new

Get trending papers in your email inbox!

Subscribe

Daily Papers

byAK and the research community

Dec 10

Compose Your Policies! Improving Diffusion-based or Flow-based Robot Policies via Test-time Distribution-level Composition

Diffusion-based models for robotic control, including vision-language-action (VLA) and vision-action (VA) policies, have demonstrated significant capabilities. Yet their advancement is constrained by the high cost of acquiring large-scale interaction datasets. This work introduces an alternative paradigm for enhancing policy performance without additional model training. Perhaps surprisingly, we demonstrate that the composed policies can exceed the performance of either parent policy. Our contribution is threefold. First, we establish a theoretical foundation showing that the convex composition of distributional scores from multiple diffusion models can yield a superior one-step functional objective compared to any individual score. A Gr\"onwall-type bound is then used to show that this single-step improvement propagates through entire generation trajectories, leading to systemic performance gains. Second, motivated by these results, we propose General Policy Composition (GPC), a training-free method that enhances performance by combining the distributional scores of multiple pre-trained policies via a convex combination and test-time search. GPC is versatile, allowing for the plug-and-play composition of heterogeneous policies, including VA and VLA models, as well as those based on diffusion or flow-matching, irrespective of their input visual modalities. Third, we provide extensive empirical validation. Experiments on Robomimic, PushT, and RoboTwin benchmarks, alongside real-world robotic evaluations, confirm that GPC consistently improves performance and adaptability across a diverse set of tasks. Further analysis of alternative composition operators and weighting strategies offers insights into the mechanisms underlying the success of GPC. These results establish GPC as a simple yet effective method for improving control performance by leveraging existing policies.

Mixture of Horizons in Action Chunking

Vision-language-action (VLA) models have shown remarkable capabilities in robotic manipulation, but their performance is sensitive to the action chunk length used during training, termed horizon. Our empirical study reveals an inherent trade-off: longer horizons provide stronger global foresight but degrade fine-grained accuracy, while shorter ones sharpen local control yet struggle on long-term tasks, implying fixed choice of single horizons being suboptimal. To mitigate the trade-off, we propose a mixture of horizons (MoH) strategy. MoH rearranges the action chunk into several segments with different horizons, processes them in parallel with a shared action transformer, and fuses outputs with a light linear gate. It has three appealing benefits. 1) MoH exploits long-term foresight and short-term precision jointly within a single model, improving both performance and generalizability to complex tasks. 2) MoH is plug-and-play for full-attention action modules with minimal training or inference overhead. 3) MoH enables dynamic inference with adaptive horizons, which selects stable actions through cross-horizon consensus, achieving 2.5times higher throughput than baselines while preserving superior performance. Extensive experiments over flow-based policies π_0, π_{0.5}, and one-step regression policy π_{reg} demonstrate that MoH yields consistent and significant gains on both simulations and real-world tasks. Notably, under mixed-task setting, π_{0.5} with MoH reaches a new state-of-the-art with 99% average success rate on LIBERO after only 30k training iterations. Project page: https://github.com/Timsty1/MixtureOfHorizons

  • 10 authors
·
Nov 24 2

DM1: MeanFlow with Dispersive Regularization for 1-Step Robotic Manipulation

The ability to learn multi-modal action distributions is indispensable for robotic manipulation policies to perform precise and robust control. Flow-based generative models have recently emerged as a promising solution to learning distributions of actions, offering one-step action generation and thus achieving much higher sampling efficiency compared to diffusion-based methods. However, existing flow-based policies suffer from representation collapse, the inability to distinguish similar visual representations, leading to failures in precise manipulation tasks. We propose DM1 (MeanFlow with Dispersive Regularization for One-Step Robotic Manipulation), a novel flow matching framework that integrates dispersive regularization into MeanFlow to prevent collapse while maintaining one-step efficiency. DM1 employs multiple dispersive regularization variants across different intermediate embedding layers, encouraging diverse representations across training batches without introducing additional network modules or specialized training procedures. Experiments on RoboMimic benchmarks show that DM1 achieves 20-40 times faster inference (0.07s vs. 2-3.5s) and improves success rates by 10-20 percentage points, with the Lift task reaching 99% success over 85% of the baseline. Real-robot deployment on a Franka Panda further validates that DM1 transfers effectively from simulation to the physical world. To the best of our knowledge, this is the first work to leverage representation regularization to enable flow-based policies to achieve strong performance in robotic manipulation, establishing a simple yet powerful approach for efficient and robust manipulation.

  • 6 authors
·
Oct 9

Towards a Generalizable Bimanual Foundation Policy via Flow-based Video Prediction

Learning a generalizable bimanual manipulation policy is extremely challenging for embodied agents due to the large action space and the need for coordinated arm movements. Existing approaches rely on Vision-Language-Action (VLA) models to acquire bimanual policies. However, transferring knowledge from single-arm datasets or pre-trained VLA models often fails to generalize effectively, primarily due to the scarcity of bimanual data and the fundamental differences between single-arm and bimanual manipulation. In this paper, we propose a novel bimanual foundation policy by fine-tuning the leading text-to-video models to predict robot trajectories and training a lightweight diffusion policy for action generation. Given the lack of embodied knowledge in text-to-video models, we introduce a two-stage paradigm that fine-tunes independent text-to-flow and flow-to-video models derived from a pre-trained text-to-video model. Specifically, optical flow serves as an intermediate variable, providing a concise representation of subtle movements between images. The text-to-flow model predicts optical flow to concretize the intent of language instructions, and the flow-to-video model leverages this flow for fine-grained video prediction. Our method mitigates the ambiguity of language in single-stage text-to-video prediction and significantly reduces the robot-data requirement by avoiding direct use of low-level actions. In experiments, we collect high-quality manipulation data for real dual-arm robot, and the results of simulation and real-world experiments demonstrate the effectiveness of our method.

  • 7 authors
·
May 29

GoRL: An Algorithm-Agnostic Framework for Online Reinforcement Learning with Generative Policies

Reinforcement learning (RL) faces a persistent tension: policies that are stable to optimize are often too simple to represent the multimodal action distributions needed for complex control. Gaussian policies provide tractable likelihoods and smooth gradients, but their unimodal form limits expressiveness. Conversely, generative policies based on diffusion or flow matching can model rich multimodal behaviors; however, in online RL, they are frequently unstable due to intractable likelihoods and noisy gradients propagating through deep sampling chains. We address this tension with a key structural principle: decoupling optimization from generation. Building on this insight, we introduce GoRL (Generative Online Reinforcement Learning), a framework that optimizes a tractable latent policy while utilizing a conditional generative decoder to synthesize actions. A two-timescale update schedule enables the latent policy to learn stably while the decoder steadily increases expressiveness, without requiring tractable action likelihoods. Across a range of continuous-control tasks, GoRL consistently outperforms both Gaussian policies and recent generative-policy baselines. Notably, on the HopperStand task, it reaches a normalized return above 870, more than 3 times that of the strongest baseline. These results demonstrate that separating optimization from generation provides a practical path to policies that are both stable and highly expressive.

