new

Get trending papers in your email inbox!

Subscribe

Daily Papers

byAK and the research community

Dec 10

Morphological evolution and galactic sizes in the L-Galaxies SA model

In this work we update the L-Galaxies semi-analytic model (SAM) to better follow the physical processes responsible for the growth of bulges via disc instabilities (leading to pseudo-bulges) and mergers (leading to classical bulges). We address the former by considering the contribution of both stellar and gaseous discs in the stability of the galaxy, and we update the latter by including dissipation of energy in gas-rich mergers. Furthermore, we introduce angular momentum losses during cooling and find that an accurate match to the observed correlation between stellar disc scale length and mass at z ~ 0.0 requires that the gas loses 20% of its initial specific angular momentum to the corresponding dark matter halo during the formation of the cold gas disc. We reproduce the observed trends between the stellar mass and specific angular momentum for both disc- and bulge-dominated galaxies, with the former rotating faster than the latter of the same mass. We conclude that a two-component instability recipe provides a morphologically diverse galaxy sample which matches the observed fractional breakdown of galaxies into different morphological types. This recipe also enables us to obtain an excellent fit to the morphology-mass relation and stellar mass function of different galactic types. Finally, we find that energy dissipation during mergers reduces the merger remnant sizes and allows us to match the observed mass-size relation for bulge-dominated systems.

  • 5 authors
·
Oct 11, 2018

The Low Mass Ratio Overcontact Binary GV Leonis and Its Circumbinary Companion

Photometric and spectroscopic observations of GV Leo were performed from 2017 to 2024. The light curves show a flat bottom at the primary eclipse and the conventional O'Connell effect. The echelle spectra reveal that the effective temperature and rotation velocity of the more massive secondary are T_{rm eff,2} = 5220pm120 K and v_2 sin i = 223pm40 km s^{-1}, respectively. Our binary modeling indicates that the program target is a W-subclass contact binary with a mass ratio of q = 5.48, an inclination angle of i = 81^circ.68, a temperature difference of (T_{rm eff,1}-T_{rm eff,2}) = 154 K, and a filling factor of f = 36 \%. The light asymmetries were reasonably modeled by a dark starspot on the secondary's photosphere. Including our 26 minimum epochs, 84 times of minimum light were used to investigate the orbital period of the system. We found that the eclipse times of GV Leo have varied by a sinusoid with a period of 14.9 years and a semi-amplitude of 0.0076 days superimposed on a downward parabola. The periodic modulation is interpreted as a light time effect produced by an unseen outer tertiary with a minimum mass of 0.26 M_odot, while the parabolic component is thought to be a combination of mass transfer (secondary to primary) and angular momentum loss driven by magnetic braking. The circumbinary tertiary would have caused the eclipsing pair of GV Leo to evolve into its current short-period contact state by removing angular momentum from the primordial widish binary.

  • 5 authors
·
Apr 13

ALICE-LRI: A General Method for Lossless Range Image Generation for Spinning LiDAR Sensors without Calibration Metadata

3D LiDAR sensors are essential for autonomous navigation, environmental monitoring, and precision mapping in remote sensing applications. To efficiently process the massive point clouds generated by these sensors, LiDAR data is often projected into 2D range images that organize points by their angular positions and distances. While these range image representations enable efficient processing, conventional projection methods suffer from fundamental geometric inconsistencies that cause irreversible information loss, compromising high-fidelity applications. We present ALICE-LRI (Automatic LiDAR Intrinsic Calibration Estimation for Lossless Range Images), the first general, sensor-agnostic method that achieves lossless range image generation from spinning LiDAR point clouds without requiring manufacturer metadata or calibration files. Our algorithm automatically reverse-engineers the intrinsic geometry of any spinning LiDAR sensor by inferring critical parameters including laser beam configuration, angular distributions, and per-beam calibration corrections, enabling lossless projection and complete point cloud reconstruction with zero point loss. Comprehensive evaluation across the complete KITTI and DurLAR datasets demonstrates that ALICE-LRI achieves perfect point preservation, with zero points lost across all point clouds. Geometric accuracy is maintained well within sensor precision limits, establishing geometric losslessness with real-time performance. We also present a compression case study that validates substantial downstream benefits, demonstrating significant quality improvements in practical applications. This paradigm shift from approximate to lossless LiDAR projections opens new possibilities for high-precision remote sensing applications requiring complete geometric preservation.

  • 6 authors
·
Oct 23 1

RABBITS -- I. The crucial role of nuclear star formation in driving the coalescence of supermassive black hole binaries

In this study of the `Resolving supermAssive Black hole Binaries In galacTic hydrodynamical Simulations' (RABBITS) series, we focus on the hardening and coalescing process of supermassive black hole (SMBH) binaries in galaxy mergers. For simulations including different galaxy formation processes (i.e. gas cooling, star formation, SMBH accretion, stellar and AGN feedback), we systematically control the effect of stochastic eccentricity by fixing it to similar values during the SMBH hardening phase. We find a strong correlation between the SMBH merger time-scales and the presence of nuclear star formation. Throughout the galaxy merging process, gas condenses at the centre due to cooling and tidal torques, leading to nuclear star formation. These recently formed stars, which inherit low angular momenta from the gas, contribute to the loss cone and assist in the SMBH hardening via three-body interactions. Compared to non-radiative hydrodynamical runs, the SMBH merger time-scales measured from the runs including cooling, stellar and SMBH physical processes tend to be shortened by a factor of {sim}1.7. After fixing the eccentricity to the range of e sim 0.6--0.8 during the hardening phase, the simulations with AGN feedback reveal merger time-scales of {sim} 100--500 Myr for disc mergers and {sim} 1--2 Gyr for elliptical mergers. With a semi-analytical approach, we find that the torque interaction between the binary and its circumbinary disc has minimal impact on the shrinking of the binary orbit in our retrograde galaxy merger. Our results are useful in improving the modelling of SMBH merger time-scales and gravitational wave event rates.

  • 8 authors
·
Nov 2, 2023

A comprehensive grid of massive binary evolution models for the Galaxy - Surface properties of post-mass transfer stars

Massive stars often evolve in binary systems, in which binary interactions significantly affect their evolution. Massive stars in the Galaxy serve as valuable testbeds for this due to their proximity. We computed the evolution of more than 38000 galactic binary systems with initial primary star masses of 5...100 Msun. In this paper, we aim to investigate the surface properties of post-mass transfer mass donor and mass gainer stars through core hydrogen burning, core helium burning, and for the pre-supernova stage. The models are computed with MESA, incorporating detailed stellar and binary physics, including internal differential rotation, magnetic angular momentum transport, mass-dependent overshooting, stellar wind mass-loss, mass and angular momentum transfer and tidal interaction. They incorporate a new extensive nuclear network for hydrogen burning, which allows us to track the full range of hydrogen burning nucleosynthesis products, from the light elements to aluminum. The widest, non-interacting binary models in our grid effectively serve as single star models. We find that mass gainers and mass donors may evolve through long-lived blue and yellow supergiant stages during core helium burning where single stars of the same mass remain red supergiants. Furthermore, some of our gainers evolve into more luminous yellow and blue supergiants prior to core collapse than single stars, while some donors end their life as red or yellow supergiants, showing a rich diversity in supernova progenitors. We show that the surface elemental and isotopic abundances carry valuable information about a star's evolutionary history and can be used to distinguish binary interaction products from single stars. Our binary model grid may serve as a tool for identifying post-mass transfer stars and supernovae, and holds potential for population studies, supernova modeling, and guidance of future observations.

