new

Get trending papers in your email inbox!

Subscribe

Daily Papers

byAK and the research community

Jan 2

Hedging Properties of Algorithmic Investment Strategies using Long Short-Term Memory and Time Series models for Equity Indices

This paper proposes a novel approach to hedging portfolios of risky assets when financial markets are affected by financial turmoils. We introduce a completely novel approach to diversification activity not on the level of single assets but on the level of ensemble algorithmic investment strategies (AIS) built based on the prices of these assets. We employ four types of diverse theoretical models (LSTM - Long Short-Term Memory, ARIMA-GARCH - Autoregressive Integrated Moving Average - Generalized Autoregressive Conditional Heteroskedasticity, momentum, and contrarian) to generate price forecasts, which are then used to produce investment signals in single and complex AIS. In such a way, we are able to verify the diversification potential of different types of investment strategies consisting of various assets (energy commodities, precious metals, cryptocurrencies, or soft commodities) in hedging ensemble AIS built for equity indices (S&P 500 index). Empirical data used in this study cover the period between 2004 and 2022. Our main conclusion is that LSTM-based strategies outperform the other models and that the best diversifier for the AIS built for the S&P 500 index is the AIS built for Bitcoin. Finally, we test the LSTM model for a higher frequency of data (1 hour). We conclude that it outperforms the results obtained using daily data.

  • 3 authors
·
Sep 27, 2023

Effect Heterogeneity with Earth Observation in Randomized Controlled Trials: Exploring the Role of Data, Model, and Evaluation Metric Choice

Many social and environmental phenomena are associated with macroscopic changes in the built environment, captured by satellite imagery on a global scale and with daily temporal resolution. While widely used for prediction, these images and especially image sequences remain underutilized for causal inference, especially in the context of randomized controlled trials (RCTs), where causal identification is established by design. In this paper, we develop and compare a set of general tools for analyzing Conditional Average Treatment Effects (CATEs) from temporal satellite data that can be applied to any RCT where geographical identifiers are available. Through a simulation study, we analyze different modeling strategies for estimating CATE in sequences of satellite images. We find that image sequence representation models with more parameters generally yield a greater ability to detect heterogeneity. To explore the role of model and data choice in practice, we apply the approaches to two influential RCTs -- Banerjee et al. (2015), a poverty study in Cusco, Peru, and Bolsen et al. (2014), a water conservation experiment in Georgia, USA. We benchmark our image sequence models against image-only, tabular-only, and combined image-tabular data sources, summarizing practical implications for investigators in a multivariate analysis. Land cover classifications over satellite images facilitate interpretation of what image features drive heterogeneity. We also show robustness to data and model choice of satellite-based generalization of the RCT results to larger geographical areas outside the original. Overall, this paper shows how satellite sequence data can be incorporated into the analysis of RCTs, and provides evidence about the implications of data, model, and evaluation metric choice for causal analysis.

TabEBM: A Tabular Data Augmentation Method with Distinct Class-Specific Energy-Based Models

Data collection is often difficult in critical fields such as medicine, physics, and chemistry. As a result, classification methods usually perform poorly with these small datasets, leading to weak predictive performance. Increasing the training set with additional synthetic data, similar to data augmentation in images, is commonly believed to improve downstream classification performance. However, current tabular generative methods that learn either the joint distribution p(x, y) or the class-conditional distribution p(x mid y) often overfit on small datasets, resulting in poor-quality synthetic data, usually worsening classification performance compared to using real data alone. To solve these challenges, we introduce TabEBM, a novel class-conditional generative method using Energy-Based Models (EBMs). Unlike existing methods that use a shared model to approximate all class-conditional densities, our key innovation is to create distinct EBM generative models for each class, each modelling its class-specific data distribution individually. This approach creates robust energy landscapes, even in ambiguous class distributions. Our experiments show that TabEBM generates synthetic data with higher quality and better statistical fidelity than existing methods. When used for data augmentation, our synthetic data consistently improves the classification performance across diverse datasets of various sizes, especially small ones. Code is available at https://github.com/andreimargeloiu/TabEBM.

