Get trending papers in your email inbox once a day!
Get trending papers in your email inbox!
SubscribeSkeleton-based Group Activity Recognition via Spatial-Temporal Panoramic Graph
Group Activity Recognition aims to understand collective activities from videos. Existing solutions primarily rely on the RGB modality, which encounters challenges such as background variations, occlusions, motion blurs, and significant computational overhead. Meanwhile, current keypoint-based methods offer a lightweight and informative representation of human motions but necessitate accurate individual annotations and specialized interaction reasoning modules. To address these limitations, we design a panoramic graph that incorporates multi-person skeletons and objects to encapsulate group activity, offering an effective alternative to RGB video. This panoramic graph enables Graph Convolutional Network (GCN) to unify intra-person, inter-person, and person-object interactive modeling through spatial-temporal graph convolutions. In practice, we develop a novel pipeline that extracts skeleton coordinates using pose estimation and tracking algorithms and employ Multi-person Panoramic GCN (MP-GCN) to predict group activities. Extensive experiments on Volleyball and NBA datasets demonstrate that the MP-GCN achieves state-of-the-art performance in both accuracy and efficiency. Notably, our method outperforms RGB-based approaches by using only estimated 2D keypoints as input. Code is available at https://github.com/mgiant/MP-GCN
A Comprehensive Survey on Graph Neural Networks
Deep learning has revolutionized many machine learning tasks in recent years, ranging from image classification and video processing to speech recognition and natural language understanding. The data in these tasks are typically represented in the Euclidean space. However, there is an increasing number of applications where data are generated from non-Euclidean domains and are represented as graphs with complex relationships and interdependency between objects. The complexity of graph data has imposed significant challenges on existing machine learning algorithms. Recently, many studies on extending deep learning approaches for graph data have emerged. In this survey, we provide a comprehensive overview of graph neural networks (GNNs) in data mining and machine learning fields. We propose a new taxonomy to divide the state-of-the-art graph neural networks into four categories, namely recurrent graph neural networks, convolutional graph neural networks, graph autoencoders, and spatial-temporal graph neural networks. We further discuss the applications of graph neural networks across various domains and summarize the open source codes, benchmark data sets, and model evaluation of graph neural networks. Finally, we propose potential research directions in this rapidly growing field.
Leveraging Spatio-Temporal Dependency for Skeleton-Based Action Recognition
Skeleton-based action recognition has attracted considerable attention due to its compact representation of the human body's skeletal sructure. Many recent methods have achieved remarkable performance using graph convolutional networks (GCNs) and convolutional neural networks (CNNs), which extract spatial and temporal features, respectively. Although spatial and temporal dependencies in the human skeleton have been explored separately, spatio-temporal dependency is rarely considered. In this paper, we propose the Spatio-Temporal Curve Network (STC-Net) to effectively leverage the spatio-temporal dependency of the human skeleton. Our proposed network consists of two novel elements: 1) The Spatio-Temporal Curve (STC) module; and 2) Dilated Kernels for Graph Convolution (DK-GC). The STC module dynamically adjusts the receptive field by identifying meaningful node connections between every adjacent frame and generating spatio-temporal curves based on the identified node connections, providing an adaptive spatio-temporal coverage. In addition, we propose DK-GC to consider long-range dependencies, which results in a large receptive field without any additional parameters by applying an extended kernel to the given adjacency matrices of the graph. Our STC-Net combines these two modules and achieves state-of-the-art performance on four skeleton-based action recognition benchmarks.
Structured Sequence Modeling with Graph Convolutional Recurrent Networks
This paper introduces Graph Convolutional Recurrent Network (GCRN), a deep learning model able to predict structured sequences of data. Precisely, GCRN is a generalization of classical recurrent neural networks (RNN) to data structured by an arbitrary graph. Such structured sequences can represent series of frames in videos, spatio-temporal measurements on a network of sensors, or random walks on a vocabulary graph for natural language modeling. The proposed model combines convolutional neural networks (CNN) on graphs to identify spatial structures and RNN to find dynamic patterns. We study two possible architectures of GCRN, and apply the models to two practical problems: predicting moving MNIST data, and modeling natural language with the Penn Treebank dataset. Experiments show that exploiting simultaneously graph spatial and dynamic information about data can improve both precision and learning speed.
Diverse Human Motion Prediction Guided by Multi-Level Spatial-Temporal Anchors
Predicting diverse human motions given a sequence of historical poses has received increasing attention. Despite rapid progress, existing work captures the multi-modal nature of human motions primarily through likelihood-based sampling, where the mode collapse has been widely observed. In this paper, we propose a simple yet effective approach that disentangles randomly sampled codes with a deterministic learnable component named anchors to promote sample precision and diversity. Anchors are further factorized into spatial anchors and temporal anchors, which provide attractively interpretable control over spatial-temporal disparity. In principle, our spatial-temporal anchor-based sampling (STARS) can be applied to different motion predictors. Here we propose an interaction-enhanced spatial-temporal graph convolutional network (IE-STGCN) that encodes prior knowledge of human motions (e.g., spatial locality), and incorporate the anchors into it. Extensive experiments demonstrate that our approach outperforms state of the art in both stochastic and deterministic prediction, suggesting it as a unified framework for modeling human motions. Our code and pretrained models are available at https://github.com/Sirui-Xu/STARS.
Word-level Deep Sign Language Recognition from Video: A New Large-scale Dataset and Methods Comparison
Vision-based sign language recognition aims at helping deaf people to communicate with others. However, most existing sign language datasets are limited to a small number of words. Due to the limited vocabulary size, models learned from those datasets cannot be applied in practice. In this paper, we introduce a new large-scale Word-Level American Sign Language (WLASL) video dataset, containing more than 2000 words performed by over 100 signers. This dataset will be made publicly available to the research community. To our knowledge, it is by far the largest public ASL dataset to facilitate word-level sign recognition research. Based on this new large-scale dataset, we are able to experiment with several deep learning methods for word-level sign recognition and evaluate their performances in large scale scenarios. Specifically we implement and compare two different models,i.e., (i) holistic visual appearance-based approach, and (ii) 2D human pose based approach. Both models are valuable baselines that will benefit the community for method benchmarking. Moreover, we also propose a novel pose-based temporal graph convolution networks (Pose-TGCN) that models spatial and temporal dependencies in human pose trajectories simultaneously, which has further boosted the performance of the pose-based method. Our results show that pose-based and appearance-based models achieve comparable performances up to 66% at top-10 accuracy on 2,000 words/glosses, demonstrating the validity and challenges of our dataset. Our dataset and baseline deep models are available at https://dxli94.github.io/WLASL/.
Minimalist Traffic Prediction: Linear Layer Is All You Need
Traffic prediction is essential for the progression of Intelligent Transportation Systems (ITS) and the vision of smart cities. While Spatial-Temporal Graph Neural Networks (STGNNs) have shown promise in this domain by leveraging Graph Neural Networks (GNNs) integrated with either RNNs or Transformers, they present challenges such as computational complexity, gradient issues, and resource-intensiveness. This paper addresses these challenges, advocating for three main solutions: a node-embedding approach, time series decomposition, and periodicity learning. We introduce STLinear, a minimalist model architecture designed for optimized efficiency and performance. Unlike traditional STGNNs, STlinear operates fully locally, avoiding inter-node data exchanges, and relies exclusively on linear layers, drastically cutting computational demands. Our empirical studies on real-world datasets confirm STLinear's prowess, matching or exceeding the accuracy of leading STGNNs, but with significantly reduced complexity and computation overhead (more than 95% reduction in MACs per epoch compared to state-of-the-art STGNN baseline published in 2023). In summary, STLinear emerges as a potent, efficient alternative to conventional STGNNs, with profound implications for the future of ITS and smart city initiatives.
Spatio-Temporal Graph Neural Networks: A Survey
Graph Neural Networks have gained huge interest in the past few years. These powerful algorithms expanded deep learning models to non-Euclidean space and were able to achieve state of art performance in various applications including recommender systems and social networks. However, this performance is based on static graph structures assumption which limits the Graph Neural Networks performance when the data varies with time. Spatiotemporal Graph Neural Networks are extension of Graph Neural Networks that takes the time factor into account. Recently, various Spatiotemporal Graph Neural Network algorithms were proposed and achieved superior performance compared to other deep learning algorithms in several time dependent applications. This survey discusses interesting topics related to Spatiotemporal Graph Neural Networks, including algorithms, applications, and open challenges.
Multi-Temporal Relationship Inference in Urban Areas
Finding multiple temporal relationships among locations can benefit a bunch of urban applications, such as dynamic offline advertising and smart public transport planning. While some efforts have been made on finding static relationships among locations, little attention is focused on studying time-aware location relationships. Indeed, abundant location-based human activities are time-varying and the availability of these data enables a new paradigm for understanding the dynamic relationships in a period among connective locations. To this end, we propose to study a new problem, namely multi-Temporal relationship inference among locations (Trial for short), where the major challenge is how to integrate dynamic and geographical influence under the relationship sparsity constraint. Specifically, we propose a solution to Trial with a graph learning scheme, which includes a spatially evolving graph neural network (SEENet) with two collaborative components: spatially evolving graph convolution module (SEConv) and spatially evolving self-supervised learning strategy (SE-SSL). SEConv performs the intra-time aggregation and inter-time propagation to capture the multifaceted spatially evolving contexts from the view of location message passing. In addition, SE-SSL designs time-aware self-supervised learning tasks in a global-local manner with additional evolving constraint to enhance the location representation learning and further handle the relationship sparsity. Finally, experiments on four real-world datasets demonstrate the superiority of our method over several state-of-the-art approaches.
K-Core based Temporal Graph Convolutional Network for Dynamic Graphs
Graph representation learning is a fundamental task in various applications that strives to learn low-dimensional embeddings for nodes that can preserve graph topology information. However, many existing methods focus on static graphs while ignoring evolving graph patterns. Inspired by the success of graph convolutional networks(GCNs) in static graph embedding, we propose a novel k-core based temporal graph convolutional network, the CTGCN, to learn node representations for dynamic graphs. In contrast to previous dynamic graph embedding methods, CTGCN can preserve both local connective proximity and global structural similarity while simultaneously capturing graph dynamics. In the proposed framework, the traditional graph convolution is generalized into two phases, feature transformation and feature aggregation, which gives the CTGCN more flexibility and enables the CTGCN to learn connective and structural information under the same framework. Experimental results on 7 real-world graphs demonstrate that the CTGCN outperforms existing state-of-the-art graph embedding methods in several tasks, including link prediction and structural role classification. The source code of this work can be obtained from https://github.com/jhljx/CTGCN.
SpaGBOL: Spatial-Graph-Based Orientated Localisation
Cross-View Geo-Localisation within urban regions is challenging in part due to the lack of geo-spatial structuring within current datasets and techniques. We propose utilising graph representations to model sequences of local observations and the connectivity of the target location. Modelling as a graph enables generating previously unseen sequences by sampling with new parameter configurations. To leverage this newly available information, we propose a GNN-based architecture, producing spatially strong embeddings and improving discriminability over isolated image embeddings. We outline SpaGBOL, introducing three novel contributions. 1) The first graph-structured dataset for Cross-View Geo-Localisation, containing multiple streetview images per node to improve generalisation. 2) Introducing GNNs to the problem, we develop the first system that exploits the correlation between node proximity and feature similarity. 3) Leveraging the unique properties of the graph representation - we demonstrate a novel retrieval filtering approach based on neighbourhood bearings. SpaGBOL achieves state-of-the-art accuracies on the unseen test graph - with relative Top-1 retrieval improvements on previous techniques of 11%, and 50% when filtering with Bearing Vector Matching on the SpaGBOL dataset.
A Large-Scale Study on Unsupervised Spatiotemporal Representation Learning
We present a large-scale study on unsupervised spatiotemporal representation learning from videos. With a unified perspective on four recent image-based frameworks, we study a simple objective that can easily generalize all these methods to space-time. Our objective encourages temporally-persistent features in the same video, and in spite of its simplicity, it works surprisingly well across: (i) different unsupervised frameworks, (ii) pre-training datasets, (iii) downstream datasets, and (iv) backbone architectures. We draw a series of intriguing observations from this study, e.g., we discover that encouraging long-spanned persistency can be effective even if the timespan is 60 seconds. In addition to state-of-the-art results in multiple benchmarks, we report a few promising cases in which unsupervised pre-training can outperform its supervised counterpart. Code is made available at https://github.com/facebookresearch/SlowFast
Neighborhood-aware Scalable Temporal Network Representation Learning
Temporal networks have been widely used to model real-world complex systems such as financial systems and e-commerce systems. In a temporal network, the joint neighborhood of a set of nodes often provides crucial structural information useful for predicting whether they may interact at a certain time. However, recent representation learning methods for temporal networks often fail to extract such information or depend on online construction of structural features, which is time-consuming. To address the issue, this work proposes Neighborhood-Aware Temporal network model (NAT). For each node in the network, NAT abandons the commonly-used one-single-vector-based representation while adopting a novel dictionary-type neighborhood representation. Such a dictionary representation records a downsampled set of the neighboring nodes as keys, and allows fast construction of structural features for a joint neighborhood of multiple nodes. We also design a dedicated data structure termed N-cache to support parallel access and update of those dictionary representations on GPUs. NAT gets evaluated over seven real-world large-scale temporal networks. NAT not only outperforms all cutting-edge baselines by averaged 1.2% and 4.2% in transductive and inductive link prediction accuracy, respectively, but also keeps scalable by achieving a speed-up of 4.1-76.7x against the baselines that adopt joint structural features and achieves a speed-up of 1.6-4.0x against the baselines that cannot adopt those features. The link to the code: https: //github.com/Graph-COM/Neighborhood-Aware-Temporal-Network.
Graph Representation Learning for Road Type Classification
We present a novel learning-based approach to graph representations of road networks employing state-of-the-art graph convolutional neural networks. Our approach is applied to realistic road networks of 17 cities from Open Street Map. While edge features are crucial to generate descriptive graph representations of road networks, graph convolutional networks usually rely on node features only. We show that the highly representative edge features can still be integrated into such networks by applying a line graph transformation. We also propose a method for neighborhood sampling based on a topological neighborhood composed of both local and global neighbors. We compare the performance of learning representations using different types of neighborhood aggregation functions in transductive and inductive tasks and in supervised and unsupervised learning. Furthermore, we propose a novel aggregation approach, Graph Attention Isomorphism Network, GAIN. Our results show that GAIN outperforms state-of-the-art methods on the road type classification problem.
MLPST: MLP is All You Need for Spatio-Temporal Prediction
Traffic prediction is a typical spatio-temporal data mining task and has great significance to the public transportation system. Considering the demand for its grand application, we recognize key factors for an ideal spatio-temporal prediction method: efficient, lightweight, and effective. However, the current deep model-based spatio-temporal prediction solutions generally own intricate architectures with cumbersome optimization, which can hardly meet these expectations. To accomplish the above goals, we propose an intuitive and novel framework, MLPST, a pure multi-layer perceptron architecture for traffic prediction. Specifically, we first capture spatial relationships from both local and global receptive fields. Then, temporal dependencies in different intervals are comprehensively considered. Through compact and swift MLP processing, MLPST can well capture the spatial and temporal dependencies while requiring only linear computational complexity, as well as model parameters that are more than an order of magnitude lower than baselines. Extensive experiments validated the superior effectiveness and efficiency of MLPST against advanced baselines, and among models with optimal accuracy, MLPST achieves the best time and space efficiency.
