new

Get trending papers in your email inbox!

Subscribe

Daily Papers

byAK and the research community

Dec 24

Flying Bird Object Detection Algorithm in Surveillance Video

Aiming at the characteristics of the flying bird object in surveillance video, such as the single frame image feature is not obvious, the size is small in most cases, and asymmetric, this paper proposes a Flying Bird Object Detection method for Surveillance Video (FBOD-SV). Firstly, a new feature aggregation module, the Correlation Attention Feature Aggregation (Co-Attention-FA) module, is designed to aggregate the features of the flying bird object according to the bird object's correlation on multiple consecutive frames of images. Secondly, a Flying Bird Object Detection Network (FBOD-Net) with down-sampling and then up-sampling is designed, which uses a large feature layer that fuses fine spatial information and large receptive field information to detect special multi-scale (mostly small-scale) bird objects. Finally, the SimOTA dynamic label allocation method is applied to One-Category object detection, and the SimOTA-OC dynamic label strategy is proposed to solve the difficult problem of label allocation caused by irregular flying bird objects. In this paper, the algorithm's performance is verified by the experimental data set of the surveillance video of the flying bird object of the traction substation. The experimental results show that the surveillance video flying bird object detection method proposed in this paper effectively improves the detection performance of flying bird objects.

  • 4 authors
·
Jan 8, 2024

DAMO-YOLO : A Report on Real-Time Object Detection Design

In this report, we present a fast and accurate object detection method dubbed DAMO-YOLO, which achieves higher performance than the state-of-the-art YOLO series. DAMO-YOLO is extended from YOLO with some new technologies, including Neural Architecture Search (NAS), efficient Reparameterized Generalized-FPN (RepGFPN), a lightweight head with AlignedOTA label assignment, and distillation enhancement. In particular, we use MAE-NAS, a method guided by the principle of maximum entropy, to search our detection backbone under the constraints of low latency and high performance, producing ResNet-like / CSP-like structures with spatial pyramid pooling and focus modules. In the design of necks and heads, we follow the rule of "large neck, small head". We import Generalized-FPN with accelerated queen-fusion to build the detector neck and upgrade its CSPNet with efficient layer aggregation networks (ELAN) and reparameterization. Then we investigate how detector head size affects detection performance and find that a heavy neck with only one task projection layer would yield better results. In addition, AlignedOTA is proposed to solve the misalignment problem in label assignment. And a distillation schema is introduced to improve performance to a higher level. Based on these new techs, we build a suite of models at various scales to meet the needs of different scenarios, i.e., DAMO-YOLO-Tiny/Small/Medium. They can achieve 43.0/46.8/50.0 mAPs on COCO with the latency of 2.78/3.83/5.62 ms on T4 GPUs respectively. The code is available at https://github.com/tinyvision/damo-yolo.

  • 6 authors
·
Nov 23, 2022

A Two-stage Reinforcement Learning-based Approach for Multi-entity Task Allocation

Task allocation is a key combinatorial optimization problem, crucial for modern applications such as multi-robot cooperation and resource scheduling. Decision makers must allocate entities to tasks reasonably across different scenarios. However, traditional methods assume static attributes and numbers of tasks and entities, often relying on dynamic programming and heuristic algorithms for solutions. In reality, task allocation resembles Markov decision processes, with dynamically changing task and entity attributes. Thus, algorithms must dynamically allocate tasks based on their states. To address this issue, we propose a two-stage task allocation algorithm based on similarity, utilizing reinforcement learning to learn allocation strategies. The proposed pre-assign strategy allows entities to preselect appropriate tasks, effectively avoiding local optima and thereby better finding the optimal allocation. We also introduce an attention mechanism and a hyperparameter network structure to adapt to the changing number and attributes of entities and tasks, enabling our network structure to generalize to new tasks. Experimental results across multiple environments demonstrate that our algorithm effectively addresses the challenges of dynamic task allocation in practical applications. Compared to heuristic algorithms like genetic algorithms, our reinforcement learning approach better solves dynamic allocation problems and achieves zero-shot generalization to new tasks with good performance. The code is available at https://github.com/yk7333/TaskAllocation.

  • 4 authors
·
Jun 29, 2024

Online hierarchical partitioning of the output space in extreme multi-label data stream

Mining data streams with multi-label outputs poses significant challenges due to evolving distributions, high-dimensional label spaces, sparse label occurrences, and complex label dependencies. Moreover, concept drift affects not only input distributions but also label correlations and imbalance ratios over time, complicating model adaptation. To address these challenges, structured learners are categorized into local and global methods. Local methods break down the task into simpler components, while global methods adapt the algorithm to the full output space, potentially yielding better predictions by exploiting label correlations. This work introduces iHOMER (Incremental Hierarchy Of Multi-label Classifiers), an online multi-label learning framework that incrementally partitions the label space into disjoint, correlated clusters without relying on predefined hierarchies. iHOMER leverages online divisive-agglomerative clustering based on Jaccard similarity and a global tree-based learner driven by a multivariate Bernoulli process to guide instance partitioning. To address non-stationarity, it integrates drift detection mechanisms at both global and local levels, enabling dynamic restructuring of label partitions and subtrees. Experiments across 23 real-world datasets show iHOMER outperforms 5 state-of-the-art global baselines, such as MLHAT, MLHT of Pruned Sets and iSOUPT, by 23\%, and 12 local baselines, such as binary relevance transformations of kNN, EFDT, ARF, and ADWIN bagging/boosting ensembles, by 32\%, establishing its robustness for online multi-label classification.

  • 4 authors
·
Jul 28

Coreset Sampling from Open-Set for Fine-Grained Self-Supervised Learning

Deep learning in general domains has constantly been extended to domain-specific tasks requiring the recognition of fine-grained characteristics. However, real-world applications for fine-grained tasks suffer from two challenges: a high reliance on expert knowledge for annotation and necessity of a versatile model for various downstream tasks in a specific domain (e.g., prediction of categories, bounding boxes, or pixel-wise annotations). Fortunately, the recent self-supervised learning (SSL) is a promising approach to pretrain a model without annotations, serving as an effective initialization for any downstream tasks. Since SSL does not rely on the presence of annotation, in general, it utilizes the large-scale unlabeled dataset, referred to as an open-set. In this sense, we introduce a novel Open-Set Self-Supervised Learning problem under the assumption that a large-scale unlabeled open-set is available, as well as the fine-grained target dataset, during a pretraining phase. In our problem setup, it is crucial to consider the distribution mismatch between the open-set and target dataset. Hence, we propose SimCore algorithm to sample a coreset, the subset of an open-set that has a minimum distance to the target dataset in the latent space. We demonstrate that SimCore significantly improves representation learning performance through extensive experimental settings, including eleven fine-grained datasets and seven open-sets in various downstream tasks.

  • 3 authors
·
Mar 20, 2023

Robust Active Distillation

Distilling knowledge from a large teacher model to a lightweight one is a widely successful approach for generating compact, powerful models in the semi-supervised learning setting where a limited amount of labeled data is available. In large-scale applications, however, the teacher tends to provide a large number of incorrect soft-labels that impairs student performance. The sheer size of the teacher additionally constrains the number of soft-labels that can be queried due to prohibitive computational and/or financial costs. The difficulty in achieving simultaneous efficiency (i.e., minimizing soft-label queries) and robustness (i.e., avoiding student inaccuracies due to incorrect labels) hurts the widespread application of knowledge distillation to many modern tasks. In this paper, we present a parameter-free approach with provable guarantees to query the soft-labels of points that are simultaneously informative and correctly labeled by the teacher. At the core of our work lies a game-theoretic formulation that explicitly considers the inherent trade-off between the informativeness and correctness of input instances. We establish bounds on the expected performance of our approach that hold even in worst-case distillation instances. We present empirical evaluations on popular benchmarks that demonstrate the improved distillation performance enabled by our work relative to that of state-of-the-art active learning and active distillation methods.

  • 5 authors
·
Oct 3, 2022

TnT-LLM: Text Mining at Scale with Large Language Models

Transforming unstructured text into structured and meaningful forms, organized by useful category labels, is a fundamental step in text mining for downstream analysis and application. However, most existing methods for producing label taxonomies and building text-based label classifiers still rely heavily on domain expertise and manual curation, making the process expensive and time-consuming. This is particularly challenging when the label space is under-specified and large-scale data annotations are unavailable. In this paper, we address these challenges with Large Language Models (LLMs), whose prompt-based interface facilitates the induction and use of large-scale pseudo labels. We propose TnT-LLM, a two-phase framework that employs LLMs to automate the process of end-to-end label generation and assignment with minimal human effort for any given use-case. In the first phase, we introduce a zero-shot, multi-stage reasoning approach which enables LLMs to produce and refine a label taxonomy iteratively. In the second phase, LLMs are used as data labelers that yield training samples so that lightweight supervised classifiers can be reliably built, deployed, and served at scale. We apply TnT-LLM to the analysis of user intent and conversational domain for Bing Copilot (formerly Bing Chat), an open-domain chat-based search engine. Extensive experiments using both human and automatic evaluation metrics demonstrate that TnT-LLM generates more accurate and relevant label taxonomies when compared against state-of-the-art baselines, and achieves a favorable balance between accuracy and efficiency for classification at scale. We also share our practical experiences and insights on the challenges and opportunities of using LLMs for large-scale text mining in real-world applications.

