new

Get trending papers in your email inbox!

Subscribe

Daily Papers

byAK and the research community

Feb 16

FaVChat: Hierarchical Prompt-Query Guided Facial Video Understanding with Data-Efficient GRPO

Multi-modal large language models (MLLMs) have shown strong capability in video understanding but still struggle with fine-grained visual comprehension, as pure visual encoders often lose subtle cues essential for precise reasoning. To address this limitation, we propose FaVChat, a Video-MLLM specifically designed for fine-grained facial understanding. FaVChat introduces a multi-level prompt-guided feature extraction mechanism that progressively captures task-relevant information from three complementary stages: low-level transformer layers for textures and motion, medium-level learnable queries for discriminative regions, and high-level adaptive feature weighting for semantic alignment. These enriched features are dynamically fused and fed into the LLM to enable more accurate fine-grained reasoning. To further enhance the model's ability to capture fine-grained facial attributes and maximize the utility of limited data, we propose Date-Efficient GRPO, a novel data-efficient reinforcement learning (RL) algorithm that maximizes the utility of each training sample through per-instance utility estimation and dynamic lifecycle scheduling. Extensive zero-shot evaluations across emotion recognition, explainable reasoning, and textual expression analysis demonstrate that FaVChat achieves finer-grained understanding, stronger accuracy, and better generalization than existing Video-MLLMs, even when trained with only 10K RL samples.

  • 9 authors
·
Mar 12, 2025

ARM: Adaptive Reasoning Model

While large reasoning models demonstrate strong performance on complex tasks, they lack the ability to adjust reasoning token usage based on task difficulty. This often leads to the "overthinking" problem -- excessive and unnecessary reasoning -- which, although potentially mitigated by human intervention to control the token budget, still fundamentally contradicts the goal of achieving fully autonomous AI. In this work, we propose Adaptive Reasoning Model (ARM), a reasoning model capable of adaptively selecting appropriate reasoning formats based on the task at hand. These formats include three efficient ones -- Direct Answer, Short CoT, and Code -- as well as a more elaborate format, Long CoT. To train ARM, we introduce Ada-GRPO, an adaptation of Group Relative Policy Optimization (GRPO), which addresses the format collapse issue in traditional GRPO. Ada-GRPO enables ARM to achieve high token efficiency, reducing tokens by an average of 30%, and up to 70%, while maintaining performance comparable to the model that relies solely on Long CoT. Furthermore, not only does it improve inference efficiency through reduced token generation, but it also brings a 2x speedup in training. In addition to the default Adaptive Mode, ARM supports two additional reasoning modes: 1) Instruction-Guided Mode, which allows users to explicitly specify the reasoning format via special tokens -- ideal when the appropriate format is known for a batch of tasks. 2) Consensus-Guided Mode, which aggregates the outputs of the three efficient formats and resorts to Long CoT in case of disagreement, prioritizing performance with higher token usage.

  • 7 authors
·
May 26, 2025 6

TempFlow-GRPO: When Timing Matters for GRPO in Flow Models

Recent flow matching models for text-to-image generation have achieved remarkable quality, yet their integration with reinforcement learning for human preference alignment remains suboptimal, hindering fine-grained reward-based optimization. We observe that the key impediment to effective GRPO training of flow models is the temporal uniformity assumption in existing approaches: sparse terminal rewards with uniform credit assignment fail to capture the varying criticality of decisions across generation timesteps, resulting in inefficient exploration and suboptimal convergence. To remedy this shortcoming, we introduce TempFlow-GRPO (Temporal Flow GRPO), a principled GRPO framework that captures and exploits the temporal structure inherent in flow-based generation. TempFlow-GRPO introduces two key innovations: (i) a trajectory branching mechanism that provides process rewards by concentrating stochasticity at designated branching points, enabling precise credit assignment without requiring specialized intermediate reward models; and (ii) a noise-aware weighting scheme that modulates policy optimization according to the intrinsic exploration potential of each timestep, prioritizing learning during high-impact early stages while ensuring stable refinement in later phases. These innovations endow the model with temporally-aware optimization that respects the underlying generative dynamics, leading to state-of-the-art performance in human preference alignment and standard text-to-image benchmarks.

  • 8 authors
·
Aug 6, 2025 2

iGRPO: Self-Feedback-Driven LLM Reasoning

Large Language Models (LLMs) have shown promise in solving complex mathematical problems, yet they still fall short of producing accurate and consistent solutions. Reinforcement Learning (RL) is a framework for aligning these models with task-specific rewards, improving overall quality and reliability. Group Relative Policy Optimization (GRPO) is an efficient, value-function-free alternative to Proximal Policy Optimization (PPO) that leverages group-relative reward normalization. We introduce Iterative Group Relative Policy Optimization (iGRPO), a two-stage extension of GRPO that adds dynamic self-conditioning through model-generated drafts. In Stage 1, iGRPO samples multiple exploratory drafts and selects the highest-reward draft using the same scalar reward signal used for optimization. In Stage 2, it appends this best draft to the original prompt and applies a GRPO-style update on draft-conditioned refinements, training the policy to improve beyond its strongest prior attempt. Under matched rollout budgets, iGRPO consistently outperforms GRPO across base models (e.g., Nemotron-H-8B-Base-8K and DeepSeek-R1 Distilled), validating its effectiveness on diverse reasoning benchmarks. Moreover, applying iGRPO to OpenReasoning-Nemotron-7B trained on AceReason-Math achieves new state-of-the-art results of 85.62\% and 79.64\% on AIME24 and AIME25, respectively. Ablations further show that the refinement wrapper generalizes beyond GRPO variants, benefits from a generative judge, and alters learning dynamics by delaying entropy collapse. These results underscore the potential of iterative, self-feedback-based RL for advancing verifiable mathematical reasoning.

nvidia NVIDIA
·
Feb 9 2

Stable Reinforcement Learning for Efficient Reasoning

The success of Deepseek-R1 has drawn the LLM community's attention to reinforcement learning (RL) methods like GRPO. However, such rule-based 0/1 outcome reward methods lack the capability to regulate the intermediate reasoning processes during chain-of-thought (CoT) generation, leading to severe overthinking phenomena. In response, recent studies have designed reward functions to reinforce models' behaviors in producing shorter yet correct completions. Nevertheless, we observe that these length-penalty reward functions exacerbate RL training instability: as the completion length decreases, model accuracy abruptly collapses, often occurring early in training. To address this issue, we propose a simple yet effective solution GRPO-lambda, an efficient and stabilized variant of GRPO, which dynamically adjusts the reward strategy by monitoring the correctness ratio among completions within each query-sampled group. A low correctness ratio indicates the need to avoid length penalty that compromises CoT quality, triggering a switch to length-agnostic 0/1 rewards that prioritize reasoning capability. A high ratio maintains length penalties to boost efficiency. Experimental results show that our approach avoids training instability caused by length penalty while maintaining the optimal accuracy-efficiency trade-off. On the GSM8K, GPQA, MATH-500, AMC 2023, and AIME 2024 benchmarks, it improves average accuracy by 1.48% while reducing CoT sequence length by 47.3%.

  • 3 authors
·
May 23, 2025

Real-Time Long Horizon Air Quality Forecasting via Group-Relative Policy Optimization

Accurate long horizon forecasting of particulate matter (PM) concentration fields is essential for operational public health decisions. However, achieving reliable forecasts remains challenging in regions with complex terrain and strong atmospheric dynamics such as East Asia. While foundation models such as Aurora offer global generality, they often miss region-specific dynamics and rely on non-real-time inputs, limiting their practical utility for localized warning systems. To address this gap, we construct and release the real-world observations and high-resolution CMAQ-OBS dataset for East Asia, reducing regional error by 59.5% and enabling real-time 48-120 hour forecasts critical for public health alerts. However, standard point-wise objectives cannot reflect asymmetric operational costs, where false alarms deteriorate public trust while missed severe events endanger populations. This cost mismatch causes SFT models to over-predict and yield high False Alarm Rates. We introduce Group-Relative Policy Optimization (GRPO) with class-wise rewards and curriculum rollout to align predictions with operational priorities. Experimental results demonstrate that our framework significantly improves the reliability of the forecast. Compared to the SFT-only baseline, our model reduces the False Alarm Rate by 47.3% while achieving a competitive F1-score, proving its effectiveness for practical, real-world air quality forecasting systems on long lead time scenarios.

  • 10 authors
·
Nov 27, 2025

DeepVideo-R1: Video Reinforcement Fine-Tuning via Difficulty-aware Regressive GRPO

Recent works have demonstrated the effectiveness of reinforcement learning (RL)-based post-training in enhancing the reasoning capabilities of large language models (LLMs). In particular, Group Relative Policy Optimization (GRPO) has shown impressive success by employing a PPO-style reinforcement algorithm with group-based normalized rewards. However, the application of GRPO to Video Large Language Models (Video LLMs) has been less studied. In this paper, we explore GRPO for video LLMs and identify two primary issues that impede its effective learning: (1) reliance on safeguards, and (2) the vanishing advantage problem. To mitigate these challenges, we propose DeepVideo-R1, a video large language model trained with our proposed Reg-GRPO (Regressive GRPO) and difficulty-aware data augmentation strategy. Reg-GRPO reformulates the GRPO objective as a regression task, directly predicting the advantage in GRPO. This design eliminates the need for safeguards like clipping and min functions, thereby facilitating more direct policy guidance by aligning the model with the advantage values. We also design the difficulty-aware data augmentation strategy that dynamically augments training samples at solvable difficulty levels, fostering diverse and informative reward signals. Our comprehensive experiments show that DeepVideo-R1 significantly improves video reasoning performance across multiple video reasoning benchmarks.

  • 4 authors
·
Jun 9, 2025 3

ReST-RL: Achieving Accurate Code Reasoning of LLMs with Optimized Self-Training and Decoding

With respect to improving the reasoning accuracy of LLMs, the representative reinforcement learning (RL) method GRPO faces failure due to insignificant reward variance, while verification methods based on process reward models (PRMs) suffer from difficulties with training data acquisition and verification effectiveness. To tackle these problems, this paper introduces ReST-RL, a unified LLM RL paradigm that significantly improves LLM's code reasoning ability by combining an improved GRPO algorithm with a meticulously designed test time decoding method assisted by a value model (VM). As the first stage of policy reinforcement, ReST-GRPO adopts an optimized ReST algorithm to filter and assemble high-value training data, increasing the reward variance of GRPO sampling, thus improving the effectiveness and efficiency of training. After the basic reasoning ability of LLM policy has been improved, we further propose a test time decoding optimization method called VM-MCTS. Through Monte-Carlo Tree Search (MCTS), we collect accurate value targets with no annotation required, on which VM training is based. When decoding, the VM is deployed by an adapted MCTS algorithm to provide precise process signals as well as verification scores, assisting the LLM policy to achieve high reasoning accuracy. We validate the effectiveness of the proposed RL paradigm through extensive experiments on coding problems. Upon comparison, our approach significantly outperforms other reinforcement training baselines (e.g., naive GRPO and ReST-DPO), as well as decoding and verification baselines (e.g., PRM-BoN and ORM-MCTS) on well-known coding benchmarks of various levels (e.g., APPS, BigCodeBench, and HumanEval), indicating its power to strengthen the reasoning ability of LLM policies. Codes for our project can be found at https://github.com/THUDM/ReST-RL.