  • 4 authors
·
Sep 24, 2024

Estimating or Propagating Gradients Through Stochastic Neurons for Conditional Computation

Stochastic neurons and hard non-linearities can be useful for a number of reasons in deep learning models, but in many cases they pose a challenging problem: how to estimate the gradient of a loss function with respect to the input of such stochastic or non-smooth neurons? I.e., can we "back-propagate" through these stochastic neurons? We examine this question, existing approaches, and compare four families of solutions, applicable in different settings. One of them is the minimum variance unbiased gradient estimator for stochatic binary neurons (a special case of the REINFORCE algorithm). A second approach, introduced here, decomposes the operation of a binary stochastic neuron into a stochastic binary part and a smooth differentiable part, which approximates the expected effect of the pure stochatic binary neuron to first order. A third approach involves the injection of additive or multiplicative noise in a computational graph that is otherwise differentiable. A fourth approach heuristically copies the gradient with respect to the stochastic output directly as an estimator of the gradient with respect to the sigmoid argument (we call this the straight-through estimator). To explore a context where these estimators are useful, we consider a small-scale version of {\em conditional computation}, where sparse stochastic units form a distributed representation of gaters that can turn off in combinatorially many ways large chunks of the computation performed in the rest of the neural network. In this case, it is important that the gating units produce an actual 0 most of the time. The resulting sparsity can be potentially be exploited to greatly reduce the computational cost of large deep networks for which conditional computation would be useful.

  • 3 authors
·
Aug 15, 2013

Similarity-Distance-Magnitude Universal Verification

We address the neural network robustness problem by adding Similarity (i.e., correctly predicted depth-matches into training)-awareness and Distance-to-training-distribution-awareness to the existing output Magnitude (i.e., decision-boundary)-awareness of the softmax function. The resulting SDM activation function provides strong signals of the relative epistemic (reducible) predictive uncertainty. We use this novel behavior to further address the complementary HCI problem of mapping the output to human-interpretable summary statistics over relevant partitions of a held-out calibration set. Estimates of prediction-conditional uncertainty are obtained via a parsimonious learned transform over the class-conditional empirical CDFs of the output of a final-layer SDM activation function. For decision-making and as an intrinsic model check, estimates of class-conditional accuracy are obtained by further partitioning the high-probability regions of this calibrated output into class-conditional, region-specific CDFs. The uncertainty estimates from SDM calibration are remarkably robust to test-time distribution shifts and out-of-distribution inputs; incorporate awareness of the effective sample size; provide estimates of uncertainty from the learning and data splitting processes; and are well-suited for selective classification and conditional branching for additional test-time compute based on the predictive uncertainty, as for selective LLM generation, routing, and composition over multiple models and retrieval. Finally, we construct SDM networks, LLMs with uncertainty-aware verification and interpretability-by-exemplar as intrinsic properties. We provide open-source software implementing these results.

  • 1 authors
·
Feb 27, 2025

Image-based Treatment Effect Heterogeneity

Randomized controlled trials (RCTs) are considered the gold standard for estimating the average treatment effect (ATE) of interventions. One use of RCTs is to study the causes of global poverty -- a subject explicitly cited in the 2019 Nobel Memorial Prize awarded to Duflo, Banerjee, and Kremer "for their experimental approach to alleviating global poverty." Because the ATE is a population summary, anti-poverty experiments often seek to unpack the effect variation around the ATE by conditioning (CATE) on tabular variables such as age and ethnicity that were measured during the RCT data collection. Although such variables are key to unpacking CATE, using only such variables may fail to capture historical, geographical, or neighborhood-specific contributors to effect variation, as tabular RCT data are often only observed near the time of the experiment. In global poverty research, when the location of the experiment units is approximately known, satellite imagery can provide a window into such factors important for understanding heterogeneity. However, there is no method that specifically enables applied researchers to analyze CATE from images. In this paper, using a deep probabilistic modeling framework, we develop such a method that estimates latent clusters of images by identifying images with similar treatment effects distributions. Our interpretable image CATE model also includes a sensitivity factor that quantifies the importance of image segments contributing to the effect cluster prediction. We compare the proposed methods against alternatives in simulation; also, we show how the model works in an actual RCT, estimating the effects of an anti-poverty intervention in northern Uganda and obtaining a posterior predictive distribution over effects for the rest of the country where no experimental data was collected. We make all models available in open-source software.