  • 14 authors
·
Mar 18, 2024 2

Fire Together Wire Together: A Dynamic Pruning Approach with Self-Supervised Mask Prediction

Dynamic model pruning is a recent direction that allows for the inference of a different sub-network for each input sample during deployment. However, current dynamic methods rely on learning a continuous channel gating through regularization by inducing sparsity loss. This formulation introduces complexity in balancing different losses (e.g task loss, regularization loss). In addition, regularization based methods lack transparent tradeoff hyperparameter selection to realize a computational budget. Our contribution is two-fold: 1) decoupled task and pruning losses. 2) Simple hyperparameter selection that enables FLOPs reduction estimation before training. Inspired by the Hebbian theory in Neuroscience: "neurons that fire together wire together", we propose to predict a mask to process k filters in a layer based on the activation of its previous layer. We pose the problem as a self-supervised binary classification problem. Each mask predictor module is trained to predict if the log-likelihood for each filter in the current layer belongs to the top-k activated filters. The value k is dynamically estimated for each input based on a novel criterion using the mass of heatmaps. We show experiments on several neural architectures, such as VGG, ResNet and MobileNet on CIFAR and ImageNet datasets. On CIFAR, we reach similar accuracy to SOTA methods with 15% and 24% higher FLOPs reduction. Similarly in ImageNet, we achieve lower drop in accuracy with up to 13% improvement in FLOPs reduction.

  • 4 authors
·
Oct 15, 2021

SimBench: Benchmarking the Ability of Large Language Models to Simulate Human Behaviors

Large language model (LLM) simulations of human behavior have the potential to revolutionize the social and behavioral sciences, if and only if they faithfully reflect real human behaviors. Current evaluations are fragmented, based on bespoke tasks and metrics, creating a patchwork of incomparable results. To address this, we introduce SimBench, the first large-scale, standardized benchmark for a robust, reproducible science of LLM simulation. By unifying 20 diverse datasets covering tasks from moral decision-making to economic choice across a large global participant pool, SimBench provides the necessary foundation to ask fundamental questions about when, how, and why LLM simulations succeed or fail. We show that, while even the best LLMs today have limited simulation ability (score: 40.80/100), performance scales log-linearly with model size. Simulation performance is not improved by increased inference-time compute. We demonstrate an alignment-simulation trade-off: instruction-tuning improves performance on low-entropy (consensus) questions but degrades it on high-entropy (diverse) ones. Models particularly struggle when simulating specific demographic groups. Finally, we demonstrate that simulation ability correlates most strongly with deep, knowledge-intensive reasoning (MMLU-Pro, r=0.939). By making progress measurable, we aim to accelerate the development of more faithful LLM simulators.

  • 6 authors
·
Oct 20

Matching Table Metadata with Business Glossaries Using Large Language Models

Enterprises often own large collections of structured data in the form of large databases or an enterprise data lake. Such data collections come with limited metadata and strict access policies that could limit access to the data contents and, therefore, limit the application of classic retrieval and analysis solutions. As a result, there is a need for solutions that can effectively utilize the available metadata. In this paper, we study the problem of matching table metadata to a business glossary containing data labels and descriptions. The resulting matching enables the use of an available or curated business glossary for retrieval and analysis without or before requesting access to the data contents. One solution to this problem is to use manually-defined rules or similarity measures on column names and glossary descriptions (or their vector embeddings) to find the closest match. However, such approaches need to be tuned through manual labeling and cannot handle many business glossaries that contain a combination of simple as well as complex and long descriptions. In this work, we leverage the power of large language models (LLMs) to design generic matching methods that do not require manual tuning and can identify complex relations between column names and glossaries. We propose methods that utilize LLMs in two ways: a) by generating additional context for column names that can aid with matching b) by using LLMs to directly infer if there is a relation between column names and glossary descriptions. Our preliminary experimental results show the effectiveness of our proposed methods.

  • 6 authors
·
Sep 7, 2023 2

One Model for All Tasks: Leveraging Efficient World Models in Multi-Task Planning

In heterogeneous multi-task decision-making, tasks not only exhibit diverse observation and action spaces but also vary substantially in their underlying complexities. While conventional multi-task world models like UniZero excel in single-task settings, we find that when handling a broad and diverse suite of tasks, gradient conflicts and the loss of model plasticity often constrain their sample efficiency. In this work, we address these challenges from two complementary perspectives: the single learning iteration and the overall learning process. First, to mitigate the gradient conflicts, we systematically investigate key architectural designs for extending UniZero. Our investigation identifies a Mixture-of-Experts (MoE) architecture as the most effective approach. We demonstrate, both theoretically and empirically, that this architecture alleviates gradient conflicts by routing task-specific representations to specialized sub-networks. This finding leads to our proposed model, ScaleZero. Second, to dynamically allocate model capacity throughout the learning process, we introduce an online Dynamic Parameter Scaling (DPS) strategy. This strategy progressively integrates LoRA adapters in response to task-specific progress, enabling adaptive knowledge retention and parameter expansion. Evaluations on a diverse set of standard benchmarks (Atari, DMC, Jericho) demonstrate that ScaleZero, utilizing solely online reinforcement learning with one model, performs on par with specialized single-task agents. With the DPS strategy, it remains competitive while using just 71.5% of the environment interactions. These findings underscore the potential of ScaleZero for effective multi-task planning. Our code is available at magenta{https://github.com/opendilab/LightZero}.

  • 6 authors
·
Sep 9

StageInteractor: Query-based Object Detector with Cross-stage Interaction

Previous object detectors make predictions based on dense grid points or numerous preset anchors. Most of these detectors are trained with one-to-many label assignment strategies. On the contrary, recent query-based object detectors depend on a sparse set of learnable queries and a series of decoder layers. The one-to-one label assignment is independently applied on each layer for the deep supervision during training. Despite the great success of query-based object detection, however, this one-to-one label assignment strategy demands the detectors to have strong fine-grained discrimination and modeling capacity. To solve the above problems, in this paper, we propose a new query-based object detector with cross-stage interaction, coined as StageInteractor. During the forward propagation, we come up with an efficient way to improve this modeling ability by reusing dynamic operators with lightweight adapters. As for the label assignment, a cross-stage label assigner is applied subsequent to the one-to-one label assignment. With this assigner, the training target class labels are gathered across stages and then reallocated to proper predictions at each decoder layer. On MS COCO benchmark, our model improves the baseline by 2.2 AP, and achieves 44.8 AP with ResNet-50 as backbone, 100 queries and 12 training epochs. With longer training time and 300 queries, StageInteractor achieves 51.1 AP and 52.2 AP with ResNeXt-101-DCN and Swin-S, respectively.

  • 4 authors
·
Apr 11, 2023

Dynamic Cheatsheet: Test-Time Learning with Adaptive Memory

Despite their impressive performance on complex tasks, current language models (LMs) typically operate in a vacuum: Each input query is processed separately, without retaining insights from previous attempts. Here, we present Dynamic Cheatsheet (DC), a lightweight framework that endows a black-box LM with a persistent, evolving memory. Rather than repeatedly re-discovering or re-committing the same solutions and mistakes, DC enables models to store and reuse accumulated strategies, code snippets, and general problem-solving insights at inference time. This test-time learning enhances performance substantially across a range of tasks without needing explicit ground-truth labels or human feedback. Leveraging DC, Claude 3.5 Sonnet's accuracy more than doubled on AIME math exams once it began retaining algebraic insights across questions. Similarly, GPT-4o's success rate on Game of 24 increased from 10% to 99% after the model discovered and reused a Python-based solution. In tasks prone to arithmetic mistakes, such as balancing equations, DC enabled GPT-4o and Claude to reach near-perfect accuracy by recalling previously validated code, whereas their baselines stagnated around 50%. Beyond arithmetic challenges, DC yields notable accuracy gains on knowledge-demanding tasks. Claude achieved a 9% improvement in GPQA-Diamond and an 8% boost on MMLU-Pro problems. Crucially, DC's memory is self-curated, focusing on concise, transferable snippets rather than entire transcript. Unlike finetuning or static retrieval methods, DC adapts LMs' problem-solving skills on the fly, without modifying their underlying parameters. Overall, our findings present DC as a promising approach for augmenting LMs with persistent memory, bridging the divide between isolated inference events and the cumulative, experience-driven learning characteristic of human cognition.