  • 4 authors
·
Oct 22

Single Image BRDF Parameter Estimation with a Conditional Adversarial Network

Creating plausible surfaces is an essential component in achieving a high degree of realism in rendering. To relieve artists, who create these surfaces in a time-consuming, manual process, automated retrieval of the spatially-varying Bidirectional Reflectance Distribution Function (SVBRDF) from a single mobile phone image is desirable. By leveraging a deep neural network, this casual capturing method can be achieved. The trained network can estimate per pixel normal, base color, metallic and roughness parameters from the Disney BRDF. The input image is taken with a mobile phone lit by the camera flash. The network is trained to compensate for environment lighting and thus learned to reduce artifacts introduced by other light sources. These losses contain a multi-scale discriminator with an additional perceptual loss, a rendering loss using a differentiable renderer, and a parameter loss. Besides the local precision, this loss formulation generates material texture maps which are globally more consistent. The network is set up as a generator network trained in an adversarial fashion to ensure that only plausible maps are produced. The estimated parameters not only reproduce the material faithfully in rendering but capture the style of hand-authored materials due to the more global loss terms compared to previous works without requiring additional post-processing. Both the resolution and the quality is improved.

  • 2 authors
·
Oct 11, 2019

PI-RADS v2 Compliant Automated Segmentation of Prostate Zones Using co-training Motivated Multi-task Dual-Path CNN

The detailed images produced by Magnetic Resonance Imaging (MRI) provide life-critical information for the diagnosis and treatment of prostate cancer. To provide standardized acquisition, interpretation and usage of the complex MRI images, the PI-RADS v2 guideline was proposed. An automated segmentation following the guideline facilitates consistent and precise lesion detection, staging and treatment. The guideline recommends a division of the prostate into four zones, PZ (peripheral zone), TZ (transition zone), DPU (distal prostatic urethra) and AFS (anterior fibromuscular stroma). Not every zone shares a boundary with the others and is present in every slice. Further, the representations captured by a single model might not suffice for all zones. This motivated us to design a dual-branch convolutional neural network (CNN), where each branch captures the representations of the connected zones separately. Further, the representations from different branches act complementary to each other at the second stage of training, where they are fine-tuned through an unsupervised loss. The loss penalises the difference in predictions from the two branches for the same class. We also incorporate multi-task learning in our framework to further improve the segmentation accuracy. The proposed approach improves the segmentation accuracy of the baseline (mean absolute symmetric distance) by 7.56%, 11.00%, 58.43% and 19.67% for PZ, TZ, DPU and AFS zones respectively.

  • 3 authors
·
Sep 22, 2023

Towards Squeezing-Averse Virtual Try-On via Sequential Deformation

In this paper, we first investigate a visual quality degradation problem observed in recent high-resolution virtual try-on approach. The tendency is empirically found that the textures of clothes are squeezed at the sleeve, as visualized in the upper row of Fig.1(a). A main reason for the issue arises from a gradient conflict between two popular losses, the Total Variation (TV) and adversarial losses. Specifically, the TV loss aims to disconnect boundaries between the sleeve and torso in a warped clothing mask, whereas the adversarial loss aims to combine between them. Such contrary objectives feedback the misaligned gradients to a cascaded appearance flow estimation, resulting in undesirable squeezing artifacts. To reduce this, we propose a Sequential Deformation (SD-VITON) that disentangles the appearance flow prediction layers into TV objective-dominant (TVOB) layers and a task-coexistence (TACO) layer. Specifically, we coarsely fit the clothes onto a human body via the TVOB layers, and then keep on refining via the TACO layer. In addition, the bottom row of Fig.1(a) shows a different type of squeezing artifacts around the waist. To address it, we further propose that we first warp the clothes into a tucked-out shirts style, and then partially erase the texture from the warped clothes without hurting the smoothness of the appearance flows. Experimental results show that our SD-VITON successfully resolves both types of artifacts and outperforms the baseline methods. Source code will be available at https://github.com/SHShim0513/SD-VITON.

  • 3 authors
·
Dec 25, 2023

Sharpness-Aware Training for Free

Modern deep neural networks (DNNs) have achieved state-of-the-art performances but are typically over-parameterized. The over-parameterization may result in undesirably large generalization error in the absence of other customized training strategies. Recently, a line of research under the name of Sharpness-Aware Minimization (SAM) has shown that minimizing a sharpness measure, which reflects the geometry of the loss landscape, can significantly reduce the generalization error. However, SAM-like methods incur a two-fold computational overhead of the given base optimizer (e.g. SGD) for approximating the sharpness measure. In this paper, we propose Sharpness-Aware Training for Free, or SAF, which mitigates the sharp landscape at almost zero additional computational cost over the base optimizer. Intuitively, SAF achieves this by avoiding sudden drops in the loss in the sharp local minima throughout the trajectory of the updates of the weights. Specifically, we suggest a novel trajectory loss, based on the KL-divergence between the outputs of DNNs with the current weights and past weights, as a replacement of the SAM's sharpness measure. This loss captures the rate of change of the training loss along the model's update trajectory. By minimizing it, SAF ensures the convergence to a flat minimum with improved generalization capabilities. Extensive empirical results show that SAF minimizes the sharpness in the same way that SAM does, yielding better results on the ImageNet dataset with essentially the same computational cost as the base optimizer.

  • 5 authors
·
May 27, 2022

Empirical Analysis of the Hessian of Over-Parametrized Neural Networks

We study the properties of common loss surfaces through their Hessian matrix. In particular, in the context of deep learning, we empirically show that the spectrum of the Hessian is composed of two parts: (1) the bulk centered near zero, (2) and outliers away from the bulk. We present numerical evidence and mathematical justifications to the following conjectures laid out by Sagun et al. (2016): Fixing data, increasing the number of parameters merely scales the bulk of the spectrum; fixing the dimension and changing the data (for instance adding more clusters or making the data less separable) only affects the outliers. We believe that our observations have striking implications for non-convex optimization in high dimensions. First, the flatness of such landscapes (which can be measured by the singularity of the Hessian) implies that classical notions of basins of attraction may be quite misleading. And that the discussion of wide/narrow basins may be in need of a new perspective around over-parametrization and redundancy that are able to create large connected components at the bottom of the landscape. Second, the dependence of small number of large eigenvalues to the data distribution can be linked to the spectrum of the covariance matrix of gradients of model outputs. With this in mind, we may reevaluate the connections within the data-architecture-algorithm framework of a model, hoping that it would shed light into the geometry of high-dimensional and non-convex spaces in modern applications. In particular, we present a case that links the two observations: small and large batch gradient descent appear to converge to different basins of attraction but we show that they are in fact connected through their flat region and so belong to the same basin.

