Get trending papers in your email inbox once a day!
Get trending papers in your email inbox!
SubscribeCoMat: Aligning Text-to-Image Diffusion Model with Image-to-Text Concept Matching
Diffusion models have demonstrated great success in the field of text-to-image generation. However, alleviating the misalignment between the text prompts and images is still challenging. The root reason behind the misalignment has not been extensively investigated. We observe that the misalignment is caused by inadequate token attention activation. We further attribute this phenomenon to the diffusion model's insufficient condition utilization, which is caused by its training paradigm. To address the issue, we propose CoMat, an end-to-end diffusion model fine-tuning strategy with an image-to-text concept matching mechanism. We leverage an image captioning model to measure image-to-text alignment and guide the diffusion model to revisit ignored tokens. A novel attribute concentration module is also proposed to address the attribute binding problem. Without any image or human preference data, we use only 20K text prompts to fine-tune SDXL to obtain CoMat-SDXL. Extensive experiments show that CoMat-SDXL significantly outperforms the baseline model SDXL in two text-to-image alignment benchmarks and achieves start-of-the-art performance.
Captions Are Worth a Thousand Words: Enhancing Product Retrieval with Pretrained Image-to-Text Models
This paper explores the usage of multimodal image-to-text models to enhance text-based item retrieval. We propose utilizing pre-trained image captioning and tagging models, such as instructBLIP and CLIP, to generate text-based product descriptions which are combined with existing text descriptions. Our work is particularly impactful for smaller eCommerce businesses who are unable to maintain the high-quality text descriptions necessary to effectively perform item retrieval for search and recommendation use cases. We evaluate the searchability of ground-truth text, image-generated text, and combinations of both texts on several subsets of Amazon's publicly available ESCI dataset. The results demonstrate the dual capability of our proposed models to enhance the retrieval of existing text and generate highly-searchable standalone descriptions.
I See Dead People: Gray-Box Adversarial Attack on Image-To-Text Models
Modern image-to-text systems typically adopt the encoder-decoder framework, which comprises two main components: an image encoder, responsible for extracting image features, and a transformer-based decoder, used for generating captions. Taking inspiration from the analysis of neural networks' robustness against adversarial perturbations, we propose a novel gray-box algorithm for creating adversarial examples in image-to-text models. Unlike image classification tasks that have a finite set of class labels, finding visually similar adversarial examples in an image-to-text task poses greater challenges because the captioning system allows for a virtually infinite space of possible captions. In this paper, we present a gray-box adversarial attack on image-to-text, both untargeted and targeted. We formulate the process of discovering adversarial perturbations as an optimization problem that uses only the image-encoder component, meaning the proposed attack is language-model agnostic. Through experiments conducted on the ViT-GPT2 model, which is the most-used image-to-text model in Hugging Face, and the Flickr30k dataset, we demonstrate that our proposed attack successfully generates visually similar adversarial examples, both with untargeted and targeted captions. Notably, our attack operates in a gray-box manner, requiring no knowledge about the decoder module. We also show that our attacks fool the popular open-source platform Hugging Face.
Improving Factual Completeness and Consistency of Image-to-Text Radiology Report Generation
Neural image-to-text radiology report generation systems offer the potential to improve radiology reporting by reducing the repetitive process of report drafting and identifying possible medical errors. However, existing report generation systems, despite achieving high performances on natural language generation metrics such as CIDEr or BLEU, still suffer from incomplete and inconsistent generations. Here we introduce two new simple rewards to encourage the generation of factually complete and consistent radiology reports: one that encourages the system to generate radiology domain entities consistent with the reference, and one that uses natural language inference to encourage these entities to be described in inferentially consistent ways. We combine these with the novel use of an existing semantic equivalence metric (BERTScore). We further propose a report generation system that optimizes these rewards via reinforcement learning. On two open radiology report datasets, our system substantially improved the F1 score of a clinical information extraction performance by +22.1 (Delta +63.9%). We further show via a human evaluation and a qualitative analysis that our system leads to generations that are more factually complete and consistent compared to the baselines.
ZeroCap: Zero-Shot Image-to-Text Generation for Visual-Semantic Arithmetic
Recent text-to-image matching models apply contrastive learning to large corpora of uncurated pairs of images and sentences. While such models can provide a powerful score for matching and subsequent zero-shot tasks, they are not capable of generating caption given an image. In this work, we repurpose such models to generate a descriptive text given an image at inference time, without any further training or tuning steps. This is done by combining the visual-semantic model with a large language model, benefiting from the knowledge in both web-scale models. The resulting captions are much less restrictive than those obtained by supervised captioning methods. Moreover, as a zero-shot learning method, it is extremely flexible and we demonstrate its ability to perform image arithmetic in which the inputs can be either images or text, and the output is a sentence. This enables novel high-level vision capabilities such as comparing two images or solving visual analogy tests. Our code is available at: https://github.com/YoadTew/zero-shot-image-to-text.
Evaluating Text-to-Visual Generation with Image-to-Text Generation
Despite significant progress in generative AI, comprehensive evaluation remains challenging because of the lack of effective metrics and standardized benchmarks. For instance, the widely-used CLIPScore measures the alignment between a (generated) image and text prompt, but it fails to produce reliable scores for complex prompts involving compositions of objects, attributes, and relations. One reason is that text encoders of CLIP can notoriously act as a "bag of words", conflating prompts such as "the horse is eating the grass" with "the grass is eating the horse". To address this, we introduce the VQAScore, which uses a visual-question-answering (VQA) model to produce an alignment score by computing the probability of a "Yes" answer to a simple "Does this figure show '{text}'?" question. Though simpler than prior art, VQAScore computed with off-the-shelf models produces state-of-the-art results across many (8) image-text alignment benchmarks. We also compute VQAScore with an in-house model that follows best practices in the literature. For example, we use a bidirectional image-question encoder that allows image embeddings to depend on the question being asked (and vice versa). Our in-house model, CLIP-FlanT5, outperforms even the strongest baselines that make use of the proprietary GPT-4V. Interestingly, although we train with only images, VQAScore can also align text with video and 3D models. VQAScore allows researchers to benchmark text-to-visual generation using complex texts that capture the compositional structure of real-world prompts. We introduce GenAI-Bench, a more challenging benchmark with 1,600 compositional text prompts that require parsing scenes, objects, attributes, relationships, and high-order reasoning like comparison and logic. GenAI-Bench also offers over 15,000 human ratings for leading image and video generation models such as Stable Diffusion, DALL-E 3, and Gen2.
Linearly Mapping from Image to Text Space
The extent to which text-only language models (LMs) learn to represent features of the non-linguistic world is an open question. Prior work has shown that pretrained LMs can be taught to caption images when a vision model's parameters are optimized to encode images in the language space. We test a stronger hypothesis: that the conceptual representations learned by frozen text-only models and vision-only models are similar enough that this can be achieved with a linear map. We show that the image representations from vision models can be transferred as continuous prompts to frozen LMs by training only a single linear projection. Using these to prompt the LM achieves competitive performance on captioning and visual question answering tasks compared to models that tune both the image encoder and text decoder (such as the MAGMA model). We compare three image encoders with increasing amounts of linguistic supervision seen during pretraining: BEIT (no linguistic information), NF-ResNET (lexical category information), and CLIP (full natural language descriptions). We find that all three encoders perform equally well at transferring visual property information to the language model (e.g., whether an animal is large or small), but that image encoders pretrained with linguistic supervision more saliently encode category information (e.g., distinguishing hippo vs. elephant) and thus perform significantly better on benchmark language-and-vision tasks. Our results indicate that LMs encode conceptual information structurally similarly to vision-based models, even those that are solely trained on images. Code is available here: https://github.com/jmerullo/limber
SingleInsert: Inserting New Concepts from a Single Image into Text-to-Image Models for Flexible Editing
Recent progress in text-to-image (T2I) models enables high-quality image generation with flexible textual control. To utilize the abundant visual priors in the off-the-shelf T2I models, a series of methods try to invert an image to proper embedding that aligns with the semantic space of the T2I model. However, these image-to-text (I2T) inversion methods typically need multiple source images containing the same concept or struggle with the imbalance between editing flexibility and visual fidelity. In this work, we point out that the critical problem lies in the foreground-background entanglement when learning an intended concept, and propose a simple and effective baseline for single-image I2T inversion, named SingleInsert. SingleInsert adopts a two-stage scheme. In the first stage, we regulate the learned embedding to concentrate on the foreground area without being associated with the irrelevant background. In the second stage, we finetune the T2I model for better visual resemblance and devise a semantic loss to prevent the language drift problem. With the proposed techniques, SingleInsert excels in single concept generation with high visual fidelity while allowing flexible editing. Additionally, SingleInsert can perform single-image novel view synthesis and multiple concepts composition without requiring joint training. To facilitate evaluation, we design an editing prompt list and introduce a metric named Editing Success Rate (ESR) for quantitative assessment of editing flexibility. Our project page is: https://jarrentwu1031.github.io/SingleInsert-web/
GIT: A Generative Image-to-text Transformer for Vision and Language
In this paper, we design and train a Generative Image-to-text Transformer, GIT, to unify vision-language tasks such as image/video captioning and question answering. While generative models provide a consistent network architecture between pre-training and fine-tuning, existing work typically contains complex structures (uni/multi-modal encoder/decoder) and depends on external modules such as object detectors/taggers and optical character recognition (OCR). In GIT, we simplify the architecture as one image encoder and one text decoder under a single language modeling task. We also scale up the pre-training data and the model size to boost the model performance. Without bells and whistles, our GIT establishes new state of the arts on 12 challenging benchmarks with a large margin. For instance, our model surpasses the human performance for the first time on TextCaps (138.2 vs. 125.5 in CIDEr). Furthermore, we present a new scheme of generation-based image classification and scene text recognition, achieving decent performance on standard benchmarks. Codes are released at https://github.com/microsoft/GenerativeImage2Text.
ImageChain: Advancing Sequential Image-to-Text Reasoning in Multimodal Large Language Models
Reasoning over sequences of images remains a challenge for multimodal large language models (MLLMs). While recent models incorporate multi-image data during pre-training, they still struggle to recognize sequential structures, often treating images independently. This work introduces ImageChain, a framework that enhances MLLMs with sequential reasoning capabilities over image data by modeling visual sequences as a multi-turn conversation. In ImageChain, images are interleaved with corresponding textual descriptions to form a controlled dialogue that explicitly captures temporal dependencies and narrative progression. Our method optimizes for the task of next-scene description, where the model generates a context-aware description of an upcoming scene based on preceding visual and textual cues. We demonstrate that our approach improves performance on the next-scene description task -- achieving an average improvement from 3.7% to 19% in SimRate, a metric that quantifies semantic similarity to human-annotated ground truths. Moreover, ImageChain achieves robust zero-shot out-of-domain performance in applications ranging from comics to robotics. Extensive experiments validate that instruction-tuning in a multimodal, multi-turn conversation design is key to bridging the gap between static image understanding and temporally-aware reasoning.
Can MLLMs Perform Text-to-Image In-Context Learning?
The evolution from Large Language Models (LLMs) to Multimodal Large Language Models (MLLMs) has spurred research into extending In-Context Learning (ICL) to its multimodal counterpart. Existing such studies have primarily concentrated on image-to-text ICL. However, the Text-to-Image ICL (T2I-ICL), with its unique characteristics and potential applications, remains underexplored. To address this gap, we formally define the task of T2I-ICL and present CoBSAT, the first T2I-ICL benchmark dataset, encompassing ten tasks. Utilizing our dataset to benchmark six state-of-the-art MLLMs, we uncover considerable difficulties MLLMs encounter in solving T2I-ICL. We identify the primary challenges as the inherent complexity of multimodality and image generation. To overcome these challenges, we explore strategies like fine-tuning and Chain-of-Thought prompting, demonstrating notable improvements. Our code and dataset are available at https://github.com/UW-Madison-Lee-Lab/CoBSAT.
Development of a New Image-to-text Conversion System for Pashto, Farsi and Traditional Chinese
We report upon the results of a research and prototype building project Worldly~OCR dedicated to developing new, more accurate image-to-text conversion software for several languages and writing systems. These include the cursive scripts Farsi and Pashto, and Latin cursive scripts. We also describe approaches geared towards Traditional Chinese, which is non-cursive, but features an extremely large character set of 65,000 characters. Our methodology is based on Machine Learning, especially Deep Learning, and Data Science, and is directed towards vast quantities of original documents, exceeding a billion pages. The target audience of this paper is a general audience with interest in Digital Humanities or in retrieval of accurate full-text and metadata from digital images.
SurrogatePrompt: Bypassing the Safety Filter of Text-To-Image Models via Substitution
Advanced text-to-image models such as DALL-E 2 and Midjourney possess the capacity to generate highly realistic images, raising significant concerns regarding the potential proliferation of unsafe content. This includes adult, violent, or deceptive imagery of political figures. Despite claims of rigorous safety mechanisms implemented in these models to restrict the generation of not-safe-for-work (NSFW) content, we successfully devise and exhibit the first prompt attacks on Midjourney, resulting in the production of abundant photorealistic NSFW images. We reveal the fundamental principles of such prompt attacks and suggest strategically substituting high-risk sections within a suspect prompt to evade closed-source safety measures. Our novel framework, SurrogatePrompt, systematically generates attack prompts, utilizing large language models, image-to-text, and image-to-image modules to automate attack prompt creation at scale. Evaluation results disclose an 88% success rate in bypassing Midjourney's proprietary safety filter with our attack prompts, leading to the generation of counterfeit images depicting political figures in violent scenarios. Both subjective and objective assessments validate that the images generated from our attack prompts present considerable safety hazards.
BiVLC: Extending Vision-Language Compositionality Evaluation with Text-to-Image Retrieval
Existing Vision-Language Compositionality (VLC) benchmarks like SugarCrepe are formulated as image-to-text retrieval problems, where, given an image, the models need to select between the correct textual description and a synthetic hard negative text. In this work we present the Bidirectional Vision-Language Compositionality (BiVLC) dataset. The novelty of BiVLC is to add a synthetic hard negative image generated from the synthetic text, resulting in two image-to-text retrieval examples (one for each image) and, more importantly, two text-to-image retrieval examples (one for each text). Human annotators filter out ill-formed examples ensuring the validity of the benchmark. The experiments on BiVLC uncover a weakness of current multimodal models, as they perform poorly in the text-to-image direction. In fact, when considering both retrieval directions, the conclusions obtained in previous works change significantly. In addition to the benchmark, we show that a contrastive model trained using synthetic images and texts improves the state of the art in SugarCrepe and in BiVLC for both retrieval directions. The gap to human performance in BiVLC confirms that Vision-Language Compositionality is still a challenging problem. BiVLC and code are available at https://imirandam.github.io/BiVLC_project_page.
Vision-Braille: An End-to-End Tool for Chinese Braille Image-to-Text Translation
Visually impaired people are a large group who can only use braille for reading and writing. However, the lack of special educational resources is the bottleneck for educating them. Educational equity is a reflection of the level of social civilization, cultural equality, and individual dignity. Facilitating and improving lifelong learning channels for the visually impaired is of great significance. Their written braille homework or exam papers cannot be understood by sighted teachers, because of the lack of a highly accurate braille translation system, especially in Chinese which has tone marks. braille writers often omit tone marks to save space, leading to confusion when braille with the same consonants and vowels is translated into Chinese. Previous algorithms were insufficient in extracting contextual information, resulting in low accuracy of braille translations into Chinese. This project informatively fine-tuned the mT5 model with an Encoder-decoder architecture for braille to Chinese character conversion. This research created a training set of braille and corresponding Chinese text from the Leipzig Corpora. This project significantly reduced the confusion in braille, achieving 62.4 and 62.3 BLEU scores in the validation and test sets, with a curriculum learning fine-tuning method. By incorporating the braille recognition algorithm, this project is the first publicly available braille translation system and can benefit lots of visually impaired students and families who are preparing for the Chinese College Test and help to propel their college dreams in the future. There is a demo on our homepage\url{https://vision-braille.com/}.
LaDiC: Are Diffusion Models Really Inferior to Autoregressive Counterparts for Image-to-Text Generation?