  • 5 authors
·
Apr 10

Large Language Models Meet Extreme Multi-label Classification: Scaling and Multi-modal Framework

Foundation models have revolutionized artificial intelligence across numerous domains, yet their transformative potential remains largely untapped in Extreme Multi-label Classification (XMC). Queries in XMC are associated with relevant labels from extremely large label spaces, where it is critical to strike a balance between efficiency and performance. Therefore, many recent approaches efficiently pose XMC as a maximum inner product search between embeddings learned from small encoder-only transformer architectures. In this paper, we address two important aspects in XMC: how to effectively harness larger decoder-only models, and how to exploit visual information while maintaining computational efficiency. We demonstrate that both play a critical role in XMC separately and can be combined for improved performance. We show that a few billion-size decoder can deliver substantial improvements while keeping computational overhead manageable. Furthermore, our Vision-enhanced eXtreme Multi-label Learning framework (ViXML) efficiently integrates foundation vision models by pooling a single embedding per image. This limits computational growth while unlocking multi-modal capabilities. Remarkably, ViXML with small encoders outperforms text-only decoder in most cases, showing that an image is worth billions of parameters. Finally, we present an extension of existing text-only datasets to exploit visual metadata and make them available for future benchmarking. Comprehensive experiments across four public text-only datasets and their corresponding image enhanced versions validate our proposals' effectiveness, surpassing previous state-of-the-art by up to +8.21\% in P@1 on the largest dataset. ViXML's code is available at https://github.com/DiegoOrtego/vixml.

nielseniq NielsenIQ
·
Nov 17 3

One QuantLLM for ALL: Fine-tuning Quantized LLMs Once for Efficient Deployments

Large Language Models (LLMs) have advanced rapidly but face significant memory demands. While quantization has shown promise for LLMs, current methods typically require lengthy training to alleviate the performance degradation from quantization loss. However, deploying LLMs across diverse scenarios with different resource constraints, e.g., servers and personal computers, requires repeated training per application, which amplifies the lengthy training problem. Given that, it is advantageous to train a once-for-all (OFA) supernet capable of yielding diverse optimal subnets for downstream applications through one-shot training. Nonetheless, the scale of current language models impedes efficiency and amplifies interference from weight sharing between subnets. We make an initial attempt to extend the once-for-all framework to large language models. Specifically, we decouple shared weights to eliminate the interference and incorporate Low-Rank adapters for training efficiency. Furthermore, we observe the imbalance allocation of training resources from the traditional uniform sampling. A non-parametric scheduler is introduced to adjust the sampling rate for each quantization configuration, achieving a more balanced allocation among subnets with varying demands. We validate the approach on LLaMA2 families, and downstream evaluation confirms our ability to maintain high performance while significantly reducing deployment time faced with multiple scenarios.

  • 7 authors
·
May 30, 2024

Aggregating Soft Labels from Crowd Annotations Improves Uncertainty Estimation Under Distribution Shift

Selecting an effective training signal for machine learning tasks is difficult: expert annotations are expensive, and crowd-sourced annotations may not be reliable. Recent work has demonstrated that learning from a distribution over labels acquired from crowd annotations can be effective both for performance and uncertainty estimation. However, this has mainly been studied using a limited set of soft-labeling methods in an in-domain setting. Additionally, no one method has been shown to consistently perform well across tasks, making it difficult to know a priori which to choose. To fill these gaps, this paper provides the first large-scale empirical study on learning from crowd labels in the out-of-domain setting, systematically analyzing 8 soft-labeling methods on 4 language and vision tasks. Additionally, we propose to aggregate soft-labels via a simple average in order to achieve consistent performance across tasks. We demonstrate that this yields classifiers with improved predictive uncertainty estimation in most settings while maintaining consistent raw performance compared to learning from individual soft-labeling methods or taking a majority vote of the annotations. We additionally highlight that in regimes with abundant or minimal training data, the selection of soft labeling method is less important, while for highly subjective labels and moderate amounts of training data, aggregation yields significant improvements in uncertainty estimation over individual methods. Code can be found at https://github.com/copenlu/aggregating-crowd-annotations-ood.

  • 2 authors
·
Dec 19, 2022

Budget Sensitive Reannotation of Noisy Relation Classification Data Using Label Hierarchy

Large crowd-sourced datasets are often noisy and relation classification (RC) datasets are no exception. Reannotating the entire dataset is one probable solution however it is not always viable due to time and budget constraints. This paper addresses the problem of efficient reannotation of a large noisy dataset for the RC. Our goal is to catch more annotation errors in the dataset while reannotating fewer instances. Existing work on RC dataset reannotation lacks the flexibility about how much data to reannotate. We introduce the concept of a reannotation budget to overcome this limitation. The immediate follow-up problem is: Given a specific reannotation budget, which subset of the data should we reannotate? To address this problem, we present two strategies to selectively reannotate RC datasets. Our strategies utilize the taxonomic hierarchy of relation labels. The intuition of our work is to rely on the graph distance between actual and predicted relation labels in the label hierarchy graph. We evaluate our reannotation strategies on the well-known TACRED dataset. We design our experiments to answer three specific research questions. First, does our strategy select novel candidates for reannotation? Second, for a given reannotation budget is our reannotation strategy more efficient at catching annotation errors? Third, what is the impact of data reannotation on RC model performance measurement? Experimental results show that our both reannotation strategies are novel and efficient. Our analysis indicates that the current reported performance of RC models on noisy TACRED data is inflated.

  • 3 authors
·
Dec 26, 2021

SimMatchV2: Semi-Supervised Learning with Graph Consistency

Semi-Supervised image classification is one of the most fundamental problem in computer vision, which significantly reduces the need for human labor. In this paper, we introduce a new semi-supervised learning algorithm - SimMatchV2, which formulates various consistency regularizations between labeled and unlabeled data from the graph perspective. In SimMatchV2, we regard the augmented view of a sample as a node, which consists of a label and its corresponding representation. Different nodes are connected with the edges, which are measured by the similarity of the node representations. Inspired by the message passing and node classification in graph theory, we propose four types of consistencies, namely 1) node-node consistency, 2) node-edge consistency, 3) edge-edge consistency, and 4) edge-node consistency. We also uncover that a simple feature normalization can reduce the gaps of the feature norm between different augmented views, significantly improving the performance of SimMatchV2. Our SimMatchV2 has been validated on multiple semi-supervised learning benchmarks. Notably, with ResNet-50 as our backbone and 300 epochs of training, SimMatchV2 achieves 71.9\% and 76.2\% Top-1 Accuracy with 1\% and 10\% labeled examples on ImageNet, which significantly outperforms the previous methods and achieves state-of-the-art performance. Code and pre-trained models are available at https://github.com/mingkai-zheng/SimMatchV2{https://github.com/mingkai-zheng/SimMatchV2}.

  • 7 authors
·
Aug 13, 2023

Optimizing Chain-of-Thought Reasoners via Gradient Variance Minimization in Rejection Sampling and RL

Chain-of-thought (CoT) reasoning in large language models (LLMs) can be formalized as a latent variable problem, where the model needs to generate intermediate reasoning steps. While prior approaches such as iterative reward-ranked fine-tuning (RAFT) have relied on such formulations, they typically apply uniform inference budgets across prompts, which fails to account for variability in difficulty and convergence behavior. This work identifies the main bottleneck in CoT training as inefficient stochastic gradient estimation due to static sampling strategies. We propose GVM-RAFT, a prompt-specific Dynamic Sample Allocation Strategy designed to minimize stochastic gradient variance under a computational budget constraint. The method dynamically allocates computational resources by monitoring prompt acceptance rates and stochastic gradient norms, ensuring that the resulting gradient variance is minimized. Our theoretical analysis shows that the proposed dynamic sampling strategy leads to accelerated convergence guarantees under suitable conditions. Experiments on mathematical reasoning show that GVM-RAFT achieves a 2-4x speedup and considerable accuracy improvements over vanilla RAFT. The proposed dynamic sampling strategy is general and can be incorporated into other reinforcement learning algorithms, such as GRPO, leading to similar improvements in convergence and test accuracy. Our code is available at https://github.com/RLHFlow/GVM.

Dual-Encoders for Extreme Multi-Label Classification

Dual-encoder (DE) models are widely used in retrieval tasks, most commonly studied on open QA benchmarks that are often characterized by multi-class and limited training data. In contrast, their performance in multi-label and data-rich retrieval settings like extreme multi-label classification (XMC), remains under-explored. Current empirical evidence indicates that DE models fall significantly short on XMC benchmarks, where SOTA methods linearly scale the number of learnable parameters with the total number of classes (documents in the corpus) by employing per-class classification head. To this end, we first study and highlight that existing multi-label contrastive training losses are not appropriate for training DE models on XMC tasks. We propose decoupled softmax loss - a simple modification to the InfoNCE loss - that overcomes the limitations of existing contrastive losses. We further extend our loss design to a soft top-k operator-based loss which is tailored to optimize top-k prediction performance. When trained with our proposed loss functions, standard DE models alone can match or outperform SOTA methods by up to 2% at Precision@1 even on the largest XMC datasets while being 20x smaller in terms of the number of trainable parameters. This leads to more parameter-efficient and universally applicable solutions for retrieval tasks. Our code and models are publicly available at https://github.com/nilesh2797/dexml.