Spatial-Temporal Transformer Networks for Traffic Flow Forecasting
Traffic forecasting has emerged as a core component of intelligent transportation systems. However, timely accurate traffic forecasting, especially long-term forecasting, still remains an open challenge due to the highly nonlinear and dynamic spatial-temporal dependencies of traffic flows. In this paper, we propose a novel paradigm of Spatial-Temporal Transformer Networks (STTNs) that leverages dynamical directed spatial dependencies and long-range temporal dependencies to improve the accuracy of long-term traffic forecasting. Specifically, we present a new variant of graph neural networks, named spatial transformer, by dynamically modeling directed spatial dependencies with self-attention mechanism to capture realtime traffic conditions as well as the directionality of traffic flows. Furthermore, different spatial dependency patterns can be jointly modeled with multi-heads attention mechanism to consider diverse relationships related to different factors (e.g. similarity, connectivity and covariance). On the other hand, the temporal transformer is utilized to model long-range bidirectional temporal dependencies across multiple time steps. Finally, they are composed as a block to jointly model the spatial-temporal dependencies for accurate traffic prediction. Compared to existing works, the proposed model enables fast and scalable training over a long range spatial-temporal dependencies. Experiment results demonstrate that the proposed model achieves competitive results compared with the state-of-the-arts, especially forecasting long-term traffic flows on real-world PeMS-Bay and PeMSD7(M) datasets.
T-GRAB: A Synthetic Diagnostic Benchmark for Learning on Temporal Graphs
Dynamic graph learning methods have recently emerged as powerful tools for modelling relational data evolving through time. However, despite extensive benchmarking efforts, it remains unclear whether current Temporal Graph Neural Networks (TGNNs) effectively capture core temporal patterns such as periodicity, cause-and-effect, and long-range dependencies. In this work, we introduce the Temporal Graph Reasoning Benchmark (T-GRAB), a comprehensive set of synthetic tasks designed to systematically probe the capabilities of TGNNs to reason across time. T-GRAB provides controlled, interpretable tasks that isolate key temporal skills: counting/memorizing periodic repetitions, inferring delayed causal effects, and capturing long-range dependencies over both spatial and temporal dimensions. We evaluate 11 temporal graph learning methods on these tasks, revealing fundamental shortcomings in their ability to generalize temporal patterns. Our findings offer actionable insights into the limitations of current models, highlight challenges hidden by traditional real-world benchmarks, and motivate the development of architectures with stronger temporal reasoning abilities. The code for T-GRAB can be found at: https://github.com/alirezadizaji/T-GRAB.
Todyformer: Towards Holistic Dynamic Graph Transformers with Structure-Aware Tokenization
Temporal Graph Neural Networks have garnered substantial attention for their capacity to model evolving structural and temporal patterns while exhibiting impressive performance. However, it is known that these architectures are encumbered by issues that constrain their performance, such as over-squashing and over-smoothing. Meanwhile, Transformers have demonstrated exceptional computational capacity to effectively address challenges related to long-range dependencies. Consequently, we introduce Todyformer-a novel Transformer-based neural network tailored for dynamic graphs. It unifies the local encoding capacity of Message-Passing Neural Networks (MPNNs) with the global encoding of Transformers through i) a novel patchifying paradigm for dynamic graphs to improve over-squashing, ii) a structure-aware parametric tokenization strategy leveraging MPNNs, iii) a Transformer with temporal positional-encoding to capture long-range dependencies, and iv) an encoding architecture that alternates between local and global contextualization, mitigating over-smoothing in MPNNs. Experimental evaluations on public benchmark datasets demonstrate that Todyformer consistently outperforms the state-of-the-art methods for downstream tasks. Furthermore, we illustrate the underlying aspects of the proposed model in effectively capturing extensive temporal dependencies in dynamic graphs.
TGBFormer: Transformer-GraphFormer Blender Network for Video Object Detection
Video object detection has made significant progress in recent years thanks to convolutional neural networks (CNNs) and vision transformers (ViTs). Typically, CNNs excel at capturing local features but struggle to model global representations. Conversely, ViTs are adept at capturing long-range global features but face challenges in representing local feature details. Off-the-shelf video object detection methods solely rely on CNNs or ViTs to conduct feature aggregation, which hampers their capability to simultaneously leverage global and local information, thereby resulting in limited detection performance. In this paper, we propose a Transformer-GraphFormer Blender Network (TGBFormer) for video object detection, with three key technical improvements to fully exploit the advantages of transformers and graph convolutional networks while compensating for their limitations. First, we develop a spatial-temporal transformer module to aggregate global contextual information, constituting global representations with long-range feature dependencies. Second, we introduce a spatial-temporal GraphFormer module that utilizes local spatial and temporal relationships to aggregate features, generating new local representations that are complementary to the transformer outputs. Third, we design a global-local feature blender module to adaptively couple transformer-based global representations and GraphFormer-based local representations. Extensive experiments demonstrate that our TGBFormer establishes new state-of-the-art results on the ImageNet VID dataset. Particularly, our TGBFormer achieves 86.5% mAP while running at around 41.0 FPS on a single Tesla A100 GPU.
Exploring Visual Relationship for Image Captioning
It is always well believed that modeling relationships between objects would be helpful for representing and eventually describing an image. Nevertheless, there has not been evidence in support of the idea on image description generation. In this paper, we introduce a new design to explore the connections between objects for image captioning under the umbrella of attention-based encoder-decoder framework. Specifically, we present Graph Convolutional Networks plus Long Short-Term Memory (dubbed as GCN-LSTM) architecture that novelly integrates both semantic and spatial object relationships into image encoder. Technically, we build graphs over the detected objects in an image based on their spatial and semantic connections. The representations of each region proposed on objects are then refined by leveraging graph structure through GCN. With the learnt region-level features, our GCN-LSTM capitalizes on LSTM-based captioning framework with attention mechanism for sentence generation. Extensive experiments are conducted on COCO image captioning dataset, and superior results are reported when comparing to state-of-the-art approaches. More remarkably, GCN-LSTM increases CIDEr-D performance from 120.1% to 128.7% on COCO testing set.
Towards Deeper Graph Neural Networks
Graph neural networks have shown significant success in the field of graph representation learning. Graph convolutions perform neighborhood aggregation and represent one of the most important graph operations. Nevertheless, one layer of these neighborhood aggregation methods only consider immediate neighbors, and the performance decreases when going deeper to enable larger receptive fields. Several recent studies attribute this performance deterioration to the over-smoothing issue, which states that repeated propagation makes node representations of different classes indistinguishable. In this work, we study this observation systematically and develop new insights towards deeper graph neural networks. First, we provide a systematical analysis on this issue and argue that the key factor compromising the performance significantly is the entanglement of representation transformation and propagation in current graph convolution operations. After decoupling these two operations, deeper graph neural networks can be used to learn graph node representations from larger receptive fields. We further provide a theoretical analysis of the above observation when building very deep models, which can serve as a rigorous and gentle description of the over-smoothing issue. Based on our theoretical and empirical analysis, we propose Deep Adaptive Graph Neural Network (DAGNN) to adaptively incorporate information from large receptive fields. A set of experiments on citation, co-authorship, and co-purchase datasets have confirmed our analysis and insights and demonstrated the superiority of our proposed methods.
How Powerful are Graph Neural Networks?
Graph Neural Networks (GNNs) are an effective framework for representation learning of graphs. GNNs follow a neighborhood aggregation scheme, where the representation vector of a node is computed by recursively aggregating and transforming representation vectors of its neighboring nodes. Many GNN variants have been proposed and have achieved state-of-the-art results on both node and graph classification tasks. However, despite GNNs revolutionizing graph representation learning, there is limited understanding of their representational properties and limitations. Here, we present a theoretical framework for analyzing the expressive power of GNNs to capture different graph structures. Our results characterize the discriminative power of popular GNN variants, such as Graph Convolutional Networks and GraphSAGE, and show that they cannot learn to distinguish certain simple graph structures. We then develop a simple architecture that is provably the most expressive among the class of GNNs and is as powerful as the Weisfeiler-Lehman graph isomorphism test. We empirically validate our theoretical findings on a number of graph classification benchmarks, and demonstrate that our model achieves state-of-the-art performance.
A Generative Self-Supervised Framework using Functional Connectivity in fMRI Data
Deep neural networks trained on Functional Connectivity (FC) networks extracted from functional Magnetic Resonance Imaging (fMRI) data have gained popularity due to the increasing availability of data and advances in model architectures, including Graph Neural Network (GNN). Recent research on the application of GNN to FC suggests that exploiting the time-varying properties of the FC could significantly improve the accuracy and interpretability of the model prediction. However, the high cost of acquiring high-quality fMRI data and corresponding phenotypic labels poses a hurdle to their application in real-world settings, such that a model na\"ively trained in a supervised fashion can suffer from insufficient performance or a lack of generalization on a small number of data. In addition, most Self-Supervised Learning (SSL) approaches for GNNs to date adopt a contrastive strategy, which tends to lose appropriate semantic information when the graph structure is perturbed or does not leverage both spatial and temporal information simultaneously. In light of these challenges, we propose a generative SSL approach that is tailored to effectively harness spatio-temporal information within dynamic FC. Our empirical results, experimented with large-scale (>50,000) fMRI datasets, demonstrate that our approach learns valuable representations and enables the construction of accurate and robust models when fine-tuned for downstream tasks.
ST-LINK: Spatially-Aware Large Language Models for Spatio-Temporal Forecasting
Traffic forecasting represents a crucial problem within intelligent transportation systems. In recent research, Large Language Models (LLMs) have emerged as a promising method, but their intrinsic design, tailored primarily for sequential token processing, introduces notable challenges in effectively capturing spatial dependencies. Specifically, the inherent limitations of LLMs in modeling spatial relationships and their architectural incompatibility with graph-structured spatial data remain largely unaddressed. To overcome these limitations, we introduce ST-LINK, a novel framework that enhances the capability of Large Language Models to capture spatio-temporal dependencies. Its key components are Spatially-Enhanced Attention (SE-Attention) and the Memory Retrieval Feed-Forward Network (MRFFN). SE-Attention extends rotary position embeddings to integrate spatial correlations as direct rotational transformations within the attention mechanism. This approach maximizes spatial learning while preserving the LLM's inherent sequential processing structure. Meanwhile, MRFFN dynamically retrieves and utilizes key historical patterns to capture complex temporal dependencies and improve the stability of long-term forecasting. Comprehensive experiments on benchmark datasets demonstrate that ST-LINK surpasses conventional deep learning and LLM approaches, and effectively captures both regular traffic patterns and abrupt changes.
Spatial As Deep: Spatial CNN for Traffic Scene Understanding
Convolutional neural networks (CNNs) are usually built by stacking convolutional operations layer-by-layer. Although CNN has shown strong capability to extract semantics from raw pixels, its capacity to capture spatial relationships of pixels across rows and columns of an image is not fully explored. These relationships are important to learn semantic objects with strong shape priors but weak appearance coherences, such as traffic lanes, which are often occluded or not even painted on the road surface as shown in Fig. 1 (a). In this paper, we propose Spatial CNN (SCNN), which generalizes traditional deep layer-by-layer convolutions to slice-byslice convolutions within feature maps, thus enabling message passings between pixels across rows and columns in a layer. Such SCNN is particular suitable for long continuous shape structure or large objects, with strong spatial relationship but less appearance clues, such as traffic lanes, poles, and wall. We apply SCNN on a newly released very challenging traffic lane detection dataset and Cityscapse dataset. The results show that SCNN could learn the spatial relationship for structure output and significantly improves the performance. We show that SCNN outperforms the recurrent neural network (RNN) based ReNet and MRF+CNN (MRFNet) in the lane detection dataset by 8.7% and 4.6% respectively. Moreover, our SCNN won the 1st place on the TuSimple Benchmark Lane Detection Challenge, with an accuracy of 96.53%.
Feature Expansion for Graph Neural Networks
Graph neural networks aim to learn representations for graph-structured data and show impressive performance, particularly in node classification. Recently, many methods have studied the representations of GNNs from the perspective of optimization goals and spectral graph theory. However, the feature space that dominates representation learning has not been systematically studied in graph neural networks. In this paper, we propose to fill this gap by analyzing the feature space of both spatial and spectral models. We decompose graph neural networks into determined feature spaces and trainable weights, providing the convenience of studying the feature space explicitly using matrix space analysis. In particular, we theoretically find that the feature space tends to be linearly correlated due to repeated aggregations. Motivated by these findings, we propose 1) feature subspaces flattening and 2) structural principal components to expand the feature space. Extensive experiments verify the effectiveness of our proposed more comprehensive feature space, with comparable inference time to the baseline, and demonstrate its efficient convergence capability.
TS-LSTM and Temporal-Inception: Exploiting Spatiotemporal Dynamics for Activity Recognition
Recent two-stream deep Convolutional Neural Networks (ConvNets) have made significant progress in recognizing human actions in videos. Despite their success, methods extending the basic two-stream ConvNet have not systematically explored possible network architectures to further exploit spatiotemporal dynamics within video sequences. Further, such networks often use different baseline two-stream networks. Therefore, the differences and the distinguishing factors between various methods using Recurrent Neural Networks (RNN) or convolutional networks on temporally-constructed feature vectors (Temporal-ConvNet) are unclear. In this work, we first demonstrate a strong baseline two-stream ConvNet using ResNet-101. We use this baseline to thoroughly examine the use of both RNNs and Temporal-ConvNets for extracting spatiotemporal information. Building upon our experimental results, we then propose and investigate two different networks to further integrate spatiotemporal information: 1) temporal segment RNN and 2) Inception-style Temporal-ConvNet. We demonstrate that using both RNNs (using LSTMs) and Temporal-ConvNets on spatiotemporal feature matrices are able to exploit spatiotemporal dynamics to improve the overall performance. However, each of these methods require proper care to achieve state-of-the-art performance; for example, LSTMs require pre-segmented data or else they cannot fully exploit temporal information. Our analysis identifies specific limitations for each method that could form the basis of future work. Our experimental results on UCF101 and HMDB51 datasets achieve state-of-the-art performances, 94.1% and 69.0%, respectively, without requiring extensive temporal augmentation.
CKGConv: General Graph Convolution with Continuous Kernels
The existing definitions of graph convolution, either from spatial or spectral perspectives, are inflexible and not unified. Defining a general convolution operator in the graph domain is challenging due to the lack of canonical coordinates, the presence of irregular structures, and the properties of graph symmetries. In this work, we propose a novel and general graph convolution framework by parameterizing the kernels as continuous functions of pseudo-coordinates derived via graph positional encoding. We name this Continuous Kernel Graph Convolution (CKGConv). Theoretically, we demonstrate that CKGConv is flexible and expressive. CKGConv encompasses many existing graph convolutions, and exhibits a stronger expressiveness, as powerful as graph transformers in terms of distinguishing non-isomorphic graphs. Empirically, we show that CKGConv-based Networks outperform existing graph convolutional networks and perform comparably to the best graph transformers across a variety of graph datasets. The code and models are publicly available at https://github.com/networkslab/CKGConv.
GMAN: A Graph Multi-Attention Network for Traffic Prediction
Long-term traffic prediction is highly challenging due to the complexity of traffic systems and the constantly changing nature of many impacting factors. In this paper, we focus on the spatio-temporal factors, and propose a graph multi-attention network (GMAN) to predict traffic conditions for time steps ahead at different locations on a road network graph. GMAN adapts an encoder-decoder architecture, where both the encoder and the decoder consist of multiple spatio-temporal attention blocks to model the impact of the spatio-temporal factors on traffic conditions. The encoder encodes the input traffic features and the decoder predicts the output sequence. Between the encoder and the decoder, a transform attention layer is applied to convert the encoded traffic features to generate the sequence representations of future time steps as the input of the decoder. The transform attention mechanism models the direct relationships between historical and future time steps that helps to alleviate the error propagation problem among prediction time steps. Experimental results on two real-world traffic prediction tasks (i.e., traffic volume prediction and traffic speed prediction) demonstrate the superiority of GMAN. In particular, in the 1 hour ahead prediction, GMAN outperforms state-of-the-art methods by up to 4% improvement in MAE measure. The source code is available at https://github.com/zhengchuanpan/GMAN.
