Get trending papers in your email inbox once a day!
Get trending papers in your email inbox!
SubscribeTransPrune: Token Transition Pruning for Efficient Large Vision-Language Model
Large Vision-Language Models (LVLMs) have advanced multimodal learning but face high computational costs due to the large number of visual tokens, motivating token pruning to improve inference efficiency. The key challenge lies in identifying which tokens are truly important. Most existing approaches rely on attention-based criteria to estimate token importance. However, they inherently suffer from certain limitations, such as positional bias. In this work, we explore a new perspective on token importance based on token transitions in LVLMs. We observe that the transition of token representations provides a meaningful signal of semantic information. Based on this insight, we propose TransPrune, a training-free and efficient token pruning method. Specifically, TransPrune progressively prunes tokens by assessing their importance through a combination of Token Transition Variation (TTV)-which measures changes in both the magnitude and direction of token representations-and Instruction-Guided Attention (IGA), which measures how strongly the instruction attends to image tokens via attention. Extensive experiments demonstrate that TransPrune achieves comparable multimodal performance to original LVLMs, such as LLaVA-v1.5 and LLaVA-Next, across eight benchmarks, while reducing inference TFLOPs by more than half. Moreover, TTV alone can serve as an effective criterion without relying on attention, achieving performance comparable to attention-based methods. The code will be made publicly available upon acceptance of the paper at https://github.com/liaolea/TransPrune.
Fairy: Fast Parallelized Instruction-Guided Video-to-Video Synthesis
In this paper, we introduce Fairy, a minimalist yet robust adaptation of image-editing diffusion models, enhancing them for video editing applications. Our approach centers on the concept of anchor-based cross-frame attention, a mechanism that implicitly propagates diffusion features across frames, ensuring superior temporal coherence and high-fidelity synthesis. Fairy not only addresses limitations of previous models, including memory and processing speed. It also improves temporal consistency through a unique data augmentation strategy. This strategy renders the model equivariant to affine transformations in both source and target images. Remarkably efficient, Fairy generates 120-frame 512x384 videos (4-second duration at 30 FPS) in just 14 seconds, outpacing prior works by at least 44x. A comprehensive user study, involving 1000 generated samples, confirms that our approach delivers superior quality, decisively outperforming established methods.
Visual Autoregressive Modeling for Instruction-Guided Image Editing
Recent advances in diffusion models have brought remarkable visual fidelity to instruction-guided image editing. However, their global denoising process inherently entangles the edited region with the entire image context, leading to unintended spurious modifications and compromised adherence to editing instructions. In contrast, autoregressive models offer a distinct paradigm by formulating image synthesis as a sequential process over discrete visual tokens. Their causal and compositional mechanism naturally circumvents the adherence challenges of diffusion-based methods. In this paper, we present VAREdit, a visual autoregressive (VAR) framework that reframes image editing as a next-scale prediction problem. Conditioned on source image features and text instructions, VAREdit generates multi-scale target features to achieve precise edits. A core challenge in this paradigm is how to effectively condition the source image tokens. We observe that finest-scale source features cannot effectively guide the prediction of coarser target features. To bridge this gap, we introduce a Scale-Aligned Reference (SAR) module, which injects scale-matched conditioning information into the first self-attention layer. VAREdit demonstrates significant advancements in both editing adherence and efficiency. On standard benchmarks, it outperforms leading diffusion-based methods by 30\%+ higher GPT-Balance score. Moreover, it completes a 512times512 editing in 1.2 seconds, making it 2.2times faster than the similarly sized UltraEdit. The models are available at https://github.com/HiDream-ai/VAREdit.
Native 3D Editing with Full Attention
Instruction-guided 3D editing is a rapidly emerging field with the potential to broaden access to 3D content creation. However, existing methods face critical limitations: optimization-based approaches are prohibitively slow, while feed-forward approaches relying on multi-view 2D editing often suffer from inconsistent geometry and degraded visual quality. To address these issues, we propose a novel native 3D editing framework that directly manipulates 3D representations in a single, efficient feed-forward pass. Specifically, we create a large-scale, multi-modal dataset for instruction-guided 3D editing, covering diverse addition, deletion, and modification tasks. This dataset is meticulously curated to ensure that edited objects faithfully adhere to the instructional changes while preserving the consistency of unedited regions with the source object. Building upon this dataset, we explore two distinct conditioning strategies for our model: a conventional cross-attention mechanism and a novel 3D token concatenation approach. Our results demonstrate that token concatenation is more parameter-efficient and achieves superior performance. Extensive evaluations show that our method outperforms existing 2D-lifting approaches, setting a new benchmark in generation quality, 3D consistency, and instruction fidelity.
