new

Get trending papers in your email inbox!

Subscribe

Daily Papers

byAK and the research community

Jan 6

Ultrafast Image Categorization in Biology and Neural Models

Humans are able to categorize images very efficiently, in particular to detect the presence of an animal very quickly. Recently, deep learning algorithms based on convolutional neural networks (CNNs) have achieved higher than human accuracy for a wide range of visual categorization tasks. However, the tasks on which these artificial networks are typically trained and evaluated tend to be highly specialized and do not generalize well, e.g., accuracy drops after image rotation. In this respect, biological visual systems are more flexible and efficient than artificial systems for more general tasks, such as recognizing an animal. To further the comparison between biological and artificial neural networks, we re-trained the standard VGG 16 CNN on two independent tasks that are ecologically relevant to humans: detecting the presence of an animal or an artifact. We show that re-training the network achieves a human-like level of performance, comparable to that reported in psychophysical tasks. In addition, we show that the categorization is better when the outputs of the models are combined. Indeed, animals (e.g., lions) tend to be less present in photographs that contain artifacts (e.g., buildings). Furthermore, these re-trained models were able to reproduce some unexpected behavioral observations from human psychophysics, such as robustness to rotation (e.g., an upside-down or tilted image) or to a grayscale transformation. Finally, we quantified the number of CNN layers required to achieve such performance and showed that good accuracy for ultrafast image categorization can be achieved with only a few layers, challenging the belief that image recognition requires deep sequential analysis of visual objects.

  • 2 authors
·
May 7, 2022

FT-ClipAct: Resilience Analysis of Deep Neural Networks and Improving their Fault Tolerance using Clipped Activation

Deep Neural Networks (DNNs) are widely being adopted for safety-critical applications, e.g., healthcare and autonomous driving. Inherently, they are considered to be highly error-tolerant. However, recent studies have shown that hardware faults that impact the parameters of a DNN (e.g., weights) can have drastic impacts on its classification accuracy. In this paper, we perform a comprehensive error resilience analysis of DNNs subjected to hardware faults (e.g., permanent faults) in the weight memory. The outcome of this analysis is leveraged to propose a novel error mitigation technique which squashes the high-intensity faulty activation values to alleviate their impact. We achieve this by replacing the unbounded activation functions with their clipped versions. We also present a method to systematically define the clipping values of the activation functions that result in increased resilience of the networks against faults. We evaluate our technique on the AlexNet and the VGG-16 DNNs trained for the CIFAR-10 dataset. The experimental results show that our mitigation technique significantly improves the resilience of the DNNs to faults. For example, the proposed technique offers on average 68.92% improvement in the classification accuracy of resilience-optimized VGG-16 model at 1e-5 fault rate, when compared to the base network without any fault mitigation.

  • 3 authors
·
Dec 2, 2019

What Makes a Face Look like a Hat: Decoupling Low-level and High-level Visual Properties with Image Triplets

In visual decision making, high-level features, such as object categories, have a strong influence on choice. However, the impact of low-level features on behavior is less understood partly due to the high correlation between high- and low-level features in the stimuli presented (e.g., objects of the same category are more likely to share low-level features). To disentangle these effects, we propose a method that de-correlates low- and high-level visual properties in a novel set of stimuli. Our method uses two Convolutional Neural Networks (CNNs) as candidate models of the ventral visual stream: the CORnet-S that has high neural predictivity in high-level, IT-like responses and the VGG-16 that has high neural predictivity in low-level responses. Triplets (root, image1, image2) of stimuli are parametrized by the level of low- and high-level similarity of images extracted from the different layers. These stimuli are then used in a decision-making task where participants are tasked to choose the most similar-to-the-root image. We found that different networks show differing abilities to predict the effects of low-versus-high-level similarity: while CORnet-S outperforms VGG-16 in explaining human choices based on high-level similarity, VGG-16 outperforms CORnet-S in explaining human choices based on low-level similarity. Using Brain-Score, we observed that the behavioral prediction abilities of different layers of these networks qualitatively corresponded to their ability to explain neural activity at different levels of the visual hierarchy. In summary, our algorithm for stimulus set generation enables the study of how different representations in the visual stream affect high-level cognitive behaviors.