Temporal Graph Benchmark for Machine Learning on Temporal Graphs
We present the Temporal Graph Benchmark (TGB), a collection of challenging and diverse benchmark datasets for realistic, reproducible, and robust evaluation of machine learning models on temporal graphs. TGB datasets are of large scale, spanning years in duration, incorporate both node and edge-level prediction tasks and cover a diverse set of domains including social, trade, transaction, and transportation networks. For both tasks, we design evaluation protocols based on realistic use-cases. We extensively benchmark each dataset and find that the performance of common models can vary drastically across datasets. In addition, on dynamic node property prediction tasks, we show that simple methods often achieve superior performance compared to existing temporal graph models. We believe that these findings open up opportunities for future research on temporal graphs. Finally, TGB provides an automated machine learning pipeline for reproducible and accessible temporal graph research, including data loading, experiment setup and performance evaluation. TGB will be maintained and updated on a regular basis and welcomes community feedback. TGB datasets, data loaders, example codes, evaluation setup, and leaderboards are publicly available at https://tgb.complexdatalab.com/.
Do We Really Need Complicated Model Architectures For Temporal Networks?
Recurrent neural network (RNN) and self-attention mechanism (SAM) are the de facto methods to extract spatial-temporal information for temporal graph learning. Interestingly, we found that although both RNN and SAM could lead to a good performance, in practice neither of them is always necessary. In this paper, we propose GraphMixer, a conceptually and technically simple architecture that consists of three components: (1) a link-encoder that is only based on multi-layer perceptrons (MLP) to summarize the information from temporal links, (2) a node-encoder that is only based on neighbor mean-pooling to summarize node information, and (3) an MLP-based link classifier that performs link prediction based on the outputs of the encoders. Despite its simplicity, GraphMixer attains an outstanding performance on temporal link prediction benchmarks with faster convergence and better generalization performance. These results motivate us to rethink the importance of simpler model architecture.
Towards Sparse Hierarchical Graph Classifiers
Recent advances in representation learning on graphs, mainly leveraging graph convolutional networks, have brought a substantial improvement on many graph-based benchmark tasks. While novel approaches to learning node embeddings are highly suitable for node classification and link prediction, their application to graph classification (predicting a single label for the entire graph) remains mostly rudimentary, typically using a single global pooling step to aggregate node features or a hand-designed, fixed heuristic for hierarchical coarsening of the graph structure. An important step towards ameliorating this is differentiable graph coarsening---the ability to reduce the size of the graph in an adaptive, data-dependent manner within a graph neural network pipeline, analogous to image downsampling within CNNs. However, the previous prominent approach to pooling has quadratic memory requirements during training and is therefore not scalable to large graphs. Here we combine several recent advances in graph neural network design to demonstrate that competitive hierarchical graph classification results are possible without sacrificing sparsity. Our results are verified on several established graph classification benchmarks, and highlight an important direction for future research in graph-based neural networks.
Fisher Information Embedding for Node and Graph Learning
Attention-based graph neural networks (GNNs), such as graph attention networks (GATs), have become popular neural architectures for processing graph-structured data and learning node embeddings. Despite their empirical success, these models rely on labeled data and the theoretical properties of these models have yet to be fully understood. In this work, we propose a novel attention-based node embedding framework for graphs. Our framework builds upon a hierarchical kernel for multisets of subgraphs around nodes (e.g. neighborhoods) and each kernel leverages the geometry of a smooth statistical manifold to compare pairs of multisets, by "projecting" the multisets onto the manifold. By explicitly computing node embeddings with a manifold of Gaussian mixtures, our method leads to a new attention mechanism for neighborhood aggregation. We provide theoretical insights into generalizability and expressivity of our embeddings, contributing to a deeper understanding of attention-based GNNs. We propose both efficient unsupervised and supervised methods for learning the embeddings. Through experiments on several node classification benchmarks, we demonstrate that our proposed method outperforms existing attention-based graph models like GATs. Our code is available at https://github.com/BorgwardtLab/fisher_information_embedding.
Large-scale Graph Representation Learning of Dynamic Brain Connectome with Transformers
Graph Transformers have recently been successful in various graph representation learning tasks, providing a number of advantages over message-passing Graph Neural Networks. Utilizing Graph Transformers for learning the representation of the brain functional connectivity network is also gaining interest. However, studies to date have underlooked the temporal dynamics of functional connectivity, which fluctuates over time. Here, we propose a method for learning the representation of dynamic functional connectivity with Graph Transformers. Specifically, we define the connectome embedding, which holds the position, structure, and time information of the functional connectivity graph, and use Transformers to learn its representation across time. We perform experiments with over 50,000 resting-state fMRI samples obtained from three datasets, which is the largest number of fMRI data used in studies by far. The experimental results show that our proposed method outperforms other competitive baselines in gender classification and age regression tasks based on the functional connectivity extracted from the fMRI data.
Activity-aware Human Mobility Prediction with Hierarchical Graph Attention Recurrent Network
Human mobility prediction is a fundamental task essential for various applications in urban planning, location-based services and intelligent transportation systems. Existing methods often ignore activity information crucial for reasoning human preferences and routines, or adopt a simplified representation of the dependencies between time, activities and locations. To address these issues, we present Hierarchical Graph Attention Recurrent Network (HGARN) for human mobility prediction. Specifically, we construct a hierarchical graph based on past mobility records and employ a Hierarchical Graph Attention Module to capture complex time-activity-location dependencies. This way, HGARN can learn representations with rich human travel semantics to model user preferences at the global level. We also propose a model-agnostic history-enhanced confidence (MAHEC) label to incorporate each user's individual-level preferences. Finally, we introduce a Temporal Module, which employs recurrent structures to jointly predict users' next activities and their associated locations, with the former used as an auxiliary task to enhance the latter prediction. For model evaluation, we test the performance of HGARN against existing state-of-the-art methods in both the recurring (i.e., returning to a previously visited location) and explorative (i.e., visiting a new location) settings. Overall, HGARN outperforms other baselines significantly in all settings based on two real-world human mobility data benchmarks. These findings confirm the important role that human activities play in determining mobility decisions, illustrating the need to develop activity-aware intelligent transportation systems. Source codes of this study are available at https://github.com/YihongT/HGARN.
Deep Temporal Graph Clustering
Deep graph clustering has recently received significant attention due to its ability to enhance the representation learning capabilities of models in unsupervised scenarios. Nevertheless, deep clustering for temporal graphs, which could capture crucial dynamic interaction information, has not been fully explored. It means that in many clustering-oriented real-world scenarios, temporal graphs can only be processed as static graphs. This not only causes the loss of dynamic information but also triggers huge computational consumption. To solve the problem, we propose a general framework for deep Temporal Graph Clustering called TGC, which introduces deep clustering techniques to suit the interaction sequence-based batch-processing pattern of temporal graphs. In addition, we discuss differences between temporal graph clustering and static graph clustering from several levels. To verify the superiority of the proposed framework TGC, we conduct extensive experiments. The experimental results show that temporal graph clustering enables more flexibility in finding a balance between time and space requirements, and our framework can effectively improve the performance of existing temporal graph learning methods. The code is released: https://github.com/MGitHubL/Deep-Temporal-Graph-Clustering.
EvolveGCN: Evolving Graph Convolutional Networks for Dynamic Graphs
Graph representation learning resurges as a trending research subject owing to the widespread use of deep learning for Euclidean data, which inspire various creative designs of neural networks in the non-Euclidean domain, particularly graphs. With the success of these graph neural networks (GNN) in the static setting, we approach further practical scenarios where the graph dynamically evolves. Existing approaches typically resort to node embeddings and use a recurrent neural network (RNN, broadly speaking) to regulate the embeddings and learn the temporal dynamics. These methods require the knowledge of a node in the full time span (including both training and testing) and are less applicable to the frequent change of the node set. In some extreme scenarios, the node sets at different time steps may completely differ. To resolve this challenge, we propose EvolveGCN, which adapts the graph convolutional network (GCN) model along the temporal dimension without resorting to node embeddings. The proposed approach captures the dynamism of the graph sequence through using an RNN to evolve the GCN parameters. Two architectures are considered for the parameter evolution. We evaluate the proposed approach on tasks including link prediction, edge classification, and node classification. The experimental results indicate a generally higher performance of EvolveGCN compared with related approaches. The code is available at https://github.com/IBM/EvolveGCN.
Simplifying Graph Convolutional Networks
Graph Convolutional Networks (GCNs) and their variants have experienced significant attention and have become the de facto methods for learning graph representations. GCNs derive inspiration primarily from recent deep learning approaches, and as a result, may inherit unnecessary complexity and redundant computation. In this paper, we reduce this excess complexity through successively removing nonlinearities and collapsing weight matrices between consecutive layers. We theoretically analyze the resulting linear model and show that it corresponds to a fixed low-pass filter followed by a linear classifier. Notably, our experimental evaluation demonstrates that these simplifications do not negatively impact accuracy in many downstream applications. Moreover, the resulting model scales to larger datasets, is naturally interpretable, and yields up to two orders of magnitude speedup over FastGCN.
LiGNN: Graph Neural Networks at LinkedIn
In this paper, we present LiGNN, a deployed large-scale Graph Neural Networks (GNNs) Framework. We share our insight on developing and deployment of GNNs at large scale at LinkedIn. We present a set of algorithmic improvements to the quality of GNN representation learning including temporal graph architectures with long term losses, effective cold start solutions via graph densification, ID embeddings and multi-hop neighbor sampling. We explain how we built and sped up by 7x our large-scale training on LinkedIn graphs with adaptive sampling of neighbors, grouping and slicing of training data batches, specialized shared-memory queue and local gradient optimization. We summarize our deployment lessons and learnings gathered from A/B test experiments. The techniques presented in this work have contributed to an approximate relative improvements of 1% of Job application hearing back rate, 2% Ads CTR lift, 0.5% of Feed engaged daily active users, 0.2% session lift and 0.1% weekly active user lift from people recommendation. We believe that this work can provide practical solutions and insights for engineers who are interested in applying Graph neural networks at large scale.
Spatial Transformer Networks
Convolutional Neural Networks define an exceptionally powerful class of models, but are still limited by the lack of ability to be spatially invariant to the input data in a computationally and parameter efficient manner. In this work we introduce a new learnable module, the Spatial Transformer, which explicitly allows the spatial manipulation of data within the network. This differentiable module can be inserted into existing convolutional architectures, giving neural networks the ability to actively spatially transform feature maps, conditional on the feature map itself, without any extra training supervision or modification to the optimisation process. We show that the use of spatial transformers results in models which learn invariance to translation, scale, rotation and more generic warping, resulting in state-of-the-art performance on several benchmarks, and for a number of classes of transformations.
STDA-Meta: A Meta-Learning Framework for Few-Shot Traffic Prediction
As the development of cities, traffic congestion becomes an increasingly pressing issue, and traffic prediction is a classic method to relieve that issue. Traffic prediction is one specific application of spatio-temporal prediction learning, like taxi scheduling, weather prediction, and ship trajectory prediction. Against these problems, classical spatio-temporal prediction learning methods including deep learning, require large amounts of training data. In reality, some newly developed cities with insufficient sensors would not hold that assumption, and the data scarcity makes predictive performance worse. In such situation, the learning method on insufficient data is known as few-shot learning (FSL), and the FSL of traffic prediction remains challenges. On the one hand, graph structures' irregularity and dynamic nature of graphs cannot hold the performance of spatio-temporal learning method. On the other hand, conventional domain adaptation methods cannot work well on insufficient training data, when transferring knowledge from different domains to the intended target domain.To address these challenges, we propose a novel spatio-temporal domain adaptation (STDA) method that learns transferable spatio-temporal meta-knowledge from data-sufficient cities in an adversarial manner. This learned meta-knowledge can improve the prediction performance of data-scarce cities. Specifically, we train the STDA model using a Model-Agnostic Meta-Learning (MAML) based episode learning process, which is a model-agnostic meta-learning framework that enables the model to solve new learning tasks using only a small number of training samples. We conduct numerous experiments on four traffic prediction datasets, and our results show that the prediction performance of our model has improved by 7\% compared to baseline models on the two metrics of MAE and RMSE.
VLG-Net: Video-Language Graph Matching Network for Video Grounding
Grounding language queries in videos aims at identifying the time interval (or moment) semantically relevant to a language query. The solution to this challenging task demands understanding videos' and queries' semantic content and the fine-grained reasoning about their multi-modal interactions. Our key idea is to recast this challenge into an algorithmic graph matching problem. Fueled by recent advances in Graph Neural Networks, we propose to leverage Graph Convolutional Networks to model video and textual information as well as their semantic alignment. To enable the mutual exchange of information across the modalities, we design a novel Video-Language Graph Matching Network (VLG-Net) to match video and query graphs. Core ingredients include representation graphs built atop video snippets and query tokens separately and used to model intra-modality relationships. A Graph Matching layer is adopted for cross-modal context modeling and multi-modal fusion. Finally, moment candidates are created using masked moment attention pooling by fusing the moment's enriched snippet features. We demonstrate superior performance over state-of-the-art grounding methods on three widely used datasets for temporal localization of moments in videos with language queries: ActivityNet-Captions, TACoS, and DiDeMo.
Space-Time Correspondence as a Contrastive Random Walk
This paper proposes a simple self-supervised approach for learning a representation for visual correspondence from raw video. We cast correspondence as prediction of links in a space-time graph constructed from video. In this graph, the nodes are patches sampled from each frame, and nodes adjacent in time can share a directed edge. We learn a representation in which pairwise similarity defines transition probability of a random walk, so that long-range correspondence is computed as a walk along the graph. We optimize the representation to place high probability along paths of similarity. Targets for learning are formed without supervision, by cycle-consistency: the objective is to maximize the likelihood of returning to the initial node when walking along a graph constructed from a palindrome of frames. Thus, a single path-level constraint implicitly supervises chains of intermediate comparisons. When used as a similarity metric without adaptation, the learned representation outperforms the self-supervised state-of-the-art on label propagation tasks involving objects, semantic parts, and pose. Moreover, we demonstrate that a technique we call edge dropout, as well as self-supervised adaptation at test-time, further improve transfer for object-centric correspondence.
TESTAM: A Time-Enhanced Spatio-Temporal Attention Model with Mixture of Experts
Accurate traffic forecasting is challenging due to the complex dependency on road networks, various types of roads, and the abrupt speed change due to the events. Recent works mainly focus on dynamic spatial modeling with adaptive graph embedding or graph attention having less consideration for temporal characteristics and in-situ modeling. In this paper, we propose a novel deep learning model named TESTAM, which individually models recurring and non-recurring traffic patterns by a mixture-of-experts model with three experts on temporal modeling, spatio-temporal modeling with static graph, and dynamic spatio-temporal dependency modeling with dynamic graph. By introducing different experts and properly routing them, TESTAM could better model various circumstances, including spatially isolated nodes, highly related nodes, and recurring and non-recurring events. For the proper routing, we reformulate a gating problem into a classification problem with pseudo labels. Experimental results on three public traffic network datasets, METR-LA, PEMS-BAY, and EXPY-TKY, demonstrate that TESTAM achieves a better indication and modeling of recurring and non-recurring traffic. We published the official code at https://github.com/HyunWookL/TESTAM
SwinLSTM:Improving Spatiotemporal Prediction Accuracy using Swin Transformer and LSTM
Integrating CNNs and RNNs to capture spatiotemporal dependencies is a prevalent strategy for spatiotemporal prediction tasks. However, the property of CNNs to learn local spatial information decreases their efficiency in capturing spatiotemporal dependencies, thereby limiting their prediction accuracy. In this paper, we propose a new recurrent cell, SwinLSTM, which integrates Swin Transformer blocks and the simplified LSTM, an extension that replaces the convolutional structure in ConvLSTM with the self-attention mechanism. Furthermore, we construct a network with SwinLSTM cell as the core for spatiotemporal prediction. Without using unique tricks, SwinLSTM outperforms state-of-the-art methods on Moving MNIST, Human3.6m, TaxiBJ, and KTH datasets. In particular, it exhibits a significant improvement in prediction accuracy compared to ConvLSTM. Our competitive experimental results demonstrate that learning global spatial dependencies is more advantageous for models to capture spatiotemporal dependencies. We hope that SwinLSTM can serve as a solid baseline to promote the advancement of spatiotemporal prediction accuracy. The codes are publicly available at https://github.com/SongTang-x/SwinLSTM.