In-the-Flow Agentic System Optimization for Effective Planning and Tool Use

Outcome-driven reinforcement learning has advanced reasoning in large language models (LLMs), but prevailing tool-augmented approaches train a single, monolithic policy that interleaves thoughts and tool calls under full context; this scales poorly with long horizons and diverse tools and generalizes weakly to new scenarios. Agentic systems offer a promising alternative by decomposing work across specialized modules, yet most remain training-free or rely on offline training decoupled from the live dynamics of multi-turn interaction. We introduce AgentFlow, a trainable, in-the-flow agentic framework that coordinates four modules (planner, executor, verifier, generator) through an evolving memory and directly optimizes its planner inside the multi-turn loop. To train on-policy in live environments, we propose Flow-based Group Refined Policy Optimization (Flow-GRPO), which tackles long-horizon, sparse-reward credit assignment by converting multi-turn optimization into a sequence of tractable single-turn policy updates. It broadcasts a single, verifiable trajectory-level outcome to every turn to align local planner decisions with global success and stabilizes learning with group-normalized advantages. Across ten benchmarks, AgentFlow with a 7B-scale backbone outperforms top-performing baselines with average accuracy gains of 14.9% on search, 14.0% on agentic, 14.5% on mathematical, and 4.1% on scientific tasks, even surpassing larger proprietary models like GPT-4o. Further analyses confirm the benefits of in-the-flow optimization, showing improved planning, enhanced tool-calling reliability, and positive scaling with model size and reasoning turns.

Stanford Stanford AI
·
Oct 7 3

ReinFlow: Fine-tuning Flow Matching Policy with Online Reinforcement Learning

We propose ReinFlow, a simple yet effective online reinforcement learning (RL) framework that fine-tunes a family of flow matching policies for continuous robotic control. Derived from rigorous RL theory, ReinFlow injects learnable noise into a flow policy's deterministic path, converting the flow into a discrete-time Markov Process for exact and straightforward likelihood computation. This conversion facilitates exploration and ensures training stability, enabling ReinFlow to fine-tune diverse flow model variants, including Rectified Flow [35] and Shortcut Models [19], particularly at very few or even one denoising step. We benchmark ReinFlow in representative locomotion and manipulation tasks, including long-horizon planning with visual input and sparse reward. The episode reward of Rectified Flow policies obtained an average net growth of 135.36% after fine-tuning in challenging legged locomotion tasks while saving denoising steps and 82.63% of wall time compared to state-of-the-art diffusion RL fine-tuning method DPPO [43]. The success rate of the Shortcut Model policies in state and visual manipulation tasks achieved an average net increase of 40.34% after fine-tuning with ReinFlow at four or even one denoising step, whose performance is comparable to fine-tuned DDIM policies while saving computation time for an average of 23.20%. Project webpage: https://reinflow.github.io/

  • 4 authors
·
May 28

Flows: Building Blocks of Reasoning and Collaborating AI

Recent advances in artificial intelligence (AI) have produced highly capable and controllable systems. This creates unprecedented opportunities for structured reasoning as well as collaboration among multiple AI systems and humans. To fully realize this potential, it is essential to develop a principled way of designing and studying such structured interactions. For this purpose, we introduce the conceptual framework of Flows: a systematic approach to modeling complex interactions. Flows are self-contained building blocks of computation, with an isolated state, communicating through a standardized message-based interface. This modular design allows Flows to be recursively composed into arbitrarily nested interactions, with a substantial reduction of complexity. Crucially, any interaction can be implemented using this framework, including prior work on AI--AI and human--AI interactions, prompt engineering schemes, and tool augmentation. We demonstrate the potential of Flows on the task of competitive coding, a challenging task on which even GPT-4 struggles. Our results suggest that structured reasoning and collaboration substantially improve generalization, with AI-only Flows adding +21 and human--AI Flows adding +54 absolute points in terms of solve rate. To support rapid and rigorous research, we introduce the aiFlows library. The library comes with a repository of Flows that can be easily used, extended, and composed into novel, more complex Flows. The aiFlows library is available at https://github.com/epfl-dlab/aiflows. Data and Flows for reproducing our experiments are available at https://github.com/epfl-dlab/cc_flows.

  • 10 authors
·
Aug 2, 2023

Analyzing and Internalizing Complex Policy Documents for LLM Agents

Large Language Model (LLM)-based agentic systems rely on in-context policy documents encoding diverse business rules. As requirements grow, these documents expand rapidly, causing high computational overhead. This motivates developing internalization methods that embed policy documents into model priors while preserving performance. Prior prompt compression work targets generic prompts, but agentic policy documents span multiple complexity levels and require deeper reasoning, making internalization harder. We introduce CC-Gen, an agentic benchmark generator with Controllable Complexity across four levels, enabling systematic evaluation of agents' ability to handle complexity and offering a unified framework for assessing policy internalization. Our analysis shows that complex policy specifications governing workflows pose major reasoning challenges. Supporting internalization with gold user agent interaction trajectories containing chain-of-thought (CoT) annotations via supervised fine-tuning (SFT) is data-intensive and degrades sharply as policy complexity increases. To mitigate data and reasoning burdens, we propose Category-Aware Policy Continued Pretraining (CAP-CPT). Our automated pipeline parses policy documents to extract key specifications, grouping them into factual, behavioral, and conditional categories, and isolating complex conditions that drive workflow complexity. This guides targeted data synthesis and enables agents to internalize policy information through an autoregressive pretraining loss. Experiments show CAP-CPT improves SFT baselines in all settings, with up to 41% and 22% gains on Qwen-3-32B, achieving 97.3% prompt length reduction on CC-Gen and further enhancing tau-Bench with minimal SFT data.

  • 9 authors
·
Oct 13

Reinforcement Learning of Display Transfer Robots in Glass Flow Control Systems: A Physical Simulation-Based Approach

A flow control system is a critical concept for increasing the production capacity of manufacturing systems. To solve the scheduling optimization problem related to the flow control with the aim of improving productivity, existing methods depend on a heuristic design by domain human experts. Therefore, the methods require correction, monitoring, and verification by using real equipment. As system designs increase in complexity, the monitoring time increases, which decreases the probability of arriving at the optimal design. As an alternative approach to the heuristic design of flow control systems, the use of deep reinforcement learning to solve the scheduling optimization problem has been considered. Although the existing research on reinforcement learning has yielded excellent performance in some areas, the applicability of the results to actual FAB such as display and semiconductor manufacturing processes is not evident so far. To this end, we propose a method to implement a physical simulation environment and devise a feasible flow control system design using a transfer robot in display manufacturing through reinforcement learning. We present a model and parameter setting to build a virtual environment for different display transfer robots, and training methods of reinforcement learning on the environment to obtain an optimal scheduling of glass flow control systems. Its feasibility was verified by using different types of robots used in the actual process.

  • 3 authors
·
Oct 11, 2023

Agents Play Thousands of 3D Video Games

We present PORTAL, a novel framework for developing artificial intelligence agents capable of playing thousands of 3D video games through language-guided policy generation. By transforming decision-making problems into language modeling tasks, our approach leverages large language models (LLMs) to generate behavior trees represented in domain-specific language (DSL). This method eliminates the computational burden associated with traditional reinforcement learning approaches while preserving strategic depth and rapid adaptability. Our framework introduces a hybrid policy structure that combines rule-based nodes with neural network components, enabling both high-level strategic reasoning and precise low-level control. A dual-feedback mechanism incorporating quantitative game metrics and vision-language model analysis facilitates iterative policy improvement at both tactical and strategic levels. The resulting policies are instantaneously deployable, human-interpretable, and capable of generalizing across diverse gaming environments. Experimental results demonstrate PORTAL's effectiveness across thousands of first-person shooter (FPS) games, showcasing significant improvements in development efficiency, policy generalization, and behavior diversity compared to traditional approaches. PORTAL represents a significant advancement in game AI development, offering a practical solution for creating sophisticated agents that can operate across thousands of commercial video games with minimal development overhead. Experiment results on the 3D video games are best viewed on https://zhongwen.one/projects/portal .