  • 5 authors
·
Jun 14, 2017

Adaptive Multi-head Contrastive Learning

In contrastive learning, two views of an original image, generated by different augmentations, are considered a positive pair, and their similarity is required to be high. Similarly, two views of distinct images form a negative pair, with encouraged low similarity. Typically, a single similarity measure, provided by a lone projection head, evaluates positive and negative sample pairs. However, due to diverse augmentation strategies and varying intra-sample similarity, views from the same image may not always be similar. Additionally, owing to inter-sample similarity, views from different images may be more akin than those from the same image. Consequently, enforcing high similarity for positive pairs and low similarity for negative pairs may be unattainable, and in some cases, such enforcement could detrimentally impact performance. To address this challenge, we propose using multiple projection heads, each producing a distinct set of features. Our pre-training loss function emerges from a solution to the maximum likelihood estimation over head-wise posterior distributions of positive samples given observations. This loss incorporates the similarity measure over positive and negative pairs, each re-weighted by an individual adaptive temperature, regulated to prevent ill solutions. Our approach, Adaptive Multi-Head Contrastive Learning (AMCL), can be applied to and experimentally enhances several popular contrastive learning methods such as SimCLR, MoCo, and Barlow Twins. The improvement remains consistent across various backbones and linear probing epochs, and becomes more significant when employing multiple augmentation methods.

  • 4 authors
·
Oct 9, 2023

LOST: Low-rank and Sparse Pre-training for Large Language Models

While large language models (LLMs) have achieved remarkable performance across a wide range of tasks, their massive scale incurs prohibitive computational and memory costs for pre-training from scratch. Recent studies have investigated the use of low-rank parameterization as a means of reducing model size and training cost. In this context, sparsity is often employed as a complementary technique to recover important information lost in low-rank compression by capturing salient features in the residual space. However, existing approaches typically combine low-rank and sparse components in a simplistic or ad hoc manner, often resulting in undesirable performance degradation compared to full-rank training. In this paper, we propose LOw-rank and Sparse pre-Training (LOST) for LLMs, a novel method that ingeniously integrates low-rank and sparse structures to enable effective training of LLMs from scratch under strict efficiency constraints. LOST applies singular value decomposition to weight matrices, preserving the dominant low-rank components, while allocating the remaining singular values to construct channel-wise sparse components to complement the expressiveness of low-rank training. We evaluate LOST on LLM pretraining ranging from 60M to 7B parameters. Our experiments show that LOST achieves competitive or superior performance compared to full-rank models, while significantly reducing both memory and compute overhead. Moreover, Code is available at https://github.com/JiaxiLi1/LOST-Low-rank-and-Sparse-Training-for-Large-Language-Models{LOST Repo}

  • 9 authors
·
Aug 4

Neural Collapse in Deep Linear Networks: From Balanced to Imbalanced Data

Modern deep neural networks have achieved impressive performance on tasks from image classification to natural language processing. Surprisingly, these complex systems with massive amounts of parameters exhibit the same structural properties in their last-layer features and classifiers across canonical datasets when training until convergence. In particular, it has been observed that the last-layer features collapse to their class-means, and those class-means are the vertices of a simplex Equiangular Tight Frame (ETF). This phenomenon is known as Neural Collapse (NC). Recent papers have theoretically shown that NC emerges in the global minimizers of training problems with the simplified "unconstrained feature model". In this context, we take a step further and prove the NC occurrences in deep linear networks for the popular mean squared error (MSE) and cross entropy (CE) losses, showing that global solutions exhibit NC properties across the linear layers. Furthermore, we extend our study to imbalanced data for MSE loss and present the first geometric analysis of NC under bias-free setting. Our results demonstrate the convergence of the last-layer features and classifiers to a geometry consisting of orthogonal vectors, whose lengths depend on the amount of data in their corresponding classes. Finally, we empirically validate our theoretical analyses on synthetic and practical network architectures with both balanced and imbalanced scenarios.

  • 6 authors
·
Jan 1, 2023

Tracing the Representation Geometry of Language Models from Pretraining to Post-training

Standard training metrics like loss fail to explain the emergence of complex capabilities in large language models. We take a spectral approach to investigate the geometry of learned representations across pretraining and post-training, measuring effective rank (RankMe) and eigenspectrum decay (α-ReQ). With OLMo (1B-7B) and Pythia (160M-12B) models, we uncover a consistent non-monotonic sequence of three geometric phases during autoregressive pretraining. The initial "warmup" phase exhibits rapid representational collapse. This is followed by an "entropy-seeking" phase, where the manifold's dimensionality expands substantially, coinciding with peak n-gram memorization. Subsequently, a "compression-seeking" phase imposes anisotropic consolidation, selectively preserving variance along dominant eigendirections while contracting others, a transition marked with significant improvement in downstream task performance. We show these phases can emerge from a fundamental interplay of cross-entropy optimization under skewed token frequencies and representational bottlenecks (d ll |V|). Post-training further transforms geometry: SFT and DPO drive "entropy-seeking" dynamics to integrate specific instructional or preferential data, improving in-distribution performance while degrading out-of-distribution robustness. Conversely, RLVR induces "compression-seeking", enhancing reward alignment but reducing generation diversity.

  • 7 authors
·
Sep 26

TokenHMR: Advancing Human Mesh Recovery with a Tokenized Pose Representation

We address the problem of regressing 3D human pose and shape from a single image, with a focus on 3D accuracy. The current best methods leverage large datasets of 3D pseudo-ground-truth (p-GT) and 2D keypoints, leading to robust performance. With such methods, we observe a paradoxical decline in 3D pose accuracy with increasing 2D accuracy. This is caused by biases in the p-GT and the use of an approximate camera projection model. We quantify the error induced by current camera models and show that fitting 2D keypoints and p-GT accurately causes incorrect 3D poses. Our analysis defines the invalid distances within which minimizing 2D and p-GT losses is detrimental. We use this to formulate a new loss Threshold-Adaptive Loss Scaling (TALS) that penalizes gross 2D and p-GT losses but not smaller ones. With such a loss, there are many 3D poses that could equally explain the 2D evidence. To reduce this ambiguity we need a prior over valid human poses but such priors can introduce unwanted bias. To address this, we exploit a tokenized representation of human pose and reformulate the problem as token prediction. This restricts the estimated poses to the space of valid poses, effectively providing a uniform prior. Extensive experiments on the EMDB and 3DPW datasets show that our reformulated keypoint loss and tokenization allows us to train on in-the-wild data while improving 3D accuracy over the state-of-the-art. Our models and code are available for research at https://tokenhmr.is.tue.mpg.de.

  • 5 authors
·
Apr 25, 2024

Few-shot Hybrid Domain Adaptation of Image Generators

Can a pre-trained generator be adapted to the hybrid of multiple target domains and generate images with integrated attributes of them? In this work, we introduce a new task -- Few-shot Hybrid Domain Adaptation (HDA). Given a source generator and several target domains, HDA aims to acquire an adapted generator that preserves the integrated attributes of all target domains, without overriding the source domain's characteristics. Compared with Domain Adaptation (DA), HDA offers greater flexibility and versatility to adapt generators to more composite and expansive domains. Simultaneously, HDA also presents more challenges than DA as we have access only to images from individual target domains and lack authentic images from the hybrid domain. To address this issue, we introduce a discriminator-free framework that directly encodes different domains' images into well-separable subspaces. To achieve HDA, we propose a novel directional subspace loss comprised of a distance loss and a direction loss. Concretely, the distance loss blends the attributes of all target domains by reducing the distances from generated images to all target subspaces. The direction loss preserves the characteristics from the source domain by guiding the adaptation along the perpendicular to subspaces. Experiments show that our method can obtain numerous domain-specific attributes in a single adapted generator, which surpasses the baseline methods in semantic similarity, image fidelity, and cross-domain consistency.

