new

Get trending papers in your email inbox!

Subscribe

Daily Papers

byAK and the research community

Feb 13

Euphonium: Steering Video Flow Matching via Process Reward Gradient Guided Stochastic Dynamics

While online Reinforcement Learning has emerged as a crucial technique for aligning flow matching models with human preferences, current approaches are hindered by inefficient exploration during training rollouts. Relying on undirected stochasticity and sparse outcome rewards, these methods struggle to discover high-reward samples, resulting in data-inefficient and slow optimization. To address these limitations, we propose Euphonium, a novel framework that steers generation via process reward gradient guided dynamics. Our key insight is to formulate the sampling process as a theoretically principled Stochastic Differential Equation that explicitly incorporates the gradient of a Process Reward Model into the flow drift. This design enables dense, step-by-step steering toward high-reward regions, advancing beyond the unguided exploration in prior works, and theoretically encompasses existing sampling methods (e.g., Flow-GRPO, DanceGRPO) as special cases. We further derive a distillation objective that internalizes the guidance signal into the flow network, eliminating inference-time dependency on the reward model. We instantiate this framework with a Dual-Reward Group Relative Policy Optimization algorithm, combining latent process rewards for efficient credit assignment with pixel-level outcome rewards for final visual fidelity. Experiments on text-to-video generation show that Euphonium achieves better alignment compared to existing methods while accelerating training convergence by 1.66x.

  • 7 authors
·
Feb 4

Reinforcement Learning Tuning for VideoLLMs: Reward Design and Data Efficiency

Understanding real-world videos with complex semantics and long temporal dependencies remains a fundamental challenge in computer vision. Recent progress in multimodal large language models (MLLMs) has demonstrated strong capabilities in vision-language tasks, while reinforcement learning tuning (RLT) has further improved their reasoning abilities. In this work, we explore RLT as a post-training strategy to enhance the video-specific reasoning capabilities of MLLMs. Built upon the Group Relative Policy Optimization (GRPO) framework, we propose a dual-reward formulation that supervises both semantic and temporal reasoning through discrete and continuous reward signals. To facilitate effective preference-based optimization, we introduce a variance-aware data selection strategy based on repeated inference to identify samples that provide informative learning signals. We evaluate our approach across eight representative video understanding tasks, including VideoQA, Temporal Video Grounding, and Grounded VideoQA. Our method consistently outperforms supervised fine-tuning and existing RLT baselines, achieving superior performance with significantly less training data. These results underscore the importance of reward design and data selection in advancing reasoning-centric video understanding with MLLMs. Notably, The initial code release (two months ago) has now been expanded with updates, including optimized reward mechanisms and additional datasets. The latest version is available at https://github.com/appletea233/Temporal-R1 .

  • 7 authors
·
Jun 2, 2025

DianJin-R1: Evaluating and Enhancing Financial Reasoning in Large Language Models

Effective reasoning remains a core challenge for large language models (LLMs) in the financial domain, where tasks often require domain-specific knowledge, precise numerical calculations, and strict adherence to compliance rules. We propose DianJin-R1, a reasoning-enhanced framework designed to address these challenges through reasoning-augmented supervision and reinforcement learning. Central to our approach is DianJin-R1-Data, a high-quality dataset constructed from CFLUE, FinQA, and a proprietary compliance corpus (Chinese Compliance Check, CCC), combining diverse financial reasoning scenarios with verified annotations. Our models, DianJin-R1-7B and DianJin-R1-32B, are fine-tuned from Qwen2.5-7B-Instruct and Qwen2.5-32B-Instruct using a structured format that generates both reasoning steps and final answers. To further refine reasoning quality, we apply Group Relative Policy Optimization (GRPO), a reinforcement learning method that incorporates dual reward signals: one encouraging structured outputs and another rewarding answer correctness. We evaluate our models on five benchmarks: three financial datasets (CFLUE, FinQA, and CCC) and two general reasoning benchmarks (MATH-500 and GPQA-Diamond). Experimental results show that DianJin-R1 models consistently outperform their non-reasoning counterparts, especially on complex financial tasks. Moreover, on the real-world CCC dataset, our single-call reasoning models match or even surpass the performance of multi-agent systems that require significantly more computational cost. These findings demonstrate the effectiveness of DianJin-R1 in enhancing financial reasoning through structured supervision and reward-aligned learning, offering a scalable and practical solution for real-world applications.

DianJin Qwen DianJin
·
Apr 22, 2025 2

Table2LaTeX-RL: High-Fidelity LaTeX Code Generation from Table Images via Reinforced Multimodal Language Models

In this work, we address the task of table image to LaTeX code generation, with the goal of automating the reconstruction of high-quality, publication-ready tables from visual inputs. A central challenge of this task lies in accurately handling complex tables -- those with large sizes, deeply nested structures, and semantically rich or irregular cell content -- where existing methods often fail. We begin with a comprehensive analysis, identifying key challenges and highlighting the limitations of current evaluation protocols. To overcome these issues, we propose a reinforced multimodal large language model (MLLM) framework, where a pre-trained MLLM is fine-tuned on a large-scale table-to-LaTeX dataset. To further improve generation quality, we introduce a dual-reward reinforcement learning strategy based on Group Relative Policy Optimization (GRPO). Unlike standard approaches that optimize purely over text outputs, our method incorporates both a structure-level reward on LaTeX code and a visual fidelity reward computed from rendered outputs, enabling direct optimization of the visual output quality. We adopt a hybrid evaluation protocol combining TEDS-Structure and CW-SSIM, and show that our method achieves state-of-the-art performance, particularly on structurally complex tables, demonstrating the effectiveness and robustness of our approach.

  • 11 authors
·
Sep 22, 2025

Datarus-R1: An Adaptive Multi-Step Reasoning LLM for Automated Data Analysis

We present Datarus-R1-14B, a 14 B-parameter open-weights language model fine-tuned from Qwen 2.5-14B-Instruct to act as a virtual data analyst and graduate-level problem solver. Datarus is trained not on isolated question-answer pairs but on full analytical trajectories including reasoning steps, code execution, error traces, self-corrections, and final conclusions, all captured in a ReAct-style notebook format spanning finance, medicine, numerical analysis, and other quantitative domains. Our training pipeline combines (i) a trajectory-centric synthetic data generator that yielded 144 000 tagged notebook episodes, (ii) a dual-reward framework blending a lightweight tag-based structural signal with a Hierarchical Reward Model (HRM) that scores both single-step soundness and end-to-end coherence, and (iii) a memory-optimized implementation of Group Relative Policy Optimization (GRPO) featuring KV-cache reuse, sequential generation, and reference-model sharding. A cosine curriculum smoothly shifts emphasis from structural fidelity to semantic depth, reducing the format collapse and verbosity that often plague RL-aligned LLMs. A central design choice in Datarus is it dual reasoning interface. In agentic mode the model produces ReAct-tagged steps that invoke Python tools to execute real code; in reflection mode it outputs compact Chain-of-Thought (CoT) traces delimited by <think> and <answer> tags. On demanding postgraduate-level problems, Datarus exhibits an "AHA-moment" pattern: it sketches hypotheses, revises them once or twice, and converges avoiding the circular, token-inflating loops common to contemporary systems. Across standard public benchmarks Datarus surpasses similar size models and even reaches the level of larger reasoning models such as QwQ-32B achieving up to 30% higher accuracy on AIME 2024/2025 and LiveCodeBench while emitting 18-49% fewer tokens per solution.

  • 2 authors
·
Aug 18, 2025

GDPO: Group reward-Decoupled Normalization Policy Optimization for Multi-reward RL Optimization

As language models become increasingly capable, users expect them to provide not only accurate responses but also behaviors aligned with diverse human preferences across a variety of scenarios. To achieve this, Reinforcement learning (RL) pipelines have begun incorporating multiple rewards, each capturing a distinct preference, to guide models toward these desired behaviors. However, recent work has defaulted to apply Group Relative Policy Optimization (GRPO) under multi-reward setting without examining its suitability. In this paper, we demonstrate that directly applying GRPO to normalize distinct rollout reward combinations causes them to collapse into identical advantage values, reducing the resolution of the training signal and resulting in suboptimal convergence and, in some cases, early training failure. We then introduce Group reward-Decoupled Normalization Policy Optimization (GDPO), a new policy optimization method to resolve these issues by decoupling the normalization of individual rewards, more faithfully preserving their relative differences and enabling more accurate multi-reward optimization, along with substantially improved training stability. We compare GDPO with GRPO across three tasks: tool calling, math reasoning, and coding reasoning, evaluating both correctness metrics (accuracy, bug ratio) and constraint adherence metrics (format, length). Across all settings, GDPO consistently outperforms GRPO, demonstrating its effectiveness and generalizability for multi-reward reinforcement learning optimization.

nvidia NVIDIA
·
Jan 8 9

iGRPO: Self-Feedback-Driven LLM Reasoning

Large Language Models (LLMs) have shown promise in solving complex mathematical problems, yet they still fall short of producing accurate and consistent solutions. Reinforcement Learning (RL) is a framework for aligning these models with task-specific rewards, improving overall quality and reliability. Group Relative Policy Optimization (GRPO) is an efficient, value-function-free alternative to Proximal Policy Optimization (PPO) that leverages group-relative reward normalization. We introduce Iterative Group Relative Policy Optimization (iGRPO), a two-stage extension of GRPO that adds dynamic self-conditioning through model-generated drafts. In Stage 1, iGRPO samples multiple exploratory drafts and selects the highest-reward draft using the same scalar reward signal used for optimization. In Stage 2, it appends this best draft to the original prompt and applies a GRPO-style update on draft-conditioned refinements, training the policy to improve beyond its strongest prior attempt. Under matched rollout budgets, iGRPO consistently outperforms GRPO across base models (e.g., Nemotron-H-8B-Base-8K and DeepSeek-R1 Distilled), validating its effectiveness on diverse reasoning benchmarks. Moreover, applying iGRPO to OpenReasoning-Nemotron-7B trained on AceReason-Math achieves new state-of-the-art results of 85.62\% and 79.64\% on AIME24 and AIME25, respectively. Ablations further show that the refinement wrapper generalizes beyond GRPO variants, benefits from a generative judge, and alters learning dynamics by delaying entropy collapse. These results underscore the potential of iterative, self-feedback-based RL for advancing verifiable mathematical reasoning.

nvidia NVIDIA
·
Feb 9 2

ETR: Outcome-Guided Elastic Trust Regions for Policy Optimization

Reinforcement Learning with Verifiable Rewards (RLVR) has emerged as an important paradigm for unlocking reasoning capabilities in large language models, exemplified by the success of OpenAI o1 and DeepSeek-R1. Currently, Group Relative Policy Optimization (GRPO) stands as the dominant algorithm in this domain due to its stable training and critic-free efficiency. However, we argue that GRPO suffers from a structural limitation: it imposes a uniform, static trust region constraint across all samples. This design implicitly assumes signal homogeneity, a premise misaligned with the heterogeneous nature of outcome-driven learning, where advantage magnitudes and variances fluctuate significantly. Consequently, static constraints fail to fully exploit high-quality signals while insufficiently suppressing noise, often precipitating rapid entropy collapse. To address this, we propose Elastic Trust Regions (ETR), a dynamic mechanism that aligns optimization constraints with signal quality. ETR constructs a signal-aware landscape through dual-level elasticity: at the micro level, it scales clipping boundaries based on advantage magnitude to accelerate learning from high-confidence paths; at the macro level, it leverages group variance to implicitly allocate larger update budgets to tasks in the optimal learning zone. Extensive experiments on AIME and MATH benchmarks demonstrate that ETR consistently outperforms GRPO, achieving superior accuracy while effectively mitigating policy entropy degradation to ensure sustained exploration.