MVP: Multiple View Prediction Improves GUI Grounding
GUI grounding, which translates natural language instructions into precise pixel coordinates, is essential for developing practical GUI agents. However, we observe that existing grounding models exhibit significant coordinate prediction instability, minor visual perturbations (e.g. cropping a few pixels) can drastically alter predictions, flipping results between correct and incorrect. This instability severely undermines model performance, especially for samples with high-resolution and small UI elements. To address this issue, we propose Multi-View Prediction (MVP), a training-free framework that enhances grounding performance through multi-view inference. Our key insight is that while single-view predictions may be unstable, aggregating predictions from multiple carefully cropped views can effectively distinguish correct coordinates from outliers. MVP comprises two components: (1) Attention-Guided View Proposal, which derives diverse views guided by instruction-to-image attention scores, and (2) Multi-Coordinates Clustering, which ensembles predictions by selecting the centroid of the densest spatial cluster. Extensive experiments demonstrate MVP's effectiveness across various models and benchmarks. Notably, on ScreenSpot-Pro, MVP boosts UI-TARS-1.5-7B to 56.1%, GTA1-7B to 61.7%, Qwen3VL-8B-Instruct to 65.3%, and Qwen3VL-32B-Instruct to 74.0%. The code is available at https://github.com/ZJUSCL/MVP.
Face-LLaVA: Facial Expression and Attribute Understanding through Instruction Tuning
The human face plays a central role in social communication, necessitating the use of performant computer vision tools for human-centered applications. We propose Face-LLaVA, a multimodal large language model for face-centered, in-context learning, including facial expression and attribute recognition. Additionally, Face-LLaVA is able to generate natural language descriptions that can be used for reasoning. Leveraging existing visual databases, we first developed FaceInstruct-1M, a face-centered database for instruction tuning MLLMs for face processing. We then developed a novel face-specific visual encoder powered by Face-Region Guided Cross-Attention that integrates face geometry with local visual features. We evaluated the proposed method across nine different datasets and five different face processing tasks, including facial expression recognition, action unit detection, facial attribute detection, age estimation and deepfake detection. Face-LLaVA achieves superior results compared to existing open-source MLLMs and competitive performance compared to commercial solutions. Our model output also receives a higher reasoning rating by GPT under a zero-shot setting across all the tasks. Both our dataset and model wil be released at https://face-llava.github.io to support future advancements in social AI and foundational vision-language research.
Focus on Your Instruction: Fine-grained and Multi-instruction Image Editing by Attention Modulation
Recently, diffusion-based methods, like InstructPix2Pix (IP2P), have achieved effective instruction-based image editing, requiring only natural language instructions from the user. However, these methods often inadvertently alter unintended areas and struggle with multi-instruction editing, resulting in compromised outcomes. To address these issues, we introduce the Focus on Your Instruction (FoI), a method designed to ensure precise and harmonious editing across multiple instructions without extra training or test-time optimization. In the FoI, we primarily emphasize two aspects: (1) precisely extracting regions of interest for each instruction and (2) guiding the denoising process to concentrate within these regions of interest. For the first objective, we identify the implicit grounding capability of IP2P from the cross-attention between instruction and image, then develop an effective mask extraction method. For the second objective, we introduce a cross attention modulation module for rough isolation of target editing regions and unrelated regions. Additionally, we introduce a mask-guided disentangle sampling strategy to further ensure clear region isolation. Experimental results demonstrate that FoI surpasses existing methods in both quantitative and qualitative evaluations, especially excelling in multi-instruction editing task.