  • 4 authors
·
Aug 27, 2025

Co-GRPO: Co-Optimized Group Relative Policy Optimization for Masked Diffusion Model

Recently, Masked Diffusion Models (MDMs) have shown promising potential across vision, language, and cross-modal generation. However, a notable discrepancy exists between their training and inference procedures. In particular, MDM inference is a multi-step, iterative process governed not only by the model itself but also by various schedules that dictate the token-decoding trajectory (e.g., how many tokens to decode at each step). In contrast, MDMs are typically trained using a simplified, single-step BERT-style objective that masks a subset of tokens and predicts all of them simultaneously. This step-level simplification fundamentally disconnects the training paradigm from the trajectory-level nature of inference, leaving the inference schedules never optimized during training. In this paper, we introduce Co-GRPO, which reformulates MDM generation as a unified Markov Decision Process (MDP) that jointly incorporates both the model and the inference schedule. By applying Group Relative Policy Optimization at the trajectory level, Co-GRPO cooperatively optimizes model parameters and schedule parameters under a shared reward, without requiring costly backpropagation through the multi-step generation process. This holistic optimization aligns training with inference more thoroughly and substantially improves generation quality. Empirical results across four benchmarks-ImageReward, HPS, GenEval, and DPG-Bench-demonstrate the effectiveness of our approach. For more details, please refer to our project page: https://co-grpo.github.io/ .

  • 9 authors
·
Dec 25, 2025

Segment Policy Optimization: Effective Segment-Level Credit Assignment in RL for Large Language Models

Enhancing the reasoning capabilities of large language models effectively using reinforcement learning (RL) remains a crucial challenge. Existing approaches primarily adopt two contrasting advantage estimation granularities: Token-level methods (e.g., PPO) aim to provide the fine-grained advantage signals but suffer from inaccurate estimation due to difficulties in training an accurate critic model. On the other extreme, trajectory-level methods (e.g., GRPO) solely rely on a coarse-grained advantage signal from the final reward, leading to imprecise credit assignment. To address these limitations, we propose Segment Policy Optimization (SPO), a novel RL framework that leverages segment-level advantage estimation at an intermediate granularity, achieving a better balance by offering more precise credit assignment than trajectory-level methods and requiring fewer estimation points than token-level methods, enabling accurate advantage estimation based on Monte Carlo (MC) without a critic model. SPO features three components with novel strategies: (1) flexible segment partition; (2) accurate segment advantage estimation; and (3) policy optimization using segment advantages, including a novel probability-mask strategy. We further instantiate SPO for two specific scenarios: (1) SPO-chain for short chain-of-thought (CoT), featuring novel cutpoint-based partition and chain-based advantage estimation, achieving 6-12 percentage point improvements in accuracy over PPO and GRPO on GSM8K. (2) SPO-tree for long CoT, featuring novel tree-based advantage estimation, which significantly reduces the cost of MC estimation, achieving 7-11 percentage point improvements over GRPO on MATH500 under 2K and 4K context evaluation. We make our code publicly available at https://github.com/AIFrameResearch/SPO.

  • 5 authors
·
May 29, 2025 2

Self-Hinting Language Models Enhance Reinforcement Learning

Group Relative Policy Optimization (GRPO) has recently emerged as a practical recipe for aligning large language models with verifiable objectives. However, under sparse terminal rewards, GRPO often stalls because rollouts within a group frequently receive identical rewards, causing relative advantages to collapse and updates to vanish. We propose self-hint aligned GRPO with privileged supervision (SAGE), an on-policy reinforcement learning framework that injects privileged hints during training to reshape the rollout distribution under the same terminal verifier reward. For each prompt x, the model samples a compact hint h (e.g., a plan or decomposition) and then generates a solution τ conditioned on (x,h). Crucially, the task reward R(x,τ) is unchanged; hints only increase within-group outcome diversity under finite sampling, preventing GRPO advantages from collapsing under sparse rewards. At test time, we set h=varnothing and deploy the no-hint policy without any privileged information. Moreover, sampling diverse self-hints serves as an adaptive curriculum that tracks the learner's bottlenecks more effectively than fixed hints from an initial policy or a stronger external model. Experiments over 6 benchmarks with 3 LLMs show that SAGE consistently outperforms GRPO, on average +2.0 on Llama-3.2-3B-Instruct, +1.2 on Qwen2.5-7B-Instruct and +1.3 on Qwen3-4B-Instruct. The code is available at https://github.com/BaohaoLiao/SAGE.

Multi-Agent Deep Research: Training Multi-Agent Systems with M-GRPO

Multi-agent systems perform well on general reasoning tasks. However, the lack of training in specialized areas hinders their accuracy. Current training methods train a unified large language model (LLM) for all agents in the system. This may limit the performances due to different distributions underlying for different agents. Therefore, training multi-agent systems with distinct LLMs should be the next step to solve. However, this approach introduces optimization challenges. For example, agents operate at different frequencies, rollouts involve varying sub-agent invocations, and agents are often deployed across separate servers, disrupting end-to-end gradient flow. To address these issues, we propose M-GRPO, a hierarchical extension of Group Relative Policy Optimization designed for vertical Multi-agent systems with a main agent (planner) and multiple sub-agents (multi-turn tool executors). M-GRPO computes group-relative advantages for both main and sub-agents, maintaining hierarchical credit assignment. It also introduces a trajectory-alignment scheme that generates fixed-size batches despite variable sub-agent invocations. We deploy a decoupled training pipeline in which agents run on separate servers and exchange minimal statistics via a shared store. This enables scalable training without cross-server backpropagation. In experiments on real-world benchmarks (e.g., GAIA, XBench-DeepSearch, and WebWalkerQA), M-GRPO consistently outperforms both single-agent GRPO and multi-agent GRPO with frozen sub-agents, demonstrating improved stability and sample efficiency. These results show that aligning heterogeneous trajectories and decoupling optimization across specialized agents enhances tool-augmented reasoning tasks.

AQ-MedAI AQ
·
Nov 17, 2025 2

S-GRPO: Early Exit via Reinforcement Learning in Reasoning Models

As Test-Time Scaling emerges as an active research focus in the large language model community, advanced post-training methods increasingly emphasize extending chain-of-thought (CoT) generation length, thereby enhancing reasoning capabilities to approach Deepseek R1-like reasoning models. However, recent studies reveal that reasoning models (even Qwen3) consistently exhibit excessive thought redundancy in CoT generation. This overthinking issue arises from the inherent limitations of conventional outcome-reward reinforcement learning, which systematically overlooks the regulation of intermediate reasoning processes. This paper introduces Serial-Group Decaying-Reward Policy Optimization (S-GRPO), a novel reinforcement learning paradigm that enables models to implicitly evaluate the sufficiency of intermediate reasoning steps, thereby facilitating early exit in CoT generation. Unlike GRPO, which samples multiple possible reasoning paths in parallel (parallel group), S-GRPO only samples one reasoning path and serially selects multiple temporal positions from the path to exit thinking and directly generate answers (serial group). For correct answers within a serial group, rewards gradually decrease based on the exit positions along the reasoning path from front to back. This design encourages the model to produce more accurate and concise thoughts, while also incentivizing early thinking termination when appropriate. Empirical evaluations demonstrate that S-GRPO is compatible with state-of-the-art reasoning models, including Qwen3 and Deepseek-distill. Across diverse benchmarks such as GSM8K, AIME 2024, AMC 2023, MATH-500, and GPQA Diamond, S-GRPO achieves a substantial reduction in sequence length (35.4% - 61.1%) while simultaneously improving accuracy (absolute 0.72% - 6.08%).

  • 3 authors
·
May 12, 2025

Knapsack RL: Unlocking Exploration of LLMs via Optimizing Budget Allocation

Large Language Models (LLMs) can self-improve through reinforcement learning, where they generate trajectories to explore and discover better solutions. However, this exploration process is computationally expensive, often forcing current methods to assign limited exploration budgets to each task. This uniform allocation creates problematic edge cases: easy tasks consistently succeed while difficult tasks consistently fail, both producing zero gradients during training updates for the widely used Group Relative Policy Optimization (GRPO). We address this problem from the lens of exploration budget allocation. Viewing each task's exploration as an "item" with a distinct "value" and "cost", we establish a connection to the classical knapsack problem. This formulation allows us to derive an optimal assignment rule that adaptively distributes resources based on the model's current learning status. When applied to GRPO, our method increases the effective ratio of non-zero policy gradients by 20-40% during training. Acting as a computational "free lunch", our approach could reallocate exploration budgets from tasks where learning is saturated to those where it is most impactful. This enables significantly larger budgets (e.g., 93 rollouts) for especially challenging problems, which would be computationally prohibitive under a uniform allocation. These improvements translate to meaningful gains on mathematical reasoning benchmarks, with average improvements of 2-4 points and peak gains of 9 points on specific tasks. Notably, achieving comparable performance with traditional homogeneous allocation would require about 2x the computational resources.

ByteDance-Seed ByteDance Seed
·
Sep 30, 2025 2

Anchoring Values in Temporal and Group Dimensions for Flow Matching Model Alignment

Group Relative Policy Optimization (GRPO) has proven highly effective in enhancing the alignment capabilities of Large Language Models (LLMs). However, current adaptations of GRPO for the flow matching-based image generation neglect a foundational conflict between its core principles and the distinct dynamics of the visual synthesis process. This mismatch leads to two key limitations: (i) Uniformly applying a sparse terminal reward across all timesteps impairs temporal credit assignment, ignoring the differing criticality of generation phases from early structure formation to late-stage tuning. (ii) Exclusive reliance on relative, intra-group rewards causes the optimization signal to fade as training converges, leading to the optimization stagnation when reward diversity is entirely depleted. To address these limitations, we propose Value-Anchored Group Policy Optimization (VGPO), a framework that redefines value estimation across both temporal and group dimensions. Specifically, VGPO transforms the sparse terminal reward into dense, process-aware value estimates, enabling precise credit assignment by modeling the expected cumulative reward at each generative stage. Furthermore, VGPO replaces standard group normalization with a novel process enhanced by absolute values to maintain a stable optimization signal even as reward diversity declines. Extensive experiments on three benchmarks demonstrate that VGPO achieves state-of-the-art image quality while simultaneously improving task-specific accuracy, effectively mitigating reward hacking. Project webpage: https://yawen-shao.github.io/VGPO/.

  • 7 authors
·
Dec 13, 2025

GRPO-Guard: Mitigating Implicit Over-Optimization in Flow Matching via Regulated Clipping

Recently, GRPO-based reinforcement learning has shown remarkable progress in optimizing flow-matching models, effectively improving their alignment with task-specific rewards. Within these frameworks, the policy update relies on importance-ratio clipping to constrain overconfident positive and negative gradients. However, in practice, we observe a systematic shift in the importance-ratio distribution-its mean falls below 1 and its variance differs substantially across timesteps. This left-shifted and inconsistent distribution prevents positive-advantage samples from entering the clipped region, causing the mechanism to fail in constraining overconfident positive updates. As a result, the policy model inevitably enters an implicit over-optimization stage-while the proxy reward continues to increase, essential metrics such as image quality and text-prompt alignment deteriorate sharply, ultimately making the learned policy impractical for real-world use. To address this issue, we introduce GRPO-Guard, a simple yet effective enhancement to existing GRPO frameworks. Our method incorporates ratio normalization, which restores a balanced and step-consistent importance ratio, ensuring that PPO clipping properly constrains harmful updates across denoising timesteps. In addition, a gradient reweighting strategy equalizes policy gradients over noise conditions, preventing excessive updates from particular timestep regions. Together, these designs act as a regulated clipping mechanism, stabilizing optimization and substantially mitigating implicit over-optimization without relying on heavy KL regularization. Extensive experiments on multiple diffusion backbones (e.g., SD3.5M, Flux.1-dev) and diverse proxy tasks demonstrate that GRPO-Guard significantly reduces over-optimization while maintaining or even improving generation quality.

