new

Get trending papers in your email inbox!

Subscribe

Daily Papers

byAK and the research community

Dec 16

PhishNet: A Phishing Website Detection Tool using XGBoost

PhisNet is a cutting-edge web application designed to detect phishing websites using advanced machine learning. It aims to help individuals and organizations identify and prevent phishing attacks through a robust AI framework. PhisNet utilizes Python to apply various machine learning algorithms and feature extraction techniques for high accuracy and efficiency. The project starts by collecting and preprocessing a comprehensive dataset of URLs, comprising both phishing and legitimate sites. Key features such as URL length, special characters, and domain age are extracted to effectively train the model. Multiple machine learning algorithms, including logistic regression, decision trees, and neural networks, are evaluated to determine the best performance in phishing detection. The model is finely tuned to optimize metrics like accuracy, precision, recall, and the F1 score, ensuring reliable detection of both common and sophisticated phishing tactics. PhisNet's web application is developed using React.js, which allows for client-side rendering and smooth integration with backend services, creating a responsive and user-friendly interface. Users can input URLs and receive immediate predictions with confidence scores, thanks to a robust backend infrastructure that processes data and provides real-time results. The model is deployed using Google Colab and AWS EC2 for their computational power and scalability, ensuring the application remains accessible and functional under varying loads. In summary, PhisNet represents a significant advancement in cybersecurity, showcasing the effective use of machine learning and web development technologies to enhance user security. It empowers users to prevent phishing attacks and highlights AI's potential in transforming cybersecurity.

  • 4 authors
·
Jun 29, 2024

Detection of Compromised Functions in a Serverless Cloud Environment

Serverless computing is an emerging cloud paradigm with serverless functions at its core. While serverless environments enable software developers to focus on developing applications without the need to actively manage the underlying runtime infrastructure, they open the door to a wide variety of security threats that can be challenging to mitigate with existing methods. Existing security solutions do not apply to all serverless architectures, since they require significant modifications to the serverless infrastructure or rely on third-party services for the collection of more detailed data. In this paper, we present an extendable serverless security threat detection model that leverages cloud providers' native monitoring tools to detect anomalous behavior in serverless applications. Our model aims to detect compromised serverless functions by identifying post-exploitation abnormal behavior related to different types of attacks on serverless functions, and therefore, it is a last line of defense. Our approach is not tied to any specific serverless application, is agnostic to the type of threats, and is adaptable through model adjustments. To evaluate our model's performance, we developed a serverless cybersecurity testbed in an AWS cloud environment, which includes two different serverless applications and simulates a variety of attack scenarios that cover the main security threats faced by serverless functions. Our evaluation demonstrates our model's ability to detect all implemented attacks while maintaining a negligible false alarm rate.

  • 5 authors
·
Aug 5, 2024

R2D2: Reducing Redundancy and Duplication in Data Lakes

Enterprise data lakes often suffer from substantial amounts of duplicate and redundant data, with data volumes ranging from terabytes to petabytes. This leads to both increased storage costs and unnecessarily high maintenance costs for these datasets. In this work, we focus on identifying and reducing redundancy in enterprise data lakes by addressing the problem of 'dataset containment'. To the best of our knowledge, this is one of the first works that addresses table-level containment at a large scale. We propose R2D2: a three-step hierarchical pipeline that efficiently identifies almost all instances of containment by progressively reducing the search space in the data lake. It first builds (i) a schema containment graph, followed by (ii) statistical min-max pruning, and finally, (iii) content level pruning. We further propose minimizing the total storage and access costs by optimally identifying redundant datasets that can be deleted (and reconstructed on demand) while respecting latency constraints. We implement our system on Azure Databricks clusters using Apache Spark for enterprise data stored in ADLS Gen2, and on AWS clusters for open-source data. In contrast to existing modified baselines that are inaccurate or take several days to run, our pipeline can process an enterprise customer data lake at the TB scale in approximately 5 hours with high accuracy. We present theoretical results as well as extensive empirical validation on both enterprise (scale of TBs) and open-source datasets (scale of MBs - GBs), which showcase the effectiveness of our pipeline.

  • 7 authors
·
Dec 20, 2023

Intelligent Load Balancing in Cloud Computer Systems

Cloud computing is an established technology allowing users to share resources on a large scale, never before seen in IT history. A cloud system connects multiple individual servers in order to process related tasks in several environments at the same time. Clouds are typically more cost-effective than single computers of comparable computing performance. The sheer physical size of the system itself means that thousands of machines may be involved. The focus of this research was to design a strategy to dynamically allocate tasks without overloading Cloud nodes which would result in system stability being maintained at minimum cost. This research has added the following new contributions to the state of knowledge: (i) a novel taxonomy and categorisation of three classes of schedulers, namely OS-level, Cluster and Big Data, which highlight their unique evolution and underline their different objectives; (ii) an abstract model of cloud resources utilisation is specified, including multiple types of resources and consideration of task migration costs; (iii) a virtual machine live migration was experimented with in order to create a formula which estimates the network traffic generated by this process; (iv) a high-fidelity Cloud workload simulator, based on a month-long workload traces from Google's computing cells, was created; (v) two possible approaches to resource management were proposed and examined in the practical part of the manuscript: the centralised metaheuristic load balancer and the decentralised agent-based system. The project involved extensive experiments run on the University of Westminster HPC cluster, and the promising results are presented together with detailed discussions and a conclusion.

  • 1 authors
·
Sep 22

MIGRATION-BENCH: Repository-Level Code Migration Benchmark from Java 8

With the rapid advancement of powerful large language models (LLMs) in recent years, a wide range of software engineering tasks can now be addressed using LLMs, significantly enhancing productivity and scalability. Numerous benchmark datasets have been developed to evaluate the coding capabilities of these models, while they primarily focus on problem-solving and issue-resolution tasks. In contrast, we introduce a new coding benchmark MIGRATION-BENCH with a distinct focus: code migration. MIGRATION-BENCH aims to serve as a comprehensive benchmark for migration from Java 8 to the latest long-term support (LTS) versions (Java 17, 21), MIGRATION-BENCH includes a full dataset and its subset selected with 5,102 and 300 repositories respectively. Selected is a representative subset curated for complexity and difficulty, offering a versatile resource to support research in the field of code migration. Additionally, we provide a comprehensive evaluation framework to facilitate rigorous and standardized assessment of LLMs on this challenging task. We further propose SD-Feedback and demonstrate that LLMs can effectively tackle repository-level code migration to Java 17. For the selected subset with Claude-3.5-Sonnet-v2, SD-Feedback achieves 62.33% and 27.00% success rate (pass@1) for minimal and maximal migration respectively. The benchmark dataset and source code are available at: https://huggingface.co/collections/AmazonScience and https://github.com/amazon-science/self_debug respectively.

  • 11 authors
·
May 14 2