  • 8 authors
·
Jan 7

MasHost Builds It All: Autonomous Multi-Agent System Directed by Reinforcement Learning

Large Language Model (LLM)-driven Multi-agent systems (Mas) have recently emerged as a powerful paradigm for tackling complex real-world tasks. However, existing Mas construction methods typically rely on manually crafted interaction mechanisms or heuristic rules, introducing human biases and constraining the autonomous ability. Even with recent advances in adaptive Mas construction, existing systems largely remain within the paradigm of semi-autonomous patterns. In this work, we propose MasHost, a Reinforcement Learning (RL)-based framework for autonomous and query-adaptive Mas design. By formulating Mas construction as a graph search problem, our proposed MasHost jointly samples agent roles and their interactions through a unified probabilistic sampling mechanism. Beyond the accuracy and efficiency objectives pursued in prior works, we introduce component rationality as an additional and novel design principle in Mas. To achieve this multi-objective optimization, we propose Hierarchical Relative Policy Optimization (HRPO), a novel RL strategy that collaboratively integrates group-relative advantages and action-wise rewards. To our knowledge, our proposed MasHost is the first RL-driven framework for autonomous Mas graph construction. Extensive experiments on six benchmarks demonstrate that MasHost consistently outperforms most competitive baselines, validating its effectiveness, efficiency, and structure rationality.

  • 8 authors
·
Jun 10, 2025

DeepVideo-R1: Video Reinforcement Fine-Tuning via Difficulty-aware Regressive GRPO

Recent works have demonstrated the effectiveness of reinforcement learning (RL)-based post-training in enhancing the reasoning capabilities of large language models (LLMs). In particular, Group Relative Policy Optimization (GRPO) has shown impressive success by employing a PPO-style reinforcement algorithm with group-based normalized rewards. However, the application of GRPO to Video Large Language Models (Video LLMs) has been less studied. In this paper, we explore GRPO for video LLMs and identify two primary issues that impede its effective learning: (1) reliance on safeguards, and (2) the vanishing advantage problem. To mitigate these challenges, we propose DeepVideo-R1, a video large language model trained with our proposed Reg-GRPO (Regressive GRPO) and difficulty-aware data augmentation strategy. Reg-GRPO reformulates the GRPO objective as a regression task, directly predicting the advantage in GRPO. This design eliminates the need for safeguards like clipping and min functions, thereby facilitating more direct policy guidance by aligning the model with the advantage values. We also design the difficulty-aware data augmentation strategy that dynamically augments training samples at solvable difficulty levels, fostering diverse and informative reward signals. Our comprehensive experiments show that DeepVideo-R1 significantly improves video reasoning performance across multiple video reasoning benchmarks.

  • 4 authors
·
Jun 9, 2025 3

Distribution-Centric Policy Optimization Dominates Exploration-Exploitation Trade-off

The exploration-exploitation (EE) trade-off is a central challenge in reinforcement learning (RL) for large language models (LLMs). With Group Relative Policy Optimization (GRPO), training tends to be exploitation driven: entropy decreases monotonically, samples convergence, and exploration fades. Most existing fixes are sample-centric: they seek or bonus rare samples, assuming exploration comes from novel trajectories and tokens. These heuristics depend on the "luck" of informative samples, lack principled control of the policy, and often yield limited or inconsistent gains. In this work, we are the first to introduce a distribution-centric perspective for RL, in which exploration is always guided by a "better" target distribution, and reveal that a policy's ability to resist entropy collapse is governed by the distribution itself rather than individual samples. Building on this insight, we propose Distribution-Centric Policy Optimization (DCPO), which reformulates entropy regulation as distribution-level regularization. DCPO achieves controllable entropy fully on-policy without sampling from external distributions, enabling efficient exploration while maintaining training stability. Across multiple models and seven benchmarks, DCPO improves over GRPO by about 20\% on average. Overall, DCPO replaces sample-level heuristics with distribution-level principles, offering a theoretically grounded and flexible framework for controllable exploration and a stronger EE trade-off. The code is available in https://github.com/597358816/DCPO.

  • 7 authors
·
Jan 19

V_0: A Generalist Value Model for Any Policy at State Zero

Policy gradient methods rely on a baseline to measure the relative advantage of an action, ensuring the model reinforces behaviors that outperform its current average capability. In the training of Large Language Models (LLMs) using Actor-Critic methods (e.g., PPO), this baseline is typically estimated by a Value Model (Critic) often as large as the policy model itself. However, as the policy continuously evolves, the value model requires expensive, synchronous incremental training to accurately track the shifting capabilities of the policy. To avoid this overhead, Group Relative Policy Optimization (GRPO) eliminates the coupled value model by using the average reward of a group of rollouts as the baseline; yet, this approach necessitates extensive sampling to maintain estimation stability. In this paper, we propose V_0, a Generalist Value Model capable of estimating the expected performance of any model on unseen prompts without requiring parameter updates. We reframe value estimation by treating the policy's dynamic capability as an explicit context input; specifically, we leverage a history of instruction-performance pairs to dynamically profile the model, departing from the traditional paradigm that relies on parameter fitting to perceive capability shifts. Focusing on value estimation at State Zero (i.e., the initial prompt, hence V_0), our model serves as a critical resource scheduler. During GRPO training, V_0 predicts success rates prior to rollout, allowing for efficient sampling budget allocation; during deployment, it functions as a router, dispatching instructions to the most cost-effective and suitable model. Empirical results demonstrate that V_0 significantly outperforms heuristic budget allocation and achieves a Pareto-optimal trade-off between performance and cost in LLM routing tasks.

  • 9 authors
·
Feb 3

Harder Is Better: Boosting Mathematical Reasoning via Difficulty-Aware GRPO and Multi-Aspect Question Reformulation

Reinforcement Learning with Verifiable Rewards (RLVR) offers a robust mechanism for enhancing mathematical reasoning in large models. However, we identify a systematic lack of emphasis on more challenging questions in existing methods from both algorithmic and data perspectives, despite their importance for refining underdeveloped capabilities. Algorithmically, widely used Group Relative Policy Optimization (GRPO) suffers from an implicit imbalance where the magnitude of policy updates is lower for harder questions. Data-wise, augmentation approaches primarily rephrase questions to enhance diversity without systematically increasing intrinsic difficulty. To address these issues, we propose a two-dual MathForge framework to improve mathematical reasoning by targeting harder questions from both perspectives, which comprises a Difficulty-Aware Group Policy Optimization (DGPO) algorithm and a Multi-Aspect Question Reformulation (MQR) strategy. Specifically, DGPO first rectifies the implicit imbalance in GRPO via difficulty-balanced group advantage estimation, and further prioritizes harder questions by difficulty-aware question-level weighting. Meanwhile, MQR reformulates questions across multiple aspects to increase difficulty while maintaining the original gold answer. Overall, MathForge forms a synergistic loop: MQR expands the data frontier, and DGPO effectively learns from the augmented data. Extensive experiments show that MathForge significantly outperforms existing methods on various mathematical reasoning tasks. The code and augmented data are all available at https://github.com/AMAP-ML/MathForge.

GD-ML AMAP-ML
·
Jan 28 19

Optimizing Safe and Aligned Language Generation: A Multi-Objective GRPO Approach

Aligning large language models (LLMs) with human values and safety constraints is challenging, especially when objectives like helpfulness, truthfulness, and avoidance of harm conflict. Reinforcement Learning from Human Feedback (RLHF) has achieved notable success in steering models, but is complex and can be unstable. Recent approaches such as Direct Preference Optimization (DPO) simplify preference-based fine-tuning but may introduce bias or trade-off certain objectives~dpo. In this work, we propose a Group Relative Policy Optimization (GRPO) framework with a multi-label reward regression model to achieve safe and aligned language generation. The GRPO algorithm optimizes a policy by comparing groups of sampled responses, eliminating the need for a separate value critic and improving training efficiency~grpo. We train a reward model to predict multiple alignment scores (e.g., safety, helpfulness, etc.), which are combined into a single reward signal. We provide a theoretical derivation for using this learned multi-aspect reward within GRPO and discuss its advantages and limitations. Empirically, our approach improves all the safety and quality metrics evaluated in language generation tasks on model scales (0.5B, 7B, and 14B parameters), demonstrating a robust balance of objectives. We compare GRPO to PPO-based RLHF and DPO, highlighting that GRPO achieves alignment with significantly lower computational cost and explicit multi-objective handling. \textbf{We will open-source all trained models at https://huggingface.co/hydroxai.

  • 4 authors
·
Mar 26, 2025

Diversity-Enhanced Reasoning for Subjective Questions

Large reasoning models (LRM) with long chain-of-thought (CoT) capabilities have shown strong performance on objective tasks, such as math reasoning and coding. However, their effectiveness on subjective questions that may have different responses from different perspectives is still limited by a tendency towards homogeneous reasoning, introduced by the reliance on a single ground truth in supervised fine-tuning and verifiable reward in reinforcement learning. Motivated by the finding that increasing role perspectives consistently improves performance, we propose MultiRole-R1, a diversity-enhanced framework with multiple role perspectives, to improve the accuracy and diversity in subjective reasoning tasks. MultiRole-R1 features an unsupervised data construction pipeline that generates reasoning chains that incorporate diverse role perspectives. We further employ reinforcement learning via Group Relative Policy Optimization (GRPO) with reward shaping, by taking diversity as a reward signal in addition to the verifiable reward. With specially designed reward functions, we successfully promote perspective diversity and lexical diversity, uncovering a positive relation between reasoning diversity and accuracy. Our experiment on six benchmarks demonstrates MultiRole-R1's effectiveness and generalizability in enhancing both subjective and objective reasoning, showcasing the potential of diversity-enhanced training in LRMs.

  • 4 authors
·
Jul 27, 2025 2

Anchoring Values in Temporal and Group Dimensions for Flow Matching Model Alignment

Group Relative Policy Optimization (GRPO) has proven highly effective in enhancing the alignment capabilities of Large Language Models (LLMs). However, current adaptations of GRPO for the flow matching-based image generation neglect a foundational conflict between its core principles and the distinct dynamics of the visual synthesis process. This mismatch leads to two key limitations: (i) Uniformly applying a sparse terminal reward across all timesteps impairs temporal credit assignment, ignoring the differing criticality of generation phases from early structure formation to late-stage tuning. (ii) Exclusive reliance on relative, intra-group rewards causes the optimization signal to fade as training converges, leading to the optimization stagnation when reward diversity is entirely depleted. To address these limitations, we propose Value-Anchored Group Policy Optimization (VGPO), a framework that redefines value estimation across both temporal and group dimensions. Specifically, VGPO transforms the sparse terminal reward into dense, process-aware value estimates, enabling precise credit assignment by modeling the expected cumulative reward at each generative stage. Furthermore, VGPO replaces standard group normalization with a novel process enhanced by absolute values to maintain a stable optimization signal even as reward diversity declines. Extensive experiments on three benchmarks demonstrate that VGPO achieves state-of-the-art image quality while simultaneously improving task-specific accuracy, effectively mitigating reward hacking. Project webpage: https://yawen-shao.github.io/VGPO/.