  • 7 authors
·
Mar 17 2

Multimodal Policy Internalization for Conversational Agents

Modern conversational agents like ChatGPT and Alexa+ rely on predefined policies specifying metadata, response styles, and tool-usage rules. As these LLM-based systems expand to support diverse business and user queries, such policies, often implemented as in-context prompts, are becoming increasingly complex and lengthy, making faithful adherence difficult and imposing large fixed computational costs. With the rise of multimodal agents, policies that govern visual and multimodal behaviors are critical but remain understudied. Prior prompt-compression work mainly shortens task templates and demonstrations, while existing policy-alignment studies focus only on text-based safety rules. We introduce Multimodal Policy Internalization (MPI), a new task that internalizes reasoning-intensive multimodal policies into model parameters, enabling stronger policy-following without including the policy during inference. MPI poses unique data and algorithmic challenges. We build two datasets spanning synthetic and real-world decision-making and tool-using tasks and propose TriMPI, a three-stage training framework. TriMPI first injects policy knowledge via continual pretraining, then performs supervised finetuning, and finally applies PolicyRollout, a GRPO-style reinforcement learning extension that augments rollouts with policy-aware responses for grounded exploration. TriMPI achieves notable gains in end-to-end accuracy, generalization, and robustness to forgetting. As the first work on multimodal policy internalization, we provide datasets, training recipes, and comprehensive evaluations to foster future research. Project page: https://mikewangwzhl.github.io/TriMPI.

amazon Amazon
·
Oct 10 2

Progent: Programmable Privilege Control for LLM Agents

LLM agents are an emerging form of AI systems where large language models (LLMs) serve as the central component, utilizing a diverse set of tools to complete user-assigned tasks. Despite their great potential, LLM agents pose significant security risks. When interacting with the external world, they may encounter malicious commands from attackers, leading to the execution of dangerous actions. A promising way to address this is by enforcing the principle of least privilege: allowing only essential actions for task completion while blocking unnecessary ones. However, achieving this is challenging, as it requires covering diverse agent scenarios while preserving both security and utility. We introduce Progent, the first privilege control mechanism for LLM agents. At its core is a domain-specific language for flexibly expressing privilege control policies applied during agent execution. These policies provide fine-grained constraints over tool calls, deciding when tool calls are permissible and specifying fallbacks if they are not. This enables agent developers and users to craft suitable policies for their specific use cases and enforce them deterministically to guarantee security. Thanks to its modular design, integrating Progent does not alter agent internals and requires only minimal changes to agent implementation, enhancing its practicality and potential for widespread adoption. To automate policy writing, we leverage LLMs to generate policies based on user queries, which are then updated dynamically for improved security and utility. Our extensive evaluation shows that it enables strong security while preserving high utility across three distinct scenarios or benchmarks: AgentDojo, ASB, and AgentPoison. Furthermore, we perform an in-depth analysis, showcasing the effectiveness of its core components and the resilience of its automated policy generation against adaptive attacks.

  • 7 authors
·
Apr 15 2

TempFlow-GRPO: When Timing Matters for GRPO in Flow Models

Recent flow matching models for text-to-image generation have achieved remarkable quality, yet their integration with reinforcement learning for human preference alignment remains suboptimal, hindering fine-grained reward-based optimization. We observe that the key impediment to effective GRPO training of flow models is the temporal uniformity assumption in existing approaches: sparse terminal rewards with uniform credit assignment fail to capture the varying criticality of decisions across generation timesteps, resulting in inefficient exploration and suboptimal convergence. To remedy this shortcoming, we introduce TempFlow-GRPO (Temporal Flow GRPO), a principled GRPO framework that captures and exploits the temporal structure inherent in flow-based generation. TempFlow-GRPO introduces two key innovations: (i) a trajectory branching mechanism that provides process rewards by concentrating stochasticity at designated branching points, enabling precise credit assignment without requiring specialized intermediate reward models; and (ii) a noise-aware weighting scheme that modulates policy optimization according to the intrinsic exploration potential of each timestep, prioritizing learning during high-impact early stages while ensuring stable refinement in later phases. These innovations endow the model with temporally-aware optimization that respects the underlying generative dynamics, leading to state-of-the-art performance in human preference alignment and standard text-to-image benchmarks.

EXPO: Stable Reinforcement Learning with Expressive Policies

We study the problem of training and fine-tuning expressive policies with online reinforcement learning (RL) given an offline dataset. Training expressive policy classes with online RL present a unique challenge of stable value maximization. Unlike simpler Gaussian policies commonly used in online RL, expressive policies like diffusion and flow-matching policies are parameterized by a long denoising chain, which hinders stable gradient propagation from actions to policy parameters when optimizing against some value function. Our key insight is that we can address stable value maximization by avoiding direct optimization over value with the expressive policy and instead construct an on-the-fly RL policy to maximize Q-value. We propose Expressive Policy Optimization (EXPO), a sample-efficient online RL algorithm that utilizes an on-the-fly policy to maximize value with two parameterized policies -- a larger expressive base policy trained with a stable imitation learning objective and a light-weight Gaussian edit policy that edits the actions sampled from the base policy toward a higher value distribution. The on-the-fly policy optimizes the actions from the base policy with the learned edit policy and chooses the value maximizing action from the base and edited actions for both sampling and temporal-difference (TD) backup. Our approach yields up to 2-3x improvement in sample efficiency on average over prior methods both in the setting of fine-tuning a pretrained policy given offline data and in leveraging offline data to train online.

  • 4 authors
·
Jul 10

The Principles of Diffusion Models

This monograph presents the core principles that have guided the development of diffusion models, tracing their origins and showing how diverse formulations arise from shared mathematical ideas. Diffusion modeling starts by defining a forward process that gradually corrupts data into noise, linking the data distribution to a simple prior through a continuum of intermediate distributions. The goal is to learn a reverse process that transforms noise back into data while recovering the same intermediates. We describe three complementary views. The variational view, inspired by variational autoencoders, sees diffusion as learning to remove noise step by step. The score-based view, rooted in energy-based modeling, learns the gradient of the evolving data distribution, indicating how to nudge samples toward more likely regions. The flow-based view, related to normalizing flows, treats generation as following a smooth path that moves samples from noise to data under a learned velocity field. These perspectives share a common backbone: a time-dependent velocity field whose flow transports a simple prior to the data. Sampling then amounts to solving a differential equation that evolves noise into data along a continuous trajectory. On this foundation, the monograph discusses guidance for controllable generation, efficient numerical solvers, and diffusion-motivated flow-map models that learn direct mappings between arbitrary times. It provides a conceptual and mathematically grounded understanding of diffusion models for readers with basic deep-learning knowledge.

  • 5 authors
·
Oct 23 3

Graph Learning-based Fleet Scheduling for Urban Air Mobility under Operational Constraints, Varying Demand & Uncertainties

This paper develops a graph reinforcement learning approach to online planning of the schedule and destinations of electric aircraft that comprise an urban air mobility (UAM) fleet operating across multiple vertiports. This fleet scheduling problem is formulated to consider time-varying demand, constraints related to vertiport capacity, aircraft capacity and airspace safety guidelines, uncertainties related to take-off delay, weather-induced route closures, and unanticipated aircraft downtime. Collectively, such a formulation presents greater complexity, and potentially increased realism, than in existing UAM fleet planning implementations. To address these complexities, a new policy architecture is constructed, primary components of which include: graph capsule conv-nets for encoding vertiport and aircraft-fleet states both abstracted as graphs; transformer layers encoding time series information on demand and passenger fare; and a Multi-head Attention-based decoder that uses the encoded information to compute the probability of selecting each available destination for an aircraft. Trained with Proximal Policy Optimization, this policy architecture shows significantly better performance in terms of daily averaged profits on unseen test scenarios involving 8 vertiports and 40 aircraft, when compared to a random baseline and genetic algorithm-derived optimal solutions, while being nearly 1000 times faster in execution than the latter.