  • 13 authors
·
Oct 25, 2025 1

Prefix Grouper: Efficient GRPO Training through Shared-Prefix Forward

Group Relative Policy Optimization (GRPO) enhances policy learning by computing gradients from relative comparisons among candidate outputs that share a common input prefix. Despite its effectiveness, GRPO introduces substantial computational overhead when processing long shared prefixes, which must be redundantly encoded for each group member. This inefficiency becomes a major scalability bottleneck in long-context learning scenarios. We propose Prefix Grouper, an efficient GRPO training algorithm that eliminates redundant prefix computation via a Shared-Prefix Forward strategy. In particular, by restructuring self-attention into two parts, our method enables the shared prefix to be encoded only once, while preserving full differentiability and compatibility with end-to-end training. We provide both theoretical and empirical evidence that Prefix Grouper is training-equivalent to standard GRPO: it yields identical forward outputs and backward gradients, ensuring that the optimization dynamics and final policy performance remain unchanged. Empirically, our experiments confirm that Prefix Grouper achieves consistent results while significantly reducing the computational cost of training, particularly in long-prefix scenarios. The proposed method is fully plug-and-play: it is compatible with existing GRPO-based architectures and can be seamlessly integrated into current training pipelines as a drop-in replacement, requiring no structural modifications and only minimal changes to input construction and attention computation. Prefix Grouper enables the use of larger group sizes under the same computational budget, thereby improving the scalability of GRPO to more complex tasks and larger models. Code is now available at https://github.com/johncaged/PrefixGrouper

  • 8 authors
·
Jun 5, 2025 2

SSPO: Subsentence-level Policy Optimization

As a significant part of post-training of the Large Language Models (LLMs), Reinforcement Learning from Verifiable Reward (RLVR) has greatly improved LLMs' reasoning skills. However, some RLVR algorithms, such as GRPO (Group Relative Policy Optimization) and GSPO (Group Sequence Policy Optimization), are observed to suffer from unstable policy updates and low usage of sampling data, respectively. The importance ratio of GRPO is calculated at the token level, which focuses more on optimizing a single token. This will be easily affected by outliers, leading to model training collapse. GSPO proposed the calculation of the response level importance ratio, which solves the problem of high variance and training noise accumulation in the calculation of the GRPO importance ratio. However, since all the response tokens share a common importance ratio, extreme values can easily raise or lower the overall mean, leading to the entire response being mistakenly discarded, resulting in a decrease in the utilization of sampled data. This paper introduces SSPO, which applies sentence-level importance ratio, taking the balance between GRPO and GSPO. SSPO not only avoids training collapse and high variance, but also prevents the whole response tokens from being abandoned by the clipping mechanism. Furthermore, we apply sentence entropy to PPO-CLIP to steadily adjust the clipping bounds, encouraging high-entropy tokens to explore and narrow the clipping range of low-entropy tokens. In particular, SSPO achieves an average score of 46.57 across five datasets, surpassing GRPO (43.01) and GSPO (44.42), and wins state-of-the-art performance on three datasets. These results highlight SSPO's effectiveness in leveraging generated data by taking the essence of GSPO but rejecting its shortcomings.

  • 4 authors
·
Nov 6, 2025

ETR: Outcome-Guided Elastic Trust Regions for Policy Optimization

Reinforcement Learning with Verifiable Rewards (RLVR) has emerged as an important paradigm for unlocking reasoning capabilities in large language models, exemplified by the success of OpenAI o1 and DeepSeek-R1. Currently, Group Relative Policy Optimization (GRPO) stands as the dominant algorithm in this domain due to its stable training and critic-free efficiency. However, we argue that GRPO suffers from a structural limitation: it imposes a uniform, static trust region constraint across all samples. This design implicitly assumes signal homogeneity, a premise misaligned with the heterogeneous nature of outcome-driven learning, where advantage magnitudes and variances fluctuate significantly. Consequently, static constraints fail to fully exploit high-quality signals while insufficiently suppressing noise, often precipitating rapid entropy collapse. To address this, we propose Elastic Trust Regions (ETR), a dynamic mechanism that aligns optimization constraints with signal quality. ETR constructs a signal-aware landscape through dual-level elasticity: at the micro level, it scales clipping boundaries based on advantage magnitude to accelerate learning from high-confidence paths; at the macro level, it leverages group variance to implicitly allocate larger update budgets to tasks in the optimal learning zone. Extensive experiments on AIME and MATH benchmarks demonstrate that ETR consistently outperforms GRPO, achieving superior accuracy while effectively mitigating policy entropy degradation to ensure sustained exploration.

  • 8 authors
·
Jan 7

BranchGRPO: Stable and Efficient GRPO with Structured Branching in Diffusion Models

Recent progress in aligning image and video generative models with Group Relative Policy Optimization (GRPO) has improved human preference alignment, but existing variants remain inefficient due to sequential rollouts and large numbers of sampling steps, unreliable credit assignment: sparse terminal rewards are uniformly propagated across timesteps, failing to capture the varying criticality of decisions during denoising. In this paper, we present BranchGRPO, a method that restructures the rollout process into a branching tree, where shared prefixes amortize computation and pruning removes low-value paths and redundant depths. BranchGRPO introduces three contributions: (1) a branching scheme that amortizes rollout cost through shared prefixes while preserving exploration diversity; (2) a reward fusion and depth-wise advantage estimator that transforms sparse terminal rewards into dense step-level signals; and (3) pruning strategies that cut gradient computation but leave forward rollouts and exploration unaffected. On HPDv2.1 image alignment, BranchGRPO improves alignment scores by up to 16\% over DanceGRPO, while reducing per-iteration training time by nearly 55\%. A hybrid variant, BranchGRPO-Mix, further accelerates training to 4.7x faster than DanceGRPO without degrading alignment. On WanX video generation, it further achieves higher Video-Align scores with sharper and temporally consistent frames compared to DanceGRPO. Codes are available at https://fredreic1849.github.io/BranchGRPO-Webpage/{BranchGRPO}.

  • 7 authors
·
Sep 7, 2025

MixGRPO: Unlocking Flow-based GRPO Efficiency with Mixed ODE-SDE

Although GRPO substantially enhances flow matching models in human preference alignment of image generation, methods such as FlowGRPO still exhibit inefficiency due to the necessity of sampling and optimizing over all denoising steps specified by the Markov Decision Process (MDP). In this paper, we propose MixGRPO, a novel framework that leverages the flexibility of mixed sampling strategies through the integration of stochastic differential equations (SDE) and ordinary differential equations (ODE). This streamlines the optimization process within the MDP to improve efficiency and boost performance. Specifically, MixGRPO introduces a sliding window mechanism, using SDE sampling and GRPO-guided optimization only within the window, while applying ODE sampling outside. This design confines sampling randomness to the time-steps within the window, thereby reducing the optimization overhead, and allowing for more focused gradient updates to accelerate convergence. Additionally, as time-steps beyond the sliding window are not involved in optimization, higher-order solvers are supported for sampling. So we present a faster variant, termed MixGRPO-Flash, which further improves training efficiency while achieving comparable performance. MixGRPO exhibits substantial gains across multiple dimensions of human preference alignment, outperforming DanceGRPO in both effectiveness and efficiency, with nearly 50% lower training time. Notably, MixGRPO-Flash further reduces training time by 71%. Codes and models are available at https://github.com/Tencent-Hunyuan/MixGRPO{MixGRPO}.

  • 7 authors
·
Jul 29, 2025 2

Improving Reasoning for Diffusion Language Models via Group Diffusion Policy Optimization

Diffusion language models (DLMs) enable parallel, order-agnostic generation with iterative refinement, offering a flexible alternative to autoregressive large language models (LLMs). However, adapting reinforcement learning (RL) fine-tuning to DLMs remains an open challenge because of the intractable likelihood. Pioneering work such as diffu-GRPO estimated token-level likelihoods via one-step unmasking. While computationally efficient, this approach is severely biased. A more principled foundation lies in sequence-level likelihoods, where the evidence lower bound (ELBO) serves as a surrogate. Yet, despite this clean mathematical connection, ELBO-based methods have seen limited adoption due to the prohibitive cost of likelihood evaluation. In this work, we revisit ELBO estimation and disentangle its sources of variance. This decomposition motivates reducing variance through fast, deterministic integral approximations along a few pivotal dimensions. Building on this insight, we introduce Group Diffusion Policy Optimization (GDPO), a new RL algorithm tailored for DLMs. GDPO leverages simple yet effective Semi-deterministic Monte Carlo schemes to mitigate the variance explosion of ELBO estimators under vanilla double Monte Carlo sampling, yielding a provably lower-variance estimator under tight evaluation budgets. Empirically, GDPO achieves consistent gains over pretrained checkpoints and outperforms diffu-GRPO, one of the state-of-the-art baselines, on the majority of math, reasoning, and coding benchmarks.

  • 7 authors
·
Oct 9, 2025

The Flexibility Trap: Why Arbitrary Order Limits Reasoning Potential in Diffusion Language Models

Diffusion Large Language Models (dLLMs) break the rigid left-to-right constraint of traditional LLMs, enabling token generation in arbitrary orders. Intuitively, this flexibility implies a solution space that strictly supersets the fixed autoregressive trajectory, theoretically unlocking superior reasoning potential for general tasks like mathematics and coding. Consequently, numerous works have leveraged reinforcement learning (RL) to elicit the reasoning capability of dLLMs. In this paper, we reveal a counter-intuitive reality: arbitrary order generation, in its current form, narrows rather than expands the reasoning boundary of dLLMs. We find that dLLMs tend to exploit this order flexibility to bypass high-uncertainty tokens that are crucial for exploration, leading to a premature collapse of the solution space. This observation challenges the premise of existing RL approaches for dLLMs, where considerable complexities, such as handling combinatorial trajectories and intractable likelihoods, are often devoted to preserving this flexibility. We demonstrate that effective reasoning is better elicited by intentionally forgoing arbitrary order and applying standard Group Relative Policy Optimization (GRPO) instead. Our approach, JustGRPO, is minimalist yet surprisingly effective (e.g., 89.1% accuracy on GSM8K) while fully retaining the parallel decoding ability of dLLMs. Project page: https://nzl-thu.github.io/the-flexibility-trap

Learning More with Less: A Dynamic Dual-Level Down-Sampling Framework for Efficient Policy Optimization

Critic-free methods like GRPO reduce memory demands by estimating advantages from multiple rollouts but tend to converge slowly, as critical learning signals are diluted by an abundance of uninformative samples and tokens. To tackle this challenge, we propose the Dynamic Dual-Level Down-Sampling (D^3S) framework that prioritizes the most informative samples and tokens across groups to improve the efficient of policy optimization. D^3S operates along two levels: (1) the sample-level, which selects a subset of rollouts to maximize advantage variance (Var(A)). We theoretically proven that this selection is positively correlated with the upper bound of the policy gradient norms, yielding higher policy gradients. (2) the token-level, which prioritizes tokens with a high product of advantage magnitude and policy entropy (|A_{i,t}|times H_{i,t}), focusing updates on tokens where the policy is both uncertain and impactful. Moreover, to prevent overfitting to high-signal data, D^3S employs a dynamic down-sampling schedule inspired by curriculum learning. This schedule starts with aggressive down-sampling to accelerate early learning and gradually relaxes to promote robust generalization. Extensive experiments on Qwen2.5 and Llama3.1 demonstrate that integrating D^3S into advanced RL algorithms achieves state-of-the-art performance and generalization while requiring fewer samples and tokens across diverse reasoning benchmarks. Our code is added in the supplementary materials and will be made publicly available.