  • 7 authors
·
Dec 13, 2025

MMR1: Enhancing Multimodal Reasoning with Variance-Aware Sampling and Open Resources

Large multimodal reasoning models have achieved rapid progress, but their advancement is constrained by two major limitations: the absence of open, large-scale, high-quality long chain-of-thought (CoT) data, and the instability of reinforcement learning (RL) algorithms in post-training. Group Relative Policy Optimization (GRPO), the standard framework for RL fine-tuning, is prone to gradient vanishing when reward variance is low, which weakens optimization signals and impairs convergence. This work makes three contributions: (1) We propose Variance-Aware Sampling (VAS), a data selection strategy guided by Variance Promotion Score (VPS) that combines outcome variance and trajectory diversity to promote reward variance and stabilize policy optimization. (2) We release large-scale, carefully curated resources containing ~1.6M long CoT cold-start data and ~15k RL QA pairs, designed to ensure quality, difficulty, and diversity, along with a fully reproducible end-to-end training codebase. (3) We open-source a family of multimodal reasoning models in multiple scales, establishing standardized baselines for the community. Experiments across mathematical reasoning benchmarks demonstrate the effectiveness of both the curated data and the proposed VAS. Comprehensive ablation studies and analyses provide further insight into the contributions of each component. In addition, we theoretically establish that reward variance lower-bounds the expected policy gradient magnitude, with VAS serving as a practical mechanism to realize this guarantee. Our code, data, and checkpoints are available at https://github.com/LengSicong/MMR1.

MMR1 MMR1
·
Sep 25, 2025 3

SALT: Step-level Advantage Assignment for Long-horizon Agents via Trajectory Graph

Large Language Models (LLMs) have demonstrated remarkable capabilities, enabling language agents to excel at single-turn tasks. However, their application to complex, multi-step, and long-horizon tasks remains challenging. While reinforcement learning (RL) offers a promising avenue for addressing these challenges, mainstream approaches typically rely solely on sparse, outcome-based rewards, a limitation that becomes especially problematic for group-based RL algorithms lacking critic models, such as Group Relative Policy Optimization (GRPO). In such methods, uniformly rewarding or penalizing all actions within a trajectory can lead to training instability and suboptimal policies, because beneficial and detrimental actions are often entangled across multi-step interactions. To address this challenge, we propose SALT, a novel and lightweight framework that provides a finer-grained advantage assignment, derived solely from outcome rewards. We achieve this by constructing a graph from trajectories of the same prompt, which allows us to quantify the quality of each step and assign advantages accordingly. Crucially, SALT is designed as a plug-and-play module that seamlessly integrates with existing group-based RL algorithms, requiring no modifications to the rollout procedure and introducing negligible computational overhead. Extensive experiments on the WebShop, ALFWorld, and AppWorld benchmarks with various model sizes demonstrate that SALT consistently improves performance. We also conduct a thorough analysis to validate the design choices behind SALT and offer actionable insights.

  • 8 authors
·
Oct 22, 2025

Pairwise Proximal Policy Optimization: Harnessing Relative Feedback for LLM Alignment

Large Language Models (LLMs) can acquire extensive world knowledge through pre-training on large corpora. However, due to exposure to low-quality data, LLMs may exhibit harmful behavior without aligning with human values. The dominant approach for steering LLMs towards beneficial behavior involves Reinforcement Learning with Human Feedback (RLHF), with Proximal Policy Optimization (PPO) serving as the default RL optimizer. Despite its effectiveness, PPO has limitations when optimizing rewards trained from comparison-based loss. Primarily, PPO is not invariant to equivalent reward functions containing identical preference information due to the need to calibrate the reward scale. Additionally, PPO's necessity for token-wise updates introduces complexity in both function approximation and algorithm design compared to trajectory-wise optimization. This paper proposes a new framework, reinforcement learning with relative feedback, and a novel trajectory-wise policy gradient algorithm, Pairwise Proximal Policy Optimization (P3O) that operates directly on comparative rewards. We show theoretically that P3O is invariant to equivalent rewards and avoids the complexity of PPO. Empirical evaluations demonstrate that P3O outperforms PPO in the KL-Reward trade-off and can align with human preferences as well as or better than prior methods. In summary, this work introduces a simpler yet effective approach for aligning LLMs to human preferences through relative feedback.

  • 6 authors
·
Sep 29, 2023

DisCO: Reinforcing Large Reasoning Models with Discriminative Constrained Optimization

The recent success and openness of DeepSeek-R1 have brought widespread attention to Group Relative Policy Optimization (GRPO) as a reinforcement learning method for large reasoning models (LRMs). In this work, we analyze the GRPO objective under a binary reward setting and reveal an inherent limitation of question-level difficulty bias. We also identify a connection between GRPO and traditional discriminative methods in supervised learning. Motivated by these insights, we introduce a new Discriminative Constrained Optimization (DisCO) framework for reinforcing LRMs, grounded in the principle of discriminative learning. The main differences between DisCO and GRPO and its recent variants are: (1) it replaces the group relative objective with a discriminative objective defined by a scoring function; (2) it abandons clipping-based surrogates in favor of non-clipping RL surrogate objectives used as scoring functions; (3) it employs a simple yet effective constrained optimization approach to enforce the KL divergence constraint, ensuring stable training. As a result, DisCO offers notable advantages over GRPO and its variants: (i) it completely eliminates difficulty bias by adopting discriminative objectives; (ii) it addresses the entropy instability in GRPO and its variants through the use of non-clipping scoring functions and a constrained optimization approach; (iii) it allows the incorporation of advanced discriminative learning techniques to address data imbalance, where a significant number of questions have more negative than positive generated answers during training. Our experiments on enhancing the mathematical reasoning capabilities of SFT-finetuned models show that DisCO significantly outperforms GRPO and its improved variants such as DAPO, achieving average gains of 7\% over GRPO and 6\% over DAPO across six benchmark tasks for an 1.5B model.

  • 5 authors
·
May 18, 2025

Self-Hinting Language Models Enhance Reinforcement Learning

Group Relative Policy Optimization (GRPO) has recently emerged as a practical recipe for aligning large language models with verifiable objectives. However, under sparse terminal rewards, GRPO often stalls because rollouts within a group frequently receive identical rewards, causing relative advantages to collapse and updates to vanish. We propose self-hint aligned GRPO with privileged supervision (SAGE), an on-policy reinforcement learning framework that injects privileged hints during training to reshape the rollout distribution under the same terminal verifier reward. For each prompt x, the model samples a compact hint h (e.g., a plan or decomposition) and then generates a solution τ conditioned on (x,h). Crucially, the task reward R(x,τ) is unchanged; hints only increase within-group outcome diversity under finite sampling, preventing GRPO advantages from collapsing under sparse rewards. At test time, we set h=varnothing and deploy the no-hint policy without any privileged information. Moreover, sampling diverse self-hints serves as an adaptive curriculum that tracks the learner's bottlenecks more effectively than fixed hints from an initial policy or a stronger external model. Experiments over 6 benchmarks with 3 LLMs show that SAGE consistently outperforms GRPO, on average +2.0 on Llama-3.2-3B-Instruct, +1.2 on Qwen2.5-7B-Instruct and +1.3 on Qwen3-4B-Instruct. The code is available at https://github.com/BaohaoLiao/SAGE.

DaGRPO: Rectifying Gradient Conflict in Reasoning via Distinctiveness-Aware Group Relative Policy Optimization

The evolution of Large Language Models (LLMs) has catalyzed a paradigm shift from superficial instruction following to rigorous long-horizon reasoning. While Group Relative Policy Optimization (GRPO) has emerged as a pivotal mechanism for eliciting such post-training reasoning capabilities due to its exceptional performance, it remains plagued by significant training instability and poor sample efficiency. We theoretically identify the root cause of these issues as the lack of distinctiveness within on-policy rollouts: for routine queries, highly homogeneous samples induce destructive gradient conflicts; whereas for hard queries, the scarcity of valid positive samples results in ineffective optimization. To bridge this gap, we propose Distinctiveness-aware Group Relative Policy Optimization (DaGRPO). DaGRPO incorporates two core mechanisms: (1) Sequence-level Gradient Rectification, which utilizes fine-grained scoring to dynamically mask sample pairs with low distinctiveness, thereby eradicating gradient conflicts at the source; and (2) Off-policy Data Augmentation, which introduces high-quality anchors to recover training signals for challenging tasks. Extensive experiments across 9 mathematical reasoning and out-of-distribution (OOD) generalization benchmarks demonstrate that DaGRPO significantly surpasses existing SFT, GRPO, and hybrid baselines, achieving new state-of-the-art performance (e.g., a +4.7% average accuracy gain on math benchmarks). Furthermore, in-depth analysis confirms that DaGRPO effectively mitigates gradient explosion and accelerates the emergence of long-chain reasoning capabilities.

  • 3 authors
·
Dec 6, 2025

Orchestrating Tokens and Sequences: Dynamic Hybrid Policy Optimization for RLVR

Reinforcement Learning with Verifiable Rewards (RLVR) offers a promising framework for optimizing large language models in reasoning tasks. However, existing RLVR algorithms focus on different granularities, and each has complementary strengths and limitations. Group Relative Policy Optimization (GRPO) updates the policy with token-level importance ratios, which preserves fine-grained credit assignment but often suffers from high variance and instability. In contrast, Group Sequence Policy Optimization (GSPO) applies single sequence-level importance ratios across all tokens in a response that better matches sequence-level rewards, but sacrifices token-wise credit assignment. In this paper, we propose Dynamic Hybrid Policy Optimization (DHPO) to bridge GRPO and GSPO within a single clipped surrogate objective. DHPO combines token-level and sequence-level importance ratios using weighting mechanisms. We explore two variants of the mixing mechanism, including an averaged mixing and an entropy-guided mixing. To further stabilize training, we employ a branch-specific clipping strategy that constrains token-level and sequence-level ratios within separate trust regions before mixing, preventing outliers in either branch from dominating the update. Across seven challenging mathematical reasoning benchmarks, experiments on both dense and MoE models from the Qwen3 series show that DHPO consistently outperforms GRPO and GSPO. We will release our code upon acceptance of this paper.

  • 7 authors
·
Jan 9

Think or Not? Selective Reasoning via Reinforcement Learning for Vision-Language Models

Reinforcement Learning (RL) has proven to be an effective post-training strategy for enhancing reasoning in vision-language models (VLMs). Group Relative Policy Optimization (GRPO) is a recent prominent method that encourages models to generate complete reasoning traces before answering, leading to increased token usage and computational cost. Inspired by the human-like thinking process-where people skip reasoning for easy questions but think carefully when needed-we explore how to enable VLMs to first decide when reasoning is necessary. To realize this, we propose TON, a two-stage training strategy: (i) a supervised fine-tuning (SFT) stage with a simple yet effective 'thought dropout' operation, where reasoning traces are randomly replaced with empty thoughts. This introduces a think-or-not format that serves as a cold start for selective reasoning; (ii) a GRPO stage that enables the model to freely explore when to think or not, while maximizing task-aware outcome rewards. Experimental results show that TON can reduce the completion length by up to 90% compared to vanilla GRPO, without sacrificing performance or even improving it. Further evaluations across diverse vision-language tasks-covering a range of reasoning difficulties under both 3B and 7B models-consistently reveal that the model progressively learns to bypass unnecessary reasoning steps as training advances. These findings shed light on the path toward human-like reasoning patterns in reinforcement learning approaches. Our code is available at https://github.com/kokolerk/TON.