  • 3 authors
·
Jan 9, 2024

Fine-tuning Flow Matching Generative Models with Intermediate Feedback

Flow-based generative models have shown remarkable success in text-to-image generation, yet fine-tuning them with intermediate feedback remains challenging, especially for continuous-time flow matching models. Most existing approaches solely learn from outcome rewards, struggling with the credit assignment problem. Alternative methods that attempt to learn a critic via direct regression on cumulative rewards often face training instabilities and model collapse in online settings. We present AC-Flow, a robust actor-critic framework that addresses these challenges through three key innovations: (1) reward shaping that provides well-normalized learning signals to enable stable intermediate value learning and gradient control, (2) a novel dual-stability mechanism that combines advantage clipping to prevent destructive policy updates with a warm-up phase that allows the critic to mature before influencing the actor, and (3) a scalable generalized critic weighting scheme that extends traditional reward-weighted methods while preserving model diversity through Wasserstein regularization. Through extensive experiments on Stable Diffusion 3, we demonstrate that AC-Flow achieves state-of-the-art performance in text-to-image alignment tasks and generalization to unseen human preference models. Our results demonstrate that even with a computationally efficient critic model, we can robustly finetune flow models without compromising generative quality, diversity, or stability.

  • 5 authors
·
Oct 20

Understanding and Diagnosing Deep Reinforcement Learning

Deep neural policies have recently been installed in a diverse range of settings, from biotechnology to automated financial systems. However, the utilization of deep neural networks to approximate the value function leads to concerns on the decision boundary stability, in particular, with regard to the sensitivity of policy decision making to indiscernible, non-robust features due to highly non-convex and complex deep neural manifolds. These concerns constitute an obstruction to understanding the reasoning made by deep neural policies, and their foundational limitations. Hence, it is crucial to develop techniques that aim to understand the sensitivities in the learnt representations of neural network policies. To achieve this we introduce a theoretically founded method that provides a systematic analysis of the unstable directions in the deep neural policy decision boundary across both time and space. Through experiments in the Arcade Learning Environment (ALE), we demonstrate the effectiveness of our technique for identifying correlated directions of instability, and for measuring how sample shifts remold the set of sensitive directions in the neural policy landscape. Most importantly, we demonstrate that state-of-the-art robust training techniques yield learning of disjoint unstable directions, with dramatically larger oscillations over time, when compared to standard training. We believe our results reveal the fundamental properties of the decision process made by reinforcement learning policies, and can help in constructing reliable and robust deep neural policies.

  • 1 authors
·
Jun 23, 2024 1

EBT-Policy: Energy Unlocks Emergent Physical Reasoning Capabilities

Implicit policies parameterized by generative models, such as Diffusion Policy, have become the standard for policy learning and Vision-Language-Action (VLA) models in robotics. However, these approaches often suffer from high computational cost, exposure bias, and unstable inference dynamics, which lead to divergence under distribution shifts. Energy-Based Models (EBMs) address these issues by learning energy landscapes end-to-end and modeling equilibrium dynamics, offering improved robustness and reduced exposure bias. Yet, policies parameterized by EBMs have historically struggled to scale effectively. Recent work on Energy-Based Transformers (EBTs) demonstrates the scalability of EBMs to high-dimensional spaces, but their potential for solving core challenges in physically embodied models remains underexplored. We introduce a new energy-based architecture, EBT-Policy, that solves core issues in robotic and real-world settings. Across simulated and real-world tasks, EBT-Policy consistently outperforms diffusion-based policies, while requiring less training and inference computation. Remarkably, on some tasks it converges within just two inference steps, a 50x reduction compared to Diffusion Policy's 100. Moreover, EBT-Policy exhibits emergent capabilities not seen in prior models, such as zero-shot recovery from failed action sequences using only behavior cloning and without explicit retry training. By leveraging its scalar energy for uncertainty-aware inference and dynamic compute allocation, EBT-Policy offers a promising path toward robust, generalizable robot behavior under distribution shifts.

  • 8 authors
·
Oct 31 3

Pre-Training and Fine-Tuning Generative Flow Networks

Generative Flow Networks (GFlowNets) are amortized samplers that learn stochastic policies to sequentially generate compositional objects from a given unnormalized reward distribution. They can generate diverse sets of high-reward objects, which is an important consideration in scientific discovery tasks. However, as they are typically trained from a given extrinsic reward function, it remains an important open challenge about how to leverage the power of pre-training and train GFlowNets in an unsupervised fashion for efficient adaptation to downstream tasks. Inspired by recent successes of unsupervised pre-training in various domains, we introduce a novel approach for reward-free pre-training of GFlowNets. By framing the training as a self-supervised problem, we propose an outcome-conditioned GFlowNet (OC-GFN) that learns to explore the candidate space. Specifically, OC-GFN learns to reach any targeted outcomes, akin to goal-conditioned policies in reinforcement learning. We show that the pre-trained OC-GFN model can allow for a direct extraction of a policy capable of sampling from any new reward functions in downstream tasks. Nonetheless, adapting OC-GFN on a downstream task-specific reward involves an intractable marginalization over possible outcomes. We propose a novel way to approximate this marginalization by learning an amortized predictor enabling efficient fine-tuning. Extensive experimental results validate the efficacy of our approach, demonstrating the effectiveness of pre-training the OC-GFN, and its ability to swiftly adapt to downstream tasks and discover modes more efficiently. This work may serve as a foundation for further exploration of pre-training strategies in the context of GFlowNets.

  • 4 authors
·
Oct 5, 2023

When to Trust Your Simulator: Dynamics-Aware Hybrid Offline-and-Online Reinforcement Learning

Learning effective reinforcement learning (RL) policies to solve real-world complex tasks can be quite challenging without a high-fidelity simulation environment. In most cases, we are only given imperfect simulators with simplified dynamics, which inevitably lead to severe sim-to-real gaps in RL policy learning. The recently emerged field of offline RL provides another possibility to learn policies directly from pre-collected historical data. However, to achieve reasonable performance, existing offline RL algorithms need impractically large offline data with sufficient state-action space coverage for training. This brings up a new question: is it possible to combine learning from limited real data in offline RL and unrestricted exploration through imperfect simulators in online RL to address the drawbacks of both approaches? In this study, we propose the Dynamics-Aware Hybrid Offline-and-Online Reinforcement Learning (H2O) framework to provide an affirmative answer to this question. H2O introduces a dynamics-aware policy evaluation scheme, which adaptively penalizes the Q function learning on simulated state-action pairs with large dynamics gaps, while also simultaneously allowing learning from a fixed real-world dataset. Through extensive simulation and real-world tasks, as well as theoretical analysis, we demonstrate the superior performance of H2O against other cross-domain online and offline RL algorithms. H2O provides a brand new hybrid offline-and-online RL paradigm, which can potentially shed light on future RL algorithm design for solving practical real-world tasks.