Describing Videos by Exploiting Temporal Structure
Recent progress in using recurrent neural networks (RNNs) for image description has motivated the exploration of their application for video description. However, while images are static, working with videos requires modeling their dynamic temporal structure and then properly integrating that information into a natural language description. In this context, we propose an approach that successfully takes into account both the local and global temporal structure of videos to produce descriptions. First, our approach incorporates a spatial temporal 3-D convolutional neural network (3-D CNN) representation of the short temporal dynamics. The 3-D CNN representation is trained on video action recognition tasks, so as to produce a representation that is tuned to human motion and behavior. Second we propose a temporal attention mechanism that allows to go beyond local temporal modeling and learns to automatically select the most relevant temporal segments given the text-generating RNN. Our approach exceeds the current state-of-art for both BLEU and METEOR metrics on the Youtube2Text dataset. We also present results on a new, larger and more challenging dataset of paired video and natural language descriptions.
Hierarchical Joint Graph Learning and Multivariate Time Series Forecasting
Multivariate time series is prevalent in many scientific and industrial domains. Modeling multivariate signals is challenging due to their long-range temporal dependencies and intricate interactions--both direct and indirect. To confront these complexities, we introduce a method of representing multivariate signals as nodes in a graph with edges indicating interdependency between them. Specifically, we leverage graph neural networks (GNN) and attention mechanisms to efficiently learn the underlying relationships within the time series data. Moreover, we suggest employing hierarchical signal decompositions running over the graphs to capture multiple spatial dependencies. The effectiveness of our proposed model is evaluated across various real-world benchmark datasets designed for long-term forecasting tasks. The results consistently showcase the superiority of our model, achieving an average 23\% reduction in mean squared error (MSE) compared to existing models.
Contrastive Multi-View Representation Learning on Graphs
We introduce a self-supervised approach for learning node and graph level representations by contrasting structural views of graphs. We show that unlike visual representation learning, increasing the number of views to more than two or contrasting multi-scale encodings do not improve performance, and the best performance is achieved by contrasting encodings from first-order neighbors and a graph diffusion. We achieve new state-of-the-art results in self-supervised learning on 8 out of 8 node and graph classification benchmarks under the linear evaluation protocol. For example, on Cora (node) and Reddit-Binary (graph) classification benchmarks, we achieve 86.8% and 84.5% accuracy, which are 5.5% and 2.4% relative improvements over previous state-of-the-art. When compared to supervised baselines, our approach outperforms them in 4 out of 8 benchmarks. Source code is released at: https://github.com/kavehhassani/mvgrl
Time-varying Signals Recovery via Graph Neural Networks
The recovery of time-varying graph signals is a fundamental problem with numerous applications in sensor networks and forecasting in time series. Effectively capturing the spatio-temporal information in these signals is essential for the downstream tasks. Previous studies have used the smoothness of the temporal differences of such graph signals as an initial assumption. Nevertheless, this smoothness assumption could result in a degradation of performance in the corresponding application when the prior does not hold. In this work, we relax the requirement of this hypothesis by including a learning module. We propose a Time Graph Neural Network (TimeGNN) for the recovery of time-varying graph signals. Our algorithm uses an encoder-decoder architecture with a specialized loss composed of a mean squared error function and a Sobolev smoothness operator.TimeGNN shows competitive performance against previous methods in real datasets.
Learning Graph Structure from Convolutional Mixtures
Machine learning frameworks such as graph neural networks typically rely on a given, fixed graph to exploit relational inductive biases and thus effectively learn from network data. However, when said graphs are (partially) unobserved, noisy, or dynamic, the problem of inferring graph structure from data becomes relevant. In this paper, we postulate a graph convolutional relationship between the observed and latent graphs, and formulate the graph learning task as a network inverse (deconvolution) problem. In lieu of eigendecomposition-based spectral methods or iterative optimization solutions, we unroll and truncate proximal gradient iterations to arrive at a parameterized neural network architecture that we call a Graph Deconvolution Network (GDN). GDNs can learn a distribution of graphs in a supervised fashion, perform link prediction or edge-weight regression tasks by adapting the loss function, and they are inherently inductive. We corroborate GDN's superior graph recovery performance and its generalization to larger graphs using synthetic data in supervised settings. Furthermore, we demonstrate the robustness and representation power of GDNs on real world neuroimaging and social network datasets.
Towards Better Dynamic Graph Learning: New Architecture and Unified Library
We propose DyGFormer, a new Transformer-based architecture for dynamic graph learning. DyGFormer is conceptually simple and only needs to learn from nodes' historical first-hop interactions by: (1) a neighbor co-occurrence encoding scheme that explores the correlations of the source node and destination node based on their historical sequences; (2) a patching technique that divides each sequence into multiple patches and feeds them to Transformer, allowing the model to effectively and efficiently benefit from longer histories. We also introduce DyGLib, a unified library with standard training pipelines, extensible coding interfaces, and comprehensive evaluating protocols to promote reproducible, scalable, and credible dynamic graph learning research. By performing exhaustive experiments on thirteen datasets for dynamic link prediction and dynamic node classification tasks, we find that DyGFormer achieves state-of-the-art performance on most of the datasets, demonstrating its effectiveness in capturing nodes' correlations and long-term temporal dependencies. Moreover, some results of baselines are inconsistent with previous reports, which may be caused by their diverse but less rigorous implementations, showing the importance of DyGLib. All the used resources are publicly available at https://github.com/yule-BUAA/DyGLib.
Retrieval Augmented Generation for Dynamic Graph Modeling
Modeling dynamic graphs, such as those found in social networks, recommendation systems, and e-commerce platforms, is crucial for capturing evolving relationships and delivering relevant insights over time. Traditional approaches primarily rely on graph neural networks with temporal components or sequence generation models, which often focus narrowly on the historical context of target nodes. This limitation restricts the ability to adapt to new and emerging patterns in dynamic graphs. To address this challenge, we propose a novel framework, Retrieval-Augmented Generation for Dynamic Graph modeling (RAG4DyG), which enhances dynamic graph predictions by incorporating contextually and temporally relevant examples from broader graph structures. Our approach includes a time- and context-aware contrastive learning module to identify high-quality demonstrations and a graph fusion strategy to effectively integrate these examples with historical contexts. The proposed framework is designed to be effective in both transductive and inductive scenarios, ensuring adaptability to previously unseen nodes and evolving graph structures. Extensive experiments across multiple real-world datasets demonstrate the effectiveness of RAG4DyG in improving predictive accuracy and adaptability for dynamic graph modeling. The code and datasets are publicly available at https://github.com/YuxiaWu/RAG4DyG.
HGE: Embedding Temporal Knowledge Graphs in a Product Space of Heterogeneous Geometric Subspaces
Temporal knowledge graphs represent temporal facts (s,p,o,tau) relating a subject s and an object o via a relation label p at time tau, where tau could be a time point or time interval. Temporal knowledge graphs may exhibit static temporal patterns at distinct points in time and dynamic temporal patterns between different timestamps. In order to learn a rich set of static and dynamic temporal patterns and apply them for inference, several embedding approaches have been suggested in the literature. However, as most of them resort to single underlying embedding spaces, their capability to model all kinds of temporal patterns was severely limited by having to adhere to the geometric property of their one embedding space. We lift this limitation by an embedding approach that maps temporal facts into a product space of several heterogeneous geometric subspaces with distinct geometric properties, i.e.\ Complex, Dual, and Split-complex spaces. In addition, we propose a temporal-geometric attention mechanism to integrate information from different geometric subspaces conveniently according to the captured relational and temporal information. Experimental results on standard temporal benchmark datasets favorably evaluate our approach against state-of-the-art models.
LSTA-Net: Long short-term Spatio-Temporal Aggregation Network for Skeleton-based Action Recognition
Modelling various spatio-temporal dependencies is the key to recognising human actions in skeleton sequences. Most existing methods excessively relied on the design of traversal rules or graph topologies to draw the dependencies of the dynamic joints, which is inadequate to reflect the relationships of the distant yet important joints. Furthermore, due to the locally adopted operations, the important long-range temporal information is therefore not well explored in existing works. To address this issue, in this work we propose LSTA-Net: a novel Long short-term Spatio-Temporal Aggregation Network, which can effectively capture the long/short-range dependencies in a spatio-temporal manner. We devise our model into a pure factorised architecture which can alternately perform spatial feature aggregation and temporal feature aggregation. To improve the feature aggregation effect, a channel-wise attention mechanism is also designed and employed. Extensive experiments were conducted on three public benchmark datasets, and the results suggest that our approach can capture both long-and-short range dependencies in the space and time domain, yielding higher results than other state-of-the-art methods. Code available at https://github.com/tailin1009/LSTA-Net.
Self-Supervised Video Representation Learning with Space-Time Cubic Puzzles
Self-supervised tasks such as colorization, inpainting and zigsaw puzzle have been utilized for visual representation learning for still images, when the number of labeled images is limited or absent at all. Recently, this worthwhile stream of study extends to video domain where the cost of human labeling is even more expensive. However, the most of existing methods are still based on 2D CNN architectures that can not directly capture spatio-temporal information for video applications. In this paper, we introduce a new self-supervised task called as Space-Time Cubic Puzzles to train 3D CNNs using large scale video dataset. This task requires a network to arrange permuted 3D spatio-temporal crops. By completing Space-Time Cubic Puzzles, the network learns both spatial appearance and temporal relation of video frames, which is our final goal. In experiments, we demonstrate that our learned 3D representation is well transferred to action recognition tasks, and outperforms state-of-the-art 2D CNN-based competitors on UCF101 and HMDB51 datasets.
Learning Adaptive Neighborhoods for Graph Neural Networks
Graph convolutional networks (GCNs) enable end-to-end learning on graph structured data. However, many works assume a given graph structure. When the input graph is noisy or unavailable, one approach is to construct or learn a latent graph structure. These methods typically fix the choice of node degree for the entire graph, which is suboptimal. Instead, we propose a novel end-to-end differentiable graph generator which builds graph topologies where each node selects both its neighborhood and its size. Our module can be readily integrated into existing pipelines involving graph convolution operations, replacing the predetermined or existing adjacency matrix with one that is learned, and optimized, as part of the general objective. As such it is applicable to any GCN. We integrate our module into trajectory prediction, point cloud classification and node classification pipelines resulting in improved accuracy over other structure-learning methods across a wide range of datasets and GCN backbones.
DeepWalk: Online Learning of Social Representations
We present DeepWalk, a novel approach for learning latent representations of vertices in a network. These latent representations encode social relations in a continuous vector space, which is easily exploited by statistical models. DeepWalk generalizes recent advancements in language modeling and unsupervised feature learning (or deep learning) from sequences of words to graphs. DeepWalk uses local information obtained from truncated random walks to learn latent representations by treating walks as the equivalent of sentences. We demonstrate DeepWalk's latent representations on several multi-label network classification tasks for social networks such as BlogCatalog, Flickr, and YouTube. Our results show that DeepWalk outperforms challenging baselines which are allowed a global view of the network, especially in the presence of missing information. DeepWalk's representations can provide F_1 scores up to 10% higher than competing methods when labeled data is sparse. In some experiments, DeepWalk's representations are able to outperform all baseline methods while using 60% less training data. DeepWalk is also scalable. It is an online learning algorithm which builds useful incremental results, and is trivially parallelizable. These qualities make it suitable for a broad class of real world applications such as network classification, and anomaly detection.
HoloNets: Spectral Convolutions do extend to Directed Graphs
Within the graph learning community, conventional wisdom dictates that spectral convolutional networks may only be deployed on undirected graphs: Only there could the existence of a well-defined graph Fourier transform be guaranteed, so that information may be translated between spatial- and spectral domains. Here we show this traditional reliance on the graph Fourier transform to be superfluous and -- making use of certain advanced tools from complex analysis and spectral theory -- extend spectral convolutions to directed graphs. We provide a frequency-response interpretation of newly developed filters, investigate the influence of the basis used to express filters and discuss the interplay with characteristic operators on which networks are based. In order to thoroughly test the developed theory, we conduct experiments in real world settings, showcasing that directed spectral convolutional networks provide new state of the art results for heterophilic node classification on many datasets and -- as opposed to baselines -- may be rendered stable to resolution-scale varying topological perturbations.
SkateFormer: Skeletal-Temporal Transformer for Human Action Recognition
Skeleton-based action recognition, which classifies human actions based on the coordinates of joints and their connectivity within skeleton data, is widely utilized in various scenarios. While Graph Convolutional Networks (GCNs) have been proposed for skeleton data represented as graphs, they suffer from limited receptive fields constrained by joint connectivity. To address this limitation, recent advancements have introduced transformer-based methods. However, capturing correlations between all joints in all frames requires substantial memory resources. To alleviate this, we propose a novel approach called Skeletal-Temporal Transformer (SkateFormer) that partitions joints and frames based on different types of skeletal-temporal relation (Skate-Type) and performs skeletal-temporal self-attention (Skate-MSA) within each partition. We categorize the key skeletal-temporal relations for action recognition into a total of four distinct types. These types combine (i) two skeletal relation types based on physically neighboring and distant joints, and (ii) two temporal relation types based on neighboring and distant frames. Through this partition-specific attention strategy, our SkateFormer can selectively focus on key joints and frames crucial for action recognition in an action-adaptive manner with efficient computation. Extensive experiments on various benchmark datasets validate that our SkateFormer outperforms recent state-of-the-art methods.
Spatially Conditioned Graphs for Detecting Human-Object Interactions
We address the problem of detecting human-object interactions in images using graphical neural networks. Unlike conventional methods, where nodes send scaled but otherwise identical messages to each of their neighbours, we propose to condition messages between pairs of nodes on their spatial relationships, resulting in different messages going to neighbours of the same node. To this end, we explore various ways of applying spatial conditioning under a multi-branch structure. Through extensive experimentation we demonstrate the advantages of spatial conditioning for the computation of the adjacency structure, messages and the refined graph features. In particular, we empirically show that as the quality of the bounding boxes increases, their coarse appearance features contribute relatively less to the disambiguation of interactions compared to the spatial information. Our method achieves an mAP of 31.33% on HICO-DET and 54.2% on V-COCO, significantly outperforming state-of-the-art on fine-tuned detections.
UniMTS: Unified Pre-training for Motion Time Series
Motion time series collected from mobile and wearable devices such as smartphones and smartwatches offer significant insights into human behavioral patterns, with wide applications in healthcare, automation, IoT, and AR/XR due to their low-power, always-on nature. However, given security and privacy concerns, building large-scale motion time series datasets remains difficult, preventing the development of pre-trained models for human activity analysis. Typically, existing models are trained and tested on the same dataset, leading to poor generalizability across variations in device location, device mounting orientation and human activity type. In this paper, we introduce UniMTS, the first unified pre-training procedure for motion time series that generalizes across diverse device latent factors and activities. Specifically, we employ a contrastive learning framework that aligns motion time series with text descriptions enriched by large language models. This helps the model learn the semantics of time series to generalize across activities. Given the absence of large-scale motion time series data, we derive and synthesize time series from existing motion skeleton data with all-joint coverage. Spatio-temporal graph networks are utilized to capture the relationships across joints for generalization across different device locations. We further design rotation-invariant augmentation to make the model agnostic to changes in device mounting orientations. Our model shows exceptional generalizability across 18 motion time series classification benchmark datasets, outperforming the best baselines by 340% in the zero-shot setting, 16.3% in the few-shot setting, and 9.2% in the full-shot setting.