  • 4 authors
·
May 22, 2025 3

On GRPO Collapse in Search-R1: The Lazy Likelihood-Displacement Death Spiral

Tool-integrated (TI) reinforcement learning (RL) enables large language models (LLMs) to perform multi-step reasoning by interacting with external tools such as search engines and retrievers. Group Relative Policy Optimization (GRPO), exemplified by the recent Search-R1, offers fast convergence and a value-free formulation that makes it appealing for this setting, yet consistently suffers from training collapse. We identify Lazy Likelihood Displacement (LLD), a systematic reduction or stagnation in the likelihood of both correct and incorrect responses, as the core mechanism driving this failure. LLD emerges early and triggers a self-reinforcing LLD Death Spiral, where declining likelihood leads to low-confidence responses, inflating gradients, and ultimately causing collapse. We empirically characterize this process across models on a Search-R1-style, search-integrated question answering task, revealing a consistent three-phase trajectory: early stagnation, steady decay, and accelerated collapse. To address this, we propose a lightweight likelihood-preserving regularization LLDS for GRPO that activates only when a trajectory's likelihood decreases, and regularizes only the tokens responsible. This fine-grained structure mitigates LLD with minimal interference to optimization. Across seven open-domain and multi-hop QA benchmarks, our method stabilizes training, prevents gradient explosion, and yields substantial performance improvements, including +37.8% gains on Qwen2.5-3B and +32.0% gains on Qwen2.5-7B. Our results establish LLD as a fundamental bottleneck in GRPO-based TIRL and provide a practical path toward stable, scalable training of tool-integrated LLM.

  • 6 authors
·
Dec 3, 2025 2

GeometryZero: Improving Geometry Solving for LLM with Group Contrastive Policy Optimization

Recent advances in large language models (LLMs) have demonstrated remarkable capabilities across diverse domains, particularly in mathematical reasoning, amid which geometry problem solving remains a challenging area where auxiliary construction plays a enssential role. Existing approaches either achieve suboptimal performance or rely on massive LLMs (e.g., GPT-4o), incurring massive computational costs. We posit that reinforcement learning with verifiable reward (e.g., GRPO) offers a promising direction for training smaller models that effectively combine auxiliary construction with robust geometric reasoning. However, directly applying GRPO to geometric reasoning presents fundamental limitations due to its dependence on unconditional rewards, which leads to indiscriminate and counterproductive auxiliary constructions. To address these challenges, we propose Group Contrastive Policy Optimization (GCPO), a novel reinforcement learning framework featuring two key innovations: (1) Group Contrastive Masking, which adaptively provides positive or negative reward signals for auxiliary construction based on contextual utility, and a (2) length reward that promotes longer reasoning chains. Building on GCPO, we develop GeometryZero, a family of affordable-size geometric reasoning models that judiciously determine when to employ auxiliary construction. Our extensive empirical evaluation across popular geometric benchmarks (Geometry3K, MathVista) demonstrates that GeometryZero models consistently outperform baselines (e.g. GRPO), achieving an average improvement of 4.29% across all benchmarks.

  • 7 authors
·
Jun 8, 2025 2

Inverse Reinforcement Learning with Dynamic Reward Scaling for LLM Alignment

Robust alignment is vital for safely deploying large language models (LLMs). Existing techniques are either reward-based -- training a reward model on preference pairs and optimizing with reinforcement learning (RL) -- or reward-free -- directly fine-tuning on ranked outputs. Recent research shows that well-tuned reward-based pipelines remain the most robust, and single-response demonstrations can outperform pairwise preference data. However, two key challenges remain: (i) imbalanced safety datasets that over-represent common hazards while neglecting long-tail threats; and (ii) static reward models that ignore task difficulty, limiting optimization efficiency and attainable gains. To address these limitations, we propose DR-IRL, which dynamically adjusts rewards through inverse reinforcement learning. We first construct a balanced safety dataset of seven harmful categories using Chain-of-Draft (CoD) template prompts, which reduce token usage and generation time compared to Chain-of-Thought (CoT). We then train category-specific reward models on this dataset via IRL. Finally, to align the LLM, we introduce GRPO-S (Group Relative Policy Optimization--Scaling), a variant of GRPO that scales the reward during optimization to task difficulty -- data-level hardness measured by CLIP similarity and model-level responsiveness measured by reward gaps. Extensive experiments on multiple benchmarks and LLMs demonstrate that DR-IRL outperforms all baselines in safety alignment while maintaining usefulness.

  • 9 authors
·
Mar 23, 2025

Delving into RL for Image Generation with CoT: A Study on DPO vs. GRPO

Recent advancements underscore the significant role of Reinforcement Learning (RL) in enhancing the Chain-of-Thought (CoT) reasoning capabilities of large language models (LLMs). Two prominent RL algorithms, Direct Preference Optimization (DPO) and Group Relative Policy Optimization (GRPO), are central to these developments, showcasing different pros and cons. Autoregressive image generation, also interpretable as a sequential CoT reasoning process, presents unique challenges distinct from LLM-based CoT reasoning. These encompass ensuring text-image consistency, improving image aesthetic quality, and designing sophisticated reward models, rather than relying on simpler rule-based rewards. While recent efforts have extended RL to this domain, these explorations typically lack an in-depth analysis of the domain-specific challenges and the characteristics of different RL strategies. To bridge this gap, we provide the first comprehensive investigation of the GRPO and DPO algorithms in autoregressive image generation, evaluating their in-domain performance and out-of-domain generalization, while scrutinizing the impact of different reward models on their respective capabilities. Our findings reveal that GRPO and DPO exhibit distinct advantages, and crucially, that reward models possessing stronger intrinsic generalization capabilities potentially enhance the generalization potential of the applied RL algorithms. Furthermore, we systematically explore three prevalent scaling strategies to enhance both their in-domain and out-of-domain proficiency, deriving unique insights into efficiently scaling performance for each paradigm. We hope our study paves a new path for inspiring future work on developing more effective RL algorithms to achieve robust CoT reasoning in the realm of autoregressive image generation. Code is released at https://github.com/ZiyuGuo99/Image-Generation-CoT

  • 8 authors
·
May 22, 2025

TTRV: Test-Time Reinforcement Learning for Vision Language Models

Existing methods for extracting reward signals in Reinforcement Learning typically rely on labeled data and dedicated training splits, a setup that contrasts with how humans learn directly from their environment. In this work, we propose TTRV to enhance vision language understanding by adapting the model on the fly at inference time, without the need for any labeled data. Concretely, we enhance the Group Relative Policy Optimization (GRPO) framework by designing rewards based on the frequency of the base model's output, while inferring on each test sample multiple times. Further, we also propose to control the diversity of the model's output by simultaneously rewarding the model for obtaining low entropy of the output empirical distribution. Our approach delivers consistent gains across both object recognition and visual question answering (VQA), with improvements of up to 52.4% and 29.8%, respectively, and average boosts of 24.6% and 10.0% across 16 datasets.Remarkably, on image recognition, TTRV applied to InternVL 8B surpasses GPT-4o by an average of 2.3% over 8 benchmarks, while remaining highly competitive on VQA, demonstrating that test-time reinforcement learning can match or exceed the strongest proprietary models. Finally, we find many interesting properties of test-time RL for VLMs: for example, even in extremely data-constrained scenarios, where adaptation is performed on a single randomly chosen unlabeled test example, TTRV still yields non-trivial improvements of up to 5.5% in recognition tasks.

  • 10 authors
·
Oct 8, 2025 2

OThink-MR1: Stimulating multimodal generalized reasoning capabilities via dynamic reinforcement learning

Multimodal Large Language Models (MLLMs) have gained significant traction for their ability to process diverse input data types and generate coherent, contextually relevant outputs across various applications. While supervised fine-tuning (SFT) has been the predominant approach to enhance MLLM capabilities in task-specific optimization, it often falls short in fostering crucial generalized reasoning abilities. Although reinforcement learning (RL) holds great promise in overcoming these limitations, it encounters two significant challenges: (1) its generalized capacities in multimodal tasks remain largely unexplored, and (2) its training constraints, including the constant Kullback-Leibler divergence or the clamp strategy, often result in suboptimal bottlenecks. To address these challenges, we propose OThink-MR1, an advanced MLLM equipped with profound comprehension and reasoning capabilities across multimodal tasks. Specifically, we introduce Group Relative Policy Optimization with a dynamic Kullback-Leibler strategy (GRPO-D), which markedly enhances reinforcement learning (RL) performance. For Qwen2-VL-2B-Instruct, GRPO-D achieves a relative improvement of more than 5.72% over SFT and more than 13.59% over GRPO in same-task evaluation on two adapted datasets. Furthermore, GRPO-D demonstrates remarkable cross-task generalization capabilities, with an average relative improvement of more than 61.63% over SFT in cross-task evaluation. These results highlight that the MLLM trained with GRPO-D on one multimodal task can be effectively transferred to another task, underscoring the superior generalized reasoning capabilities of our proposed OThink-MR1 model.

  • 6 authors
·
Mar 20, 2025 3

Direct Nash Optimization: Teaching Language Models to Self-Improve with General Preferences

This paper studies post-training large language models (LLMs) using preference feedback from a powerful oracle to help a model iteratively improve over itself. The typical approach for post-training LLMs involves Reinforcement Learning from Human Feedback (RLHF), which traditionally separates reward learning and subsequent policy optimization. However, such a reward maximization approach is limited by the nature of "point-wise" rewards (such as Bradley-Terry model), which fails to express complex intransitive or cyclic preference relations. While advances on RLHF show reward learning and policy optimization can be merged into a single contrastive objective for stability, they yet still remain tethered to the reward maximization framework. Recently, a new wave of research sidesteps the reward maximization presumptions in favor of directly optimizing over "pair-wise" or general preferences. In this paper, we introduce Direct Nash Optimization (DNO), a provable and scalable algorithm that marries the simplicity and stability of contrastive learning with theoretical generality from optimizing general preferences. Because DNO is a batched on-policy algorithm using a regression-based objective, its implementation is straightforward and efficient. Moreover, DNO enjoys monotonic improvement across iterations that help it improve even over a strong teacher (such as GPT-4). In our experiments, a resulting 7B parameter Orca-2.5 model aligned by DNO achieves the state-of-the-art win-rate against GPT-4-Turbo of 33% on AlpacaEval 2.0 (even after controlling for response length), an absolute gain of 26% (7% to 33%) over the initializing model. It outperforms models with far more parameters, including Mistral Large, Self-Rewarding LM (70B parameters), and older versions of GPT-4.