RePlan: Reasoning-guided Region Planning for Complex Instruction-based Image Editing
Instruction-based image editing enables natural-language control over visual modifications, yet existing models falter under Instruction-Visual Complexity (IV-Complexity), where intricate instructions meet cluttered or ambiguous scenes. We introduce RePlan (Region-aligned Planning), a plan-then-execute framework that couples a vision-language planner with a diffusion editor. The planner decomposes instructions via step-by-step reasoning and explicitly grounds them to target regions; the editor then applies changes using a training-free attention-region injection mechanism, enabling precise, parallel multi-region edits without iterative inpainting. To strengthen planning, we apply GRPO-based reinforcement learning using 1K instruction-only examples, yielding substantial gains in reasoning fidelity and format reliability. We further present IV-Edit, a benchmark focused on fine-grained grounding and knowledge-intensive edits. Across IV-Complex settings, RePlan consistently outperforms strong baselines trained on far larger datasets, improving regional precision and overall fidelity. Our project page: https://replan-iv-edit.github.io
Learning to Focus: Causal Attention Distillation via Gradient-Guided Token Pruning
Large language models (LLMs) have demonstrated significant improvements in contextual understanding. However, their ability to attend to truly critical information during long-context reasoning and generation still falls behind the pace. Specifically, our preliminary experiments reveal that certain distracting patterns can misdirect the model's attention during inference, and removing these patterns substantially improves reasoning accuracy and generation quality. We attribute this phenomenon to spurious correlations in the training data, which obstruct the model's capacity to infer authentic causal instruction-response relationships. This phenomenon may induce redundant reasoning processes, potentially resulting in significant inference overhead and, more critically, the generation of erroneous or suboptimal responses. To mitigate this, we introduce a two-stage framework called Learning to Focus (LeaF) leveraging intervention-based inference to disentangle confounding factors. In the first stage, LeaF employs gradient-based comparisons with an advanced teacher to automatically identify confounding tokens based on causal relationships in the training corpus. Then, in the second stage, it prunes these tokens during distillation to enact intervention, aligning the student's attention with the teacher's focus distribution on truly critical context tokens. Experimental results demonstrate that LeaF not only achieves an absolute improvement in various mathematical reasoning, code generation and multi-hop question answering benchmarks but also effectively suppresses attention to confounding tokens during inference, yielding a more interpretable and reliable reasoning model.
PriorCLIP: Visual Prior Guided Vision-Language Model for Remote Sensing Image-Text Retrieval
Remote sensing image-text retrieval plays a crucial role in remote sensing interpretation, yet remains challenging under both closed-domain and open-domain scenarios due to semantic noise and domain shifts. To address these issues, we propose a visual prior-guided vision-language model, PriorCLIP, which leverages visual priors for unbiased representation learning and adaptive vision-language alignment. In the closed-domain setting, PriorCLIP introduces two Progressive Attention Encoder (PAE) structures: Spatial-PAE constructs a belief matrix with instruction embeddings to filter key features and mitigate semantic bias. At the same time, Temporal-PAE exploits cyclic activation across time steps to enhance text representation. For the open-domain setting, we design a two-stage prior representation learning strategy, consisting of large-scale pre-training on coarse-grained image-text pairs, followed by fine-tuning on fine-grained pairs using vision-instruction, which enables robust retrieval across long-tail concepts and vocabulary shifts. Furthermore, a cluster-based symmetric contrastive Attribution Loss is proposed to constrain inter-class relations and alleviate semantic confusion in the shared embedding space. Extensive experiments on RSICD and RSITMD benchmarks demonstrate that PriorCLIP achieves substantial improvements, outperforming existing methods by 4.9% and 4.0% in closed-domain retrieval, and by 7.3% and 9.4% in open-domain retrieval, respectively.
ShowUI: One Vision-Language-Action Model for GUI Visual Agent
Building Graphical User Interface (GUI) assistants holds significant promise for enhancing human workflow productivity. While most agents are language-based, relying on closed-source API with text-rich meta-information (e.g., HTML or accessibility tree), they show limitations in perceiving UI visuals as humans do, highlighting the need for GUI visual agents. In this work, we develop a vision-language-action model in digital world, namely ShowUI, which features the following innovations: (i) UI-Guided Visual Token Selection to reduce computational costs by formulating screenshots as an UI connected graph, adaptively identifying their redundant relationship and serve as the criteria for token selection during self-attention blocks; (ii) Interleaved Vision-Language-Action Streaming that flexibly unifies diverse needs within GUI tasks, enabling effective management of visual-action history in navigation or pairing multi-turn query-action sequences per screenshot to enhance training efficiency; (iii) Small-scale High-quality GUI Instruction-following Datasets by careful data curation and employing a resampling strategy to address significant data type imbalances. With above components, ShowUI, a lightweight 2B model using 256K data, achieves a strong 75.1% accuracy in zero-shot screenshot grounding. Its UI-guided token selection further reduces 33% of redundant visual tokens during training and speeds up the performance by 1.4x. Navigation experiments across web Mind2Web, mobile AITW, and online MiniWob environments further underscore the effectiveness and potential of our model in advancing GUI visual agents. The models are available at https://github.com/showlab/ShowUI.