  • 10 authors
·
Oct 30, 2023

SPOCKMIP: Segmentation of Vessels in MRAs with Enhanced Continuity using Maximum Intensity Projection as Loss

Identification of vessel structures of different sizes in biomedical images is crucial in the diagnosis of many neurodegenerative diseases. However, the sparsity of good-quality annotations of such images makes the task of vessel segmentation challenging. Deep learning offers an efficient way to segment vessels of different sizes by learning their high-level feature representations and the spatial continuity of such features across dimensions. Semi-supervised patch-based approaches have been effective in identifying small vessels of one to two voxels in diameter. This study focuses on improving the segmentation quality by considering the spatial correlation of the features using the Maximum Intensity Projection~(MIP) as an additional loss criterion. Two methods are proposed with the incorporation of MIPs of label segmentation on the single~(z-axis) and multiple perceivable axes of the 3D volume. The proposed MIP-based methods produce segmentations with improved vessel continuity, which is evident in visual examinations of ROIs. Patch-based training is improved by introducing an additional loss term, MIP loss, to penalise the predicted discontinuity of vessels. A training set of 14 volumes is selected from the StudyForrest dataset comprising of 18 7-Tesla 3D Time-of-Flight~(ToF) Magnetic Resonance Angiography (MRA) images. The generalisation performance of the method is evaluated using the other unseen volumes in the dataset. It is observed that the proposed method with multi-axes MIP loss produces better quality segmentations with a median Dice of 80.245 pm 0.129. Also, the method with single-axis MIP loss produces segmentations with a median Dice of 79.749 pm 0.109. Furthermore, a visual comparison of the ROIs in the predicted segmentation reveals a significant improvement in the continuity of the vessels when MIP loss is incorporated into training.

  • 8 authors
·
Jul 11, 2024

Garment3DGen: 3D Garment Stylization and Texture Generation

We introduce Garment3DGen a new method to synthesize 3D garment assets from a base mesh given a single input image as guidance. Our proposed approach allows users to generate 3D textured clothes based on both real and synthetic images, such as those generated by text prompts. The generated assets can be directly draped and simulated on human bodies. First, we leverage the recent progress of image to 3D diffusion methods to generate 3D garment geometries. However, since these geometries cannot be utilized directly for downstream tasks, we propose to use them as pseudo ground-truth and set up a mesh deformation optimization procedure that deforms a base template mesh to match the generated 3D target. Second, we introduce carefully designed losses that allow the input base mesh to freely deform towards the desired target, yet preserve mesh quality and topology such that they can be simulated. Finally, a texture estimation module generates high-fidelity texture maps that are globally and locally consistent and faithfully capture the input guidance, allowing us to render the generated 3D assets. With Garment3DGen users can generate the textured 3D garment of their choice without the need of artist intervention. One can provide a textual prompt describing the garment they desire to generate a simulation-ready 3D asset. We present a plethora of quantitative and qualitative comparisons on various assets both real and generated and provide use-cases of how one can generate simulation-ready 3D garments.

  • 6 authors
·
Mar 27, 2024 3

SeaBird: Segmentation in Bird's View with Dice Loss Improves Monocular 3D Detection of Large Objects

Monocular 3D detectors achieve remarkable performance on cars and smaller objects. However, their performance drops on larger objects, leading to fatal accidents. Some attribute the failures to training data scarcity or their receptive field requirements of large objects. In this paper, we highlight this understudied problem of generalization to large objects. We find that modern frontal detectors struggle to generalize to large objects even on nearly balanced datasets. We argue that the cause of failure is the sensitivity of depth regression losses to noise of larger objects. To bridge this gap, we comprehensively investigate regression and dice losses, examining their robustness under varying error levels and object sizes. We mathematically prove that the dice loss leads to superior noise-robustness and model convergence for large objects compared to regression losses for a simplified case. Leveraging our theoretical insights, we propose SeaBird (Segmentation in Bird's View) as the first step towards generalizing to large objects. SeaBird effectively integrates BEV segmentation on foreground objects for 3D detection, with the segmentation head trained with the dice loss. SeaBird achieves SoTA results on the KITTI-360 leaderboard and improves existing detectors on the nuScenes leaderboard, particularly for large objects. Code and models at https://github.com/abhi1kumar/SeaBird

  • 5 authors
·
Mar 29, 2024

GuideFlow3D: Optimization-Guided Rectified Flow For Appearance Transfer

Transferring appearance to 3D assets using different representations of the appearance object - such as images or text - has garnered interest due to its wide range of applications in industries like gaming, augmented reality, and digital content creation. However, state-of-the-art methods still fail when the geometry between the input and appearance objects is significantly different. A straightforward approach is to directly apply a 3D generative model, but we show that this ultimately fails to produce appealing results. Instead, we propose a principled approach inspired by universal guidance. Given a pretrained rectified flow model conditioned on image or text, our training-free method interacts with the sampling process by periodically adding guidance. This guidance can be modeled as a differentiable loss function, and we experiment with two different types of guidance including part-aware losses for appearance and self-similarity. Our experiments show that our approach successfully transfers texture and geometric details to the input 3D asset, outperforming baselines both qualitatively and quantitatively. We also show that traditional metrics are not suitable for evaluating the task due to their inability of focusing on local details and comparing dissimilar inputs, in absence of ground truth data. We thus evaluate appearance transfer quality with a GPT-based system objectively ranking outputs, ensuring robust and human-like assessment, as further confirmed by our user study. Beyond showcased scenarios, our method is general and could be extended to different types of diffusion models and guidance functions.

The Simons Observatory: Cryogenic Half Wave Plate Rotation Mechanism for the Small Aperture Telescopes

We present the requirements, design and evaluation of the cryogenic continuously rotating half-wave plate (CHWP) for the Simons Observatory (SO). SO is a cosmic microwave background (CMB) polarization experiment at Parque Astron\'{o}mico Atacama in northern Chile that covers a wide range of angular scales using both small (0.42 m) and large (6 m) aperture telescopes. In particular, the small aperture telescopes (SATs) focus on large angular scales for primordial B-mode polarization. To this end, the SATs employ a CHWP to modulate the polarization of the incident light at 8 Hz, suppressing atmospheric 1/f noise and mitigating systematic uncertainties that would otherwise arise due to the differential response of detectors sensitive to orthogonal polarizations. The CHWP consists of a 505 mm diameter achromatic sapphire HWP and a cryogenic rotation mechanism, both of which are cooled down to sim50 K to reduce detector thermal loading. Under normal operation the HWP is suspended by a superconducting magnetic bearing and rotates with a constant 2 Hz frequency, controlled by an electromagnetic synchronous motor. We find that the number of superconductors and magnets that make up the superconducting magnetic bearing are important design parameters, especially for the rotation mechanism's vibration performance. The rotation angle is detected through an angular encoder with a noise level of 0.07 muradmathrm{s}. During a cooldown, the rotor is held in place by a grip-and-release mechanism that serves as both an alignment device and a thermal path. In this paper we provide an overview of the SO SAT CHWP: its requirements, hardware design, and laboratory performance.