Regression Discontinuity Design with Distribution-Valued Outcomes

This article introduces Regression Discontinuity Design (RDD) with Distribution-Valued Outcomes (R3D), extending the standard RDD framework to settings where the outcome is a distribution rather than a scalar. Such settings arise when treatment is assigned at a higher level of aggregation than the outcome-for example, when a subsidy is allocated based on a firm-level revenue cutoff while the outcome of interest is the distribution of employee wages within the firm. Since standard RDD methods cannot accommodate such two-level randomness, I propose a novel approach based on random distributions. The target estimand is a "local average quantile treatment effect", which averages across random quantiles. To estimate this target, I introduce two related approaches: one that extends local polynomial regression to random quantiles and another based on local Fr\'echet regression, a form of functional regression. For both estimators, I establish asymptotic normality and develop uniform, debiased confidence bands together with a data-driven bandwidth selection procedure. Simulations validate these theoretical properties and show existing methods to be biased and inconsistent in this setting. I then apply the proposed methods to study the effects of gubernatorial party control on within-state income distributions in the US, using a close-election design. The results suggest a classic equality-efficiency tradeoff under Democratic governorship, driven by reductions in income at the top of the distribution.

  • 1 authors
·
Apr 4, 2025

A Simple Approach to Unifying Diffusion-based Conditional Generation

Recent progress in image generation has sparked research into controlling these models through condition signals, with various methods addressing specific challenges in conditional generation. Instead of proposing another specialized technique, we introduce a simple, unified framework to handle diverse conditional generation tasks involving a specific image-condition correlation. By learning a joint distribution over a correlated image pair (e.g. image and depth) with a diffusion model, our approach enables versatile capabilities via different inference-time sampling schemes, including controllable image generation (e.g. depth to image), estimation (e.g. image to depth), signal guidance, joint generation (image & depth), and coarse control. Previous attempts at unification often introduce significant complexity through multi-stage training, architectural modification, or increased parameter counts. In contrast, our simple formulation requires a single, computationally efficient training stage, maintains the standard model input, and adds minimal learned parameters (15% of the base model). Moreover, our model supports additional capabilities like non-spatially aligned and coarse conditioning. Extensive results show that our single model can produce comparable results with specialized methods and better results than prior unified methods. We also demonstrate that multiple models can be effectively combined for multi-signal conditional generation.

  • 7 authors
·
Oct 15, 2024

Double Machine Learning meets Panel Data -- Promises, Pitfalls, and Potential Solutions

Estimating causal effect using machine learning (ML) algorithms can help to relax functional form assumptions if used within appropriate frameworks. However, most of these frameworks assume settings with cross-sectional data, whereas researchers often have access to panel data, which in traditional methods helps to deal with unobserved heterogeneity between units. In this paper, we explore how we can adapt double/debiased machine learning (DML) (Chernozhukov et al., 2018) for panel data in the presence of unobserved heterogeneity. This adaptation is challenging because DML's cross-fitting procedure assumes independent data and the unobserved heterogeneity is not necessarily additively separable in settings with nonlinear observed confounding. We assess the performance of several intuitively appealing estimators in a variety of simulations. While we find violations of the cross-fitting assumptions to be largely inconsequential for the accuracy of the effect estimates, many of the considered methods fail to adequately account for the presence of unobserved heterogeneity. However, we find that using predictive models based on the correlated random effects approach (Mundlak, 1978) within DML leads to accurate coefficient estimates across settings, given a sample size that is large relative to the number of observed confounders. We also show that the influence of the unobserved heterogeneity on the observed confounders plays a significant role for the performance of most alternative methods.