Beyond Spatio-Temporal Representations: Evolving Fourier Transform for Temporal Graphs
We present the Evolving Graph Fourier Transform (EFT), the first invertible spectral transform that captures evolving representations on temporal graphs. We motivate our work by the inadequacy of existing methods for capturing the evolving graph spectra, which are also computationally expensive due to the temporal aspect along with the graph vertex domain. We view the problem as an optimization over the Laplacian of the continuous time dynamic graph. Additionally, we propose pseudo-spectrum relaxations that decompose the transformation process, making it highly computationally efficient. The EFT method adeptly captures the evolving graph's structural and positional properties, making it effective for downstream tasks on evolving graphs. Hence, as a reference implementation, we develop a simple neural model induced with EFT for capturing evolving graph spectra. We empirically validate our theoretical findings on a number of large-scale and standard temporal graph benchmarks and demonstrate that our model achieves state-of-the-art performance.
FOS: A Large-Scale Temporal Graph Benchmark for Scientific Interdisciplinary Link Prediction
Interdisciplinary scientific breakthroughs mostly emerge unexpectedly, and forecasting the formation of novel research fields remains a major challenge. We introduce FOS (Future Of Science), a comprehensive time-aware graph-based benchmark that reconstructs annual co-occurrence graphs of 65,027 research sub-fields (spanning 19 general domains) over the period 1827-2024. In these graphs, edges denote the co-occurrence of two fields in a single publication and are timestamped with the corresponding publication year. Nodes are enriched with semantic embeddings, and edges are characterized by temporal and topological descriptors. We formulate the prediction of new field-pair linkages as a temporal link-prediction task, emphasizing the "first-time" connections that signify pioneering interdisciplinary directions. Through extensive experiments, we evaluate a suite of state-of-the-art temporal graph architectures under multiple negative-sampling regimes and show that (i) embedding long-form textual descriptions of fields significantly boosts prediction accuracy, and (ii) distinct model classes excel under different evaluation settings. Case analyses show that top-ranked link predictions on FOS align with field pairings that emerge in subsequent years of academic publications. We publicly release FOS, along with its temporal data splits and evaluation code, to establish a reproducible benchmark for advancing research in predicting scientific frontiers.
node2vec: Scalable Feature Learning for Networks
Prediction tasks over nodes and edges in networks require careful effort in engineering features used by learning algorithms. Recent research in the broader field of representation learning has led to significant progress in automating prediction by learning the features themselves. However, present feature learning approaches are not expressive enough to capture the diversity of connectivity patterns observed in networks. Here we propose node2vec, an algorithmic framework for learning continuous feature representations for nodes in networks. In node2vec, we learn a mapping of nodes to a low-dimensional space of features that maximizes the likelihood of preserving network neighborhoods of nodes. We define a flexible notion of a node's network neighborhood and design a biased random walk procedure, which efficiently explores diverse neighborhoods. Our algorithm generalizes prior work which is based on rigid notions of network neighborhoods, and we argue that the added flexibility in exploring neighborhoods is the key to learning richer representations. We demonstrate the efficacy of node2vec over existing state-of-the-art techniques on multi-label classification and link prediction in several real-world networks from diverse domains. Taken together, our work represents a new way for efficiently learning state-of-the-art task-independent representations in complex networks.
Spatial-Temporal Knowledge Distillation for Takeaway Recommendation
The takeaway recommendation system aims to recommend users' future takeaway purchases based on their historical purchase behaviors, thereby improving user satisfaction and boosting merchant sales. Existing methods focus on incorporating auxiliary information or leveraging knowledge graphs to alleviate the sparsity issue of user purchase sequences. However, two main challenges limit the performance of these approaches: (1) capturing dynamic user preferences on complex geospatial information and (2) efficiently integrating spatial-temporal knowledge from both graphs and sequence data with low computational costs. In this paper, we propose a novel spatial-temporal knowledge distillation model for takeaway recommendation (STKDRec) based on the two-stage training process. Specifically, during the first pre-training stage, a spatial-temporal knowledge graph (STKG) encoder is trained to extract high-order spatial-temporal dependencies and collaborative associations from the STKG. During the second spatial-temporal knowledge distillation (STKD) stage, a spatial-temporal Transformer (ST-Transformer) is employed to comprehensively model dynamic user preferences on various types of fine-grained geospatial information from a sequential perspective. Furthermore, the STKD strategy is introduced to transfer graph-based spatial-temporal knowledge to the ST-Transformer, facilitating the adaptive fusion of rich knowledge derived from both the STKG and sequence data while reducing computational overhead. Extensive experiments on three real-world datasets show that STKDRec significantly outperforms the state-of-the-art baselines.
Deciphering Spatio-Temporal Graph Forecasting: A Causal Lens and Treatment
Spatio-Temporal Graph (STG) forecasting is a fundamental task in many real-world applications. Spatio-Temporal Graph Neural Networks have emerged as the most popular method for STG forecasting, but they often struggle with temporal out-of-distribution (OoD) issues and dynamic spatial causation. In this paper, we propose a novel framework called CaST to tackle these two challenges via causal treatments. Concretely, leveraging a causal lens, we first build a structural causal model to decipher the data generation process of STGs. To handle the temporal OoD issue, we employ the back-door adjustment by a novel disentanglement block to separate invariant parts and temporal environments from input data. Moreover, we utilize the front-door adjustment and adopt the Hodge-Laplacian operator for edge-level convolution to model the ripple effect of causation. Experiments results on three real-world datasets demonstrate the effectiveness and practicality of CaST, which consistently outperforms existing methods with good interpretability.
Towards Deep Attention in Graph Neural Networks: Problems and Remedies
Graph neural networks (GNNs) learn the representation of graph-structured data, and their expressiveness can be further enhanced by inferring node relations for propagation. Attention-based GNNs infer neighbor importance to manipulate the weight of its propagation. Despite their popularity, the discussion on deep graph attention and its unique challenges has been limited. In this work, we investigate some problematic phenomena related to deep graph attention, including vulnerability to over-smoothed features and smooth cumulative attention. Through theoretical and empirical analyses, we show that various attention-based GNNs suffer from these problems. Motivated by our findings, we propose AEROGNN, a novel GNN architecture designed for deep graph attention. AERO-GNN provably mitigates the proposed problems of deep graph attention, which is further empirically demonstrated with (a) its adaptive and less smooth attention functions and (b) higher performance at deep layers (up to 64). On 9 out of 12 node classification benchmarks, AERO-GNN outperforms the baseline GNNs, highlighting the advantages of deep graph attention. Our code is available at https://github.com/syleeheal/AERO-GNN.
Are More Layers Beneficial to Graph Transformers?
Despite that going deep has proven successful in many neural architectures, the existing graph transformers are relatively shallow. In this work, we explore whether more layers are beneficial to graph transformers, and find that current graph transformers suffer from the bottleneck of improving performance by increasing depth. Our further analysis reveals the reason is that deep graph transformers are limited by the vanishing capacity of global attention, restricting the graph transformer from focusing on the critical substructure and obtaining expressive features. To this end, we propose a novel graph transformer model named DeepGraph that explicitly employs substructure tokens in the encoded representation, and applies local attention on related nodes to obtain substructure based attention encoding. Our model enhances the ability of the global attention to focus on substructures and promotes the expressiveness of the representations, addressing the limitation of self-attention as the graph transformer deepens. Experiments show that our method unblocks the depth limitation of graph transformers and results in state-of-the-art performance across various graph benchmarks with deeper models.
Can Transformers Capture Spatial Relations between Objects?
Spatial relationships between objects represent key scene information for humans to understand and interact with the world. To study the capability of current computer vision systems to recognize physically grounded spatial relations, we start by proposing precise relation definitions that permit consistently annotating a benchmark dataset. Despite the apparent simplicity of this task relative to others in the recognition literature, we observe that existing approaches perform poorly on this benchmark. We propose new approaches exploiting the long-range attention capabilities of transformers for this task, and evaluating key design principles. We identify a simple "RelatiViT" architecture and demonstrate that it outperforms all current approaches. To our knowledge, this is the first method to convincingly outperform naive baselines on spatial relation prediction in in-the-wild settings. The code and datasets are available in https://sites.google.com/view/spatial-relation.
Disentangling Spatial and Temporal Learning for Efficient Image-to-Video Transfer Learning
Recently, large-scale pre-trained language-image models like CLIP have shown extraordinary capabilities for understanding spatial contents, but naively transferring such models to video recognition still suffers from unsatisfactory temporal modeling capabilities. Existing methods insert tunable structures into or in parallel with the pre-trained model, which either requires back-propagation through the whole pre-trained model and is thus resource-demanding, or is limited by the temporal reasoning capability of the pre-trained structure. In this work, we present DiST, which disentangles the learning of spatial and temporal aspects of videos. Specifically, DiST uses a dual-encoder structure, where a pre-trained foundation model acts as the spatial encoder, and a lightweight network is introduced as the temporal encoder. An integration branch is inserted between the encoders to fuse spatio-temporal information. The disentangled spatial and temporal learning in DiST is highly efficient because it avoids the back-propagation of massive pre-trained parameters. Meanwhile, we empirically show that disentangled learning with an extra network for integration benefits both spatial and temporal understanding. Extensive experiments on five benchmarks show that DiST delivers better performance than existing state-of-the-art methods by convincing gaps. When pre-training on the large-scale Kinetics-710, we achieve 89.7% on Kinetics-400 with a frozen ViT-L model, which verifies the scalability of DiST. Codes and models can be found in https://github.com/alibaba-mmai-research/DiST.
Graph-based Multi-ODE Neural Networks for Spatio-Temporal Traffic Forecasting
There is a recent surge in the development of spatio-temporal forecasting models in the transportation domain. Long-range traffic forecasting, however, remains a challenging task due to the intricate and extensive spatio-temporal correlations observed in traffic networks. Current works primarily rely on road networks with graph structures and learn representations using graph neural networks (GNNs), but this approach suffers from over-smoothing problem in deep architectures. To tackle this problem, recent methods introduced the combination of GNNs with residual connections or neural ordinary differential equations (ODE). However, current graph ODE models face two key limitations in feature extraction: (1) they lean towards global temporal patterns, overlooking local patterns that are important for unexpected events; and (2) they lack dynamic semantic edges in their architectural design. In this paper, we propose a novel architecture called Graph-based Multi-ODE Neural Networks (GRAM-ODE) which is designed with multiple connective ODE-GNN modules to learn better representations by capturing different views of complex local and global dynamic spatio-temporal dependencies. We also add some techniques like shared weights and divergence constraints into the intermediate layers of distinct ODE-GNN modules to further improve their communication towards the forecasting task. Our extensive set of experiments conducted on six real-world datasets demonstrate the superior performance of GRAM-ODE compared with state-of-the-art baselines as well as the contribution of different components to the overall performance. The code is available at https://github.com/zbliu98/GRAM-ODE
Enhancing the Expressivity of Temporal Graph Networks through Source-Target Identification
Despite the successful application of Temporal Graph Networks (TGNs) for tasks such as dynamic node classification and link prediction, they still perform poorly on the task of dynamic node affinity prediction -- where the goal is to predict 'how much' two nodes will interact in the future. In fact, simple heuristic approaches such as persistent forecasts and moving averages over ground-truth labels significantly and consistently outperform TGNs. Building on this observation, we find that computing heuristics over messages is an equally competitive approach, outperforming TGN and all current temporal graph (TG) models on dynamic node affinity prediction. In this paper, we prove that no formulation of TGN can represent persistent forecasting or moving averages over messages, and propose to enhance the expressivity of TGNs by adding source-target identification to each interaction event message. We show that this modification is required to represent persistent forecasting, moving averages, and the broader class of autoregressive models over messages. Our proposed method, TGNv2, significantly outperforms TGN and all current TG models on all Temporal Graph Benchmark (TGB) dynamic node affinity prediction datasets.
Towards Quantifying Long-Range Interactions in Graph Machine Learning: a Large Graph Dataset and a Measurement
Long-range dependencies are critical for effective graph representation learning, yet most existing datasets focus on small graphs tailored to inductive tasks, offering limited insight into long-range interactions. Current evaluations primarily compare models employing global attention (e.g., graph transformers) with those using local neighborhood aggregation (e.g., message-passing neural networks) without a direct measurement of long-range dependency. In this work, we introduce City-Networks, a novel large-scale transductive learning dataset derived from real-world city roads. This dataset features graphs with over 10^5 nodes and significantly larger diameters than those in existing benchmarks, naturally embodying long-range information. We annotate the graphs using an eccentricity-based approach, ensuring that the classification task inherently requires information from distant nodes. Furthermore, we propose a model-agnostic measurement based on the Jacobians of neighbors from distant hops, offering a principled quantification of long-range dependencies. Finally, we provide theoretical justifications for both our dataset design and the proposed measurement - particularly by focusing on over-smoothing and influence score dilution - which establishes a robust foundation for further exploration of long-range interactions in graph neural networks.
SimVPv2: Towards Simple yet Powerful Spatiotemporal Predictive Learning
Recent years have witnessed remarkable advances in spatiotemporal predictive learning, with methods incorporating auxiliary inputs, complex neural architectures, and sophisticated training strategies. While SimVP has introduced a simpler, CNN-based baseline for this task, it still relies on heavy Unet-like architectures for spatial and temporal modeling, which still suffers from high complexity and computational overhead. In this paper, we propose SimVPv2, a streamlined model that eliminates the need for Unet architectures and demonstrates that plain stacks of convolutional layers, enhanced with an efficient Gated Spatiotemporal Attention mechanism, can deliver state-of-the-art performance. SimVPv2 not only simplifies the model architecture but also improves both performance and computational efficiency. On the standard Moving MNIST benchmark, SimVPv2 achieves superior performance compared to SimVP, with fewer FLOPs, about half the training time, and 60% faster inference efficiency. Extensive experiments across eight diverse datasets, including real-world tasks such as traffic forecasting and climate prediction, further demonstrate that SimVPv2 offers a powerful yet straightforward solution, achieving robust generalization across various spatiotemporal learning scenarios. We believe the proposed SimVPv2 can serve as a solid baseline to benefit the spatiotemporal predictive learning community.