  • 27 authors
·
Sep 26, 2023

Examining the Source of Defects from a Mechanical Perspective for 3D Anomaly Detection

In this paper, we explore a novel approach to 3D anomaly detection (AD) that goes beyond merely identifying anomalies based on structural characteristics. Our primary perspective is that most anomalies arise from unpredictable defective forces originating from both internal and external sources. To address these anomalies, we seek out opposing forces that can help correct them. Therefore, we introduce the Mechanics Complementary Model-based Framework for the 3D-AD task (MC4AD), which generates internal and external corrective forces for each point. We first propose a Diverse Anomaly-Generation (DA-Gen) module designed to simulate various types of anomalies. Next, we present the Corrective Force Prediction Network (CFP-Net), which uses complementary representations for point-level analysis to simulate the different contributions from internal and external corrective forces. To ensure the corrective forces are constrained effectively, we have developed a combined loss function that includes a new symmetric loss and an overall loss. Notably, we implement a Hierarchical Quality Control (HQC) strategy based on a three-way decision process and contribute a dataset titled Anomaly-IntraVariance, which incorporates intraclass variance to evaluate our model. As a result, the proposed MC4AD has been proven effective through theory and experimentation. The experimental results demonstrate that our approach yields nine state-of-the-art performances, achieving optimal results with minimal parameters and the fastest inference speed across five existing datasets, in addition to the proposed Anomaly-IntraVariance dataset. The source is available at https://github.com/hzzzzzhappy/MC4AD

  • 6 authors
·
May 9

Why Registration Quality Matters: Enhancing sCT Synthesis with IMPACT-Based Registration

We participated in the SynthRAD2025 challenge (Tasks 1 and 2) with a unified pipeline for synthetic CT (sCT) generation from MRI and CBCT, implemented using the KonfAI framework. Our model is a 2.5D U-Net++ with a ResNet-34 encoder, trained jointly across anatomical regions and fine-tuned per region. The loss function combined pixel-wise L1 loss with IMPACT-Synth, a perceptual loss derived from SAM and TotalSegmentator to enhance structural fidelity. Training was performed using AdamW (initial learning rate = 0.001, halved every 25k steps) on patch-based, normalized, body-masked inputs (320x320 for MRI, 256x256 for CBCT), with random flipping as the only augmentation. No post-processing was applied. Final predictions leveraged test-time augmentation and five-fold ensembling. The best model was selected based on validation MAE. Two registration strategies were evaluated: (i) Elastix with mutual information, consistent with the challenge pipeline, and (ii) IMPACT, a feature-based similarity metric leveraging pretrained segmentation networks. On the local test sets, IMPACT-based registration achieved more accurate and anatomically consistent alignments than mutual-information-based registration, resulting in improved sCT synthesis with lower MAE and more realistic anatomical structures. On the public validation set, however, models trained with Elastix-aligned data achieved higher scores, reflecting a registration bias favoring alignment strategies consistent with the evaluation pipeline. This highlights how registration errors can propagate into supervised learning, influencing both training and evaluation, and potentially inflating performance metrics at the expense of anatomical fidelity. By promoting anatomically consistent alignment, IMPACT helps mitigate this bias and supports the development of more robust and generalizable sCT synthesis models.

  • 4 authors
·
Oct 24

New Radio Observations of the Supernova Remnant CTA 1

We present new radio images of the supernova remnant (SNR) CTA 1 at 1420 and 408 MHz, and in the 21 cm line of H I observed with the Dominion Radio Astrophysical Observatory Synthesis Telescope and at 1420 MHz observed with the Effelsberg 100 m telescope. We confirm previously described continuum features and elaborate further on filamentary features identified using the high-resolution (1') maps from these new observations. We investigate the abrupt change in sign of rotation measure (RM) across the SNR, using the linear polarization observations in the four bands around 1420 MHz. Following X. H. Sun et al.'s (2011) investigation, we both confirm that the distribution of signs of the RMs for extragalactic sources in the area appears to match that of the shell, as well as combine the data from the four bands to estimate the relative depolarization and the intrinsic rotation measure of the SNR. We do not conclusively reject X. H. Sun et al.'s (2011) claim of a Faraday screen in the foreground causing the distribution of RMs that we observe; however, we do suggest an alternative explanation of a swept-up stellar wind from the progenitor star with a toroidal magnetic field. Finally, we expand on the analysis of the H I observations by applying the Rolling Hough Transform to isolate filamentary structure and better identify H I emission with the SNR. Further constraining the H I velocity channels associated with CTA 1, we use more recent Galactic rotation curves to calculate an updated kinematic distance of 1.09 +/- 0.2 kpc.

  • 6 authors
·
Dec 19, 2024

Investigating generalization capabilities of neural networks by means of loss landscapes and Hessian analysis

This paper studies generalization capabilities of neural networks (NNs) using new and improved PyTorch library Loss Landscape Analysis (LLA). LLA facilitates visualization and analysis of loss landscapes along with the properties of NN Hessian. Different approaches to NN loss landscape plotting are discussed with particular focus on normalization techniques showing that conventional methods cannot always ensure correct visualization when batch normalization layers are present in NN architecture. The use of Hessian axes is shown to be able to mitigate this effect, and methods for choosing Hessian axes are proposed. In addition, spectra of Hessian eigendecomposition are studied and it is shown that typical spectra exist for a wide range of NNs. This allows to propose quantitative criteria for Hessian analysis that can be applied to evaluate NN performance and assess its generalization capabilities. Generalization experiments are conducted using ImageNet-1K pre-trained models along with several models trained as part of this study. The experiment include training models on one dataset and testing on another one to maximize experiment similarity to model performance in the Wild. It is shown that when datasets change, the changes in criteria correlate with the changes in accuracy, making the proposed criteria a computationally efficient estimate of generalization ability, which is especially useful for extremely large datasets.

  • 1 authors
·
Dec 13, 2024

Learning to Regress Bodies from Images using Differentiable Semantic Rendering

Learning to regress 3D human body shape and pose (e.g.~SMPL parameters) from monocular images typically exploits losses on 2D keypoints, silhouettes, and/or part-segmentation when 3D training data is not available. Such losses, however, are limited because 2D keypoints do not supervise body shape and segmentations of people in clothing do not match projected minimally-clothed SMPL shapes. To exploit richer image information about clothed people, we introduce higher-level semantic information about clothing to penalize clothed and non-clothed regions of the image differently. To do so, we train a body regressor using a novel Differentiable Semantic Rendering - DSR loss. For Minimally-Clothed regions, we define the DSR-MC loss, which encourages a tight match between a rendered SMPL body and the minimally-clothed regions of the image. For clothed regions, we define the DSR-C loss to encourage the rendered SMPL body to be inside the clothing mask. To ensure end-to-end differentiable training, we learn a semantic clothing prior for SMPL vertices from thousands of clothed human scans. We perform extensive qualitative and quantitative experiments to evaluate the role of clothing semantics on the accuracy of 3D human pose and shape estimation. We outperform all previous state-of-the-art methods on 3DPW and Human3.6M and obtain on par results on MPI-INF-3DHP. Code and trained models are available for research at https://dsr.is.tue.mpg.de/.