  • 2 authors
·
Sep 2, 2024

Predict, Refine, Synthesize: Self-Guiding Diffusion Models for Probabilistic Time Series Forecasting

Diffusion models have achieved state-of-the-art performance in generative modeling tasks across various domains. Prior works on time series diffusion models have primarily focused on developing conditional models tailored to specific forecasting or imputation tasks. In this work, we explore the potential of task-agnostic, unconditional diffusion models for several time series applications. We propose TSDiff, an unconditionally trained diffusion model for time series. Our proposed self-guidance mechanism enables conditioning TSDiff for downstream tasks during inference, without requiring auxiliary networks or altering the training procedure. We demonstrate the effectiveness of our method on three different time series tasks: forecasting, refinement, and synthetic data generation. First, we show that TSDiff is competitive with several task-specific conditional forecasting methods (predict). Second, we leverage the learned implicit probability density of TSDiff to iteratively refine the predictions of base forecasters with reduced computational overhead over reverse diffusion (refine). Notably, the generative performance of the model remains intact -- downstream forecasters trained on synthetic samples from TSDiff outperform forecasters that are trained on samples from other state-of-the-art generative time series models, occasionally even outperforming models trained on real data (synthesize).

  • 6 authors
·
Jul 21, 2023

Your Absorbing Discrete Diffusion Secretly Models the Conditional Distributions of Clean Data

Discrete diffusion models with absorbing processes have shown promise in language modeling. The key quantities to be estimated are the ratios between the marginal probabilities of two transitive states at all timesteps, called the concrete score. In this paper, we reveal that the concrete score in absorbing diffusion can be expressed as conditional probabilities of clean data, multiplied by a time-dependent scalar in an analytic form. Motivated by this finding, we propose reparameterized absorbing discrete diffusion (RADD), a dedicated diffusion model without time-condition that characterizes the time-independent conditional probabilities. Besides its simplicity, RADD can reduce the number of function evaluations (NFEs) by caching the output of the time-independent network when the noisy sample remains unchanged in a sampling interval. Empirically, RADD is up to 3.5 times faster while achieving similar performance with the strongest baseline. Built upon the new perspective of conditional distributions, we further unify absorbing discrete diffusion and any-order autoregressive models (AO-ARMs), showing that the upper bound on the negative log-likelihood for the diffusion model can be interpreted as an expected negative log-likelihood for AO-ARMs. Further, our RADD models achieve SOTA performance among diffusion models on 5 zero-shot language modeling benchmarks (measured by perplexity) at the GPT-2 scale. Our code is available at https://github.com/ML-GSAI/RADD.

  • 7 authors
·
Jun 6, 2024

Beyond the Mean: Limit Theory and Tests for Infinite-Mean Autoregressive Conditional Durations

Integrated autoregressive conditional duration (ACD) models serve as natural counterparts to the well-known integrated GARCH models used for financial returns. However, despite their resemblance, asymptotic theory for ACD is challenging and also not complete, in particular for integrated ACD. Central challenges arise from the facts that (i) integrated ACD processes imply durations with infinite expectation, and (ii) even in the non-integrated case, conventional asymptotic approaches break down due to the randomness in the number of durations within a fixed observation period. Addressing these challenges, we provide here unified asymptotic theory for the (quasi-) maximum likelihood estimator for ACD models; a unified theory which includes integrated ACD models. Based on the new results, we also provide a novel framework for hypothesis testing in duration models, enabling inference on a key empirical question: whether durations possess a finite or infinite expectation. We apply our results to high-frequency cryptocurrency ETF trading data. Motivated by parameter estimates near the integrated ACD boundary, we assess whether durations between trades in these markets have finite expectation, an assumption often made implicitly in the literature on point process models. Our empirical findings indicate infinite-mean durations for all the five cryptocurrencies examined, with the integrated ACD hypothesis rejected -- against alternatives with tail index less than one -- for four out of the five cryptocurrencies considered.

  • 4 authors
·
May 9, 2025

VLUCI: Variational Learning of Unobserved Confounders for Counterfactual Inference

Causal inference plays a vital role in diverse domains like epidemiology, healthcare, and economics. De-confounding and counterfactual prediction in observational data has emerged as a prominent concern in causal inference research. While existing models tackle observed confounders, the presence of unobserved confounders remains a significant challenge, distorting causal inference and impacting counterfactual outcome accuracy. To address this, we propose a novel variational learning model of unobserved confounders for counterfactual inference (VLUCI), which generates the posterior distribution of unobserved confounders. VLUCI relaxes the unconfoundedness assumption often overlooked by most causal inference methods. By disentangling observed and unobserved confounders, VLUCI constructs a doubly variational inference model to approximate the distribution of unobserved confounders, which are used for inferring more accurate counterfactual outcomes. Extensive experiments on synthetic and semi-synthetic datasets demonstrate VLUCI's superior performance in inferring unobserved confounders. It is compatible with state-of-the-art counterfactual inference models, significantly improving inference accuracy at both group and individual levels. Additionally, VLUCI provides confidence intervals for counterfactual outcomes, aiding decision-making in risk-sensitive domains. We further clarify the considerations when applying VLUCI to cases where unobserved confounders don't strictly conform to our model assumptions using the public IHDP dataset as an example, highlighting the practical advantages of VLUCI.