  • 4 authors
·
Sep 3, 2024

T-TAME: Trainable Attention Mechanism for Explaining Convolutional Networks and Vision Transformers

The development and adoption of Vision Transformers and other deep-learning architectures for image classification tasks has been rapid. However, the "black box" nature of neural networks is a barrier to adoption in applications where explainability is essential. While some techniques for generating explanations have been proposed, primarily for Convolutional Neural Networks, adapting such techniques to the new paradigm of Vision Transformers is non-trivial. This paper presents T-TAME, Transformer-compatible Trainable Attention Mechanism for Explanations, a general methodology for explaining deep neural networks used in image classification tasks. The proposed architecture and training technique can be easily applied to any convolutional or Vision Transformer-like neural network, using a streamlined training approach. After training, explanation maps can be computed in a single forward pass; these explanation maps are comparable to or outperform the outputs of computationally expensive perturbation-based explainability techniques, achieving SOTA performance. We apply T-TAME to three popular deep learning classifier architectures, VGG-16, ResNet-50, and ViT-B-16, trained on the ImageNet dataset, and we demonstrate improvements over existing state-of-the-art explainability methods. A detailed analysis of the results and an ablation study provide insights into how the T-TAME design choices affect the quality of the generated explanation maps.

  • 3 authors
·
Mar 7, 2024

Mixed Precision Training of Convolutional Neural Networks using Integer Operations

The state-of-the-art (SOTA) for mixed precision training is dominated by variants of low precision floating point operations, and in particular, FP16 accumulating into FP32 Micikevicius et al. (2017). On the other hand, while a lot of research has also happened in the domain of low and mixed-precision Integer training, these works either present results for non-SOTA networks (for instance only AlexNet for ImageNet-1K), or relatively small datasets (like CIFAR-10). In this work, we train state-of-the-art visual understanding neural networks on the ImageNet-1K dataset, with Integer operations on General Purpose (GP) hardware. In particular, we focus on Integer Fused-Multiply-and-Accumulate (FMA) operations which take two pairs of INT16 operands and accumulate results into an INT32 output.We propose a shared exponent representation of tensors and develop a Dynamic Fixed Point (DFP) scheme suitable for common neural network operations. The nuances of developing an efficient integer convolution kernel is examined, including methods to handle overflow of the INT32 accumulator. We implement CNN training for ResNet-50, GoogLeNet-v1, VGG-16 and AlexNet; and these networks achieve or exceed SOTA accuracy within the same number of iterations as their FP32 counterparts without any change in hyper-parameters and with a 1.8X improvement in end-to-end training throughput. To the best of our knowledge these results represent the first INT16 training results on GP hardware for ImageNet-1K dataset using SOTA CNNs and achieve highest reported accuracy using half-precision

  • 17 authors
·
Feb 3, 2018

Efficient Joint Optimization of Layer-Adaptive Weight Pruning in Deep Neural Networks

In this paper, we propose a novel layer-adaptive weight-pruning approach for Deep Neural Networks (DNNs) that addresses the challenge of optimizing the output distortion minimization while adhering to a target pruning ratio constraint. Our approach takes into account the collective influence of all layers to design a layer-adaptive pruning scheme. We discover and utilize a very important additivity property of output distortion caused by pruning weights on multiple layers. This property enables us to formulate the pruning as a combinatorial optimization problem and efficiently solve it through dynamic programming. By decomposing the problem into sub-problems, we achieve linear time complexity, making our optimization algorithm fast and feasible to run on CPUs. Our extensive experiments demonstrate the superiority of our approach over existing methods on the ImageNet and CIFAR-10 datasets. On CIFAR-10, our method achieves remarkable improvements, outperforming others by up to 1.0% for ResNet-32, 0.5% for VGG-16, and 0.7% for DenseNet-121 in terms of top-1 accuracy. On ImageNet, we achieve up to 4.7% and 4.6% higher top-1 accuracy compared to other methods for VGG-16 and ResNet-50, respectively. These results highlight the effectiveness and practicality of our approach for enhancing DNN performance through layer-adaptive weight pruning. Code will be available on https://github.com/Akimoto-Cris/RD_VIT_PRUNE.