Empowering Vision-Language Models to Follow Interleaved Vision-Language Instructions
Multimodal Large Language Models (MLLMs) have recently sparked significant interest, which demonstrates emergent capabilities to serve as a general-purpose model for various vision-language tasks. However, existing methods mainly focus on limited types of instructions with a single image as visual context, which hinders the widespread availability of MLLMs. In this paper, we introduce the I4 benchmark to comprehensively evaluate the instruction following ability on complicated interleaved vision-language instructions, which involve intricate image-text sequential context, covering a diverse range of scenarios (e.g., visually-rich webpages/textbooks, lecture slides, embodied dialogue). Systematic evaluation on our I4 benchmark reveals a common defect of existing methods: the Visual Prompt Generator (VPG) trained on image-captioning alignment objective tends to attend to common foreground information for captioning but struggles to extract specific information required by particular tasks. To address this issue, we propose a generic and lightweight controllable knowledge re-injection module, which utilizes the sophisticated reasoning ability of LLMs to control the VPG to conditionally extract instruction-specific visual information and re-inject it into the LLM. Further, we introduce an annotation-free cross-attention guided counterfactual image training strategy to methodically learn the proposed module by collaborating a cascade of foundation models. Enhanced by the proposed module and training strategy, we present Cheetor, a Transformer-based MLLM that can effectively handle a wide variety of interleaved vision-language instructions and achieves state-of-the-art zero-shot performance across all tasks of I4, without high-quality multimodal instruction tuning data. Cheetor also exhibits competitive performance compared with state-of-the-art instruction tuned models on MME benchmark.
EC-Guide: A Comprehensive E-Commerce Guide for Instruction Tuning and Quantization
Large language models (LLMs) have attracted considerable attention in various fields for their cost-effective solutions to diverse challenges, especially with advancements in instruction tuning and quantization. E-commerce, with its complex tasks and extensive product-user interactions, presents a promising application area for LLMs. However, the domain-specific concepts and knowledge inherent in e-commerce pose significant challenges for adapting general LLMs. To address this issue, we developed EC-Guide https://github.com/fzp0424/EC-Guide-KDDUP-2024, a comprehensive e-commerce guide for instruction tuning and quantization of LLMs. We also heuristically integrated Chain-of-Thought (CoT) during inference to enhance arithmetic performance. Our approach achieved the 2nd place in Track 2 and 5th place in Track 5 at the Amazon KDD Cup'24 https://www.aicrowd.com/challenges/amazon-kdd-cup-2024-multi-task-online-shopping-challenge-for-llms. Additionally, our solution is model-agnostic, enabling effective scalability across larger systems.
InstructBrush: Learning Attention-based Instruction Optimization for Image Editing
In recent years, instruction-based image editing methods have garnered significant attention in image editing. However, despite encompassing a wide range of editing priors, these methods are helpless when handling editing tasks that are challenging to accurately describe through language. We propose InstructBrush, an inversion method for instruction-based image editing methods to bridge this gap. It extracts editing effects from exemplar image pairs as editing instructions, which are further applied for image editing. Two key techniques are introduced into InstructBrush, Attention-based Instruction Optimization and Transformation-oriented Instruction Initialization, to address the limitations of the previous method in terms of inversion effects and instruction generalization. To explore the ability of instruction inversion methods to guide image editing in open scenarios, we establish a TransformationOriented Paired Benchmark (TOP-Bench), which contains a rich set of scenes and editing types. The creation of this benchmark paves the way for further exploration of instruction inversion. Quantitatively and qualitatively, our approach achieves superior performance in editing and is more semantically consistent with the target editing effects.