Diffusion models have exhibited remarkable capabilities in text-to-image generation. However, their performance in image-to-text generation, specifically image captioning, has lagged behind Auto-Regressive (AR) models, casting doubt on their applicability for such tasks. In this work, we revisit diffusion models, highlighting their capacity for holistic context modeling and parallel decoding. With these benefits, diffusion models can alleviate the inherent limitations of AR methods, including their slow inference speed, error propagation, and unidirectional constraints. Furthermore, we identify the prior underperformance of diffusion models stemming from the absence of an effective latent space for image-text alignment, and the discrepancy between continuous diffusion processes and discrete textual data. In response, we introduce a novel architecture, LaDiC, which utilizes a split BERT to create a dedicated latent space for captions and integrates a regularization module to manage varying text lengths. Our framework also includes a diffuser for semantic image-to-text conversion and a Back&Refine technique to enhance token interactivity during inference. LaDiC achieves state-of-the-art performance for diffusion-based methods on the MS COCO dataset with 38.2 BLEU@4 and 126.2 CIDEr, demonstrating exceptional performance without pre-training or ancillary modules. This indicates strong competitiveness with AR models, revealing the previously untapped potential of diffusion models in image-to-text generation.
Reading the unreadable: Creating a dataset of 19th century English newspapers using image-to-text language models
Oscar Wilde said, "The difference between literature and journalism is that journalism is unreadable, and literature is not read." Unfortunately, The digitally archived journalism of Oscar Wilde's 19th century often has no or poor quality Optical Character Recognition (OCR), reducing the accessibility of these archives and making them unreadable both figuratively and literally. This paper helps address the issue by performing OCR on "The Nineteenth Century Serials Edition" (NCSE), an 84k-page collection of 19th-century English newspapers and periodicals, using Pixtral 12B, a pre-trained image-to-text language model. The OCR capability of Pixtral was compared to 4 other OCR approaches, achieving a median character error rate of 1%, 5x lower than the next best model. The resulting NCSE v2.0 dataset features improved article identification, high-quality OCR, and text classified into four types and seventeen topics. The dataset contains 1.4 million entries, and 321 million words. Example use cases demonstrate analysis of topic similarity, readability, and event tracking. NCSE v2.0 is freely available to encourage historical and sociological research. As a result, 21st-century readers can now share Oscar Wilde's disappointment with 19th-century journalistic standards, reading the unreadable from the comfort of their own computers.
Improving Image Restoration through Removing Degradations in Textual Representations
In this paper, we introduce a new perspective for improving image restoration by removing degradation in the textual representations of a given degraded image. Intuitively, restoration is much easier on text modality than image one. For example, it can be easily conducted by removing degradation-related words while keeping the content-aware words. Hence, we combine the advantages of images in detail description and ones of text in degradation removal to perform restoration. To address the cross-modal assistance, we propose to map the degraded images into textual representations for removing the degradations, and then convert the restored textual representations into a guidance image for assisting image restoration. In particular, We ingeniously embed an image-to-text mapper and text restoration module into CLIP-equipped text-to-image models to generate the guidance. Then, we adopt a simple coarse-to-fine approach to dynamically inject multi-scale information from guidance to image restoration networks. Extensive experiments are conducted on various image restoration tasks, including deblurring, dehazing, deraining, and denoising, and all-in-one image restoration. The results showcase that our method outperforms state-of-the-art ones across all these tasks. The codes and models are available at https://github.com/mrluin/TextualDegRemoval.
Beyond One-to-One: Rethinking the Referring Image Segmentation
Referring image segmentation aims to segment the target object referred by a natural language expression. However, previous methods rely on the strong assumption that one sentence must describe one target in the image, which is often not the case in real-world applications. As a result, such methods fail when the expressions refer to either no objects or multiple objects. In this paper, we address this issue from two perspectives. First, we propose a Dual Multi-Modal Interaction (DMMI) Network, which contains two decoder branches and enables information flow in two directions. In the text-to-image decoder, text embedding is utilized to query the visual feature and localize the corresponding target. Meanwhile, the image-to-text decoder is implemented to reconstruct the erased entity-phrase conditioned on the visual feature. In this way, visual features are encouraged to contain the critical semantic information about target entity, which supports the accurate segmentation in the text-to-image decoder in turn. Secondly, we collect a new challenging but realistic dataset called Ref-ZOM, which includes image-text pairs under different settings. Extensive experiments demonstrate our method achieves state-of-the-art performance on different datasets, and the Ref-ZOM-trained model performs well on various types of text inputs. Codes and datasets are available at https://github.com/toggle1995/RIS-DMMI.
CoBIT: A Contrastive Bi-directional Image-Text Generation Model
The field of vision and language has witnessed a proliferation of pre-trained foundation models. Most existing methods are independently pre-trained with contrastive objective like CLIP, image-to-text generative objective like PaLI, or text-to-image generative objective like Parti. However, the three objectives can be pre-trained on the same data, image-text pairs, and intuitively they complement each other as contrasting provides global alignment capacity and generation grants fine-grained understanding. In this work, we present a Contrastive Bi-directional Image-Text generation model (CoBIT), which attempts to unify the three pre-training objectives in one framework. Specifically, CoBIT employs a novel unicoder-decoder structure, consisting of an image unicoder, a text unicoder and a cross-modal decoder. The image/text unicoders can switch between encoding and decoding in different tasks, enabling flexibility and shared knowledge that benefits both image-to-text and text-to-image generations. CoBIT achieves superior performance in image understanding, image-text understanding (Retrieval, Captioning, VQA, SNLI-VE) and text-based content creation, particularly in zero-shot scenarios. For instance, 82.7% in zero-shot ImageNet classification, 9.37 FID score in zero-shot text-to-image generation and 44.8 CIDEr in zero-shot captioning.
FlowTok: Flowing Seamlessly Across Text and Image Tokens
Bridging different modalities lies at the heart of cross-modality generation. While conventional approaches treat the text modality as a conditioning signal that gradually guides the denoising process from Gaussian noise to the target image modality, we explore a much simpler paradigm-directly evolving between text and image modalities through flow matching. This requires projecting both modalities into a shared latent space, which poses a significant challenge due to their inherently different representations: text is highly semantic and encoded as 1D tokens, whereas images are spatially redundant and represented as 2D latent embeddings. To address this, we introduce FlowTok, a minimal framework that seamlessly flows across text and images by encoding images into a compact 1D token representation. Compared to prior methods, this design reduces the latent space size by 3.3x at an image resolution of 256, eliminating the need for complex conditioning mechanisms or noise scheduling. Moreover, FlowTok naturally extends to image-to-text generation under the same formulation. With its streamlined architecture centered around compact 1D tokens, FlowTok is highly memory-efficient, requires significantly fewer training resources, and achieves much faster sampling speeds-all while delivering performance comparable to state-of-the-art models. Code will be available at https://github.com/bytedance/1d-tokenizer.
The CLIP Model is Secretly an Image-to-Prompt Converter
The Stable Diffusion model is a prominent text-to-image generation model that relies on a text prompt as its input, which is encoded using the Contrastive Language-Image Pre-Training (CLIP). However, text prompts have limitations when it comes to incorporating implicit information from reference images. Existing methods have attempted to address this limitation by employing expensive training procedures involving millions of training samples for image-to-image generation. In contrast, this paper demonstrates that the CLIP model, as utilized in Stable Diffusion, inherently possesses the ability to instantaneously convert images into text prompts. Such an image-to-prompt conversion can be achieved by utilizing a linear projection matrix that is calculated in a closed form. Moreover, the paper showcases that this capability can be further enhanced by either utilizing a small amount of similar-domain training data (approximately 100 images) or incorporating several online training steps (around 30 iterations) on the reference images. By leveraging these approaches, the proposed method offers a simple and flexible solution to bridge the gap between images and text prompts. This methodology can be applied to various tasks such as image variation and image editing, facilitating more effective and seamless interaction between images and textual prompts.
Multimodal Procedural Planning via Dual Text-Image Prompting
Embodied agents have achieved prominent performance in following human instructions to complete tasks. However, the potential of providing instructions informed by texts and images to assist humans in completing tasks remains underexplored. To uncover this capability, we present the multimodal procedural planning (MPP) task, in which models are given a high-level goal and generate plans of paired text-image steps, providing more complementary and informative guidance than unimodal plans. The key challenges of MPP are to ensure the informativeness, temporal coherence,and accuracy of plans across modalities. To tackle this, we propose Text-Image Prompting (TIP), a dual-modality prompting method that jointly leverages zero-shot reasoning ability in large language models (LLMs) and compelling text-to-image generation ability from diffusion-based models. TIP improves the interaction in the dual modalities using Text-to-Image Bridge and Image-to-Text Bridge, allowing LLMs to guide the textual-grounded image plan generation and leveraging the descriptions of image plans to ground the textual plan reversely. To address the lack of relevant datasets, we collect WIKIPLAN and RECIPEPLAN as a testbed for MPP. Our results show compelling human preferences and automatic scores against unimodal and multimodal baselines on WIKIPLAN and RECIPEPLAN in terms of informativeness, temporal coherence, and plan accuracy. Our code and data: https://github.com/YujieLu10/MPP.
RealCam-I2V: Real-World Image-to-Video Generation with Interactive Complex Camera Control
Recent advancements in camera-trajectory-guided image-to-video generation offer higher precision and better support for complex camera control compared to text-based approaches. However, they also introduce significant usability challenges, as users often struggle to provide precise camera parameters when working with arbitrary real-world images without knowledge of their depth nor scene scale. To address these real-world application issues, we propose RealCam-I2V, a novel diffusion-based video generation framework that integrates monocular metric depth estimation to establish 3D scene reconstruction in a preprocessing step. During training, the reconstructed 3D scene enables scaling camera parameters from relative to absolute values, ensuring compatibility and scale consistency across diverse real-world images. In inference, RealCam-I2V offers an intuitive interface where users can precisely draw camera trajectories by dragging within the 3D scene. To further enhance precise camera control and scene consistency, we propose scene-constrained noise shaping, which shapes high-level noise and also allows the framework to maintain dynamic, coherent video generation in lower noise stages. RealCam-I2V achieves significant improvements in controllability and video quality on the RealEstate10K and out-of-domain images. We further enables applications like camera-controlled looping video generation and generative frame interpolation. We will release our absolute-scale annotation, codes, and all checkpoints. Please see dynamic results in https://zgctroy.github.io/RealCam-I2V.
15M Multimodal Facial Image-Text Dataset
Currently, image-text-driven multi-modal deep learning models have demonstrated their outstanding potential in many fields. In practice, tasks centered around facial images have broad application prospects. This paper presents FaceCaption-15M, a large-scale, diverse, and high-quality dataset of facial images accompanied by their natural language descriptions (facial image-to-text). This dataset aims to facilitate a study on face-centered tasks. FaceCaption-15M comprises over 15 million pairs of facial images and their corresponding natural language descriptions of facial features, making it the largest facial image-caption dataset to date. We conducted a comprehensive analysis of image quality, text naturalness, text complexity, and text-image relevance to demonstrate the superiority of FaceCaption-15M. To validate the effectiveness of FaceCaption-15M, we first trained a facial language-image pre-training model (FLIP, similar to CLIP) to align facial image with its corresponding captions in feature space. Subsequently, using both image and text encoders and fine-tuning only the linear layer, our FLIP-based models achieved state-of-the-art results on two challenging face-centered tasks. The purpose is to promote research in the field of face-related tasks through the availability of the proposed FaceCaption-15M dataset. All data, codes, and models are publicly available. https://huggingface.co/datasets/OpenFace-CQUPT/FaceCaption-15M
AlignBench: Benchmarking Fine-Grained Image-Text Alignment with Synthetic Image-Caption Pairs
Assessing image-text alignment models such as CLIP is crucial for bridging visual and linguistic representations. Yet existing benchmarks rely on rule-based perturbations or short captions, limiting their ability to measure fine-grained alignment. We introduce AlignBench, a benchmark that provides a new indicator of image-text alignment by evaluating detailed image-caption pairs generated by diverse image-to-text and text-to-image models. Each sentence is annotated for correctness, enabling direct assessment of VLMs as alignment evaluators. Benchmarking a wide range of decoder-based VLMs reveals three key findings: (i) CLIP-based models, even those tailored for compositional reasoning, remain nearly blind; (ii) detectors systematically over-score early sentences; and (iii) they show strong self-preference, favoring their own outputs and harming detection performance. Our project page will be available at https://dahlian00.github.io/AlignBench/.
F4-ITS: Fine-grained Feature Fusion for Food Image-Text Search
The proliferation of digital food content has intensified the need for robust and accurate systems capable of fine-grained visual understanding and retrieval. In this work, we address the challenging task of food image-to-text matching, a critical component in applications such as dietary monitoring, smart kitchens, and restaurant automation. We propose F4-ITS: Fine-grained Feature Fusion for Food Image-Text Search, a training-free, vision-language model (VLM)-guided framework that significantly improves retrieval performance through enhanced multi-modal feature representations. Our approach introduces two key contributions: (1) a uni-directional(and bi-directional) multi-modal fusion strategy that combines image embeddings with VLM-generated textual descriptions to improve query expressiveness, and (2) a novel feature-based re-ranking mechanism for top-k retrieval, leveraging predicted food ingredients to refine results and boost precision. Leveraging open-source image-text encoders, we demonstrate substantial gains over standard baselines - achieving ~10% and ~7.7% improvements in top-1 retrieval under dense and sparse caption scenarios, and a ~28.6% gain in top-k ingredient-level retrieval. Additionally, we show that smaller models (e.g., ViT-B/32) can match or outperform larger counterparts (e.g., ViT-H, ViT-G, ViT-bigG) when augmented with textual fusion, highlighting the effectiveness of our method in resource-constrained settings. Code and test datasets will be made publicly available at: https://github.com/mailcorahul/f4-its
UrbanCLIP: Learning Text-enhanced Urban Region Profiling with Contrastive Language-Image Pretraining from the Web
Urban region profiling from web-sourced data is of utmost importance for urban planning and sustainable development. We are witnessing a rising trend of LLMs for various fields, especially dealing with multi-modal data research such as vision-language learning, where the text modality serves as a supplement information for the image. Since textual modality has never been introduced into modality combinations in urban region profiling, we aim to answer two fundamental questions in this paper: i) Can textual modality enhance urban region profiling? ii) and if so, in what ways and with regard to which aspects? To answer the questions, we leverage the power of Large Language Models (LLMs) and introduce the first-ever LLM-enhanced framework that integrates the knowledge of textual modality into urban imagery profiling, named LLM-enhanced Urban Region Profiling with Contrastive Language-Image Pretraining (UrbanCLIP). Specifically, it first generates a detailed textual description for each satellite image by an open-source Image-to-Text LLM. Then, the model is trained on the image-text pairs, seamlessly unifying natural language supervision for urban visual representation learning, jointly with contrastive loss and language modeling loss. Results on predicting three urban indicators in four major Chinese metropolises demonstrate its superior performance, with an average improvement of 6.1% on R^2 compared to the state-of-the-art methods. Our code and the image-language dataset will be released upon paper notification.
BIMCV-R: A Landmark Dataset for 3D CT Text-Image Retrieval
The burgeoning integration of 3D medical imaging into healthcare has led to a substantial increase in the workload of medical professionals. To assist clinicians in their diagnostic processes and alleviate their workload, the development of a robust system for retrieving similar case studies presents a viable solution. While the concept holds great promise, the field of 3D medical text-image retrieval is currently limited by the absence of robust evaluation benchmarks and curated datasets. To remedy this, our study presents a groundbreaking dataset, BIMCV-R (This dataset will be released upon acceptance.), which includes an extensive collection of 8,069 3D CT volumes, encompassing over 2 million slices, paired with their respective radiological reports. Expanding upon the foundational work of our dataset, we craft a retrieval strategy, MedFinder. This approach employs a dual-stream network architecture, harnessing the potential of large language models to advance the field of medical image retrieval beyond existing text-image retrieval solutions. It marks our preliminary step towards developing a system capable of facilitating text-to-image, image-to-text, and keyword-based retrieval tasks.
SynC: Synthetic Image Caption Dataset Refinement with One-to-many Mapping for Zero-shot Image Captioning
Zero-shot Image Captioning (ZIC) increasingly utilizes synthetic datasets generated by text-to-image (T2I) models to mitigate the need for costly manual annotation. However, these T2I models often produce images that exhibit semantic misalignments with their corresponding input captions (e.g., missing objects, incorrect attributes), resulting in noisy synthetic image-caption pairs that can hinder model training. Existing dataset pruning techniques are largely designed for removing noisy text in web-crawled data. However, these methods are ill-suited for the distinct challenges of synthetic data, where captions are typically well-formed, but images may be inaccurate representations. To address this gap, we introduce SynC, a novel framework specifically designed to refine synthetic image-caption datasets for ZIC. Instead of conventional filtering or regeneration, SynC focuses on reassigning captions to the most semantically aligned images already present within the synthetic image pool. Our approach employs a one-to-many mapping strategy by initially retrieving multiple relevant candidate images for each caption. We then apply a cycle-consistency-inspired alignment scorer that selects the best image by verifying its ability to retrieve the original caption via image-to-text retrieval. Extensive evaluations demonstrate that SynC consistently and significantly improves performance across various ZIC models on standard benchmarks (MS-COCO, Flickr30k, NoCaps), achieving state-of-the-art results in several scenarios. SynC offers an effective strategy for curating refined synthetic data to enhance ZIC.