  • 8 authors
·
Sep 26, 2025

VerIPO: Cultivating Long Reasoning in Video-LLMs via Verifier-Gudied Iterative Policy Optimization

Applying Reinforcement Learning (RL) to Video Large Language Models (Video-LLMs) shows significant promise for complex video reasoning. However, popular Reinforcement Fine-Tuning (RFT) methods, such as outcome-based Group Relative Policy Optimization (GRPO), are limited by data preparation bottlenecks (e.g., noise or high cost) and exhibit unstable improvements in the quality of long chain-of-thoughts (CoTs) and downstream performance.To address these limitations, we propose VerIPO, a Verifier-guided Iterative Policy Optimization method designed to gradually improve video LLMs' capacity for generating deep, long-term reasoning chains. The core component is Rollout-Aware Verifier, positioned between the GRPO and Direct Preference Optimization (DPO) training phases to form the GRPO-Verifier-DPO training loop. This verifier leverages small LLMs as a judge to assess the reasoning logic of rollouts, enabling the construction of high-quality contrastive data, including reflective and contextually consistent CoTs. These curated preference samples drive the efficient DPO stage (7x faster than GRPO), leading to marked improvements in reasoning chain quality, especially in terms of length and contextual consistency. This training loop benefits from GRPO's expansive search and DPO's targeted optimization. Experimental results demonstrate: 1) Significantly faster and more effective optimization compared to standard GRPO variants, yielding superior performance; 2) Our trained models exceed the direct inference of large-scale instruction-tuned Video-LLMs, producing long and contextually consistent CoTs on diverse video reasoning tasks; and 3) Our model with one iteration outperforms powerful LMMs (e.g., Kimi-VL) and long reasoning models (e.g., Video-R1), highlighting its effectiveness and stability.

  • 8 authors
·
May 25, 2025 6

DaGRPO: Rectifying Gradient Conflict in Reasoning via Distinctiveness-Aware Group Relative Policy Optimization

The evolution of Large Language Models (LLMs) has catalyzed a paradigm shift from superficial instruction following to rigorous long-horizon reasoning. While Group Relative Policy Optimization (GRPO) has emerged as a pivotal mechanism for eliciting such post-training reasoning capabilities due to its exceptional performance, it remains plagued by significant training instability and poor sample efficiency. We theoretically identify the root cause of these issues as the lack of distinctiveness within on-policy rollouts: for routine queries, highly homogeneous samples induce destructive gradient conflicts; whereas for hard queries, the scarcity of valid positive samples results in ineffective optimization. To bridge this gap, we propose Distinctiveness-aware Group Relative Policy Optimization (DaGRPO). DaGRPO incorporates two core mechanisms: (1) Sequence-level Gradient Rectification, which utilizes fine-grained scoring to dynamically mask sample pairs with low distinctiveness, thereby eradicating gradient conflicts at the source; and (2) Off-policy Data Augmentation, which introduces high-quality anchors to recover training signals for challenging tasks. Extensive experiments across 9 mathematical reasoning and out-of-distribution (OOD) generalization benchmarks demonstrate that DaGRPO significantly surpasses existing SFT, GRPO, and hybrid baselines, achieving new state-of-the-art performance (e.g., a +4.7% average accuracy gain on math benchmarks). Furthermore, in-depth analysis confirms that DaGRPO effectively mitigates gradient explosion and accelerates the emergence of long-chain reasoning capabilities.

  • 3 authors
·
Dec 6, 2025

Reward and Guidance through Rubrics: Promoting Exploration to Improve Multi-Domain Reasoning

Recent advances in reinforcement learning (RL) have significantly improved the complex reasoning capabilities of large language models (LLMs). Despite these successes, existing methods mainly focus on single-domain RL (e.g., mathematics) with verifiable rewards (RLVR), and their reliance on purely online RL frameworks restricts the exploration space, thereby limiting reasoning performance. In this paper, we address these limitations by leveraging rubrics to provide both fine-grained reward signals and offline guidance. We propose RGR-GRPO (Reward and Guidance through Rubrics), a rubric-driven RL framework for multi-domain reasoning. RGR-GRPO enables LLMs to receive dense and informative rewards while exploring a larger solution space during GRPO training. Extensive experiments across 14 benchmarks spanning multiple domains demonstrate that RGR-GRPO consistently outperforms RL methods that rely solely on alternative reward schemes or offline guidance. Compared with verifiable online RL baseline, RGR-GRPO achieves average improvements of +7.0%, +5.4%, +8.4%, and +6.6% on mathematics, physics, chemistry, and general reasoning tasks, respectively. Notably, RGR-GRPO maintains stable entropy fluctuations during off-policy training and achieves superior pass@k performance, reflecting sustained exploration and effective breakthrough beyond existing performance bottlenecks.

  • 9 authors
·
Nov 15, 2025

DRPO: Efficient Reasoning via Decoupled Reward Policy Optimization

Recent large reasoning models (LRMs) driven by reinforcement learning algorithms (e.g., GRPO) have achieved remarkable performance on challenging reasoning tasks. However, these models suffer from overthinking, generating unnecessarily long and redundant reasoning even for simple questions, which substantially increases computational cost and response latency. While existing methods incorporate length rewards to GRPO to promote concise reasoning, they incur significant performance degradation. We identify the root cause: when rewards for correct but long rollouts are penalized, GRPO's group-relative advantage function can assign them negative advantages, actively discouraging valid reasoning. To overcome this, we propose Decoupled Reward Policy Optimization (DRPO), a novel framework that decouples the length-based learning signal of correct rollouts from incorrect ones. DRPO ensures that reward signals for correct rollouts are normalized solely within the positive group, shielding them from interference by negative samples. The DRPO's objective is grounded in integrating an optimized positive data distribution, which maximizes length-based rewards under a KL regularization, into a discriminative objective. We derive a closed-form solution for this distribution, enabling efficient computation of the objective and its gradients using only on-policy data and importance weighting. Of independent interest, this formulation is general and can incorporate other preference rewards of positive data beyond length. Experiments on mathematical reasoning tasks demonstrate DRPO's significant superiority over six efficient reasoning baselines. Notably, with a 1.5B model, our method achieves 77\% length reduction with only 1.1\% performance loss on simple questions like GSM8k dataset, while the follow-up baseline sacrifices 4.3\% for 68\% length reduction.

  • 4 authors
·
Oct 6, 2025

V_0: A Generalist Value Model for Any Policy at State Zero

Policy gradient methods rely on a baseline to measure the relative advantage of an action, ensuring the model reinforces behaviors that outperform its current average capability. In the training of Large Language Models (LLMs) using Actor-Critic methods (e.g., PPO), this baseline is typically estimated by a Value Model (Critic) often as large as the policy model itself. However, as the policy continuously evolves, the value model requires expensive, synchronous incremental training to accurately track the shifting capabilities of the policy. To avoid this overhead, Group Relative Policy Optimization (GRPO) eliminates the coupled value model by using the average reward of a group of rollouts as the baseline; yet, this approach necessitates extensive sampling to maintain estimation stability. In this paper, we propose V_0, a Generalist Value Model capable of estimating the expected performance of any model on unseen prompts without requiring parameter updates. We reframe value estimation by treating the policy's dynamic capability as an explicit context input; specifically, we leverage a history of instruction-performance pairs to dynamically profile the model, departing from the traditional paradigm that relies on parameter fitting to perceive capability shifts. Focusing on value estimation at State Zero (i.e., the initial prompt, hence V_0), our model serves as a critical resource scheduler. During GRPO training, V_0 predicts success rates prior to rollout, allowing for efficient sampling budget allocation; during deployment, it functions as a router, dispatching instructions to the most cost-effective and suitable model. Empirical results demonstrate that V_0 significantly outperforms heuristic budget allocation and achieves a Pareto-optimal trade-off between performance and cost in LLM routing tasks.

  • 9 authors
·
Feb 3

Train Long, Think Short: Curriculum Learning for Efficient Reasoning

Recent work on enhancing the reasoning abilities of large language models (LLMs) has introduced explicit length control as a means of constraining computational cost while preserving accuracy. However, existing approaches rely on fixed-length training budgets, which do not take advantage of the natural progression from exploration to compression during learning. In this work, we propose a curriculum learning strategy for length-controlled reasoning using Group Relative Policy Optimization (GRPO). Our method starts with generous token budgets and gradually tightens them over training, encouraging models to first discover effective solution strategies and then distill them into more concise reasoning traces. We augment GRPO with a reward function that balances three signals: task correctness (via verifier feedback), length efficiency, and formatting adherence (via structural tags). Experiments on GSM8K, MATH500, SVAMP, College Math, and GSM+ demonstrate that curriculum-based training consistently outperforms fixed-budget baselines at the same final budget, achieving higher accuracy and significantly improved token efficiency. We further ablate the impact of reward weighting and decay schedule design, showing that progressive constraint serves as a powerful inductive bias for training efficient reasoning models. Our code and checkpoints are released at: https://github.com/hammoudhasan/curriculum_grpo.

  • 6 authors
·
Aug 12, 2025 2

Single-stream Policy Optimization

We revisit policy-gradient optimization for Large Language Models (LLMs) from a single-stream perspective. Prevailing group-based methods like GRPO reduce variance with on-the-fly baselines but suffer from critical flaws: frequent degenerate groups erase learning signals, and synchronization barriers hinder scalability. We introduce Single-stream Policy Optimization (SPO), which eliminates these issues by design. SPO replaces per-group baselines with a persistent, KL-adaptive value tracker and normalizes advantages globally across the batch, providing a stable, low-variance learning signal for every sample. Being group-free, SPO enables higher throughput and scales effectively in long-horizon or tool-integrated settings where generation times vary. Furthermore, the persistent value tracker naturally enables an adaptive curriculum via prioritized sampling. Experiments using Qwen3-8B show that SPO converges more smoothly and attains higher accuracy than GRPO, while eliminating computation wasted on degenerate groups. Ablation studies confirm that SPO's gains stem from its principled approach to baseline estimation and advantage normalization, offering a more robust and efficient path for LLM reasoning. Across five hard math benchmarks with Qwen3 8B, SPO improves the average maj@32 by +3.4 percentage points (pp) over GRPO, driven by substantial absolute point gains on challenging datasets, including +7.3 pp on BRUMO 25, +4.4 pp on AIME 25, +3.3 pp on HMMT 25, and achieves consistent relative gain in pass@k across the evaluated k values. SPO's success challenges the prevailing trend of adding incidental complexity to RL algorithms, highlighting a path where fundamental principles, not architectural workarounds, drive the next wave of progress in LLM reasoning.

tencent Tencent
·
Sep 16, 2025 3

Orchestrating Tokens and Sequences: Dynamic Hybrid Policy Optimization for RLVR

Reinforcement Learning with Verifiable Rewards (RLVR) offers a promising framework for optimizing large language models in reasoning tasks. However, existing RLVR algorithms focus on different granularities, and each has complementary strengths and limitations. Group Relative Policy Optimization (GRPO) updates the policy with token-level importance ratios, which preserves fine-grained credit assignment but often suffers from high variance and instability. In contrast, Group Sequence Policy Optimization (GSPO) applies single sequence-level importance ratios across all tokens in a response that better matches sequence-level rewards, but sacrifices token-wise credit assignment. In this paper, we propose Dynamic Hybrid Policy Optimization (DHPO) to bridge GRPO and GSPO within a single clipped surrogate objective. DHPO combines token-level and sequence-level importance ratios using weighting mechanisms. We explore two variants of the mixing mechanism, including an averaged mixing and an entropy-guided mixing. To further stabilize training, we employ a branch-specific clipping strategy that constrains token-level and sequence-level ratios within separate trust regions before mixing, preventing outliers in either branch from dominating the update. Across seven challenging mathematical reasoning benchmarks, experiments on both dense and MoE models from the Qwen3 series show that DHPO consistently outperforms GRPO and GSPO. We will release our code upon acceptance of this paper.