  • 6 authors
·
Apr 4, 2024 1

Group-Relative REINFORCE Is Secretly an Off-Policy Algorithm: Demystifying Some Myths About GRPO and Its Friends

Off-policy reinforcement learning (RL) for large language models (LLMs) is attracting growing interest, driven by practical constraints in real-world applications, the complexity of LLM-RL infrastructure, and the need for further innovations of RL methodologies. While classic REINFORCE and its modern variants like Group Relative Policy Optimization (GRPO) are typically regarded as on-policy algorithms with limited tolerance of off-policyness, we present in this work a first-principles derivation for group-relative REINFORCE without assuming a specific training data distribution, showing that it admits a native off-policy interpretation. This perspective yields two general principles for adapting REINFORCE to off-policy settings: regularizing policy updates, and actively shaping the data distribution. Our analysis demystifies some myths about the roles of importance sampling and clipping in GRPO, unifies and reinterprets two recent algorithms -- Online Policy Mirror Descent (OPMD) and Asymmetric REINFORCE (AsymRE) -- as regularized forms of the REINFORCE loss, and offers theoretical justification for seemingly heuristic data-weighting strategies. Our findings lead to actionable insights that are validated with extensive empirical studies, and open up new opportunities for principled algorithm design in off-policy RL for LLMs. Source code for this work is available at https://github.com/modelscope/Trinity-RFT/tree/main/examples/rec_gsm8k.

  • 8 authors
·
Sep 28, 2025 2

CRAFT-GUI: Curriculum-Reinforced Agent For GUI Tasks

As autonomous agents become adept at understanding and interacting with graphical user interface (GUI) environments, a new era of automated task execution is emerging. Recent studies have demonstrated that Reinforcement Learning (RL) can effectively enhance agents' performance in dynamic interactive GUI environments. However, these methods face two key limitations: (1) they overlook the significant variation in difficulty across different GUI tasks by treating the entire training data as a uniform set, which hampers the agent's ability to adapt its learning process; and (2) most approaches collapse task-specific nuances into a single, coarse reward, leaving the agent with a uniform signal that yields inefficient policy updates. To address these limitations, we propose CRAFT-GUI, a curriculum learning framework based on Group Relative Policy Optimization (GRPO) that explicitly accounts for the varying difficulty across trajectories. To enable more fine-grained policy optimization, we design a reward function that combines simple rule-based signals with model-judged evaluation, providing richer and more nuanced feedback during training. Experimental results demonstrate that our method achieves significant improvements over previous state-of-the-art approaches, outperforming them by 5.6% on public benchmarks Android Control and 10.3% on our internal online benchmarks, respectively. These findings empirically validate the effectiveness of integrating reinforcement learning with curriculum learning in GUI interaction tasks.

  • 7 authors
·
Aug 15, 2025

Prefix Grouper: Efficient GRPO Training through Shared-Prefix Forward

Group Relative Policy Optimization (GRPO) enhances policy learning by computing gradients from relative comparisons among candidate outputs that share a common input prefix. Despite its effectiveness, GRPO introduces substantial computational overhead when processing long shared prefixes, which must be redundantly encoded for each group member. This inefficiency becomes a major scalability bottleneck in long-context learning scenarios. We propose Prefix Grouper, an efficient GRPO training algorithm that eliminates redundant prefix computation via a Shared-Prefix Forward strategy. In particular, by restructuring self-attention into two parts, our method enables the shared prefix to be encoded only once, while preserving full differentiability and compatibility with end-to-end training. We provide both theoretical and empirical evidence that Prefix Grouper is training-equivalent to standard GRPO: it yields identical forward outputs and backward gradients, ensuring that the optimization dynamics and final policy performance remain unchanged. Empirically, our experiments confirm that Prefix Grouper achieves consistent results while significantly reducing the computational cost of training, particularly in long-prefix scenarios. The proposed method is fully plug-and-play: it is compatible with existing GRPO-based architectures and can be seamlessly integrated into current training pipelines as a drop-in replacement, requiring no structural modifications and only minimal changes to input construction and attention computation. Prefix Grouper enables the use of larger group sizes under the same computational budget, thereby improving the scalability of GRPO to more complex tasks and larger models. Code is now available at https://github.com/johncaged/PrefixGrouper

  • 8 authors
·
Jun 5, 2025 2

Group-in-Group Policy Optimization for LLM Agent Training

Recent advances in group-based reinforcement learning (RL) have driven frontier large language models (LLMs) in single-turn tasks like mathematical reasoning. However, their scalability to long-horizon LLM agent training remains limited. Unlike static tasks, agent-environment interactions unfold over many steps and often yield sparse or delayed rewards, making credit assignment across individual steps significantly more challenging. In this work, we propose Group-in-Group Policy Optimization (GiGPO), a novel RL algorithm that achieves fine-grained credit assignment for LLM agents while preserving the appealing properties of group-based RL: critic-free, low memory, and stable convergence. GiGPO introduces a two-level structure for estimating relative advantage: (i) At the episode-level, GiGPO computes macro relative advantages based on groups of complete trajectories; (ii) At the step-level, GiGPO introduces an anchor state grouping mechanism that retroactively constructs step-level groups by identifying repeated environment states across trajectories. Actions stemming from the same state are grouped together, enabling micro relative advantage estimation. This hierarchical structure effectively captures both global trajectory quality and local step effectiveness without relying on auxiliary models or additional rollouts. We evaluate GiGPO on two challenging agent benchmarks, ALFWorld and WebShop, using Qwen2.5-1.5B-Instruct and Qwen2.5-7B-Instruct. Crucially, GiGPO delivers fine-grained per-step credit signals and achieves performance gains of > 12\% on ALFWorld and > 9\% on WebShop over the GRPO baseline: all while maintaining the same GPU memory overhead, identical LLM rollout, and incurring little to no additional time cost.

  • 4 authors
·
May 16, 2025

GTPO: Trajectory-Based Policy Optimization in Large Language Models

Policy-based optimizations are widely adopted today for the training and alignment of language models, where one of the most recent and effective approaches is Group-relative Policy Optimization (GRPO). In this paper, we reveals and analyze two major limitations of GRPO: (i) tokens frequently appear in completions with both positive and negative rewards, leading to conflicting gradient updates that can reduce their output probability, even though can be essential for maintaining proper structure; (ii) negatively rewarded completions may penalize confident responses and shift model decisions toward unlikely tokens, progressively flattening the output distribution and degrading learning. To address these issues and provide a more stable and effective policy optimization strategy, we introduce GTPO (Group-relative Trajectory-based Policy Optimization), which identifies conflict tokens, tokens appearing in the same position across completions with opposite rewards, protects them by skipping negative updates, while amplifying positive ones. To further prevent policy collapse, GTPO filters out completions whose entropy exceeds a provable threshold. Unlike GRPO, GTPO does not rely on KL-divergence regularization, eliminating the need for a reference model during training, while still ensuring greater training stability and improved performance, validated through multiple experiments on GSM8K, MATH and AIME 2024 benchmarks.

  • 4 authors
·
Aug 5, 2025

Reinforcing Video Reasoning with Focused Thinking

Recent advancements in reinforcement learning, particularly through Group Relative Policy Optimization (GRPO), have significantly improved multimodal large language models for complex reasoning tasks. However, two critical limitations persist: 1) they often produce unfocused, verbose reasoning chains that obscure salient spatiotemporal cues and 2) binary rewarding fails to account for partially correct answers, resulting in high reward variance and inefficient learning. In this paper, we propose TW-GRPO, a novel framework that enhances visual reasoning with focused thinking and dense reward granularity. Specifically, we employs a token weighting mechanism that prioritizes tokens with high informational density (estimated by intra-group variance), suppressing redundant tokens like generic reasoning prefixes. Furthermore, we reformulate RL training by shifting from single-choice to multi-choice QA tasks, where soft rewards enable finer-grained gradient estimation by distinguishing partial correctness. Additionally, we propose question-answer inversion, a data augmentation strategy to generate diverse multi-choice samples from existing benchmarks. Experiments demonstrate state-of-the-art performance on several video reasoning and general understanding benchmarks. Notably, TW-GRPO achieves 50.4\% accuracy on CLEVRER (18.8\% improvement over Video-R1) and 65.8\% on MMVU. Our codes are available at https://github.com/longmalongma/TW-GRPO.

  • 9 authors
·
May 30, 2025

Back to Basics: Revisiting Exploration in Reinforcement Learning for LLM Reasoning via Generative Probabilities

Reinforcement Learning with Verifiable Rewards (RLVR) has emerged as an indispensable paradigm for enhancing reasoning in Large Language Models (LLMs). However, standard policy optimization methods, such as Group Relative Policy Optimization (GRPO), often converge to low-entropy policies, leading to severe mode collapse and limited output diversity. We analyze this issue from the perspective of sampling probability dynamics, identifying that the standard objective disproportionately reinforces the highest-likelihood paths, thereby suppressing valid alternative reasoning chains. To address this, we propose a novel Advantage Re-weighting Mechanism (ARM) designed to equilibrate the confidence levels across all correct responses. By incorporating Prompt Perplexity and Answer Confidence into the advantage estimation, our method dynamically reshapes the reward signal to attenuate the gradient updates of over-confident reasoning paths, while redistributing probability mass toward under-explored correct solutions. Empirical results demonstrate that our approach significantly enhances generative diversity and response entropy while maintaining competitive accuracy, effectively achieving a superior trade-off between exploration and exploitation in reasoning tasks. Empirical results on Qwen2.5 and DeepSeek models across mathematical and coding benchmarks show that ProGRPO significantly mitigates entropy collapse. Specifically, on Qwen2.5-7B, our method outperforms GRPO by 5.7% in Pass@1 and, notably, by 13.9% in Pass@32, highlighting its superior capability in generating diverse correct reasoning paths.

Mixed-R1: Unified Reward Perspective For Reasoning Capability in Multimodal Large Language Models

Recent works on large language models (LLMs) have successfully demonstrated the emergence of reasoning capabilities via reinforcement learning (RL). Although recent efforts leverage group relative policy optimization (GRPO) for MLLMs post-training, they constantly explore one specific aspect, such as grounding tasks, math problems, or chart analysis. There are no works that can leverage multi-source MLLM tasks for stable reinforcement learning. In this work, we present a unified perspective to solve this problem. We present Mixed-R1, a unified yet straightforward framework that contains a mixed reward function design (Mixed-Reward) and a mixed post-training dataset (Mixed-45K). We first design a data engine to select high-quality examples to build the Mixed-45K post-training dataset. Then, we present a Mixed-Reward design, which contains various reward functions for various MLLM tasks. In particular, it has four different reward functions: matching reward for binary answer or multiple-choice problems, chart reward for chart-aware datasets, IoU reward for grounding problems, and open-ended reward for long-form text responses such as caption datasets. To handle the various long-form text content, we propose a new open-ended reward named Bidirectional Max-Average Similarity (BMAS) by leveraging tokenizer embedding matching between the generated response and the ground truth. Extensive experiments show the effectiveness of our proposed method on various MLLMs, including Qwen2.5-VL and Intern-VL on various sizes. Our dataset and model are available at https://github.com/xushilin1/mixed-r1.