Multi-Objective Task-Aware Predictor for Image-Text Alignment
Evaluating image-text alignment while reflecting human preferences across multiple aspects is a significant issue for the development of reliable vision-language applications. It becomes especially crucial in real-world scenarios where multiple valid descriptions exist depending on contexts or user needs. However, research progress is hindered by the lack of comprehensive benchmarks and existing evaluation predictors lacking at least one of these key properties: (1) Alignment with human judgments, (2) Long-sequence processing, (3) Inference efficiency, and (4) Applicability to multi-objective scoring. To address these challenges, we propose a plug-and-play architecture to build a robust predictor, MULTI-TAP (Multi-Objective Task-Aware Predictor), capable of both multi and single-objective scoring. MULTI-TAP can produce a single overall score, utilizing a reward head built on top of a large vision-language model (LVLMs). We show that MULTI-TAP is robust in terms of application to different LVLM architectures, achieving significantly higher performance than existing metrics and even on par with the GPT-4o-based predictor, G-VEval, with a smaller size (7-8B). By training a lightweight ridge regression layer on the frozen hidden states of a pre-trained LVLM, MULTI-TAP can produce fine-grained scores for multiple human-interpretable objectives. MULTI-TAP performs better than VisionREWARD, a high-performing multi-objective reward model, in both performance and efficiency on multi-objective benchmarks and our newly released text-image-to-text dataset, EYE4ALL. Our new dataset, consisting of chosen/rejected human preferences (EYE4ALLPref) and human-annotated fine-grained scores across seven dimensions (EYE4ALLMulti), can serve as a foundation for developing more accessible AI systems by capturing the underlying preferences of users, including blind and low-vision (BLV) individuals.
What You See is What You Read? Improving Text-Image Alignment Evaluation
Automatically determining whether a text and a corresponding image are semantically aligned is a significant challenge for vision-language models, with applications in generative text-to-image and image-to-text tasks. In this work, we study methods for automatic text-image alignment evaluation. We first introduce SeeTRUE: a comprehensive evaluation set, spanning multiple datasets from both text-to-image and image-to-text generation tasks, with human judgements for whether a given text-image pair is semantically aligned. We then describe two automatic methods to determine alignment: the first involving a pipeline based on question generation and visual question answering models, and the second employing an end-to-end classification approach by finetuning multimodal pretrained models. Both methods surpass prior approaches in various text-image alignment tasks, with significant improvements in challenging cases that involve complex composition or unnatural images. Finally, we demonstrate how our approaches can localize specific misalignments between an image and a given text, and how they can be used to automatically re-rank candidates in text-to-image generation.
Transferable Decoding with Visual Entities for Zero-Shot Image Captioning
Image-to-text generation aims to describe images using natural language. Recently, zero-shot image captioning based on pre-trained vision-language models (VLMs) and large language models (LLMs) has made significant progress. However, we have observed and empirically demonstrated that these methods are susceptible to modality bias induced by LLMs and tend to generate descriptions containing objects (entities) that do not actually exist in the image but frequently appear during training (i.e., object hallucination). In this paper, we propose ViECap, a transferable decoding model that leverages entity-aware decoding to generate descriptions in both seen and unseen scenarios. ViECap incorporates entity-aware hard prompts to guide LLMs' attention toward the visual entities present in the image, enabling coherent caption generation across diverse scenes. With entity-aware hard prompts, ViECap is capable of maintaining performance when transferring from in-domain to out-of-domain scenarios. Extensive experiments demonstrate that ViECap sets a new state-of-the-art cross-domain (transferable) captioning and performs competitively in-domain captioning compared to previous VLMs-based zero-shot methods. Our code is available at: https://github.com/FeiElysia/ViECap
Beyond Color and Lines: Zero-Shot Style-Specific Image Variations with Coordinated Semantics
Traditionally, style has been primarily considered in terms of artistic elements such as colors, brushstrokes, and lighting. However, identical semantic subjects, like people, boats, and houses, can vary significantly across different artistic traditions, indicating that style also encompasses the underlying semantics. Therefore, in this study, we propose a zero-shot scheme for image variation with coordinated semantics. Specifically, our scheme transforms the image-to-image problem into an image-to-text-to-image problem. The image-to-text operation employs vision-language models e.g., BLIP) to generate text describing the content of the input image, including the objects and their positions. Subsequently, the input style keyword is elaborated into a detailed description of this style and then merged with the content text using the reasoning capabilities of ChatGPT. Finally, the text-to-image operation utilizes a Diffusion model to generate images based on the text prompt. To enable the Diffusion model to accommodate more styles, we propose a fine-tuning strategy that injects text and style constraints into cross-attention. This ensures that the output image exhibits similar semantics in the desired style. To validate the performance of the proposed scheme, we constructed a benchmark comprising images of various styles and scenes and introduced two novel metrics. Despite its simplicity, our scheme yields highly plausible results in a zero-shot manner, particularly for generating stylized images with high-fidelity semantics.
Brain Captioning: Decoding human brain activity into images and text
Every day, the human brain processes an immense volume of visual information, relying on intricate neural mechanisms to perceive and interpret these stimuli. Recent breakthroughs in functional magnetic resonance imaging (fMRI) have enabled scientists to extract visual information from human brain activity patterns. In this study, we present an innovative method for decoding brain activity into meaningful images and captions, with a specific focus on brain captioning due to its enhanced flexibility as compared to brain decoding into images. Our approach takes advantage of cutting-edge image captioning models and incorporates a unique image reconstruction pipeline that utilizes latent diffusion models and depth estimation. We utilized the Natural Scenes Dataset, a comprehensive fMRI dataset from eight subjects who viewed images from the COCO dataset. We employed the Generative Image-to-text Transformer (GIT) as our backbone for captioning and propose a new image reconstruction pipeline based on latent diffusion models. The method involves training regularized linear regression models between brain activity and extracted features. Additionally, we incorporated depth maps from the ControlNet model to further guide the reconstruction process. We evaluate our methods using quantitative metrics for both generated captions and images. Our brain captioning approach outperforms existing methods, while our image reconstruction pipeline generates plausible images with improved spatial relationships. In conclusion, we demonstrate significant progress in brain decoding, showcasing the enormous potential of integrating vision and language to better understand human cognition. Our approach provides a flexible platform for future research, with potential applications in various fields, including neural art, style transfer, and portable devices.
Generalizing from SIMPLE to HARD Visual Reasoning: Can We Mitigate Modality Imbalance in VLMs?
While Vision Language Models (VLMs) are impressive in tasks such as visual question answering (VQA) and image captioning, their ability to apply multi-step reasoning to images has lagged, giving rise to perceptions of modality imbalance or brittleness. Towards systematic study of such issues, we introduce a synthetic framework for assessing the ability of VLMs to perform algorithmic visual reasoning (AVR), comprising three tasks: Table Readout, Grid Navigation, and Visual Analogy. Each has two levels of difficulty, SIMPLE and HARD, and even the SIMPLE versions are difficult for frontier VLMs. We seek strategies for training on the SIMPLE version of the tasks that improve performance on the corresponding HARD task, i.e., S2H generalization. This synthetic framework, where each task also has a text-only version, allows a quantification of the modality imbalance, and how it is impacted by training strategy. Ablations highlight the importance of explicit image-to-text conversion in promoting S2H generalization when using auto-regressive training. We also report results of mechanistic study of this phenomenon, including a measure of gradient alignment that seems to identify training strategies that promote better S2H generalization.
On the Importance of Text Preprocessing for Multimodal Representation Learning and Pathology Report Generation
Vision-language models in pathology enable multimodal case retrieval and automated report generation. Many of the models developed so far, however, have been trained on pathology reports that include information which cannot be inferred from paired whole slide images (e.g., patient history), potentially leading to hallucinated sentences in generated reports. To this end, we investigate how the selection of information from pathology reports for vision-language modeling affects the quality of the multimodal representations and generated reports. More concretely, we compare a model trained on full reports against a model trained on preprocessed reports that only include sentences describing the cell and tissue appearances based on the H&E-stained slides. For the experiments, we built upon the BLIP-2 framework and used a cutaneous melanocytic lesion dataset of 42,433 H&E-stained whole slide images and 19,636 corresponding pathology reports. Model performance was assessed using image-to-text and text-to-image retrieval, as well as qualitative evaluation of the generated reports by an expert pathologist. Our results demonstrate that text preprocessing prevents hallucination in report generation. Despite the improvement in the quality of the generated reports, training the vision-language model on full reports showed better cross-modal retrieval performance.
Contrastive Latent Space Reconstruction Learning for Audio-Text Retrieval
Cross-modal retrieval (CMR) has been extensively applied in various domains, such as multimedia search engines and recommendation systems. Most existing CMR methods focus on image-to-text retrieval, whereas audio-to-text retrieval, a less explored domain, has posed a great challenge due to the difficulty to uncover discriminative features from audio clips and texts. Existing studies are restricted in the following two ways: 1) Most researchers utilize contrastive learning to construct a common subspace where similarities among data can be measured. However, they considers only cross-modal transformation, neglecting the intra-modal separability. Besides, the temperature parameter is not adaptively adjusted along with semantic guidance, which degrades the performance. 2) These methods do not take latent representation reconstruction into account, which is essential for semantic alignment. This paper introduces a novel audio-text oriented CMR approach, termed Contrastive Latent Space Reconstruction Learning (CLSR). CLSR improves contrastive representation learning by taking intra-modal separability into account and adopting an adaptive temperature control strategy. Moreover, the latent representation reconstruction modules are embedded into the CMR framework, which improves modal interaction. Experiments in comparison with some state-of-the-art methods on two audio-text datasets have validated the superiority of CLSR.
BLIP-2: Bootstrapping Language-Image Pre-training with Frozen Image Encoders and Large Language Models
The cost of vision-and-language pre-training has become increasingly prohibitive due to end-to-end training of large-scale models. This paper proposes BLIP-2, a generic and efficient pre-training strategy that bootstraps vision-language pre-training from off-the-shelf frozen pre-trained image encoders and frozen large language models. BLIP-2 bridges the modality gap with a lightweight Querying Transformer, which is pre-trained in two stages. The first stage bootstraps vision-language representation learning from a frozen image encoder. The second stage bootstraps vision-to-language generative learning from a frozen language model. BLIP-2 achieves state-of-the-art performance on various vision-language tasks, despite having significantly fewer trainable parameters than existing methods. For example, our model outperforms Flamingo80B by 8.7% on zero-shot VQAv2 with 54x fewer trainable parameters. We also demonstrate the model's emerging capabilities of zero-shot image-to-text generation that can follow natural language instructions.
PAK-UCB Contextual Bandit: An Online Learning Approach to Prompt-Aware Selection of Generative Models and LLMs
Selecting a sample generation scheme from multiple prompt-based generative models, including large language models (LLMs) and prompt-guided image and video generation models, is typically addressed by choosing the model that maximizes an averaged evaluation score. However, this score-based selection overlooks the possibility that different models achieve the best generation performance for different types of text prompts. An online identification of the best generation model for various input prompts can reduce the costs associated with querying sub-optimal models. In this work, we explore the possibility of varying rankings of text-based generative models for different text prompts and propose an online learning framework to predict the best data generation model for a given input prompt. The proposed PAK-UCB algorithm addresses a contextual bandit (CB) setting with shared context variables across the arms, utilizing the generated data to update kernel-based functions that predict the score of each model available for unseen text prompts. Additionally, we leverage random Fourier features (RFF) to accelerate the online learning process of PAK-UCB. Our numerical experiments on real and simulated text-to-image and image-to-text generative models show that RFF-UCB performs successfully in identifying the best generation model across different sample types. The code is available at: github.com/yannxiaoyanhu/dgm-online-select.
Exploration into Translation-Equivariant Image Quantization
This is an exploratory study that discovers the current image quantization (vector quantization) do not satisfy translation equivariance in the quantized space due to aliasing. Instead of focusing on anti-aliasing, we propose a simple yet effective way to achieve translation-equivariant image quantization by enforcing orthogonality among the codebook embeddings. To explore the advantages of translation-equivariant image quantization, we conduct three proof-of-concept experiments with a carefully controlled dataset: (1) text-to-image generation, where the quantized image indices are the target to predict, (2) image-to-text generation, where the quantized image indices are given as a condition, (3) using a smaller training set to analyze sample efficiency. From the strictly controlled experiments, we empirically verify that the translation-equivariant image quantizer improves not only sample efficiency but also the accuracy over VQGAN up to +11.9% in text-to-image generation and +3.9% in image-to-text generation.
LMM4LMM: Benchmarking and Evaluating Large-multimodal Image Generation with LMMs
Recent breakthroughs in large multimodal models (LMMs) have significantly advanced both text-to-image (T2I) generation and image-to-text (I2T) interpretation. However, many generated images still suffer from issues related to perceptual quality and text-image alignment. Given the high cost and inefficiency of manual evaluation, an automatic metric that aligns with human preferences is desirable. To this end, we present EvalMi-50K, a comprehensive dataset and benchmark for evaluating large-multimodal image generation, which features (i) comprehensive tasks, encompassing 2,100 extensive prompts across 20 fine-grained task dimensions, and (ii) large-scale human-preference annotations, including 100K mean-opinion scores (MOSs) and 50K question-answering (QA) pairs annotated on 50,400 images generated from 24 T2I models. Based on EvalMi-50K, we propose LMM4LMM, an LMM-based metric for evaluating large multimodal T2I generation from multiple dimensions including perception, text-image correspondence, and task-specific accuracy. Extensive experimental results show that LMM4LMM achieves state-of-the-art performance on EvalMi-50K, and exhibits strong generalization ability on other AI-generated image evaluation benchmark datasets, manifesting the generality of both the EvalMi-50K dataset and LMM4LMM metric. Both EvalMi-50K and LMM4LMM will be released at https://github.com/IntMeGroup/LMM4LMM.
X-Fusion: Introducing New Modality to Frozen Large Language Models
We propose X-Fusion, a framework that extends pretrained Large Language Models (LLMs) for multimodal tasks while preserving their language capabilities. X-Fusion employs a dual-tower design with modality-specific weights, keeping the LLM's parameters frozen while integrating vision-specific information for both understanding and generation. Our experiments demonstrate that X-Fusion consistently outperforms alternative architectures on both image-to-text and text-to-image tasks. We find that incorporating understanding-focused data improves generation quality, reducing image data noise enhances overall performance, and feature alignment accelerates convergence for smaller models but has minimal impact on larger ones. Our findings provide valuable insights into building efficient unified multimodal models.
Unifying Diffusion Models' Latent Space, with Applications to CycleDiffusion and Guidance
Diffusion models have achieved unprecedented performance in generative modeling. The commonly-adopted formulation of the latent code of diffusion models is a sequence of gradually denoised samples, as opposed to the simpler (e.g., Gaussian) latent space of GANs, VAEs, and normalizing flows. This paper provides an alternative, Gaussian formulation of the latent space of various diffusion models, as well as an invertible DPM-Encoder that maps images into the latent space. While our formulation is purely based on the definition of diffusion models, we demonstrate several intriguing consequences. (1) Empirically, we observe that a common latent space emerges from two diffusion models trained independently on related domains. In light of this finding, we propose CycleDiffusion, which uses DPM-Encoder for unpaired image-to-image translation. Furthermore, applying CycleDiffusion to text-to-image diffusion models, we show that large-scale text-to-image diffusion models can be used as zero-shot image-to-image editors. (2) One can guide pre-trained diffusion models and GANs by controlling the latent codes in a unified, plug-and-play formulation based on energy-based models. Using the CLIP model and a face recognition model as guidance, we demonstrate that diffusion models have better coverage of low-density sub-populations and individuals than GANs. The code is publicly available at https://github.com/ChenWu98/cycle-diffusion.
BiLMa: Bidirectional Local-Matching for Text-based Person Re-identification
Text-based person re-identification (TBPReID) aims to retrieve person images represented by a given textual query. In this task, how to effectively align images and texts globally and locally is a crucial challenge. Recent works have obtained high performances by solving Masked Language Modeling (MLM) to align image/text parts. However, they only performed uni-directional (i.e., from image to text) local-matching, leaving room for improvement by introducing opposite-directional (i.e., from text to image) local-matching. In this work, we introduce Bidirectional Local-Matching (BiLMa) framework that jointly optimize MLM and Masked Image Modeling (MIM) in TBPReID model training. With this framework, our model is trained so as the labels of randomly masked both image and text tokens are predicted by unmasked tokens. In addition, to narrow the semantic gap between image and text in MIM, we propose Semantic MIM (SemMIM), in which the labels of masked image tokens are automatically given by a state-of-the-art human parser. Experimental results demonstrate that our BiLMa framework with SemMIM achieves state-of-the-art Rank@1 and mAP scores on three benchmarks.
