MagicQuant GGUF Hybrids - Qwen3 4B Thinking 2507
MagicQuant is an automated quantization, benchmarking, and evolutionary hybrid-GGUF search system for LLMs.
Each release includes models optimized to outperform standard baseline quants (Q8, Q6, Q5, Q4). If a baseline GGUF exists in this repo, the evolutionary engine couldn’t beat it. If a baseline is missing, it’s because a hybrid configuration outperformed it so completely that including the baseline would've been pointless.
These hybrid GGUFs are built to be as small, fast, and low-drift as possible while preserving model capability.
To dive deeper into how MagicQuant works, see the main repo: MagicQuant on GitHub (by MagicCodingMan)
Notes:
- The HuggingFace hardware compatibility where it shows the bits is usually wrong. It doesn't understand hybrid mixes, so don't trust it.
- Naming scheme can be found on the MagicQuant Wiki.
- (tips) Less precision loss means less brain damage. More TPS means faster! Smaller is always better right?
Precision Loss Guide
- 0–0.1% → God-tier, scientifically exact
- 0.1–1% → True near-lossless, agent-ready
- 1–3% → Minimal loss, great for personal use
- 3–5% → Borderline, but still functional
- 5%+ → Toys, not tools, outside MagicQuant’s scope
Learn more about precision loss here.
Table - File Size + TPS + Avg Precision Loss
| model_name | file_size_gb | bench_tps | avg_prec_loss |
|---|---|---|---|
| mxfp4_moe-O-Q6K-EQKUD-Q8_0 | 3.90 | 369.09 | 0.0989% |
| mxfp4_moe-Q-Q5K-EKOUD-Q6K | 3.03 | 394.06 | 0.1278% |
| iq4_nl-EQKOUD-Q6K | 3.08 | 413.99 | 0.1740% |
| mxfp4_moe-QK-IQ4NL-O-MXFP4-EUD-Q6K | 2.84 | 430.23 | 0.3832% |
| Q5_K | 2.69 | 375.72 | 0.5973% |
| Q4_K_M | 2.33 | 366.54 | 1.6668% |
| mxfp4_moe-QKU-IQ4NL-O-MXFP4-D-Q5K-E-Q6K | 2.30 | 412.13 | 2.2740% |
| IQ4_NL | 2.23 | 450.75 | 2.4657% |
| mxfp4_moe-EQOU-IQ4NL-KD-Q6K | 2.37 | 472.25 | 2.5049% |
Table - PPL Columns
| model_name | gen | gen_er | code | code_er | math | math_er |
|---|---|---|---|---|---|---|
| mxfp4_moe-O-Q6K-EQKUD-Q8_0 | 10.0081 | 0.2450 | 1.5936 | 0.0128 | 6.9001 | 0.1413 |
| mxfp4_moe-Q-Q5K-EKOUD-Q6K | 9.9957 | 0.2441 | 1.5922 | 0.0127 | 6.9036 | 0.1412 |
| iq4_nl-EQKOUD-Q6K | 9.9687 | 0.2431 | 1.5927 | 0.0127 | 6.8924 | 0.1409 |
| mxfp4_moe-QK-IQ4NL-O-MXFP4-EUD-Q6K | 10.0858 | 0.2460 | 1.5949 | 0.0126 | 6.9032 | 0.1403 |
| Q5_K | 10.0993 | 0.2473 | 1.5978 | 0.0128 | 6.9256 | 0.1413 |
| Q4_K_M | 10.3239 | 0.2536 | 1.6093 | 0.0129 | 6.9423 | 0.1412 |
| mxfp4_moe-QKU-IQ4NL-O-MXFP4-D-Q5K-E-Q6K | 10.4164 | 0.2569 | 1.6143 | 0.0130 | 6.9825 | 0.1423 |