  • 7 authors
·
Jun 27, 2022

A Dataset Perspective on Offline Reinforcement Learning

The application of Reinforcement Learning (RL) in real world environments can be expensive or risky due to sub-optimal policies during training. In Offline RL, this problem is avoided since interactions with an environment are prohibited. Policies are learned from a given dataset, which solely determines their performance. Despite this fact, how dataset characteristics influence Offline RL algorithms is still hardly investigated. The dataset characteristics are determined by the behavioral policy that samples this dataset. Therefore, we define characteristics of behavioral policies as exploratory for yielding high expected information in their interaction with the Markov Decision Process (MDP) and as exploitative for having high expected return. We implement two corresponding empirical measures for the datasets sampled by the behavioral policy in deterministic MDPs. The first empirical measure SACo is defined by the normalized unique state-action pairs and captures exploration. The second empirical measure TQ is defined by the normalized average trajectory return and captures exploitation. Empirical evaluations show the effectiveness of TQ and SACo. In large-scale experiments using our proposed measures, we show that the unconstrained off-policy Deep Q-Network family requires datasets with high SACo to find a good policy. Furthermore, experiments show that policy constraint algorithms perform well on datasets with high TQ and SACo. Finally, the experiments show, that purely dataset-constrained Behavioral Cloning performs competitively to the best Offline RL algorithms for datasets with high TQ.

  • 8 authors
·
Nov 8, 2021

Towards Policy-Compliant Agents: Learning Efficient Guardrails For Policy Violation Detection

Autonomous web agents need to operate under externally imposed or human-specified policies while generating long-horizon trajectories. However, little work has examined whether these trajectories comply with such policies, or whether policy violations persist across different contexts such as domains (e.g., shopping or coding websites) and subdomains (e.g., product search and order management in shopping). To address this gap, we introduce PolicyGuardBench, a benchmark of about 60k examples for detecting policy violations in agent trajectories. From diverse agent runs, we generate a broad set of policies and create both within subdomain and cross subdomain pairings with violation labels. In addition to full-trajectory evaluation, PolicyGuardBench also includes a prefix-based violation detection task where models must anticipate policy violations from truncated trajectory prefixes rather than complete sequences. Using this dataset, we train PolicyGuard-4B, a lightweight guardrail model that delivers strong detection accuracy across all tasks while keeping inference efficient. Notably, PolicyGuard-4B generalizes across domains and preserves high accuracy on unseen settings. Together, PolicyGuardBench and PolicyGuard-4B provide the first comprehensive framework for studying policy compliance in web agent trajectories, and show that accurate and generalizable guardrails are feasible at small scales.

  • 5 authors
·
Oct 3

Policy-Guided Diffusion

In many real-world settings, agents must learn from an offline dataset gathered by some prior behavior policy. Such a setting naturally leads to distribution shift between the behavior policy and the target policy being trained - requiring policy conservatism to avoid instability and overestimation bias. Autoregressive world models offer a different solution to this by generating synthetic, on-policy experience. However, in practice, model rollouts must be severely truncated to avoid compounding error. As an alternative, we propose policy-guided diffusion. Our method uses diffusion models to generate entire trajectories under the behavior distribution, applying guidance from the target policy to move synthetic experience further on-policy. We show that policy-guided diffusion models a regularized form of the target distribution that balances action likelihood under both the target and behavior policies, leading to plausible trajectories with high target policy probability, while retaining a lower dynamics error than an offline world model baseline. Using synthetic experience from policy-guided diffusion as a drop-in substitute for real data, we demonstrate significant improvements in performance across a range of standard offline reinforcement learning algorithms and environments. Our approach provides an effective alternative to autoregressive offline world models, opening the door to the controllable generation of synthetic training data.

  • 6 authors
·
Apr 9, 2024

Meta Flow Matching: Integrating Vector Fields on the Wasserstein Manifold

Numerous biological and physical processes can be modeled as systems of interacting entities evolving continuously over time, e.g. the dynamics of communicating cells or physical particles. Learning the dynamics of such systems is essential for predicting the temporal evolution of populations across novel samples and unseen environments. Flow-based models allow for learning these dynamics at the population level - they model the evolution of the entire distribution of samples. However, current flow-based models are limited to a single initial population and a set of predefined conditions which describe different dynamics. We argue that multiple processes in natural sciences have to be represented as vector fields on the Wasserstein manifold of probability densities. That is, the change of the population at any moment in time depends on the population itself due to the interactions between samples. In particular, this is crucial for personalized medicine where the development of diseases and their respective treatment response depends on the microenvironment of cells specific to each patient. We propose Meta Flow Matching (MFM), a practical approach to integrating along these vector fields on the Wasserstein manifold by amortizing the flow model over the initial populations. Namely, we embed the population of samples using a Graph Neural Network (GNN) and use these embeddings to train a Flow Matching model. This gives MFM the ability to generalize over the initial distributions unlike previously proposed methods. We demonstrate the ability of MFM to improve prediction of individual treatment responses on a large scale multi-patient single-cell drug screen dataset.

  • 8 authors
·
Aug 26, 2024 2

Learn to Follow: Decentralized Lifelong Multi-agent Pathfinding via Planning and Learning

Multi-agent Pathfinding (MAPF) problem generally asks to find a set of conflict-free paths for a set of agents confined to a graph and is typically solved in a centralized fashion. Conversely, in this work, we investigate the decentralized MAPF setting, when the central controller that posses all the information on the agents' locations and goals is absent and the agents have to sequientially decide the actions on their own without having access to a full state of the environment. We focus on the practically important lifelong variant of MAPF, which involves continuously assigning new goals to the agents upon arrival to the previous ones. To address this complex problem, we propose a method that integrates two complementary approaches: planning with heuristic search and reinforcement learning through policy optimization. Planning is utilized to construct and re-plan individual paths. We enhance our planning algorithm with a dedicated technique tailored to avoid congestion and increase the throughput of the system. We employ reinforcement learning to discover the collision avoidance policies that effectively guide the agents along the paths. The policy is implemented as a neural network and is effectively trained without any reward-shaping or external guidance. We evaluate our method on a wide range of setups comparing it to the state-of-the-art solvers. The results show that our method consistently outperforms the learnable competitors, showing higher throughput and better ability to generalize to the maps that were unseen at the training stage. Moreover our solver outperforms a rule-based one in terms of throughput and is an order of magnitude faster than a state-of-the-art search-based solver.

  • 5 authors
·
Oct 2, 2023

MP1: MeanFlow Tames Policy Learning in 1-step for Robotic Manipulation

In robot manipulation, robot learning has become a prevailing approach. However, generative models within this field face a fundamental trade-off between the slow, iterative sampling of diffusion models and the architectural constraints of faster Flow-based methods, which often rely on explicit consistency losses. To address these limitations, we introduce MP1, which pairs 3D point-cloud inputs with the MeanFlow paradigm to generate action trajectories in one network function evaluation (1-NFE). By directly learning the interval-averaged velocity via the "MeanFlow Identity", our policy avoids any additional consistency constraints. This formulation eliminates numerical ODE-solver errors during inference, yielding more precise trajectories. MP1 further incorporates CFG for improved trajectory controllability while retaining 1-NFE inference without reintroducing structural constraints. Because subtle scene-context variations are critical for robot learning, especially in few-shot learning, we introduce a lightweight Dispersive Loss that repels state embeddings during training, boosting generalization without slowing inference. We validate our method on the Adroit and Meta-World benchmarks, as well as in real-world scenarios. Experimental results show MP1 achieves superior average task success rates, outperforming DP3 by 10.2% and FlowPolicy by 7.3%. Its average inference time is only 6.8 ms-19x faster than DP3 and nearly 2x faster than FlowPolicy. Our code is available at https://github.com/LogSSim/MP1.git.