GrowCLIP: Data-aware Automatic Model Growing for Large-scale Contrastive Language-Image Pre-training
Cross-modal pre-training has shown impressive performance on a wide range of downstream tasks, benefiting from massive image-text pairs collected from the Internet. In practice, online data are growing constantly, highlighting the importance of the ability of pre-trained model to learn from data that is continuously growing. Existing works on cross-modal pre-training mainly focus on training a network with fixed architecture. However, it is impractical to limit the model capacity when considering the continuously growing nature of pre-training data in real-world applications. On the other hand, it is important to utilize the knowledge in the current model to obtain efficient training and better performance. To address the above issues, in this paper, we propose GrowCLIP, a data-driven automatic model growing algorithm for contrastive language-image pre-training with continuous image-text pairs as input. Specially, we adopt a dynamic growth space and seek out the optimal architecture at each growth step to adapt to online learning scenarios. And the shared encoder is proposed in our growth space to enhance the degree of cross-modal fusion. Besides, we explore the effect of growth in different dimensions, which could provide future references for the design of cross-modal model architecture. Finally, we employ parameter inheriting with momentum (PIM) to maintain the previous knowledge and address the issue of the local minimum dilemma. Compared with the existing methods, GrowCLIP improves 2.3% average top-1 accuracy on zero-shot image classification of 9 downstream tasks. As for zero-shot image retrieval, GrowCLIP can improve 1.2% for top-1 image-to-text recall on Flickr30K dataset.
Versatile Diffusion: Text, Images and Variations All in One Diffusion Model
The recent advances in diffusion models have set an impressive milestone in many generation tasks. Trending works such as DALL-E2, Imagen, and Stable Diffusion have attracted great interest in academia and industry. Despite the rapid landscape changes, recent new approaches focus on extensions and performance rather than capacity, thus requiring separate models for separate tasks. In this work, we expand the existing single-flow diffusion pipeline into a multi-flow network, dubbed Versatile Diffusion (VD), that handles text-to-image, image-to-text, image-variation, and text-variation in one unified model. Moreover, we generalize VD to a unified multi-flow multimodal diffusion framework with grouped layers, swappable streams, and other propositions that can process modalities beyond images and text. Through our experiments, we demonstrate that VD and its underlying framework have the following merits: a) VD handles all subtasks with competitive quality; b) VD initiates novel extensions and applications such as disentanglement of style and semantic, image-text dual-guided generation, etc.; c) Through these experiments and applications, VD provides more semantic insights of the generated outputs. Our code and models are open-sourced at https://github.com/SHI-Labs/Versatile-Diffusion.
MINT: Multi-modal Chain of Thought in Unified Generative Models for Enhanced Image Generation
Unified generative models have demonstrated extraordinary performance in both text and image generation. However, they tend to underperform when generating intricate images with various interwoven conditions, which is hard to solely rely on straightforward text-to-image generation. In response to this challenge, we introduce MINT, an innovative unified generative model, empowered with native multimodal chain of thought (MCoT) for enhanced image generation for the first time. Firstly, we design Mixture of Transformer Experts (MTXpert), an expert-parallel structure that effectively supports both natural language generation (NLG) and visual capabilities, while avoiding potential modality conflicts that could hinder the full potential of each modality. Building on this, we propose an innovative MCoT training paradigm, a step-by-step approach to multimodal thinking, reasoning, and reflection specifically designed to enhance image generation. This paradigm equips MINT with nuanced, element-wise decoupled alignment and a comprehensive understanding of textual and visual components. Furthermore, it fosters advanced multimodal reasoning and self-reflection, enabling the construction of images that are firmly grounded in the logical relationships between these elements. Notably, MINT has been validated to exhibit superior performance across multiple benchmarks for text-to-image (T2I) and image-to-text (I2T) tasks.
Multimodal Neurons in Pretrained Text-Only Transformers
Language models demonstrate remarkable capacity to generalize representations learned in one modality to downstream tasks in other modalities. Can we trace this ability to individual neurons? We study the case where a frozen text transformer is augmented with vision using a self-supervised visual encoder and a single linear projection learned on an image-to-text task. Outputs of the projection layer are not immediately decodable into language describing image content; instead, we find that translation between modalities occurs deeper within the transformer. We introduce a procedure for identifying "multimodal neurons" that convert visual representations into corresponding text, and decoding the concepts they inject into the model's residual stream. In a series of experiments, we show that multimodal neurons operate on specific visual concepts across inputs, and have a systematic causal effect on image captioning.
FLAME: Frozen Large Language Models Enable Data-Efficient Language-Image Pre-training
Language-image pre-training faces significant challenges due to limited data in specific formats and the constrained capacities of text encoders. While prevailing methods attempt to address these issues through data augmentation and architecture modifications, they continue to struggle with processing long-form text inputs, and the inherent limitations of traditional CLIP text encoders lead to suboptimal downstream generalization. In this paper, we propose FLAME (Frozen Large lAnguage Models Enable data-efficient language-image pre-training) that leverages frozen large language models as text encoders, naturally processing long text inputs and demonstrating impressive multilingual generalization. FLAME comprises two key components: 1) a multifaceted prompt distillation technique for extracting diverse semantic representations from long captions, which better aligns with the multifaceted nature of images, and 2) a facet-decoupled attention mechanism, complemented by an offline embedding strategy, to ensure efficient computation. Extensive empirical evaluations demonstrate FLAME's superior performance. When trained on CC3M, FLAME surpasses the previous state-of-the-art by 4.9\% in ImageNet top-1 accuracy. On YFCC15M, FLAME surpasses the WIT-400M-trained CLIP by 44.4\% in average image-to-text recall@1 across 36 languages, and by 34.6\% in text-to-image recall@1 for long-context retrieval on Urban-1k. Code is available at https://github.com/MIV-XJTU/FLAME.
See or Guess: Counterfactually Regularized Image Captioning
Image captioning, which generates natural language descriptions of the visual information in an image, is a crucial task in vision-language research. Previous models have typically addressed this task by aligning the generative capabilities of machines with human intelligence through statistical fitting of existing datasets. While effective for normal images, they may struggle to accurately describe those where certain parts of the image are obscured or edited, unlike humans who excel in such cases. These weaknesses they exhibit, including hallucinations and limited interpretability, often hinder performance in scenarios with shifted association patterns. In this paper, we present a generic image captioning framework that employs causal inference to make existing models more capable of interventional tasks, and counterfactually explainable. Our approach includes two variants leveraging either total effect or natural direct effect. Integrating them into the training process enables models to handle counterfactual scenarios, increasing their generalizability. Extensive experiments on various datasets show that our method effectively reduces hallucinations and improves the model's faithfulness to images, demonstrating high portability across both small-scale and large-scale image-to-text models. The code is available at https://github.com/Aman-4-Real/See-or-Guess.
Making Multimodal Generation Easier: When Diffusion Models Meet LLMs
We present EasyGen, an efficient model designed to enhance multimodal understanding and generation by harnessing the capabilities of diffusion models and large language models (LLMs). Unlike existing multimodal models that predominately depend on encoders like CLIP or ImageBind and need ample amounts of training data to bridge the gap between modalities, EasyGen is built upon a bidirectional conditional diffusion model named BiDiffuser, which promotes more efficient interactions between modalities. EasyGen handles image-to-text generation by integrating BiDiffuser and an LLM via a simple projection layer. Unlike most existing multimodal models that are limited to generating text responses, EasyGen can also facilitate text-to-image generation by leveraging the LLM to create textual descriptions, which can be interpreted by BiDiffuser to generate appropriate visual responses. Extensive quantitative and qualitative experiments demonstrate the effectiveness of EasyGen, whose training can be easily achieved in a lab setting. The source code is available at https://github.com/zxy556677/EasyGen.
Progressive Transformer-Based Generation of Radiology Reports
Inspired by Curriculum Learning, we propose a consecutive (i.e., image-to-text-to-text) generation framework where we divide the problem of radiology report generation into two steps. Contrary to generating the full radiology report from the image at once, the model generates global concepts from the image in the first step and then reforms them into finer and coherent texts using a transformer architecture. We follow the transformer-based sequence-to-sequence paradigm at each step. We improve upon the state-of-the-art on two benchmark datasets.
Reinforced UI Instruction Grounding: Towards a Generic UI Task Automation API
Recent popularity of Large Language Models (LLMs) has opened countless possibilities in automating numerous AI tasks by connecting LLMs to various domain-specific models or APIs, where LLMs serve as dispatchers while domain-specific models or APIs are action executors. Despite the vast numbers of domain-specific models/APIs, they still struggle to comprehensively cover super diverse automation demands in the interaction between human and User Interfaces (UIs). In this work, we build a multimodal model to ground natural language instructions in given UI screenshots as a generic UI task automation executor. This metadata-free grounding model, consisting of a visual encoder and a language decoder, is first pretrained on well studied document understanding tasks and then learns to decode spatial information from UI screenshots in a promptable way. To facilitate the exploitation of image-to-text pretrained knowledge, we follow the pixel-to-sequence paradigm to predict geometric coordinates in a sequence of tokens using a language decoder. We further propose an innovative Reinforcement Learning (RL) based algorithm to supervise the tokens in such sequence jointly with visually semantic metrics, which effectively strengthens the spatial decoding capability of the pixel-to-sequence paradigm. Extensive experiments demonstrate our proposed reinforced UI instruction grounding model outperforms the state-of-the-art methods by a clear margin and shows the potential as a generic UI task automation API.
FETA: Towards Specializing Foundation Models for Expert Task Applications
Foundation Models (FMs) have demonstrated unprecedented capabilities including zero-shot learning, high fidelity data synthesis, and out of domain generalization. However, as we show in this paper, FMs still have poor out-of-the-box performance on expert tasks (e.g. retrieval of car manuals technical illustrations from language queries), data for which is either unseen or belonging to a long-tail part of the data distribution of the huge datasets used for FM pre-training. This underlines the necessity to explicitly evaluate and finetune FMs on such expert tasks, arguably ones that appear the most in practical real-world applications. In this paper, we propose a first of its kind FETA benchmark built around the task of teaching FMs to understand technical documentation, via learning to match their graphical illustrations to corresponding language descriptions. Our FETA benchmark focuses on text-to-image and image-to-text retrieval in public car manuals and sales catalogue brochures. FETA is equipped with a procedure for completely automatic annotation extraction (code would be released upon acceptance), allowing easy extension of FETA to more documentation types and application domains in the future. Our automatic annotation leads to an automated performance metric shown to be consistent with metrics computed on human-curated annotations (also released). We provide multiple baselines and analysis of popular FMs on FETA leading to several interesting findings that we believe would be very valuable to the FM community, paving the way towards real-world application of FMs for practical expert tasks currently 'overlooked' by standard benchmarks focusing on common objects.
MTV-Inpaint: Multi-Task Long Video Inpainting
Video inpainting involves modifying local regions within a video, ensuring spatial and temporal consistency. Most existing methods focus primarily on scene completion (i.e., filling missing regions) and lack the capability to insert new objects into a scene in a controllable manner. Fortunately, recent advancements in text-to-video (T2V) diffusion models pave the way for text-guided video inpainting. However, directly adapting T2V models for inpainting remains limited in unifying completion and insertion tasks, lacks input controllability, and struggles with long videos, thereby restricting their applicability and flexibility. To address these challenges, we propose MTV-Inpaint, a unified multi-task video inpainting framework capable of handling both traditional scene completion and novel object insertion tasks. To unify these distinct tasks, we design a dual-branch spatial attention mechanism in the T2V diffusion U-Net, enabling seamless integration of scene completion and object insertion within a single framework. In addition to textual guidance, MTV-Inpaint supports multimodal control by integrating various image inpainting models through our proposed image-to-video (I2V) inpainting mode. Additionally, we propose a two-stage pipeline that combines keyframe inpainting with in-between frame propagation, enabling MTV-Inpaint to effectively handle long videos with hundreds of frames. Extensive experiments demonstrate that MTV-Inpaint achieves state-of-the-art performance in both scene completion and object insertion tasks. Furthermore, it demonstrates versatility in derived applications such as multi-modal inpainting, object editing, removal, image object brush, and the ability to handle long videos. Project page: https://mtv-inpaint.github.io/.
ABC: Achieving Better Control of Multimodal Embeddings using VLMs
Visual embedding models excel at zero-shot tasks like visual retrieval and classification. However, these models cannot be used for tasks that contain ambiguity or require user instruction. These tasks necessitate a multimodal embedding model, which outputs embeddings that combine visual and natural language input. Existing CLIP-based approaches embed images and text independently, and fuse the result. We find that this results in weak interactions between modalities, and poor user control over the representation. We introduce ABC, an open-source multimodal embedding model that uses a vision-language model backbone to deeply integrate image features with natural language instructions. ABC achieves bestfor-size performance on MSCOCO image-to-text retrieval and is the top performing model on classification and VQA tasks in the Massive Multimodal Embedding Benchmark. With a strongly unified vision-language representation, ABC can use natural language to solve subtle and potentially ambiguous visual retrieval problems. To evaluate this capability, we design CtrlBench, a benchmark that requires interleaving textual instructions with image content for correct retrieval. ABC advances the state of multimodal embeddings by offering high-quality representations and flexible natural language control. Our model and datasets are available at our project page.
Ziya-VL: Bilingual Large Vision-Language Model via Multi-Task Instruction Tuning
Recent advancements enlarge the capabilities of large language models (LLMs) in zero-shot image-to-text generation and understanding by integrating multi-modal inputs. However, such success is typically limited to English scenarios due to the lack of large-scale and high-quality non-English multi-modal resources, making it extremely difficult to establish competitive counterparts in other languages. In this paper, we introduce the Ziya-VL series, a set of bilingual large-scale vision-language models (LVLMs) designed to incorporate visual semantics into LLM for multi-modal dialogue. Composed of Ziya-VL-Base and Ziya-VL-Chat, our models adopt the Querying Transformer from BLIP-2, further exploring the assistance of optimization schemes such as instruction tuning, multi-stage training and low-rank adaptation module for visual-language alignment. In addition, we stimulate the understanding ability of GPT-4 in multi-modal scenarios, translating our gathered English image-text datasets into Chinese and generating instruction-response through the in-context learning method. The experiment results demonstrate that compared to the existing LVLMs, Ziya-VL achieves competitive performance across a wide range of English-only tasks including zero-shot image-text retrieval, image captioning, and visual question answering. The evaluation leaderboard accessed by GPT-4 also indicates that our models possess satisfactory image-text understanding and generation capabilities in Chinese multi-modal scenario dialogues. Code, demo and models are available at ~https://huggingface.co/IDEA-CCNL/Ziya-BLIP2-14B-Visual-v1.
Faithful Chart Summarization with ChaTS-Pi
Chart-to-summary generation can help explore data, communicate insights, and help the visually impaired people. Multi-modal generative models have been used to produce fluent summaries, but they can suffer from factual and perceptual errors. In this work we present CHATS-CRITIC, a reference-free chart summarization metric for scoring faithfulness. CHATS-CRITIC is composed of an image-to-text model to recover the table from a chart, and a tabular entailment model applied to score the summary sentence by sentence. We find that CHATS-CRITIC evaluates the summary quality according to human ratings better than reference-based metrics, either learned or n-gram based, and can be further used to fix candidate summaries by removing not supported sentences. We then introduce CHATS-PI, a chart-to-summary pipeline that leverages CHATS-CRITIC during inference to fix and rank sampled candidates from any chart-summarization model. We evaluate CHATS-PI and CHATS-CRITIC using human raters, establishing state-of-the-art results on two popular chart-to-summary datasets.
SyCoCa: Symmetrizing Contrastive Captioners with Attentive Masking for Multimodal Alignment
Multimodal alignment between language and vision is the fundamental topic in current vision-language model research. Contrastive Captioners (CoCa), as a representative method, integrates Contrastive Language-Image Pretraining (CLIP) and Image Caption (IC) into a unified framework, resulting in impressive results. CLIP imposes a bidirectional constraints on global representation of entire images and sentences. Although IC conducts an unidirectional image-to-text generation on local representation, it lacks any constraint on local text-to-image reconstruction, which limits the ability to understand images at a fine-grained level when aligned with texts. To achieve multimodal alignment from both global and local perspectives, this paper proposes Symmetrizing Contrastive Captioners (SyCoCa), which introduces bidirectional interactions on images and texts across the global and local representation levels. Specifically, we expand a Text-Guided Masked Image Modeling (TG-MIM) head based on ITC and IC heads. The improved SyCoCa can further leverage textual cues to reconstruct contextual images and visual cues to predict textual contents. When implementing bidirectional local interactions, the local contents of images tend to be cluttered or unrelated to their textual descriptions. Thus, we employ an attentive masking strategy to select effective image patches for interaction. Extensive experiments on five vision-language tasks, including image-text retrieval, image-captioning, visual question answering, and zero-shot/finetuned image classification, validate the effectiveness of our proposed method.