  • 6 authors
·
Oct 16, 2023

Balancing Label Quantity and Quality for Scalable Elicitation

Scalable oversight studies methods of training and evaluating AI systems in domains where human judgment is unreliable or expensive, such as scientific research and software engineering in complex codebases. Most work in this area has focused on methods of improving the quality of labels. Recent work by Burns et al. (2023) considers the complementary problem of training models with low-quality labels, finding that large pretrained models often have an inductive bias towards producing correct answers. In practice, however, neither label quantity nor quality is fixed: practitioners face a quantity-quality tradeoff. In this paper, we explore the microeconomics of the quantity-quality tradeoff on binary NLP classification tasks used in Burns et al. (2023). While sample-efficient learning has been studied extensively, little public research has focused on scalable elicitation: eliciting capabilities from pretrained models subject to labeling cost constraints. We find that this setting has novel dynamics caused by the tradeoff between label quantity and quality, as well as the model's existing latent capabilities. We observe three regimes of eliciting classification knowledge from pretrained models using supervised finetuning: quantity-dominant, quality-dominant, and a mixed regime involving the use of low- and high-quality data together to attain higher accuracy at a lower cost than using either alone. We explore sample-efficient elicitation methods that make use of two datasets of differing qualities, and establish a Pareto frontier of scalable elicitation methods that optimally trade off labeling cost and classifier performance. We find that the accuracy of supervised fine-tuning can be improved by up to 5 percentage points at a fixed labeling budget by adding a few-shot prompt to make use of the model's existing knowledge of the task.

  • 2 authors
·
Oct 17, 2024

A Dataset for the Validation of Truth Inference Algorithms Suitable for Online Deployment

For the purpose of efficient and cost-effective large-scale data labeling, crowdsourcing is increasingly being utilized. To guarantee the quality of data labeling, multiple annotations need to be collected for each data sample, and truth inference algorithms have been developed to accurately infer the true labels. Despite previous studies having released public datasets to evaluate the efficacy of truth inference algorithms, these have typically focused on a single type of crowdsourcing task and neglected the temporal information associated with workers' annotation activities. These limitations significantly restrict the practical applicability of these algorithms, particularly in the context of long-term and online truth inference. In this paper, we introduce a substantial crowdsourcing annotation dataset collected from a real-world crowdsourcing platform. This dataset comprises approximately two thousand workers, one million tasks, and six million annotations. The data was gathered over a period of approximately six months from various types of tasks, and the timestamps of each annotation were preserved. We analyze the characteristics of the dataset from multiple perspectives and evaluate the effectiveness of several representative truth inference algorithms on this dataset. We anticipate that this dataset will stimulate future research on tracking workers' abilities over time in relation to different types of tasks, as well as enhancing online truth inference.

  • 12 authors
·
Mar 10, 2024

DRQA: Dynamic Reasoning Quota Allocation for Controlling Overthinking in Reasoning Large Language Models

Reasoning large language models (RLLMs), such as OpenAI-O3 and DeepSeek-R1, have recently demonstrated remarkable capabilities by performing structured and multi-step reasoning. However, recent studies reveal that RLLMs often suffer from overthinking, i.e., producing unnecessarily lengthy reasoning chains even for simple questions, leading to excessive token consumption and computational inefficiency. Interestingly, we observe that when processing multiple questions in batch mode, RLLMs exhibit more resource-efficient behavior by dynamically compressing reasoning steps for easier problems, due to implicit resource competition. Inspired by this, we propose Dynamic Reasoning Quota Allocation (DRQA), a novel method that transfers the benefits of resource competition from batch processing to single-question inference. Specifically, DRQA leverages batch-generated preference data and reinforcement learning to train the model to allocate reasoning resources adaptively. By encouraging the model to internalize a preference for responses that are both accurate and concise, DRQA enables it to generate concise answers for simple questions while retaining sufficient reasoning depth for more challenging ones. Extensive experiments on a wide range of mathematical and scientific reasoning benchmarks demonstrate that DRQA significantly reduces token usage while maintaining, and in many cases improving, answer accuracy. By effectively mitigating the overthinking problem, DRQA offers a promising direction for more efficient and scalable deployment of RLLMs, and we hope it inspires further exploration into fine-grained control of reasoning behaviors.

  • 6 authors
·
Aug 25

Thinking Like an Annotator: Generation of Dataset Labeling Instructions

Large-scale datasets are essential to modern day deep learning. Advocates argue that understanding these methods requires dataset transparency (e.g. "dataset curation, motivation, composition, collection process, etc..."). However, almost no one has suggested the release of the detailed definitions and visual category examples provided to annotators - information critical to understanding the structure of the annotations present in each dataset. These labels are at the heart of public datasets, yet few datasets include the instructions that were used to generate them. We introduce a new task, Labeling Instruction Generation, to address missing publicly available labeling instructions. In Labeling Instruction Generation, we take a reasonably annotated dataset and: 1) generate a set of examples that are visually representative of each category in the dataset; 2) provide a text label that corresponds to each of the examples. We introduce a framework that requires no model training to solve this task and includes a newly created rapid retrieval system that leverages a large, pre-trained vision and language model. This framework acts as a proxy to human annotators that can help to both generate a final labeling instruction set and evaluate its quality. Our framework generates multiple diverse visual and text representations of dataset categories. The optimized instruction set outperforms our strongest baseline across 5 folds by 7.06 mAP for NuImages and 12.9 mAP for COCO.

  • 5 authors
·
Jun 24, 2023 1

DS-STAR: Data Science Agent via Iterative Planning and Verification

Data science, which transforms raw data into actionable insights, is critical for data-driven decision-making. However, these tasks are often complex, involving steps for exploring multiple data sources and synthesizing findings to deliver insightful answers. While large language models (LLMs) show significant promise in automating this process, they often struggle with heterogeneous data formats and generate sub-optimal analysis plans, as verifying plan sufficiency is inherently difficult without ground-truth labels for such open-ended tasks. To overcome these limitations, we introduce DS-STAR, a novel data science agent. Specifically, DS-STAR makes three key contributions: (1) a data file analysis module that automatically explores and extracts context from diverse data formats, including unstructured types; (2) a verification step where an LLM-based judge evaluates the sufficiency of the analysis plan at each stage; and (3) a sequential planning mechanism that starts with a simple, executable plan and iteratively refines it based on the DS-STAR's feedback until its sufficiency is verified. This iterative refinement allows DS-STAR to reliably navigate complex analyses involving diverse data sources. Our experiments show that DS-STAR achieves state-of-the-art performance across three challenging benchmarks: DABStep, KramaBench, and DA-Code. Moreover, DS-STAR particularly outperforms baselines on hard tasks that require processing multiple data files with heterogeneous formats.

  • 4 authors
·
Sep 25

Active Generalized Category Discovery

Generalized Category Discovery (GCD) is a pragmatic and challenging open-world task, which endeavors to cluster unlabeled samples from both novel and old classes, leveraging some labeled data of old classes. Given that knowledge learned from old classes is not fully transferable to new classes, and that novel categories are fully unlabeled, GCD inherently faces intractable problems, including imbalanced classification performance and inconsistent confidence between old and new classes, especially in the low-labeling regime. Hence, some annotations of new classes are deemed necessary. However, labeling new classes is extremely costly. To address this issue, we take the spirit of active learning and propose a new setting called Active Generalized Category Discovery (AGCD). The goal is to improve the performance of GCD by actively selecting a limited amount of valuable samples for labeling from the oracle. To solve this problem, we devise an adaptive sampling strategy, which jointly considers novelty, informativeness and diversity to adaptively select novel samples with proper uncertainty. However, owing to the varied orderings of label indices caused by the clustering of novel classes, the queried labels are not directly applicable to subsequent training. To overcome this issue, we further propose a stable label mapping algorithm that transforms ground truth labels to the label space of the classifier, thereby ensuring consistent training across different active selection stages. Our method achieves state-of-the-art performance on both generic and fine-grained datasets. Our code is available at https://github.com/mashijie1028/ActiveGCD

  • 5 authors
·
Mar 7, 2024

Enabling Flexible Multi-LLM Integration for Scalable Knowledge Aggregation

Large language models (LLMs) have shown remarkable promise but remain challenging to continually improve through traditional finetuning, particularly when integrating capabilities from other specialized LLMs. Popular methods like ensemble and weight merging require substantial memory and struggle to adapt to changing data environments. Recent efforts have transferred knowledge from multiple LLMs into a single target model; however, they suffer from interference and degraded performance among tasks, largely due to limited flexibility in candidate selection and training pipelines. To address these issues, we propose a framework that adaptively selects and aggregates knowledge from diverse LLMs to build a single, stronger model, avoiding the high memory overhead of ensemble and inflexible weight merging. Specifically, we design an adaptive selection network that identifies the most relevant source LLMs based on their scores, thereby reducing knowledge interference. We further propose a dynamic weighted fusion strategy that accounts for the inherent strengths of candidate LLMs, along with a feedback-driven loss function that prevents the selector from converging on a single subset of sources. Experimental results demonstrate that our method can enable a more stable and scalable knowledge aggregation process while reducing knowledge interference by up to 50% compared to existing approaches. Code is avaliable at https://github.com/ZLKong/LLM_Integration

Balancing the Budget: Understanding Trade-offs Between Supervised and Preference-Based Finetuning

Post-training of Large Language Models often involves a pipeline of Supervised Finetuning (SFT) followed by Preference Finetuning (PFT) using methods like Direct Preference Optimization. Both stages require annotated data that are very different in structure and costs. We study how to optimally allocate a fixed training data budget between the two stages, through extensive experiments spanning four diverse tasks, multiple model sizes and various data annotation costs. Our findings reveal that just SFT on the base model dominates performance in low-data regimes (<1,000 annotated examples). With larger data-budgets, we observe that a combination of SFT and PFT, often with increasing portions allocated towards preference data yields optimal performance. However, completely eliminating SFT and running PFT directly on the base model yields suboptimal performance, described as the cold start problem on tasks like mathematics. We observe that this is due to the distribution shift arising from using DPO directly on the base model to elicit step-by-step reasoning. This limitation can be effectively addressed by allocating even a small portion (<10%) of the budget to SFT first, resulting in performance improvements of 15-20% on analytical benchmarks like GSM8k. These results provide actionable insights for researchers and practitioners optimizing model development under budget constraints, where high-quality data curation often represents a significant portion of the total costs of model development.