STD-PLM: Understanding Both Spatial and Temporal Properties of Spatial-Temporal Data with PLM
Spatial-temporal forecasting and imputation are important for real-world intelligent systems. Most existing methods are tailored for individual forecasting or imputation tasks but are not designed for both. Additionally, they are less effective for zero-shot and few-shot learning. While pre-trained language model (PLM) have exhibited strong pattern recognition and reasoning abilities across various tasks, including few-shot and zero-shot learning, their applications in spatial-temporal data understanding has been constrained by insufficient modeling of complex correlations such as the temporal correlations, spatial connectivity, non-pairwise and high-order spatial-temporal correlations within data. In this paper, we propose STD-PLM for understanding both spatial and temporal properties of Spatial-Temporal Data with PLM, which is capable of implementing both spatial-temporal forecasting and imputation tasks. STD-PLM understands spatial-temporal correlations via explicitly designed spatial and temporal tokenizers. Topology-aware node embeddings are designed for PLM to comprehend and exploit the topology structure of data in inductive manner. Furthermore, to mitigate the efficiency issues introduced by the PLM, we design a sandglass attention module (SGA) combined with a specific constrained loss function, which significantly improves the model's efficiency while ensuring performance. Extensive experiments demonstrate that STD-PLM exhibits competitive performance and generalization capabilities across the forecasting and imputation tasks on various datasets. Moreover, STD-PLM achieves promising results on both few-shot and zero-shot tasks.The code is made available at https://anonymous.4open.science/r/STD-PLM-F3BA{https://anonymous.4open.science/r/STD-PLM-F3BA}
Modeling Dynamic Environments with Scene Graph Memory
Embodied AI agents that search for objects in large environments such as households often need to make efficient decisions by predicting object locations based on partial information. We pose this as a new type of link prediction problem: link prediction on partially observable dynamic graphs. Our graph is a representation of a scene in which rooms and objects are nodes, and their relationships are encoded in the edges; only parts of the changing graph are known to the agent at each timestep. This partial observability poses a challenge to existing link prediction approaches, which we address. We propose a novel state representation -- Scene Graph Memory (SGM) -- with captures the agent's accumulated set of observations, as well as a neural net architecture called a Node Edge Predictor (NEP) that extracts information from the SGM to search efficiently. We evaluate our method in the Dynamic House Simulator, a new benchmark that creates diverse dynamic graphs following the semantic patterns typically seen at homes, and show that NEP can be trained to predict the locations of objects in a variety of environments with diverse object movement dynamics, outperforming baselines both in terms of new scene adaptability and overall accuracy. The codebase and more can be found at https://www.scenegraphmemory.com.
Scene Graph Generation by Iterative Message Passing
Understanding a visual scene goes beyond recognizing individual objects in isolation. Relationships between objects also constitute rich semantic information about the scene. In this work, we explicitly model the objects and their relationships using scene graphs, a visually-grounded graphical structure of an image. We propose a novel end-to-end model that generates such structured scene representation from an input image. The model solves the scene graph inference problem using standard RNNs and learns to iteratively improves its predictions via message passing. Our joint inference model can take advantage of contextual cues to make better predictions on objects and their relationships. The experiments show that our model significantly outperforms previous methods for generating scene graphs using Visual Genome dataset and inferring support relations with NYU Depth v2 dataset.
HOT: Higher-Order Dynamic Graph Representation Learning with Efficient Transformers
Many graph representation learning (GRL) problems are dynamic, with millions of edges added or removed per second. A fundamental workload in this setting is dynamic link prediction: using a history of graph updates to predict whether a given pair of vertices will become connected. Recent schemes for link prediction in such dynamic settings employ Transformers, modeling individual graph updates as single tokens. In this work, we propose HOT: a model that enhances this line of works by harnessing higher-order (HO) graph structures; specifically, k-hop neighbors and more general subgraphs containing a given pair of vertices. Harnessing such HO structures by encoding them into the attention matrix of the underlying Transformer results in higher accuracy of link prediction outcomes, but at the expense of increased memory pressure. To alleviate this, we resort to a recent class of schemes that impose hierarchy on the attention matrix, significantly reducing memory footprint. The final design offers a sweetspot between high accuracy and low memory utilization. HOT outperforms other dynamic GRL schemes, for example achieving 9%, 7%, and 15% higher accuracy than - respectively - DyGFormer, TGN, and GraphMixer, for the MOOC dataset. Our design can be seamlessly extended towards other dynamic GRL workloads.
OpenSTL: A Comprehensive Benchmark of Spatio-Temporal Predictive Learning
Spatio-temporal predictive learning is a learning paradigm that enables models to learn spatial and temporal patterns by predicting future frames from given past frames in an unsupervised manner. Despite remarkable progress in recent years, a lack of systematic understanding persists due to the diverse settings, complex implementation, and difficult reproducibility. Without standardization, comparisons can be unfair and insights inconclusive. To address this dilemma, we propose OpenSTL, a comprehensive benchmark for spatio-temporal predictive learning that categorizes prevalent approaches into recurrent-based and recurrent-free models. OpenSTL provides a modular and extensible framework implementing various state-of-the-art methods. We conduct standard evaluations on datasets across various domains, including synthetic moving object trajectory, human motion, driving scenes, traffic flow and weather forecasting. Based on our observations, we provide a detailed analysis of how model architecture and dataset properties affect spatio-temporal predictive learning performance. Surprisingly, we find that recurrent-free models achieve a good balance between efficiency and performance than recurrent models. Thus, we further extend the common MetaFormers to boost recurrent-free spatial-temporal predictive learning. We open-source the code and models at https://github.com/chengtan9907/OpenSTL.
Learning Transferable Spatiotemporal Representations from Natural Script Knowledge
Pre-training on large-scale video data has become a common recipe for learning transferable spatiotemporal representations in recent years. Despite some progress, existing methods are mostly limited to highly curated datasets (e.g., K400) and exhibit unsatisfactory out-of-the-box representations. We argue that it is due to the fact that they only capture pixel-level knowledge rather than spatiotemporal semantics, which hinders further progress in video understanding. Inspired by the great success of image-text pre-training (e.g., CLIP), we take the first step to exploit language semantics to boost transferable spatiotemporal representation learning. We introduce a new pretext task, Turning to Video for Transcript Sorting (TVTS), which sorts shuffled ASR scripts by attending to learned video representations. We do not rely on descriptive captions and learn purely from video, i.e., leveraging the natural transcribed speech knowledge to provide noisy but useful semantics over time. Our method enforces the vision model to contextualize what is happening over time so that it can re-organize the narrative transcripts, and can seamlessly apply to large-scale uncurated video data in the real world. Our method demonstrates strong out-of-the-box spatiotemporal representations on diverse benchmarks, e.g., +13.6% gains over VideoMAE on SSV2 via linear probing. The code is available at https://github.com/TencentARC/TVTS.
GCC: Graph Contrastive Coding for Graph Neural Network Pre-Training
Graph representation learning has emerged as a powerful technique for addressing real-world problems. Various downstream graph learning tasks have benefited from its recent developments, such as node classification, similarity search, and graph classification. However, prior arts on graph representation learning focus on domain specific problems and train a dedicated model for each graph dataset, which is usually non-transferable to out-of-domain data. Inspired by the recent advances in pre-training from natural language processing and computer vision, we design Graph Contrastive Coding (GCC) -- a self-supervised graph neural network pre-training framework -- to capture the universal network topological properties across multiple networks. We design GCC's pre-training task as subgraph instance discrimination in and across networks and leverage contrastive learning to empower graph neural networks to learn the intrinsic and transferable structural representations. We conduct extensive experiments on three graph learning tasks and ten graph datasets. The results show that GCC pre-trained on a collection of diverse datasets can achieve competitive or better performance to its task-specific and trained-from-scratch counterparts. This suggests that the pre-training and fine-tuning paradigm presents great potential for graph representation learning.
Graph Deep Learning for Time Series Forecasting
Graph-based deep learning methods have become popular tools to process collections of correlated time series. Differently from traditional multivariate forecasting methods, neural graph-based predictors take advantage of pairwise relationships by conditioning forecasts on a (possibly dynamic) graph spanning the time series collection. The conditioning can take the form of an architectural inductive bias on the neural forecasting architecture, resulting in a family of deep learning models called spatiotemporal graph neural networks. Such relational inductive biases enable the training of global forecasting models on large time-series collections, while at the same time localizing predictions w.r.t. each element in the set (i.e., graph nodes) by accounting for local correlations among them (i.e., graph edges). Indeed, recent theoretical and practical advances in graph neural networks and deep learning for time series forecasting make the adoption of such processing frameworks appealing and timely. However, most of the studies in the literature focus on proposing variations of existing neural architectures by taking advantage of modern deep learning practices, while foundational and methodological aspects have not been subject to systematic investigation. To fill the gap, this paper aims to introduce a comprehensive methodological framework that formalizes the forecasting problem and provides design principles for graph-based predictive models and methods to assess their performance. At the same time, together with an overview of the field, we provide design guidelines, recommendations, and best practices, as well as an in-depth discussion of open challenges and future research directions.
CAT-Walk: Inductive Hypergraph Learning via Set Walks
Temporal hypergraphs provide a powerful paradigm for modeling time-dependent, higher-order interactions in complex systems. Representation learning for hypergraphs is essential for extracting patterns of the higher-order interactions that are critically important in real-world problems in social network analysis, neuroscience, finance, etc. However, existing methods are typically designed only for specific tasks or static hypergraphs. We present CAT-Walk, an inductive method that learns the underlying dynamic laws that govern the temporal and structural processes underlying a temporal hypergraph. CAT-Walk introduces a temporal, higher-order walk on hypergraphs, SetWalk, that extracts higher-order causal patterns. CAT-Walk uses a novel adaptive and permutation invariant pooling strategy, SetMixer, along with a set-based anonymization process that hides the identity of hyperedges. Finally, we present a simple yet effective neural network model to encode hyperedges. Our evaluation on 10 hypergraph benchmark datasets shows that CAT-Walk attains outstanding performance on temporal hyperedge prediction benchmarks in both inductive and transductive settings. It also shows competitive performance with state-of-the-art methods for node classification. (https://github.com/ubc-systopia/CATWalk)
Space Time Recurrent Memory Network
Transformers have recently been popular for learning and inference in the spatial-temporal domain. However, their performance relies on storing and applying attention to the feature tensor of each frame in video. Hence, their space and time complexity increase linearly as the length of video grows, which could be very costly for long videos. We propose a novel visual memory network architecture for the learning and inference problem in the spatial-temporal domain. We maintain a fixed set of memory slots in our memory network and propose an algorithm based on Gumbel-Softmax to learn an adaptive strategy to update this memory. Finally, this architecture is benchmarked on the video object segmentation (VOS) and video prediction problems. We demonstrate that our memory architecture achieves state-of-the-art results, outperforming transformer-based methods on VOS and other recent methods on video prediction while maintaining constant memory capacity independent of the sequence length.
Rethinking Space-Time Networks with Improved Memory Coverage for Efficient Video Object Segmentation
This paper presents a simple yet effective approach to modeling space-time correspondences in the context of video object segmentation. Unlike most existing approaches, we establish correspondences directly between frames without re-encoding the mask features for every object, leading to a highly efficient and robust framework. With the correspondences, every node in the current query frame is inferred by aggregating features from the past in an associative fashion. We cast the aggregation process as a voting problem and find that the existing inner-product affinity leads to poor use of memory with a small (fixed) subset of memory nodes dominating the votes, regardless of the query. In light of this phenomenon, we propose using the negative squared Euclidean distance instead to compute the affinities. We validated that every memory node now has a chance to contribute, and experimentally showed that such diversified voting is beneficial to both memory efficiency and inference accuracy. The synergy of correspondence networks and diversified voting works exceedingly well, achieves new state-of-the-art results on both DAVIS and YouTubeVOS datasets while running significantly faster at 20+ FPS for multiple objects without bells and whistles.
GeoRDF2Vec Learning Location-Aware Entity Representations in Knowledge Graphs
Many knowledge graphs contain a substantial number of spatial entities, such as cities, buildings, and natural landmarks. For many of these entities, exact geometries are stored within the knowledge graphs. However, most existing approaches for learning entity representations do not take these geometries into account. In this paper, we introduce a variant of RDF2Vec that incorporates geometric information to learn location-aware embeddings of entities. Our approach expands different nodes by flooding the graph from geographic nodes, ensuring that each reachable node is considered. Based on the resulting flooded graph, we apply a modified version of RDF2Vec that biases graph walks using spatial weights. Through evaluations on multiple benchmark datasets, we demonstrate that our approach outperforms both non-location-aware RDF2Vec and GeoTransE.
Attention-Driven Dynamic Graph Convolutional Network for Multi-Label Image Recognition
Recent studies often exploit Graph Convolutional Network (GCN) to model label dependencies to improve recognition accuracy for multi-label image recognition. However, constructing a graph by counting the label co-occurrence possibilities of the training data may degrade model generalizability, especially when there exist occasional co-occurrence objects in test images. Our goal is to eliminate such bias and enhance the robustness of the learnt features. To this end, we propose an Attention-Driven Dynamic Graph Convolutional Network (ADD-GCN) to dynamically generate a specific graph for each image. ADD-GCN adopts a Dynamic Graph Convolutional Network (D-GCN) to model the relation of content-aware category representations that are generated by a Semantic Attention Module (SAM). Extensive experiments on public multi-label benchmarks demonstrate the effectiveness of our method, which achieves mAPs of 85.2%, 96.0%, and 95.5% on MS-COCO, VOC2007, and VOC2012, respectively, and outperforms current state-of-the-art methods with a clear margin. All codes can be found at https://github.com/Yejin0111/ADD-GCN.
Charting the Design Space of Neural Graph Representations for Subgraph Matching
Subgraph matching is vital in knowledge graph (KG) question answering, molecule design, scene graph, code and circuit search, etc. Neural methods have shown promising results for subgraph matching. Our study of recent systems suggests refactoring them into a unified design space for graph matching networks. Existing methods occupy only a few isolated patches in this space, which remains largely uncharted. We undertake the first comprehensive exploration of this space, featuring such axes as attention-based vs. soft permutation-based interaction between query and corpus graphs, aligning nodes vs. edges, and the form of the final scoring network that integrates neural representations of the graphs. Our extensive experiments reveal that judicious and hitherto-unexplored combinations of choices in this space lead to large performance benefits. Beyond better performance, our study uncovers valuable insights and establishes general design principles for neural graph representation and interaction, which may be of wider interest.
Graph Transformers for Large Graphs
Transformers have recently emerged as powerful neural networks for graph learning, showcasing state-of-the-art performance on several graph property prediction tasks. However, these results have been limited to small-scale graphs, where the computational feasibility of the global attention mechanism is possible. The next goal is to scale up these architectures to handle very large graphs on the scale of millions or even billions of nodes. With large-scale graphs, global attention learning is proven impractical due to its quadratic complexity w.r.t. the number of nodes. On the other hand, neighborhood sampling techniques become essential to manage large graph sizes, yet finding the optimal trade-off between speed and accuracy with sampling techniques remains challenging. This work advances representation learning on single large-scale graphs with a focus on identifying model characteristics and critical design constraints for developing scalable graph transformer (GT) architectures. We argue such GT requires layers that can adeptly learn both local and global graph representations while swiftly sampling the graph topology. As such, a key innovation of this work lies in the creation of a fast neighborhood sampling technique coupled with a local attention mechanism that encompasses a 4-hop reception field, but achieved through just 2-hop operations. This local node embedding is then integrated with a global node embedding, acquired via another self-attention layer with an approximate global codebook, before finally sent through a downstream layer for node predictions. The proposed GT framework, named LargeGT, overcomes previous computational bottlenecks and is validated on three large-scale node classification benchmarks. We report a 3x speedup and 16.8% performance gain on ogbn-products and snap-patents, while we also scale LargeGT on ogbn-papers100M with a 5.9% performance improvement.
TGB-Seq Benchmark: Challenging Temporal GNNs with Complex Sequential Dynamics
Future link prediction is a fundamental challenge in various real-world dynamic systems. To address this, numerous temporal graph neural networks (temporal GNNs) and benchmark datasets have been developed. However, these datasets often feature excessive repeated edges and lack complex sequential dynamics, a key characteristic inherent in many real-world applications such as recommender systems and ``Who-To-Follow'' on social networks. This oversight has led existing methods to inadvertently downplay the importance of learning sequential dynamics, focusing primarily on predicting repeated edges. In this study, we demonstrate that existing methods, such as GraphMixer and DyGFormer, are inherently incapable of learning simple sequential dynamics, such as ``a user who has followed OpenAI and Anthropic is more likely to follow AI at Meta next.'' Motivated by this issue, we introduce the Temporal Graph Benchmark with Sequential Dynamics (TGB-Seq), a new benchmark carefully curated to minimize repeated edges, challenging models to learn sequential dynamics and generalize to unseen edges. TGB-Seq comprises large real-world datasets spanning diverse domains, including e-commerce interactions, movie ratings, business reviews, social networks, citation networks and web link networks. Benchmarking experiments reveal that current methods usually suffer significant performance degradation and incur substantial training costs on TGB-Seq, posing new challenges and opportunities for future research. TGB-Seq datasets, leaderboards, and example codes are available at https://tgb-seq.github.io/.