  • 5 authors
·
Aug 1, 2023

An Overview of Diffusion Models: Applications, Guided Generation, Statistical Rates and Optimization

Diffusion models, a powerful and universal generative AI technology, have achieved tremendous success in computer vision, audio, reinforcement learning, and computational biology. In these applications, diffusion models provide flexible high-dimensional data modeling, and act as a sampler for generating new samples under active guidance towards task-desired properties. Despite the significant empirical success, theory of diffusion models is very limited, potentially slowing down principled methodological innovations for further harnessing and improving diffusion models. In this paper, we review emerging applications of diffusion models, understanding their sample generation under various controls. Next, we overview the existing theories of diffusion models, covering their statistical properties and sampling capabilities. We adopt a progressive routine, beginning with unconditional diffusion models and connecting to conditional counterparts. Further, we review a new avenue in high-dimensional structured optimization through conditional diffusion models, where searching for solutions is reformulated as a conditional sampling problem and solved by diffusion models. Lastly, we discuss future directions about diffusion models. The purpose of this paper is to provide a well-rounded theoretical exposure for stimulating forward-looking theories and methods of diffusion models.

  • 4 authors
·
Apr 11, 2024

Flexible Model Aggregation for Quantile Regression

Quantile regression is a fundamental problem in statistical learning motivated by a need to quantify uncertainty in predictions, or to model a diverse population without being overly reductive. For instance, epidemiological forecasts, cost estimates, and revenue predictions all benefit from being able to quantify the range of possible values accurately. As such, many models have been developed for this problem over many years of research in statistics, machine learning, and related fields. Rather than proposing yet another (new) algorithm for quantile regression we adopt a meta viewpoint: we investigate methods for aggregating any number of conditional quantile models, in order to improve accuracy and robustness. We consider weighted ensembles where weights may vary over not only individual models, but also over quantile levels, and feature values. All of the models we consider in this paper can be fit using modern deep learning toolkits, and hence are widely accessible (from an implementation point of view) and scalable. To improve the accuracy of the predicted quantiles (or equivalently, prediction intervals), we develop tools for ensuring that quantiles remain monotonically ordered, and apply conformal calibration methods. These can be used without any modification of the original library of base models. We also review some basic theory surrounding quantile aggregation and related scoring rules, and contribute a few new results to this literature (for example, the fact that post sorting or post isotonic regression can only improve the weighted interval score). Finally, we provide an extensive suite of empirical comparisons across 34 data sets from two different benchmark repositories.

  • 5 authors
·
Feb 26, 2021

Conditional Data Synthesis Augmentation

Reliable machine learning and statistical analysis rely on diverse, well-distributed training data. However, real-world datasets are often limited in size and exhibit underrepresentation across key subpopulations, leading to biased predictions and reduced performance, particularly in supervised tasks such as classification. To address these challenges, we propose Conditional Data Synthesis Augmentation (CoDSA), a novel framework that leverages generative models, such as diffusion models, to synthesize high-fidelity data for improving model performance across multimodal domains including tabular, textual, and image data. CoDSA generates synthetic samples that faithfully capture the conditional distributions of the original data, with a focus on under-sampled or high-interest regions. Through transfer learning, CoDSA fine-tunes pre-trained generative models to enhance the realism of synthetic data and increase sample density in sparse areas. This process preserves inter-modal relationships, mitigates data imbalance, improves domain adaptation, and boosts generalization. We also introduce a theoretical framework that quantifies the statistical accuracy improvements enabled by CoDSA as a function of synthetic sample volume and targeted region allocation, providing formal guarantees of its effectiveness. Extensive experiments demonstrate that CoDSA consistently outperforms non-adaptive augmentation strategies and state-of-the-art baselines in both supervised and unsupervised settings.

