Eland Sentiment - Chinese Multi-Domain Sentiment Analysis

A Chinese multi-domain sentiment analysis model fine-tuned on Qwen3-4B using LoRA, achieving 92.03% on financial and 86.85% on multi-domain text.

Model Description

This is a LoRA adapter for Qwen/Qwen3-4B, fine-tuned for Chinese sentiment analysis across multiple domains:

  • Financial - Stock market, investment, economic news
  • Product - Product reviews, shopping discussions
  • Brand - Brand image, corporate reputation
  • Organization - Company news, workplace discussions
  • Social - Social media, public affairs

Supported Tasks

  • Overall Sentiment - Classify the overall sentiment (ๆญฃ้ข/่ฒ ้ข/ไธญ็ซ‹)
  • Entity Sentiment - Classify sentiment towards specific entities
  • Opinion Sentiment - Classify sentiment of specific opinions
  • Stance Detection - Determine if text agrees with an opinion

Performance

Financial Domain

Metric Score
Macro Average 92.03%
Overall Sentiment 95.00%
Entity Sentiment 93.10%
Opinion Sentiment 85.00%
Agrees with Text 95.00%

Multi-Domain (Product, Brand, Organization, Social)

Metric Score
Macro Average 86.85%
Overall Sentiment 71.00%
Entity Sentiment 78.57%
Opinion Sentiment 97.83%
Agrees with Text 100.00%

Usage

With Transformers + PEFT

import torch
from transformers import AutoModelForCausalLM, AutoTokenizer
from peft import PeftModel

# Load base model
base_model = "Qwen/Qwen3-4B"
model = AutoModelForCausalLM.from_pretrained(
    base_model,
    torch_dtype=torch.bfloat16,
    device_map="auto",
    trust_remote_code=True
)

# Load LoRA adapter
model = PeftModel.from_pretrained(model, "p988744/eland-sentiment-zh")
tokenizer = AutoTokenizer.from_pretrained("p988744/eland-sentiment-zh")

# Example: Overall sentiment analysis
messages = [
    {"role": "system", "content": "ไฝ ๆ˜ฏไธ€ๅ€‹ๅฐˆๆฅญ็š„้‡‘่žๆ–‡ๆœฌๆƒ…ๆ„Ÿๅˆ†ๆžๅŠฉๆ‰‹ใ€‚่ซ‹ๅˆ†ๆžไปฅไธ‹ๆ–‡ๆœฌ็š„ๆ•ด้ซ”ๆƒ…ๆ„Ÿ๏ผŒๅ›ž็ญ”ใ€Œๆญฃ้ขใ€ใ€ใ€Œ่ฒ ้ขใ€ๆˆ–ใ€Œไธญ็ซ‹ใ€ใ€‚"},
    {"role": "user", "content": "ๅฐ็ฉ้›ปไปŠๆ—ฅ่‚กๅƒนๅคงๆผฒ๏ผŒๅธ‚ๅ ด็œ‹ๅฅฝAI้œ€ๆฑ‚ๆŒ็บŒๆˆ้•ทใ€‚"}
]

text = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
inputs = tokenizer(text, return_tensors="pt").to(model.device)

with torch.no_grad():
    outputs = model.generate(**inputs, max_new_tokens=10, do_sample=False)
response = tokenizer.decode(outputs[0][inputs['input_ids'].shape[1]:], skip_special_tokens=True)
print(response)  # Expected: ๆญฃ้ข

Task Prompts

Overall Sentiment:

System: ไฝ ๆ˜ฏไธ€ๅ€‹ๅฐˆๆฅญ็š„้‡‘่žๆ–‡ๆœฌๆƒ…ๆ„Ÿๅˆ†ๆžๅŠฉๆ‰‹ใ€‚่ซ‹ๅˆ†ๆžไปฅไธ‹ๆ–‡ๆœฌ็š„ๆ•ด้ซ”ๆƒ…ๆ„Ÿ๏ผŒๅ›ž็ญ”ใ€Œๆญฃ้ขใ€ใ€ใ€Œ่ฒ ้ขใ€ๆˆ–ใ€Œไธญ็ซ‹ใ€ใ€‚
User: [your text]

Entity Sentiment:

System: ไฝ ๆ˜ฏไธ€ๅ€‹ๅฐˆๆฅญ็š„้‡‘่žๆ–‡ๆœฌๆƒ…ๆ„Ÿๅˆ†ๆžๅŠฉๆ‰‹ใ€‚่ซ‹ๅˆ†ๆžไปฅไธ‹ๆ–‡ๆœฌไธญๅฐใ€Œ{entity}ใ€็š„ๆƒ…ๆ„Ÿ๏ผŒๅ›ž็ญ”ใ€Œๆญฃ้ขใ€ใ€ใ€Œ่ฒ ้ขใ€ๆˆ–ใ€Œไธญ็ซ‹ใ€ใ€‚
User: [your text]

Opinion Sentiment:

System: ไฝ ๆ˜ฏไธ€ๅ€‹ๅฐˆๆฅญ็š„้‡‘่žๆ–‡ๆœฌๆƒ…ๆ„Ÿๅˆ†ๆžๅŠฉๆ‰‹ใ€‚่ซ‹ๅˆคๆ–ทไปฅไธ‹่ง€้ปž็š„ๆƒ…ๆ„Ÿๅ‚พๅ‘๏ผŒๅ›ž็ญ”ใ€Œๆญฃ้ขใ€ใ€ใ€Œ่ฒ ้ขใ€ๆˆ–ใ€Œไธญ็ซ‹ใ€ใ€‚
User: ๆ–‡ๆœฌ๏ผš[text]
่ง€้ปž๏ผš[opinion]

Model Variants

Version Repository Use Case
LoRA Adapter p988744/eland-sentiment-zh HuggingFace + PEFT
GGUF p988744/eland-sentiment-zh-gguf Ollama / llama.cpp
Full Merged p988744/eland-sentiment-zh-vllm vLLM

Training Details

Parameter Value
Base Model Qwen/Qwen3-4B
Method LoRA (PEFT)
LoRA Rank 32
LoRA Alpha 64
Trainable Params 66M (1.62%)
Epochs 8
Learning Rate 1e-5
Batch Size 8 (effective)
Training Time ~47 minutes
Hardware NVIDIA L40S

Dataset

Trained on combined dataset:

  • Financial: 1,887 training samples (Taiwan stock market forum and news)
  • Multi-domain: 600 training samples (product, brand, organization, social)
  • Total: 2,487 training samples

Task distribution:

  • Overall sentiment: ~40%
  • Entity sentiment: ~30%
  • Opinion sentiment: ~30%

Limitations

  • Language: Chinese (Traditional) only
  • Best Domain: Financial text (92% accuracy)
  • Other Domains: Product, brand, organization, social (~87% accuracy)

Citation

@misc{eland-sentiment-zh,
  author = {Eland AI},
  title = {Eland Sentiment: Chinese Financial Sentiment Analysis Model},
  year = {2025},
  publisher = {HuggingFace},
  url = {https://huggingface.co/p988744/eland-sentiment-zh}
}

License

Apache 2.0

Downloads last month
82
GGUF
Model size
3B params
Architecture
qwen2
Hardware compatibility
Log In to view the estimation

16-bit

Inference Providers NEW
This model isn't deployed by any Inference Provider. ๐Ÿ™‹ Ask for provider support

Model tree for p988744/eland-sentiment-zh

Base model

Qwen/Qwen3-4B-Base
Finetuned
Qwen/Qwen3-4B
Adapter
(112)
this model

Dataset used to train p988744/eland-sentiment-zh