  • 4 authors
·
Jul 14

FlowDrive: Energy Flow Field for End-to-End Autonomous Driving

Recent advances in end-to-end autonomous driving leverage multi-view images to construct BEV representations for motion planning. In motion planning, autonomous vehicles need considering both hard constraints imposed by geometrically occupied obstacles (e.g., vehicles, pedestrians) and soft, rule-based semantics with no explicit geometry (e.g., lane boundaries, traffic priors). However, existing end-to-end frameworks typically rely on BEV features learned in an implicit manner, lacking explicit modeling of risk and guidance priors for safe and interpretable planning. To address this, we propose FlowDrive, a novel framework that introduces physically interpretable energy-based flow fields-including risk potential and lane attraction fields-to encode semantic priors and safety cues into the BEV space. These flow-aware features enable adaptive refinement of anchor trajectories and serve as interpretable guidance for trajectory generation. Moreover, FlowDrive decouples motion intent prediction from trajectory denoising via a conditional diffusion planner with feature-level gating, alleviating task interference and enhancing multimodal diversity. Experiments on the NAVSIM v2 benchmark demonstrate that FlowDrive achieves state-of-the-art performance with an EPDMS of 86.3, surpassing prior baselines in both safety and planning quality. The project is available at https://astrixdrive.github.io/FlowDrive.github.io/.

  • 14 authors
·
Sep 17

Generating Dispatching Rules for the Interrupting Swap-Allowed Blocking Job Shop Problem Using Graph Neural Network and Reinforcement Learning

The interrupting swap-allowed blocking job shop problem (ISBJSSP) is a complex scheduling problem that is able to model many manufacturing planning and logistics applications realistically by addressing both the lack of storage capacity and unforeseen production interruptions. Subjected to random disruptions due to machine malfunction or maintenance, industry production settings often choose to adopt dispatching rules to enable adaptive, real-time re-scheduling, rather than traditional methods that require costly re-computation on the new configuration every time the problem condition changes dynamically. To generate dispatching rules for the ISBJSSP problem, a method that uses graph neural networks and reinforcement learning is proposed. ISBJSSP is formulated as a Markov decision process. Using proximal policy optimization, an optimal scheduling policy is learnt from randomly generated instances. Employing a set of reported benchmark instances, we conduct a detailed experimental study on ISBJSSP instances with a range of machine shutdown probabilities to show that the scheduling policies generated can outperform or are at least as competitive as existing dispatching rules with predetermined priority. This study shows that the ISBJSSP, which requires real-time adaptive solutions, can be scheduled efficiently with the proposed machine learning method when production interruptions occur with random machine shutdowns.

  • 5 authors
·
Feb 5, 2023

BQ-NCO: Bisimulation Quotienting for Efficient Neural Combinatorial Optimization

Despite the success of neural-based combinatorial optimization methods for end-to-end heuristic learning, out-of-distribution generalization remains a challenge. In this paper, we present a novel formulation of Combinatorial Optimization Problems (COPs) as Markov Decision Processes (MDPs) that effectively leverages common symmetries of COPs to improve out-of-distribution robustness. Starting from a direct MDP formulation of a constructive method, we introduce a generic way to reduce the state space, based on Bisimulation Quotienting (BQ) in MDPs. Then, for COPs with a recursive nature, we specialize the bisimulation and show how the reduced state exploits the symmetries of these problems and facilitates MDP solving. Our approach is principled and we prove that an optimal policy for the proposed BQ-MDP actually solves the associated COPs. We illustrate our approach on five classical problems: the Euclidean and Asymmetric Traveling Salesman, Capacitated Vehicle Routing, Orienteering and Knapsack Problems. Furthermore, for each problem, we introduce a simple attention-based policy network for the BQ-MDPs, which we train by imitation of (near) optimal solutions of small instances from a single distribution. We obtain new state-of-the-art results for the five COPs on both synthetic and realistic benchmarks. Notably, in contrast to most existing neural approaches, our learned policies show excellent generalization performance to much larger instances than seen during training, without any additional search procedure.

  • 5 authors
·
Jan 9, 2023

Efficiently Training Deep-Learning Parametric Policies using Lagrangian Duality

Constrained Markov Decision Processes (CMDPs) are critical in many high-stakes applications, where decisions must optimize cumulative rewards while strictly adhering to complex nonlinear constraints. In domains such as power systems, finance, supply chains, and precision robotics, violating these constraints can result in significant financial or societal costs. Existing Reinforcement Learning (RL) methods often struggle with sample efficiency and effectiveness in finding feasible policies for highly and strictly constrained CMDPs, limiting their applicability in these environments. Stochastic dual dynamic programming is often used in practice on convex relaxations of the original problem, but they also encounter computational challenges and loss of optimality. This paper introduces a novel approach, Two-Stage Deep Decision Rules (TS-DDR), to efficiently train parametric actor policies using Lagrangian Duality. TS-DDR is a self-supervised learning algorithm that trains general decision rules (parametric policies) using stochastic gradient descent (SGD); its forward passes solve {\em deterministic} optimization problems to find feasible policies, and its backward passes leverage duality theory to train the parametric policy with closed-form gradients. TS-DDR inherits the flexibility and computational performance of deep learning methodologies to solve CMDP problems. Applied to the Long-Term Hydrothermal Dispatch (LTHD) problem using actual power system data from Bolivia, TS-DDR is shown to enhance solution quality and to reduce computation times by several orders of magnitude when compared to current state-of-the-art methods.

  • 4 authors
·
May 23, 2024

Steering Your Diffusion Policy with Latent Space Reinforcement Learning

Robotic control policies learned from human demonstrations have achieved impressive results in many real-world applications. However, in scenarios where initial performance is not satisfactory, as is often the case in novel open-world settings, such behavioral cloning (BC)-learned policies typically require collecting additional human demonstrations to further improve their behavior -- an expensive and time-consuming process. In contrast, reinforcement learning (RL) holds the promise of enabling autonomous online policy improvement, but often falls short of achieving this due to the large number of samples it typically requires. In this work we take steps towards enabling fast autonomous adaptation of BC-trained policies via efficient real-world RL. Focusing in particular on diffusion policies -- a state-of-the-art BC methodology -- we propose diffusion steering via reinforcement learning (DSRL): adapting the BC policy by running RL over its latent-noise space. We show that DSRL is highly sample efficient, requires only black-box access to the BC policy, and enables effective real-world autonomous policy improvement. Furthermore, DSRL avoids many of the challenges associated with finetuning diffusion policies, obviating the need to modify the weights of the base policy at all. We demonstrate DSRL on simulated benchmarks, real-world robotic tasks, and for adapting pretrained generalist policies, illustrating its sample efficiency and effective performance at real-world policy improvement.