LOCATEdit: Graph Laplacian Optimized Cross Attention for Localized Text-Guided Image Editing
Text-guided image editing aims to modify specific regions of an image according to natural language instructions while maintaining the general structure and the background fidelity. Existing methods utilize masks derived from cross-attention maps generated from diffusion models to identify the target regions for modification. However, since cross-attention mechanisms focus on semantic relevance, they struggle to maintain the image integrity. As a result, these methods often lack spatial consistency, leading to editing artifacts and distortions. In this work, we address these limitations and introduce LOCATEdit, which enhances cross-attention maps through a graph-based approach utilizing self-attention-derived patch relationships to maintain smooth, coherent attention across image regions, ensuring that alterations are limited to the designated items while retaining the surrounding structure. \method consistently and substantially outperforms existing baselines on PIE-Bench, demonstrating its state-of-the-art performance and effectiveness on various editing tasks. Code can be found on https://github.com/LOCATEdit/LOCATEdit/
Instruction Following by Boosting Attention of Large Language Models
Controlling the generation of large language models (LLMs) remains a central challenge to ensure their safe and reliable deployment. While prompt engineering and finetuning are common approaches, recent work has explored latent steering, a lightweight technique that alters LLM internal activations to guide generation. However, subsequent studies revealed latent steering's effectiveness to be limited, often underperforming simple instruction prompting. To address this limitation, we first establish a benchmark across diverse behaviors for standardized evaluation of steering techniques. Building on insights from this benchmark, we introduce Instruction Attention Boosting (InstABoost), a latent steering method that boosts the strength of instruction prompting by altering the model's attention during generation. InstABoost combines the strengths of existing approaches and is theoretically supported by prior work that suggests that in-context rule following in transformer-based models can be controlled by manipulating attention on instructions. Empirically, InstABoost demonstrates superior control success compared to both traditional prompting and latent steering.
Spotlight Your Instructions: Instruction-following with Dynamic Attention Steering
In many real-world applications, users rely on natural language instructions to guide large language models (LLMs) across a wide range of tasks. These instructions are often complex, diverse, and subject to frequent change. However, LLMs do not always attend to these instructions reliably, and users lack simple mechanisms to emphasize their importance beyond modifying prompt wording or structure. To address this, we present an inference-time method that enables users to emphasize specific parts of their prompt by steering the model's attention toward them, aligning the model's perceived importance of different prompt tokens with user intent. Unlike prior approaches that are limited to static instructions, require significant offline profiling, or rely on fixed biases, we dynamically update the proportion of model attention given to the user-specified parts--ensuring improved instruction following without performance degradation. We demonstrate that our approach improves instruction following across a variety of tasks involving multiple instructions and generalizes across models of varying scales.
VideoFactory: Swap Attention in Spatiotemporal Diffusions for Text-to-Video Generation
We present VideoFactory, an innovative framework for generating high-quality open-domain videos. VideoFactory excels in producing high-definition (1376x768), widescreen (16:9) videos without watermarks, creating an engaging user experience. Generating videos guided by text instructions poses significant challenges, such as modeling the complex relationship between space and time, and the lack of large-scale text-video paired data. Previous approaches extend pretrained text-to-image generation models by adding temporal 1D convolution/attention modules for video generation. However, these approaches overlook the importance of jointly modeling space and time, inevitably leading to temporal distortions and misalignment between texts and videos. In this paper, we propose a novel approach that strengthens the interaction between spatial and temporal perceptions. In particular, we utilize a swapped cross-attention mechanism in 3D windows that alternates the "query" role between spatial and temporal blocks, enabling mutual reinforcement for each other. To fully unlock model capabilities for high-quality video generation, we curate a large-scale video dataset called HD-VG-130M. This dataset comprises 130 million text-video pairs from the open-domain, ensuring high-definition, widescreen and watermark-free characters. Objective metrics and user studies demonstrate the superiority of our approach in terms of per-frame quality, temporal correlation, and text-video alignment, with clear margins.
