multilabel-mental-health-classifier-v3-iter3
This model is a fine-tuned version of bert-base-uncased on an unknown dataset. It achieves the following results on the evaluation set:
- Loss: 0.0013
- Precision Macro: 1.0
- Recall Macro: 0.9998
- F1 Macro: 0.9999
- Precision Micro: 1.0
- Recall Micro: 0.9997
- F1 Micro: 0.9999
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 764
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- num_epochs: 10
Training results
| Training Loss | Epoch | Step | Validation Loss | Precision Macro | Recall Macro | F1 Macro | Precision Micro | Recall Micro | F1 Micro |
|---|---|---|---|---|---|---|---|---|---|
| 0.1681 | 1.0 | 201 | 0.0308 | 0.9702 | 0.9923 | 0.9809 | 0.9849 | 0.9911 | 0.9880 |
| 0.0523 | 2.0 | 402 | 0.0158 | 0.9916 | 0.9956 | 0.9935 | 0.9970 | 0.9946 | 0.9958 |
| 0.0285 | 3.0 | 603 | 0.0121 | 0.9892 | 0.9969 | 0.9929 | 0.9929 | 0.9976 | 0.9953 |
| 0.01 | 4.0 | 804 | 0.0034 | 0.9992 | 0.9998 | 0.9995 | 0.9994 | 0.9997 | 0.9996 |
| 0.0074 | 5.0 | 1005 | 0.0026 | 1.0 | 0.9999 | 0.9999 | 1.0 | 0.9997 | 0.9999 |
| 0.0045 | 6.0 | 1206 | 0.0021 | 1.0 | 0.9996 | 0.9998 | 1.0 | 0.9994 | 0.9997 |
| 0.0031 | 7.0 | 1407 | 0.0015 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 |
| 0.0022 | 8.0 | 1608 | 0.0013 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 |
| 0.0018 | 9.0 | 1809 | 0.0014 | 1.0 | 0.9998 | 0.9999 | 1.0 | 0.9997 | 0.9999 |
| 0.0017 | 10.0 | 2010 | 0.0013 | 1.0 | 0.9998 | 0.9999 | 1.0 | 0.9997 | 0.9999 |
Framework versions
- Transformers 4.56.2
- Pytorch 2.4.1
- Tokenizers 0.22.1
- Downloads last month
- 14
Model tree for lucienbaumgartner/multilabel-mental-health-classifier-v3-iter3
Base model
google-bert/bert-base-uncased