  • 4 authors
·
Oct 7, 2021

Probing the shape of the Milky Way dark matter halo with hypervelocity stars: a new method

We propose a new method to determine the shape of the gravitational potential of the dark matter (DM) halo of the Milky Way (MW) with the galactocentric tangential velocities of a sample of hypervelocity stars (HVSs). We compute the trajectories of different samples of HVSs in a MW where the baryon distribution is axisymmetric and the DM potential either is spherical or is spheroidal or triaxial with radial-dependent axis ratios. We determine the shape of the DM potential with the distribution of the latitudinal velocity |v_{vartheta}| in axisymmetric Galactic potentials, or with the distribution of |v_{vartheta}| and of a function bar v_{varphi} of the azimuthal velocity in non-axisymmetric Galactic potentials. We recover the correct shape of the DM potential by comparing the distribution of |v_{vartheta}| and bar v_{varphi} against the corresponding distributions of mock samples of HVSs that traveled in DM halos of different shapes. We use the largest possible sample of sim 800 HVSs of 4~M_odot ejected with the Hills mechanism at a rate sim 10^{-4} yr^{-1}, currently outgoing, and located at more than 10 kpc from the Galactic center. In our ideal case of galactocentric velocities with null uncertainties and no observational limitations, our method recovers the correct shape of the DM potential with a success rate Sgtrsim 89% in axisymmetric Galactic potentials, and S > 96% in the explored non-axisymmetric cases. The unsuccessful cases yield axis ratios of the DM potential that are off by pm 0.1. The success rate decreases with decreasing sample size: for example, for a spherical DM halo, S drops from sim 98% to sim 38% when the sample size decreases from sim 800 to sim 40 HVSs. A robust determination of the shape of the DM potential thus requires the measure of the galactocentric velocity of a few hundred genuine HVSs.

  • 5 authors
·
Nov 18, 2021

S3IM: Stochastic Structural SIMilarity and Its Unreasonable Effectiveness for Neural Fields

Recently, Neural Radiance Field (NeRF) has shown great success in rendering novel-view images of a given scene by learning an implicit representation with only posed RGB images. NeRF and relevant neural field methods (e.g., neural surface representation) typically optimize a point-wise loss and make point-wise predictions, where one data point corresponds to one pixel. Unfortunately, this line of research failed to use the collective supervision of distant pixels, although it is known that pixels in an image or scene can provide rich structural information. To the best of our knowledge, we are the first to design a nonlocal multiplex training paradigm for NeRF and relevant neural field methods via a novel Stochastic Structural SIMilarity (S3IM) loss that processes multiple data points as a whole set instead of process multiple inputs independently. Our extensive experiments demonstrate the unreasonable effectiveness of S3IM in improving NeRF and neural surface representation for nearly free. The improvements of quality metrics can be particularly significant for those relatively difficult tasks: e.g., the test MSE loss unexpectedly drops by more than 90% for TensoRF and DVGO over eight novel view synthesis tasks; a 198% F-score gain and a 64% Chamfer L_{1} distance reduction for NeuS over eight surface reconstruction tasks. Moreover, S3IM is consistently robust even with sparse inputs, corrupted images, and dynamic scenes.

  • 8 authors
·
Aug 14, 2023

Benchmarking Ultra-High-Definition Image Reflection Removal

Deep learning based methods have achieved significant success in the task of single image reflection removal (SIRR). However, the majority of these methods are focused on High-Definition/Standard-Definition (HD/SD) images, while ignoring higher resolution images such as Ultra-High-Definition (UHD) images. With the increasing prevalence of UHD images captured by modern devices, in this paper, we aim to address the problem of UHD SIRR. Specifically, we first synthesize two large-scale UHD datasets, UHDRR4K and UHDRR8K. The UHDRR4K dataset consists of 2,999 and 168 quadruplets of images for training and testing respectively, and the UHDRR8K dataset contains 1,014 and 105 quadruplets. To the best of our knowledge, these two datasets are the first largest-scale UHD datasets for SIRR. Then, we conduct a comprehensive evaluation of six state-of-the-art SIRR methods using the proposed datasets. Based on the results, we provide detailed discussions regarding the strengths and limitations of these methods when applied to UHD images. Finally, we present a transformer-based architecture named RRFormer for reflection removal. RRFormer comprises three modules, namely the Prepossessing Embedding Module, Self-attention Feature Extraction Module, and Multi-scale Spatial Feature Extraction Module. These modules extract hypercolumn features, global and partial attention features, and multi-scale spatial features, respectively. To ensure effective training, we utilize three terms in our loss function: pixel loss, feature loss, and adversarial loss. We demonstrate through experimental results that RRFormer achieves state-of-the-art performance on both the non-UHD dataset and our proposed UHDRR datasets. The code and datasets are publicly available at https://github.com/Liar-zzy/Benchmarking-Ultra-High-Definition-Single-Image-Reflection-Removal.

  • 6 authors
·
Jul 31, 2023

Camera Calibration through Geometric Constraints from Rotation and Projection Matrices

The process of camera calibration involves estimating the intrinsic and extrinsic parameters, which are essential for accurately performing tasks such as 3D reconstruction, object tracking and augmented reality. In this work, we propose a novel constraints-based loss for measuring the intrinsic (focal length: (f_x, f_y) and principal point: (p_x, p_y)) and extrinsic (baseline: (b), disparity: (d), translation: (t_x, t_y, t_z), and rotation specifically pitch: (theta_p)) camera parameters. Our novel constraints are based on geometric properties inherent in the camera model, including the anatomy of the projection matrix (vanishing points, image of world origin, axis planes) and the orthonormality of the rotation matrix. Thus we proposed a novel Unsupervised Geometric Constraint Loss (UGCL) via a multitask learning framework. Our methodology is a hybrid approach that employs the learning power of a neural network to estimate the desired parameters along with the underlying mathematical properties inherent in the camera projection matrix. This distinctive approach not only enhances the interpretability of the model but also facilitates a more informed learning process. Additionally, we introduce a new CVGL Camera Calibration dataset, featuring over 900 configurations of camera parameters, incorporating 63,600 image pairs that closely mirror real-world conditions. By training and testing on both synthetic and real-world datasets, our proposed approach demonstrates improvements across all parameters when compared to the state-of-the-art (SOTA) benchmarks. The code and the updated dataset can be found here: https://github.com/CVLABLUMS/CVGL-Camera-Calibration

  • 3 authors
·
Feb 13, 2024

Small-scale proxies for large-scale Transformer training instabilities

Teams that have trained large Transformer-based models have reported training instabilities at large scale that did not appear when training with the same hyperparameters at smaller scales. Although the causes of such instabilities are of scientific interest, the amount of resources required to reproduce them has made investigation difficult. In this work, we seek ways to reproduce and study training stability and instability at smaller scales. First, we focus on two sources of training instability described in previous work: the growth of logits in attention layers (Dehghani et al., 2023) and divergence of the output logits from the log probabilities (Chowdhery et al., 2022). By measuring the relationship between learning rate and loss across scales, we show that these instabilities also appear in small models when training at high learning rates, and that mitigations previously employed at large scales are equally effective in this regime. This prompts us to investigate the extent to which other known optimizer and model interventions influence the sensitivity of the final loss to changes in the learning rate. To this end, we study methods such as warm-up, weight decay, and the muParam (Yang et al., 2022), and combine techniques to train small models that achieve similar losses across orders of magnitude of learning rate variation. Finally, to conclude our exploration we study two cases where instabilities can be predicted before they emerge by examining the scaling behavior of model activation and gradient norms.