ByteDance ByteDance
·
May 29, 2025

ToolRL: Reward is All Tool Learning Needs

Current Large Language Models (LLMs) often undergo supervised fine-tuning (SFT) to acquire tool use capabilities. However, SFT struggles to generalize to unfamiliar or complex tool use scenarios. Recent advancements in reinforcement learning (RL), particularly with R1-like models, have demonstrated promising reasoning and generalization abilities. Yet, reward design for tool use presents unique challenges: multiple tools may be invoked with diverse parameters, and coarse-grained reward signals, such as answer matching, fail to offer the finegrained feedback required for effective learning. In this work, we present the first comprehensive study on reward design for tool selection and application tasks within the RL paradigm. We systematically explore a wide range of reward strategies, analyzing their types, scales, granularity, and temporal dynamics. Building on these insights, we propose a principled reward design tailored for tool use tasks and apply it to train LLMs using Group Relative Policy Optimization (GRPO). Empirical evaluations across diverse benchmarks demonstrate that our approach yields robust, scalable, and stable training, achieving a 17% improvement over base models and a 15% gain over SFT models. These results highlight the critical role of thoughtful reward design in enhancing the tool use capabilities and generalization performance of LLMs. All the codes are released to facilitate future research.

  • 8 authors
·
Apr 16, 2025 3

VQAThinker: Exploring Generalizable and Explainable Video Quality Assessment via Reinforcement Learning

Video quality assessment (VQA) aims to objectively quantify perceptual quality degradation in alignment with human visual perception. Despite recent advances, existing VQA models still suffer from two critical limitations: poor generalization to out-of-distribution (OOD) videos and limited explainability, which restrict their applicability in real-world scenarios. To address these challenges, we propose VQAThinker, a reasoning-based VQA framework that leverages large multimodal models (LMMs) with reinforcement learning to jointly model video quality understanding and scoring, emulating human perceptual decision-making. Specifically, we adopt group relative policy optimization (GRPO), a rule-guided reinforcement learning algorithm that enables reasoning over video quality under score-level supervision, and introduce three VQA-specific rewards: (1) a bell-shaped regression reward that increases rapidly as the prediction error decreases and becomes progressively less sensitive near the ground truth; (2) a pairwise ranking reward that guides the model to correctly determine the relative quality between video pairs; and (3) a temporal consistency reward that encourages the model to prefer temporally coherent videos over their perturbed counterparts. Extensive experiments demonstrate that VQAThinker achieves state-of-the-art performance on both in-domain and OOD VQA benchmarks, showing strong generalization for video quality scoring. Furthermore, evaluations on video quality understanding tasks validate its superiority in distortion attribution and quality description compared to existing explainable VQA models and LMMs. These findings demonstrate that reinforcement learning offers an effective pathway toward building generalizable and explainable VQA models solely with score-level supervision.

  • 9 authors
·
Aug 8, 2025

Trust Region Preference Approximation: A simple and stable reinforcement learning algorithm for LLM reasoning

Recently, Large Language Models (LLMs) have rapidly evolved, approaching Artificial General Intelligence (AGI) while benefiting from large-scale reinforcement learning to enhance Human Alignment (HA) and Reasoning. Recent reward-based optimization algorithms, such as Proximal Policy Optimization (PPO) and Group Relative Policy Optimization (GRPO) have achieved significant performance on reasoning tasks, whereas preference-based optimization algorithms such as Direct Preference Optimization (DPO) significantly improve the performance of LLMs on human alignment. However, despite the strong performance of reward-based optimization methods in alignment tasks , they remain vulnerable to reward hacking. Furthermore, preference-based algorithms (such as Online DPO) haven't yet matched the performance of reward-based optimization algorithms (like PPO) on reasoning tasks, making their exploration in this specific area still a worthwhile pursuit. Motivated by these challenges, we propose the Trust Region Preference Approximation (TRPA) algorithm, which integrates rule-based optimization with preference-based optimization for reasoning tasks. As a preference-based algorithm, TRPA naturally eliminates the reward hacking issue. TRPA constructs preference levels using predefined rules, forms corresponding preference pairs, and leverages a novel optimization algorithm for RL training with a theoretical monotonic improvement guarantee. Experimental results demonstrate that TRPA not only achieves competitive performance on reasoning tasks but also exhibits robust stability. The code of this paper are released and updating on https://github.com/XueruiSu/Trust-Region-Preference-Approximation.git.

  • 10 authors
·
Apr 6, 2025

Multi-Agent Inverse Q-Learning from Demonstrations

When reward functions are hand-designed, deep reinforcement learning algorithms often suffer from reward misspecification, causing them to learn suboptimal policies in terms of the intended task objectives. In the single-agent case, inverse reinforcement learning (IRL) techniques attempt to address this issue by inferring the reward function from expert demonstrations. However, in multi-agent problems, misalignment between the learned and true objectives is exacerbated due to increased environment non-stationarity and variance that scales with multiple agents. As such, in multi-agent general-sum games, multi-agent IRL algorithms have difficulty balancing cooperative and competitive objectives. To address these issues, we propose Multi-Agent Marginal Q-Learning from Demonstrations (MAMQL), a novel sample-efficient framework for multi-agent IRL. For each agent, MAMQL learns a critic marginalized over the other agents' policies, allowing for a well-motivated use of Boltzmann policies in the multi-agent context. We identify a connection between optimal marginalized critics and single-agent soft-Q IRL, allowing us to apply a direct, simple optimization criterion from the single-agent domain. Across our experiments on three different simulated domains, MAMQL significantly outperforms previous multi-agent methods in average reward, sample efficiency, and reward recovery by often more than 2-5x. We make our code available at https://sites.google.com/view/mamql .

  • 5 authors
·
Mar 6, 2025

GDRO: Group-level Reward Post-training Suitable for Diffusion Models

Recent advancements adopt online reinforcement learning (RL) from LLMs to text-to-image rectified flow diffusion models for reward alignment. The use of group-level rewards successfully aligns the model with the targeted reward. However, it faces challenges including low efficiency, dependency on stochastic samplers, and reward hacking. The problem is that rectified flow models are fundamentally different from LLMs: 1) For efficiency, online image sampling takes much more time and dominates the time of training. 2) For stochasticity, rectified flow is deterministic once the initial noise is fixed. Aiming at these problems and inspired by the effects of group-level rewards from LLMs, we design Group-level Direct Reward Optimization (GDRO). GDRO is a new post-training paradigm for group-level reward alignment that combines the characteristics of rectified flow models. Through rigorous theoretical analysis, we point out that GDRO supports full offline training that saves the large time cost for image rollout sampling. Also, it is diffusion-sampler-independent, which eliminates the need for the ODE-to-SDE approximation to obtain stochasticity. We also empirically study the reward hacking trap that may mislead the evaluation, and involve this factor in the evaluation using a corrected score that not only considers the original evaluation reward but also the trend of reward hacking. Extensive experiments demonstrate that GDRO effectively and efficiently improves the reward score of the diffusion model through group-wise offline optimization across the OCR and GenEval tasks, while demonstrating strong stability and robustness in mitigating reward hacking.

  • 5 authors
·
Jan 5

Learning More with Less: A Dynamic Dual-Level Down-Sampling Framework for Efficient Policy Optimization

Critic-free methods like GRPO reduce memory demands by estimating advantages from multiple rollouts but tend to converge slowly, as critical learning signals are diluted by an abundance of uninformative samples and tokens. To tackle this challenge, we propose the Dynamic Dual-Level Down-Sampling (D^3S) framework that prioritizes the most informative samples and tokens across groups to improve the efficient of policy optimization. D^3S operates along two levels: (1) the sample-level, which selects a subset of rollouts to maximize advantage variance (Var(A)). We theoretically proven that this selection is positively correlated with the upper bound of the policy gradient norms, yielding higher policy gradients. (2) the token-level, which prioritizes tokens with a high product of advantage magnitude and policy entropy (|A_{i,t}|times H_{i,t}), focusing updates on tokens where the policy is both uncertain and impactful. Moreover, to prevent overfitting to high-signal data, D^3S employs a dynamic down-sampling schedule inspired by curriculum learning. This schedule starts with aggressive down-sampling to accelerate early learning and gradually relaxes to promote robust generalization. Extensive experiments on Qwen2.5 and Llama3.1 demonstrate that integrating D^3S into advanced RL algorithms achieves state-of-the-art performance and generalization while requiring fewer samples and tokens across diverse reasoning benchmarks. Our code is added in the supplementary materials and will be made publicly available.

  • 8 authors
·
Sep 26, 2025

Unveiling Implicit Advantage Symmetry: Why GRPO Struggles with Exploration and Difficulty Adaptation

Reinforcement Learning with Verifiable Rewards (RLVR), particularly GRPO, has become the standard for eliciting LLM reasoning. However, its efficiency in exploration and difficulty adaptation remains an open challenge. In this work, we argue that these bottlenecks stem from an implicit advantage symmetry inherent in Group Relative Advantage Estimation (GRAE). This symmetry induces two critical limitations: (i) at the group level, strict symmetry in weights between correct and incorrect trajectories leaves unsampled action logits unchanged, thereby hindering exploration of novel correct solution. (ii) at the sample level, the algorithm implicitly prioritizes medium-difficulty samples, remaining agnostic to the non-stationary demands of difficulty focus. Through controlled experiments, we reveal that this symmetric property is sub-optimal, yielding two pivotal insights: (i) asymmetrically suppressing the advantages of correct trajectories encourages essential exploration. (ii) learning efficiency is maximized by a curriculum-like transition-prioritizing simpler samples initially before gradually shifting to complex ones. Motivated by these findings, we propose Asymmetric GRAE (A-GRAE), which dynamically modulates exploration incentives and sample-difficulty focus. Experiments across seven benchmarks demonstrate that A-GRAE consistently improves GRPO and its variants across both LLMs and MLLMs.

Shaping Explanations: Semantic Reward Modeling with Encoder-Only Transformers for GRPO

While Large Language Models (LLMs) excel at generating human-like text, aligning their outputs with complex, qualitative goals like pedagogical soundness remains a significant challenge. Standard reinforcement learning techniques often rely on slow and expensive LLM-as-a-judge evaluations or on brittle, keyword-based metrics like ROUGE, which fail to capture the semantic essence of a high-quality explanation. In this work, we introduce a novel approach to reward shaping within the Group Relative Policy Optimisation (GRPO) framework. Our central contribution is the use of a small, efficient encoder-only transformer as a semantic reward model. This model provides a dense, semantically rich reward signal based on the cosine similarity between a generated explanation and a ground-truth reference, guiding the policy towards explanations that are not just factually correct but also structurally and conceptually aligned with expert reasoning. We apply this method to the task of training a model for the Italian medical-school entrance examinations, following standard domain-adaptive continued pre-training (CPT) and supervised fine-tuning (SFT). Our results demonstrate that GRPO with our proposed semantic reward significantly improves explanation faithfulness and clarity over a strong SFT baseline, showcasing the power of using lightweight encoder models for nuanced reward shaping in complex generation tasks

  • 5 authors
·
Sep 16, 2025

Rewarding the Unlikely: Lifting GRPO Beyond Distribution Sharpening

Reinforcement learning is emerging as a primary driver for improving language model reasoning capabilities. A fundamental question is whether current reinforcement learning algorithms -- such as Group Relative Policy Optimization (GRPO), the de facto standard algorithm used to improve language model reasoning -- merely sharpen the base model's distribution around problems it can already solve. We investigate this question in the context of formal theorem proving, which has access to a perfect verifier. We identify a degenerate rank bias in GRPO in which highly probable trajectories are reinforced and rare ones are neglected. This results in distribution sharpening: the model can solve some problems with fewer samples, but underperforms simply sampling more solutions from the original model. To overcome GRPO's rank bias we introduce unlikeliness reward, a simple method for explicitly up-weighting rare but correct solutions. We show that unlikeliness reward mitigates rank bias and improves pass@N across a large range of N in both synthetic and real theorem proving settings. We also uncover an unexpected link between rank bias and a seemingly mundane hyperparameter -- the number of updates per batch -- that leads to a second, complementary mitigation. We combine our insights into a revised GRPO training recipe for formal theorem proving, yielding an open pipeline that achieves competitive performance to DeepSeek-Prover-V1.5-RL on the miniF2F-test benchmark. We release our implementation at https://github.com/AndreHe02/rewarding-unlikely-release