ReFineVLA: Reasoning-Aware Teacher-Guided Transfer Fine-Tuning
Vision-Language-Action (VLA) models have gained much attention from the research community thanks to their strength in translating multimodal observations with linguistic instructions into robotic actions. Despite their recent advancements, VLAs often overlook the explicit reasoning and only learn the functional input-action mappings, omitting these crucial logical steps for interpretability and generalization for complex, long-horizon manipulation tasks. In this work, we propose ReFineVLA, a multimodal reasoning-aware framework that fine-tunes VLAs with teacher-guided reasons. We first augment robotic datasets with reasoning rationales generated by an expert teacher model, guiding VLA models to learn to reason about their actions. Then, we use ReFineVLA to fine-tune pre-trained VLAs with the reasoning-enriched datasets, while maintaining their inherent generalization abilities and boosting reasoning capabilities. In addition, we conduct an attention map visualization to analyze the alignment among visual attention, linguistic prompts, and to-be-executed actions of ReFineVLA, showcasing its ability to focus on relevant tasks and actions. Through the latter step, we explore that ReFineVLA-trained models exhibit a meaningful attention shift towards relevant objects, highlighting the enhanced multimodal understanding and improved generalization. Evaluated across manipulation tasks, ReFineVLA outperforms the state-of-the-art baselines. Specifically, it achieves an average increase of 5.0% success rate on SimplerEnv WidowX Robot tasks, improves by an average of 8.6% in variant aggregation settings, and by 1.7% in visual matching settings for SimplerEnv Google Robot tasks. The source code will be publicly available.
R2G: Reasoning to Ground in 3D Scenes
We propose Reasoning to Ground (R2G), a neural symbolic model that grounds the target objects within 3D scenes in a reasoning manner. In contrast to prior works, R2G explicitly models the 3D scene with a semantic concept-based scene graph; recurrently simulates the attention transferring across object entities; thus makes the process of grounding the target objects with the highest probability interpretable. Specifically, we respectively embed multiple object properties within the graph nodes and spatial relations among entities within the edges, utilizing a predefined semantic vocabulary. To guide attention transferring, we employ learning or prompting-based methods to analyze the referential utterance and convert it into reasoning instructions within the same semantic space. In each reasoning round, R2G either (1) merges current attention distribution with the similarity between the instruction and embedded entity properties or (2) shifts the attention across the scene graph based on the similarity between the instruction and embedded spatial relations. The experiments on Sr3D/Nr3D benchmarks show that R2G achieves a comparable result with the prior works while maintaining improved interpretability, breaking a new path for 3D language grounding.
3D-LATTE: Latent Space 3D Editing from Textual Instructions
Despite the recent success of multi-view diffusion models for text/image-based 3D asset generation, instruction-based editing of 3D assets lacks surprisingly far behind the quality of generation models. The main reason is that recent approaches using 2D priors suffer from view-inconsistent editing signals. Going beyond 2D prior distillation methods and multi-view editing strategies, we propose a training-free editing method that operates within the latent space of a native 3D diffusion model, allowing us to directly manipulate 3D geometry. We guide the edit synthesis by blending 3D attention maps from the generation with the source object. Coupled with geometry-aware regularization guidance, a spectral modulation strategy in the Fourier domain and a refinement step for 3D enhancement, our method outperforms previous 3D editing methods enabling high-fidelity, precise, and robust edits across a wide range of shapes and semantic manipulations.
Med-2E3: A 2D-Enhanced 3D Medical Multimodal Large Language Model
The analysis of 3D medical images is crucial for modern healthcare, yet traditional task-specific models are becoming increasingly inadequate due to limited generalizability across diverse clinical scenarios. Multimodal large language models (MLLMs) offer a promising solution to these challenges. However, existing MLLMs have limitations in fully leveraging the rich, hierarchical information embedded in 3D medical images. Inspired by clinical practice, where radiologists focus on both 3D spatial structure and 2D planar content, we propose Med-2E3, a novel MLLM for 3D medical image analysis that integrates 3D and 2D encoders. To aggregate 2D features more effectively, we design a Text-Guided Inter-Slice (TG-IS) scoring module, which scores the attention of each 2D slice based on slice contents and task instructions. To the best of our knowledge, Med-2E3 is the first MLLM to integrate both 3D and 2D features for 3D medical image analysis. Experiments on a large-scale, open-source 3D medical multimodal benchmark demonstrate that Med-2E3 exhibits task-specific attention distribution and significantly outperforms current state-of-the-art models, with a 14% improvement in report generation and a 5% gain in medical visual question answering (VQA), highlighting the model's potential in addressing complex multimodal clinical tasks. The code will be released upon acceptance.