  • 7 authors
·
Jan 9

Klear-Reasoner: Advancing Reasoning Capability via Gradient-Preserving Clipping Policy Optimization

We present Klear-Reasoner, a model with long reasoning capabilities that demonstrates careful deliberation during problem solving, achieving outstanding performance across multiple benchmarks. Although there are already many excellent works related to inference models in the current community, there are still many problems with reproducing high-performance inference models due to incomplete disclosure of training details. This report provides an in-depth analysis of the reasoning model, covering the entire post-training workflow from data preparation and long Chain-of-Thought supervised fine-tuning (long CoT SFT) to reinforcement learning (RL), along with detailed ablation studies for each experimental component. For SFT data, our experiments show that a small number of high-quality data sources are more effective than a large number of diverse data sources, and that difficult samples can achieve better results without accuracy filtering. In addition, we investigate two key issues with current clipping mechanisms in RL: Clipping suppresses critical exploration signals and ignores suboptimal trajectories. To address these challenges, we propose Gradient-Preserving clipping Policy Optimization (GPPO) that gently backpropagates gradients from clipped tokens. GPPO not only enhances the model's exploration capacity but also improves its efficiency in learning from negative samples. Klear-Reasoner exhibits exceptional reasoning abilities in mathematics and programming, scoring 90.5\% on AIME 2024, 83.2\% on AIME 2025, 66.0\% on LiveCodeBench V5 and 58.1\% on LiveCodeBench V6.

  • 8 authors
·
Aug 11, 2025 4

NGRPO: Negative-enhanced Group Relative Policy Optimization

RLVR has enhanced the reasoning capabilities of Large Language Models (LLMs) across various tasks. However, GRPO, a representative RLVR algorithm, suffers from a critical limitation: when all responses within a group are either entirely correct or entirely incorrect, the model fails to learn from these homogeneous responses. This is particularly problematic for homogeneously incorrect groups, where GRPO's advantage function yields a value of zero, leading to null gradients and the loss of valuable learning signals. To overcome this issue, we propose NGRPO (Negative-enhanced Group Relative Policy Optimization), an algorithm designed to convert homogeneous errors into robust learning signals. First, NGRPO introduces Advantage Calibration. This mechanism hypothesizes the existence of a virtual maximum-reward sample during advantage calculation, thereby altering the mean and variance of rewards within a group and ensuring that the advantages for homogeneously incorrect samples are no longer zero. Second, NGRPO employs Asymmetric Clipping, which relaxes the update magnitude for positive samples while imposing stricter constraints on that of negative samples. This serves to stabilize the exploration pressure introduced by the advantage calibration. Our experiments on Qwen2.5-Math-7B demonstrate that NGRPO significantly outperforms baselines such as PPO, GRPO, DAPO, and PSR-NSR on mathematical benchmarks including MATH500, AMC23, and AIME2025. These results validate NGRPO's ability to learn from homogeneous errors, leading to stable and substantial improvements in mathematical reasoning. Our code is available at https://github.com/nangongrui-ngr/NGRPO.

  • 11 authors
·
Sep 23, 2025

Meta-Awareness Enhances Reasoning Models: Self-Alignment Reinforcement Learning

Recent studies on reasoning models explore the meta-awareness of language models, the ability to know how to think by itself. We argue that large reasoning models lack this meta-awareness property by proving severe misalignment between true rollouts and predicted meta information. We posit that aligning meta-prediction with true rollouts will lead to significant performance gains. To verify this hypothesis, we design a training pipeline that boosts Meta-Awareness via Self-Alignment (MASA), and prove that enhanced meta-awareness directly translates to improved accuracy. Unlike existing meta-cognitive reasoning models, our method does not require external training sources but leverages self-generated signals to train meta-awareness. Moreover, our method enables efficient training by i) filtering out zero-variance prompts that are either trivial or unsolvable and ii) cutting off lengthy rollouts when they are unlikely to lead to correct answers. The results are inspiring: our strategy yields significant improvements in both accuracy and training efficiency on in-domain tasks and shows strong generalization to out-of-domain benchmarks. More specifically, our method can speed up GRPO training by over 1.28x to reach the same performance, and achieve a 19.3% gain in accuracy on AIME25, and a 6.2 % average gain over six mathematics benchmarks. Training with meta-cognitive guidance enhances out-of-domain generalization, giving a 3.87 % boost on GPQA-Diamond and a 2.08 % overall accuracy gain across 13 benchmarks spanning logical, scientific, and coding domains.

kaist-ai KAIST AI
·
Sep 26, 2025 4

Posterior-GRPO: Rewarding Reasoning Processes in Code Generation

Reinforcement learning (RL) has significantly advanced code generation for large language models (LLMs). However, current paradigms rely on outcome-based rewards from test cases, neglecting the quality of the intermediate reasoning process. While supervising the reasoning process directly is a promising direction, it is highly susceptible to reward hacking, where the policy model learns to exploit the reasoning reward signal without improving final outcomes. To address this, we introduce a unified framework that can effectively incorporate the quality of the reasoning process during RL. First, to enable reasoning evaluation, we develop LCB-RB, a benchmark comprising preference pairs of superior and inferior reasoning processes. Second, to accurately score reasoning quality, we introduce an Optimized-Degraded based (OD-based) method for reward model training. This method generates high-quality preference pairs by systematically optimizing and degrading initial reasoning paths along curated dimensions of reasoning quality, such as factual accuracy, logical rigor, and coherence. A 7B parameter reward model with this method achieves state-of-the-art (SOTA) performance on LCB-RB and generalizes well to other benchmarks. Finally, we introduce Posterior-GRPO (P-GRPO), a novel RL method that conditions process-based rewards on task success. By selectively applying rewards to the reasoning processes of only successful outcomes, P-GRPO effectively mitigates reward hacking and aligns the model's internal reasoning with final code correctness. A 7B parameter model with P-GRPO achieves superior performance across diverse code generation tasks, outperforming outcome-only baselines by 4.5%, achieving comparable performance to GPT-4-Turbo. We further demonstrate the generalizability of our approach by extending it to mathematical tasks. Our models, dataset, and code are publicly available.

  • 4 authors
·
Aug 7, 2025

Scaf-GRPO: Scaffolded Group Relative Policy Optimization for Enhancing LLM Reasoning

Reinforcement learning from verifiable rewards has emerged as a powerful technique for enhancing the complex reasoning abilities of Large Language Models (LLMs). However, these methods are fundamentally constrained by the ''learning cliff'' phenomenon: when faced with problems far beyond their current capabilities, models consistently fail, yielding a persistent zero-reward signal. In policy optimization algorithms like GRPO, this collapses the advantage calculation to zero, rendering these difficult problems invisible to the learning gradient and stalling progress. To overcome this, we introduce Scaf-GRPO (Scaffolded Group Relative Policy Optimization), a progressive training framework that strategically provides minimal guidance only when a model's independent learning has plateaued. The framework first diagnoses learning stagnation and then intervenes by injecting tiered in-prompt hints, ranging from abstract concepts to concrete steps, enabling the model to construct a valid solution by itself. Extensive experiments on challenging mathematics benchmarks demonstrate Scaf-GRPO's effectiveness, boosting the pass@1 score of the Qwen2.5-Math-7B model on the AIME24 benchmark by a relative 44.3% over a vanilla GRPO baseline. This result demonstrates our framework provides a robust and effective methodology for unlocking a model's ability to solve problems previously beyond its reach, a critical step towards extending the frontier of autonomous reasoning in LLM.

  • 7 authors
·
Oct 22, 2025

TimeSearch-R: Adaptive Temporal Search for Long-Form Video Understanding via Self-Verification Reinforcement Learning

Temporal search aims to identify a minimal set of relevant frames from tens of thousands based on a given query, serving as a foundation for accurate long-form video understanding. Existing works attempt to progressively narrow the search space. However, these approaches typically rely on a hand-crafted search process, lacking end-to-end optimization for learning optimal search strategies. In this paper, we propose TimeSearch-R, which reformulates temporal search as interleaved text-video thinking, seamlessly integrating searching video clips into the reasoning process through reinforcement learning (RL). However, applying RL training methods, such as Group Relative Policy Optimization (GRPO), to video reasoning can result in unsupervised intermediate search decisions. This leads to insufficient exploration of the video content and inconsistent logical reasoning. To address these issues, we introduce GRPO with Completeness Self-Verification (GRPO-CSV), which gathers searched video frames from the interleaved reasoning process and utilizes the same policy model to verify the adequacy of searched frames, thereby improving the completeness of video reasoning. Additionally, we construct datasets specifically designed for the SFT cold-start and RL training of GRPO-CSV, filtering out samples with weak temporal dependencies to enhance task difficulty and improve temporal search capabilities. Extensive experiments demonstrate that TimeSearch-R achieves significant improvements on temporal search benchmarks such as Haystack-LVBench and Haystack-Ego4D, as well as long-form video understanding benchmarks like VideoMME and MLVU. Notably, TimeSearch-R establishes a new state-of-the-art on LongVideoBench with 4.1% improvement over the base model Qwen2.5-VL and 2.0% over the advanced video reasoning model Video-R1. Our code is available at https://github.com/Time-Search/TimeSearch-R.