  • 3 authors
·
Jun 2, 2025

Group Distributionally Robust Optimization-Driven Reinforcement Learning for LLM Reasoning

Recent progress in Large Language Model (LLM) reasoning is increasingly driven by the refinement of post-training loss functions and alignment strategies. However, standard Reinforcement Learning (RL) paradigms like Group Relative Policy Optimization (GRPO) remain constrained by static uniformity: uniform prompt sampling and a fixed number of rollouts per prompt. For heterogeneous, heavy-tailed reasoning data, this creates structural inefficiencies that waste compute on already-solved patterns while under-training the long tail of hard problems. To address this, we propose Multi-Adversary Group Distributionally Robust Optimization (GDRO), an optimization-first framework that moves beyond uniform reasoning models by dynamically adapting the training distribution. We introduce an Online Difficulty Classifier that partitions prompts into dynamic pass@k difficulty groups. We then propose two independent GDRO games for post-training: (1) Prompt-GDRO, which employs an EMA-debiased multiplicative-weights bandit sampler to target the intensive difficulty margin and upweight persistently hard groups without frequency bias; and (2) Rollout-GDRO, which uses a shadow-price controller to reallocate rollouts across groups, maximizing gradient variance reduction on hard tasks under a fixed mean budget (compute-neutral). We provide no-regret guarantees for both controllers and additionally a variance-proxy analysis motivating a square-root optimal rollout allocation for Rollout-GDRO. We validate our framework on the DAPO 14.1k dataset using Qwen3-Base models. Prompt-GDRO and Rollout-GDRO achieve average relative gains of +10.6% and +10.1%, respectively, in pass@8 accuracy across 1.7B, 4B, and 8B scales compared to the GRPO baseline. Qualitative analysis shows an emergent curriculum: the adversaries shift resources to the evolving reasoning frontier, enhancing the reasoning model's performance.

tencent Tencent
·
Jan 27 2

Information-Consistent Language Model Recommendations through Group Relative Policy Optimization

Large Language Models (LLMs) are increasingly deployed in business-critical domains such as finance, education, healthcare, and customer support, where users expect consistent and reliable recommendations. Yet LLMs often exhibit variability when prompts are phrased with minor differences, even when semantically equivalent. Such inconsistency undermines trust, complicates compliance, and disrupts user experience. While personalization is desirable in certain contexts, many enterprise scenarios-such as HR onboarding, customer support, or policy disclosure-require invariant information delivery regardless of phrasing or prior conversational history. Existing approaches, including retrieval-augmented generation (RAG) and temperature tuning, improve factuality or reduce stochasticity but cannot guarantee stability across equivalent prompts. In this paper, we propose a reinforcement learning framework based on Group Relative Policy Optimization (GRPO) to directly optimize for consistency. Unlike prior applications of GRPO, which have been limited to reasoning and code generation, we adapt GRPO to enforce stability of information content across groups of semantically equivalent prompts. We introduce entropy-based helpfulness and stability rewards, treating prompt variants as groups and resetting conversational context to isolate phrasing effects. Experiments on investment and job recommendation tasks show that our GRPO-trained model reduces variability more effectively than fine-tuning or decoding-based baselines. To our knowledge, this is a novel application of GRPO for aligning LLMs toward information consistency, reframing variability not as an acceptable feature of generative diversity but as a correctable flaw in enterprise deployments.

  • 3 authors
·
Dec 14, 2025

Training-Free Group Relative Policy Optimization

Recent advances in Large Language Model (LLM) agents have demonstrated their promising general capabilities. However, their performance in specialized real-world domains often degrades due to challenges in effectively integrating external tools and specific prompting strategies. While methods like agentic reinforcement learning have been proposed to address this, they typically rely on costly parameter updates, for example, through a process that uses Supervised Fine-Tuning (SFT) followed by a Reinforcement Learning (RL) phase with Group Relative Policy Optimization (GRPO) to alter the output distribution. However, we argue that LLMs can achieve a similar effect on the output distribution by learning experiential knowledge as a token prior, which is a far more lightweight approach that not only addresses practical data scarcity but also avoids the common issue of overfitting. To this end, we propose Training-Free Group Relative Policy Optimization (Training-Free GRPO), a cost-effective solution that enhances LLM agent performance without any parameter updates. Our method leverages the group relative semantic advantage instead of numerical ones within each group of rollouts, iteratively distilling high-quality experiential knowledge during multi-epoch learning on a minimal ground-truth data. Such knowledge serves as the learned token prior, which is seamlessly integrated during LLM API calls to guide model behavior. Experiments on mathematical reasoning and web searching tasks demonstrate that Training-Free GRPO, when applied to DeepSeek-V3.1-Terminus, significantly improves out-of-domain performance. With just a few dozen training samples, Training-Free GRPO outperforms fine-tuned small LLMs with marginal training data and cost.

tencent Tencent
·
Oct 9, 2025 2

Chaining the Evidence: Robust Reinforcement Learning for Deep Search Agents with Citation-Aware Rubric Rewards

Reinforcement learning (RL) has emerged as a critical technique for enhancing LLM-based deep search agents. However, existing approaches primarily rely on binary outcome rewards, which fail to capture the comprehensiveness and factuality of agents' reasoning process, and often lead to undesirable behaviors such as shortcut exploitation and hallucinations. To address these limitations, we propose Citation-aware Rubric Rewards (CaRR), a fine-grained reward framework for deep search agents that emphasizes reasoning comprehensiveness, factual grounding, and evidence connectivity. CaRR decomposes complex questions into verifiable single-hop rubrics and requires agents to satisfy these rubrics by explicitly identifying hidden entities, supporting them with correct citations, and constructing complete evidence chains that link to the predicted answer. We further introduce Citation-aware Group Relative Policy Optimization (C-GRPO), which combines CaRR and outcome rewards for training robust deep search agents. Experiments show that C-GRPO consistently outperforms standard outcome-based RL baselines across multiple deep search benchmarks. Our analysis also validates that C-GRPO effectively discourages shortcut exploitation, promotes comprehensive, evidence-grounded reasoning, and exhibits strong generalization to open-ended deep research tasks. Our code and data are available at https://github.com/THUDM/CaRR.

zai-org Z.ai
·
Jan 9 3

Achieving Sample and Computational Efficient Reinforcement Learning by Action Space Reduction via Grouping

Reinforcement learning often needs to deal with the exponential growth of states and actions when exploring optimal control in high-dimensional spaces (often known as the curse of dimensionality). In this work, we address this issue by learning the inherent structure of action-wise similar MDP to appropriately balance the performance degradation versus sample/computational complexity. In particular, we partition the action spaces into multiple groups based on the similarity in transition distribution and reward function, and build a linear decomposition model to capture the difference between the intra-group transition kernel and the intra-group rewards. Both our theoretical analysis and experiments reveal a surprising and counter-intuitive result: while a more refined grouping strategy can reduce the approximation error caused by treating actions in the same group as identical, it also leads to increased estimation error when the size of samples or the computation resources is limited. This finding highlights the grouping strategy as a new degree of freedom that can be optimized to minimize the overall performance loss. To address this issue, we formulate a general optimization problem for determining the optimal grouping strategy, which strikes a balance between performance loss and sample/computational complexity. We further propose a computationally efficient method for selecting a nearly-optimal grouping strategy, which maintains its computational complexity independent of the size of the action space.

  • 3 authors
·
Jun 22, 2023

Provably Mitigating Overoptimization in RLHF: Your SFT Loss is Implicitly an Adversarial Regularizer

Aligning generative models with human preference via RLHF typically suffers from overoptimization, where an imperfectly learned reward model can misguide the generative model to output undesired responses. We investigate this problem in a principled manner by identifying the source of the misalignment as a form of distributional shift and uncertainty in learning human preferences. To mitigate overoptimization, we first propose a theoretical algorithm that chooses the best policy for an adversarially chosen reward model; one that simultaneously minimizes the maximum likelihood estimation of the loss and a reward penalty term. Here, the reward penalty term is introduced to prevent the policy from choosing actions with spurious high proxy rewards, resulting in provable sample efficiency of the algorithm under a partial coverage style condition. Moving from theory to practice, the proposed algorithm further enjoys an equivalent but surprisingly easy-to-implement reformulation. Using the equivalence between reward models and the corresponding optimal policy, the algorithm features a simple objective that combines: (i) a preference optimization loss that directly aligns the policy with human preference, and (ii) a supervised learning loss that explicitly imitates the policy with a (suitable) baseline distribution. In the context of aligning large language models (LLM), this objective fuses the direct preference optimization (DPO) loss with the supervised fune-tuning (SFT) loss to help mitigate the overoptimization towards undesired responses, for which we name the algorithm Regularized Preference Optimization (RPO). Experiments of aligning LLMs demonstrate the improved performance of RPO compared with DPO baselines. Our work sheds light on the interplay between preference optimization and SFT in tuning LLMs with both theoretical guarantees and empirical evidence.

  • 8 authors
·
May 26, 2024

Token Hidden Reward: Steering Exploration-Exploitation in Group Relative Deep Reinforcement Learning

Reinforcement learning with verifiable rewards has significantly advanced the reasoning capabilities of large language models, yet how to explicitly steer training toward exploration or exploitation remains an open problem. We introduce Token Hidden Reward (THR), a token-level metric that quantifies each token's influence on the likelihood of correct responses under Group Relative Policy Optimization (GRPO). We find that training dynamics are dominated by a small subset of tokens with high absolute THR values. Most interestingly, tokens with positive THR strengthen confidence in correct outputs, thus favoring exploitation, while tokens with negative THR preserve probability mass for alternative outputs, enabling exploration. This insight suggests a natural intervention: a THR-guided reweighting algorithm that modulates GRPO's learning signals to explicitly bias training toward exploitation or exploration. We validate the efficacy of this algorithm on diverse math reasoning benchmarks. By amplifying tokens with positive THR value and weakening negative ones, our algorithm improves greedy-decoding accuracy, favoring exploitation. The reverse strategy yields consistent gains in Pass@K accuracy, favoring exploration. We further demonstrate that our algorithm integrates seamlessly with other RL objectives such as GSPO and generalizes across architectures including Llama. These findings establish THR as a principled and fine-grained mechanism for dynamically controlling exploration and exploitation in RL-tuned LLMs, providing new tools for targeted fine-tuning in reasoning-intensive applications.