  • 16 authors
·
Sep 25, 2023 2

Parallel Vertex Diffusion for Unified Visual Grounding

Unified visual grounding pursues a simple and generic technical route to leverage multi-task data with less task-specific design. The most advanced methods typically present boxes and masks as vertex sequences to model referring detection and segmentation as an autoregressive sequential vertex generation paradigm. However, generating high-dimensional vertex sequences sequentially is error-prone because the upstream of the sequence remains static and cannot be refined based on downstream vertex information, even if there is a significant location gap. Besides, with limited vertexes, the inferior fitting of objects with complex contours restricts the performance upper bound. To deal with this dilemma, we propose a parallel vertex generation paradigm for superior high-dimension scalability with a diffusion model by simply modifying the noise dimension. An intuitive materialization of our paradigm is Parallel Vertex Diffusion (PVD) to directly set vertex coordinates as the generation target and use a diffusion model to train and infer. We claim that it has two flaws: (1) unnormalized coordinate caused a high variance of loss value; (2) the original training objective of PVD only considers point consistency but ignores geometry consistency. To solve the first flaw, Center Anchor Mechanism (CAM) is designed to convert coordinates as normalized offset values to stabilize the training loss value. For the second flaw, Angle summation loss (ASL) is designed to constrain the geometry difference of prediction and ground truth vertexes for geometry-level consistency. Empirical results show that our PVD achieves state-of-the-art in both referring detection and segmentation, and our paradigm is more scalable and efficient than sequential vertex generation with high-dimension data.

  • 7 authors
·
Mar 13, 2023

An Embedding-Dynamic Approach to Self-supervised Learning

A number of recent self-supervised learning methods have shown impressive performance on image classification and other tasks. A somewhat bewildering variety of techniques have been used, not always with a clear understanding of the reasons for their benefits, especially when used in combination. Here we treat the embeddings of images as point particles and consider model optimization as a dynamic process on this system of particles. Our dynamic model combines an attractive force for similar images, a locally dispersive force to avoid local collapse, and a global dispersive force to achieve a globally-homogeneous distribution of particles. The dynamic perspective highlights the advantage of using a delayed-parameter image embedding (a la BYOL) together with multiple views of the same image. It also uses a purely-dynamic local dispersive force (Brownian motion) that shows improved performance over other methods and does not require knowledge of other particle coordinates. The method is called MSBReg which stands for (i) a Multiview centroid loss, which applies an attractive force to pull different image view embeddings toward their centroid, (ii) a Singular value loss, which pushes the particle system toward spatially homogeneous density, (iii) a Brownian diffusive loss. We evaluate downstream classification performance of MSBReg on ImageNet as well as transfer learning tasks including fine-grained classification, multi-class object classification, object detection, and instance segmentation. In addition, we also show that applying our regularization term to other methods further improves their performance and stabilize the training by preventing a mode collapse.

  • 5 authors
·
Jul 7, 2022

Parameter estimation from the core-bounce phase of rotating core collapse supernovae in real interferometer noise

In this work we propose an analytical model that reproduces the core-bounds phase of gravitational waves (GW) of Rapidly Rotating (RR) from Core Collapse Supernovae (CCSNe), as a function of three parameters, the arrival time tau, the ratio of the kinetic and potential energy beta and a phenomenological parameter alpha related to rotation and equation of state (EOS). To validate the model we use 126 waveforms from the Richers catalog Richers_2017 selected with the criteria of exploring a range of rotation profiles, and involving EOS. To quantify the degree of accuracy of the proposed model, with a particular focus on the rotation parameter beta, we show that the average Fitting Factor (FF) between the simulated waveforms with the templates is 94.4\%. In order to estimate the parameters we propose a frequentist matched filtering approach in real interferometric noise which does not require assigning any priors. We use the Matched Filter (MF) technique, where we inject a bank of templates considering simulated colored Gaussian noise and the real noise of O3L1. For example for A300w6.00\_BHBLP at 10Kpc we obtain a standar deviation of sigma = 3.34times 10^{-3} for simulated colored Gaussian noise and sigma= 1.46times 10^{-2} for real noise. On the other hand, from the asymptotic expansion of the variance we obtain the theoretical minimum error for beta at 10 kpc and optimal orientation. The estimation error in this case is from 10^{-2} to 10^{-3} as beta increases. We show that the results of the estimation error of beta for the 3-parameter space (3D) is consistent with the single-parameter space (1D), which allows us to conclude that beta is decoupled from the others two parameters.

  • 5 authors
·
Apr 3, 2023

Angles Don't Lie: Unlocking Training-Efficient RL Through the Model's Own Signals

Current Reinforcement Fine-tuning (RFT) paradigms for Large Language Models (LLMs) suffer from sample inefficiency due to the redundant exposure of identical queries under uniform data sampling. While previous work has explored curriculum learning via heuristic difficulty metrics, these strategies exhibit limitations by neglecting the intrinsic learning signals generated by the model itself, thus leading to suboptimal training regimes. In this paper, we identify a model-inherent signal termed angle concentration that effectively reflects an LLM's capacity to learn from specific data. We theoretically and empirically demonstrate a correlation between the angular distribution of token hidden state vectors and the resulting gradient, revealing a learning preference for data exhibiting higher angle concentration. Inspired by this finding, we propose GAIN-RL, a Gradient-driven Angle-Informed Navigated RL framework. By leveraging the model's intrinsic angle concentration signal, GAIN-RL dynamically selects training data in each epoch, ensuring consistently impactful gradient updates and thus significantly enhancing overall training efficiency. Empirical evaluations show that GAIN-RL (GRPO) achieves over a 2.5x acceleration in training efficiency across diverse mathematical and coding tasks and varying model scales. Furthermore, GAIN-RL (GRPO)'s efficient sampling yields data-efficient training, achieving better performance with half the original data compared to vanilla GRPO with full training data. Code is realsed at https://github.com/wangqinsi1/GAINRL/tree/main.

  • 9 authors
·
Jun 2 2

MatDecompSDF: High-Fidelity 3D Shape and PBR Material Decomposition from Multi-View Images

We present MatDecompSDF, a novel framework for recovering high-fidelity 3D shapes and decomposing their physically-based material properties from multi-view images. The core challenge of inverse rendering lies in the ill-posed disentanglement of geometry, materials, and illumination from 2D observations. Our method addresses this by jointly optimizing three neural components: a neural Signed Distance Function (SDF) to represent complex geometry, a spatially-varying neural field for predicting PBR material parameters (albedo, roughness, metallic), and an MLP-based model for capturing unknown environmental lighting. The key to our approach is a physically-based differentiable rendering layer that connects these 3D properties to the input images, allowing for end-to-end optimization. We introduce a set of carefully designed physical priors and geometric regularizations, including a material smoothness loss and an Eikonal loss, to effectively constrain the problem and achieve robust decomposition. Extensive experiments on both synthetic and real-world datasets (e.g., DTU) demonstrate that MatDecompSDF surpasses state-of-the-art methods in geometric accuracy, material fidelity, and novel view synthesis. Crucially, our method produces editable and relightable assets that can be seamlessly integrated into standard graphics pipelines, validating its practical utility for digital content creation.