STBench: Assessing the Ability of Large Language Models in Spatio-Temporal Analysis
The rapid evolution of large language models (LLMs) holds promise for reforming the methodology of spatio-temporal data mining. However, current works for evaluating the spatio-temporal understanding capability of LLMs are somewhat limited and biased. These works either fail to incorporate the latest language models or only focus on assessing the memorized spatio-temporal knowledge. To address this gap, this paper dissects LLMs' capability of spatio-temporal data into four distinct dimensions: knowledge comprehension, spatio-temporal reasoning, accurate computation, and downstream applications. We curate several natural language question-answer tasks for each category and build the benchmark dataset, namely STBench, containing 13 distinct tasks and over 60,000 QA pairs. Moreover, we have assessed the capabilities of 13 LLMs, such as GPT-4o, Gemma and Mistral. Experimental results reveal that existing LLMs show remarkable performance on knowledge comprehension and spatio-temporal reasoning tasks, with potential for further enhancement on other tasks through in-context learning, chain-of-though prompting, and fine-tuning. The code and datasets of STBench are released on https://github.com/LwbXc/STBench.
LASER: A Neuro-Symbolic Framework for Learning Spatial-Temporal Scene Graphs with Weak Supervision
Supervised approaches for learning spatio-temporal scene graphs (STSG) from video are greatly hindered due to their reliance on STSG-annotated videos, which are labor-intensive to construct at scale. Is it feasible to instead use readily available video captions as weak supervision? To address this question, we propose LASER, a neuro-symbolic framework to enable training STSG generators using only video captions. LASER employs large language models to first extract logical specifications with rich spatio-temporal semantic information from video captions. LASER then trains the underlying STSG generator to align the predicted STSG with the specification. The alignment algorithm overcomes the challenges of weak supervision by leveraging a differentiable symbolic reasoner and using a combination of contrastive, temporal, and semantics losses. The overall approach efficiently trains low-level perception models to extract a fine-grained STSG that conforms to the video caption. In doing so, it enables a novel methodology for learning STSGs without tedious annotations. We evaluate our method on three video datasets: OpenPVSG, 20BN, and MUGEN. Our approach demonstrates substantial improvements over fully-supervised baselines, achieving a unary predicate prediction accuracy of 27.78% (+12.65%) and a binary recall@5 of 0.42 (+0.22) on OpenPVSG. Additionally, LASER exceeds baselines by 7% on 20BN and 5.2% on MUGEN in terms of overall predicate prediction accuracy.
Using Causality-Aware Graph Neural Networks to Predict Temporal Centralities in Dynamic Graphs
Node centralities play a pivotal role in network science, social network analysis, and recommender systems. In temporal data, static path-based centralities like closeness or betweenness can give misleading results about the true importance of nodes in a temporal graph. To address this issue, temporal generalizations of betweenness and closeness have been defined that are based on the shortest time-respecting paths between pairs of nodes. However, a major issue of those generalizations is that the calculation of such paths is computationally expensive. Addressing this issue, we study the application of De Bruijn Graph Neural Networks (DBGNN), a causality-aware graph neural network architecture, to predict temporal path-based centralities in time series data. We experimentally evaluate our approach in 13 temporal graphs from biological and social systems and show that it considerably improves the prediction of both betweenness and closeness centrality compared to a static Graph Convolutional Neural Network.
OpenGraph: Towards Open Graph Foundation Models
Graph learning has become indispensable for interpreting and harnessing relational data in diverse fields, ranging from recommendation systems to social network analysis. In this context, a variety of GNNs have emerged as promising methodologies for encoding the structural information of graphs. By effectively capturing the graph's underlying structure, these GNNs have shown great potential in enhancing performance in graph learning tasks, such as link prediction and node classification. However, despite their successes, a significant challenge persists: these advanced methods often face difficulties in generalizing to unseen graph data that significantly differs from the training instances. In this work, our aim is to advance the graph learning paradigm by developing a general graph foundation model. This model is designed to understand the complex topological patterns present in diverse graph data, enabling it to excel in zero-shot graph learning tasks across different downstream datasets. To achieve this goal, we address several key technical challenges in our OpenGraph model. Firstly, we propose a unified graph tokenizer to adapt our graph model to generalize well on unseen graph data, even when the underlying graph properties differ significantly from those encountered during training. Secondly, we develop a scalable graph transformer as the foundational encoder, which effectively captures node-wise dependencies within the global topological context. Thirdly, we introduce a data augmentation mechanism enhanced by a LLM to alleviate the limitations of data scarcity in real-world scenarios. Extensive experiments validate the effectiveness of our framework. By adapting our OpenGraph to new graph characteristics and comprehending the nuances of diverse graphs, our approach achieves remarkable zero-shot graph learning performance across various settings and domains.
Learning Joint Spatial-Temporal Transformations for Video Inpainting
High-quality video inpainting that completes missing regions in video frames is a promising yet challenging task. State-of-the-art approaches adopt attention models to complete a frame by searching missing contents from reference frames, and further complete whole videos frame by frame. However, these approaches can suffer from inconsistent attention results along spatial and temporal dimensions, which often leads to blurriness and temporal artifacts in videos. In this paper, we propose to learn a joint Spatial-Temporal Transformer Network (STTN) for video inpainting. Specifically, we simultaneously fill missing regions in all input frames by self-attention, and propose to optimize STTN by a spatial-temporal adversarial loss. To show the superiority of the proposed model, we conduct both quantitative and qualitative evaluations by using standard stationary masks and more realistic moving object masks. Demo videos are available at https://github.com/researchmm/STTN.
Graph-Mamba: Towards Long-Range Graph Sequence Modeling with Selective State Spaces
Attention mechanisms have been widely used to capture long-range dependencies among nodes in Graph Transformers. Bottlenecked by the quadratic computational cost, attention mechanisms fail to scale in large graphs. Recent improvements in computational efficiency are mainly achieved by attention sparsification with random or heuristic-based graph subsampling, which falls short in data-dependent context reasoning. State space models (SSMs), such as Mamba, have gained prominence for their effectiveness and efficiency in modeling long-range dependencies in sequential data. However, adapting SSMs to non-sequential graph data presents a notable challenge. In this work, we introduce Graph-Mamba, the first attempt to enhance long-range context modeling in graph networks by integrating a Mamba block with the input-dependent node selection mechanism. Specifically, we formulate graph-centric node prioritization and permutation strategies to enhance context-aware reasoning, leading to a substantial improvement in predictive performance. Extensive experiments on ten benchmark datasets demonstrate that Graph-Mamba outperforms state-of-the-art methods in long-range graph prediction tasks, with a fraction of the computational cost in both FLOPs and GPU memory consumption. The code and models are publicly available at https://github.com/bowang-lab/Graph-Mamba.
LibCity: A Unified Library Towards Efficient and Comprehensive Urban Spatial-Temporal Prediction
As deep learning technology advances and more urban spatial-temporal data accumulates, an increasing number of deep learning models are being proposed to solve urban spatial-temporal prediction problems. However, there are limitations in the existing field, including open-source data being in various formats and difficult to use, few papers making their code and data openly available, and open-source models often using different frameworks and platforms, making comparisons challenging. A standardized framework is urgently needed to implement and evaluate these methods. To address these issues, we propose LibCity, an open-source library that offers researchers a credible experimental tool and a convenient development framework. In this library, we have reproduced 65 spatial-temporal prediction models and collected 55 spatial-temporal datasets, allowing researchers to conduct comprehensive experiments conveniently. By enabling fair model comparisons, designing a unified data storage format, and simplifying the process of developing new models, LibCity is poised to make significant contributions to the spatial-temporal prediction field.
LazyGNN: Large-Scale Graph Neural Networks via Lazy Propagation
Recent works have demonstrated the benefits of capturing long-distance dependency in graphs by deeper graph neural networks (GNNs). But deeper GNNs suffer from the long-lasting scalability challenge due to the neighborhood explosion problem in large-scale graphs. In this work, we propose to capture long-distance dependency in graphs by shallower models instead of deeper models, which leads to a much more efficient model, LazyGNN, for graph representation learning. Moreover, we demonstrate that LazyGNN is compatible with existing scalable approaches (such as sampling methods) for further accelerations through the development of mini-batch LazyGNN. Comprehensive experiments demonstrate its superior prediction performance and scalability on large-scale benchmarks. The implementation of LazyGNN is available at https://github.com/RXPHD/Lazy_GNN.
ST-VLM: Kinematic Instruction Tuning for Spatio-Temporal Reasoning in Vision-Language Models
Spatio-temporal reasoning is essential in understanding real-world environments in various fields, eg, autonomous driving and sports analytics. Recent advances have improved the spatial reasoning ability of Vision-Language Models (VLMs) by introducing large-scale data, but these models still struggle to analyze kinematic elements like traveled distance and speed of moving objects. To bridge this gap, we construct a spatio-temporal reasoning dataset and benchmark involving kinematic instruction tuning, referred to as STKit and STKit-Bench. They consist of real-world videos with 3D annotations, detailing object motion dynamics: traveled distance, speed, movement direction, inter-object distance comparisons, and relative movement direction. To further scale such data construction to videos without 3D labels, we propose an automatic pipeline to generate pseudo-labels using 4D reconstruction in real-world scale. With our kinematic instruction tuning data for spatio-temporal reasoning, we present ST-VLM, a VLM enhanced for spatio-temporal reasoning, which exhibits outstanding performance on STKit-Bench. Furthermore, we show that ST-VLM generalizes robustly across diverse domains and tasks, outperforming baselines on other spatio-temporal benchmarks (eg, ActivityNet, TVQA+). Finally, by integrating learned spatio-temporal reasoning with existing abilities, ST-VLM enables complex multi-step reasoning. Project page: https://ikodoh.github.io/ST-VLM.
On the Feasibility of Vision-Language Models for Time-Series Classification
We build upon time-series classification by leveraging the capabilities of Vision Language Models (VLMs). We find that VLMs produce competitive results after two or less epochs of fine-tuning. We develop a novel approach that incorporates graphical data representations as images in conjunction with numerical data. This approach is rooted in the hypothesis that graphical representations can provide additional contextual information that numerical data alone may not capture. Additionally, providing a graphical representation can circumvent issues such as limited context length faced by LLMs. To further advance this work, we implemented a scalable end-to-end pipeline for training on different scenarios, allowing us to isolate the most effective strategies for transferring learning capabilities from LLMs to Time Series Classification (TSC) tasks. Our approach works with univariate and multivariate time-series data. In addition, we conduct extensive and practical experiments to show how this approach works for time-series classification and generative labels.
Learning Temporal Coherence via Self-Supervision for GAN-based Video Generation
Our work explores temporal self-supervision for GAN-based video generation tasks. While adversarial training successfully yields generative models for a variety of areas, temporal relationships in the generated data are much less explored. Natural temporal changes are crucial for sequential generation tasks, e.g. video super-resolution and unpaired video translation. For the former, state-of-the-art methods often favor simpler norm losses such as L^2 over adversarial training. However, their averaging nature easily leads to temporally smooth results with an undesirable lack of spatial detail. For unpaired video translation, existing approaches modify the generator networks to form spatio-temporal cycle consistencies. In contrast, we focus on improving learning objectives and propose a temporally self-supervised algorithm. For both tasks, we show that temporal adversarial learning is key to achieving temporally coherent solutions without sacrificing spatial detail. We also propose a novel Ping-Pong loss to improve the long-term temporal consistency. It effectively prevents recurrent networks from accumulating artifacts temporally without depressing detailed features. Additionally, we propose a first set of metrics to quantitatively evaluate the accuracy as well as the perceptual quality of the temporal evolution. A series of user studies confirm the rankings computed with these metrics. Code, data, models, and results are provided at https://github.com/thunil/TecoGAN. The project page https://ge.in.tum.de/publications/2019-tecogan-chu/ contains supplemental materials.
Contextualized Messages Boost Graph Representations
Graph neural networks (GNNs) have gained significant attention in recent years for their ability to process data that may be represented as graphs. This has prompted several studies to explore their representational capability based on the graph isomorphism task. Notably, these works inherently assume a countable node feature representation, potentially limiting their applicability. Interestingly, only a few study GNNs with uncountable node feature representation. In the paper, a new perspective on the representational capability of GNNs is investigated across all levelsx2014node-level, neighborhood-level, and graph-levelx2014when the space of node feature representation is uncountable. Specifically, the injective and metric requirements of previous works are softly relaxed by employing a pseudometric distance on the space of input to create a soft-injective function such that distinct inputs may produce similar outputs if and only if the pseudometric deems the inputs to be sufficiently similar on some representation. As a consequence, a simple and computationally efficient soft-isomorphic relational graph convolution network (SIR-GCN) that emphasizes the contextualized transformation of neighborhood feature representations via anisotropic and dynamic message functions is proposed. Furthermore, a mathematical discussion on the relationship between SIR-GCN and key GNNs in literature is laid out to put the contribution into context, establishing SIR-GCN as a generalization of classical GNN methodologies. To close, experiments on synthetic and benchmark datasets demonstrate the relative superiority of SIR-GCN, outperforming comparable models in node and graph property prediction tasks.
Virtual Nodes Improve Long-term Traffic Prediction
Effective traffic prediction is a cornerstone of intelligent transportation systems, enabling precise forecasts of traffic flow, speed, and congestion. While traditional spatio-temporal graph neural networks (ST-GNNs) have achieved notable success in short-term traffic forecasting, their performance in long-term predictions remains limited. This challenge arises from over-squashing problem, where bottlenecks and limited receptive fields restrict information flow and hinder the modeling of global dependencies. To address these challenges, this study introduces a novel framework that incorporates virtual nodes, which are additional nodes added to the graph and connected to existing nodes, in order to aggregate information across the entire graph within a single GNN layer. Our proposed model incorporates virtual nodes by constructing a semi-adaptive adjacency matrix. This matrix integrates distance-based and adaptive adjacency matrices, allowing the model to leverage geographical information while also learning task-specific features from data. Experimental results demonstrate that the inclusion of virtual nodes significantly enhances long-term prediction accuracy while also improving layer-wise sensitivity to mitigate the over-squashing problem. Virtual nodes also offer enhanced explainability by focusing on key intersections and high-traffic areas, as shown by the visualization of their adjacency matrix weights on road network heat maps. Our advanced approach enhances the understanding and management of urban traffic systems, making it particularly well-suited for real-world applications.
Towards Data-centric Machine Learning on Directed Graphs: a Survey
In recent years, Graph Neural Networks (GNNs) have made significant advances in processing structured data. However, most of them primarily adopted a model-centric approach, which simplifies graphs by converting them into undirected formats and emphasizes model designs. This approach is inherently limited in real-world applications due to the unavoidable information loss in simple undirected graphs and the model optimization challenges that arise when exceeding the upper bounds of this sub-optimal data representational capacity. As a result, there has been a shift toward data-centric methods that prioritize improving graph quality and representation. Specifically, various types of graphs can be derived from naturally structured data, including heterogeneous graphs, hypergraphs, and directed graphs. Among these, directed graphs offer distinct advantages in topological systems by modeling causal relationships, and directed GNNs have been extensively studied in recent years. However, a comprehensive survey of this emerging topic is still lacking. Therefore, we aim to provide a comprehensive review of directed graph learning, with a particular focus on a data-centric perspective. Specifically, we first introduce a novel taxonomy for existing studies. Subsequently, we re-examine these methods from the data-centric perspective, with an emphasis on understanding and improving data representation. It demonstrates that a deep understanding of directed graphs and their quality plays a crucial role in model performance. Additionally, we explore the diverse applications of directed GNNs across 10+ domains, highlighting their broad applicability. Finally, we identify key opportunities and challenges within the field, offering insights that can guide future research and development in directed graph learning.