  • 3 authors
·
Feb 16

Prompt Tuned Embedding Classification for Multi-Label Industry Sector Allocation

Prompt Tuning is emerging as a scalable and cost-effective method to fine-tune Pretrained Language Models (PLMs), which are often referred to as Large Language Models (LLMs). This study benchmarks the performance and computational efficiency of Prompt Tuning and baselines for multi-label text classification. This is applied to the challenging task of classifying companies into an investment firm's proprietary industry taxonomy, supporting their thematic investment strategy. Text-to-text classification is frequently reported to outperform task-specific classification heads, but has several limitations when applied to a multi-label classification problem where each label consists of multiple tokens: (a) Generated labels may not match any label in the label taxonomy; (b) The fine-tuning process lacks permutation invariance and is sensitive to the order of the provided labels; (c) The model provides binary decisions rather than appropriate confidence scores. Limitation (a) is addressed by applying constrained decoding using Trie Search, which slightly improves classification performance. All limitations (a), (b), and (c) are addressed by replacing the PLM's language head with a classification head, which is referred to as Prompt Tuned Embedding Classification (PTEC). This improves performance significantly, while also reducing computational costs during inference. In our industrial application, the training data is skewed towards well-known companies. We confirm that the model's performance is consistent across both well-known and less-known companies. Our overall results indicate the continuing need to adapt state-of-the-art methods to domain-specific tasks, even in the era of PLMs with strong generalization abilities. We release our codebase and a benchmarking dataset at https://github.com/EQTPartners/PTEC.

  • 4 authors
·
Sep 21, 2023

AmoebaLLM: Constructing Any-Shape Large Language Models for Efficient and Instant Deployment

Motivated by the transformative capabilities of large language models (LLMs) across various natural language tasks, there has been a growing demand to deploy these models effectively across diverse real-world applications and platforms. However, the challenge of efficiently deploying LLMs has become increasingly pronounced due to the varying application-specific performance requirements and the rapid evolution of computational platforms, which feature diverse resource constraints and deployment flows. These varying requirements necessitate LLMs that can adapt their structures (depth and width) for optimal efficiency across different platforms and application specifications. To address this critical gap, we propose AmoebaLLM, a novel framework designed to enable the instant derivation of LLM subnets of arbitrary shapes, which achieve the accuracy-efficiency frontier and can be extracted immediately after a one-time fine-tuning. In this way, AmoebaLLM significantly facilitates rapid deployment tailored to various platforms and applications. Specifically, AmoebaLLM integrates three innovative components: (1) a knowledge-preserving subnet selection strategy that features a dynamic-programming approach for depth shrinking and an importance-driven method for width shrinking; (2) a shape-aware mixture of LoRAs to mitigate gradient conflicts among subnets during fine-tuning; and (3) an in-place distillation scheme with loss-magnitude balancing as the fine-tuning objective. Extensive experiments validate that AmoebaLLM not only sets new standards in LLM adaptability but also successfully delivers subnets that achieve state-of-the-art trade-offs between accuracy and efficiency.

  • 9 authors
·
Nov 15, 2024

Dynamic Sparse Learning: A Novel Paradigm for Efficient Recommendation

In the realm of deep learning-based recommendation systems, the increasing computational demands, driven by the growing number of users and items, pose a significant challenge to practical deployment. This challenge is primarily twofold: reducing the model size while effectively learning user and item representations for efficient recommendations. Despite considerable advancements in model compression and architecture search, prevalent approaches face notable constraints. These include substantial additional computational costs from pre-training/re-training in model compression and an extensive search space in architecture design. Additionally, managing complexity and adhering to memory constraints is problematic, especially in scenarios with strict time or space limitations. Addressing these issues, this paper introduces a novel learning paradigm, Dynamic Sparse Learning (DSL), tailored for recommendation models. DSL innovatively trains a lightweight sparse model from scratch, periodically evaluating and dynamically adjusting each weight's significance and the model's sparsity distribution during the training. This approach ensures a consistent and minimal parameter budget throughout the full learning lifecycle, paving the way for "end-to-end" efficiency from training to inference. Our extensive experimental results underline DSL's effectiveness, significantly reducing training and inference costs while delivering comparable recommendation performance.

  • 5 authors
·
Feb 5, 2024

Observatory: Characterizing Embeddings of Relational Tables

Language models and specialized table embedding models have recently demonstrated strong performance on many tasks over tabular data. Researchers and practitioners are keen to leverage these models in many new application contexts; but limited understanding of the strengths and weaknesses of these models, and the table representations they generate, makes the process of finding a suitable model for a given task reliant on trial and error. There is an urgent need to gain a comprehensive understanding of these models to minimize inefficiency and failures in downstream usage. To address this need, we propose Observatory, a formal framework to systematically analyze embedding representations of relational tables. Motivated both by invariants of the relational data model and by statistical considerations regarding data distributions, we define eight primitive properties, and corresponding measures to quantitatively characterize table embeddings for these properties. Based on these properties, we define an extensible framework to evaluate language and table embedding models. We collect and synthesize a suite of datasets and use Observatory to analyze nine such models. Our analysis provides insights into the strengths and weaknesses of learned representations over tables. We find, for example, that some models are sensitive to table structure such as column order, that functional dependencies are rarely reflected in embeddings, and that specialized table embedding models have relatively lower sample fidelity. Such insights help researchers and practitioners better anticipate model behaviors and select appropriate models for their downstream tasks, while guiding researchers in the development of new models.

  • 5 authors
·
Oct 4, 2023

TaxoAdapt: Aligning LLM-Based Multidimensional Taxonomy Construction to Evolving Research Corpora

The rapid evolution of scientific fields introduces challenges in organizing and retrieving scientific literature. While expert-curated taxonomies have traditionally addressed this need, the process is time-consuming and expensive. Furthermore, recent automatic taxonomy construction methods either (1) over-rely on a specific corpus, sacrificing generalizability, or (2) depend heavily on the general knowledge of large language models (LLMs) contained within their pre-training datasets, often overlooking the dynamic nature of evolving scientific domains. Additionally, these approaches fail to account for the multi-faceted nature of scientific literature, where a single research paper may contribute to multiple dimensions (e.g., methodology, new tasks, evaluation metrics, benchmarks). To address these gaps, we propose TaxoAdapt, a framework that dynamically adapts an LLM-generated taxonomy to a given corpus across multiple dimensions. TaxoAdapt performs iterative hierarchical classification, expanding both the taxonomy width and depth based on corpus' topical distribution. We demonstrate its state-of-the-art performance across a diverse set of computer science conferences over the years to showcase its ability to structure and capture the evolution of scientific fields. As a multidimensional method, TaxoAdapt generates taxonomies that are 26.51% more granularity-preserving and 50.41% more coherent than the most competitive baselines judged by LLMs.

  • 6 authors
·
Jun 12 2

TurtleBench: Evaluating Top Language Models via Real-World Yes/No Puzzles

As the application of Large Language Models (LLMs) expands, the demand for reliable evaluations increases. Existing LLM evaluation benchmarks primarily rely on static datasets, making it challenging to assess model performance in dynamic interactions with users. Moreover, these benchmarks often depend on specific background knowledge, complicating the measurement of a model's logical reasoning capabilities. Other dynamic evaluation methods based on strong models or manual efforts may introduce biases and incur high costs and time demands, hindering large-scale application. To address these issues, we propose TurtleBench. TurtleBench collects real user guesses from our online Turtle Soup Puzzle platform that we developed. This approach allows for the relatively dynamic generation of evaluation datasets, mitigating the risk of model cheating while aligning assessments more closely with genuine user needs for reasoning capabilities, thus enhancing the reliability of evaluations. TurtleBench includes 1,532 user guesses along with the correctness of guesses after annotation. Using this dataset, we thoroughly evaluated nine of the most advanced LLMs available today. Notably, the OpenAI o1 series models did not achieve leading results in these evaluations. We propose several hypotheses for further research, such as "the latent reasoning of o1 utilizes trivial Chain-of-Thought (CoT) techniques" and "increasing CoT length not only provides reasoning benefits but also incurs noise costs."