DOCCI: Descriptions of Connected and Contrasting Images
Vision-language datasets are vital for both text-to-image (T2I) and image-to-text (I2T) research. However, current datasets lack descriptions with fine-grained detail that would allow for richer associations to be learned by models. To fill the gap, we introduce Descriptions of Connected and Contrasting Images (DOCCI), a dataset with long, human-annotated English descriptions for 15k images that were taken, curated and donated by a single researcher intent on capturing key challenges such as spatial relations, counting, text rendering, world knowledge, and more. We instruct human annotators to create comprehensive descriptions for each image; these average 136 words in length and are crafted to clearly distinguish each image from those that are related or similar. Each description is highly compositional and typically encompasses multiple challenges. Through both quantitative and qualitative analyses, we demonstrate that DOCCI serves as an effective training resource for image-to-text generation -- a PaLI 5B model finetuned on DOCCI shows equal or superior results compared to highly-performant larger models like LLaVA-1.5 7B and InstructBLIP 7B. Furthermore, we show that DOCCI is a useful testbed for text-to-image generation, highlighting the limitations of current text-to-image models in capturing long descriptions and fine details.
Delving into the Openness of CLIP
Contrastive Language-Image Pre-training (CLIP) formulates image classification as an image-to-text matching task, i.e., matching images to the corresponding natural language descriptions instead of discrete category IDs. This allows for open-vocabulary visual recognition, where the model can recognize images from an open class set (also known as an open vocabulary) in a zero-shot manner. However, evaluating the openness of CLIP-like models is challenging, as the models are open to arbitrary vocabulary in theory, but their accuracy varies in practice. To address this, we resort to an incremental perspective to assess the openness through vocabulary expansions, and define extensibility to measure a model's ability to handle novel classes. Our evaluation shows that CLIP-like models are not truly open, and their performance deteriorates as the vocabulary expands. We further dissect the feature space of CLIP from the perspectives of representation alignment and uniformity. Our investigation reveals that the overestimation of openness is due to confusion among competing text features, rather than a failure to capture the similarity between image features and text features of novel classes. We hope that our investigation and analysis will facilitate future research on the CLIP openness issue.
Can Understanding and Generation Truly Benefit Together -- or Just Coexist?
In this paper, we introduce an insightful paradigm through the Auto-Encoder lens-understanding as the encoder (I2T) that compresses images into text, and generation as the decoder (T2I) that reconstructs images from that text. Using reconstruction fidelity as the unified training objective, we enforce the coherent bidirectional information flow between the understanding and generation processes, bringing mutual gains. To implement this, we propose UAE, a novel framework for unified multimodal learning. We begin by pre-training the decoder with large-scale long-context image captions to capture fine-grained semantic and complex spatial relationships. We then propose Unified-GRPO via reinforcement learning (RL), which covers three stages: (1) A cold-start phase to gently initialize both encoder and decoder with a semantic reconstruction loss; (2) Generation for Understanding, where the encoder is trained to generate informative captions that maximize the decoder's reconstruction quality, enhancing its visual understanding; (3) Understanding for Generation, where the decoder is refined to reconstruct from these captions, forcing it to leverage every detail and improving its long-context instruction following and generation fidelity. For evaluation, we introduce Unified-Bench, the first benchmark tailored to assess the degree of unification of the UMMs. A surprising "aha moment" arises within the multimodal learning domain: as RL progresses, the encoder autonomously produces more descriptive captions, while the decoder simultaneously demonstrates a profound ability to understand these intricate descriptions, resulting in reconstructions of striking fidelity.
Show-o Turbo: Towards Accelerated Unified Multimodal Understanding and Generation
There has been increasing research interest in building unified multimodal understanding and generation models, among which Show-o stands as a notable representative, demonstrating great promise for both text-to-image and image-to-text generation. The inference of Show-o involves progressively denoising image tokens and autoregressively decoding text tokens, and hence, unfortunately, suffers from inefficiency issues from both sides. This paper introduces Show-o Turbo to bridge the gap. We first identify a unified denoising perspective for the generation of images and text in Show-o based on the parallel decoding of text tokens. We then propose to extend consistency distillation (CD), a qualified approach for shortening the denoising process of diffusion models, to the multimodal denoising trajectories of Show-o. We introduce a trajectory segmentation strategy and a curriculum learning procedure to improve the training convergence. Empirically, in text-to-image generation, Show-o Turbo displays a GenEval score of 0.625 at 4 sampling steps without using classifier-free guidance (CFG), outperforming that of the original Show-o with 8 steps and CFG; in image-to-text generation, Show-o Turbo exhibits a 1.5x speedup without significantly sacrificing performance. The code is available at https://github.com/zhijie-group/Show-o-Turbo.
DoraCycle: Domain-Oriented Adaptation of Unified Generative Model in Multimodal Cycles
Adapting generative models to specific domains presents an effective solution for satisfying specialized requirements. However, adapting to some complex domains remains challenging, especially when these domains require substantial paired data to capture the targeted distributions. Since unpaired data from a single modality, such as vision or language, is more readily available, we utilize the bidirectional mappings between vision and language learned by the unified generative model to enable training on unpaired data for domain adaptation. Specifically, we propose DoraCycle, which integrates two multimodal cycles: text-to-image-to-text and image-to-text-to-image. The model is optimized through cross-entropy loss computed at the cycle endpoints, where both endpoints share the same modality. This facilitates self-evolution of the model without reliance on annotated text-image pairs. Experimental results demonstrate that for tasks independent of paired knowledge, such as stylization, DoraCycle can effectively adapt the unified model using only unpaired data. For tasks involving new paired knowledge, such as specific identities, a combination of a small set of paired image-text examples and larger-scale unpaired data is sufficient for effective domain-oriented adaptation. The code will be released at https://github.com/showlab/DoraCycle.
CLIP the Bias: How Useful is Balancing Data in Multimodal Learning?
We study the effectiveness of data-balancing for mitigating biases in contrastive language-image pretraining (CLIP), identifying areas of strength and limitation. First, we reaffirm prior conclusions that CLIP models can inadvertently absorb societal stereotypes. To counter this, we present a novel algorithm, called Multi-Modal Moment Matching (M4), designed to reduce both representation and association biases (i.e. in first- and second-order statistics) in multimodal data. We use M4 to conduct an in-depth analysis taking into account various factors, such as the model, representation, and data size. Our study also explores the dynamic nature of how CLIP learns and unlearns biases. In particular, we find that fine-tuning is effective in countering representation biases, though its impact diminishes for association biases. Also, data balancing has a mixed impact on quality: it tends to improve classification but can hurt retrieval. Interestingly, data and architectural improvements seem to mitigate the negative impact of data balancing on performance; e.g. applying M4 to SigLIP-B/16 with data quality filters improves COCO image-to-text retrieval @5 from 86% (without data balancing) to 87% and ImageNet 0-shot classification from 77% to 77.5%! Finally, we conclude with recommendations for improving the efficacy of data balancing in multimodal systems.
One Transformer Fits All Distributions in Multi-Modal Diffusion at Scale
This paper proposes a unified diffusion framework (dubbed UniDiffuser) to fit all distributions relevant to a set of multi-modal data in one model. Our key insight is -- learning diffusion models for marginal, conditional, and joint distributions can be unified as predicting the noise in the perturbed data, where the perturbation levels (i.e. timesteps) can be different for different modalities. Inspired by the unified view, UniDiffuser learns all distributions simultaneously with a minimal modification to the original diffusion model -- perturbs data in all modalities instead of a single modality, inputs individual timesteps in different modalities, and predicts the noise of all modalities instead of a single modality. UniDiffuser is parameterized by a transformer for diffusion models to handle input types of different modalities. Implemented on large-scale paired image-text data, UniDiffuser is able to perform image, text, text-to-image, image-to-text, and image-text pair generation by setting proper timesteps without additional overhead. In particular, UniDiffuser is able to produce perceptually realistic samples in all tasks and its quantitative results (e.g., the FID and CLIP score) are not only superior to existing general-purpose models but also comparable to the bespoken models (e.g., Stable Diffusion and DALL-E 2) in representative tasks (e.g., text-to-image generation).
ChatGPT is not all you need. A State of the Art Review of large Generative AI models
During the last two years there has been a plethora of large generative models such as ChatGPT or Stable Diffusion that have been published. Concretely, these models are able to perform tasks such as being a general question and answering system or automatically creating artistic images that are revolutionizing several sectors. Consequently, the implications that these generative models have in the industry and society are enormous, as several job positions may be transformed. For example, Generative AI is capable of transforming effectively and creatively texts to images, like the DALLE-2 model; text to 3D images, like the Dreamfusion model; images to text, like the Flamingo model; texts to video, like the Phenaki model; texts to audio, like the AudioLM model; texts to other texts, like ChatGPT; texts to code, like the Codex model; texts to scientific texts, like the Galactica model or even create algorithms like AlphaTensor. This work consists on an attempt to describe in a concise way the main models are sectors that are affected by generative AI and to provide a taxonomy of the main generative models published recently.
Do DALL-E and Flamingo Understand Each Other?
The field of multimodal research focusing on the comprehension and creation of both images and text has witnessed significant strides. This progress is exemplified by the emergence of sophisticated models dedicated to image captioning at scale, such as the notable Flamingo model and text-to-image generative models, with DALL-E serving as a prominent example. An interesting question worth exploring in this domain is whether Flamingo and DALL-E understand each other. To study this question, we propose a reconstruction task where Flamingo generates a description for a given image and DALL-E uses this description as input to synthesize a new image. We argue that these models understand each other if the generated image is similar to the given image. Specifically, we study the relationship between the quality of the image reconstruction and that of the text generation. We find that an optimal description of an image is one that gives rise to a generated image similar to the original one. The finding motivates us to propose a unified framework to finetune the text-to-image and image-to-text models. Concretely, the reconstruction part forms a regularization loss to guide the tuning of the models. Extensive experiments on multiple datasets with different image captioning and image generation models validate our findings and demonstrate the effectiveness of our proposed unified framework. As DALL-E and Flamingo are not publicly available, we use Stable Diffusion and BLIP in the remaining work. Project website: https://dalleflamingo.github.io.
Distilled Dual-Encoder Model for Vision-Language Understanding
We propose a cross-modal attention distillation framework to train a dual-encoder model for vision-language understanding tasks, such as visual reasoning and visual question answering. Dual-encoder models have a faster inference speed than fusion-encoder models and enable the pre-computation of images and text during inference. However, the shallow interaction module used in dual-encoder models is insufficient to handle complex vision-language understanding tasks. In order to learn deep interactions of images and text, we introduce cross-modal attention distillation, which uses the image-to-text and text-to-image attention distributions of a fusion-encoder model to guide the training of our dual-encoder model. In addition, we show that applying the cross-modal attention distillation for both pre-training and fine-tuning stages achieves further improvements. Experimental results demonstrate that the distilled dual-encoder model achieves competitive performance for visual reasoning, visual entailment and visual question answering tasks while enjoying a much faster inference speed than fusion-encoder models. Our code and models will be publicly available at https://github.com/kugwzk/Distilled-DualEncoder.
Generative Pretraining in Multimodality
We present Emu, a Transformer-based multimodal foundation model, which can seamlessly generate images and texts in multimodal context. This omnivore model can take in any single-modality or multimodal data input indiscriminately (e.g., interleaved image, text and video) through a one-model-for-all autoregressive training process. First, visual signals are encoded into embeddings, and together with text tokens form an interleaved input sequence. Emu is then end-to-end trained with a unified objective of classifying the next text token or regressing the next visual embedding in the multimodal sequence. This versatile multimodality empowers the exploration of diverse pretraining data sources at scale, such as videos with interleaved frames and text, webpages with interleaved images and text, as well as web-scale image-text pairs and video-text pairs. Emu can serve as a generalist multimodal interface for both image-to-text and text-to-image tasks, and supports in-context image and text generation. Across a broad range of zero-shot/few-shot tasks including image captioning, visual question answering, video question answering and text-to-image generation, Emu demonstrates superb performance compared to state-of-the-art large multimodal models. Extended capabilities such as multimodal assistants via instruction tuning are also demonstrated with impressive performance.
Leveraging Unpaired Data for Vision-Language Generative Models via Cycle Consistency
Current vision-language generative models rely on expansive corpora of paired image-text data to attain optimal performance and generalization capabilities. However, automatically collecting such data (e.g. via large-scale web scraping) leads to low quality and poor image-text correlation, while human annotation is more accurate but requires significant manual effort and expense. We introduce ITIT (InTegrating Image Text): an innovative training paradigm grounded in the concept of cycle consistency which allows vision-language training on unpaired image and text data. ITIT is comprised of a joint image-text encoder with disjoint image and text decoders that enable bidirectional image-to-text and text-to-image generation in a single framework. During training, ITIT leverages a small set of paired image-text data to ensure its output matches the input reasonably well in both directions. Simultaneously, the model is also trained on much larger datasets containing only images or texts. This is achieved by enforcing cycle consistency between the original unpaired samples and the cycle-generated counterparts. For instance, it generates a caption for a given input image and then uses the caption to create an output image, and enforces similarity between the input and output images. Our experiments show that ITIT with unpaired datasets exhibits similar scaling behavior as using high-quality paired data. We demonstrate image generation and captioning performance on par with state-of-the-art text-to-image and image-to-text models with orders of magnitude fewer (only 3M) paired image-text data.
CMC-Bench: Towards a New Paradigm of Visual Signal Compression
Ultra-low bitrate image compression is a challenging and demanding topic. With the development of Large Multimodal Models (LMMs), a Cross Modality Compression (CMC) paradigm of Image-Text-Image has emerged. Compared with traditional codecs, this semantic-level compression can reduce image data size to 0.1\% or even lower, which has strong potential applications. However, CMC has certain defects in consistency with the original image and perceptual quality. To address this problem, we introduce CMC-Bench, a benchmark of the cooperative performance of Image-to-Text (I2T) and Text-to-Image (T2I) models for image compression. This benchmark covers 18,000 and 40,000 images respectively to verify 6 mainstream I2T and 12 T2I models, including 160,000 subjective preference scores annotated by human experts. At ultra-low bitrates, this paper proves that the combination of some I2T and T2I models has surpassed the most advanced visual signal codecs; meanwhile, it highlights where LMMs can be further optimized toward the compression task. We encourage LMM developers to participate in this test to promote the evolution of visual signal codec protocols.
Pix2Struct: Screenshot Parsing as Pretraining for Visual Language Understanding
Visually-situated language is ubiquitous -- sources range from textbooks with diagrams to web pages with images and tables, to mobile apps with buttons and forms. Perhaps due to this diversity, previous work has typically relied on domain-specific recipes with limited sharing of the underlying data, model architectures, and objectives. We present Pix2Struct, a pretrained image-to-text model for purely visual language understanding, which can be finetuned on tasks containing visually-situated language. Pix2Struct is pretrained by learning to parse masked screenshots of web pages into simplified HTML. The web, with its richness of visual elements cleanly reflected in the HTML structure, provides a large source of pretraining data well suited to the diversity of downstream tasks. Intuitively, this objective subsumes common pretraining signals such as OCR, language modeling, image captioning. In addition to the novel pretraining strategy, we introduce a variable-resolution input representation and a more flexible integration of language and vision inputs, where language prompts such as questions are rendered directly on top of the input image. For the first time, we show that a single pretrained model can achieve state-of-the-art results in six out of nine tasks across four domains: documents, illustrations, user interfaces, and natural images.
TrojVLM: Backdoor Attack Against Vision Language Models
The emergence of Vision Language Models (VLMs) is a significant advancement in integrating computer vision with Large Language Models (LLMs) to produce detailed text descriptions based on visual inputs, yet it introduces new security vulnerabilities. Unlike prior work that centered on single modalities or classification tasks, this study introduces TrojVLM, the first exploration of backdoor attacks aimed at VLMs engaged in complex image-to-text generation. Specifically, TrojVLM inserts predetermined target text into output text when encountering poisoned images. Moreover, a novel semantic preserving loss is proposed to ensure the semantic integrity of the original image content. Our evaluation on image captioning and visual question answering (VQA) tasks confirms the effectiveness of TrojVLM in maintaining original semantic content while triggering specific target text outputs. This study not only uncovers a critical security risk in VLMs and image-to-text generation but also sets a foundation for future research on securing multimodal models against such sophisticated threats.