Enhancing Graph Representations with Neighborhood-Contextualized Message-Passing
Graph neural networks (GNNs) have become an indispensable tool for analyzing relational data. In the literature, classical GNNs may be classified into three variants: convolutional, attentional, and message-passing. While the standard message-passing variant is highly expressive, its typical pair-wise messages nevertheless only consider the features of the center node and each neighboring node individually. This design fails to incorporate the rich contextual information contained within the broader local neighborhood, potentially hindering its ability to learn complex relationships within the entire set of neighboring nodes. To address this limitation, this work first formalizes the concept of neighborhood-contextualization, rooted in a key property of the attentional variant. This then serves as the foundation for generalizing the message-passing variant to the proposed neighborhood-contextualized message-passing (NCMP) framework. To demonstrate its utility, a simple, practical, and efficient method to parametrize and operationalize NCMP is presented, leading to the development of the proposed Soft-Isomorphic Neighborhood-Contextualized Graph Convolution Network (SINC-GCN). A preliminary analysis on a synthetic binary node classification problem then underscores both the expressivity and efficiency of the proposed GNN architecture. Overall, the paper lays the foundation for the novel NCMP framework as a practical path toward further enhancing the graph representational power of classical GNNs.
About Graph Degeneracy, Representation Learning and Scalability
Graphs or networks are a very convenient way to represent data with lots of interaction. Recently, Machine Learning on Graph data has gained a lot of traction. In particular, vertex classification and missing edge detection have very interesting applications, ranging from drug discovery to recommender systems. To achieve such tasks, tremendous work has been accomplished to learn embedding of nodes and edges into finite-dimension vector spaces. This task is called Graph Representation Learning. However, Graph Representation Learning techniques often display prohibitive time and memory complexities, preventing their use in real-time with business size graphs. In this paper, we address this issue by leveraging a degeneracy property of Graphs - the K-Core Decomposition. We present two techniques taking advantage of this decomposition to reduce the time and memory consumption of walk-based Graph Representation Learning algorithms. We evaluate the performances, expressed in terms of quality of embedding and computational resources, of the proposed techniques on several academic datasets. Our code is available at https://github.com/SBrandeis/kcore-embedding
3D Dynamic Scene Graphs: Actionable Spatial Perception with Places, Objects, and Humans
We present a unified representation for actionable spatial perception: 3D Dynamic Scene Graphs. Scene graphs are directed graphs where nodes represent entities in the scene (e.g. objects, walls, rooms), and edges represent relations (e.g. inclusion, adjacency) among nodes. Dynamic scene graphs (DSGs) extend this notion to represent dynamic scenes with moving agents (e.g. humans, robots), and to include actionable information that supports planning and decision-making (e.g. spatio-temporal relations, topology at different levels of abstraction). Our second contribution is to provide the first fully automatic Spatial PerceptIon eNgine(SPIN) to build a DSG from visual-inertial data. We integrate state-of-the-art techniques for object and human detection and pose estimation, and we describe how to robustly infer object, robot, and human nodes in crowded scenes. To the best of our knowledge, this is the first paper that reconciles visual-inertial SLAM and dense human mesh tracking. Moreover, we provide algorithms to obtain hierarchical representations of indoor environments (e.g. places, structures, rooms) and their relations. Our third contribution is to demonstrate the proposed spatial perception engine in a photo-realistic Unity-based simulator, where we assess its robustness and expressiveness. Finally, we discuss the implications of our proposal on modern robotics applications. 3D Dynamic Scene Graphs can have a profound impact on planning and decision-making, human-robot interaction, long-term autonomy, and scene prediction. A video abstract is available at https://youtu.be/SWbofjhyPzI
Convolutional Networks on Graphs for Learning Molecular Fingerprints
We introduce a convolutional neural network that operates directly on graphs. These networks allow end-to-end learning of prediction pipelines whose inputs are graphs of arbitrary size and shape. The architecture we present generalizes standard molecular feature extraction methods based on circular fingerprints. We show that these data-driven features are more interpretable, and have better predictive performance on a variety of tasks.
PredBench: Benchmarking Spatio-Temporal Prediction across Diverse Disciplines
In this paper, we introduce PredBench, a benchmark tailored for the holistic evaluation of spatio-temporal prediction networks. Despite significant progress in this field, there remains a lack of a standardized framework for a detailed and comparative analysis of various prediction network architectures. PredBench addresses this gap by conducting large-scale experiments, upholding standardized and appropriate experimental settings, and implementing multi-dimensional evaluations. This benchmark integrates 12 widely adopted methods with 15 diverse datasets across multiple application domains, offering extensive evaluation of contemporary spatio-temporal prediction networks. Through meticulous calibration of prediction settings across various applications, PredBench ensures evaluations relevant to their intended use and enables fair comparisons. Moreover, its multi-dimensional evaluation framework broadens the analysis with a comprehensive set of metrics, providing deep insights into the capabilities of models. The findings from our research offer strategic directions for future developments in the field. Our codebase is available at https://github.com/OpenEarthLab/PredBench.
Latent Graph Diffusion: A Unified Framework for Generation and Prediction on Graphs
In this paper, we propose the first framework that enables solving graph learning tasks of all levels (node, edge and graph) and all types (generation, regression and classification) with one model. We first propose Latent Graph Diffusion (LGD), a generative model that can generate node, edge, and graph-level features of all categories simultaneously. We achieve this goal by embedding the graph structures and features into a latent space leveraging a powerful encoder which can also be decoded, then training a diffusion model in the latent space. LGD is also capable of conditional generation through a specifically designed cross-attention mechanism. Then we formulate prediction tasks including regression and classification as (conditional) generation, which enables our LGD to solve tasks of all levels and all types with provable guarantees. We verify the effectiveness of our framework with extensive experiments, where our models achieve state-of-the-art or highly competitive results across generation and regression tasks.
Graph Attention Networks
We present graph attention networks (GATs), novel neural network architectures that operate on graph-structured data, leveraging masked self-attentional layers to address the shortcomings of prior methods based on graph convolutions or their approximations. By stacking layers in which nodes are able to attend over their neighborhoods' features, we enable (implicitly) specifying different weights to different nodes in a neighborhood, without requiring any kind of costly matrix operation (such as inversion) or depending on knowing the graph structure upfront. In this way, we address several key challenges of spectral-based graph neural networks simultaneously, and make our model readily applicable to inductive as well as transductive problems. Our GAT models have achieved or matched state-of-the-art results across four established transductive and inductive graph benchmarks: the Cora, Citeseer and Pubmed citation network datasets, as well as a protein-protein interaction dataset (wherein test graphs remain unseen during training).
Spatiotemporal Contrastive Video Representation Learning
We present a self-supervised Contrastive Video Representation Learning (CVRL) method to learn spatiotemporal visual representations from unlabeled videos. Our representations are learned using a contrastive loss, where two augmented clips from the same short video are pulled together in the embedding space, while clips from different videos are pushed away. We study what makes for good data augmentations for video self-supervised learning and find that both spatial and temporal information are crucial. We carefully design data augmentations involving spatial and temporal cues. Concretely, we propose a temporally consistent spatial augmentation method to impose strong spatial augmentations on each frame of the video while maintaining the temporal consistency across frames. We also propose a sampling-based temporal augmentation method to avoid overly enforcing invariance on clips that are distant in time. On Kinetics-600, a linear classifier trained on the representations learned by CVRL achieves 70.4% top-1 accuracy with a 3D-ResNet-50 (R3D-50) backbone, outperforming ImageNet supervised pre-training by 15.7% and SimCLR unsupervised pre-training by 18.8% using the same inflated R3D-50. The performance of CVRL can be further improved to 72.9% with a larger R3D-152 (2x filters) backbone, significantly closing the gap between unsupervised and supervised video representation learning. Our code and models will be available at https://github.com/tensorflow/models/tree/master/official/.
DyTed: Disentangled Representation Learning for Discrete-time Dynamic Graph
Unsupervised representation learning for dynamic graphs has attracted a lot of research attention in recent years. Compared with static graph, the dynamic graph is a comprehensive embodiment of both the intrinsic stable characteristics of nodes and the time-related dynamic preference. However, existing methods generally mix these two types of information into a single representation space, which may lead to poor explanation, less robustness, and a limited ability when applied to different downstream tasks. To solve the above problems, in this paper, we propose a novel disenTangled representation learning framework for discrete-time Dynamic graphs, namely DyTed. We specially design a temporal-clips contrastive learning task together with a structure contrastive learning to effectively identify the time-invariant and time-varying representations respectively. To further enhance the disentanglement of these two types of representation, we propose a disentanglement-aware discriminator under an adversarial learning framework from the perspective of information theory. Extensive experiments on Tencent and five commonly used public datasets demonstrate that DyTed, as a general framework that can be applied to existing methods, achieves state-of-the-art performance on various downstream tasks, as well as be more robust against noise.
Heterogeneous Graph Representation Learning with Relation Awareness
Representation learning on heterogeneous graphs aims to obtain meaningful node representations to facilitate various downstream tasks, such as node classification and link prediction. Existing heterogeneous graph learning methods are primarily developed by following the propagation mechanism of node representations. There are few efforts on studying the role of relations for improving the learning of more fine-grained node representations. Indeed, it is important to collaboratively learn the semantic representations of relations and discern node representations with respect to different relation types. To this end, in this paper, we propose a novel Relation-aware Heterogeneous Graph Neural Network, namely R-HGNN, to learn node representations on heterogeneous graphs at a fine-grained level by considering relation-aware characteristics. Specifically, a dedicated graph convolution component is first designed to learn unique node representations from each relation-specific graph separately. Then, a cross-relation message passing module is developed to improve the interactions of node representations across different relations. Also, the relation representations are learned in a layer-wise manner to capture relation semantics, which are used to guide the node representation learning process. Moreover, a semantic fusing module is presented to aggregate relation-aware node representations into a compact representation with the learned relation representations. Finally, we conduct extensive experiments on a variety of graph learning tasks, and experimental results demonstrate that our approach consistently outperforms existing methods among all the tasks.
A Closer Look at Spatiotemporal Convolutions for Action Recognition
In this paper we discuss several forms of spatiotemporal convolutions for video analysis and study their effects on action recognition. Our motivation stems from the observation that 2D CNNs applied to individual frames of the video have remained solid performers in action recognition. In this work we empirically demonstrate the accuracy advantages of 3D CNNs over 2D CNNs within the framework of residual learning. Furthermore, we show that factorizing the 3D convolutional filters into separate spatial and temporal components yields significantly advantages in accuracy. Our empirical study leads to the design of a new spatiotemporal convolutional block "R(2+1)D" which gives rise to CNNs that achieve results comparable or superior to the state-of-the-art on Sports-1M, Kinetics, UCF101 and HMDB51.
On the Connection Between MPNN and Graph Transformer
Graph Transformer (GT) recently has emerged as a new paradigm of graph learning algorithms, outperforming the previously popular Message Passing Neural Network (MPNN) on multiple benchmarks. Previous work (Kim et al., 2022) shows that with proper position embedding, GT can approximate MPNN arbitrarily well, implying that GT is at least as powerful as MPNN. In this paper, we study the inverse connection and show that MPNN with virtual node (VN), a commonly used heuristic with little theoretical understanding, is powerful enough to arbitrarily approximate the self-attention layer of GT. In particular, we first show that if we consider one type of linear transformer, the so-called Performer/Linear Transformer (Choromanski et al., 2020; Katharopoulos et al., 2020), then MPNN + VN with only O(1) depth and O(1) width can approximate a self-attention layer in Performer/Linear Transformer. Next, via a connection between MPNN + VN and DeepSets, we prove the MPNN + VN with O(n^d) width and O(1) depth can approximate the self-attention layer arbitrarily well, where d is the input feature dimension. Lastly, under some assumptions, we provide an explicit construction of MPNN + VN with O(1) width and O(n) depth approximating the self-attention layer in GT arbitrarily well. On the empirical side, we demonstrate that 1) MPNN + VN is a surprisingly strong baseline, outperforming GT on the recently proposed Long Range Graph Benchmark (LRGB) dataset, 2) our MPNN + VN improves over early implementation on a wide range of OGB datasets and 3) MPNN + VN outperforms Linear Transformer and MPNN on the climate modeling task.
PRES: Toward Scalable Memory-Based Dynamic Graph Neural Networks
Memory-based Dynamic Graph Neural Networks (MDGNNs) are a family of dynamic graph neural networks that leverage a memory module to extract, distill, and memorize long-term temporal dependencies, leading to superior performance compared to memory-less counterparts. However, training MDGNNs faces the challenge of handling entangled temporal and structural dependencies, requiring sequential and chronological processing of data sequences to capture accurate temporal patterns. During the batch training, the temporal data points within the same batch will be processed in parallel, while their temporal dependencies are neglected. This issue is referred to as temporal discontinuity and restricts the effective temporal batch size, limiting data parallelism and reducing MDGNNs' flexibility in industrial applications. This paper studies the efficient training of MDGNNs at scale, focusing on the temporal discontinuity in training MDGNNs with large temporal batch sizes. We first conduct a theoretical study on the impact of temporal batch size on the convergence of MDGNN training. Based on the analysis, we propose PRES, an iterative prediction-correction scheme combined with a memory coherence learning objective to mitigate the effect of temporal discontinuity, enabling MDGNNs to be trained with significantly larger temporal batches without sacrificing generalization performance. Experimental results demonstrate that our approach enables up to a 4x larger temporal batch (3.4x speed-up) during MDGNN training.
GRAND: Graph Neural Diffusion
We present Graph Neural Diffusion (GRAND) that approaches deep learning on graphs as a continuous diffusion process and treats Graph Neural Networks (GNNs) as discretisations of an underlying PDE. In our model, the layer structure and topology correspond to the discretisation choices of temporal and spatial operators. Our approach allows a principled development of a broad new class of GNNs that are able to address the common plights of graph learning models such as depth, oversmoothing, and bottlenecks. Key to the success of our models are stability with respect to perturbations in the data and this is addressed for both implicit and explicit discretisation schemes. We develop linear and nonlinear versions of GRAND, which achieve competitive results on many standard graph benchmarks.
Spatio-Temporal Few-Shot Learning via Diffusive Neural Network Generation
Spatio-temporal modeling is foundational for smart city applications, yet it is often hindered by data scarcity in many cities and regions. To bridge this gap, we propose a novel generative pre-training framework, GPD, for spatio-temporal few-shot learning with urban knowledge transfer. Unlike conventional approaches that heavily rely on common feature extraction or intricate few-shot learning designs, our solution takes a novel approach by performing generative pre-training on a collection of neural network parameters optimized with data from source cities. We recast spatio-temporal few-shot learning as pre-training a generative diffusion model, which generates tailored neural networks guided by prompts, allowing for adaptability to diverse data distributions and city-specific characteristics. GPD employs a Transformer-based denoising diffusion model, which is model-agnostic to integrate with powerful spatio-temporal neural networks. By addressing challenges arising from data gaps and the complexity of generalizing knowledge across cities, our framework consistently outperforms state-of-the-art baselines on multiple real-world datasets for tasks such as traffic speed prediction and crowd flow prediction. The implementation of our approach is available: https://github.com/tsinghua-fib-lab/GPD.