  • 7 authors
·
Aug 20, 2023

CUDA: Convolution-based Unlearnable Datasets

Large-scale training of modern deep learning models heavily relies on publicly available data on the web. This potentially unauthorized usage of online data leads to concerns regarding data privacy. Recent works aim to make unlearnable data for deep learning models by adding small, specially designed noises to tackle this issue. However, these methods are vulnerable to adversarial training (AT) and/or are computationally heavy. In this work, we propose a novel, model-free, Convolution-based Unlearnable DAtaset (CUDA) generation technique. CUDA is generated using controlled class-wise convolutions with filters that are randomly generated via a private key. CUDA encourages the network to learn the relation between filters and labels rather than informative features for classifying the clean data. We develop some theoretical analysis demonstrating that CUDA can successfully poison Gaussian mixture data by reducing the clean data performance of the optimal Bayes classifier. We also empirically demonstrate the effectiveness of CUDA with various datasets (CIFAR-10, CIFAR-100, ImageNet-100, and Tiny-ImageNet), and architectures (ResNet-18, VGG-16, Wide ResNet-34-10, DenseNet-121, DeIT, EfficientNetV2-S, and MobileNetV2). Our experiments show that CUDA is robust to various data augmentations and training approaches such as smoothing, AT with different budgets, transfer learning, and fine-tuning. For instance, training a ResNet-18 on ImageNet-100 CUDA achieves only 8.96%, 40.08%, and 20.58% clean test accuracies with empirical risk minimization (ERM), L_{infty} AT, and L_{2} AT, respectively. Here, ERM on the clean training data achieves a clean test accuracy of 80.66%. CUDA exhibits unlearnability effect with ERM even when only a fraction of the training dataset is perturbed. Furthermore, we also show that CUDA is robust to adaptive defenses designed specifically to break it.

  • 3 authors
·
Mar 7, 2023

Adversarial Perturbations Prevail in the Y-Channel of the YCbCr Color Space

Deep learning offers state of the art solutions for image recognition. However, deep models are vulnerable to adversarial perturbations in images that are subtle but significantly change the model's prediction. In a white-box attack, these perturbations are generally learned for deep models that operate on RGB images and, hence, the perturbations are equally distributed in the RGB color space. In this paper, we show that the adversarial perturbations prevail in the Y-channel of the YCbCr space. Our finding is motivated from the fact that the human vision and deep models are more responsive to shape and texture rather than color. Based on our finding, we propose a defense against adversarial images. Our defence, coined ResUpNet, removes perturbations only from the Y-channel by exploiting ResNet features in an upsampling framework without the need for a bottleneck. At the final stage, the untouched CbCr-channels are combined with the refined Y-channel to restore the clean image. Note that ResUpNet is model agnostic as it does not modify the DNN structure. ResUpNet is trained end-to-end in Pytorch and the results are compared to existing defence techniques in the input transformation category. Our results show that our approach achieves the best balance between defence against adversarial attacks such as FGSM, PGD and DDN and maintaining the original accuracies of VGG-16, ResNet50 and DenseNet121 on clean images. We perform another experiment to show that learning adversarial perturbations only for the Y-channel results in higher fooling rates for the same perturbation magnitude.

  • 5 authors
·
Feb 24, 2020

Beyond saliency: understanding convolutional neural networks from saliency prediction on layer-wise relevance propagation

Despite the tremendous achievements of deep convolutional neural networks (CNNs) in many computer vision tasks, understanding how they actually work remains a significant challenge. In this paper, we propose a novel two-step understanding method, namely Salient Relevance (SR) map, which aims to shed light on how deep CNNs recognize images and learn features from areas, referred to as attention areas, therein. Our proposed method starts out with a layer-wise relevance propagation (LRP) step which estimates a pixel-wise relevance map over the input image. Following, we construct a context-aware saliency map, SR map, from the LRP-generated map which predicts areas close to the foci of attention instead of isolated pixels that LRP reveals. In human visual system, information of regions is more important than of pixels in recognition. Consequently, our proposed approach closely simulates human recognition. Experimental results using the ILSVRC2012 validation dataset in conjunction with two well-established deep CNN models, AlexNet and VGG-16, clearly demonstrate that our proposed approach concisely identifies not only key pixels but also attention areas that contribute to the underlying neural network's comprehension of the given images. As such, our proposed SR map constitutes a convenient visual interface which unveils the visual attention of the network and reveals which type of objects the model has learned to recognize after training. The source code is available at https://github.com/Hey1Li/Salient-Relevance-Propagation.

  • 4 authors
·
Dec 21, 2017