilabel-mental-health-classifier-v3-iter3

Finetuned
(6256)
this model

Evaluation results