ByteDance ByteDance
·
Nov 7, 2025 2

A Practical Two-Stage Recipe for Mathematical LLMs: Maximizing Accuracy with SFT and Efficiency with Reinforcement Learning

Enhancing the mathematical reasoning of Large Language Models (LLMs) is a pivotal challenge in advancing AI capabilities. While Supervised Fine-Tuning (SFT) and Reinforcement Learning (RL) are the dominant training paradigms, a systematic methodology for combining them to maximize both accuracy and efficiency remains largely unexplored. This paper introduces a practical and effective training recipe that strategically integrates extended SFT with RL from online inference (GRPO). We posit that these methods play complementary, not competing, roles: a prolonged SFT phase first pushes the model's accuracy to its limits, after which a GRPO phase dramatically improves token efficiency while preserving this peak performance. Our experiments reveal that extending SFT for as many as 10 epochs is crucial for performance breakthroughs, and that the primary role of GRPO in this framework is to optimize solution length. The efficacy of our recipe is rigorously validated through top-tier performance on challenging benchmarks, including a high rank among over 2,200 teams in the strictly leak-free AI Mathematical Olympiad (AIMO). This work provides the community with a battle-tested blueprint for developing state-of-the-art mathematical reasoners that are both exceptionally accurate and practically efficient. To ensure full reproducibility and empower future research, we will open-source our entire framework, including all code, model checkpoints, and training configurations at https://github.com/analokmaus/kaggle-aimo2-fast-math-r1.

  • 3 authors
·
Jul 10, 2025 2

Exploiting Tree Structure for Credit Assignment in RL Training of LLMs

Reinforcement learning improves LLM reasoning, yet sparse delayed reward over long sequences makes token-level credit assignment the key bottleneck. We study the verifiable-reward setting, where the final answer is checkable and multiple responses can be drawn per prompt. Reasoning tasks in math and medical QA align with this setup, where only a few decision tokens significantly impact the outcome. PPO offers token-level advantages with a learned value model, but it is complex to train both the actor and critic models simultaneously, and it is not easily generalizable, as the token-level values from the critic model can make training prone to overfitting. GRPO is critic-free and supports verifiable rewards, but spreads a single sequence-level return across tokens and ignores branching. We introduce Prefix-to-Tree (P2T), a simple procedure that converts a group of responses into a prefix tree and computes nonparametric prefix values \(V(s)\) by aggregating descendant outcomes. Built on P2T, we propose TEMPO (\textbf{Tree-Estimated Mean Prefix Value for Policy Optimization}), a critic-free algorithm that augments the group-relative outcome signal of GRPO with branch-gated temporal-difference corrections derived from the tree. At non-branch tokens, the temporal-difference (TD) term is zero, so TEMPO reduces to GRPO; at branching tokens, it supplies precise token-level credit without a learned value network or extra judges/teachers. On Qwen3-1.7B/4B, TEMPO outperforms PPO and GRPO on in-distribution (MATH, MedQA) and out-of-distribution (GSM-HARD, AMC23, MedMCQA, MMLU-Medical) benchmarks, and reaches higher validation accuracy with roughly the same wall-clock time.

  • 3 authors
·
Sep 22, 2025

Reinforcing Video Reasoning with Focused Thinking

Recent advancements in reinforcement learning, particularly through Group Relative Policy Optimization (GRPO), have significantly improved multimodal large language models for complex reasoning tasks. However, two critical limitations persist: 1) they often produce unfocused, verbose reasoning chains that obscure salient spatiotemporal cues and 2) binary rewarding fails to account for partially correct answers, resulting in high reward variance and inefficient learning. In this paper, we propose TW-GRPO, a novel framework that enhances visual reasoning with focused thinking and dense reward granularity. Specifically, we employs a token weighting mechanism that prioritizes tokens with high informational density (estimated by intra-group variance), suppressing redundant tokens like generic reasoning prefixes. Furthermore, we reformulate RL training by shifting from single-choice to multi-choice QA tasks, where soft rewards enable finer-grained gradient estimation by distinguishing partial correctness. Additionally, we propose question-answer inversion, a data augmentation strategy to generate diverse multi-choice samples from existing benchmarks. Experiments demonstrate state-of-the-art performance on several video reasoning and general understanding benchmarks. Notably, TW-GRPO achieves 50.4\% accuracy on CLEVRER (18.8\% improvement over Video-R1) and 65.8\% on MMVU. Our codes are available at https://github.com/longmalongma/TW-GRPO.

  • 9 authors
·
May 30, 2025

Repurposing Synthetic Data for Fine-grained Search Agent Supervision

LLM-based search agents are increasingly trained on entity-centric synthetic data to solve complex, knowledge-intensive tasks. However, prevailing training methods like Group Relative Policy Optimization (GRPO) discard this rich entity information, relying instead on sparse, outcome-based rewards. This critical limitation renders them unable to distinguish informative "near-miss" samples-those with substantially correct reasoning but a flawed final answer-from complete failures, thus discarding valuable learning signals. We address this by leveraging the very entities discarded during training. Our empirical analysis reveals a strong positive correlation between the number of ground-truth entities identified during an agent's reasoning process and final answer accuracy. Building on this insight, we introduce Entity-aware Group Relative Policy Optimization (E-GRPO), a novel framework that formulates a dense entity-aware reward function. E-GRPO assigns partial rewards to incorrect samples proportional to their entity match rate, enabling the model to effectively learn from these "near-misses". Experiments on diverse question-answering (QA) and deep research benchmarks show that E-GRPO consistently and significantly outperforms the GRPO baseline. Furthermore, our analysis reveals that E-GRPO not only achieves superior accuracy but also induces more efficient reasoning policies that require fewer tool calls, demonstrating a more effective and sample-efficient approach to aligning search agents.

AlibabaTongyiLab TongyiLab
·
Oct 28, 2025 2

IterResearch: Rethinking Long-Horizon Agents via Markovian State Reconstruction

Recent advances in deep-research agents have shown promise for autonomous knowledge construction through dynamic reasoning over external sources. However, existing approaches rely on a mono-contextual paradigm that accumulates all information in a single, expanding context window, leading to context suffocation and noise contamination that limit their effectiveness on long-horizon tasks. We introduce IterResearch, a novel iterative deep-research paradigm that reformulates long-horizon research as a Markov Decision Process with strategic workspace reconstruction. By maintaining an evolving report as memory and periodically synthesizing insights, our approach preserves consistent reasoning capacity across arbitrary exploration depths. We further develop Efficiency-Aware Policy Optimization (EAPO), a reinforcement learning framework that incentivizes efficient exploration through geometric reward discounting and enables stable distributed training via adaptive downsampling. Extensive experiments demonstrate that IterResearch achieves substantial improvements over existing open-source agents with average +14.5pp across six benchmarks and narrows the gap with frontier proprietary systems. Remarkably, our paradigm exhibits unprecedented interaction scaling, extending to 2048 interactions with dramatic performance gains (from 3.5\% to 42.5\%), and serves as an effective prompting strategy, improving frontier models by up to 19.2pp over ReAct on long-horizon tasks. These findings position IterResearch as a versatile solution for long-horizon reasoning, effective both as a trained agent and as a prompting paradigm for frontier models.

  • 16 authors
·
Nov 10, 2025 11

XRPO: Pushing the limits of GRPO with Targeted Exploration and Exploitation

Reinforcement learning algorithms such as GRPO have driven recent advances in large language model (LLM) reasoning. While scaling the number of rollouts stabilizes training, existing approaches suffer from limited exploration on challenging prompts and leave informative feedback signals underexploited, due to context-independent rollout allocation across prompts (e.g., generating 16 rollouts per prompt) and relying heavily on sparse rewards. This paper presents XRPO(eXplore - eXploit GRPO), a unified framework that recasts policy optimization through the principled lens of rollout exploration-exploitation. To enhance exploration, XRPO introduces a mathematically grounded rollout allocator that adaptively prioritizes prompts with higher potential for uncertainty reduction. It further addresses stagnation on zero-reward prompts through an in-context seeding strategy that injects curated exemplars, steering the model into more difficult reasoning trajectories. To strengthen exploitation, XRPO develops a group-relative, novelty-aware advantage sharpening mechanism that leverages sequence likelihoods to amplify low-probability yet correct responses, thereby extending the policy's reach beyond sparse rewards. Experiments across diverse math and coding benchmarks on both reasoning and non-reasoning models demonstrate that XRPO outperforms existing advances (e.g., GRPO and GSPO) up to 4% pass@1 and 6% cons@32, while accelerating training convergence by up to 2.7X.

  • 5 authors
·
Oct 8, 2025

Alleviating Sparse Rewards by Modeling Step-Wise and Long-Term Sampling Effects in Flow-Based GRPO

Deploying GRPO on Flow Matching models has proven effective for text-to-image generation. However, existing paradigms typically propagate an outcome-based reward to all preceding denoising steps without distinguishing the local effect of each step. Moreover, current group-wise ranking mainly compares trajectories at matched timesteps and ignores within-trajectory dependencies, where certain early denoising actions can affect later states via delayed, implicit interactions. We propose TurningPoint-GRPO (TP-GRPO), a GRPO framework that alleviates step-wise reward sparsity and explicitly models long-term effects within the denoising trajectory. TP-GRPO makes two key innovations: (i) it replaces outcome-based rewards with step-level incremental rewards, providing a dense, step-aware learning signal that better isolates each denoising action's "pure" effect, and (ii) it identifies turning points-steps that flip the local reward trend and make subsequent reward evolution consistent with the overall trajectory trend-and assigns these actions an aggregated long-term reward to capture their delayed impact. Turning points are detected solely via sign changes in incremental rewards, making TP-GRPO efficient and hyperparameter-free. Extensive experiments also demonstrate that TP-GRPO exploits reward signals more effectively and consistently improves generation. Demo code is available at https://github.com/YunzeTong/TurningPoint-GRPO.

Surrogate Signals from Format and Length: Reinforcement Learning for Solving Mathematical Problems without Ground Truth Answers

Large Language Models have achieved remarkable success in natural language processing tasks, with Reinforcement Learning playing a key role in adapting them to specific applications. However, obtaining ground truth answers for training LLMs in mathematical problem-solving is often challenging, costly, and sometimes unfeasible. This research delves into the utilization of format and length as surrogate signals to train LLMs for mathematical problem-solving, bypassing the need for traditional ground truth answers.Our study shows that a reward function centered on format correctness alone can yield performance improvements comparable to the standard GRPO algorithm in early phases. Recognizing the limitations of format-only rewards in the later phases, we incorporate length-based rewards. The resulting GRPO approach, leveraging format-length surrogate signals, not only matches but surpasses the performance of the standard GRPO algorithm relying on ground truth answers in certain scenarios, achieving 40.0\% accuracy on AIME2024 with a 7B base model. Through systematic exploration and experimentation, this research not only offers a practical solution for training LLMs to solve mathematical problems and reducing the dependence on extensive ground truth data collection, but also reveals the essence of why our label-free approach succeeds: base model is like an excellent student who has already mastered mathematical and logical reasoning skills, but performs poorly on the test paper, it simply needs to develop good answering habits to achieve outstanding results in exams , in other words, to unlock the capabilities it already possesses.