  • 2 authors
·
Apr 9, 2025

Adding Conditional Control to Diffusion Models with Reinforcement Learning

Diffusion models are powerful generative models that allow for precise control over the characteristics of the generated samples. While these diffusion models trained on large datasets have achieved success, there is often a need to introduce additional controls in downstream fine-tuning processes, treating these powerful models as pre-trained diffusion models. This work presents a novel method based on reinforcement learning (RL) to add such controls using an offline dataset comprising inputs and labels. We formulate this task as an RL problem, with the classifier learned from the offline dataset and the KL divergence against pre-trained models serving as the reward functions. Our method, CTRL (Conditioning pre-Trained diffusion models with Reinforcement Learning), produces soft-optimal policies that maximize the abovementioned reward functions. We formally demonstrate that our method enables sampling from the conditional distribution with additional controls during inference. Our RL-based approach offers several advantages over existing methods. Compared to classifier-free guidance, it improves sample efficiency and can greatly simplify dataset construction by leveraging conditional independence between the inputs and additional controls. Additionally, unlike classifier guidance, it eliminates the need to train classifiers from intermediate states to additional controls. The code is available at https://github.com/zhaoyl18/CTRL.

  • 7 authors
·
Jun 17, 2024

Towards generalizable single-cell perturbation modeling via the Conditional Monge Gap

Learning the response of single-cells to various treatments offers great potential to enable targeted therapies. In this context, neural optimal transport (OT) has emerged as a principled methodological framework because it inherently accommodates the challenges of unpaired data induced by cell destruction during data acquisition. However, most existing OT approaches are incapable of conditioning on different treatment contexts (e.g., time, drug treatment, drug dosage, or cell type) and we still lack methods that unanimously show promising generalization performance to unseen treatments. Here, we propose the Conditional Monge Gap which learns OT maps conditionally on arbitrary covariates. We demonstrate its value in predicting single-cell perturbation responses conditional to one or multiple drugs, a drug dosage, or combinations thereof. We find that our conditional models achieve results comparable and sometimes even superior to the condition-specific state-of-the-art on scRNA-seq as well as multiplexed protein imaging data. Notably, by aggregating data across conditions we perform cross-task learning which unlocks remarkable generalization abilities to unseen drugs or drug dosages, widely outperforming other conditional models in capturing heterogeneity (i.e., higher moments) in the perturbed population. Finally, by scaling to hundreds of conditions and testing on unseen drugs, we narrow the gap between structure-based and effect-based drug representations, suggesting a promising path to the successful prediction of perturbation effects for unseen treatments.

  • 4 authors
·
Apr 11, 2025

Predicting Rare Events by Shrinking Towards Proportional Odds

Training classifiers is difficult with severe class imbalance, but many rare events are the culmination of a sequence with much more common intermediate outcomes. For example, in online marketing a user first sees an ad, then may click on it, and finally may make a purchase; estimating the probability of purchases is difficult because of their rarity. We show both theoretically and through data experiments that the more abundant data in earlier steps may be leveraged to improve estimation of probabilities of rare events. We present PRESTO, a relaxation of the proportional odds model for ordinal regression. Instead of estimating weights for one separating hyperplane that is shifted by separate intercepts for each of the estimated Bayes decision boundaries between adjacent pairs of categorical responses, we estimate separate weights for each of these transitions. We impose an L1 penalty on the differences between weights for the same feature in adjacent weight vectors in order to shrink towards the proportional odds model. We prove that PRESTO consistently estimates the decision boundary weights under a sparsity assumption. Synthetic and real data experiments show that our method can estimate rare probabilities in this setting better than both logistic regression on the rare category, which fails to borrow strength from more abundant categories, and the proportional odds model, which is too inflexible.