Task-Oriented Multi-Modal Mutual Leaning for Vision-Language Models
Prompt learning has become one of the most efficient paradigms for adapting large pre-trained vision-language models to downstream tasks. Current state-of-the-art methods, like CoOp and ProDA, tend to adopt soft prompts to learn an appropriate prompt for each specific task. Recent CoCoOp further boosts the base-to-new generalization performance via an image-conditional prompt. However, it directly fuses identical image semantics to prompts of different labels and significantly weakens the discrimination among different classes as shown in our experiments. Motivated by this observation, we first propose a class-aware text prompt (CTP) to enrich generated prompts with label-related image information. Unlike CoCoOp, CTP can effectively involve image semantics and avoid introducing extra ambiguities into different prompts. On the other hand, instead of reserving the complete image representations, we propose text-guided feature tuning (TFT) to make the image branch attend to class-related representation. A contrastive loss is employed to align such augmented text and image representations on downstream tasks. In this way, the image-to-text CTP and text-to-image TFT can be mutually promoted to enhance the adaptation of VLMs for downstream tasks. Extensive experiments demonstrate that our method outperforms the existing methods by a significant margin. Especially, compared to CoCoOp, we achieve an average improvement of 4.03% on new classes and 3.19% on harmonic-mean over eleven classification benchmarks.
Scaling Autoregressive Multi-Modal Models: Pretraining and Instruction Tuning
We present CM3Leon (pronounced "Chameleon"), a retrieval-augmented, token-based, decoder-only multi-modal language model capable of generating and infilling both text and images. CM3Leon uses the CM3 multi-modal architecture but additionally shows the extreme benefits of scaling up and tuning on more diverse instruction-style data. It is the first multi-modal model trained with a recipe adapted from text-only language models, including a large-scale retrieval-augmented pre-training stage and a second multi-task supervised fine-tuning (SFT) stage. It is also a general-purpose model that can do both text-to-image and image-to-text generation, allowing us to introduce self-contained contrastive decoding methods that produce high-quality outputs. Extensive experiments demonstrate that this recipe is highly effective for multi-modal models. CM3Leon achieves state-of-the-art performance in text-to-image generation with 5x less training compute than comparable methods (zero-shot MS-COCO FID of 4.88). After SFT, CM3Leon can also demonstrate unprecedented levels of controllability in tasks ranging from language-guided image editing to image-controlled generation and segmentation.
VLSBench: Unveiling Visual Leakage in Multimodal Safety
Safety concerns of Multimodal large language models (MLLMs) have gradually become an important problem in various applications. Surprisingly, previous works indicate a counter-intuitive phenomenon that using textual unlearning to align MLLMs achieves comparable safety performances with MLLMs trained with image-text pairs. To explain such a counter-intuitive phenomenon, we discover a visual safety information leakage (VSIL) problem in existing multimodal safety benchmarks, i.e., the potentially risky and sensitive content in the image has been revealed in the textual query. In this way, MLLMs can easily refuse these sensitive text-image queries according to textual queries. However, image-text pairs without VSIL are common in real-world scenarios and are overlooked by existing multimodal safety benchmarks. To this end, we construct multimodal visual leakless safety benchmark (VLSBench) preventing visual safety leakage from image to textual query with 2.4k image-text pairs. Experimental results indicate that VLSBench poses a significant challenge to both open-source and close-source MLLMs, including LLaVA, Qwen2-VL, Llama3.2-Vision, and GPT-4o. This study demonstrates that textual alignment is enough for multimodal safety scenarios with VSIL, while multimodal alignment is a more promising solution for multimodal safety scenarios without VSIL. Please see our code and data at: http://hxhcreate.github.io/VLSBench
Safe-CLIP: Removing NSFW Concepts from Vision-and-Language Models
Large-scale vision-and-language models, such as CLIP, are typically trained on web-scale data, which can introduce inappropriate content and lead to the development of unsafe and biased behavior. This, in turn, hampers their applicability in sensitive and trustworthy contexts and could raise significant concerns in their adoption. Our research introduces a novel approach to enhancing the safety of vision-and-language models by diminishing their sensitivity to NSFW (not safe for work) inputs. In particular, our methodology seeks to sever "toxic" linguistic and visual concepts, unlearning the linkage between unsafe linguistic or visual items and unsafe regions of the embedding space. We show how this can be done by fine-tuning a CLIP model on synthetic data obtained from a large language model trained to convert between safe and unsafe sentences, and a text-to-image generator. We conduct extensive experiments on the resulting embedding space for cross-modal retrieval, text-to-image, and image-to-text generation, where we show that our model can be remarkably employed with pre-trained generative models. Our source code and trained models are available at: https://github.com/aimagelab/safe-clip.
Visual Fact Checker: Enabling High-Fidelity Detailed Caption Generation
Existing automatic captioning methods for visual content face challenges such as lack of detail, content hallucination, and poor instruction following. In this work, we propose VisualFactChecker (VFC), a flexible training-free pipeline that generates high-fidelity and detailed captions for both 2D images and 3D objects. VFC consists of three steps: 1) proposal, where image-to-text captioning models propose multiple initial captions; 2) verification, where a large language model (LLM) utilizes tools such as object detection and VQA models to fact-check proposed captions; 3) captioning, where an LLM generates the final caption by summarizing caption proposals and the fact check verification results. In this step, VFC can flexibly generate captions in various styles following complex instructions. We conduct comprehensive captioning evaluations using four metrics: 1) CLIP-Score for image-text similarity; 2) CLIP-Image-Score for measuring the image-image similarity between the original and the reconstructed image generated by a text-to-image model using the caption. 3) human study on Amazon Mechanical Turk; 4) GPT-4V for fine-grained evaluation. Evaluation results show that VFC outperforms state-of-the-art open-sourced captioning methods for 2D images on the COCO dataset and 3D assets on the Objaverse dataset. Our study demonstrates that by combining open-source models into a pipeline, we can attain captioning capability comparable to proprietary models such as GPT-4V, despite being over 10x smaller in model size.
Benchmarking Vision-Language Contrastive Methods for Medical Representation Learning
We perform a comprehensive benchmarking of contrastive frameworks for learning multimodal representations in the medical domain. Through this study, we aim to answer the following research questions: (i) How transferable are general-domain representations to the medical domain? (ii) Is multimodal contrastive training sufficient, or does it benefit from unimodal training as well? (iii) What is the impact of feature granularity on the effectiveness of multimodal medical representation learning? To answer these questions, we investigate eight contrastive learning approaches under identical training setups, and train them on 2.8 million image-text pairs from four datasets, and evaluate them on 25 downstream tasks, including classification (zero-shot and linear probing), image-to-text and text-to-image retrieval, and visual question-answering. Our findings suggest a positive answer to the first question, a negative answer to the second question, and the benefit of learning fine-grained features. Finally, we make our code publicly available.
Bootstrapping Vision-Language Learning with Decoupled Language Pre-training
We present a novel methodology aimed at optimizing the application of frozen large language models (LLMs) for resource-intensive vision-language (VL) pre-training. The current paradigm uses visual features as prompts to guide language models, with a focus on determining the most relevant visual features for corresponding text. Our approach diverges by concentrating on the language component, specifically identifying the optimal prompts to align with visual features. We introduce the Prompt-Transformer (P-Former), a model that predicts these ideal prompts, which is trained exclusively on linguistic data, bypassing the need for image-text pairings. This strategy subtly bifurcates the end-to-end VL training process into an additional, separate stage. Our experiments reveal that our framework significantly enhances the performance of a robust image-to-text baseline (BLIP-2), and effectively narrows the performance gap between models trained with either 4M or 129M image-text pairs. Importantly, our framework is modality-agnostic and flexible in terms of architectural design, as validated by its successful application in a video learning task using varied base modules. The code is available at https://github.com/yiren-jian/BLIText
ZeroNLG: Aligning and Autoencoding Domains for Zero-Shot Multimodal and Multilingual Natural Language Generation
Natural Language Generation (NLG) accepts input data in the form of images, videos, or text and generates corresponding natural language text as output. Existing NLG methods mainly adopt a supervised approach and rely heavily on coupled data-to-text pairs. However, for many targeted scenarios and for non-English languages, sufficient quantities of labeled data are often not available. To relax the dependency on labeled data of downstream tasks, we propose an intuitive and effective zero-shot learning framework, ZeroNLG, which can deal with multiple NLG tasks, including image-to-text (image captioning), video-to-text (video captioning), and text-to-text (neural machine translation), across English, Chinese, German, and French within a unified framework. ZeroNLG does not require any labeled downstream pairs for training. During training, ZeroNLG (i) projects different domains (across modalities and languages) to corresponding coordinates in a shared common latent space; (ii) bridges different domains by aligning their corresponding coordinates in this space; and (iii) builds an unsupervised multilingual auto-encoder to learn to generate text by reconstructing the input text given its coordinate in shared latent space. Consequently, during inference, based on the data-to-text pipeline, ZeroNLG can generate target sentences across different languages given the coordinate of input data in the common space. Within this unified framework, given visual (imaging or video) data as input, ZeroNLG can perform zero-shot visual captioning; given textual sentences as input, ZeroNLG can perform zero-shot machine translation. We present the results of extensive experiments on twelve NLG tasks, showing that, without using any labeled downstream pairs for training, ZeroNLG generates high-quality and believable outputs and significantly outperforms existing zero-shot methods.
Multimodal Evaluation of Russian-language Architectures
Multimodal large language models (MLLMs) are currently at the center of research attention, showing rapid progress in scale and capabilities, yet their intelligence, limitations, and risks remain insufficiently understood. To address these issues, particularly in the context of the Russian language, where no multimodal benchmarks currently exist, we introduce Mera Multi, an open multimodal evaluation framework for Russian-spoken architectures. The benchmark is instruction-based and encompasses default text, image, audio, and video modalities, comprising 18 newly constructed evaluation tasks for both general-purpose models and modality-specific architectures (image-to-text, video-to-text, and audio-to-text). Our contributions include: (i) a universal taxonomy of multimodal abilities; (ii) 18 datasets created entirely from scratch with attention to Russian cultural and linguistic specificity, unified prompts, and metrics; (iii) baseline results for both closed-source and open-source models; (iv) a methodology for preventing benchmark leakage, including watermarking and licenses for private sets. While our current focus is on Russian, the proposed benchmark provides a replicable methodology for constructing multimodal benchmarks in typologically diverse languages, particularly within the Slavic language family.
MANZANO: A Simple and Scalable Unified Multimodal Model with a Hybrid Vision Tokenizer
Unified multimodal Large Language Models (LLMs) that can both understand and generate visual content hold immense potential. However, existing open-source models often suffer from a performance trade-off between these capabilities. We present Manzano, a simple and scalable unified framework that substantially reduces this tension by coupling a hybrid image tokenizer with a well-curated training recipe. A single shared vision encoder feeds two lightweight adapters that produce continuous embeddings for image-to-text understanding and discrete tokens for text-to-image generation within a common semantic space. A unified autoregressive LLM predicts high-level semantics in the form of text and image tokens, with an auxiliary diffusion decoder subsequently translating the image tokens into pixels. The architecture, together with a unified training recipe over understanding and generation data, enables scalable joint learning of both capabilities. Manzano achieves state-of-the-art results among unified models, and is competitive with specialist models, particularly on text-rich evaluation. Our studies show minimal task conflicts and consistent gains from scaling model size, validating our design choice of a hybrid tokenizer.
Large Multilingual Models Pivot Zero-Shot Multimodal Learning across Languages
Recently there has been a significant surge in multimodal learning in terms of both image-to-text and text-to-image generation. However, the success is typically limited to English, leaving other languages largely behind. Building a competitive counterpart in other languages is highly challenging due to the low-resource nature of non-English multimodal data (i.e., lack of large-scale, high-quality image-text data). In this work, we propose MPM, an effective training paradigm for training large multimodal models in low-resource languages. MPM demonstrates that Multilingual language models can Pivot zero-shot Multimodal learning across languages. Specifically, based on a strong multilingual large language model, multimodal models pretrained on English-only image-text data can well generalize to other languages in a zero-shot manner for both image-to-text and text-to-image generation, even surpassing models trained on image-text data in native languages. Taking Chinese as a practice of MPM, we build large multimodal models VisCPM in image-to-text and text-to-image generation, which achieve state-of-the-art (open-source) performance in Chinese. To facilitate future research, we open-source codes and model weights at https://github.com/OpenBMB/VisCPM.git.
Retrieval-Augmented Multimodal Language Modeling
Recent multimodal models such as DALL-E and CM3 have achieved remarkable progress in text-to-image and image-to-text generation. However, these models store all learned knowledge (e.g., the appearance of the Eiffel Tower) in the model parameters, requiring increasingly larger models and training data to capture more knowledge. To integrate knowledge in a more scalable and modular way, we propose a retrieval-augmented multimodal model, which enables a base multimodal model (generator) to refer to relevant text and images fetched by a retriever from external memory (e.g., documents on the web). Specifically, for the retriever, we use a pretrained CLIP, and for the generator, we train a CM3 Transformer on the LAION dataset. Our resulting model, named Retrieval-Augmented CM3 (RA-CM3), is the first multimodal model that can retrieve and generate both text and images. We show that RA-CM3 significantly outperforms baseline multimodal models such as DALL-E and CM3 on both image and caption generation tasks (12 FID and 17 CIDEr improvements on MS-COCO), while requiring much less compute for training (<30% of DALL-E). Moreover, we show that RA-CM3 exhibits novel capabilities, such as faithful image generation and multimodal in-context learning (e.g., image generation from demonstrations).
SonicVisionLM: Playing Sound with Vision Language Models
There has been a growing interest in the task of generating sound for silent videos, primarily because of its practicality in streamlining video post-production. However, existing methods for video-sound generation attempt to directly create sound from visual representations, which can be challenging due to the difficulty of aligning visual representations with audio representations. In this paper, we present SonicVisionLM, a novel framework aimed at generating a wide range of sound effects by leveraging vision-language models(VLMs). Instead of generating audio directly from video, we use the capabilities of powerful VLMs. When provided with a silent video, our approach first identifies events within the video using a VLM to suggest possible sounds that match the video content. This shift in approach transforms the challenging task of aligning image and audio into more well-studied sub-problems of aligning image-to-text and text-to-audio through the popular diffusion models. To improve the quality of audio recommendations with LLMs, we have collected an extensive dataset that maps text descriptions to specific sound effects and developed a time-controlled audio adapter. Our approach surpasses current state-of-the-art methods for converting video to audio, enhancing synchronization with the visuals, and improving alignment between audio and video components. Project page: https://yusiissy.github.io/SonicVisionLM.github.io/
Planting a SEED of Vision in Large Language Model
We present SEED, an elaborate image tokenizer that empowers Large Language Models (LLMs) with the emergent ability to SEE and Draw at the same time. Research on image tokenizers has previously reached an impasse, as frameworks employing quantized visual tokens have lost prominence due to subpar performance and convergence in multimodal comprehension (compared to BLIP-2, etc.) or generation (compared to Stable Diffusion, etc.). Despite the limitations, we remain confident in its natural capacity to unify visual and textual representations, facilitating scalable multimodal training with LLM's original recipe. In this study, we identify two crucial principles for the architecture and training of SEED that effectively ease subsequent alignment with LLMs. (1) Image tokens should be independent of 2D physical patch positions and instead be produced with a 1D causal dependency, exhibiting intrinsic interdependence that aligns with the left-to-right autoregressive prediction mechanism in LLMs. (2) Image tokens should capture high-level semantics consistent with the degree of semantic abstraction in words, and be optimized for both discriminativeness and reconstruction during the tokenizer training phase. As a result, the off-the-shelf LLM is able to perform both image-to-text and text-to-image generation by incorporating our SEED through efficient LoRA tuning. Comprehensive multimodal pretraining and instruction tuning, which may yield improved results, are reserved for future investigation. This version of SEED was trained in 5.7 days using only 64 V100 GPUs and 5M publicly available image-text pairs. Our preliminary study emphasizes the great potential of discrete visual tokens in versatile multimodal LLMs and the importance of proper image tokenizers in broader research.