  • 7 authors
·
May 25, 2025 2

GDPO: Group reward-Decoupled Normalization Policy Optimization for Multi-reward RL Optimization

As language models become increasingly capable, users expect them to provide not only accurate responses but also behaviors aligned with diverse human preferences across a variety of scenarios. To achieve this, Reinforcement learning (RL) pipelines have begun incorporating multiple rewards, each capturing a distinct preference, to guide models toward these desired behaviors. However, recent work has defaulted to apply Group Relative Policy Optimization (GRPO) under multi-reward setting without examining its suitability. In this paper, we demonstrate that directly applying GRPO to normalize distinct rollout reward combinations causes them to collapse into identical advantage values, reducing the resolution of the training signal and resulting in suboptimal convergence and, in some cases, early training failure. We then introduce Group reward-Decoupled Normalization Policy Optimization (GDPO), a new policy optimization method to resolve these issues by decoupling the normalization of individual rewards, more faithfully preserving their relative differences and enabling more accurate multi-reward optimization, along with substantially improved training stability. We compare GDPO with GRPO across three tasks: tool calling, math reasoning, and coding reasoning, evaluating both correctness metrics (accuracy, bug ratio) and constraint adherence metrics (format, length). Across all settings, GDPO consistently outperforms GRPO, demonstrating its effectiveness and generalizability for multi-reward reinforcement learning optimization.

nvidia NVIDIA
·
Jan 8 9

On GRPO Collapse in Search-R1: The Lazy Likelihood-Displacement Death Spiral

Tool-integrated (TI) reinforcement learning (RL) enables large language models (LLMs) to perform multi-step reasoning by interacting with external tools such as search engines and retrievers. Group Relative Policy Optimization (GRPO), exemplified by the recent Search-R1, offers fast convergence and a value-free formulation that makes it appealing for this setting, yet consistently suffers from training collapse. We identify Lazy Likelihood Displacement (LLD), a systematic reduction or stagnation in the likelihood of both correct and incorrect responses, as the core mechanism driving this failure. LLD emerges early and triggers a self-reinforcing LLD Death Spiral, where declining likelihood leads to low-confidence responses, inflating gradients, and ultimately causing collapse. We empirically characterize this process across models on a Search-R1-style, search-integrated question answering task, revealing a consistent three-phase trajectory: early stagnation, steady decay, and accelerated collapse. To address this, we propose a lightweight likelihood-preserving regularization LLDS for GRPO that activates only when a trajectory's likelihood decreases, and regularizes only the tokens responsible. This fine-grained structure mitigates LLD with minimal interference to optimization. Across seven open-domain and multi-hop QA benchmarks, our method stabilizes training, prevents gradient explosion, and yields substantial performance improvements, including +37.8% gains on Qwen2.5-3B and +32.0% gains on Qwen2.5-7B. Our results establish LLD as a fundamental bottleneck in GRPO-based TIRL and provide a practical path toward stable, scalable training of tool-integrated LLM.

  • 6 authors
·
Dec 3, 2025 2

ExPO: Unlocking Hard Reasoning with Self-Explanation-Guided Reinforcement Learning

Recent advances in large language models have been driven by reinforcement learning (RL)-style post-training, which improves reasoning by optimizing model outputs based on reward or preference signals. GRPO-style approaches implement this by using self-generated samples labeled by an outcome-based verifier. However, these methods depend heavily on the model's initial ability to produce positive samples. They primarily refine what the model already knows (distribution sharpening) rather than enabling the model to solve problems where it initially fails. This limitation is especially problematic in early-stage RL training and on challenging reasoning tasks, where positive samples are unlikely to be generated. To unlock reasoning ability in such settings, the model must explore new reasoning trajectories beyond its current output distribution. Such exploration requires access to sufficiently good positive samples to guide the learning. While expert demonstrations seem like a natural solution, we find that they are often ineffective in RL post-training. Instead, we identify two key properties of effective positive samples: they should (1) be likely under the current policy, and (2) increase the model's likelihood of predicting the correct answer. Based on these insights, we propose Self-Explanation Policy Optimization (ExPO)-a simple and modular framework that generates such samples by conditioning on the ground-truth answer. ExPO enables efficient exploration and guides the model to produce reasoning trajectories more aligned with its policy than expert-written CoTs, while ensuring higher quality than its own (incorrect) samples. Experiments show that ExPO improves both learning efficiency and final performance on reasoning benchmarks, surpassing expert-demonstration-based methods in challenging settings such as MATH level-5, where the model initially struggles the most.

  • 4 authors
·
Jul 3, 2025

OTC: Optimal Tool Calls via Reinforcement Learning

Tool-integrated reasoning (TIR) augments large language models (LLMs) with the ability to invoke external tools, such as search engines and code interpreters, to solve tasks beyond the capabilities of language-only reasoning. While reinforcement learning (RL) has shown promise in improving TIR by optimizing final answer correctness, existing approaches often overlook the efficiency and cost associated with tool usage. This can lead to suboptimal behavior, including excessive tool calls that increase computational and financial overhead, or insufficient tool use that compromises answer quality. In this work, we propose Optimal Tool Call-controlled Policy Optimization (OTC-PO), a simple yet effective RL-based framework that encourages models to produce accurate answers with minimal tool calls. Our method introduces a tool-integrated reward that jointly considers correctness and tool efficiency, promoting high tool productivity. We instantiate this framework within both Proximal Policy Optimization (PPO) and Group Relative Preference Optimization (GRPO), resulting in OTC-PPO and OTC-GRPO. Experiments with Qwen-2.5 and Qwen-Math across multiple QA benchmarks show that our approach reduces tool calls by up to 73.1\% and improves tool productivity by up to 229.4\%, while maintaining comparable answer accuracy. To the best of our knowledge, this is the first RL-based framework that explicitly optimizes tool-use efficiency in TIR.

  • 10 authors
·
Apr 21, 2025 2

SEED-GRPO: Semantic Entropy Enhanced GRPO for Uncertainty-Aware Policy Optimization

Large language models (LLMs) exhibit varying levels of confidence across input prompts (questions): some lead to consistent, semantically similar answers, while others yield diverse or contradictory outputs. This variation reflects LLM's uncertainty about the input prompt, a signal of how confidently the model understands a given problem. However, vanilla Group Relative Policy Optimization (GRPO) treats all prompts equally during policy updates, ignoring this important information about the model's knowledge boundaries. To address this limitation, we propose SEED-GRPO (Semantic Entropy EnhanceD GRPO), which explicitly measures LLMs' uncertainty of the input prompts semantic entropy. Semantic entropy measures the diversity of meaning in multiple generated answers given a prompt and uses this to modulate the magnitude of policy updates. This uncertainty-aware training mechanism enables dynamic adjustment of policy update magnitudes based on question uncertainty. It allows more conservative updates on high-uncertainty questions while maintaining the original learning signal on confident ones. Experimental results on five mathematical reasoning benchmarks (AIME24 56.7, AMC 68.7, MATH 83.4, Minerva 34.2, and OlympiadBench 48.0) demonstrate that SEED-GRPO achieves new state-of-the-art performance in average accuracy, validating the effectiveness of uncertainty-aware policy optimization.

  • 4 authors
·
May 18, 2025 16

Pref-GRPO: Pairwise Preference Reward-based GRPO for Stable Text-to-Image Reinforcement Learning

Recent advancements highlight the importance of GRPO-based reinforcement learning methods and benchmarking in enhancing text-to-image (T2I) generation. However, current methods using pointwise reward models (RM) for scoring generated images are susceptible to reward hacking. We reveal that this happens when minimal score differences between images are amplified after normalization, creating illusory advantages that drive the model to over-optimize for trivial gains, ultimately destabilizing the image generation process. To address this, we propose Pref-GRPO, a pairwise preference reward-based GRPO method that shifts the optimization objective from score maximization to preference fitting, ensuring more stable training. In Pref-GRPO, images are pairwise compared within each group using preference RM, and the win rate is used as the reward signal. Extensive experiments demonstrate that PREF-GRPO differentiates subtle image quality differences, providing more stable advantages and mitigating reward hacking. Additionally, existing T2I benchmarks are limited by coarse evaluation criteria, hindering comprehensive model assessment. To solve this, we introduce UniGenBench, a unified T2I benchmark comprising 600 prompts across 5 main themes and 20 subthemes. It evaluates semantic consistency through 10 primary and 27 sub-criteria, leveraging MLLM for benchmark construction and evaluation. Our benchmarks uncover the strengths and weaknesses of both open and closed-source T2I models and validate the effectiveness of Pref-GRPO.

  • 9 authors
·
Aug 28, 2025 5

GRPO-CARE: Consistency-Aware Reinforcement Learning for Multimodal Reasoning

Recent reinforcement learning approaches, such as outcome-supervised GRPO, have advanced Chain-of-Thought reasoning in large language models (LLMs), yet their adaptation to multimodal LLMs (MLLMs) is unexplored. To address the lack of rigorous evaluation for MLLM post-training methods, we introduce SEED-Bench-R1, a benchmark with complex real-world videos requiring balanced perception and reasoning. It offers a large training set and evaluates generalization across three escalating challenges: in-distribution, cross-environment, and cross-environment-task scenarios. Using SEED-Bench-R1, we find that standard GRPO, while improving answer accuracy, often reduces logical coherence between reasoning steps and answers, with only a 57.9% consistency rate. This stems from reward signals focusing solely on final answers, encouraging shortcuts, and strict KL penalties limiting exploration.To address this, we propose GRPO-CARE, a consistency-aware RL framework optimizing both answer correctness and reasoning coherence without explicit supervision. GRPO-CARE introduces a two-tiered reward: (1) a base reward for answer correctness, and (2) an adaptive consistency bonus, computed by comparing the model's reasoning-to-answer likelihood (via a slowly-evolving reference model) against group peers.This dual mechanism amplifies rewards for reasoning paths that are both correct and logically consistent. Replacing KL penalties with this adaptive bonus, GRPO-CARE outperforms standard GRPO on SEED-Bench-R1, achieving a 6.7% performance gain on the hardest evaluation level and a 24.5% improvement in consistency. It also shows strong transferability, improving model performance across diverse video understanding benchmarks. Our work contributes a systematically designed benchmark and a generalizable post-training framework, advancing the development of more interpretable and robust MLLMs.

  • 7 authors
·
Jun 19, 2025 2

PrismAudio: Decomposed Chain-of-Thoughts and Multi-dimensional Rewards for Video-to-Audio Generation

Video-to-Audio (V2A) generation requires balancing four critical perceptual dimensions: semantic consistency, audio-visual temporal synchrony, aesthetic quality, and spatial accuracy; yet existing methods suffer from objective entanglement that conflates competing goals in single loss functions and lack human preference alignment. We introduce PrismAudio, the first framework to integrate Reinforcement Learning into V2A generation with specialized Chain-of-Thought (CoT) planning. Our approach decomposes monolithic reasoning into four specialized CoT modules (Semantic, Temporal, Aesthetic, and Spatial CoT), each paired with targeted reward functions. This CoT-reward correspondence enables multidimensional RL optimization that guides the model to jointly generate better reasoning across all perspectives, solving the objective entanglement problem while preserving interpretability. To make this optimization computationally practical, we propose Fast-GRPO, which employs hybrid ODE-SDE sampling that dramatically reduces the training overhead compared to existing GRPO implementations. We also introduce AudioCanvas, a rigorous benchmark that is more distributionally balanced and covers more realistically diverse and challenging scenarios than existing datasets, with 300 single-event classes and 501 multi-event samples. Experimental results demonstrate that PrismAudio achieves state-of-the-art performance across all four perceptual dimensions on both the in-domain VGGSound test set and out-of-domain AudioCanvas benchmark. The project page is available at https://PrismAudio-Project.github.io.