  • 8 authors
·
Oct 7, 2024 2

ReaLHF: Optimized RLHF Training for Large Language Models through Parameter Reallocation

Reinforcement Learning from Human Feedback (RLHF) stands as a pivotal technique in empowering large language model (LLM) applications. Since RLHF involves diverse computational workloads and intricate dependencies among multiple LLMs, directly adopting parallelization techniques from supervised training can result in sub-optimal performance. To overcome this limitation, we propose a novel approach named parameter ReaLlocation, which dynamically redistributes LLM parameters in the cluster and adapts parallelization strategies during training. Building upon this idea, we introduce ReaLHF, a pioneering system capable of automatically discovering and running efficient execution plans for RLHF training given the desired algorithmic and hardware configurations. ReaLHF formulates the execution plan for RLHF as an augmented dataflow graph. Based on this formulation, ReaLHF employs a tailored search algorithm with a lightweight cost estimator to discover an efficient execution plan. Subsequently, the runtime engine deploys the selected plan by effectively parallelizing computations and redistributing parameters. We evaluate ReaLHF on the LLaMA-2 models with up to 4times70 billion parameters and 128 GPUs. The experiment results showcase ReaLHF's substantial speedups of 2.0-10.6times compared to baselines. Furthermore, the execution plans generated by ReaLHF exhibit an average of 26% performance improvement over heuristic approaches based on Megatron-LM. The source code of ReaLHF is publicly available at https://github.com/openpsi-project/ReaLHF .

  • 6 authors
·
Jun 20, 2024

More with Less: An Empirical Study of Turn-Control Strategies for Efficient Coding Agents

LLM-powered coding agents, which operate in iterative loops (turns) to solve software engineering tasks, are becoming increasingly powerful. However, their practical deployment is hindered by significant and unpredictable costs. This challenge arises from a combination of factors: quadratically growing token counts with each turn, the high price of models, the large number of turns required for real-world tasks, and the tendency of agents to take inefficient or unnecessary actions. While existing research focuses on optimizing individual turns, the strategic control of the total number of turns remains an underexplored area for managing agent performance and cost. To address this gap, we conduct a comprehensive empirical study on SWE-bench using three state-of-the-art models and evaluate the impact of three distinct turn-control strategies: an unrestricted baseline, a fixed-turn limit with reminders, and a novel dynamic-turn strategy that grants extensions on-demand. Our findings first reveal a fundamental trade-off in the unrestricted setting, where no single model excels across performance, cost, and turn efficiency. We then show that a fixed-turn limit, specifically at the 75th percentile of the baseline, serves as a "sweet spot", substantially reducing costs (by 24%-68%) with minimal impact on solve rates. Most significantly, the dynamic-turn strategy consistently outperforms fixed-limit approaches, achieving comparable or better solve rates while further reducing costs by an additional 12%-24% by intelligently allocating resources only to tasks that need them. This work provides the first systematic analysis of turn-control strategies, offering simple yet effective guidelines for developers to balance cost and efficacy. We demonstrate that dynamic resource allocation is a superior, easy-to-implement approach for deploying powerful yet economically viable coding agents.

  • 2 authors
·
Oct 19

ByteScale: Efficient Scaling of LLM Training with a 2048K Context Length on More Than 12,000 GPUs

Scaling long-context ability is essential for Large Language Models (LLMs). To amortize the memory consumption across multiple devices in long-context training, inter-data partitioning (a.k.a. Data Parallelism) and intra-data partitioning (a.k.a. Context Parallelism) are commonly used. Current training frameworks predominantly treat the two techniques as orthogonal, and establish static communication groups to organize the devices as a static mesh (e.g., a 2D mesh). However, the sequences for LLM training typically vary in lengths, no matter for texts, multi-modalities or reinforcement learning. The mismatch between data heterogeneity and static mesh causes redundant communication and imbalanced computation, degrading the training efficiency. In this work, we introduce ByteScale, an efficient, flexible, and scalable LLM training framework for large-scale mixed training of long and short sequences. The core of ByteScale is a novel parallelism strategy, namely Hybrid Data Parallelism (HDP), which unifies the inter- and intra-data partitioning with a dynamic mesh design. In particular, we build a communication optimizer, which eliminates the redundant communication for short sequences by data-aware sharding and dynamic communication, and further compresses the communication cost for long sequences by selective offloading. Besides, we also develop a balance scheduler to mitigate the imbalanced computation by parallelism-aware data assignment. We evaluate ByteScale with the model sizes ranging from 7B to 141B, context lengths from 256K to 2048K, on a production cluster with more than 12,000 GPUs. Experiment results show that ByteScale outperforms the state-of-the-art training system by up to 7.89x.

  • 9 authors
·
Feb 28

OmniBind: Large-scale Omni Multimodal Representation via Binding Spaces

Recently, human-computer interaction with various modalities has shown promising applications, like GPT-4o and Gemini. Given the foundational role of multimodal joint representation in understanding and generation pipelines, high-quality omni joint representations would be a step toward co-processing more diverse multimodal information. In this work, we present OmniBind, large-scale multimodal joint representation models ranging in scale from 7 billion to 30 billion parameters, which support 3D, audio, image, and language inputs. Due to the scarcity of data pairs across all modalities, instead of training large models from scratch, we propose remapping and binding the spaces of various pre-trained specialist models together. This approach enables "scaling up" by indirectly increasing the model parameters and the amount of seen data. To effectively integrate various spaces, we dynamically assign weights to different spaces by learning routers with two objectives: cross-modal overall alignment and language representation decoupling. Notably, since binding and routing spaces both only require lightweight networks, OmniBind is extremely training-efficient. Learning the largest 30B model requires merely unpaired unimodal data and approximately 3 days on a single 8-4090 node. Extensive experiments demonstrate the versatility and superiority of OmniBind as an omni representation model, highlighting its great potential for diverse applications, such as any-query and composable multimodal understanding.

  • 8 authors
·
Jul 16, 2024 3

Information Extraction from Heterogeneous Documents without Ground Truth Labels using Synthetic Label Generation and Knowledge Distillation

Invoices and receipts submitted by employees are visually rich documents (VRDs) with textual, visual and layout information. To protect against the risk of fraud and abuse, it is crucial for organizations to efficiently extract desired information from submitted receipts. This helps in the assessment of key factors such as appropriateness of the expense claim, adherence to spending and transaction policies, the validity of the receipt, as well as downstream anomaly detection at various levels. These documents are heterogeneous, with multiple formats and languages, uploaded with different image qualities, and often do not contain ground truth labels for the efficient training of models. In this paper we propose Task Aware Instruction-based Labelling (TAIL), a method for synthetic label generation in VRD corpuses without labels, and fine-tune a multimodal Visually Rich Document Understanding Model (VRDU) on TAIL labels using response-based knowledge distillation without using the teacher model's weights or training dataset to conditionally generate annotations in the appropriate format. Using a benchmark external dataset where ground truth labels are available, we demonstrate conditions under which our approach performs at par with Claude 3 Sonnet through empirical studies. We then show that the resulting model performs at par or better on the internal expense documents of a large multinational organization than state-of-the-art LMM (large multimodal model) Claude 3 Sonnet while being 85% less costly and ~5X faster, and outperforms layout-aware baselines by more than 10% in Average Normalized Levenshtein Similarity (ANLS) scores due to its ability to reason and extract information from rare formats. Finally, we illustrate the usage of our approach in overpayment prevention.

  • 2 authors
·
Nov 22, 2024

Efficient Prompting via Dynamic In-Context Learning

The primary way of building AI applications is shifting from training specialist models to prompting generalist models. A common practice for prompting generalist models, often referred to as in-context learning, is to append a few examples (demonstrations) to the prompt to help the model better understand the task. While effective, in-context learning can be inefficient because it makes the input prompt much longer, consuming valuable space in the context window and leading to larger computational costs. In this paper, we propose DynaICL, a recipe for efficient prompting with black-box generalist models that dynamically allocate in-context examples according to the input complexity and the computational budget. To achieve this, we train a meta controller that predicts the number of in-context examples suitable for the generalist model to make a good prediction based on the performance-efficiency trade-off for a specific input. We then dynamically allocate the number of demonstrations for an input according to predictions from the meta controller and the given computation budget. Experimental results show that dynamic example allocation helps achieve a better performance-efficiency trade-off in two practical settings where computational resources or the required performance is constrained. Specifically, DynaICL saves up to 46% token budget compared to the common practice that allocates the same number of in-context examples to each input. We also find that a meta controller trained on a certain backbone model and tasks can successfully generalize to unseen models and tasks.