When are Lemons Purple? The Concept Association Bias of CLIP
Large-scale vision-language models such as CLIP have shown impressive performance on zero-shot image classification and image-to-text retrieval. However, such zero-shot performance of CLIP-based models does not realize in tasks that require a finer-grained correspondence between vision and language, such as Visual Question Answering (VQA). We investigate why this is the case, and report an interesting phenomenon of CLIP, which we call the Concept Association Bias (CAB), as a potential cause of the difficulty of applying CLIP to VQA and similar tasks. CAB is especially apparent when two concepts are present in the given image while a text prompt only contains a single concept. In such a case, we find that CLIP tends to treat input as a bag of concepts and attempts to fill in the other missing concept crossmodally, leading to an unexpected zero-shot prediction. For example, when asked for the color of a lemon in an image, CLIP predicts ``purple'' if the image contains a lemon and an eggplant. We demonstrate the Concept Association Bias of CLIP by showing that CLIP's zero-shot classification performance greatly suffers when there is a strong concept association between an object (e.g. lemon) and an attribute (e.g. its color). On the other hand, when the association between object and attribute is weak, we do not see this phenomenon. Furthermore, we show that CAB is significantly mitigated when we enable CLIP to learn deeper structure across image and text embeddings by adding an additional Transformer on top of CLIP and fine-tuning it on VQA. We find that across such fine-tuned variants of CLIP, the strength of CAB in a model predicts how well it performs on VQA.
Safe Latent Diffusion: Mitigating Inappropriate Degeneration in Diffusion Models
Text-conditioned image generation models have recently achieved astonishing results in image quality and text alignment and are consequently employed in a fast-growing number of applications. Since they are highly data-driven, relying on billion-sized datasets randomly scraped from the internet, they also suffer, as we demonstrate, from degenerated and biased human behavior. In turn, they may even reinforce such biases. To help combat these undesired side effects, we present safe latent diffusion (SLD). Specifically, to measure the inappropriate degeneration due to unfiltered and imbalanced training sets, we establish a novel image generation test bed-inappropriate image prompts (I2P)-containing dedicated, real-world image-to-text prompts covering concepts such as nudity and violence. As our exhaustive empirical evaluation demonstrates, the introduced SLD removes and suppresses inappropriate image parts during the diffusion process, with no additional training required and no adverse effect on overall image quality or text alignment.
Enhancing Vision-Language Pre-training with Rich Supervisions
We propose Strongly Supervised pre-training with ScreenShots (S4) - a novel pre-training paradigm for Vision-Language Models using data from large-scale web screenshot rendering. Using web screenshots unlocks a treasure trove of visual and textual cues that are not present in using image-text pairs. In S4, we leverage the inherent tree-structured hierarchy of HTML elements and the spatial localization to carefully design 10 pre-training tasks with large scale annotated data. These tasks resemble downstream tasks across different domains and the annotations are cheap to obtain. We demonstrate that, compared to current screenshot pre-training objectives, our innovative pre-training method significantly enhances performance of image-to-text model in nine varied and popular downstream tasks - up to 76.1% improvements on Table Detection, and at least 1% on Widget Captioning.
Dallah: A Dialect-Aware Multimodal Large Language Model for Arabic
Recent advancements have significantly enhanced the capabilities of Multimodal Large Language Models (MLLMs) in generating and understanding image-to-text content. Despite these successes, progress is predominantly limited to English due to the scarcity of high quality multimodal resources in other languages. This limitation impedes the development of competitive models in languages such as Arabic. To alleviate this situation, we introduce an efficient Arabic multimodal assistant, dubbed Dallah, that utilizes an advanced language model based on LLaMA-2 to facilitate multimodal interactions. Dallah demonstrates state-of-the-art performance in Arabic MLLMs. Through fine-tuning six Arabic dialects, Dallah showcases its capability to handle complex dialectal interactions incorporating both textual and visual elements. The model excels in two benchmark tests: one evaluating its performance on Modern Standard Arabic (MSA) and another specifically designed to assess dialectal responses. Beyond its robust performance in multimodal interaction tasks, Dallah has the potential to pave the way for further development of dialect-aware Arabic MLLMs.
MatCha: Enhancing Visual Language Pretraining with Math Reasoning and Chart Derendering
Visual language data such as plots, charts, and infographics are ubiquitous in the human world. However, state-of-the-art vision-language models do not perform well on these data. We propose MatCha (Math reasoning and Chart derendering pretraining) to enhance visual language models' capabilities in jointly modeling charts/plots and language data. Specifically, we propose several pretraining tasks that cover plot deconstruction and numerical reasoning which are the key capabilities in visual language modeling. We perform the MatCha pretraining starting from Pix2Struct, a recently proposed image-to-text visual language model. On standard benchmarks such as PlotQA and ChartQA, the MatCha model outperforms state-of-the-art methods by as much as nearly 20%. We also examine how well MatCha pretraining transfers to domains such as screenshots, textbook diagrams, and document figures and observe overall improvement, verifying the usefulness of MatCha pretraining on broader visual language tasks.
Cross the Gap: Exposing the Intra-modal Misalignment in CLIP via Modality Inversion
Pre-trained multi-modal Vision-Language Models like CLIP are widely used off-the-shelf for a variety of applications. In this paper, we show that the common practice of individually exploiting the text or image encoders of these powerful multi-modal models is highly suboptimal for intra-modal tasks like image-to-image retrieval. We argue that this is inherently due to the CLIP-style inter-modal contrastive loss that does not enforce any intra-modal constraints, leading to what we call intra-modal misalignment. To demonstrate this, we leverage two optimization-based modality inversion techniques that map representations from their input modality to the complementary one without any need for auxiliary data or additional trained adapters. We empirically show that, in the intra-modal tasks of image-to-image and text-to-text retrieval, approaching these tasks inter-modally significantly improves performance with respect to intra-modal baselines on more than fifteen datasets. Additionally, we demonstrate that approaching a native inter-modal task (e.g. zero-shot image classification) intra-modally decreases performance, further validating our findings. Finally, we show that incorporating an intra-modal term in the pre-training objective or narrowing the modality gap between the text and image feature embedding spaces helps reduce the intra-modal misalignment. The code is publicly available at: https://github.com/miccunifi/Cross-the-Gap.
UniFashion: A Unified Vision-Language Model for Multimodal Fashion Retrieval and Generation
The fashion domain encompasses a variety of real-world multimodal tasks, including multimodal retrieval and multimodal generation. The rapid advancements in artificial intelligence generated content, particularly in technologies like large language models for text generation and diffusion models for visual generation, have sparked widespread research interest in applying these multimodal models in the fashion domain. However, tasks involving embeddings, such as image-to-text or text-to-image retrieval, have been largely overlooked from this perspective due to the diverse nature of the multimodal fashion domain. And current research on multi-task single models lack focus on image generation. In this work, we present UniFashion, a unified framework that simultaneously tackles the challenges of multimodal generation and retrieval tasks within the fashion domain, integrating image generation with retrieval tasks and text generation tasks. UniFashion unifies embedding and generative tasks by integrating a diffusion model and LLM, enabling controllable and high-fidelity generation. Our model significantly outperforms previous single-task state-of-the-art models across diverse fashion tasks, and can be readily adapted to manage complex vision-language tasks. This work demonstrates the potential learning synergy between multimodal generation and retrieval, offering a promising direction for future research in the fashion domain. The source code is available at https://github.com/xiangyu-mm/UniFashion.
The Telephone Game: Evaluating Semantic Drift in Unified Models
Employing a single, unified model (UM) for both visual understanding (image-to-text: I2T) and and visual generation (text-to-image: T2I) has opened a new direction in Visual Language Model (VLM) research. While UMs can also support broader unimodal tasks (e.g., text-to-text, image-to-image), we focus on the core cross-modal pair T2I and I2T, as consistency between understanding and generation is critical for downstream use. Existing evaluations consider these capabilities in isolation: FID and GenEval for T2I, and benchmarks such as MME, MMBench for I2T. These single-pass metrics do not reveal whether a model that understands a concept can also render it, nor whether meaning is preserved when cycling between image and text modalities. To address this, we introduce the Unified Consistency Framework for Unified Models (UCF-UM), a cyclic evaluation protocol that alternates I2T and T2I over multiple generations to quantify semantic drift. UCF formulates 3 metrics: (i) Mean Cumulative Drift (MCD), an embedding-based measure of overall semantic loss; (ii) Semantic Drift Rate (SDR), that summarizes semantic decay rate; and (iii) Multi-Generation GenEval (MGG), an object-level compliance score extending GenEval. To assess generalization beyond COCO, which is widely used in training; we create a new benchmark ND400, sampled from NoCaps and DOCCI and evaluate on seven recent models. UCF-UM reveals substantial variation in cross-modal stability: some models like BAGEL maintain semantics over many alternations, whereas others like Vila-u drift quickly despite strong single-pass scores. Our results highlight cyclic consistency as a necessary complement to standard I2T and T2I evaluations, and provide practical metrics to consistently assess unified model's cross-modal stability and strength of their shared representations. Code: https://github.com/mollahsabbir/Semantic-Drift-in-Unified-Models
Contrasting Deepfakes Diffusion via Contrastive Learning and Global-Local Similarities
Discerning between authentic content and that generated by advanced AI methods has become increasingly challenging. While previous research primarily addresses the detection of fake faces, the identification of generated natural images has only recently surfaced. This prompted the recent exploration of solutions that employ foundation vision-and-language models, like CLIP. However, the CLIP embedding space is optimized for global image-to-text alignment and is not inherently designed for deepfake detection, neglecting the potential benefits of tailored training and local image features. In this study, we propose CoDE (Contrastive Deepfake Embeddings), a novel embedding space specifically designed for deepfake detection. CoDE is trained via contrastive learning by additionally enforcing global-local similarities. To sustain the training of our model, we generate a comprehensive dataset that focuses on images generated by diffusion models and encompasses a collection of 9.2 million images produced by using four different generators. Experimental results demonstrate that CoDE achieves state-of-the-art accuracy on the newly collected dataset, while also showing excellent generalization capabilities to unseen image generators. Our source code, trained models, and collected dataset are publicly available at: https://github.com/aimagelab/CoDE.
Libra: Building Decoupled Vision System on Large Language Models
In this work, we introduce Libra, a prototype model with a decoupled vision system on a large language model (LLM). The decoupled vision system decouples inner-modal modeling and cross-modal interaction, yielding unique visual information modeling and effective cross-modal comprehension. Libra is trained through discrete auto-regressive modeling on both vision and language inputs. Specifically, we incorporate a routed visual expert with a cross-modal bridge module into a pretrained LLM to route the vision and language flows during attention computing to enable different attention patterns in inner-modal modeling and cross-modal interaction scenarios. Experimental results demonstrate that the dedicated design of Libra achieves a strong MLLM baseline that rivals existing works in the image-to-text scenario with merely 50 million training data, providing a new perspective for future multimodal foundation models. Code is available at https://github.com/YifanXu74/Libra.
A Unified Framework and Dataset for Assessing Gender Bias in Vision-Language Models
Large vision-language models (VLMs) are widely getting adopted in industry and academia. In this work we build a unified framework to systematically evaluate gender-profession bias in VLMs. Our evaluation encompasses all supported inference modes of the recent VLMs, including image-to-text, text-to-text, text-to-image, and image-to-image. We construct a synthetic, high-quality dataset of text and images that blurs gender distinctions across professional actions to benchmark gender bias. In our benchmarking of recent vision-language models (VLMs), we observe that different input-output modalities result in distinct bias magnitudes and directions. We hope our work will help guide future progress in improving VLMs to learn socially unbiased representations. We will release our data and code.
Revisiting DETR Pre-training for Object Detection
Motivated by that DETR-based approaches have established new records on COCO detection and segmentation benchmarks, many recent endeavors show increasing interest in how to further improve DETR-based approaches by pre-training the Transformer in a self-supervised manner while keeping the backbone frozen. Some studies already claimed significant improvements in accuracy. In this paper, we take a closer look at their experimental methodology and check if their approaches are still effective on the very recent state-of-the-art such as H-Deformable-DETR. We conduct thorough experiments on COCO object detection tasks to study the influence of the choice of pre-training datasets, localization, and classification target generation schemes. Unfortunately, we find the previous representative self-supervised approach such as DETReg, fails to boost the performance of the strong DETR-based approaches on full data regimes. We further analyze the reasons and find that simply combining a more accurate box predictor and Objects365 benchmark can significantly improve the results in follow-up experiments. We demonstrate the effectiveness of our approach by achieving strong object detection results of AP=59.3% on COCO val set, which surpasses H-Deformable-DETR + Swin-L by +1.4%. Last, we generate a series of synthetic pre-training datasets by combining the very recent image-to-text captioning models (LLaVA) and text-to-image generative models (SDXL). Notably, pre-training on these synthetic datasets leads to notable improvements in object detection performance. Looking ahead, we anticipate substantial advantages through the future expansion of the synthetic pre-training dataset.
3D-Adapter: Geometry-Consistent Multi-View Diffusion for High-Quality 3D Generation
Multi-view image diffusion models have significantly advanced open-domain 3D object generation. However, most existing models rely on 2D network architectures that lack inherent 3D biases, resulting in compromised geometric consistency. To address this challenge, we introduce 3D-Adapter, a plug-in module designed to infuse 3D geometry awareness into pretrained image diffusion models. Central to our approach is the idea of 3D feedback augmentation: for each denoising step in the sampling loop, 3D-Adapter decodes intermediate multi-view features into a coherent 3D representation, then re-encodes the rendered RGBD views to augment the pretrained base model through feature addition. We study two variants of 3D-Adapter: a fast feed-forward version based on Gaussian splatting and a versatile training-free version utilizing neural fields and meshes. Our extensive experiments demonstrate that 3D-Adapter not only greatly enhances the geometry quality of text-to-multi-view models such as Instant3D and Zero123++, but also enables high-quality 3D generation using the plain text-to-image Stable Diffusion. Furthermore, we showcase the broad application potential of 3D-Adapter by presenting high quality results in text-to-3D, image-to-3D, text-to-texture, and text-to-avatar tasks.
Do LLMs Understand Visual Anomalies? Uncovering LLM's Capabilities in Zero-shot Anomaly Detection
Large vision-language models (LVLMs) are markedly proficient in deriving visual representations guided by natural language. Recent explorations have utilized LVLMs to tackle zero-shot visual anomaly detection (VAD) challenges by pairing images with textual descriptions indicative of normal and abnormal conditions, referred to as anomaly prompts. However, existing approaches depend on static anomaly prompts that are prone to cross-semantic ambiguity, and prioritize global image-level representations over crucial local pixel-level image-to-text alignment that is necessary for accurate anomaly localization. In this paper, we present ALFA, a training-free approach designed to address these challenges via a unified model. We propose a run-time prompt adaptation strategy, which first generates informative anomaly prompts to leverage the capabilities of a large language model (LLM). This strategy is enhanced by a contextual scoring mechanism for per-image anomaly prompt adaptation and cross-semantic ambiguity mitigation. We further introduce a novel fine-grained aligner to fuse local pixel-level semantics for precise anomaly localization, by projecting the image-text alignment from global to local semantic spaces. Extensive evaluations on MVTec and VisA datasets confirm ALFA's effectiveness in harnessing the language potential for zero-shot VAD, achieving significant PRO improvements of 12.1% on MVTec and 8.9% on VisA compared to state-of-the-art approaches.
DiffuVST: Narrating Fictional Scenes with Global-History-Guided Denoising Models
Recent advances in image and video creation, especially AI-based image synthesis, have led to the production of numerous visual scenes that exhibit a high level of abstractness and diversity. Consequently, Visual Storytelling (VST), a task that involves generating meaningful and coherent narratives from a collection of images, has become even more challenging and is increasingly desired beyond real-world imagery. While existing VST techniques, which typically use autoregressive decoders, have made significant progress, they suffer from low inference speed and are not well-suited for synthetic scenes. To this end, we propose a novel diffusion-based system DiffuVST, which models the generation of a series of visual descriptions as a single conditional denoising process. The stochastic and non-autoregressive nature of DiffuVST at inference time allows it to generate highly diverse narratives more efficiently. In addition, DiffuVST features a unique design with bi-directional text history guidance and multimodal adapter modules, which effectively improve inter-sentence coherence and image-to-text fidelity. Extensive experiments on the story generation task covering four fictional visual-story datasets demonstrate the superiority of DiffuVST over traditional autoregressive models in terms of both text quality and inference speed.
Towards a Visual-Language Foundation Model for Computational Pathology
The accelerated adoption of digital pathology and advances in deep learning have enabled the development of powerful models for various pathology tasks across a diverse array of diseases and patient cohorts. However, model training is often difficult due to label scarcity in the medical domain and the model's usage is limited by the specific task and disease for which it is trained. Additionally, most models in histopathology leverage only image data, a stark contrast to how humans teach each other and reason about histopathologic entities. We introduce CONtrastive learning from Captions for Histopathology (CONCH), a visual-language foundation model developed using diverse sources of histopathology images, biomedical text, and notably over 1.17 million image-caption pairs via task-agnostic pretraining. Evaluated on a suite of 13 diverse benchmarks, CONCH can be transferred to a wide range of downstream tasks involving either or both histopathology images and text, achieving state-of-the-art performance on histology image classification, segmentation, captioning, text-to-image and image-to-text retrieval. CONCH represents a substantial leap over concurrent visual-language pretrained systems for histopathology, with the potential to directly facilitate a wide array of machine learning-based workflows requiring minimal or no further supervised fine-tuning.