  • 9 authors
·
Nov 24, 2025

Rewarding the Unlikely: Lifting GRPO Beyond Distribution Sharpening

Reinforcement learning is emerging as a primary driver for improving language model reasoning capabilities. A fundamental question is whether current reinforcement learning algorithms -- such as Group Relative Policy Optimization (GRPO), the de facto standard algorithm used to improve language model reasoning -- merely sharpen the base model's distribution around problems it can already solve. We investigate this question in the context of formal theorem proving, which has access to a perfect verifier. We identify a degenerate rank bias in GRPO in which highly probable trajectories are reinforced and rare ones are neglected. This results in distribution sharpening: the model can solve some problems with fewer samples, but underperforms simply sampling more solutions from the original model. To overcome GRPO's rank bias we introduce unlikeliness reward, a simple method for explicitly up-weighting rare but correct solutions. We show that unlikeliness reward mitigates rank bias and improves pass@N across a large range of N in both synthetic and real theorem proving settings. We also uncover an unexpected link between rank bias and a seemingly mundane hyperparameter -- the number of updates per batch -- that leads to a second, complementary mitigation. We combine our insights into a revised GRPO training recipe for formal theorem proving, yielding an open pipeline that achieves competitive performance to DeepSeek-Prover-V1.5-RL on the miniF2F-test benchmark. We release our implementation at https://github.com/AndreHe02/rewarding-unlikely-release

  • 3 authors
·
Jun 2, 2025

DCPO: Dynamic Clipping Policy Optimization

Reinforcement Learning from Verifiable Rewards (RLVR) has emerged as a promising framework for enhancing the reasoning capabilities of large language models. However, existing approaches such as GRPO often suffer from zero gradients. This problem arises primarily due to fixed clipping bounds for token-level probability ratios and the standardization of identical rewards, which can lead to ineffective gradient updates and underutilization of generated responses. In this work, we propose Dynamic Clipping Policy Optimization (DCPO), which introduces a dynamic clipping strategy that adaptively adjusts the clipping bounds based on token-specific prior probabilities to enhance token-level exploration, and a smooth advantage standardization technique that standardizes rewards across cumulative training steps to improve the response-level effective utilization of generated responses. DCPO achieved state-of-the-art performance on four benchmarks based on four different models. In particular, DCPO achieved an Avg@1 of 46.7 under greedy decoding and an Avg@32 of 38.8 under 32 times sampling on the AIME24 benchmark, surpassing both DAPO (36.7/31.6) and GRPO (36.7/32.1) on the Qwen2.5-Math-7B model. On the AIME25 benchmark based on Qwen2.5-14B, DCPO achieves a performance of (23.3/19.0), surpassing GRPO (13.3/10.5) and DAPO (20.0/15.3). Furthermore, DCPO achieved an average 28% improvement in the nonzero advantage over GRPO in four models, doubled the training efficiency over DAPO, and significantly reduced the token clipping ratio by an order of magnitude compared to both GRPO and DAPO, while achieving superior performance. These results highlight DCPO's effectiveness in leveraging generated data more efficiently for reinforcement learning in large language models.

  • 7 authors
·
Sep 2, 2025 2

G^2RPO: Granular GRPO for Precise Reward in Flow Models

The integration of online reinforcement learning (RL) into diffusion and flow models has recently emerged as a promising approach for aligning generative models with human preferences. Stochastic sampling via Stochastic Differential Equations (SDE) is employed during the denoising process to generate diverse denoising directions for RL exploration. While existing methods effectively explore potential high-value samples, they suffer from sub-optimal preference alignment due to sparse and narrow reward signals. To address these challenges, we propose a novel Granular-GRPO (G^2RPO ) framework that achieves precise and comprehensive reward assessments of sampling directions in reinforcement learning of flow models. Specifically, a Singular Stochastic Sampling strategy is introduced to support step-wise stochastic exploration while enforcing a high correlation between the reward and the injected noise, thereby facilitating a faithful reward for each SDE perturbation. Concurrently, to eliminate the bias inherent in fixed-granularity denoising, we introduce a Multi-Granularity Advantage Integration module that aggregates advantages computed at multiple diffusion scales, producing a more comprehensive and robust evaluation of the sampling directions. Experiments conducted on various reward models, including both in-domain and out-of-domain evaluations, demonstrate that our G^2RPO significantly outperforms existing flow-based GRPO baselines,highlighting its effectiveness and robustness.

Think or Not? Selective Reasoning via Reinforcement Learning for Vision-Language Models

Reinforcement Learning (RL) has proven to be an effective post-training strategy for enhancing reasoning in vision-language models (VLMs). Group Relative Policy Optimization (GRPO) is a recent prominent method that encourages models to generate complete reasoning traces before answering, leading to increased token usage and computational cost. Inspired by the human-like thinking process-where people skip reasoning for easy questions but think carefully when needed-we explore how to enable VLMs to first decide when reasoning is necessary. To realize this, we propose TON, a two-stage training strategy: (i) a supervised fine-tuning (SFT) stage with a simple yet effective 'thought dropout' operation, where reasoning traces are randomly replaced with empty thoughts. This introduces a think-or-not format that serves as a cold start for selective reasoning; (ii) a GRPO stage that enables the model to freely explore when to think or not, while maximizing task-aware outcome rewards. Experimental results show that TON can reduce the completion length by up to 90% compared to vanilla GRPO, without sacrificing performance or even improving it. Further evaluations across diverse vision-language tasks-covering a range of reasoning difficulties under both 3B and 7B models-consistently reveal that the model progressively learns to bypass unnecessary reasoning steps as training advances. These findings shed light on the path toward human-like reasoning patterns in reinforcement learning approaches. Our code is available at https://github.com/kokolerk/TON.

  • 4 authors
·
May 22, 2025 3

Optimizing Safe and Aligned Language Generation: A Multi-Objective GRPO Approach

Aligning large language models (LLMs) with human values and safety constraints is challenging, especially when objectives like helpfulness, truthfulness, and avoidance of harm conflict. Reinforcement Learning from Human Feedback (RLHF) has achieved notable success in steering models, but is complex and can be unstable. Recent approaches such as Direct Preference Optimization (DPO) simplify preference-based fine-tuning but may introduce bias or trade-off certain objectives~dpo. In this work, we propose a Group Relative Policy Optimization (GRPO) framework with a multi-label reward regression model to achieve safe and aligned language generation. The GRPO algorithm optimizes a policy by comparing groups of sampled responses, eliminating the need for a separate value critic and improving training efficiency~grpo. We train a reward model to predict multiple alignment scores (e.g., safety, helpfulness, etc.), which are combined into a single reward signal. We provide a theoretical derivation for using this learned multi-aspect reward within GRPO and discuss its advantages and limitations. Empirically, our approach improves all the safety and quality metrics evaluated in language generation tasks on model scales (0.5B, 7B, and 14B parameters), demonstrating a robust balance of objectives. We compare GRPO to PPO-based RLHF and DPO, highlighting that GRPO achieves alignment with significantly lower computational cost and explicit multi-objective handling. \textbf{We will open-source all trained models at https://huggingface.co/hydroxai.

  • 4 authors
·
Mar 26, 2025

APRIL: Active Partial Rollouts in Reinforcement Learning to Tame Long-tail Generation

Reinforcement learning (RL) has become a cornerstone in advancing large-scale pre-trained language models (LLMs). Successive generations, including GPT-o series, DeepSeek-R1, Kimi-K1.5, Grok 4, and GLM-4.5, have relied on large-scale RL training to enhance reasoning and coding capabilities. To meet the community's growing RL needs, numerous RL frameworks have been proposed. However, RL training remains computationally expensive, with rollout generation accounting for more than 90% of total runtime. In addition, its efficiency is often constrained by the long-tail distribution of rollout response lengths, where a few lengthy responses stall entire batches, leaving GPUs idle and underutilized. As model and rollout sizes continue to grow, this bottleneck increasingly limits scalability. To address this challenge, we propose Active Partial Rollouts in Reinforcement Learning (APRIL), which mitigates long-tail inefficiency. In the rollout phase, APRIL over-provisions rollout requests, terminates once the target number of responses is reached, and recycles incomplete responses for continuation in future steps. This strategy ensures that no rollouts are discarded while substantially reducing GPU idle time. Experiments show that APRIL improves rollout throughput by 22.5% on average (at most 44%) across commonly used RL algorithms (GRPO, DAPO, GSPO), accelerates convergence, and achieves 2.1% on average(at most 8%) higher final accuracy across tasks. Moreover, APRIL is both framework and hardware agnostic, already integrated into the slime RL framework, and deployable on NVIDIA and AMD GPUs alike. Taken together, this work unifies system-level and algorithmic considerations in proposing APRIL, with the aim of advancing RL training efficiency and inspiring further optimizations in RL systems. Our codebase is available at https://github.com/RLsys-Foundation/APRIL

  • 18 authors
·
Sep 22, 2025

Walk Before You Run! Concise LLM Reasoning via Reinforcement Learning

As test-time scaling becomes a pivotal research frontier in Large Language Models (LLMs) development, contemporary and advanced post-training methodologies increasingly focus on extending the generation length of long Chain-of-Thought (CoT) responses to enhance reasoning capabilities toward DeepSeek R1-like performance. However, recent studies reveal a persistent overthinking phenomenon in state-of-the-art reasoning models, manifesting as excessive redundancy or repetitive thinking patterns in long CoT responses. To address this issue, in this paper, we propose a simple yet effective two-stage reinforcement learning framework for achieving concise reasoning in LLMs, named ConciseR. Specifically, the first stage, using more training steps, aims to incentivize the model's reasoning capabilities via Group Relative Policy Optimization with clip-higher and dynamic sampling components (GRPO++), and the second stage, using fewer training steps, explicitly enforces conciseness and improves efficiency via Length-aware Group Relative Policy Optimization (L-GRPO). Significantly, ConciseR only optimizes response length once all rollouts of a sample are correct, following the "walk before you run" principle. Extensive experimental results demonstrate that our ConciseR model, which generates more concise CoT reasoning responses, outperforms recent state-of-the-art reasoning models with zero RL paradigm across AIME 2024, MATH-500, AMC 2023, Minerva, and Olympiad benchmarks.

  • 2 authors
·
May 27, 2025 2

Plan Then Action:High-Level Planning Guidance Reinforcement Learning for LLM Reasoning

Large language models (LLMs) have demonstrated remarkable reasoning abilities in complex tasks, often relying on Chain-of-Thought (CoT) reasoning. However, due to their autoregressive token-level generation, the reasoning process is largely constrained to local decision-making and lacks global planning. This limitation frequently results in redundant, incoherent, or inaccurate reasoning, which significantly degrades overall performance. Existing approaches, such as tree-based algorithms and reinforcement learning (RL), attempt to address this issue but suffer from high computational costs and often fail to produce optimal reasoning trajectories. To tackle this challenge, we propose Plan-Then-Action Enhanced Reasoning with Group Relative Policy Optimization PTA-GRPO, a two-stage framework designed to improve both high-level planning and fine-grained CoT reasoning. In the first stage, we leverage advanced LLMs to distill CoT into compact high-level guidance, which is then used for supervised fine-tuning (SFT). In the second stage, we introduce a guidance-aware RL method that jointly optimizes the final output and the quality of high-level guidance, thereby enhancing reasoning effectiveness. We conduct extensive experiments on multiple mathematical reasoning benchmarks, including MATH, AIME2024, AIME2025, and AMC, across diverse base models such as Qwen2.5-7B-Instruct, Qwen3-8B, Qwen3-14B, and LLaMA3.2-3B. Experimental results demonstrate that PTA-GRPO consistently achieves stable and significant improvements across different models and tasks, validating its effectiveness and generalization.

  • 12 authors
·
Oct 2, 2025