  • 2 authors
·
May 29, 2023

An Analysis of Causal Effect Estimation using Outcome Invariant Data Augmentation

The technique of data augmentation (DA) is often used in machine learning for regularization purposes to better generalize under i.i.d. settings. In this work, we present a unifying framework with topics in causal inference to make a case for the use of DA beyond just the i.i.d. setting, but for generalization across interventions as well. Specifically, we argue that when the outcome generating mechanism is invariant to our choice of DA, then such augmentations can effectively be thought of as interventions on the treatment generating mechanism itself. This can potentially help to reduce bias in causal effect estimation arising from hidden confounders. In the presence of such unobserved confounding we typically make use of instrumental variables (IVs) -- sources of treatment randomization that are conditionally independent of the outcome. However, IVs may not be as readily available as DA for many applications, which is the main motivation behind this work. By appropriately regularizing IV based estimators, we introduce the concept of IV-like (IVL) regression for mitigating confounding bias and improving predictive performance across interventions even when certain IV properties are relaxed. Finally, we cast parameterized DA as an IVL regression problem and show that when used in composition can simulate a worst-case application of such DA, further improving performance on causal estimation and generalization tasks beyond what simple DA may offer. This is shown both theoretically for the population case and via simulation experiments for the finite sample case using a simple linear example. We also present real data experiments to support our case.

  • 5 authors
·
Oct 28, 2025 1

Solving High Frequency and Multi-Scale PDEs with Gaussian Processes

Machine learning based solvers have garnered much attention in physical simulation and scientific computing, with a prominent example, physics-informed neural networks (PINNs). However, PINNs often struggle to solve high-frequency and multi-scale PDEs, which can be due to spectral bias during neural network training. To address this problem, we resort to the Gaussian process (GP) framework. To flexibly capture the dominant frequencies, we model the power spectrum of the PDE solution with a student t mixture or Gaussian mixture. We apply the inverse Fourier transform to obtain the covariance function (by Wiener-Khinchin theorem). The covariance derived from the Gaussian mixture spectrum corresponds to the known spectral mixture kernel. Next, we estimate the mixture weights in the log domain, which we show is equivalent to placing a Jeffreys prior. It automatically induces sparsity, prunes excessive frequencies, and adjusts the remaining toward the ground truth. Third, to enable efficient and scalable computation on massive collocation points, which are critical to capture high frequencies, we place the collocation points on a grid, and multiply our covariance function at each input dimension. We use the GP conditional mean to predict the solution and its derivatives so as to fit the boundary condition and the equation itself. As a result, we can derive a Kronecker product structure in the covariance matrix. We use Kronecker product properties and multilinear algebra to promote computational efficiency and scalability, without low-rank approximations. We show the advantage of our method in systematic experiments. The code is released at https://github.com/xuangu-fang/Gaussian-Process-Slover-for-High-Freq-PDE.

  • 6 authors
·
Nov 8, 2023

Multi-Layer Deep xVA: Structural Credit Models, Measure Changes and Convergence Analysis

We propose a structural default model for portfolio-wide valuation adjustments (xVAs) and represent it as a system of coupled backward stochastic differential equations. The framework is divided into four layers, each capturing a key component: (i) clean values, (ii) initial margin and Collateral Valuation Adjustment (ColVA), (iii) Credit/Debit Valuation Adjustments (CVA/DVA) together with Margin Valuation Adjustment (MVA), and (iv) Funding Valuation Adjustment (FVA). Because these layers depend on one another through collateral and default effects, a naive Monte Carlo approach would require deeply nested simulations, making the problem computationally intractable. To address this challenge, we use an iterative deep BSDE approach, handling each layer sequentially so that earlier outputs serve as inputs to the subsequent layers. Initial margin is computed via deep quantile regression to reflect margin requirements over the Margin Period of Risk. We also adopt a change-of-measure method that highlights rare but significant defaults of the bank or counterparty, ensuring that these events are accurately captured in the training process. We further extend Han and Long's (2020) a posteriori error analysis to BSDEs on bounded domains. Due to the random exit from the domain, we obtain an order of convergence of O(h^{1/4-epsilon}) rather than the usual O(h^{1/2}). Numerical experiments illustrate that this method drastically reduces computational demands and successfully scales to high-dimensional, non-symmetric portfolios. The results confirm its effectiveness and accuracy, offering a practical alternative to nested Monte Carlo simulations in multi-counterparty xVA analyses.

  • 2 authors
·
Feb 20, 2025