Cephalo: Multi-Modal Vision-Language Models for Bio-Inspired Materials Analysis and Design
We present Cephalo, a series of multimodal vision large language models (V-LLMs) designed for materials science applications, integrating visual and linguistic data for enhanced understanding and interaction within human-AI and multi-agent AI frameworks. A key innovation of Cephalo is its advanced dataset generation method, which employs a sophisticated algorithm to accurately detect and separate images and their corresponding textual descriptions from PDF documents, such as scientific papers. The method includes a careful refinement of image-text pairs through integrated vision and language processing, ensuring high-quality, contextually relevant, and well reasoned training data. Cephalo is trained on integrated image and text data extracted from thousands of scientific papers and science-focused Wikipedia pages demonstrates can interpret complex visual scenes, generate precise language descriptions, and answer queries about images effectively. The combination of a vision encoder with an autoregressive transformer supports complex natural language understanding in an integrated model, which can be coupled with other generative methods to create an image-to-text-to-image or image-to-text-to-3D pipeline. To explore the development of larger models from smaller ones, we merge sets of layers that originate from different pre-trained source models. This hybrid approach allows us to leverage the domain-specific expertise and general conversational capabilities to harness the strengths of multiple models. We examine the models in diverse use cases that incorporate biological materials, fracture and engineering analysis, protein biophysics, and bio-inspired design based on insect behavior. Generative applications include bio-inspired designs, including pollen-inspired architected materials, as well as the synthesis of bio-inspired material microstructures from a photograph of a solar eclipse.
Generative Diffusion Models on Graphs: Methods and Applications
Diffusion models, as a novel generative paradigm, have achieved remarkable success in various image generation tasks such as image inpainting, image-to-text translation, and video generation. Graph generation is a crucial computational task on graphs with numerous real-world applications. It aims to learn the distribution of given graphs and then generate new graphs. Given the great success of diffusion models in image generation, increasing efforts have been made to leverage these techniques to advance graph generation in recent years. In this paper, we first provide a comprehensive overview of generative diffusion models on graphs, In particular, we review representative algorithms for three variants of graph diffusion models, i.e., Score Matching with Langevin Dynamics (SMLD), Denoising Diffusion Probabilistic Model (DDPM), and Score-based Generative Model (SGM). Then, we summarize the major applications of generative diffusion models on graphs with a specific focus on molecule and protein modeling. Finally, we discuss promising directions in generative diffusion models on graph-structured data. For this survey, we also created a GitHub project website by collecting the supporting resources for generative diffusion models on graphs, at the link: https://github.com/ChengyiLIU-cs/Generative-Diffusion-Models-on-Graphs
OmniFusion: Simultaneous Multilingual Multimodal Translations via Modular Fusion
There has been significant progress in open-source text-only translation large language models (LLMs) with better language coverage and quality. However, these models can be only used in cascaded pipelines for speech translation (ST), performing automatic speech recognition first followed by translation. This introduces additional latency, which is particularly critical in simultaneous ST (SimulST), and prevents the model from exploiting multimodal context, such as images, which can aid disambiguation. Pretrained multimodal foundation models (MMFMs) already possess strong perception and reasoning capabilities across multiple modalities, but generally lack the multilingual coverage and specialized translation performance of dedicated translation LLMs. To build an effective multimodal translation system, we propose an end-to-end approach that fuses MMFMs with translation LLMs. We introduce a novel fusion strategy that connects hidden states from multiple layers of a pretrained MMFM to a translation LLM, enabling joint end-to-end training. The resulting model, OmniFusion, built on Omni 2.5-7B as the MMFM and SeedX PPO-7B as the translation LLM, can perform speech-to-text, speech-and-image-to-text, and text-and-image-to-text translation. Experiments demonstrate that OmniFusion effectively leverages both audio and visual inputs, achieves a 1-second latency reduction in SimulST compared to cascaded pipelines and also improves the overall translation qualityCode is available at https://github.com/saikoneru/OmniFusion.
PromptHash: Affinity-Prompted Collaborative Cross-Modal Learning for Adaptive Hashing Retrieval
Cross-modal hashing is a promising approach for efficient data retrieval and storage optimization. However, contemporary methods exhibit significant limitations in semantic preservation, contextual integrity, and information redundancy, which constrains retrieval efficacy. We present PromptHash, an innovative framework leveraging affinity prompt-aware collaborative learning for adaptive cross-modal hashing. We propose an end-to-end framework for affinity-prompted collaborative hashing, with the following fundamental technical contributions: (i) a text affinity prompt learning mechanism that preserves contextual information while maintaining parameter efficiency, (ii) an adaptive gated selection fusion architecture that synthesizes State Space Model with Transformer network for precise cross-modal feature integration, and (iii) a prompt affinity alignment strategy that bridges modal heterogeneity through hierarchical contrastive learning. To the best of our knowledge, this study presents the first investigation into affinity prompt awareness within collaborative cross-modal adaptive hash learning, establishing a paradigm for enhanced semantic consistency across modalities. Through comprehensive evaluation on three benchmark multi-label datasets, PromptHash demonstrates substantial performance improvements over existing approaches. Notably, on the NUS-WIDE dataset, our method achieves significant gains of 18.22% and 18.65% in image-to-text and text-to-image retrieval tasks, respectively. The code is publicly available at https://github.com/ShiShuMo/PromptHash.
Multi-LLM Collaborative Caption Generation in Scientific Documents
Scientific figure captioning is a complex task that requires generating contextually appropriate descriptions of visual content. However, existing methods often fall short by utilizing incomplete information, treating the task solely as either an image-to-text or text summarization problem. This limitation hinders the generation of high-quality captions that fully capture the necessary details. Moreover, existing data sourced from arXiv papers contain low-quality captions, posing significant challenges for training large language models (LLMs). In this paper, we introduce a framework called Multi-LLM Collaborative Figure Caption Generation (MLBCAP) to address these challenges by leveraging specialized LLMs for distinct sub-tasks. Our approach unfolds in three key modules: (Quality Assessment) We utilize multimodal LLMs to assess the quality of training data, enabling the filtration of low-quality captions. (Diverse Caption Generation) We then employ a strategy of fine-tuning/prompting multiple LLMs on the captioning task to generate candidate captions. (Judgment) Lastly, we prompt a prominent LLM to select the highest quality caption from the candidates, followed by refining any remaining inaccuracies. Human evaluations demonstrate that informative captions produced by our approach rank better than human-written captions, highlighting its effectiveness. Our code is available at https://github.com/teamreboott/MLBCAP
PRIOR: Prototype Representation Joint Learning from Medical Images and Reports
Contrastive learning based vision-language joint pre-training has emerged as a successful representation learning strategy. In this paper, we present a prototype representation learning framework incorporating both global and local alignment between medical images and reports. In contrast to standard global multi-modality alignment methods, we employ a local alignment module for fine-grained representation. Furthermore, a cross-modality conditional reconstruction module is designed to interchange information across modalities in the training phase by reconstructing masked images and reports. For reconstructing long reports, a sentence-wise prototype memory bank is constructed, enabling the network to focus on low-level localized visual and high-level clinical linguistic features. Additionally, a non-auto-regressive generation paradigm is proposed for reconstructing non-sequential reports. Experimental results on five downstream tasks, including supervised classification, zero-shot classification, image-to-text retrieval, semantic segmentation, and object detection, show the proposed method outperforms other state-of-the-art methods across multiple datasets and under different dataset size settings. The code is available at https://github.com/QtacierP/PRIOR.
Towards Unifying Medical Vision-and-Language Pre-training via Soft Prompts
Medical vision-and-language pre-training (Med-VLP) has shown promising improvements on many downstream medical tasks owing to its applicability to extracting generic representations from medical images and texts. Practically, there exist two typical types, i.e., the fusion-encoder type and the dual-encoder type, depending on whether a heavy fusion module is used. The former is superior at multi-modal tasks owing to the sufficient interaction between modalities; the latter is good at uni-modal and cross-modal tasks due to the single-modality encoding ability. To take advantage of these two types, we propose an effective yet straightforward scheme named PTUnifier to unify the two types. We first unify the input format by introducing visual and textual prompts, which serve as a feature bank that stores the most representative images/texts. By doing so, a single model could serve as a foundation model that processes various tasks adopting different input formats (i.e., image-only, text-only, and image-text-pair). Furthermore, we construct a prompt pool (instead of static ones) to improve diversity and scalability. Experimental results show that our approach achieves state-of-the-art results on a broad range of tasks, spanning uni-modal tasks (i.e., image/text classification and text summarization), cross-modal tasks (i.e., image-to-text generation and image-text/text-image retrieval), and multi-modal tasks (i.e., visual question answering), demonstrating the effectiveness of our approach. Note that the adoption of prompts is orthogonal to most existing Med-VLP approaches and could be a beneficial and complementary extension to these approaches.
MetaCLIP 2: A Worldwide Scaling Recipe
Contrastive Language-Image Pretraining (CLIP) is a popular foundation model, supporting from zero-shot classification, retrieval to encoders for multimodal large language models (MLLMs). Although CLIP is successfully trained on billion-scale image-text pairs from the English world, scaling CLIP's training further to learning from the worldwide web data is still challenging: (1) no curation method is available to handle data points from non-English world; (2) the English performance from existing multilingual CLIP is worse than its English-only counterpart, i.e., "curse of multilinguality" that is common in LLMs. Here, we present MetaCLIP 2, the first recipe training CLIP from scratch on worldwide web-scale image-text pairs. To generalize our findings, we conduct rigorous ablations with minimal changes that are necessary to address the above challenges and present a recipe enabling mutual benefits from English and non-English world data. In zero-shot ImageNet classification, MetaCLIP 2 ViT-H/14 surpasses its English-only counterpart by 0.8% and mSigLIP by 0.7%, and surprisingly sets new state-of-the-art without system-level confounding factors (e.g., translation, bespoke architecture changes) on multilingual benchmarks, such as CVQA with 57.4%, Babel-ImageNet with 50.2% and XM3600 with 64.3% on image-to-text retrieval.
IP-Adapter: Text Compatible Image Prompt Adapter for Text-to-Image Diffusion Models
Recent years have witnessed the strong power of large text-to-image diffusion models for the impressive generative capability to create high-fidelity images. However, it is very tricky to generate desired images using only text prompt as it often involves complex prompt engineering. An alternative to text prompt is image prompt, as the saying goes: "an image is worth a thousand words". Although existing methods of direct fine-tuning from pretrained models are effective, they require large computing resources and are not compatible with other base models, text prompt, and structural controls. In this paper, we present IP-Adapter, an effective and lightweight adapter to achieve image prompt capability for the pretrained text-to-image diffusion models. The key design of our IP-Adapter is decoupled cross-attention mechanism that separates cross-attention layers for text features and image features. Despite the simplicity of our method, an IP-Adapter with only 22M parameters can achieve comparable or even better performance to a fully fine-tuned image prompt model. As we freeze the pretrained diffusion model, the proposed IP-Adapter can be generalized not only to other custom models fine-tuned from the same base model, but also to controllable generation using existing controllable tools. With the benefit of the decoupled cross-attention strategy, the image prompt can also work well with the text prompt to achieve multimodal image generation. The project page is available at https://ip-adapter.github.io.
Image-to-LaTeX Converter for Mathematical Formulas and Text
In this project, we train a vision encoder-decoder model to generate LaTeX code from images of mathematical formulas and text. Utilizing a diverse collection of image-to-LaTeX data, we build two models: a base model with a Swin Transformer encoder and a GPT-2 decoder, trained on machine-generated images, and a fine-tuned version enhanced with Low-Rank Adaptation (LoRA) trained on handwritten formulas. We then compare the BLEU performance of our specialized model on a handwritten test set with other similar models, such as Pix2Text, TexTeller, and Sumen. Through this project, we contribute open-source models for converting images to LaTeX and provide from-scratch code for building these models with distributed training and GPU optimizations.
DreamDistribution: Prompt Distribution Learning for Text-to-Image Diffusion Models
The popularization of Text-to-Image (T2I) diffusion models enables the generation of high-quality images from text descriptions. However, generating diverse customized images with reference visual attributes remains challenging. This work focuses on personalizing T2I diffusion models at a more abstract concept or category level, adapting commonalities from a set of reference images while creating new instances with sufficient variations. We introduce a solution that allows a pretrained T2I diffusion model to learn a set of soft prompts, enabling the generation of novel images by sampling prompts from the learned distribution. These prompts offer text-guided editing capabilities and additional flexibility in controlling variation and mixing between multiple distributions. We also show the adaptability of the learned prompt distribution to other tasks, such as text-to-3D. Finally we demonstrate effectiveness of our approach through quantitative analysis including automatic evaluation and human assessment. Project website: https://briannlongzhao.github.io/DreamDistribution
Text2Video-Zero: Text-to-Image Diffusion Models are Zero-Shot Video Generators
Recent text-to-video generation approaches rely on computationally heavy training and require large-scale video datasets. In this paper, we introduce a new task of zero-shot text-to-video generation and propose a low-cost approach (without any training or optimization) by leveraging the power of existing text-to-image synthesis methods (e.g., Stable Diffusion), making them suitable for the video domain. Our key modifications include (i) enriching the latent codes of the generated frames with motion dynamics to keep the global scene and the background time consistent; and (ii) reprogramming frame-level self-attention using a new cross-frame attention of each frame on the first frame, to preserve the context, appearance, and identity of the foreground object. Experiments show that this leads to low overhead, yet high-quality and remarkably consistent video generation. Moreover, our approach is not limited to text-to-video synthesis but is also applicable to other tasks such as conditional and content-specialized video generation, and Video Instruct-Pix2Pix, i.e., instruction-guided video editing. As experiments show, our method performs comparably or sometimes better than recent approaches, despite not being trained on additional video data. Our code will be open sourced at: https://github.com/Picsart-AI-Research/Text2Video-Zero .
eDiff-I: Text-to-Image Diffusion Models with an Ensemble of Expert Denoisers
Large-scale diffusion-based generative models have led to breakthroughs in text-conditioned high-resolution image synthesis. Starting from random noise, such text-to-image diffusion models gradually synthesize images in an iterative fashion while conditioning on text prompts. We find that their synthesis behavior qualitatively changes throughout this process: Early in sampling, generation strongly relies on the text prompt to generate text-aligned content, while later, the text conditioning is almost entirely ignored. This suggests that sharing model parameters throughout the entire generation process may not be ideal. Therefore, in contrast to existing works, we propose to train an ensemble of text-to-image diffusion models specialized for different synthesis stages. To maintain training efficiency, we initially train a single model, which is then split into specialized models that are trained for the specific stages of the iterative generation process. Our ensemble of diffusion models, called eDiff-I, results in improved text alignment while maintaining the same inference computation cost and preserving high visual quality, outperforming previous large-scale text-to-image diffusion models on the standard benchmark. In addition, we train our model to exploit a variety of embeddings for conditioning, including the T5 text, CLIP text, and CLIP image embeddings. We show that these different embeddings lead to different behaviors. Notably, the CLIP image embedding allows an intuitive way of transferring the style of a reference image to the target text-to-image output. Lastly, we show a technique that enables eDiff-I's "paint-with-words" capability. A user can select the word in the input text and paint it in a canvas to control the output, which is very handy for crafting the desired image in mind. The project page is available at https://deepimagination.cc/eDiff-I/
Plug-and-Play Diffusion Features for Text-Driven Image-to-Image Translation
Large-scale text-to-image generative models have been a revolutionary breakthrough in the evolution of generative AI, allowing us to synthesize diverse images that convey highly complex visual concepts. However, a pivotal challenge in leveraging such models for real-world content creation tasks is providing users with control over the generated content. In this paper, we present a new framework that takes text-to-image synthesis to the realm of image-to-image translation -- given a guidance image and a target text prompt, our method harnesses the power of a pre-trained text-to-image diffusion model to generate a new image that complies with the target text, while preserving the semantic layout of the source image. Specifically, we observe and empirically demonstrate that fine-grained control over the generated structure can be achieved by manipulating spatial features and their self-attention inside the model. This results in a simple and effective approach, where features extracted from the guidance image are directly injected into the generation process of the target image, requiring no training or fine-tuning and applicable for both real or generated guidance images. We demonstrate high-quality results on versatile text-guided image translation tasks, including translating sketches, rough drawings and animations into realistic images, changing of the class and appearance of objects in a given image, and modifications of global qualities such as lighting and color.