  • 8 authors
·
Jun 18

SERL: A Software Suite for Sample-Efficient Robotic Reinforcement Learning

In recent years, significant progress has been made in the field of robotic reinforcement learning (RL), enabling methods that handle complex image observations, train in the real world, and incorporate auxiliary data, such as demonstrations and prior experience. However, despite these advances, robotic RL remains hard to use. It is acknowledged among practitioners that the particular implementation details of these algorithms are often just as important (if not more so) for performance as the choice of algorithm. We posit that a significant challenge to widespread adoption of robotic RL, as well as further development of robotic RL methods, is the comparative inaccessibility of such methods. To address this challenge, we developed a carefully implemented library containing a sample efficient off-policy deep RL method, together with methods for computing rewards and resetting the environment, a high-quality controller for a widely-adopted robot, and a number of challenging example tasks. We provide this library as a resource for the community, describe its design choices, and present experimental results. Perhaps surprisingly, we find that our implementation can achieve very efficient learning, acquiring policies for PCB board assembly, cable routing, and object relocation between 25 to 50 minutes of training per policy on average, improving over state-of-the-art results reported for similar tasks in the literature. These policies achieve perfect or near-perfect success rates, extreme robustness even under perturbations, and exhibit emergent recovery and correction behaviors. We hope that these promising results and our high-quality open-source implementation will provide a tool for the robotics community to facilitate further developments in robotic RL. Our code, documentation, and videos can be found at https://serl-robot.github.io/

  • 10 authors
·
Jan 29, 2024 1

Better Training of GFlowNets with Local Credit and Incomplete Trajectories

Generative Flow Networks or GFlowNets are related to Monte-Carlo Markov chain methods (as they sample from a distribution specified by an energy function), reinforcement learning (as they learn a policy to sample composed objects through a sequence of steps), generative models (as they learn to represent and sample from a distribution) and amortized variational methods (as they can be used to learn to approximate and sample from an otherwise intractable posterior, given a prior and a likelihood). They are trained to generate an object x through a sequence of steps with probability proportional to some reward function R(x) (or exp(-E(x)) with E(x) denoting the energy function), given at the end of the generative trajectory. Like for other RL settings where the reward is only given at the end, the efficiency of training and credit assignment may suffer when those trajectories are longer. With previous GFlowNet work, no learning was possible from incomplete trajectories (lacking a terminal state and the computation of the associated reward). In this paper, we consider the case where the energy function can be applied not just to terminal states but also to intermediate states. This is for example achieved when the energy function is additive, with terms available along the trajectory. We show how to reparameterize the GFlowNet state flow function to take advantage of the partial reward already accrued at each state. This enables a training objective that can be applied to update parameters even with incomplete trajectories. Even when complete trajectories are available, being able to obtain more localized credit and gradients is found to speed up training convergence, as demonstrated across many simulations.

  • 4 authors
·
Feb 3, 2023

Code as Policies: Language Model Programs for Embodied Control

Large language models (LLMs) trained on code completion have been shown to be capable of synthesizing simple Python programs from docstrings [1]. We find that these code-writing LLMs can be re-purposed to write robot policy code, given natural language commands. Specifically, policy code can express functions or feedback loops that process perception outputs (e.g.,from object detectors [2], [3]) and parameterize control primitive APIs. When provided as input several example language commands (formatted as comments) followed by corresponding policy code (via few-shot prompting), LLMs can take in new commands and autonomously re-compose API calls to generate new policy code respectively. By chaining classic logic structures and referencing third-party libraries (e.g., NumPy, Shapely) to perform arithmetic, LLMs used in this way can write robot policies that (i) exhibit spatial-geometric reasoning, (ii) generalize to new instructions, and (iii) prescribe precise values (e.g., velocities) to ambiguous descriptions ("faster") depending on context (i.e., behavioral commonsense). This paper presents code as policies: a robot-centric formulation of language model generated programs (LMPs) that can represent reactive policies (e.g., impedance controllers), as well as waypoint-based policies (vision-based pick and place, trajectory-based control), demonstrated across multiple real robot platforms. Central to our approach is prompting hierarchical code-gen (recursively defining undefined functions), which can write more complex code and also improves state-of-the-art to solve 39.8% of problems on the HumanEval [1] benchmark. Code and videos are available at https://code-as-policies.github.io

  • 8 authors
·
Sep 16, 2022

VeriGuard: Enhancing LLM Agent Safety via Verified Code Generation

The deployment of autonomous AI agents in sensitive domains, such as healthcare, introduces critical risks to safety, security, and privacy. These agents may deviate from user objectives, violate data handling policies, or be compromised by adversarial attacks. Mitigating these dangers necessitates a mechanism to formally guarantee that an agent's actions adhere to predefined safety constraints, a challenge that existing systems do not fully address. We introduce VeriGuard, a novel framework that provides formal safety guarantees for LLM-based agents through a dual-stage architecture designed for robust and verifiable correctness. The initial offline stage involves a comprehensive validation process. It begins by clarifying user intent to establish precise safety specifications. VeriGuard then synthesizes a behavioral policy and subjects it to both testing and formal verification to prove its compliance with these specifications. This iterative process refines the policy until it is deemed correct. Subsequently, the second stage provides online action monitoring, where VeriGuard operates as a runtime monitor to validate each proposed agent action against the pre-verified policy before execution. This separation of the exhaustive offline validation from the lightweight online monitoring allows formal guarantees to be practically applied, providing a robust safeguard that substantially improves the trustworthiness of LLM agents.

google Google
·
Oct 3 2

FlowMind: Automatic Workflow Generation with LLMs

The rapidly evolving field of Robotic Process Automation (RPA) has made significant strides in automating repetitive processes, yet its effectiveness diminishes in scenarios requiring spontaneous or unpredictable tasks demanded by users. This paper introduces a novel approach, FlowMind, leveraging the capabilities of Large Language Models (LLMs) such as Generative Pretrained Transformer (GPT), to address this limitation and create an automatic workflow generation system. In FlowMind, we propose a generic prompt recipe for a lecture that helps ground LLM reasoning with reliable Application Programming Interfaces (APIs). With this, FlowMind not only mitigates the common issue of hallucinations in LLMs, but also eliminates direct interaction between LLMs and proprietary data or code, thus ensuring the integrity and confidentiality of information - a cornerstone in financial services. FlowMind further simplifies user interaction by presenting high-level descriptions of auto-generated workflows, enabling users to inspect and provide feedback effectively. We also introduce NCEN-QA, a new dataset in finance for benchmarking question-answering tasks from N-CEN reports on funds. We used NCEN-QA to evaluate the performance of workflows generated by FlowMind against baseline and ablation variants of FlowMind. We demonstrate the success of FlowMind, the importance of each component in the proposed lecture recipe, and the effectiveness of user interaction and feedback in FlowMind.

  • 7 authors
·
Mar 16, 2024 1

Solving robust MDPs as a sequence of static RL problems

Designing control policies whose performance level is guaranteed to remain above a given threshold in a span of environments is a critical feature for the adoption of reinforcement learning (RL) in real-world applications. The search for such robust policies is a notoriously difficult problem, related to the so-called dynamic model of transition function uncertainty, where the environment dynamics are allowed to change at each time step. But in practical cases, one is rather interested in robustness to a span of static transition models throughout interaction episodes. The static model is known to be harder to solve than the dynamic one, and seminal algorithms, such as robust value iteration, as well as most recent works on deep robust RL, build upon the dynamic model. In this work, we propose to revisit the static model. We suggest an analysis of why solving the static model under some mild hypotheses is a reasonable endeavor, based on an equivalence with the dynamic model, and formalize the general intuition that robust MDPs can be solved by tackling a series of static problems. We introduce a generic meta-algorithm called IWOCS, which incrementally identifies worst-case transition models so as to guide the search for a robust policy. Discussion on IWOCS sheds light on new ways to decouple policy optimization and adversarial transition functions and opens new perspectives for analysis. We derive a deep RL version of IWOCS and demonstrate it is competitive with state-of-the-art algorithms on classical benchmarks.