| IQ4_NL | 10.3718 | 0.2548 | 1.6125 | 0.0129 | 7.0606 | 0.1452 |
| mxfp4_moe-EQOU-IQ4NL-KD-Q6K | 10.3780 | 0.2547 | 1.6178 | 0.0132 | 7.0415 | 0.1443 |
Table - Precision Loss Columns
| model_name | loss_general | loss_code | loss_math |
|---|---|---|---|
| mxfp4_moe-O-Q6K-EQKUD-Q8_0 | 0.0250 | 0.1194 | 0.1524 |
| mxfp4_moe-Q-Q5K-EKOUD-Q6K | 0.1488 | 0.0314 | 0.2032 |
| iq4_nl-EQKOUD-Q6K | 0.4186 | 0.0628 | 0.0406 |
| mxfp4_moe-QK-IQ4NL-O-MXFP4-EUD-Q6K | 0.7512 | 0.2010 | 0.1974 |
| Q5_K | 0.8861 | 0.3832 | 0.5225 |
| Q4_K_M | 3.1297 | 1.1057 | 0.7649 |
| mxfp4_moe-QKU-IQ4NL-O-MXFP4-D-Q5K-E-Q6K | 4.0537 | 1.4199 | 1.3484 |
| IQ4_NL | 3.6082 | 1.3068 | 2.4820 |
| mxfp4_moe-EQOU-IQ4NL-KD-Q6K | 3.6701 | 1.6398 | 2.2048 |
Baseline Models (Reference)
Table - File Size + TPS + Avg Precision Loss
| model_name | file_size_gb | bench_tps | avg_prec_loss |
|---|---|---|---|
| BF16 | 7.50 | 249.86 | 0.0000% |
| Q8_0 | 3.99 | 360.78 | 0.1028% |
| Q6_K | 3.08 | 404.72 | 0.1740% |
| Q5_K | 2.69 | 375.72 | 0.5973% |
| Q4_K_M | 2.33 | 366.54 | 1.6668% |
| IQ4_NL | 2.23 | 450.75 | 2.4657% |
| MXFP4_MOE | 2.00 | 466.66 | 7.9498% |
Table - PPL Columns
| model_name | gen | gen_er | code | code_er | math | math_er |
|---|---|---|---|---|---|---|
| BF16 | 10.0106 | 0.2451 | 1.5917 | 0.0127 | 6.8896 | 0.1410 |
| Q8_0 | 10.0174 | 0.2454 | 1.5931 | 0.0128 | 6.9001 | 0.1413 |
| Q6_K | 9.9687 | 0.2431 | 1.5927 | 0.0127 | 6.8924 | 0.1409 |
| Q5_K | 10.0993 | 0.2473 | 1.5978 | 0.0128 | 6.9256 | 0.1413 |
| Q4_K_M | 10.3239 | 0.2536 | 1.6093 | 0.0129 | 6.9423 | 0.1412 |
| IQ4_NL | 10.3718 | 0.2548 | 1.6125 | 0.0129 | 7.0606 | 0.1452 |
| MXFP4_MOE | 10.9465 | 0.2659 | 1.6645 | 0.0138 | 7.5735 | 0.1563 |
Table - Precision Loss Columns
| model_name | loss_general | loss_code | loss_math |
|---|---|---|---|
| BF16 | 0.0000 | 0.0000 | 0.0000 |
| Q8_0 | 0.0679 | 0.0880 | 0.1524 |
| Q6_K | 0.4186 | 0.0628 | 0.0406 |
| Q5_K | 0.8861 | 0.3832 | 0.5225 |
| Q4_K_M | 3.1297 | 1.1057 | 0.7649 |
| IQ4_NL | 3.6082 | 1.3068 | 2.4820 |
| MXFP4_MOE | 9.3491 | 4.5737 | 9.9266 |
Support
I’m a solo developer working full time for myself to achieve my dream, pouring nights and weekends into open protocols and tools that I hope make the world a little better. If you chip in, you're helping me keep the lights on while I keep shipping.
Click here to see ways to support - BTC, Paypal, GitHub sponsors.
Or, just drop a like on the repo :)
- Downloads last month
- 884
4-bit
8-bit
Model tree for magiccodingman/Qwen3-4B-Thinking-2507-Unsloth-MagicQuant-Hybrid-GGUF
Base model
Qwen/Qwen3-4B-Thinking-2507