  • 7 authors
·
Oct 4, 2025

Unified Multimodal Chain-of-Thought Reward Model through Reinforcement Fine-Tuning

Recent advances in multimodal Reward Models (RMs) have shown significant promise in delivering reward signals to align vision models with human preferences. However, current RMs are generally restricted to providing direct responses or engaging in shallow reasoning processes with limited depth, often leading to inaccurate reward signals. We posit that incorporating explicit long chains of thought (CoT) into the reward reasoning process can significantly strengthen their reliability and robustness. Furthermore, we believe that once RMs internalize CoT reasoning, their direct response accuracy can also be improved through implicit reasoning capabilities. To this end, this paper proposes UnifiedReward-Think, the first unified multimodal CoT-based reward model, capable of multi-dimensional, step-by-step long-chain reasoning for both visual understanding and generation reward tasks. Specifically, we adopt an exploration-driven reinforcement fine-tuning approach to elicit and incentivize the model's latent complex reasoning ability: (1) We first use a small amount of image generation preference data to distill the reasoning process of GPT-4o, which is then used for the model's cold start to learn the format and structure of CoT reasoning. (2) Subsequently, by leveraging the model's prior knowledge and generalization capabilities, we prepare large-scale unified multimodal preference data to elicit the model's reasoning process across various vision tasks. During this phase, correct reasoning outputs are retained for rejection sampling to refine the model (3) while incorrect predicted samples are finally used for Group Relative Policy Optimization (GRPO) based reinforcement fine-tuning, enabling the model to explore diverse reasoning paths and optimize for correct and robust solutions. Extensive experiments across various vision reward tasks demonstrate the superiority of our model.

  • 7 authors
·
May 6, 2025 3

Learning to Route Queries Across Knowledge Bases for Step-wise Retrieval-Augmented Reasoning

Multimodal Retrieval-Augmented Generation (MRAG) has shown promise in mitigating hallucinations in Multimodal Large Language Models (MLLMs) by incorporating external knowledge during generation. Existing MRAG methods typically adopt a static retrieval pipeline that fetches relevant information from multiple Knowledge Bases (KBs), followed by a refinement step. However, these approaches overlook the reasoning and planning capabilities of MLLMs to dynamically determine how to interact with different KBs during the reasoning process. To address this limitation, we propose R1-Router, a novel MRAG framework that learns to decide when and where to retrieve knowledge based on the evolving reasoning state. Specifically, R1-Router can generate follow-up queries according to the current reasoning step, routing these intermediate queries to the most suitable KB, and integrating external knowledge into a coherent reasoning trajectory to answer the original query. Furthermore, we introduce Step-wise Group Relative Policy Optimization (Step-GRPO), a tailored reinforcement learning algorithm that assigns step-specific rewards to optimize the reasoning behavior of MLLMs. Experimental results on various open-domain QA benchmarks across multiple modalities demonstrate that R1-Router outperforms baseline models by over 7%. Further analysis shows that R1-Router can adaptively and effectively leverage diverse KBs, reducing unnecessary retrievals and improving both efficiency and accuracy.

  • 11 authors
·
May 28, 2025

GraphRAG-R1: Graph Retrieval-Augmented Generation with Process-Constrained Reinforcement Learning

Graph Retrieval-Augmented Generation (GraphRAG) has shown great effectiveness in enhancing the reasoning abilities of LLMs by leveraging graph structures for knowledge representation and modeling complex real-world relationships. However, existing GraphRAG methods still face significant bottlenecks when handling complex problems that require multi-hop reasoning, as their query and retrieval phases are largely based on pre-defined heuristics and do not fully utilize the reasoning potentials of LLMs. To address this problem, we propose GraphRAG-R1, an adaptive GraphRAG framework by training LLMs with process-constrained outcome-based reinforcement learning (RL) to enhance the multi-hop reasoning ability. Our method can decompose complex problems, autonomously invoke retrieval tools to acquire necessary information, and perform effective reasoning. Specifically, we utilize a modified version of Group Relative Policy Optimization (GRPO) that supports rollout-with-thinking capability. Next, we design two process-constrained reward functions. To handle the shallow retrieval problem, we design a Progressive Retrieval Attenuation (PRA) reward to encourage essential retrievals. Then, to handle the over-thinking problem, we design Cost-Aware F1 (CAF) reward to balance the model performance with computational costs. We further design a phase-dependent training strategy, containing three training stages corresponding to cold start and these two rewards. Lastly, our method adopts a hybrid graph-textual retrieval to improve the reasoning capacity. Extensive experimental results demonstrate that GraphRAG-R1 boosts LLM capabilities in solving complex reasoning problems compared to state-of-the-art GraphRAG methods on both in-domain and out-of-domain datasets. Furthermore, our framework can be flexibly integrated with various existing retrieval methods, consistently delivering performance improvements.

  • 11 authors
·
Jul 31, 2025

WirelessMathLM: Teaching Mathematical Reasoning for LLMs in Wireless Communications with Reinforcement Learning

Large language models (LLMs) excel at general mathematical reasoning but fail catastrophically on specialized technical mathematics. In wireless communications, where problems require precise manipulation of information-theoretic bounds, optimization constraints, and signal processing formulations, even state-of-the-art models struggle to achieve competent performance. We present WirelessMathLM, demonstrating that compact models (0.5B-7B parameters) can match or exceed much larger models through domain-specific reinforcement learning with verifiable rewards. Our key insight is that wireless mathematics problems possess a unique property--verifiable correctness--that enables effective reinforcement learning without human feedback. We construct WirelessMathBench-XL, a comprehensive benchmark of 4,027 problems from 970 papers. Using Group Relative Policy Optimization (GRPO) with binary verification rewards, we train models directly from base checkpoints without supervised warm-start. Our 7B model achieves 39.5% accuracy on WirelessMathBench-XL, approaching GPT-4o (40.4%) while using about 100 times fewer parameters than DeepSeek-R1 (671B, 57.4%). Remarkably, GRPO training nearly doubles performance across all model scales (0.5B +11%, 3B +103%, 7B +81%), with positive transfer to general mathematics benchmarks--our models gain +8.4 points on average across MATH, Minerva-Math, OlympiadBench, AMC, and AIME without any training on these tasks.

  • 7 authors
·
Sep 27, 2025 2

Listener-Rewarded Thinking in VLMs for Image Preferences

Training robust and generalizable reward models for human visual preferences is essential for aligning text-to-image and text-to-video generative models with human intent. However, current reward models often fail to generalize, and supervised fine-tuning leads to memorization, demanding complex annotation pipelines. While reinforcement learning (RL), specifically Group Relative Policy Optimization (GRPO), improves generalization, we uncover a key failure mode: a significant drop in reasoning accuracy occurs when a model's reasoning trace contradicts that of an independent, frozen vision-language model ("listener") evaluating the same output. To address this, we introduce a listener-augmented GRPO framework. Here, the listener re-evaluates the reasoner's chain-of-thought to provide a dense, calibrated confidence score, shaping the RL reward signal. This encourages the reasoner not only to answer correctly, but to produce explanations that are persuasive to an independent model. Our listener-shaped reward scheme achieves best accuracy on the ImageReward benchmark (67.4%), significantly improves out-of-distribution (OOD) performance on a large-scale human preference dataset (1.2M votes, up to +6% over naive reasoner), and reduces reasoning contradictions compared to strong GRPO and SFT baselines. These results demonstrate that listener-based rewards provide a scalable, data-efficient path to aligning vision-language models with nuanced human preferences. We will release our reasoning model here: https://huggingface.co/alexgambashidze/qwen2.5vl_image_preference_reasoner.

  • 8 authors
·
Jun 28, 2025 1

OTC: Optimal Tool Calls via Reinforcement Learning

Tool-integrated reasoning (TIR) augments large language models (LLMs) with the ability to invoke external tools, such as search engines and code interpreters, to solve tasks beyond the capabilities of language-only reasoning. While reinforcement learning (RL) has shown promise in improving TIR by optimizing final answer correctness, existing approaches often overlook the efficiency and cost associated with tool usage. This can lead to suboptimal behavior, including excessive tool calls that increase computational and financial overhead, or insufficient tool use that compromises answer quality. In this work, we propose Optimal Tool Call-controlled Policy Optimization (OTC-PO), a simple yet effective RL-based framework that encourages models to produce accurate answers with minimal tool calls. Our method introduces a tool-integrated reward that jointly considers correctness and tool efficiency, promoting high tool productivity. We instantiate this framework within both Proximal Policy Optimization (PPO) and Group Relative Preference Optimization (GRPO), resulting in OTC-PPO and OTC-GRPO. Experiments with Qwen-2.5 and Qwen-Math across multiple QA benchmarks show that our approach reduces tool calls by up to 73.1\% and improves tool productivity by up to 229.4\%, while maintaining comparable answer accuracy. To the best of our knowledge, this is the first RL-based framework that explicitly optimizes tool-use efficiency in TIR.

  • 10 authors
·
Apr 21, 2025 2

Repurposing Synthetic Data for Fine-grained Search Agent Supervision

LLM-based search agents are increasingly trained on entity-centric synthetic data to solve complex, knowledge-intensive tasks. However, prevailing training methods like Group Relative Policy Optimization (GRPO) discard this rich entity information, relying instead on sparse, outcome-based rewards. This critical limitation renders them unable to distinguish informative "near-miss" samples-those with substantially correct reasoning but a flawed final answer-from complete failures, thus discarding valuable learning signals. We address this by leveraging the very entities discarded during training. Our empirical analysis reveals a strong positive correlation between the number of ground-truth entities identified during an agent's reasoning process and final answer accuracy. Building on this insight, we introduce Entity-aware Group Relative Policy Optimization (E-GRPO), a novel framework that formulates a dense entity-aware reward function. E-GRPO assigns partial rewards to incorrect samples proportional to their entity match rate, enabling the model to effectively learn from these "near-misses". Experiments on diverse question-answering (QA) and deep research benchmarks show that E-GRPO consistently and significantly outperforms the GRPO baseline. Furthermore, our analysis reveals that E-GRPO not only achieves superior accuracy but also induces more efficient reasoning policies that require fewer tool calls, demonstrating a more effective and sample-efficient approach to aligning search agents.

AlibabaTongyiLab TongyiLab
·
Oct 28, 2025 2

Scaf-GRPO: Scaffolded Group Relative Policy Optimization for Enhancing LLM Reasoning

Reinforcement learning from verifiable rewards has emerged as a powerful technique for enhancing the complex reasoning abilities of Large Language Models (LLMs). However, these methods are fundamentally constrained by the ''learning cliff'' phenomenon: when faced with problems far beyond their current capabilities, models consistently fail, yielding a persistent zero-reward signal. In policy optimization algorithms like GRPO, this collapses the advantage calculation to zero, rendering these difficult problems invisible to the learning gradient and stalling progress. To overcome this, we introduce Scaf-GRPO (Scaffolded Group Relative Policy Optimization), a progressive training framework that strategically provides minimal guidance only when a model's independent learning has plateaued. The framework first diagnoses learning stagnation and then intervenes by injecting tiered in-prompt hints, ranging from abstract concepts to concrete steps, enabling the model to construct a valid solution by itself. Extensive experiments on challenging mathematics benchmarks demonstrate Scaf-GRPO's effectiveness, boosting the pass@1 score of the Qwen2.5-Math-7B model on the AIME24 benchmark by a relative 44.3% over a vanilla GRPO baseline. This result demonstrates our framework provides a robust and effective methodology for unlocking a model's ability to solve problems previously beyond its reach, a critical step towards extending the frontier of autonomous reasoning in LLM.

  • 7 authors
·
Oct 22, 2025