  • 4 authors
·
May 18, 2023

DaMo: Data Mixing Optimizer in Fine-tuning Multimodal LLMs for Mobile Phone Agents

Mobile Phone Agents (MPAs) have emerged as a promising research direction due to their broad applicability across diverse scenarios. While Multimodal Large Language Models (MLLMs) serve as the foundation for MPAs, their effectiveness in handling multiple mobile phone tasks simultaneously remains limited. Although multitask supervised fine-tuning (SFT) is widely adopted for multitask learning, existing approaches struggle to determine optimal training data compositions for peak performance. To address this challenge, we propose DaMo (Data Mixture Optimizer) - a novel solution employing a trainable network that predicts optimal data mixtures by forecasting downstream task performance for any given dataset ratio. To support comprehensive evaluation, we introduce PhoneAgentBench, the first specialized benchmark to evaluate MLLMs on multimodal mobile phone tasks, comprising 1235 QA pairs spanning diverse real-world industrial mobile application scenarios. Demonstrating strong predictive capability (R^2=0.81) in small-scale pilot experiments, DaMo efficiently extrapolates optimal data mixing configurations. Our results show DaMo achieves a 3.38% performance improvement on PhoneAgentBench compared to alternative methods. Furthermore, extensive experiments across established benchmarks including BFCL-v3, MME-Reasoning, MME-Perception, and OCRBench reveal DaMo's superior generalization, outperforming other approaches by 2.57% in terms of average score. When used solely for MLLM optimization on the BFCL-v3 task, DaMo improves the metrics by 12.47% than other methods. Notably, DaMo maintains robust scalability, preserving its effectiveness when applied to other model architectures. The code and dataset are available at https://github.com/OPPO-Mente-Lab/DaMo.git

OPPOer OPPO
·
Oct 22 2

Dynamic Experts Search: Enhancing Reasoning in Mixture-of-Experts LLMs at Test Time

Test-Time Scaling (TTS) enhances the reasoning ability of large language models (LLMs) by allocating additional computation during inference. However, existing approaches primarily rely on output-level sampling while overlooking the role of model architecture. In mainstream Mixture-of-Experts (MoE) LLMs, we observe that varying the number of activated experts yields complementary solution sets with stable accuracy, revealing a new and underexplored source of diversity. Motivated by this observation, we propose Dynamic Experts Search (DES), a TTS strategy that elevates expert activation into a controllable dimension of the search space. DES integrates two key components: (1) Dynamic MoE, which enables direct control of expert counts during inference to generate diverse reasoning trajectories without additional cost; and (2) Expert Configuration Inheritance, which preserves consistent expert counts within a reasoning path while varying them across runs, thereby balancing stability and diversity throughout the search. Extensive experiments across MoE architectures, verifiers and reasoning benchmarks (i.e., math, code and knowledge) demonstrate that DES reliably outperforms TTS baselines, enhancing accuracy and stability without additional cost. These results highlight DES as a practical and scalable form of architecture-aware TTS, illustrating how structural flexibility in modern LLMs can advance reasoning.

  • 4 authors
·
Sep 26 1

Label Shift Adapter for Test-Time Adaptation under Covariate and Label Shifts

Test-time adaptation (TTA) aims to adapt a pre-trained model to the target domain in a batch-by-batch manner during inference. While label distributions often exhibit imbalances in real-world scenarios, most previous TTA approaches typically assume that both source and target domain datasets have balanced label distribution. Due to the fact that certain classes appear more frequently in certain domains (e.g., buildings in cities, trees in forests), it is natural that the label distribution shifts as the domain changes. However, we discover that the majority of existing TTA methods fail to address the coexistence of covariate and label shifts. To tackle this challenge, we propose a novel label shift adapter that can be incorporated into existing TTA approaches to deal with label shifts during the TTA process effectively. Specifically, we estimate the label distribution of the target domain to feed it into the label shift adapter. Subsequently, the label shift adapter produces optimal parameters for the target label distribution. By predicting only the parameters for a part of the pre-trained source model, our approach is computationally efficient and can be easily applied, regardless of the model architectures. Through extensive experiments, we demonstrate that integrating our strategy with TTA approaches leads to substantial performance improvements under the joint presence of label and covariate shifts.

  • 4 authors
·
Aug 17, 2023

TiKMiX: Take Data Influence into Dynamic Mixture for Language Model Pre-training

The data mixture used in the pre-training of a language model is a cornerstone of its final performance. However, a static mixing strategy is suboptimal, as the model's learning preferences for various data domains shift dynamically throughout training. Crucially, observing these evolving preferences in a computationally efficient manner remains a significant challenge. To address this, we propose TiKMiX, a method that dynamically adjusts the data mixture according to the model's evolving preferences. TiKMiX introduces Group Influence, an efficient metric for evaluating the impact of data domains on the model. This metric enables the formulation of the data mixing problem as a search for an optimal, influence-maximizing distribution. We solve this via two approaches: TiKMiX-D for direct optimization, and TiKMiX-M, which uses a regression model to predict a superior mixture. We trained models with different numbers of parameters, on up to 1 trillion tokens. TiKMiX-D exceeds the performance of state-of-the-art methods like REGMIX while using just 20% of the computational resources. TiKMiX-M leads to an average performance gain of 2% across 9 downstream benchmarks. Our experiments reveal that a model's data preferences evolve with training progress and scale, and we demonstrate that dynamically adjusting the data mixture based on Group Influence, a direct measure of these preferences, significantly improves performance by mitigating the underdigestion of data seen with static ratios.

  • 9 authors
·
Aug 25 2

Stitchable Neural Networks

The public model zoo containing enormous powerful pretrained model families (e.g., ResNet/DeiT) has reached an unprecedented scope than ever, which significantly contributes to the success of deep learning. As each model family consists of pretrained models with diverse scales (e.g., DeiT-Ti/S/B), it naturally arises a fundamental question of how to efficiently assemble these readily available models in a family for dynamic accuracy-efficiency trade-offs at runtime. To this end, we present Stitchable Neural Networks (SN-Net), a novel scalable and efficient framework for model deployment. It cheaply produces numerous networks with different complexity and performance trade-offs given a family of pretrained neural networks, which we call anchors. Specifically, SN-Net splits the anchors across the blocks/layers and then stitches them together with simple stitching layers to map the activations from one anchor to another. With only a few epochs of training, SN-Net effectively interpolates between the performance of anchors with varying scales. At runtime, SN-Net can instantly adapt to dynamic resource constraints by switching the stitching positions. Extensive experiments on ImageNet classification demonstrate that SN-Net can obtain on-par or even better performance than many individually trained networks while supporting diverse deployment scenarios. For example, by stitching Swin Transformers, we challenge hundreds of models in Timm model zoo with a single network. We believe this new elastic model framework can serve as a strong baseline for further research in wider communities.

  • 3 authors
·
Feb 13, 2023

GLiClass: Generalist Lightweight Model for Sequence Classification Tasks

Classification is one of the most widespread tasks in AI applications, serving often as the first step in filtering, sorting, and categorizing data. Since modern AI systems must handle large volumes of input data and early pipeline stages can propagate errors downstream, achieving high efficiency and accuracy is critical. Moreover, classification requirements can change dynamically based on user needs, necessitating models with strong zero-shot capabilities. While generative LLMs have become mainstream for zero-shot classification due to their versatility, they suffer from inconsistent instruction following and computational inefficiency. Cross-encoders, commonly used as rerankers in RAG pipelines, face a different bottleneck: they must process text-label pairs sequentially, significantly reducing efficiency with large label sets. Embedding-based approaches offer good efficiency but struggle with complex scenarios involving logical and semantic constraints. We propose GLiClass, a novel method that adapts the GLiNER architecture for sequence classification tasks. Our approach achieves strong accuracy and efficiency comparable to embedding-based methods, while maintaining the flexibility needed for zero-shot and few-shot learning scenarios. Additionally, we adapted proximal policy optimization (PPO) for multi-label text classification, enabling training classifiers in data-sparse conditions or from human feedback.

  • 6 authors
·
Aug 11 2

The Dataset Nutrition Label: A Framework To Drive Higher Data Quality Standards

Artificial intelligence (AI) systems built on incomplete or biased data will often exhibit problematic outcomes. Current methods of data analysis, particularly before model development, are costly and not standardized. The Dataset Nutrition Label (the Label) is a diagnostic framework that lowers the barrier to standardized data analysis by providing a distilled yet comprehensive overview of dataset "ingredients" before AI model development. Building a Label that can be applied across domains and data types requires that the framework itself be flexible and adaptable; as such, the Label is comprised of diverse qualitative and quantitative modules generated through multiple statistical and probabilistic modelling backends, but displayed in a standardized format. To demonstrate and advance this concept, we generated and published an open source prototype with seven sample modules on the ProPublica Dollars for Docs dataset. The benefits of the Label are manyfold. For data specialists, the Label will drive more robust data analysis practices, provide an efficient way to select the best dataset for their purposes, and increase the overall quality of AI models as a result of more robust training datasets and the ability to check for issues at the time of model development. For those building and publishing datasets, the Label creates an expectation of explanation, which will drive better data collection practices. We also explore the limitations of the Label, including the challenges of generalizing across diverse datasets, and the risk of using "ground truth" data as a comparison dataset. We discuss ways to move forward given the limitations identified. Lastly, we lay out future directions for the Dataset Nutrition Label project, including research and public policy agendas to further advance consideration of the concept.