  • 7 authors
·
Jul 7

Optimised angular power spectra for spectroscopic galaxy surveys

The angular power spectrum is a gauge-independent observable that is in principle the natural tool for analysing galaxy number counts. In practice, the problem is that the computational requirements for next-generation spectroscopic surveys such as Euclid and the Square Kilometre Array are currently unfeasible. We propose a new method to save computational time for spectroscopic angular power spectra. This hybrid method is modelled on the Fourier power spectrum approach of treating relatively thick redshift bins (redshift width ~0.1) as separate surveys. In the hybrid method, each thick bin is further subdivided into thin bins (redshift width ~0.01); all the correlations within each thick bin are computed, while cross-bin correlations beyond the thick bins are neglected. Constraints on cosmological parameters from the hybrid method are comparable to those from the standard galaxy power spectrum analysis - but they have the advantage that cosmic evolution, wide-angle and lensing effects are naturally included, while no Alcock-Paczynski correction is needed. The hybrid method delivers much tighter constraints than a 2D tomographic approach that is typical for photometric surveys, which considers only thick bins and the correlations between them. Furthermore, for standard cosmological parameters our method is not biased by neglecting the effects of lensing on number counts, while the tomographic method is strongly biased.

  • 4 authors
·
Mar 28, 2018

Optimizing What Matters: AUC-Driven Learning for Robust Neural Retrieval

Dual-encoder retrievers depend on the principle that relevant documents should score higher than irrelevant ones for a given query. Yet the dominant Noise Contrastive Estimation (NCE) objective, which underpins Contrastive Loss, optimizes a softened ranking surrogate that we rigorously prove is fundamentally oblivious to score separation quality and unrelated to AUC. This mismatch leads to poor calibration and suboptimal performance in downstream tasks like retrieval-augmented generation (RAG). To address this fundamental limitation, we introduce the MW loss, a new training objective that maximizes the Mann-Whitney U statistic, which is mathematically equivalent to the Area under the ROC Curve (AUC). MW loss encourages each positive-negative pair to be correctly ranked by minimizing binary cross entropy over score differences. We provide theoretical guarantees that MW loss directly upper-bounds the AoC, better aligning optimization with retrieval goals. We further promote ROC curves and AUC as natural threshold free diagnostics for evaluating retriever calibration and ranking quality. Empirically, retrievers trained with MW loss consistently outperform contrastive counterparts in AUC and standard retrieval metrics. Our experiments show that MW loss is an empirically superior alternative to Contrastive Loss, yielding better-calibrated and more discriminative retrievers for high-stakes applications like RAG.

ServiceNow-AI ServiceNow-AI
·
Sep 30 2

Cross-Entropy Loss Functions: Theoretical Analysis and Applications

Cross-entropy is a widely used loss function in applications. It coincides with the logistic loss applied to the outputs of a neural network, when the softmax is used. But, what guarantees can we rely on when using cross-entropy as a surrogate loss? We present a theoretical analysis of a broad family of loss functions, comp-sum losses, that includes cross-entropy (or logistic loss), generalized cross-entropy, the mean absolute error and other cross-entropy-like loss functions. We give the first H-consistency bounds for these loss functions. These are non-asymptotic guarantees that upper bound the zero-one loss estimation error in terms of the estimation error of a surrogate loss, for the specific hypothesis set H used. We further show that our bounds are tight. These bounds depend on quantities called minimizability gaps. To make them more explicit, we give a specific analysis of these gaps for comp-sum losses. We also introduce a new family of loss functions, smooth adversarial comp-sum losses, that are derived from their comp-sum counterparts by adding in a related smooth term. We show that these loss functions are beneficial in the adversarial setting by proving that they admit H-consistency bounds. This leads to new adversarial robustness algorithms that consist of minimizing a regularized smooth adversarial comp-sum loss. While our main purpose is a theoretical analysis, we also present an extensive empirical analysis comparing comp-sum losses. We further report the results of a series of experiments demonstrating that our adversarial robustness algorithms outperform the current state-of-the-art, while also achieving a superior non-adversarial accuracy.

  • 3 authors
·
Apr 14, 2023

EnsLoss: Stochastic Calibrated Loss Ensembles for Preventing Overfitting in Classification

Empirical risk minimization (ERM) with a computationally feasible surrogate loss is a widely accepted approach for classification. Notably, the convexity and calibration (CC) properties of a loss function ensure consistency of ERM in maximizing accuracy, thereby offering a wide range of options for surrogate losses. In this article, we propose a novel ensemble method, namely EnsLoss, which extends the ensemble learning concept to combine loss functions within the ERM framework. A key feature of our method is the consideration on preserving the "legitimacy" of the combined losses, i.e., ensuring the CC properties. Specifically, we first transform the CC conditions of losses into loss-derivatives, thereby bypassing the need for explicit loss functions and directly generating calibrated loss-derivatives. Therefore, inspired by Dropout, EnsLoss enables loss ensembles through one training process with doubly stochastic gradient descent (i.e., random batch samples and random calibrated loss-derivatives). We theoretically establish the statistical consistency of our approach and provide insights into its benefits. The numerical effectiveness of EnsLoss compared to fixed loss methods is demonstrated through experiments on a broad range of 14 OpenML tabular datasets and 46 image datasets with various deep learning architectures. Python repository and source code are available on GitHub at https://github.com/statmlben/ensloss.

  • 1 authors
·
Sep 1, 2024

Optimizing Calibration by Gaining Aware of Prediction Correctness

Model calibration aims to align confidence with prediction correctness. The Cross-Entropy (CE) loss is widely used for calibrator training, which enforces the model to increase confidence on the ground truth class. However, we find the CE loss has intrinsic limitations. For example, for a narrow misclassification, a calibrator trained by the CE loss often produces high confidence on the wrongly predicted class (e.g., a test sample is wrongly classified and its softmax score on the ground truth class is around 0.4), which is undesirable. In this paper, we propose a new post-hoc calibration objective derived from the aim of calibration. Intuitively, the proposed objective function asks that the calibrator decrease model confidence on wrongly predicted samples and increase confidence on correctly predicted samples. Because a sample itself has insufficient ability to indicate correctness, we use its transformed versions (e.g., rotated, greyscaled and color-jittered) during calibrator training. Trained on an in-distribution validation set and tested with isolated, individual test samples, our method achieves competitive calibration performance on both in-distribution and out-of-distribution test sets compared with the state of the art. Further, our analysis points out the difference between our method and commonly used objectives such as CE loss and mean square error loss, where the latters sometimes deviates from the calibration aim.

  • 5 authors
·
Apr 19, 2024

Learning Non-Local Spatial-Angular Correlation for Light Field Image Super-Resolution

Exploiting spatial-angular correlation is crucial to light field (LF) image super-resolution (SR), but is highly challenging due to its non-local property caused by the disparities among LF images. Although many deep neural networks (DNNs) have been developed for LF image SR and achieved continuously improved performance, existing methods cannot well leverage the long-range spatial-angular correlation and thus suffer a significant performance drop when handling scenes with large disparity variations. In this paper, we propose a simple yet effective method to learn the non-local spatial-angular correlation for LF image SR. In our method, we adopt the epipolar plane image (EPI) representation to project the 4D spatial-angular correlation onto multiple 2D EPI planes, and then develop a Transformer network with repetitive self-attention operations to learn the spatial-angular correlation by modeling the dependencies between each pair of EPI pixels. Our method can fully incorporate the information from all angular views while achieving a global receptive field along the epipolar line. We conduct extensive experiments with insightful visualizations to validate the effectiveness of our method. Comparative results on five public datasets show that our method not only achieves state-of-the-art SR performance, but also performs robust to disparity variations. Code is publicly available at https://github.com/ZhengyuLiang24/EPIT.

  • 6 authors
·
Feb 15, 2023