AI & ML interests
Welcome to the SCAI Hugging Face Space! 🎓🤖 Join us in our mission to advance interdisciplinary research and education in AI, fostering collaboration between researchers, students, and industry partners. Together, we’re shaping the future of artificial intelligence! 🚀🔬🌟 🔍 Vision: Dive into image recognition and perception, driving advancements in mathematics, computer science, and robotics. 🧠 Explanation/Explicability: Enhance the transparency of complex systems, with a focus on health and medicine. 🌍 Ethics: Develop ethical AI solutions for climate, environment, and the universe, ensuring responsible and sustainable practices. 📚 Digital Humanities: Discover how AI transforms our understanding of history, literature, and social sciences. #SorbonneAI #Innovation #EthicalAI #DigitalHumanities
Recent Activity
STG-MTL: Scalable Task Grouping for Multi-Task Learning Using Data Map
The most useful AI applications are moving toward multi-turn agentic behavior: systems that take hundreds or even thousands of iterative steps to complete a task, e.g. Claude Code, computer-control agents that click, type, and test repeatedly.
In these cases, the power of the model is not how smart it is per token, but in how quickly it can interact with its environment and tools across many steps. In that regime, model quality becomes secondary to latency.
An open-source model that can call tools quickly, check that the right thing was clicked, or verify that a code change actually passes tests can easily outperform a slightly “smarter” closed model that has to make remote API calls for every move.
Eventually, the balance tips: it becomes impractical for an agent to rely on remote inference for every micro-action. Just as no one would tolerate a keyboard that required a network request per keystroke, users won’t accept agent workflows bottlenecked by latency. All devices will ship with local, open-source models that are “good enough” and the expectation will shift toward everything running locally. It’ll happen sooner than most people think.
We've kept registration open until the end of this week, so join and let's build cool stuff together as a community: https://huggingface.co/spaces/ysharma/gradio-hackathon-registration-2025
Gradio now supports MCP! If you want to convert an existing Space, like this one hexgrad/Kokoro-TTS, so that you can use it with Claude Desktop / Cursor / Cline / TinyAgents / or any LLM that supports MCP, here's all you need to do:
1. Duplicate the Space (in the Settings Tab)
2. Upgrade the Gradio
sdk_version to 5.28 (in the README.md)3. Set
mcp_server=True in launch()4. (Optionally) add docstrings to the function so that the LLM knows how to use it, like this:
def generate(text, speed=1):
"""
Convert text to speech audio.
Parameters:
text (str): The input text to be converted to speech.
speed (float, optional): Playback speed of the generated speech.That's it! Now your LLM will be able to talk to you 🤯
If you don't already know, Gradio is an open-source Python library used to build interfaces for machine learning models. Beyond just creating UIs, Gradio also exposes API capabilities and now, Gradio apps can be launched Model Context Protocol (MCP) servers for LLMs.
If you already know how to use Gradio, there are only two additional things you need to do:
* Add standard docstrings to your function (these will be used to generate the descriptions for your tools for the LLM)
* Set
mcp_server=True in launch()Here's a complete example (make sure you already have the latest version of Gradio installed):
import gradio as gr
def letter_counter(word, letter):
"""Count the occurrences of a specific letter in a word.
Args:
word: The word or phrase to analyze
letter: The letter to count occurrences of
Returns:
The number of times the letter appears in the word
"""
return word.lower().count(letter.lower())
demo = gr.Interface(
fn=letter_counter,
inputs=["text", "text"],
outputs="number",
title="Letter Counter",
description="Count how many times a letter appears in a word"
)
demo.launch(mcp_server=True)This is a very simple example, but you can add the ability to generate Ghibli images or speak emotions to any LLM that supports MCP. Once you have an MCP running locally, you can copy-paste the same app to host it on [Hugging Face Spaces](https://huggingface.co/spaces/) as well.
All free and open-source of course! Full tutorial: https://www.gradio.app/guides/building-mcp-server-with-gradio
5 years ago, we launched Gradio as a simple Python library to let researchers at Stanford easily demo computer vision models with a web interface.
Today, Gradio is used by >1 million developers each month to build and share AI web apps. This includes some of the most popular open-source projects of all time, like Automatic1111, Fooocus, Oobabooga’s Text WebUI, Dall-E Mini, and LLaMA-Factory.
How did we get here? How did Gradio keep growing in the very crowded field of open-source Python libraries? I get this question a lot from folks who are building their own open-source libraries. This post distills some of the lessons that I have learned over the past few years:
1. Invest in good primitives, not high-level abstractions
2. Embed virality directly into your library
3. Focus on a (growing) niche
4. Your only roadmap should be rapid iteration
5. Maximize ways users can consume your library's outputs
1. Invest in good primitives, not high-level abstractions
When we first launched Gradio, we offered only one high-level class (gr.Interface), which created a complete web app from a single Python function. We quickly realized that developers wanted to create other kinds of apps (e.g. multi-step workflows, chatbots, streaming applications), but as we started listing out the apps users wanted to build, we realized what we needed to do:
Read the rest here: https://x.com/abidlabs/status/1907886
Contextualized Topic Coherence Metrics
Demographic User Modeling for Social Robotics with Multimodal Pre-trained Models
USER-VLM 360: Personalized Vision Language Models with User-aware Tuning for Social Human-Robot Interactions
I'm excited to share that Gradio 5 will launch in October with improvements across security, performance, SEO, design (see the screenshot for Gradio 4 vs. Gradio 5), and user experience, making Gradio a mature framework for web-based ML applications.
Gradio 5 is currently in beta, so if you'd like to try it out early, please refer to the instructions below:
---------- Installation -------------
Gradio 5 depends on Python 3.10 or higher, so if you are running Gradio locally, please ensure that you have Python 3.10 or higher, or download it here: https://www.python.org/downloads/
* Locally: If you are running gradio locally, simply install the release candidate with
pip install gradio --pre* Spaces: If you would like to update an existing gradio Space to use Gradio 5, you can simply update the
sdk_version to be 5.0.0b3 in the README.md file on Spaces.In most cases, that’s all you have to do to run Gradio 5.0. If you start your Gradio application, you should see your Gradio app running, with a fresh new UI.
-----------------------------
Fore more information, please see: https://github.com/gradio-app/gradio/issues/9463
We're working on making that a lot easier with 𝗚𝗿𝗮𝗱𝗶𝗼 and will unveil something new on June 6th: https://www.youtube.com/watch?v=44vi31hehw4&ab_channel=HuggingFace