  • 5 authors
·
May 9, 2018

ModelTables: A Corpus of Tables about Models

We present ModelTables, a benchmark of tables in Model Lakes that captures the structured semantics of performance and configuration tables often overlooked by text only retrieval. The corpus is built from Hugging Face model cards, GitHub READMEs, and referenced papers, linking each table to its surrounding model and publication context. Compared with open data lake tables, model tables are smaller yet exhibit denser inter table relationships, reflecting tightly coupled model and benchmark evolution. The current release covers over 60K models and 90K tables. To evaluate model and table relatedness, we construct a multi source ground truth using three complementary signals: (1) paper citation links, (2) explicit model card links and inheritance, and (3) shared training datasets. We present one extensive empirical use case for the benchmark which is table search. We compare canonical Data Lake search operators (unionable, joinable, keyword) and Information Retrieval baselines (dense, sparse, hybrid retrieval) on this benchmark. Union based semantic table retrieval attains 54.8 % P@1 overall (54.6 % on citation, 31.3 % on inheritance, 30.6 % on shared dataset signals); table based dense retrieval reaches 66.5 % P@1, and metadata hybrid retrieval achieves 54.1 %. This evaluation indicates clear room for developing better table search methods. By releasing ModelTables and its creation protocol, we provide the first large scale benchmark of structured data describing AI model. Our use case of table discovery in Model Lakes, provides intuition and evidence for developing more accurate semantic retrieval, structured comparison, and principled organization of structured model knowledge. Source code, data, and other artifacts have been made available at https://github.com/RJMillerLab/ModelTables.

LoopTool: Closing the Data-Training Loop for Robust LLM Tool Calls

Augmenting Large Language Models (LLMs) with external tools enables them to execute complex, multi-step tasks. However, tool learning is hampered by the static synthetic data pipelines where data generation and model training are executed as two separate, non-interactive processes. This approach fails to adaptively focus on a model's specific weaknesses and allows noisy labels to persist, degrading training efficiency. We introduce LoopTool, a fully automated, model-aware data evolution framework that closes this loop by tightly integrating data synthesis and model training. LoopTool iteratively refines both the data and the model through three synergistic modules: (1) Greedy Capability Probing (GCP) diagnoses the model's mastered and failed capabilities; (2) Judgement-Guided Label Verification (JGLV) uses an open-source judge model to find and correct annotation errors, progressively purifying the dataset; and (3) Error-Driven Data Expansion (EDDE) generates new, challenging samples based on identified failures. This closed-loop process operates within a cost-effective, open-source ecosystem, eliminating dependence on expensive closed-source APIs. Experiments show that our 8B model trained with LoopTool significantly surpasses its 32B data generator and achieves new state-of-the-art results on the BFCL-v3 and ACEBench benchmarks for its scale. Our work demonstrates that closed-loop, self-refining data pipelines can dramatically enhance the tool-use capabilities of LLMs.

VisioFirm: Cross-Platform AI-assisted Annotation Tool for Computer Vision

AI models rely on annotated data to learn pattern and perform prediction. Annotation is usually a labor-intensive step that require associating labels ranging from a simple classification label to more complex tasks such as object detection, oriented bounding box estimation, and instance segmentation. Traditional tools often require extensive manual input, limiting scalability for large datasets. To address this, we introduce VisioFirm, an open-source web application designed to streamline image labeling through AI-assisted automation. VisioFirm integrates state-of-the-art foundation models into an interface with a filtering pipeline to reduce human-in-the-loop efforts. This hybrid approach employs CLIP combined with pre-trained detectors like Ultralytics models for common classes and zero-shot models such as Grounding DINO for custom labels, generating initial annotations with low-confidence thresholding to maximize recall. Through this framework, when tested on COCO-type of classes, initial prediction have been proven to be mostly correct though the users can refine these via interactive tools supporting bounding boxes, oriented bounding boxes, and polygons. Additionally, VisioFirm has on-the-fly segmentation powered by Segment Anything accelerated through WebGPU for browser-side efficiency. The tool supports multiple export formats (YOLO, COCO, Pascal VOC, CSV) and operates offline after model caching, enhancing accessibility. VisioFirm demonstrates up to 90\% reduction in manual effort through benchmarks on diverse datasets, while maintaining high annotation accuracy via clustering of connected CLIP-based disambiguate components and IoU-graph for redundant detection suppression. VisioFirm can be accessed from https://github.com/OschAI/VisioFirm{https://github.com/OschAI/VisioFirm}.

  • 2 authors
·
Sep 4

Learning to Optimize Multi-Objective Alignment Through Dynamic Reward Weighting

Prior works in multi-objective reinforcement learning typically use linear reward scalarization with fixed weights, which provably fail to capture non-convex Pareto fronts and thus yield suboptimal results. This limitation becomes especially critical in online preference alignment for large language models. Here, stochastic trajectories generated by parameterized policies create highly non-linear and non-convex mappings from parameters to objectives that no single static weighting scheme can find optimal trade-offs. We address this limitation by introducing dynamic reward weighting, which adaptively adjusts reward weights during the online reinforcement learning process. Unlike existing approaches that rely on fixed-weight interpolation, our dynamic weighting continuously balances and prioritizes objectives in training, facilitating effective exploration of Pareto fronts in objective space. We introduce two approaches of increasing sophistication and generalizability: (1) hypervolume-guided weight adaptation and (2) gradient-based weight optimization, offering a versatile toolkit for online multi-objective alignment. Our extensive experiments demonstrate their compatibility with commonly used online reinforcement learning algorithms (including GRPO, REINFORCE, and RLOO), effectiveness across multiple mathematical reasoning datasets, and applicability to different model families, consistently achieving Pareto dominant solutions with fewer training steps than fixed-weight linear scalarization baselines.

  • 9 authors
·
Sep 14 3

In defense of parameter sharing for model-compression

When considering a model architecture, there are several ways to reduce its memory footprint. Historically, popular approaches included selecting smaller architectures and creating sparse networks through pruning. More recently, randomized parameter-sharing (RPS) methods have gained traction for model compression at start of training. In this paper, we comprehensively assess the trade-off between memory and accuracy across RPS, pruning techniques, and building smaller models. Our findings demonstrate that RPS, which is both data and model-agnostic, consistently outperforms/matches smaller models and all moderately informed pruning strategies, such as MAG, SNIP, SYNFLOW, and GRASP, across the entire compression range. This advantage becomes particularly pronounced in higher compression scenarios. Notably, even when compared to highly informed pruning techniques like Lottery Ticket Rewinding (LTR), RPS exhibits superior performance in high compression settings. This points out inherent capacity advantage that RPS enjoys over sparse models. Theoretically, we establish RPS as a superior technique in terms of memory-efficient representation when compared to pruning for linear models. This paper argues in favor of paradigm shift towards RPS based models. During our rigorous evaluation of RPS, we identified issues in the state-of-the-art RPS technique ROAST, specifically regarding stability (ROAST's sensitivity to initialization hyperparameters, often leading to divergence) and Pareto-continuity (ROAST's inability to recover the accuracy of the original model at zero compression). We provably address both of these issues. We refer to the modified RPS, which incorporates our improvements, as STABLE-RPS.

  • 2 authors
·
Oct 17, 2023

AdaCoT: Pareto-Optimal Adaptive Chain-of-Thought Triggering via Reinforcement Learning

Large Language Models (LLMs) have demonstrated remarkable capabilities but often face challenges with tasks requiring sophisticated reasoning. While Chain-of-Thought (CoT) prompting significantly enhances reasoning, it indiscriminately generates lengthy reasoning steps for all queries, leading to substantial computational costs and inefficiency, especially for simpler inputs. To address this critical issue, we introduce AdaCoT (Adaptive Chain-of-Thought), a novel framework enabling LLMs to adaptively decide when to invoke CoT. AdaCoT framed adaptive reasoning as a Pareto optimization problem that seeks to balance model performance with the costs associated with CoT invocation (both frequency and computational overhead). We propose a reinforcement learning (RL) based method, specifically utilizing Proximal Policy Optimization (PPO), to dynamically control the CoT triggering decision boundary by adjusting penalty coefficients, thereby allowing the model to determine CoT necessity based on implicit query complexity. A key technical contribution is Selective Loss Masking (SLM), designed to counteract decision boundary collapse during multi-stage RL training, ensuring robust and stable adaptive triggering. Experimental results demonstrate that AdaCoT successfully navigates the Pareto frontier, achieving substantial reductions in CoT usage for queries not requiring elaborate reasoning. For instance, on our production traffic testset, AdaCoT reduced CoT triggering rates to as low as 3.18\% and decreased average response tokens by 69.06%, while maintaining high performance on complex tasks.

  • 9 authors
·
May 17 3