Sample code
!pip install -U bitsandbytes
!pip install -U transformers
!pip install -U accelerate
!pip install -U datasets
!pip install -U peft
!pip install ipywidgets --upgrade
from transformers import (
AutoModelForCausalLM,
AutoTokenizer,
BitsAndBytesConfig,
)
from peft import PeftModel
import torch
from tqdm import tqdm
import json
import re
from google.colab import files
HF_TOKEN = "YOUR TOKEN"
your_path = '/elyza-tasks-100-TV_0.jsonl'
model_id = "llm-jp/llm-jp-3-13b"
adapter_id = "mss6/f4"
model = PeftModel.from_pretrained(model, adapter_id, token = HF_TOKEN)
datasets = []
with open(your_path, "r") as f:
item = ""
for line in f:
line = line.strip()
item += line
if item.endswith("}"):
datasets.append(json.loads(item))
item = ""
from tqdm import tqdm
results = []
for i in tqdm(range(100)):
data = datasets[i]
input = data["input"]
prompt = f"""### ๆ็คบ
{input}
### ๅ็ญ
"""
tokenized_input = tokenizer.encode(prompt, add_special_tokens=False, return_tensors="pt").to(model.device)
attention_mask = torch.ones_like(tokenized_input)
with torch.no_grad():
outputs = model.generate(
tokenized_input,
attention_mask=attention_mask,
max_new_tokens=1000,
do_sample=False,
repetition_penalty=1.2,
pad_token_id=tokenizer.eos_token_id
)[0]
output = tokenizer.decode(outputs[tokenized_input.size(1):], skip_special_tokens=True)
results.append({"task_id": data["task_id"], "input": input, "output": output})
jsonl_id = re.sub(".*/", "", 'ans')
with open(f"/content/drive/MyDrive/{jsonl_id}-outputs.jsonl", 'w', encoding='utf-8') as f:
for result in results:
json.dump(result, f, ensure_ascii=False)
f.write('\n')
Datasets
Instruction tuning
The models have been fine-tuned on the following datasets.
| Language | Dataset | url |
|---|---|---|
| Japanese | ichikara-instruction | ichikara-instruction |
| Synthesized data from Elyza-tasks-100 | Elyza-tasks-100 |
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
๐
Ask for provider support