  • 3 authors
·
Oct 8, 2024

Deep Reinforcement Learning for Inventory Networks: Toward Reliable Policy Optimization

We argue that inventory management presents unique opportunities for the reliable application of deep reinforcement learning (DRL). To enable this, we emphasize and test two complementary techniques. The first is Hindsight Differentiable Policy Optimization (HDPO), which uses pathwise gradients from offline counterfactual simulations to directly and efficiently optimize policy performance. Unlike standard policy gradient methods that rely on high-variance score-function estimators, HDPO computes gradients by differentiating through the known system dynamics. Via extensive benchmarking, we show that HDPO recovers near-optimal policies in settings with known or bounded optima, is more robust than variants of the REINFORCE algorithm, and significantly outperforms generalized newsvendor heuristics on problems using real time series data. Our second technique aligns neural policy architectures with the topology of the inventory network. We exploit Graph Neural Networks (GNNs) as a natural inductive bias for encoding supply chain structure, demonstrate that they can represent optimal and near-optimal policies in two theoretical settings, and empirically show that they reduce data requirements across six diverse inventory problems. A key obstacle to progress in this area is the lack of standardized benchmark problems. To address this gap, we open-source a suite of benchmark environments, along with our full codebase, to promote transparency and reproducibility. All resources are available at github.com/MatiasAlvo/Neural_inventory_control.

  • 4 authors
·
Jun 19, 2023

RAGent: Retrieval-based Access Control Policy Generation

Manually generating access control policies from an organization's high-level requirement specifications poses significant challenges. It requires laborious efforts to sift through multiple documents containing such specifications and translate their access requirements into access control policies. Also, the complexities and ambiguities of these specifications often result in errors by system administrators during the translation process, leading to data breaches. However, the automated policy generation frameworks designed to help administrators in this process are unreliable due to limitations, such as the lack of domain adaptation. Therefore, to improve the reliability of access control policy generation, we propose RAGent, a novel retrieval-based access control policy generation framework based on language models. RAGent identifies access requirements from high-level requirement specifications with an average state-of-the-art F1 score of 87.9%. Through retrieval augmented generation, RAGent then translates the identified access requirements into access control policies with an F1 score of 77.9%. Unlike existing frameworks, RAGent generates policies with complex components like purposes and conditions, in addition to subjects, actions, and resources. Moreover, RAGent automatically verifies the generated policies and iteratively refines them through a novel verification-refinement mechanism, further improving the reliability of the process by 3%, reaching the F1 score of 80.6%. We also introduce three annotated datasets for developing access control policy generation frameworks in the future, addressing the data scarcity of the domain.

  • 3 authors
·
Sep 7, 2024

Exploring Superior Function Calls via Reinforcement Learning

Function calling capabilities are crucial for deploying Large Language Models in real-world applications, yet current training approaches fail to develop robust reasoning strategies. Supervised fine-tuning produces models that rely on superficial pattern matching, while standard reinforcement learning methods struggle with the complex action space of structured function calls. We present a novel reinforcement learning framework designed to enhance group relative policy optimization through strategic entropy based exploration specifically tailored for function calling tasks. Our approach addresses three critical challenges in function calling: insufficient exploration during policy learning, lack of structured reasoning in chain-of-thought generation, and inadequate verification of parameter extraction. Our two-stage data preparation pipeline ensures high-quality training samples through iterative LLM evaluation and abstract syntax tree validation. Extensive experiments on the Berkeley Function Calling Leaderboard demonstrate that this framework achieves state-of-the-art performance among open-source models with 86.02\% overall accuracy, outperforming standard GRPO by up to 6\% on complex multi-function scenarios. Notably, our method shows particularly strong improvements on code-pretrained models, suggesting that structured language generation capabilities provide an advantageous starting point for reinforcement learning in function calling tasks. We will release all the code, models and dataset to benefit the community.

  • 7 authors
·
Aug 7

ST-WebAgentBench: A Benchmark for Evaluating Safety and Trustworthiness in Web Agents

Recent advancements in Web agents have introduced novel architectures and benchmarks showcasing progress in autonomous web navigation and interaction. However, most existing benchmarks prioritize effectiveness and accuracy, overlooking factors like safety and trustworthiness which are essential for deploying web agents in enterprise settings. We present STWebAgentBench, a benchmark designed to evaluate web agents safety and trustworthiness across six critical dimensions, essential for reliability in enterprise applications. This benchmark is grounded in a detailed framework that defines safe and trustworthy (ST) agent behavior. Our work extends WebArena with safety templates and evaluation functions to assess safety policy compliance rigorously. We introduce the Completion Under Policy to measure task success while adhering to policies, alongside the Risk Ratio, which quantifies policy violations across dimensions, providing actionable insights to address safety gaps. Our evaluation reveals that current SOTA agents struggle with policy adherence and cannot yet be relied upon for critical business applications. We open-source this benchmark and invite the community to contribute, with the goal of fostering a new generation of safer, more trustworthy AI agents. All code, data, environment reproduction resources, and video demonstrations are available at https://sites.google.com/view/st-webagentbench/home.

  • 6 authors
·
Oct 9, 2024

Subequivariant Graph Reinforcement Learning in 3D Environments

Learning a shared policy that guides the locomotion of different agents is of core interest in Reinforcement Learning (RL), which leads to the study of morphology-agnostic RL. However, existing benchmarks are highly restrictive in the choice of starting point and target point, constraining the movement of the agents within 2D space. In this work, we propose a novel setup for morphology-agnostic RL, dubbed Subequivariant Graph RL in 3D environments (3D-SGRL). Specifically, we first introduce a new set of more practical yet challenging benchmarks in 3D space that allows the agent to have full Degree-of-Freedoms to explore in arbitrary directions starting from arbitrary configurations. Moreover, to optimize the policy over the enlarged state-action space, we propose to inject geometric symmetry, i.e., subequivariance, into the modeling of the policy and Q-function such that the policy can generalize to all directions, improving exploration efficiency. This goal is achieved by a novel SubEquivariant Transformer (SET) that permits expressive message exchange. Finally, we evaluate the proposed method on the proposed benchmarks, where our method consistently and significantly outperforms existing approaches on single-task, multi-task, and zero-shot generalization scenarios. Extensive ablations are also conducted to verify our design. Code and videos are available on our project page: https://alpc91.github.io/SGRL/.

  • 4 authors
·
May 30, 2023

Improving Video Generation with Human Feedback

Video generation has achieved significant advances through rectified flow techniques, but issues like unsmooth motion and misalignment between videos and prompts persist. In this work, we develop a systematic pipeline that harnesses human feedback to mitigate these problems and refine the video generation model. Specifically, we begin by constructing a large-scale human preference dataset focused on modern video generation models, incorporating pairwise annotations across multi-dimensions. We then introduce VideoReward, a multi-dimensional video reward model, and examine how annotations and various design choices impact its rewarding efficacy. From a unified reinforcement learning perspective aimed at maximizing reward with KL regularization, we introduce three alignment algorithms for flow-based models by extending those from diffusion models. These include two training-time strategies: direct preference optimization for flow (Flow-DPO) and reward weighted regression for flow (Flow-RWR), and an inference-time technique, Flow-NRG, which applies reward guidance directly to noisy videos. Experimental results indicate that VideoReward significantly outperforms existing reward models, and Flow-DPO demonstrates superior performance compared to both Flow-RWR and standard supervised fine-tuning methods. Additionally, Flow-NRG lets users assign custom weights to multiple objectives during inference, meeting personalized video quality needs. Project page: https://gongyeliu.github.io/videoalign.

  • 18 authors
·
Jan 23 5